
Altova RaptorXML+XBRL Server 2015

User and Reference Manual

All rights reserved. No parts of this work may be reproduced in any form or by any
means - graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems - without the written permission of the
publisher.

Products that are referred to in this document may be either trademarks and/or
registered trademarks of the respective owners. The publisher and the author make no
claim to these trademarks.

While every precaution has been taken in the preparation of this document, the
publisher and the author assume no responsibility for errors or omissions, or for
damages resulting from the use of information contained in this document or from the
use of programs and source code that may accompany it. In no event shall the publisher
and the author be liable for any loss of profit or any other commercial damage caused or
alleged to have been caused directly or indirectly by this document.

Published: 2014

© 2014 Altova GmbH

Altova RaptorXML+XBRL Server 2015 User
& Reference Manual

1Altova RaptorXML+XBRL Server 2015

Table of Contents

1 About RaptorXML+XBRL Server 3

... 51.1 Editions and Interfaces

... 71.2 System Requirements

... 81.3 Features

... 101.4 Supported Specifications

2 Setting Up RaptorXML 14

... 152.1 Setup on Windows

... 16Installation on Windows 2.1.1

... 18Licensing on Windows 2.1.2

... 212.2 Setup on Linux

... 22Installation on Linux 2.2.1

... 25Licensing on Linux 2.2.2

... 272.3 Setup on Mac OS X

... 28Installation on Mac OS X 2.3.1

... 31Licensing on Mac OS X 2.3.2

... 332.4 XML Catalogs

... 34How Catalogs Work 2.4.1

... 36Altova's XML Catalog Mechanism 2.4.2

... 39Variables for Windows System Locations 2.4.3

... 412.5 Global Resources

... 432.6 Security Issues

3 Command Line Interface (CLI) 46

... 483.1 XML, DTD, XSD Validation Commands

... 49valxml-withdtd (xml) 3.1.1

... 53valxml-withxsd (xsi) 3.1.2

... 59valdtd (dtd) 3.1.3

... 62valxsd (xsd) 3.1.4

... 67valany 3.1.5

... 713.2 Well-formedness Check Commands

... 72wfxml 3.2.1

Altova RaptorXML+XBRL Server 20152

... 75wfdtd 3.2.2

... 78wfany 3.2.3

... 813.3 XBRL Validation Commands

... 82valxbrl (xbrl) 3.3.1

... 91valxbrltaxonomy (dts) 3.3.2

... 98valany 3.3.3

... 1023.4 XSLT Commands

... 103xslt 3.4.1

... 109valxslt 3.4.2

... 1143.5 XQuery Commands

... 115xquery 3.5.1

... 120xqueryupdate 3.5.2

... 126valxquery 3.5.3

... 130valxqueryupdate 3.5.4

... 1343.6 Help and License Commands

... 135Help Command 3.6.1

... 137License Commands 3.6.2

... 1383.7 Localization Commands

... 139exportresourcestrings 3.7.1

... 140setdeflang 3.7.2

... 1413.8 Options

... 142Catalogs, Global Resources, ZIP Files 3.8.1

... 143Messages, Errors, Help, Timeout, Version 3.8.2

... 144Processing 3.8.3

... 145XBRL 3.8.4

... 151XML 3.8.5

... 152XSD 3.8.6

... 154XQuery 3.8.7

... 156XSLT 3.8.8

4 HTTP Interface 160

... 1624.1 Server Setup

... 163Starting the Server 4.1.1

... 165Testing the Connection 4.1.2

... 166Configuring the Server 4.1.3

... 1704.2 Client Requests

... 173Initiating Jobs with POST 4.2.1

... 178Server Response to POST Request 4.2.2

... 181Getting the Result Document 4.2.3

3Altova RaptorXML+XBRL Server 2015

... 185Getting Error/Message/Output Documents 4.2.4

... 187Freeing Server Resources after Processing 4.2.5

5 Python Interface 190

... 1925.1 Creating Python Scripts

... 1955.2 Executing Python Scripts

... 1965.3 Example-Script 01: Process XML

... 197Script Listing 5.3.1

... 200Result Document 5.3.2

... 2015.4 Example-Script 02: Re-format XML

... 202Script Listing 5.4.1

... 205Result Document 5.4.2

... 2085.5 Example-Script 03: XBRL Report

... 209Script Listing 5.5.1

... 212Result Document 5.5.2

... 2145.6 Python API: The Job Object

... 2155.7 Python XML API

... 217xml.Attribute 5.7.1

... 218xml.Character 5.7.2

... 219xml.Comment 5.7.3

... 220xml.Document 5.7.4

... 221xml.Element 5.7.5

... 223xml.Namespace 5.7.6

... 224xml.Notation 5.7.7

... 225xml.NSAttribute 5.7.8

... 226xml.ProcessingInstruction 5.7.9

... 227xml.QName 5.7.10

... 228xml.UnexpandedEntityReference 5.7.11

... 229xml.UnparsedEntity 5.7.12

... 2305.8 Python XSD API

... 235xsd.Annotation 5.8.1

... 236xsd.Any 5.8.2

... 237xsd.AnyAttribute 5.8.3

... 238xsd.Assertion 5.8.4

... 239xsd.AttributeDeclaration 5.8.5

... 240xsd.AttributeGroupDefinition 5.8.6

... 241xsd.AttributePSVI 5.8.7

... 243xsd.AttributeUse 5.8.8

... 244xsd.Block 5.8.9

Altova RaptorXML+XBRL Server 20154

... 245xsd.ComplexTypeDefnition 5.8.10

... 246xsd.ContentType 5.8.11

... 247xsd.Defined 5.8.12

... 248xsd.DerivationMethod 5.8.13

... 249xsd.ENTITY 5.8.14

... 250xsd.ElementDeclaration 5.8.15

... 251xsd.ElementPSVI 5.8.16

... 253xsd.Final 5.8.17

... 254xsd.ID 5.8.18

... 255xsd.IDREF 5.8.19

... 256xsd.ID_IDREF_binding 5.8.20

... 257xsd.ID_IDREF_table 5.8.21

... 258xsd.IdentityConstraintDefinition 5.8.22

... 259xsd.Instance 5.8.23

... 260xsd.ModelGroup 5.8.24

... 261xsd.ModelGroupDefinition 5.8.25

... 262xsd.NCName 5.8.26

... 263xsd.NMTOKEN 5.8.27

... 264xsd.NOTATION 5.8.28

... 265xsd.Name 5.8.29

... 266xsd.NamespaceBinding 5.8.30

... 267xsd.NamespaceConstraint 5.8.31

... 268xsd.NotationDeclaration 5.8.32

... 269xsd.OpenContent 5.8.33

... 270xsd.PSVI 5.8.34

... 271xsd.Particle 5.8.35

... 272xsd.QName 5.8.36

... 273xsd.Schema 5.8.37

... 275xsd.Scope 5.8.38

... 276xsd.Sibling 5.8.39

... 277xsd.SimpleTypeDefinition 5.8.40

... 279xsd.TypeAlternative 5.8.41

... 280xsd.TypeTable 5.8.42

... 281xsd.Unbounded 5.8.43

... 282xsd.ValueConstraint 5.8.44

... 283xsd.XPathExpression 5.8.45

... 284Special Built-in Datatype Objects 5.8.46

... 285String Datatype Objects 5.8.47

... 286Boolean Datatype Object 5.8.48

... 287Number Datatype Objects 5.8.49

... 288Duration Datatype Objects 5.8.50

5Altova RaptorXML+XBRL Server 2015

... 289Date and Time Datatype Objects 5.8.51

... 290Binary Datatype Objects 5.8.52

... 291Facet Objects 5.8.53

... 2935.9 Python XBRL API

... 296xbrl.BreakdownResource 5.9.1

... 297xbrl.Concept 5.9.2

... 303xbrl.ConceptAspectValue 5.9.3

... 304xbrl.ConstraintSet 5.9.4

... 306xbrl.Context 5.9.5

... 307xbrl.DefinitionNodeResource 5.9.6

... 308xbrl.DTS 5.9.7

... 309xbrl.Entity 5.9.8

... 310xbrl.EntityIdentifier 5.9.9

... 311xbrl.EntityIdentifierAspectValue 5.9.10

... 312xbrl.Error 5.9.11

... 313xbrl.ExplicitDimensionAspectValue 5.9.12

... 314xbrl.Fact 5.9.13

... 317xbrl.FactSet 5.9.14

... 318xbrl.FootnoteResource 5.9.15

... 319xbrl.Fraction 5.9.16

... 320xbrl.Instance 5.9.17

... 321xbrl.LabelResource 5.9.18

... 322xbrl.LayoutCell 5.9.19

... 323xbrl.LayoutDataCell 5.9.20

... 324xbrl.LayoutHeaderCell 5.9.21

... 325xbrl.LayoutRow 5.9.22

... 326xbrl.LayoutTable 5.9.23

... 327xbrl.LayoutTableSet 5.9.24

... 328xbrl.Period 5.9.25

... 330xbrl.PeriodAspectValue 5.9.26

... 331xbrl.ReferencePart 5.9.27

... 332xbrl.ReferenceResource 5.9.28

... 333xbrl.Resource 5.9.29

... 334xbrl.ScenarioAspectValue 5.9.30

... 335xbrl.SegmentAspectValue 5.9.31

... 336xbrl.TableError 5.9.32

... 337xbrl.TableResource 5.9.33

... 338xbrl.TypedDimensionAspectValue 5.9.34

... 339xbrl.Unit 5.9.35

... 340xbrl.UnitAspectValue 5.9.36

Altova RaptorXML+XBRL Server 20156

6 Java Interface 342

... 3446.1 Example Java Project

... 3466.2 RaptorXML Interfaces for Java

... 347RaptorXMLFactory 6.2.1

... 354XMLValidator 6.2.2

... 365XSLT 6.2.3

... 373XQuery 6.2.4

... 382XBRL 6.2.5

... 393RaptorXMLException 6.2.6

7 COM and .NET Interfaces 396

... 3977.1 About the COM Interface

... 3987.2 About the .NET Interface

... 4007.3 Programming Languages

... 401COM Example: VBScript 7.3.1

... 404.NET Example: C# 7.3.2

... 407.NET Example: Visual Basic .NET 7.3.3

... 4097.4 API Reference

... 410Interfaces 7.4.1

... 410IServer

... 413IXMLValidator

... 418IXSLT

... 423IXQuery

... 429IXBRL

... 436Enumerations 7.4.2

... 436ENUMAssessmentMode

... 437ENUMErrorFormat

... 437ENUMLoadSchemalocation

... 438ENUMQueryVersion

... 439ENUMSchemaImports

... 440ENUMSchemaMapping

... 440ENUMTableOutputFormat

... 441ENUMValidationType

... 442ENUMWellformedCheckType

... 443ENUMXBRLValidationType

... 443ENUMXMLValidationMode

... 444ENUMXQueryVersion

7Altova RaptorXML+XBRL Server 2015

... 444ENUMXQueryUpdatedXML

... 445ENUMXSDVersion

... 446ENUMXSLTVersion

8 Additional Information 448

... 4498.1 Schema Location Hints

... 4508.2 XBRL Formula Parameters

... 451Formula Parameter Formats 8.2.1

... 453Using Formula Parameters 8.2.2

9 XSLT and XQuery Engine Information 458

... 4599.1 XSLT 1.0

... 4609.2 XSLT 2.0

... 4639.3 XSLT 3.0

... 4649.4 XQuery 1.0

... 4689.5 XQuery 3.0

10 XSLT and XPath/XQuery Functions 470

... 47210.1 Altova Extension Functions

... 474XSLT Functions 10.1.1

... 477XPath/XQuery Functions: Date and Time 10.1.2

... 489XPath/XQuery Functions: String 10.1.3

... 495XPath/XQuery Functions: Miscellaneous 10.1.4

... 504Chart Functions 10.1.5

... 508Chart Data XML Structure

... 513Example: Chart Functions

... 517Barcode Functions 10.1.6

... 51910.2 Miscellaneous Extension Functions

... 520Java Extension Functions 10.2.1

... 521User-Defined Class Files

... 524User-Defined Jar Files

... 525Java: Constructors

... 525Java: Static Methods and Static Fields

... 526Java: Instance Methods and Instance Fields

... 527Datatypes: XPath/XQuery to Java

... 528Datatypes: Java to XPath/XQuery

... 529.NET Extension Functions 10.2.2

Altova RaptorXML+XBRL Server 20158

... 531.NET: Constructors

... 532.NET: Static Methods and Static Fields

... 532.NET: Instance Methods and Instance Fields

... 533Datatypes: XPath/XQuery to .NET

... 534Datatypes: .NET to XPath/XQuery

... 536XBRL Functions for XSLT 10.2.3

... 537MSXSL Scripts for XSLT 10.2.4

11 Altova LicenseServer 542

... 54411.1 Network Information

... 54511.2 Installation (Windows)

... 54611.3 Installation (Linux)

... 54811.4 Installation (Mac OS X)

... 54911.5 Altova ServiceController

... 55011.6 How to Assign Licenses

... 551Start LicenseServer 11.6.1

... 553Open LicenseServer's Config Page (Windows) 11.6.2

... 556Open LicenseServer's Config Page (Linux) 11.6.3

... 558Open LicenseServer's Config Page (Mac OS X) 11.6.4

... 561Upload Licenses to LicenseServer 11.6.5

... 565Register Product/s 11.6.6

... 565Register FlowForce Server

... 570Register MapForce Server

... 572Register StyleVision Server

... 574Register RaptorXML(+XBRL) Server

... 575Register MobileTogether Server

... 577Assign Licenses to Registered Products 11.6.7

... 58211.7 Configuration Page Reference

... 583License Pool 11.7.1

... 588Server Management 11.7.2

... 592Server Monitoring 11.7.3

... 593Settings 11.7.4

... 597Messages, Log Out 11.7.5

Index

Chapter 1

About RaptorXML+XBRL Server

© 2014 Altova GmbH

 3About RaptorXML+XBRL Server

Altova RaptorXML+XBRL Server 2015

1 About RaptorXML+XBRL Server

Altova RaptorXML+XBRL Server (hereafter also called RaptorXML for short) is Altova's third-
generation, hyper-fast XML and XBRL* processor. It has been built to be optimized for the latest
standards and parallel computing environments. Designed to be highly cross-platform capable, the
engine takes advantage of today’s ubiquitous multi-core computers to deliver lightning fast
processing of XML and XBRL data.

* Note: XBRL processing is available only in RaptorXML+XBRL Server, not in RaptorXML Server.

Editions and operating systems
There are two editions of RaptorXML, each suitable for a different set of requirements. These
editions are described in the section Editions and Interfaces. RaptorXML is available for Windows,
Linux, and Mac OS X. For more details of system support, see the section System
Requirements.

Features and supported specifications
RaptorXML provides XML and XBRL validation, XSLT transformations, and XQuery executions,
each with a wide range of powerful options. See the section Features for a broad list of available
functionality and key features. The section Supported Specifications provides a detailed list of the
specifications to which RaptorXML conforms. For more information, visit the RaptorXML page at
the Altova website.

This documentation
This documentation is delivered with the application and is also available online at the Altova
website. Note that the Chrome browser has a limitation that prevents entries in the Table of
Contents (TOC) pane expanding when the documentation is opened locally. The TOC in Chrome
functions correctly, however, when the documentation is opened from a webserver.

This documentation is organized into the following sections:

About RaptorXML (this section)
Setting Up RaptorXML
Command Line Interface
HTTP Interface
Python Interface
Java Interface
COM/.NET Interface
XSLT and XQuery Engine Information
XSLT and XPath/XQuery Functions
Altova LicenseServer

http://www.altova.com/raptorxml.html
http://www.altova.com/raptorxml.html
http://www.altova.com
http://www.altova.com

4 About RaptorXML+XBRL Server

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Last updated: 09-15-2014

© 2014 Altova GmbH

Editions and Interfaces 5About RaptorXML+XBRL Server

Altova RaptorXML+XBRL Server 2015

1.1 Editions and Interfaces

RaptorXML is available in the following editions:

RaptorXML Server is a very fast XML processing engine with support for XML, XML
Schema, XSLT, XPath, XQuery, and more.

RaptorXML+XBRL Server supports all the features of RaptorXML Server with the
additional capability of processing and validating the XBRL family of standards.

Interfaces
RaptorXML is accessed via the following interfaces:

A command line interface (CLI)
A COM interface on Windows systems
A .NET interface on Windows systems
A Java interface on Windows, Linux, and MacOS systems
An HTTP interface that can be accessed by an HTTP client
A Python interface with which Python scripts can access and process document parts
via the Python APIs of RaptorXML. Scripts can be submitted via CLI or HTTP

The diagram below shows how RaptorXML is accessed via its interfaces.

Notice that the COM, Java, and .NET interfaces use the HTTP protocol to connect to the server
editions. Python scripts can be submitted to the server editions via the command line and HTTP
interfaces.

Command line interface (CLI)
Provides command line usage for XML (and other document) validation, XSLT transformation, and
XQuery execution. See the section Command Line for usage information.

6 About RaptorXML+XBRL Server Editions and Interfaces

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

HTTP interface
All the functionality of the server editions can be accessed via an HTTP interface. Client requests
are made in JSON format. Each request is assigned a job directory on the server, in which output
files are saved, Server responses to the client include all relevant information about the job. See
the section HTTP Interface.

Python interface
Together with a CLI command or HTTP request, a Python script can be submitted that accesses
document/s specified in the command or request. Access to the document is provided by Python
APIs for XML, XSD, and XBRL. See the section Python Interface for a description of usage and
the APIs.

COM interface

RaptorXML can be used via COM interface, and therefore can be used by applications and
scripting languages that support COM. COM interface support is implemented for Raw and
Dispatch interfaces. Input data can be provided as files or as text strings in scripts and in
application data.

Java interface
RaptorXML functionality is available as Java classes that can be used in Java programs. For
example, there are Java classes that provide XML validation, XSLT transformation, and XQuery
execution features.

.NET interface
A DLL file is built as a wrapper around RaptorXML and allows .NET users to connect to
RaptorXML functionality. RaptorXML provides primary interop assembly signed by Altova. Input
data can be provided as files or as text strings in scripts and in application data.

© 2014 Altova GmbH

System Requirements 7About RaptorXML+XBRL Server

Altova RaptorXML+XBRL Server 2015

1.2 System Requirements

RaptorXML+XBRL Server is supported on the following operating systems:

Windows
Windows XP (SP2 for x64; SP3 for x86), Windows Vista, Windows 7, Windows 8, or newer

Windows Server
Windows Server 2008 R2 or newer

Linux
CentOS 6 or newer
RedHat 6 or newer
Debian 6 or newer
Ubuntu 12.04 or newer

Note that the Qt library (version 4 or later), available under GNU GPL and LGPL, must be
installed.

Mac OS X
Mac OS X 10.7 or newer

RaptorXML is available for both 32-bit and 64-bit machines. Specifically these are x86 and amd64
(x86-64) instruction-set based cores: Intel Core i5, i7, XEON E5. To use RaptorXML via a COM
interface, users should have privileges to use the COM interface, that is, to register the application
and execute the relevant applications and/or scripts.

http://qt-project.org/

8 About RaptorXML+XBRL Server Features

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

1.3 Features

RaptorXML provides the functionality listed below. Most functionality is common to command line
usage and COM interface usage. One major difference is that COM interface usage on Windows
allows documents to be constructed from text strings via the application or scripting code (instead
of referencing XML, XBRL, DTD, XML Schema, XSLT, or XQuery files).

XML and XBRL Validation

Validates the supplied XML or XBRL document against internal or external DTDs or XML
Schemas.
Checks well-formedness of XML, DTD, XML Schema, XSLT, and XQuery documents.
Validates XBRL taxonomies, and XBRL documents against XBRL taxonomies.
Execution of XBRL Formulas and Validation Assertions.
Support for the XBRL 2.1, Dimensions 1.0, and Formula 1.0 specifications, and the Table
Linkbase 1.0 proposed recommendation of 18 December 2013.

XSLT Transformations

Transforms XML using supplied XSLT 1.0, 2.0, or 3.0 document.
XML and XSLT documents can be provided as a file (via a URL) or, in the case of COM
usage, as a text string.
Output is returned as a file (at a named location) or, in the case of COM usage, as a text
string.
XSLT parameters can be supplied via the command line and via the COM interface.
Altova extension functions, as well as XBRL, Java and .NET extension functions, enable
specialized processing. This allows, for example, the creation of such features as charts
and barcode in output documents.

XQuery Execution

Executes XQuery 1.0 and 3.0 documents.
XQuery and XML documents can be provided as a file (via a URL) or, in the case of COM
usage, as a text string.
Output is returned as a file (at a named location) or, in the case of COM usage, as a text
string.
External XQuery variables can be supplied via the command line and via the COM
interface.
Serialization options include: output encoding, output method (that is, whether the output
is XML, XHTML, HTML, or text), omitting the XML declaration, and indentation.

Hyper-performance Features

Ultra-high performance code optimizations
o Native instruction-set implementations

o 32-bit and 64-bit version

Ultra-low memory footprint
o Extremely compact in-memory representation of XML Information Set

o Streaming instance validation

Cross platform capabilities
Highly scalable code for multi-CPU/multi-core/parallel computing

© 2014 Altova GmbH

Features 9About RaptorXML+XBRL Server

Altova RaptorXML+XBRL Server 2015

Parallel loading, validation, and processing by design

Developer Features

Superior error reporting capabilities
Windows server mode and Unix daemon mode (via command-line options)
Python 3.x interpreter for scripting included
COM API on Windows platform
Java API everywhere
XPath Extension functions Java, .NET, XBRL, & more
Streaming serialization
Built-in HTTP server with REST validation API

For more information, see the section Supported Specifications and the Altova website.

http://www.altova.com/raptorxml.html

10 About RaptorXML+XBRL Server Supported Specifications

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

1.4 Supported Specifications

RaptorXML supports the following specifications.

W3C Recommendations
Website: World Wide Web Consortium (W3C)

Extensible Markup Language (XML) 1.0 (Fifth Edition)
Extensible Markup Language (XML) 1.1 (Second Edition)
Namespaces in XML 1.0 (Third Edition)
Namespaces in XML 1.1 (Second Edition)
XML Information Set (Second Edition)
XML Base (Second Edition)
XML Inclusions (XInclude) Version 1.0 (Second Edition)
XML Linking Language (XLink) Version 1.0
XML Schema Part 1: Structures Second Edition
XML Schema Part 2: Datatypes Second Edition
W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures
W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes
XPointer Framework
XPointer xmlns() Scheme
XPointer element() Scheme
XML Path Language (XPath) Version 1.0
XSL Transformations (XSLT) Version 1.0
XML Path Language (XPath) 2.0 (Second Edition)
XSL Transformations (XSLT) Version 2.0
XQuery 1.0: An XML Query Language (Second Edition)
XQuery 1.0 and XPath 2.0 Functions and Operators (Second Edition)
XML Path Language (XPath) 3.0

W3C Working Drafts & Candidate Recommendations
Website: World Wide Web Consortium (W3C)

XSL Transformations (XSLT) Version 3.0
XQuery 3.0: An XML Query Language
XPath and XQuery Functions and Operators 3.0

OASIS Standards
Website: OASIS Standards

XML Catalogs V 1.1 - OASIS Standard V1.1

XBRL Recommendations
Website: Extensible Business Reporting Language (XBRL)

XBRL 2.1
Dimensions 1.0
Formula Specifications 1.0
o Aspect Cover Filters

http://www.w3.org/
http://www.w3.org/
https://www.oasis-open.org/standards
http://www.xbrl.org/

© 2014 Altova GmbH

Supported Specifications 11About RaptorXML+XBRL Server

Altova RaptorXML+XBRL Server 2015

o Boolean Filters

o Concept Filters

o Concept Relation Filters

o Consistency Assertions

o Custom Function Implementation

o Dimension Filters

o Entity Filters

o Existence Assertions

o Formula

o Function Registry

o Generic Messages

o Generic References

o Implicit Filters

o Match Filters

o Period Filters

o Relative Filters

o Segment Scenario Filters

o Tuple Filters

o Unit Filters

o Validation

o Validation Messages

o Value Assertions

o Value Filters

o Variables

Table Linkbase 1.0 (Proposed Recommendation of 18 December 2013)
Function Definitions
Generic Links 1.0
o General Filters

o Generic Labels

Chapter 2

Setting Up RaptorXML

14 Setting Up RaptorXML

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

2 Setting Up RaptorXML

This section describes procedures for setting up RaptorXML+XBRL Server. It describes the
following:

Installation and licensing of RaptorXML on Windows, on Linux, and on Mac OS X
systems.
How to use XML Catalogs.
How to work with Altova global resources.
Security issues related to RaptorXML.

RaptorXML has special options that support XML Catalogs and Altova global resources, both of
which enhance portability and modularity. You can therefore leverage the use of these features in
your environment to considerable advantage.

Note: Security concerns and how to set up important security solutions are described in the
section Security Issues.

© 2014 Altova GmbH

Setup on Windows 15Setting Up RaptorXML

Altova RaptorXML+XBRL Server 2015

2.1 Setup on Windows

This section describes the installation and licensing of RaptorXML+XBRL Server on Windows
systems.

Installation on Windows
System requirements
Installing RaptorXML+XBRL Server
Altova LicenseServer
LicenseServer versions
Trial license
Application folder location

Licensing on Windows
Start ServiceController
Start LicenseServer
Start RaptorXML+XBRL Server
Register RaptorXML+XBRL Server
Assign a license

16 Setting Up RaptorXML Setup on Windows

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

2.1.1 Installation on Windows

RaptorXML+XBRL Server is available for installation on Windows systems. Its installation and
setup procedure is described below.

System requirements
Windows
Windows XP (SP2 for x64; SP3 for x86), Windows Vista, Windows 7, Windows 8, or newer

Windows Server
Windows Server 2008 R2 or newer

Installing RaptorXML+XBRL Server
RaptorXML+XBRL Server can be installed on Windows systems as follows:

As a separate standalone server product called RaptorXML+XBRL Server. To install
RaptorXML+XBRL Server, download and run the RaptorXML+XBRL Server installer.
Follow the onscreen instructions.
As part of the FlowForce Server installation package. To install RaptorXML+XBRL
Server as part of the FlowForce Server package, download and run the FlowForce
Server installer. Follow the onscreen instructions and make sure you check the option
for installing RaptorXML+XBRL Server.

The installers of both RaptorXML+XBRL Server and FlowForce Server are available at the Altova
website and will install the products with the necessary registrations. After installation, the
RaptorXML+XBRL Server executable will be located by default at:

<ProgramFilesFolder>\Altova\RaptorXMLXBRLServer2015\bin\RaptorXMLXBRL.exe

All the necessary registrations to use RaptorXML+XBRL Server via a COM interface, as a Java
interface, and in the .NET environment will be done by the installer. This includes registering
the RaptorXML+XBRL Server executable as a COM server object, installing RaptorXMLLib.dll
(for Java interface usage) in the WINDIR\system32\ directory, and adding the
Altova.RaptorXML.dll file to the .NET reference library.

Altova LicenseServer
In order for RaptorXML+XBRL Server to work, it must be licensed via an Altova
LicenseServer on your network.
When you install RaptorXML+XBRL Server or FlowForce Server on Windows systems,
an option is available that allows you to download and install Altova LicenseServer
together with RaptorXML+XBRL Server or FlowForce Server.
If an Altova LicenseServer is already installed on your network, you do not need to
install another one—unless a newer version of Altova LicenseServer is required. (See
next point, LicenseServer versions.)
During the installation process of RaptorXML+XBRL Server or FlowForce Server, check
or uncheck the option for installing Altova LicenseServer as appropriate.

See the section, Licensing on Windows, for more information about how to register and license
RaptorXML+XBRL Server with Altova LicenseServer.

LicenseServer versions

http://www.altova.com/flowforce.html
http://www.altova.com/flowforce.html
http://www.altova.com/download.html
http://www.altova.com/download.html

© 2014 Altova GmbH

Setup on Windows 17Setting Up RaptorXML

Altova RaptorXML+XBRL Server 2015

Altova server products must be licensed either with the version of LicenseServer that is
appropriate to the installed RaptorXML+XBRL Server version, or with a later version of
LicenseServer.
The LicenseServer version that is appropriate for a particular version of RaptorXML
+XBRL Server is displayed during the installation of RaptorXML+XBRL Server. You can
install this version of LicenseServer along with RaptorXML+XBRL Server, or you can
install LicenseServer separately.
Before installing a newer version of LicenseServer, any older one must be de-installed.
The LicenseServer installer will do this automatically if it detects an older version.
LicenseServer versions are backwards compatible. They will work with older versions
of RaptorXML+XBRL Server.
If you install a new version of RaptorXML+XBRL Server and if your installed
LicenseServer version is older than the appropriate LicenseServer, install the latest
version available on the Altova website.
At the time of LicenseServer de-installation, all registration and licensing information
held in the older version of LicenseServer will be saved to a database on your server
machine. This data will be imported automatically into the newer version when the
newer version is installed.
The version number of the currently installed LicenseServer is given at the bottom of
the LicenseServer configuration page (all tabs).

Current version: 1.11

Trial license
During the installation process, you will be given the option of requesting a 30-day trial license
for RaptorXML+XBRL Server. After submitting the request, a trial license will be sent to the
email address you registered.

Application folder location
The application will be installed in the following folder:

Windows XP C:\Program Files\Altova\

Windows Vista, Windows 7/8 C:\Program Files\Altova\

32 bit Version on 64-bit OS C:\Program Files (x86)\Altova\

18 Setting Up RaptorXML Setup on Windows

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

2.1.2 Licensing on Windows

RaptorXML+XBRL Server must be licensed with an Altova LicenseServer in order to run it.
Licensing is a two-step process:

1. Register RaptorXML+XBRL Server with LicenseServer. Registration is done from
RaptorXML+XBRL Server.

2. Assign a license to RaptorXML+XBRL Server. License-assigning is done from
LicenseServer.

The steps you need to carry out are given below.

Start ServiceController
Altova ServiceController is started in order to start Altova LicenseServer and Altova RaptorXML
+XBRL Server.

Altova ServiceController (ServiceController for short) is an application for conveniently starting,
stopping and configuring Altova services on Windows systems.

ServiceController is installed with Altova LicenseServer and with Altova server products that are
installed as services (FlowForce Server, RaptorXML(+XBRL) Server, and Mobile Together
Server). It can be started by clicking Start | Altova LicenseServer | Altova
ServiceController. (This command is also available in the Start menu folders of Altova server
products that are installed as services (FlowForce Server, RaptorXML(+XBRL) Server, and
Mobile Together Server).) After ServiceController has been started, it can be accessed via the
system tray (screenshot below).

To specify that ServiceController starts automatically on logging in to the system, click the
ServiceController icon in the system tray to display the ServiceController menu
(screenshot below), and then toggle on the command Run Altova ServiceController at
Startup. (This command is toggled on by default.) To exit ServiceController, click the
ServiceController icon in the system tray and, in the menu that appears (see screenshot
below), click Exit Altova ServiceController.

© 2014 Altova GmbH

Setup on Windows 19Setting Up RaptorXML

Altova RaptorXML+XBRL Server 2015

Start LicenseServer
To start LicenseServer, click the ServiceController icon in the system tray, hover over Altova
LicenseServer in the menu that pops up (see screenshot below), and then select Start
Service from the LicenseServer submenu. If LicenseServer is already running, the Start
Service option will be disabled.

Start RaptorXML+XBRL Server
To start RaptorXML+XBRL Server, click the ServiceController icon in the system tray, hover
over Altova RaptorXML+XBRL Server in the menu that pops up (see screenshot below), and
then select Start Service from the RaptorXML+XBRL Server submenu. If RaptorXML+XBRL
Server is already running, the Start Service option will be disabled.

Register RaptorXML+XBRL Server

Register RaptorXML+XBRL Server through FlowForce Server
If RaptorXML+XBRL Server was installed as part of a FlowForce Server installation,
registering FlowForce Server with LicenseServer will automatically also register RaptorXML
+XBRL Server. How to register FlowForce Server is described in the FlowForce Server
documentation. Essentially: (i) Start Altova FlowForce Web as a service via
ServiceController (see previous point); (ii) Enter your password to access the Setup page;
(iii) Select the LicenseServer name or address and click Register with LicenseServer.

http://www.altova.com/flowforce.html
http://www.altova.com/documentation.html
http://www.altova.com/documentation.html

20 Setting Up RaptorXML Setup on Windows

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

After successful registration, go to the Server Management tab of LicenseServer's
configuration page to assign a license to RaptorXML+XBRL Server.

Register a standalone RaptorXML+XBRL Server
Register RaptorXML+XBRL Server via:

its CLI, using the licenseserver command:
RaptorXMLXBRL licenseserver [options] ServerName-Or-IP-Address

For example, if localhost is the name of the server on which LicenseServer is installed:
RaptorXMLXBRL licenseserver localhost

After successful registration, go to the Server Management tab of LicenseServer's
configuration page to assign a license to RaptorXML+XBRL Server.

Assign a license
After successfully registering RaptorXML+XBRL Server, it will be listed in the Server
Management tab of the configuration page of LicenseServer. Go there and assign a license to
RaptorXML+XBRL Server.

Note on cores and licenses
The licensing of Altova server products, except MobileTogether Server***, is based on the
number of processor cores available on the product machine. For example, a dual-core
processor has two cores, a quad-core processor four cores, a hexa-core processor six cores,
and so on. The number of cores licensed for a product on a particular server machine must be
greater than or equal to the number of cores available on that server, whether it's a physical or
virtual machine.

For example, if a server has eight cores (an octa-core processor), you must purchase at least
an 8-core license. You can also combine licenses to achieve the core count. So, two 4-core
licenses can also be used for an octa-core server instead of an 8-core license.

If you are using a computer server with a large number of CPU cores but only have a low
volume to process, you may also create a virtual machine that is allocated a smaller number of
cores, and purchase a license for that number. Such a deployment, of course, will have less
processing speed than if all available cores on the server were utilized.

Note: Each license can be used for only one client machine at a time, even if it has unused
licensing capacity. For example, if a 10-core license is used for a client machine that
has 6 CPU cores, then the remaining 4 cores of the license cannot be used
simultaneously for another client machine.

*** MobileTogether Server licenses are assigned on the basis of the number of users, that
is, the number of client devices that connect to MobileTogether Server.

© 2014 Altova GmbH

Setup on Linux 21Setting Up RaptorXML

Altova RaptorXML+XBRL Server 2015

2.2 Setup on Linux

This section describes the installation and licensing of RaptorXML+XBRL Server on Linux
systems (Debian, Ubuntu, CentOS, RedHat).

Installation on Linux
System requirements
Note about root user
Uninstall old versions of Altova server products
Download the Linux package
Install RaptorXML+XBRL Server
Altova LicenseServer
LicenseServer versions
Trial license

Licensing on Linux
Note about root user
Start LicenseServer
Start RaptorXML+XBRL Server
Register RaptorXML+XBRL Server
Assign a license

22 Setting Up RaptorXML Setup on Linux

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

2.2.1 Installation on Linux

RaptorXML+XBRL Server is available for installation on Linux systems. Its installation and setup
procedure is described below.

System requirements
Linux

CentOS 6 or newer
RedHat 6 or newer
Debian 6 or newer
Ubuntu 12.04 or newer

Note that the Qt library (version 4 or later), available under GNU GPL and LGPL, must be
installed.

 FlowForce Server integration
If you are installing RaptorXML+XBRL Server together with FlowForce Server, it is
recommended to install FlowForce Server first. Otherwise, after having installed both
RaptorXML+XBRL Server and FlowForce Server, run the following command:

cp /opt/Altova/RaptorXMLXBRLServer2015/etc/*.tool /opt/Altova/
FlowForceServer2015/tools

This command copies the .tool file from /etc directory of RaptorXML+XBRL Server to the
FlowForce Server /tools directory. The .tool file is required by FlowForce Server; it contains
the path to the RaptorXML+XBRL Server executable. You do not need to run this command if
you install FlowForce Server before installing RaptorXML+XBRL Server.

Note about root user
You must have administrator (root) privileges to be able to install RaptorXML+XBRL Server.
Installation must be done, therefore, as the root user. If you are logged in as root, you can
leave out the sudo keyword from the commands listed below.

Uninstall old versions of Altova server products
If you need to uninstall a previous version, do this as follows. On the Linux command line
interface (CLI), you can check which Altova server products are installed with the following
command:
[Debian, Ubuntu]: dpkg --list | grep Altova

[CentOS, RedHat]: rpm -qa | grep server

If RaptorXML+XBRL Server is not installed, go ahead with the installation as documented below
in Installing RaptorXML+XBRL Server.

If RaptorXML+XBRL Server is installed and you wish to install a newer version of RaptorXML
+XBRL Server, uninstall the old version with the command:
[Debian, Ubuntu]: sudo dpkg --remove raptorxmlxbrlserver

[CentOS, RedHat]: sudo rpm -e raptorxmlxbrlserver

http://qt-project.org/

© 2014 Altova GmbH

Setup on Linux 23Setting Up RaptorXML

Altova RaptorXML+XBRL Server 2015

If you need to uninstall an old version of Altova LicenseServer, do this with the following
command:
[Debian, Ubuntu]: sudo dpkg --remove licenseserver

[CentOS, RedHat]: sudo rpm -e licenseserver

Download the Linux package
RaptorXML+XBRL Server installation packages for the following Linux systems are available on
the Altova website.

Distribution Package extension

Debian 6 and higher .deb

Ubuntu12.04 and higher .deb

CentOS 6 and higher .rpm

RedHat 6 and higher .rpm

After downloading the Linux package, copy it to any directory on the Linux system. Since you
will need an Altova LicenseServer in order to run RaptorXML+XBRL Server, you may want to
download LicenseServer from the Altova website at the same time as you download RaptorXML
+XBRL Server, rather than download it at a later time.

Install RaptorXML+XBRL Server
In a terminal window, switch to the directory where you have copied the Linux package. For
example, if you copied it to a user directory called MyAltova (that is located, say, in the /
home/User directory), then switch to this directory as follows:
cd /home/User/MyAltova

Install RaptorXML+XBRL Server with the following command:
[Debian]: sudo dpkg --install raptorxmlxbrlserver-2015-debian.deb

[Ubuntu]: sudo dpkg --install raptorxmlxbrlserver-2015-ubuntu.deb

[CentOS]: sudo rpm -ivh raptorxmlxbrlserver-2015-1.x86_64.rpm

[RedHat]: sudo rpm -ivh raptorxmlxbrlserver-2015-1.x86_64.rpm

The RaptorXML+XBRL Server package will be installed in the folder:
/opt/Altova/RaptorXMLXBRLServer2015

Altova LicenseServer
In order for any Altova Server product—including RaptorXML+XBRL Server—to run, that server
product must be licensed via an Altova LicenseServer on your network.

On Linux systems, Altova LicenseServer will need to be installed separately. Download
LicenseServer from the Altova website and copy the package to any directory on the Linux
system. Install it just like you installed RaptorXML+XBRL Server (see previous step).
[Debian]: sudo dpkg --install licenseserver-1.11-debian.deb

[Ubuntu]: sudo dpkg --install licenseserver-1.11-ubuntu.deb

[CentOS]: sudo rpm -ivh licenseserver-1.11-1.x86_64.rpm

[RedHat]: sudo rpm -ivh licenseserver-1.11-1.x86_64.rpm

http://www.altova.com/download.html
http://www.altova.com/download.html
http://www.altova.com/

24 Setting Up RaptorXML Setup on Linux

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

The LicenseServer package will be installed in:
/opt/Altova/LicenseServer

For information about how to register RaptorXML+XBRL Server with Altova LicenseServer and
license it, see the section, Licensing on Linux.

LicenseServer versions
Altova server products must be licensed either with the version of LicenseServer that is
appropriate to the installed RaptorXML+XBRL Server version, or with a later version of
LicenseServer.
The LicenseServer version that is appropriate for a particular version of RaptorXML
+XBRL Server is displayed during the installation of RaptorXML+XBRL Server. You can
install this version of LicenseServer along with RaptorXML+XBRL Server, or you can
install LicenseServer separately.
Before installing a newer version of LicenseServer, any older one must be de-installed.
The LicenseServer installer will do this automatically if it detects an older version.
LicenseServer versions are backwards compatible. They will work with older versions
of RaptorXML+XBRL Server.
If you install a new version of RaptorXML+XBRL Server and if your installed
LicenseServer version is older than the appropriate LicenseServer, install the latest
version available on the Altova website.
At the time of LicenseServer de-installation, all registration and licensing information
held in the older version of LicenseServer will be saved to a database on your server
machine. This data will be imported automatically into the newer version when the
newer version is installed.
The version number of the currently installed LicenseServer is given at the bottom of
the LicenseServer configuration page (all tabs).

Current version: 1.11

Trial license
During the installation process, you will be given the option of requesting a 30-day trial license
for RaptorXML+XBRL Server. After submitting the request, a trial license will be sent to the
email address you registered.

© 2014 Altova GmbH

Setup on Linux 25Setting Up RaptorXML

Altova RaptorXML+XBRL Server 2015

2.2.2 Licensing on Linux

RaptorXML+XBRL Server must be licensed with an Altova LicenseServer in order to run it.
Licensing is a two-step process:

1. Register RaptorXML+XBRL Server with LicenseServer. Registration is done from
RaptorXML+XBRL Server.

2. Assign a license to RaptorXML+XBRL Server. License-assigning is done from
LicenseServer.

The steps you need to carry out are given below.

Note about root user
You must have administrator (root) privileges to be able to install RaptorXML+XBRL Server.
Installation must be done, therefore, as the root user. If you are logged in as root, you can
leave out the sudo keyword from the commands listed below.

Start LicenseServer
To correctly register and license RaptorXML+XBRL Server with LicenseServer, LicenseServer
must be running as a daemon on the network. Start LicenseServer as a daemon with the
following command:

[Debian]: sudo /etc/init.d/licenseserver start

[Ubuntu]: sudo initctl start licenseserver

[CentOS]: sudo initctl start licenseserver

[RedHat]: sudo initctl start licenseserver

If at any time you need to stop LicenseServer, replace start with stop in the above command.

For example:
sudo /etc/init.d/licenseserver stop

Start RaptorXML+XBRL Server
Start RaptorXML+XBRL Server as a daemon with the following command:

[Debian]: sudo /etc/init.d/raptorxmlxbrl start

[Ubuntu]: sudo initctl start raptorxmlxbrl

[CentOS]: sudo initctl start raptorxmlxbrl
[RedHat]: sudo initctl start raptorxmlxbrl

Register RaptorXML+XBRL Server
Register RaptorXML+XBRL Server via:

its CLI, using the licenseserver command:
sudo /opt/Altova/RaptorXMLXBRLServer2015/bin/raptorxmlxbrl licenseserver

[options] ServerName-Or-IP-Address

For example, if localhost is the name of the server on which LicenseServer is installed:

26 Setting Up RaptorXML Setup on Linux

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

sudo /opt/Altova/RaptorXMLXBRLServer2015/bin/raptorxmlxbrl licenseserver

localhost

In the command above, localhost is the name of the server on which LicenseServer is
installed. Notice also that the location of the RaptorXML+XBRL Server executable is:

/opt/Altova/RaptorXMLXBRLServer2015/bin/

After successful registration, go to the Server Management tab of LicenseServer's configuration
page to assign a license to RaptorXML+XBRL Server.

Assign a license
After successfully registering RaptorXML+XBRL Server, it will be listed in the Server
Management tab of the configuration page of LicenseServer. Go there and assign a license to
RaptorXML+XBRL Server.

Note on cores and licenses
The licensing of Altova server products, except MobileTogether Server***, is based on the
number of processor cores available on the product machine. For example, a dual-core
processor has two cores, a quad-core processor four cores, a hexa-core processor six cores,
and so on. The number of cores licensed for a product on a particular server machine must be
greater than or equal to the number of cores available on that server, whether it's a physical or
virtual machine.

For example, if a server has eight cores (an octa-core processor), you must purchase at least
an 8-core license. You can also combine licenses to achieve the core count. So, two 4-core
licenses can also be used for an octa-core server instead of an 8-core license.

If you are using a computer server with a large number of CPU cores but only have a low
volume to process, you may also create a virtual machine that is allocated a smaller number of
cores, and purchase a license for that number. Such a deployment, of course, will have less
processing speed than if all available cores on the server were utilized.

Note: Each license can be used for only one client machine at a time, even if it has unused
licensing capacity. For example, if a 10-core license is used for a client machine that
has 6 CPU cores, then the remaining 4 cores of the license cannot be used
simultaneously for another client machine.

*** MobileTogether Server licenses are assigned on the basis of the number of users, that
is, the number of client devices that connect to MobileTogether Server.

© 2014 Altova GmbH

Setup on Mac OS X 27Setting Up RaptorXML

Altova RaptorXML+XBRL Server 2015

2.3 Setup on Mac OS X

This section describes the installation and licensing of RaptorXML+XBRL Server on Mac OS X
systems.

Installation on Mac OS X
System requirements
Note about root user
Uninstall old versions of Altova server products
Download the Mac OS X package
Install RaptorXML+XBRL Server
Altova LicenseServer
LicenseServer versions
Trial license

Licensing on Mac OS X
Note about root user
Start LicenseServer
Start RaptorXML+XBRL Server
Register RaptorXML+XBRL Server
Assign a license

28 Setting Up RaptorXML Setup on Mac OS X

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

2.3.1 Installation on Mac OS X

RaptorXML+XBRL Server is available for installation on Linux systems. Its installation and setup
procedure is described below.

System requirements
Mac OS X
Mac OS X 10.7 or newer

 FlowForce Server integration
If you are installing RaptorXML+XBRL Server together with FlowForce Server, it is
recommended to install FlowForce Server first. Otherwise, after having installed both
RaptorXML+XBRL Server and FlowForce Server, run the following command:

cp /usr/local/Altova/RaptorXMLXBRLServer2015/etc/*.tool /usr/local/Altova/
FlowForceServer2015/tools

This command copies the .tool file from /etc directory of RaptorXML+XBRL Server to the
FlowForce Server /tools directory. The .tool file is required by FlowForce Server; it contains
the path to the RaptorXML+XBRL Server executable. You do not need to run this command if
you install FlowForce Server before installing RaptorXML+XBRL Server.

Note about root user
You must have administrator (root) privileges to be able to install RaptorXML+XBRL Server.
Installation must be done, therefore, as the root user. If you are logged in as root, you can
leave out the sudo keyword from the commands listed below.

Uninstall old versions of Altova server products
Before uninstalling RaptorXML+XBRL Server, stop the service with the following command:
sudo launchctl unload /Library/LaunchDaemons/

com.altova.RaptorXMLXBRLServer2015.plist

To check whether the service has been stopped, open the Activity Monitor terminal and make
sure that RaptorXML+XBRL Server is not in the list.In the Applications terminal, right-click the
RaptorXML+XBRL Server icon and select Move to Trash. The application will be moved to
Trash. You will, however, still need to remove the application from the usr folder. Do this with
the command:
sudo rm -rf /usr/local/Altova/RaptorXMLXBRLServer2015/

If you need to uninstall an old version of Altova LicenseServer, you must first stop it running as
a service. Do this with the following command:
sudo launchctl unload /Library/LaunchDaemons/com.altova.LicenseServer.plist

To check whether the service has been stopped, open the Activity Monitor terminal and make
sure that LicenseServer is not in the list. Then proceed to uninstall in the same way as
described above for RaptorXML+XBRL Server.

© 2014 Altova GmbH

Setup on Mac OS X 29Setting Up RaptorXML

Altova RaptorXML+XBRL Server 2015

Download the Mac OS X package
After downloading the MacOS X package from the Altova website, copy the package to any
directory on the Mac OS X system. Since you will need to have an Altova LicenseServer
installed in order to run RaptorXML+XBRL Server, you may want to download LicenseServer
from the Altova website at the same time as you download RaptorXML+XBRL Server, rather
than download it at a later time. The Mac OS X installer file has a .pkg file extension.

Install RaptorXML+XBRL Server
In a terminal window, switch to the directory where you have copied the installer file, and
double-click it. Go through the successive steps of the installer wizard. These are self-
explanatory and include one step in which you have to agree to the license agreement before
being able to proceed.

The RaptorXML+XBRL Server package will be installed in the folder:
/usr/local/Altova/RaptorXMLXBRLServer2015

Clicking the RaptorXML+XBRL Server icon in the Application terminal pops up the onscreen
help (this documentation).

Altova LicenseServer
In order for any Altova Server product—including RaptorXML+XBRL Server—to run, that server
product must be licensed via an Altova LicenseServer on your network.

On Mac OS X systems, Altova LicenseServer will need to be installed separately. Download
Altova LicenseServer from the Altova website and double-click the installer package to start the
installation. Follow the onscreen instructions. You will need to accept the license agreement
for installation to proceed.

The LicenseServer package will be installed in the folder:
/usr/local/Altova/LicenseServer

For information about how to register RaptorXML+XBRL Server with Altova LicenseServer and
license it, see the section, Licensing on Mac OS X.

LicenseServer versions
Altova server products must be licensed either with the version of LicenseServer that is
appropriate to the installed RaptorXML+XBRL Server version, or with a later version of
LicenseServer.
The LicenseServer version that is appropriate for a particular version of RaptorXML
+XBRL Server is displayed during the installation of RaptorXML+XBRL Server. You can
install this version of LicenseServer along with RaptorXML+XBRL Server, or you can
install LicenseServer separately.
Before installing a newer version of LicenseServer, any older one must be de-installed.
The LicenseServer installer will do this automatically if it detects an older version.
LicenseServer versions are backwards compatible. They will work with older versions
of RaptorXML+XBRL Server.
If you install a new version of RaptorXML+XBRL Server and if your installed
LicenseServer version is older than the appropriate LicenseServer, install the latest
version available on the Altova website.
At the time of LicenseServer de-installation, all registration and licensing information

http://www.altova.com/download.html
http://www.altova.com/download.html
http://www.altova.com/download.html

30 Setting Up RaptorXML Setup on Mac OS X

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

held in the older version of LicenseServer will be saved to a database on your server
machine. This data will be imported automatically into the newer version when the
newer version is installed.
The version number of the currently installed LicenseServer is given at the bottom of
the LicenseServer configuration page (all tabs).

Current version: 1.11

Trial license
During the installation process, you will be given the option of requesting a 30-day trial license
for RaptorXML+XBRL Server. After submitting the request, a trial license will be sent to the
email address you registered.

© 2014 Altova GmbH

Setup on Mac OS X 31Setting Up RaptorXML

Altova RaptorXML+XBRL Server 2015

2.3.2 Licensing on Mac OS X

RaptorXML+XBRL Server must be licensed with an Altova LicenseServer in order to run it.
Licensing is a two-step process:

1. Register RaptorXML+XBRL Server with LicenseServer. Registration is done from
RaptorXML+XBRL Server.

2. Assign a license to RaptorXML+XBRL Server. License-assigning is done from
LicenseServer.

The steps you need to carry out are given below.

Note about root user
You must have administrator (root) privileges to be able to install RaptorXML+XBRL Server.
Installation must be done, therefore, as the root user. If you are logged in as root, you can
leave out the sudo keyword from the commands listed below.

Start LicenseServer
To correctly register and license RaptorXML+XBRL Server with LicenseServer, LicenseServer
must be running as a daemon. Start LicenseServer as a daemon with the following command:
sudo launchctl load /Library/LaunchDaemons/com.altova.LicenseServer.plist

If at any time you need to stop LicenseServer, replace load with unload in the above

command:
sudo launchctl unload /Library/LaunchDaemons/com.altova.LicenseServer.plist

Start RaptorXML+XBRL Server
Start RaptorXML+XBRL Server as a daemon with the following command:
sudo launchctl load /Library/LaunchDaemons/

com.altova.RaptorXMLXBRLServer2015.plist

If at any time you need to stop RaptorXML+XBRL Server, use:
sudo launchctl unload /Library/LaunchDaemons/

com.altova.RaptorXMLXBRLServer2015.plist

Register RaptorXML+XBRL Server
Register RaptorXML+XBRL Server via:

its CLI, using the licenseserver command:
sudo /usr/local/Altova/RaptorXMLXBRLServer2015/bin/RaptorXMLXBRL

licenseserver [options] ServerName-Or-IP-Address

For example, if localhost is the name of the server on which LicenseServer is installed:
sudo /usr/local/Altova/RaptorXMLXBRLServer2015/bin/RaptorXMLXBRL

licenseserver localhost

In the command above, localhost is the name of the server on which LicenseServer is
installed. Notice also that the location of the RaptorXML+XBRL Server executable is:

32 Setting Up RaptorXML Setup on Mac OS X

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

/usr/local/Altova/RaptorXMLXBRLServer2015/bin/

After successful registration, go to the Server Management tab of LicenseServer's configuration
page to assign a license to RaptorXML+XBRL Server.

Assign a license
After successfully registering RaptorXML+XBRL Server, it will be listed in the Server
Management tab of the configuration page of LicenseServer. Go there and assign a license to
RaptorXML+XBRL Server.

Note on cores and licenses
The licensing of Altova server products, except MobileTogether Server***, is based on the
number of processor cores available on the product machine. For example, a dual-core
processor has two cores, a quad-core processor four cores, a hexa-core processor six cores,
and so on. The number of cores licensed for a product on a particular server machine must be
greater than or equal to the number of cores available on that server, whether it's a physical or
virtual machine.

For example, if a server has eight cores (an octa-core processor), you must purchase at least
an 8-core license. You can also combine licenses to achieve the core count. So, two 4-core
licenses can also be used for an octa-core server instead of an 8-core license.

If you are using a computer server with a large number of CPU cores but only have a low
volume to process, you may also create a virtual machine that is allocated a smaller number of
cores, and purchase a license for that number. Such a deployment, of course, will have less
processing speed than if all available cores on the server were utilized.

Note: Each license can be used for only one client machine at a time, even if it has unused
licensing capacity. For example, if a 10-core license is used for a client machine that
has 6 CPU cores, then the remaining 4 cores of the license cannot be used
simultaneously for another client machine.

*** MobileTogether Server licenses are assigned on the basis of the number of users, that
is, the number of client devices that connect to MobileTogether Server.

© 2014 Altova GmbH

XML Catalogs 33Setting Up RaptorXML

Altova RaptorXML+XBRL Server 2015

2.4 XML Catalogs

The XML catalog mechanism enables files to be retrieved from local folders, thus increasing the
overall processing speed, as well as improving the portability of documents—since only the
catalog file URIs then need to be changed. See the section How Catalogs Work for details.

Altova's XML products use a catalog mechanism to quickly access and load commonly used
files, such as DTDs and XML Schemas. This catalog mechanism can be customized and
extended by the user, and it is described in the section Altova's XML Catalog Mechanism. The
section Variables for System Locations list Windows variables for common system locations.
These variables can be used in catalog files to locate commonly used folders.

This section is organized into the following sub-sections:

How Catalogs Work
Altova's XML Catalog Mechanism
Variables for System Locations

For more information on catalogs, see the XML Catalogs specification.

http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

34 Setting Up RaptorXML XML Catalogs

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

2.4.1 How Catalogs Work

This section:

Mapping public and system identifiers to local URLs
Mapping filepaths, Web URLs, and names to local URLs

Catalogs are useful for redirecting calls to remote resources to a local URL. This is achieved by
mapping, in the catalog file, public or system identifiers, URIs, or parts of identifiers or URIs to the
required local URL.

Mapping public and system identifiers to local URLs
When the DOCTYPE declaration of a DTD in an XML file is read, the declaration's public or system
identifier locates the required resource. If the identifier selects a remote resource or if the identifier
is not a locator, it can still be mapped via a catalog entry to a local resource.

For example, consider the following SVG file:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg>
 ...
</svg>

Its public identifier is: -//W3C//DTD SVG 1.1//EN

Its system identifier is: http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd

A catalog entry could map the public identifier to a local URL, like this:

<public publicId="-//W3C//DTD SVG 1.1//EN" uri="schemas/svg/svg11.dtd"/>

Or, a catalog entry could map the system identifier to a local URL, like this:

<system systemId="http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"

uri="schemas/svg/svg11.dtd"/>

If there is a match for the public or system identifier in the catalog, the URL to which it is mapped
is used. (Relative paths are resolved with reference to an xml:base attribute in the redirecting
catalog element; the fallback base URL is the URL of the catalog file.) If there is no match for the
public or system identifier in the catalog, then the URL in the XML document will be used (in the
example above: http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd).

Mapping relative or absolute filepaths, Web URLs, or just names, to local URLs
The uri element can be used to map a relative or absolute filepath or a Web URL, or just any

name, to a local URL, like this:

© 2014 Altova GmbH

XML Catalogs 35Setting Up RaptorXML

Altova RaptorXML+XBRL Server 2015

<uri name="doc.xslt" uri="C:\Docs\doc.xslt"/>
<uri name="U:\Docs\2013\doc.xslt" uri="C:\Docs\doc.xslt"/>

<uri name="http://www.altova.com/schemas/doc.xslt" uri="C:\Docs
\doc.xslt"/>

<uri name="foo" uri="C:\Docs\doc.xslt"/>

When the name value is encountered, it is mapped to the resource specified in the uri attribute.
With a different catalog, the same name can be mapped to a different resource. For example, if
you have:

xsi:schemaLocation="http://www.altova.com/schemas/orgchart OrgChart.xsd"

Normally, the URI part of the attribute's value (bold in the example above) is a path to the actual
schema location. However, if the schema is referenced via a catalog, the URI part need not point
to an actual XML Schema, but it does need to exist so that the lexical validity of the
xsi:schemaLocation attribute is maintained. A value of foo, for example, would be sufficient for
the URI part of the xsi:schemaLocation attribute's value (instead of Orgchart.xsd). The schema
is located in the catalog by means of the namespace part of the xsi:schemaLocation attribute's
value. In the example above, the namespace part is http://www.altova.com/schemas/
orgchart.

In the catalog, the following entry would locate the schema on the basis of that namespace part.

<uri name="http://www.altova.com/schemas/orgchart" uri="C:\MySchemas
\OrgChart.xsd"/>

For more information on these elements, see the XML Catalogs specification.

http://www.oasis-open.org/committees/entity/spec-2001-08-06.html

36 Setting Up RaptorXML XML Catalogs

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

2.4.2 Altova's XML Catalog Mechanism

This section:

The root catalog file, RootCatalog.xml, contains the catalog files RaptorXML will look up.
Altova's catalog extension files: CoreCatalog.xml, CustomCatalog.xml, and
Catalog.xml.
Supported catalog subset.

RootCatalog.xml
By default, RaptorXML will look up the file RootCatalog.xml (listed below) for the list of catalog
files to use. RootCatalog.xml is located in the folder:

<ProgramFilesFolder>\Altova\RaptorXMLXBRLServer2015\etc

To use another file as the root catalog, use the --catalog option on the command line, the
setCatalog method of the Java interface, or the Catalog method of the COM interface.

<?xml version="1.0" encoding="UTF-8"?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog"

 xmlns:spy="http://www.altova.com/catalog_ext"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oasis:names:tc:entity:xmlns:xml:catalog
Catalog.xsd">

 <nextCatalog catalog="%PersonalFolder%/Altova/%AppAndVersionName%/
CustomCatalog.xml"/>

 <nextCatalog catalog="CoreCatalog.xml"/>

 <!-- Include all catalogs under common schemas folder on the first directory
level -->
 <nextCatalog spy:recurseFrom="%AltovaCommonFolder%/Schemas"
catalog="catalog.xml" spy:depth="1"/>

 <!-- Include all catalogs under common XBRL folder on the first directory
level -->
 <nextCatalog spy:recurseFrom="%AltovaCommonFolder%/XBRL" catalog="catalog.xml"

spy:depth="1"/>
</catalog>

Additional catalog files to look up are each listed in a nextCatalog element, and any number of
these can be added. Each catalog file is looked up and the mappings in them are resolved.

In the listing above, notice that two catalogs are directly referenced: CoreCatalog.xml and
CustomCatalog.xml. Additionally, catalogs named catalog.xml that are in the first level of
subfolders of the Schemas and XBRL folders are also referenced. (The value of the %
AltovaCommonFolder% variable is given in the section, Variables for System Locations.)

© 2014 Altova GmbH

XML Catalogs 37Setting Up RaptorXML

Altova RaptorXML+XBRL Server 2015

The catalog files in the Altova Common Folder map the pre-defined public and system identifiers
of commonly used schemas (such as XML Schema and XHTML) to URIs that point to local copies
of the respective schemas. These schemas are installed in the Altova Common Folder when
RaptorXML is installed.

CoreCatalog.xml, CustomCatalog.xml, and Catalog.xml
The catalog files CoreCatalog.xml and CustomCatalog.xml are listed in RootCatalog.xml for
lookup:

CoreCatalog.xml contains certain Altova-specific mappings for locating schemas in the
Altova Common Folder.
CustomCatalog.xml is a skeleton file in which you can create your own mappings. You
can add mappings to CustomCatalog.xml for any schema you require but that is not
addressed by the catalog files in the Altova Common Folder. Do this using the supported
elements of the OASIS catalog mechanism (see below).
There are a number of Catalog.xml files inside the folder of a specific schema or XBRL
taxonomy in the Altova Common Folder, and each maps public and/or system identifiers
to URIs that point to locally saved copies of the respective schemas.

Both CoreCatalog.xml and CustomCatalog.xml are in the folder, <ProgramFilesFolder>

\Altova\RaptorXMLXBRLServer2015\etc. The catalog.xml files are each in a specific schema
folder, these schema folders being inside the folders: %AltovaCommonFolder%\Schemas and %
AltovaCommonFolder%\XBRL.

Supported catalog subset
When creating entries in a catalog file that RaptorXML will use, use only the following elements of
the OASIS catalog specification. Each of the elements below is listed with an explanation of its
attribute values. For a more detailed explanation, see the XML Catalogs specification.

<public publicId="PublicID of Resource" uri="URL of local file"/>

<system systemId="SystemID of Resource" uri="URL of local file"/>

<uri name="filename" uri="URL of file identified by filename"/>

<rewriteURI uriStartString="StartString of URI to rewrite"

rewritePrefix="String to replace StartString"/>
<rewriteSystem systemIdStartString="StartString of SystemID"

rewritePrefix="Replacement string to locate resource locally"/>

In cases where there is no public identifier, the system identifier can be directly mapped to a URL
via the system element. Also, a URI can be mapped to another URI using the uri element. The
rewriteURI and rewriteSystem elements enable the rewriting of the starting part of a URI or
system identifier, respectively. This allows the start of a filepath to be replaced and consequently
enables the targeting of another directory.

Note: Each element can take the xml:base attribute, which is used to specify the base URI of
that element. If no xml:base element is present, the base URI will be the URI of the
catalog file.

http://www.oasis-open.org/committees/entity/spec-2001-08-06.html

38 Setting Up RaptorXML XML Catalogs

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

For more information on these elements, see the XML Catalogs specification.

http://www.oasis-open.org/committees/entity/spec-2001-08-06.html

© 2014 Altova GmbH

XML Catalogs 39Setting Up RaptorXML

Altova RaptorXML+XBRL Server 2015

2.4.3 Variables for Windows System Locations

Shell environment variables can be used in catalog files to specify the path to various Windows
system locations. The following variables are supported:

%
AltovaCommonFo
lder% C:\Program Files\Altova\Common2015

%DesktopFolder
% Full path to the Desktop folder for the current user.

%
ProgramMenuFol
der% Full path to the Program Menu folder for the current user.

%
StartMenuFolde
r% Full path to Start Menu folder for the current user.

%StartUpFolder
% Full path to Start Up folder for the current user.

%
TemplateFolder
% Full path to the Template folder for the current user.

%
AdminToolsFold
er%

Full path to the file system directory that stores administrative tools for the
current user.

%AppDataFolder
% Full path to the Application Data folder for the current user.

%
CommonAppDataF
older% Full path to the file directory containing application data for all users.

%
FavoritesFolde
r% Full path of the Favorites folder for the current user.

%
PersonalFolder
% Full path to the Personal folder for the current user.

%SendToFolder% Full path to the SendTo folder for the current user.

%FontsFolder% Full path to the System Fonts folder.

%
ProgramFilesFo
lder% Full path to the Program Files folder for the current user.

%
CommonFilesFol
der% Full path to the Common Files folder for the current user.

%WindowsFolder
% Full path to the Windows folder for the current user.

%SystemFolder% Full path to the System folder for the current user.

40 Setting Up RaptorXML XML Catalogs

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

%
LocalAppDataFo
lder%

Full path to the file system directory that serves as the data repository for
local (non-roaming) applications.

%
MyPicturesFold
er% Full path to the MyPictures folder.

© 2014 Altova GmbH

Global Resources 41Setting Up RaptorXML

Altova RaptorXML+XBRL Server 2015

2.5 Global Resources

This section:

About global resources
Using global resources

About global resources
An Altova global resource file maps an alias to multiple resources via different configurations, as
shown in the diagram below. An alias can therefore be switched to access a different resource by
switching its configuration.

Global resources are defined in Altova products, such as Altova XMLSpy, and are saved in a
global resources XML file. RaptorXML is able to use global resources as inputs. To do this, it
requires the name and location of the global resources file, and the alias and configuration to be
used.

The advantage of using global resources is that resource can be changed merely by switching the
name of teh configuration. When using RaptorXML, this means that by providing a different value
of the --globalresourcesconfig | --gc option, a different resource can be used. (See the
example below.)

Using global resources with RaptorXML
To specify a global resource as an input for a RaptorXML command, the following parameters are
required:

The global resources XML file (specified on the CLI with the option --
globalresourcesfile | --gr)
The required configuration (specified on the CLI with the option --
globalresourcesconfig | --gc)
The alias. This can be specified directly on the CLI where a file name is required, or it can
be at a location inside an XML file where RaptorXML looks for a filename (such as in an
xsi:schemaLocation attribute).

For example, if you wish to transform input.xml with transform.xslt to output.html, this

42 Setting Up RaptorXML Global Resources

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

would typically be achieved on the CLI with the following command that uses filenames:

raptorxmlxbrl xslt --input=input.xml --output=output.html transform.xslt

If, however, you have a global resource definition that matches the alias MyInput to the file
resource FirstInput.xml via a configuration called FirstConfig, then you could use the alias
MyInput on the CLI as follows:

raptorxmlxbrl xslt --input=altova://file_resource/MyInput --gr=C:

\MyGlobalResources.xml --gc=FirstConfig --output=Output.html transform.xslt

Now, if you have another file resource, say SecondInput.xml, that is matched to the alias
MyInput via a configuration called SecondConfig, then this resource can be used by changing
only the --gc option of the previous command:

raptorxmlxbrl xslt --input=altova://file_resource/MyInput --gr=C:

\MyGlobalResources.xml --gc=SecondConfig --output=Output.html transform.xslt

Note: In the example above a file resource was used; a file resource must be prefixed with
altova://file_resource/. You can also use global resources that are folders. To

identify a folder resource, use: altova://folder_resource/AliasName. Note that, on

the CLI, you can also use folder resources as part of a filepath. For example: altova://

folder_resource/AliasName/input.xml.

© 2014 Altova GmbH

Security Issues 43Setting Up RaptorXML

Altova RaptorXML+XBRL Server 2015

2.6 Security Issues

This section:

Security concerns related to the HTTP interface
Making Python scripts safe

Some interface features of RaptorXML+XBRL Server pose security concerns. These are described
below together with their solutions.

Security concerns related to the HTTP interface
The HTTP interface, by default, allows result documents to be written to any location specified by
the client (that is accessible with the HTTP protocol). It is important therefore to consider this
security aspect when configuring RaptorXML+XBRL Server.

If there is a concern that security might be compromised or that the interface might be misused,
the server can be configured to write result documents to a dedicated output directory on the
server itself. This is specified by setting the server.unrestricted-filesystem-access option of
the server configuration file to false. When access is restricted in this way, the client can
download result documents from the dedicated output directory with GET requests. Alternatively,
an administrator can copy/upload result document files from the server to the target location.

Making Python scripts safe
When a Python script is specified in a command via HTTP to RaptorXML+XBRL Server, the script
will only work if it is located in the trusted directory. The script is executed from the trusted
directory. Specifying a Python script from any other directory will result in an error. The trusted
directory is specified in the server.script-root-dir setting of the server configuration file, and
a trusted directory must be specified if you wish to use Python scripts. Make sure that all Python
scripts to be used are saved in this directory.

Though all output generated by the server for HTTP job requests is written to the job output
directory (which is a sub-directory of the output-root-directory), this limitation does not apply
to Python scripts, which can write to any location. The server administrator must review the
Python scripts in the trusted directory for potential vulnerability issues.

Chapter 3

Command Line Interface (CLI)

46 Command Line Interface (CLI)

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

3 Command Line Interface (CLI)

The RaptorXML+XBRL Server executable for use with the command line interface (CLI) is located
by default at:

Windows <ProgramFilesFolder>\Altova\RaptorXMLXBRLServer2015\bin

\RaptorXMLXBRL.exe

Linux \opt\Altova\RaptorXMLXBRLServer2015\bin\raptorxmlxbrl

Mac \usr\local\Altova\RaptorXMLXBRLServer2015\bin\raptorxmlxbrl

Casing on the command line

RaptorXMLXBRL on Windows

raptorxmlxbrl on Unix (Linux, Mac)

* Note that lowercase (raptorxmlxbrl) works on all platforms (Windows, Linux, and Mac),
while upper-lower (RaptorXMLXBRL) works only on Windows and Mac.

Usage
The command line syntax is:

Windows RaptorXMLXBRL --h | --help | --version | <command> [options]

[arguments]

Linux raptorxmlxbrl --h | --help | --version | <command> [options]

[arguments]

Mac raptorxmlxbrl --h | --help | --version | <command> [options]

[arguments]

RaptorXMLXBRL Calls the application on Windows platforms.

raptorxmlxbrl Calls the application on Unix platforms (Linux and Mac).

--h | --help Displays the help text.

--version Displays the application's version number.

<command> The command to execute. See list below. Each command is described
in detail, with its options and arguments, in sub-sections of this section.

[options] The options of a command. They are listed with their respective
commands and are described in detail in the Options section.

[arguments] The argument/s of a command. They are listed and described with their
respective commands.

© 2014 Altova GmbH

 47Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

CLI commands
The available CLI commands are listed below, organized by functionality. They are explained in
detail in the sub-sections of this section. (Note that some validation commands appear in more
than one group in the list below.)

All validation commands

valdtd | dtd Validates a DTD document.

valxml-withdtd | xml Validates an XML document against a DTD.

valxml-withxsd | xsi Validates an XML document against an XML Schema.

valxbrl | xbrl Validates an XBRL instance document (.xbrl extension).

valxbrltaxonomy | dts Validates an XBRL taxonomy (schema) document (.xsd extension).

valxquery Validates an XQuery document.

valxsd | xsd Validates a W3C XML Schema document.

valxslt Validates an XSLT document.

valany Validates any document of a type validated by the preceding
commands in this list. Document type is detected automatically.

Well-formedness check commands

wfxml Checks an XML document for well-formedness.

wfdtd Checks a DTD document for well-formedness.

wfany Checks any XML or DTD document for well-formedness.

XBRL validation commands

valxbrl | xbrl Validates an XBRL instance document (.xbrl extension).

valxbrltaxonomy | dts Validates an XBRL taxonomy (schema) document (.xsd extension).

valany Validates any an XBRL instance or XBRL taxonomy document.
Document type is detected automatically.

XSLT commands

xslt Carries out a transformation using the XSLT file supplied by the
argument.

valxslt Validates an XSLT document.

XQuery commands

xquery Executes an XQuery using the XQuery file supplied by the argument.

valxquery Validates an XQuery document.

48 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

3.1 XML, DTD, XSD Validation Commands

The XML validation commands can be used to validate the following types of document:

XML: Validates XML instance documents against a DTD (valxml-withdtd | xml) or an
XML Schema 1.0/1.1 (valxml-withxsd | xsi).
DTD: Checks that a DTD is well-formed and contains no error (valdtd | dtd).
XSD: Validates a W3C XML Schema (XSD) document according to rules of the XML
Schema specification (valxsd | xsd).

XML validation commands are described in detail in the sub-sections of this section:

valxml-withdtd | xml Validates an XML instance document against a DTD.

valxml-withxsd | xsi Validates an XML instance document against an XML Schema.

valdtd | dtd Validates a DTD document.

valxsd | xsd Validates a W3C XML Schema (XSD) document.

valany Validates any one XML, DTD or XSD document. Note that this
command is also used to validate XBRL (instance or taxonomy),
XSLT or XQuery, documents; the type of document submitted is
detected automatically.

Note: XBRL instance, XBRL taxonomy, XSLT and XQuery documents can also be validated.
These validation commands are described in their respective sections: XBRL Validation
Commands, XSLT Commands and XQuery Commands.

© 2014 Altova GmbH

XML, DTD, XSD Validation Commands 49Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

3.1.1 valxml-withdtd (xml)

The valxml-withdtd | xml command validates one or more XML instance documents against a

DTD.

Windows RaptorXMLXBRL valxml-withdtd | xml [options] InputFile

Linux raptorxmlxbrl valxml-withdtd | xml [options] InputFile

Mac raptorxmlxbrl valxml-withdtd | xml [options] InputFile

The InputFile argument is the XML document to validate. If a reference to a DTD exists in the

XML document, the --dtd option is not required.

To validate multiple documents, either: (i) list the files to be validated on the CLI, with each file
separated from the next by a space; or (ii) list the files to be validated in a text file (.txt file), with
one filename per line, and supply this text file as the InputFile argument together with the --

listfile option set to true (see the Options list below).

Examples

raptorxmlxbrl valxml-withdtd --dtd=c:\MyDTD.dtd c:\Test.xml

raptorxmlxbrl xml c:\Test.xml
raptorxmlxbrl xml --verbose=true c:\Test.xml

raptorxmlxbrl xml --listfile=true c:\FileList.txt

Casing on the command line

RaptorXMLXBRL on Windows

raptorxmlxbrl on Unix (Linux, Mac)

* Note that lowercase (raptorxmlxbrl) works on all platforms (Windows, Linux, and Mac),
while upper-lower (RaptorXMLXBRL) works only on Windows and Mac.

Options
The command's options are listed below, organized into groups. Values can be specified without
quotes except in two cases: (i) when the value string contains spaces, or (ii) when explicitly
stated in the description of the option that quotes are required.

Validation and processing
dtd

--dtd = FILE

Specifies the external DTD document to use for validation. If a reference to an external
DTD is present in the XML document, then the CLI option overrides the external reference.

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename

50 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

per line. Default value is false. (An alternative is to list the files on the CLI with a space
as separator. Note, however, that CLIs have a maximum-character limitation.) Note that
the --listfile option applies only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

namespaces

--namespaces = true|false

Enables namespace-aware processing. This is useful for checking the XML instance for
errors due to incorrect namespaces. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

recurse

--recurse = true|false

Used to select files within a ZIP archive. If true, the command's InputFile argument will

select the specified file also in subdirectories. For example: test.zip|zip\test.xml will
select files named test.xml at all folder levels of the zip folder. The wildcard characters *
and ? may be used. So, *.xml will select all .xml files in the zip folder. The parameter's
default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

streaming

--streaming = true|false

Enables streaming validation. Default is true. In streaming mode, data stored in memory
is minimized and processing is faster. The downside is that information that might be
required subsequently—for example, a data model of the XML instance document—will
not be available. In situations where this is significant, streaming mode will need to be
turned off (by giving --streaming a value of false). When using the --script option with
the valxml-withxsd command, disable streaming. Note that the --streaming option is
ignored if --parallel-assessment is set to true.
Note: Boolean option values are set to true if the option is specified without a value.

Catalogs and global resources
catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file.
The default value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLXBRLServer2015\etc\RootCatalog.xml). See the section,
XML Catalogs, for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog.
See the section, XML Catalogs, for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources. Default value is false.

© 2014 Altova GmbH

XML, DTD, XSD Validation Commands 51Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources).

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources).

Messages, errors, help, timeout, version
error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate
XML formats, with longxml generating more detail.

error-limit

--error-limit = N

Specifies the error limit. Default value is 100. Values of 1 to 999 are allowed. Useful for
limiting processor use during validation. When the error limit is reached, validation stops.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help
command can be used with an argument. For example: help valany.)

log-output

--log-output = FILE

Writes the message output to the specified file URL instead of to the console. Ensure that
the CLI has write permission to the output location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in seconds for remote I/O operations. Default is: 40.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is
false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

52 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

version

--version

Displays the version of RaptorXML+XBRL Server. If used with a command, place --
version before the command.

© 2014 Altova GmbH

XML, DTD, XSD Validation Commands 53Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

3.1.2 valxml-withxsd (xsi)

The valxml-withxsd | xsi command validates one or more XML instance documents according

to the W3C XML Schema Definition Language (XSD) 1.0 and 1.1 specifications.

Windows RaptorXMLXBRL valxml-withxsd | xsi [options] InputFile

Linux raptorxmlxbrl valxml-withxsd | xsi [options] InputFile

Mac raptorxmlxbrl valxml-withxsd | xsi [options] InputFile

The InputFile argument is the XML document to validate. The --schemalocation-hints=true|

false indicates whether the XSD reference in the XML document is to be used or not, with the
default being true (the location is used). The --xsd=FILE option specifies the schema/s to use.

To validate multiple documents, either: (i) list the files to be validated on the CLI, with each file
separated from the next by a space; or (ii) list the files to be validated in a text file (.txt file), with
one filename per line, and supply this text file as the InputFile argument together with the --

listfile option set to true (see the Options list below).

Note: If using the --script option to run Python scripts, make sure to also specify --
streaming=false.

Examples

raptorxmlxbrl valxml-withxsd --schemalocation-hints=false --xsd=c:

\MyXSD.xsd c:\HasNoXSDRef.xml
raptorxmlxbrl xsi c:\HasXSDRef.xml
raptorxmlxbrl xsi --xsd-version=1.1 --listfile=true c:\FileList.txt

Casing on the command line

RaptorXMLXBRL on Windows

raptorxmlxbrl on Unix (Linux, Mac)

* Note that lowercase (raptorxmlxbrl) works on all platforms (Windows, Linux, and Mac),
while upper-lower (RaptorXMLXBRL) works only on Windows and Mac.

Options
The command's options are listed below, organized into groups. Values can be specified without
quotes except in two cases: (i) when the value string contains spaces, or (ii) when explicitly
stated in the description of the option that quotes are required.

Validation and processing
assessment-mode

--assessment-mode = lax|strict

Specifies the schema-validity assessment mode as defined in the XSD specifications.
Default value is strict. The XML instance document will be validated according to the
mode specified with this option.

54 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename

per line. Default value is false. (An alternative is to list the files on the CLI with a space
as separator. Note, however, that CLIs have a maximum-character limitation.) Note that
the --listfile option applies only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

parallel-assessment [pa]

--pa | --parallel-assessment = true|false

If set to true, schema validity assessment is carried out in parallel. This means that if
there are more than 128 elements at any level, these elements are processed in parallel
using multiple threads. Very large XML files can therefore be processed faster if this
option is enabled. Parallel assessment takes place on one hierarchical level at a time, but
can occur at multiple levels within a single infoset. Note that parallel assessment does
not work in streaming mode. For this reason, the --streaming option is ignored if --
parallel-assessment is set to true. Also, memory usage is higher when the --
parallel-assessment option is used. The default setting is false. Short form for the
option is --pa.
Note: Boolean option values are set to true if the option is specified without a value.

recurse

--recurse = true|false

Used to select files within a ZIP archive. If true, the command's InputFile argument will

select the specified file also in subdirectories. For example: test.zip|zip\test.xml will
select files named test.xml at all folder levels of the zip folder. The wildcard characters *
and ? may be used. So, *.xml will select all .xml files in the zip folder. The parameter's
default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation

| load-by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs:import elements, each of which has an optional namespace
attribute and an optional schemaLocation attribute: <import namespace="someNS"
schemaLocation="someURL">. The behavior is as follows:

load-by-schemalocation: The value of the schemaLocation attribute is used to
locate the schema, taking account of catalog mappings. If the namespace attribute is
present, the namespace is imported (licensed).
load-preferring-schemalocation: If the schemaLocation attribute is present, it is
used, taking account of catalog mappings. If no schemaLocation attribute is present,
then the value of the namespace attribute is used via a catalog mapping. This is the
default value.
load-by-namespace: The value of the namespace attribute is used to locate the
schema via a catalog mapping.
load-combining-both: If either the namespace or schemaLocation attribute has a
catalog mapping, then the mapping is used. If both have catalog mappings, then the
value of the --schema-mapping option (XBRL option and XML/XSD option) decides
which mapping is used. If no catalog mapping is present, the schemaLocation

© 2014 Altova GmbH

XML, DTD, XSD Validation Commands 55Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

attribute is used.
license-namespace-only: The namespace is imported. No schema document is
imported.

schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace |

load-combining-both | ignore

The load-by-schemalocation value uses the URL of the schema location in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML or
XBRL instance documents. This is the default value.
The load-by-namespace value takes the namespace part of xsi:schemaLocation
and an empty string in the case of xsi:noNamespaceSchemaLocation and locates
the schema via a catalog mapping.
If load-combining-both is used and if either the namespace part or the URL part
has a catalog mapping, then the catalog mapping is used. If both have catalog
mappings, then the value of the --schema-mapping option (XBRL option and XML/XSD
option) decides which mapping is used. If neither the namespace nor URL has a
catalog mapping, the URL is used.
If the option's value is ignore, then the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

If either the --schemalocation-hints or the --schema-imports option has a value of
load-combining-both, and if the namespace and URL parts involved both have catalog
mappings, then the value of this option specifies which of the two mappings to use
(namespace mapping or URL mapping; the prefer-schemalocation value refers to the
URL mapping). Default is prefer-schemalocation.

script

--script = FILE

Executes the Python script in the submitted file after validation has been completed.

script-param

--script-param = KEY:VALUE

Additional user-specified parameters that can be accessed during the execution of Python
scripts.

streaming

--streaming = true|false

Enables streaming validation. Default is true. In streaming mode, data stored in memory
is minimized and processing is faster. The downside is that information that might be
required subsequently—for example, a data model of the XML instance document—will
not be available. In situations where this is significant, streaming mode will need to be
turned off (by giving --streaming a value of false). When using the --script option with
the valxml-withxsd command, disable streaming. Note that the --streaming option is
ignored if --parallel-assessment is set to true.
Note: Boolean option values are set to true if the option is specified without a value.

56 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

xinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false,
XInclude's include elements are ignored.
Note: Boolean option values are set to true if the option is specified without a value.

xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use: wf=wellformed check; id=wellformed with ID/
IDREF checks; valid=validation. Default value is wf.

xsd

--xsd = FILE

Specifies one or more XML Schema documents to use for the validation of XML instance
documents. Add the option multiple times to specify multiple schema documents.

xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This
option can also be useful to find out in what ways a schema which is 1.0-compatible is
not 1.1-compatible. The detect option is an Altova-specific feature. It enables the version
of the XML Schema document (1.0 or 1.1) to be detected by reading the value of the
vc:minVersion attribute of the document's <xs:schema> element. If the value of the
@vc:minVersion attribute is 1.1, the schema is detected as being version 1.1. For any
other value, or if the @vc:minVersion attribute is absent, the schema is detected as
being version 1.0.

Catalogs and global resources
catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file.
The default value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLXBRLServer2015\etc\RootCatalog.xml). See the section,
XML Catalogs, for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog.
See the section, XML Catalogs, for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

© 2014 Altova GmbH

XML, DTD, XSD Validation Commands 57Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

Specifies the active configuration of the global resource (and enables global resources).

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources).

Messages, errors, help, timeout, version
error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate
XML formats, with longxml generating more detail.

error-limit

--error-limit = N

Specifies the error limit. Default value is 100. Values of 1 to 999 are allowed. Useful for
limiting processor use during validation. When the error limit is reached, validation stops.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help
command can be used with an argument. For example: help valany.)

log-output

--log-output = FILE

Writes the message output to the specified file URL instead of to the console. Ensure that
the CLI has write permission to the output location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in seconds for remote I/O operations. Default is: 40.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is
false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML+XBRL Server. If used with a command, place --
version before the command.

58 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

© 2014 Altova GmbH

XML, DTD, XSD Validation Commands 59Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

3.1.3 valdtd (dtd)

The valdtd | dtd command validates one or more DTD documents according to the XML 1.0 or

XML 1.1 specification.

Windows RaptorXMLXBRL valdtd | dtd [options] InputFile

Linux raptorxmlxbrl valdtd | dtd [options] InputFile

Mac raptorxmlxbrl valdtd | dtd [options] InputFile

The InputFile argument is the DTD document to validate. To validate multiple documents, either:

(i) list the files to be validated on the CLI, with each file separated from the next by a space; or (ii)
list the files to be validated in a text file (.txt file), with one filename per line, and supply this text
file as the InputFile argument together with the --listfile option set to true (see the Options

list below).

Examples

raptorxmlxbrl valdtd c:\Test.dtd

raptorxmlxbrl dtd --verbose=true c:\Test.dtd

raptorxmlxbrl dtd --listfile=true c:\FileList.txt

Casing on the command line

RaptorXMLXBRL on Windows

raptorxmlxbrl on Unix (Linux, Mac)

* Note that lowercase (raptorxmlxbrl) works on all platforms (Windows, Linux, and Mac),
while upper-lower (RaptorXMLXBRL) works only on Windows and Mac.

Options
The command's options are listed below, organized into groups. Values can be specified without
quotes except in two cases: (i) when the value string contains spaces, or (ii) when explicitly
stated in the description of the option that quotes are required.

Validation and processing
listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename

per line. Default value is false. (An alternative is to list the files on the CLI with a space
as separator. Note, however, that CLIs have a maximum-character limitation.) Note that
the --listfile option applies only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

recurse

--recurse = true|false

Used to select files within a ZIP archive. If true, the command's InputFile argument will

60 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

select the specified file also in subdirectories. For example: test.zip|zip\test.xml will
select files named test.xml at all folder levels of the zip folder. The wildcard characters *
and ? may be used. So, *.xml will select all .xml files in the zip folder. The parameter's
default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

Catalogs and global resources
catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file.
The default value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLXBRLServer2015\etc\RootCatalog.xml). See the section,
XML Catalogs, for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog.
See the section, XML Catalogs, for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources).

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources).

Messages, errors, help, timeout, version
error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate
XML formats, with longxml generating more detail.

error-limit

--error-limit = N

Specifies the error limit. Default value is 100. Values of 1 to 999 are allowed. Useful for
limiting processor use during validation. When the error limit is reached, validation stops.

help

--help

© 2014 Altova GmbH

XML, DTD, XSD Validation Commands 61Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

Displays help text for the command. For example, valany --h. (Alternatively the help
command can be used with an argument. For example: help valany.)

log-output

--log-output = FILE

Writes the message output to the specified file URL instead of to the console. Ensure that
the CLI has write permission to the output location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in seconds for remote I/O operations. Default is: 40.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is
false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML+XBRL Server. If used with a command, place --
version before the command.

62 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

3.1.4 valxsd (xsd)

The valxsd | xsd command validates one or more XML Schema documents (XSD documents)

according to the W3C XML Schema Definition Language (XSD) 1.0 or 1.1 specification. Note that
it is the schema itself that is validated against the XML Schema specification, not an XML
instance document against an XML Schema.

Windows RaptorXMLXBRL valxsd | xsd [options] InputFile

Linux raptorxmlxbrl valxsd | xsd [options] InputFile

Mac raptorxmlxbrl valxsd | xsd [options] InputFile

The InputFile argument is the XML Schema document to validate. The --xsd-version=1.0|

1.1|detect option specifies the XSD version to validate against, with the default being 1.0.

To validate multiple documents, either: (i) list the files to be validated on the CLI, with each file
separated from the next by a space; or (ii) list the files to be validated in a text file (.txt file), with
one filename per line, and supply this text file as the InputFile argument together with the --

listfile option set to true (see the Options list below).

Examples

raptorxmlxbrl valxsd c:\Test.xsd

raptorxmlxbrl xsd --verbose=true c:\Test.xsd

raptorxmlxbrl xsd --listfile=true c:\FileList.txt

Casing on the command line

RaptorXMLXBRL on Windows

raptorxmlxbrl on Unix (Linux, Mac)

* Note that lowercase (raptorxmlxbrl) works on all platforms (Windows, Linux, and Mac),
while upper-lower (RaptorXMLXBRL) works only on Windows and Mac.

Options
The command's options are listed below, organized into groups. Values can be specified without
quotes except in two cases: (i) when the value string contains spaces, or (ii) when explicitly
stated in the description of the option that quotes are required.

Validation and processing
listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename

per line. Default value is false. (An alternative is to list the files on the CLI with a space
as separator. Note, however, that CLIs have a maximum-character limitation.) Note that
the --listfile option applies only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

© 2014 Altova GmbH

XML, DTD, XSD Validation Commands 63Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

recurse

--recurse = true|false

Used to select files within a ZIP archive. If true, the command's InputFile argument will

select the specified file also in subdirectories. For example: test.zip|zip\test.xml will
select files named test.xml at all folder levels of the zip folder. The wildcard characters *
and ? may be used. So, *.xml will select all .xml files in the zip folder. The parameter's
default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation

| load-by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs:import elements, each of which has an optional namespace
attribute and an optional schemaLocation attribute: <import namespace="someNS"
schemaLocation="someURL">. The behavior is as follows:

load-by-schemalocation: The value of the schemaLocation attribute is used to
locate the schema, taking account of catalog mappings. If the namespace attribute is
present, the namespace is imported (licensed).
load-preferring-schemalocation: If the schemaLocation attribute is present, it is
used, taking account of catalog mappings. If no schemaLocation attribute is present,
then the value of the namespace attribute is used via a catalog mapping. This is the
default value.
load-by-namespace: The value of the namespace attribute is used to locate the
schema via a catalog mapping.
load-combining-both: If either the namespace or schemaLocation attribute has a
catalog mapping, then the mapping is used. If both have catalog mappings, then the
value of the --schema-mapping option (XBRL option and XML/XSD option) decides
which mapping is used. If no catalog mapping is present, the schemaLocation
attribute is used.
license-namespace-only: The namespace is imported. No schema document is
imported.

schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace |

load-combining-both | ignore

The load-by-schemalocation value uses the URL of the schema location in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML or
XBRL instance documents. This is the default value.
The load-by-namespace value takes the namespace part of xsi:schemaLocation
and an empty string in the case of xsi:noNamespaceSchemaLocation and locates
the schema via a catalog mapping.
If load-combining-both is used and if either the namespace part or the URL part
has a catalog mapping, then the catalog mapping is used. If both have catalog
mappings, then the value of the --schema-mapping option (XBRL option and XML/XSD
option) decides which mapping is used. If neither the namespace nor URL has a
catalog mapping, the URL is used.
If the option's value is ignore, then the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

64 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

If either the --schemalocation-hints or the --schema-imports option has a value of
load-combining-both, and if the namespace and URL parts involved both have catalog
mappings, then the value of this option specifies which of the two mappings to use
(namespace mapping or URL mapping; the prefer-schemalocation value refers to the
URL mapping). Default is prefer-schemalocation.

script

--script = FILE

Executes the Python script in the submitted file after validation has been completed.

script-param

--script-param = KEY:VALUE

Additional user-specified parameters that can be accessed during the execution of Python
scripts.

xinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false,
XInclude's include elements are ignored.
Note: Boolean option values are set to true if the option is specified without a value.

xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use: wf=wellformed check; id=wellformed with ID/
IDREF checks; valid=validation. Default value is wf.

xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This
option can also be useful to find out in what ways a schema which is 1.0-compatible is
not 1.1-compatible. The detect option is an Altova-specific feature. It enables the version
of the XML Schema document (1.0 or 1.1) to be detected by reading the value of the
vc:minVersion attribute of the document's <xs:schema> element. If the value of the
@vc:minVersion attribute is 1.1, the schema is detected as being version 1.1. For any
other value, or if the @vc:minVersion attribute is absent, the schema is detected as
being version 1.0.

Catalogs and global resources
catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file.
The default value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLXBRLServer2015\etc\RootCatalog.xml). See the section,
XML Catalogs, for information about working with catalogs.

user-catalog

--user-catalog = FILE

© 2014 Altova GmbH

XML, DTD, XSD Validation Commands 65Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

Specifies the absolute path to an XML catalog to be used in addition to the root catalog.
See the section, XML Catalogs, for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources).

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources).

Messages, errors, help, timeout, version
error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate
XML formats, with longxml generating more detail.

error-limit

--error-limit = N

Specifies the error limit. Default value is 100. Values of 1 to 999 are allowed. Useful for
limiting processor use during validation. When the error limit is reached, validation stops.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help
command can be used with an argument. For example: help valany.)

log-output

--log-output = FILE

Writes the message output to the specified file URL instead of to the console. Ensure that
the CLI has write permission to the output location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in seconds for remote I/O operations. Default is: 40.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is
false.

66 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML+XBRL Server. If used with a command, place --
version before the command.

© 2014 Altova GmbH

XML, DTD, XSD Validation Commands 67Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

3.1.5 valany

The valany command validates an XML, DTD, or XML Schema document according to the

respective specification/s. The type of document is detected automatically.

Windows RaptorXMLXBRL valany [options] InputFile

Linux raptorxmlxbrl valany [options] InputFile

Mac raptorxmlxbrl valany [options] InputFile

The InputFile argument is the document to validate. Note that only one document can be

submitted as the argument of the command. The type of the submitted document is detected
automatically.

Examples

raptorxmlxbrl valany c:\Test.xml
raptorxmlxbrl valany --errorformat=text c:\Test.xml

Casing on the command line

RaptorXMLXBRL on Windows

raptorxmlxbrl on Unix (Linux, Mac)

* Note that lowercase (raptorxmlxbrl) works on all platforms (Windows, Linux, and Mac),
while upper-lower (RaptorXMLXBRL) works only on Windows and Mac.

Options
The command's options are listed below, organized into groups. Values can be specified without
quotes except in two cases: (i) when the value string contains spaces, or (ii) when explicitly
stated in the description of the option that quotes are required.

Validation and processing
recurse

--recurse = true|false

Used to select files within a ZIP archive. If true, the command's InputFile argument will

select the specified file also in subdirectories. For example: test.zip|zip\test.xml will
select files named test.xml at all folder levels of the zip folder. The wildcard characters *
and ? may be used. So, *.xml will select all .xml files in the zip folder. The parameter's
default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation

| load-by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs:import elements, each of which has an optional namespace
attribute and an optional schemaLocation attribute: <import namespace="someNS"

68 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

schemaLocation="someURL">. The behavior is as follows:
load-by-schemalocation: The value of the schemaLocation attribute is used to
locate the schema, taking account of catalog mappings. If the namespace attribute is
present, the namespace is imported (licensed).
load-preferring-schemalocation: If the schemaLocation attribute is present, it is
used, taking account of catalog mappings. If no schemaLocation attribute is present,
then the value of the namespace attribute is used via a catalog mapping. This is the
default value.
load-by-namespace: The value of the namespace attribute is used to locate the
schema via a catalog mapping.
load-combining-both: If either the namespace or schemaLocation attribute has a
catalog mapping, then the mapping is used. If both have catalog mappings, then the
value of the --schema-mapping option (XBRL option and XML/XSD option) decides
which mapping is used. If no catalog mapping is present, the schemaLocation
attribute is used.
license-namespace-only: The namespace is imported. No schema document is
imported.

schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace |

load-combining-both | ignore

The load-by-schemalocation value uses the URL of the schema location in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML or
XBRL instance documents. This is the default value.
The load-by-namespace value takes the namespace part of xsi:schemaLocation
and an empty string in the case of xsi:noNamespaceSchemaLocation and locates
the schema via a catalog mapping.
If load-combining-both is used and if either the namespace part or the URL part
has a catalog mapping, then the catalog mapping is used. If both have catalog
mappings, then the value of the --schema-mapping option (XBRL option and XML/XSD
option) decides which mapping is used. If neither the namespace nor URL has a
catalog mapping, the URL is used.
If the option's value is ignore, then the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

If either the --schemalocation-hints or the --schema-imports option has a value of
load-combining-both, and if the namespace and URL parts involved both have catalog
mappings, then the value of this option specifies which of the two mappings to use
(namespace mapping or URL mapping; the prefer-schemalocation value refers to the
URL mapping). Default is prefer-schemalocation.

Catalogs and global resources
catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file.
The default value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLXBRLServer2015\etc\RootCatalog.xml). See the section,
XML Catalogs, for information about working with catalogs.

© 2014 Altova GmbH

XML, DTD, XSD Validation Commands 69Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog.
See the section, XML Catalogs, for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources).

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources).

Messages, errors, help, timeout, version
error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate
XML formats, with longxml generating more detail.

error-limit

--error-limit = N

Specifies the error limit. Default value is 100. Values of 1 to 999 are allowed. Useful for
limiting processor use during validation. When the error limit is reached, validation stops.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help
command can be used with an argument. For example: help valany.)

log-output

--log-output = FILE

Writes the message output to the specified file URL instead of to the console. Ensure that
the CLI has write permission to the output location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in seconds for remote I/O operations. Default is: 40.

verbose

70 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

--verbose = true|false

A value of true enables output of additional information during validation. Default value is
false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML+XBRL Server. If used with a command, place --
version before the command.

© 2014 Altova GmbH

Well-formedness Check Commands 71Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

3.2 Well-formedness Check Commands

The well-formedness check commands can be used to check the well-formedness of XML
documents and DTDs. These commands are listed below and described in detail in the sub-
sections of this section:

wfxml Checks the well-formedness of XML documents.

wfdtd Checks the well-formedness of DTDs.

wfany Checks the well-formedness of an XML document or DTD. Type is detected
automatically.

72 Command Line Interface (CLI) Well-formedness Check Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

3.2.1 wfxml

The wfxml command checks one or more XML documents for well-formedness according to the

XML 1.0 or XML 1.1 specification.

Windows RaptorXMLXBRL wfxml [options] InputFile

Linux raptorxmlxbrl wfxml [options] InputFile

Mac raptorxmlxbrl wfxml [options] InputFile

The InputFile argument is the XML document to check for well-formedness. If you wish to check

multiple documents, either: (i) list the files to be checked on the CLI, with each file separated from
the next by a space; or (ii) list the files to be checked in a text file (.txt file), with one filename
per line, and supply this text file as the InputFile argument together with the --listfile option

set to true (see the Options list below).

Examples

raptorxmlxbrl wfxml c:\Test.xml

raptorxmlxbrl wfxml --verbose=true c:\Test.xml

raptorxmlxbrl wfxml --listfile=true c:\FileList.txt

Casing on the command line

RaptorXMLXBRL on Windows

raptorxmlxbrl on Unix (Linux, Mac)

* Note that lowercase (raptorxmlxbrl) works on all platforms (Windows, Linux, and Mac),
while upper-lower (RaptorXMLXBRL) works only on Windows and Mac.

Options
The command's options are listed below, organized into groups. Values can be specified without
quotes except in two cases: (i) when the value string contains spaces, or (ii) when explicitly
stated in the description of the option that quotes are required.

Validation and processing
dtd

--dtd = FILE

Specifies the external DTD document to use for validation. If a reference to an external
DTD is present in the XML document, then the CLI option overrides the external reference.

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename

per line. Default value is false. (An alternative is to list the files on the CLI with a space
as separator. Note, however, that CLIs have a maximum-character limitation.) Note that
the --listfile option applies only to arguments, and not to options.

© 2014 Altova GmbH

Well-formedness Check Commands 73Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

Note: Boolean option values are set to true if the option is specified without a value.

namespaces

--namespaces = true|false

Enables namespace-aware processing. This is useful for checking the XML instance for
errors due to incorrect namespaces. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

recurse

--recurse = true|false

Used to select files within a ZIP archive. If true, the command's InputFile argument will

select the specified file also in subdirectories. For example: test.zip|zip\test.xml will
select files named test.xml at all folder levels of the zip folder. The wildcard characters *
and ? may be used. So, *.xml will select all .xml files in the zip folder. The parameter's
default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

Catalogs and global resources
catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file.
The default value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLXBRLServer2015\etc\RootCatalog.xml). See the section,
XML Catalogs, for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog.
See the section, XML Catalogs, for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources).

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources).

Messages, errors, help, timeout, version
error-format

74 Command Line Interface (CLI) Well-formedness Check Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate
XML formats, with longxml generating more detail.

error-limit

--error-limit = N

Specifies the error limit. Default value is 100. Values of 1 to 999 are allowed. Useful for
limiting processor use during validation. When the error limit is reached, validation stops.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help
command can be used with an argument. For example: help valany.)

log-output

--log-output = FILE

Writes the message output to the specified file URL instead of to the console. Ensure that
the CLI has write permission to the output location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in seconds for remote I/O operations. Default is: 40.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is
false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML+XBRL Server. If used with a command, place --
version before the command.

© 2014 Altova GmbH

Well-formedness Check Commands 75Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

3.2.2 wfdtd

The wfdtd command checks one or more DTD documents for well-formedness according to the

XML 1.0 or XML 1.1 specification.

Windows RaptorXMLXBRL wfdtd [options] InputFile

Linux raptorxmlxbrl wfdtd [options] InputFile

Mac raptorxmlxbrl wfdtd [options] InputFile

The InputFile argument is the DTD document to check for well-formedness. If you wish to check

multiple documents, either: (i) list the files to be checked on the CLI, with each file separated from
the next by a space; or (ii) list the files to be checked in a text file (.txt file), with one filename
per line, and supply this text file as the InputFile argument together with the --listfile option

set to true (see the Options list below).

Examples

raptorxmlxbrl wfdtd c:\Test.dtd

raptorxmlxbrl wfdtd --verbose=true c:\Test.dtd

raptorxmlxbrl wfdtd --listfile=true c:\FileList.txt

Casing on the command line

RaptorXMLXBRL on Windows

raptorxmlxbrl on Unix (Linux, Mac)

* Note that lowercase (raptorxmlxbrl) works on all platforms (Windows, Linux, and Mac),
while upper-lower (RaptorXMLXBRL) works only on Windows and Mac.

Options
The command's options are listed below, organized into groups. Values can be specified without
quotes except in two cases: (i) when the value string contains spaces, or (ii) when explicitly
stated in the description of the option that quotes are required.

Validation and processing
listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename

per line. Default value is false. (An alternative is to list the files on the CLI with a space
as separator. Note, however, that CLIs have a maximum-character limitation.) Note that
the --listfile option applies only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

recurse

--recurse = true|false

Used to select files within a ZIP archive. If true, the command's InputFile argument will

76 Command Line Interface (CLI) Well-formedness Check Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

select the specified file also in subdirectories. For example: test.zip|zip\test.xml will
select files named test.xml at all folder levels of the zip folder. The wildcard characters *
and ? may be used. So, *.xml will select all .xml files in the zip folder. The parameter's
default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

Catalogs and global resources
catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file.
The default value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLXBRLServer2015\etc\RootCatalog.xml). See the section,
XML Catalogs, for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog.
See the section, XML Catalogs, for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources).

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources).

Messages, errors, help, timeout, version
error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate
XML formats, with longxml generating more detail.

error-limit

--error-limit = N

Specifies the error limit. Default value is 100. Values of 1 to 999 are allowed. Useful for
limiting processor use during validation. When the error limit is reached, validation stops.

help

--help

© 2014 Altova GmbH

Well-formedness Check Commands 77Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

Displays help text for the command. For example, valany --h. (Alternatively the help
command can be used with an argument. For example: help valany.)

log-output

--log-output = FILE

Writes the message output to the specified file URL instead of to the console. Ensure that
the CLI has write permission to the output location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in seconds for remote I/O operations. Default is: 40.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is
false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML+XBRL Server. If used with a command, place --
version before the command.

78 Command Line Interface (CLI) Well-formedness Check Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

3.2.3 wfany

The wfany command checks an XML or DTD document for well-formedness according to the

respective specification/s. The type of document is detected automatically.

Windows RaptorXMLXBRL wfany [options] InputFile

Linux raptorxmlxbrl wfany [options] InputFile

Mac raptorxmlxbrl wfany [options] InputFile

The InputFile argument is the document to check for well-formedness. Note that only one

document can be submitted as the argument of the command. The type of the submitted
document is detected automatically.

Examples

raptorxmlxbrl wfany c:\Test.xml
raptorxmlxbrl wfany --errorformat=text c:\Test.xml

Casing on the command line

RaptorXMLXBRL on Windows

raptorxmlxbrl on Unix (Linux, Mac)

* Note that lowercase (raptorxmlxbrl) works on all platforms (Windows, Linux, and Mac),
while upper-lower (RaptorXMLXBRL) works only on Windows and Mac.

Options
The command's options are listed below, organized into groups. Values can be specified without
quotes except in two cases: (i) when the value string contains spaces, or (ii) when explicitly
stated in the description of the option that quotes are required.

Validation and processing
recurse

--recurse = true|false

Used to select files within a ZIP archive. If true, the command's InputFile argument will

select the specified file also in subdirectories. For example: test.zip|zip\test.xml will
select files named test.xml at all folder levels of the zip folder. The wildcard characters *
and ? may be used. So, *.xml will select all .xml files in the zip folder. The parameter's
default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

Catalogs and global resources
catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file.

© 2014 Altova GmbH

Well-formedness Check Commands 79Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

The default value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLXBRLServer2015\etc\RootCatalog.xml). See the section,
XML Catalogs, for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog.
See the section, XML Catalogs, for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources).

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources).

Messages, errors, help, timeout, version
error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate
XML formats, with longxml generating more detail.

error-limit

--error-limit = N

Specifies the error limit. Default value is 100. Values of 1 to 999 are allowed. Useful for
limiting processor use during validation. When the error limit is reached, validation stops.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help
command can be used with an argument. For example: help valany.)

log-output

--log-output = FILE

Writes the message output to the specified file URL instead of to the console. Ensure that
the CLI has write permission to the output location.

network-timeout

--network-timeout = VALUE

80 Command Line Interface (CLI) Well-formedness Check Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Specifies the timeout in seconds for remote I/O operations. Default is: 40.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is
false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML+XBRL Server. If used with a command, place --
version before the command.

© 2014 Altova GmbH

XBRL Validation Commands 81Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

3.3 XBRL Validation Commands

The XBRL validation commands can be used to validate XBRL instance documents and XBRL
taxonomies according to the XBRL 2.1, Dimensions 1.0 and Formula 1.0 specifications. The
available commands are listed below and described in detail in the sub-sections of this section:

valxbrl | xbrl Validates an XBRL instance document (.xbrl extension).

valxbrltaxonomy |
dts

Validates an XBRL taxonomy (schema) document (.xsd extension).

valany Validates any one XBRL (instance or taxonomy) document. Note
that this command is also used to validate XML, DTD, XSD, XSLT, or
XQuery documents; the type of document submitted is detected
automatically.

82 Command Line Interface (CLI) XBRL Validation Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

3.3.1 valxbrl (xbrl)

The valxbrl | xbrl command validates one or more XBRL instance documents according to the

XBRL 2.1, Dimensions 1.0 and Formula 1.0 specifications.

Windows RaptorXMLXBRL valxbrl | xbrl [options] InputFile

Linux raptorxmlxbrl valxbrl | xbrl [options] InputFile

Mac raptorxmlxbrl valxbrl | xbrl [options] InputFile

The InputFile argument is the XBRL instance document to validate. To validate multiple

documents, either: (i) list the files to be validated on the CLI, with each file separated from the
next by a space; or (ii) list the files to be validated in a text file (.txt file), with one filename per
line, and supply this text file as the InputFile argument together with the --listfile option set

to true (see the Options list below).

Note: The XBRL instance document must not be nested in another XML document and must
have the xbrl element as its root element.
<xbrl xmlns="http://www.xbrl.org/2003/instance"> ... </xbrl>

Examples

raptorxmlxbrl valxbrl c:\Test.xbrl

raptorxmlxbrl xbrl --formula-execution=true --formula-output=c:

\FormulaOutput.xml c:\Test.xbrl

raptorxmlxbrl xbrl --formula-execution --assertions-output=c:

\AssertionsOutput.xml c:\Test.xbrl

raptorxmlxbrl xbrl --formula-execution --formula-output=c:

\FormulaOutput.xml --assertions-output=c:\AssertionsOutput.xml c:
\Test.xbrl

Casing on the command line

RaptorXMLXBRL on Windows

raptorxmlxbrl on Unix (Linux, Mac)

* Note that lowercase (raptorxmlxbrl) works on all platforms (Windows, Linux, and Mac),
while upper-lower (RaptorXMLXBRL) works only on Windows and Mac.

Options
The command's options are listed below, organized into groups. Values can be specified without
quotes except in two cases: (i) when the value string contains spaces, or (ii) when explicitly
stated in the description of the option that quotes are required.

XBRL validation and processing
dimensions

--dimensions = true|false

Enables XBRL Dimension 1.0 extensions. Default is true.

© 2014 Altova GmbH

XBRL Validation Commands 83Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

Note: Boolean option values are set to true if the option is specified without a value.

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename

per line. Default value is false. (An alternative is to list the files on the CLI with a space
as separator. Note, however, that CLIs have a maximum-character limitation.) Note that
the --listfile option applies only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

parallel-assessment [pa]

--pa | --parallel-assessment = true|false

If set to true, schema validity assessment is carried out in parallel. This means that if
there are more than 128 elements at any level, these elements are processed in parallel
using multiple threads. Very large XML files can therefore be processed faster if this
option is enabled. Parallel assessment takes place on one hierarchical level at a time, but
can occur at multiple levels within a single infoset. Note that parallel assessment does
not work in streaming mode. For this reason, the --streaming option is ignored if --
parallel-assessment is set to true. Also, memory usage is higher when the --
parallel-assessment option is used. The default setting is false. Short form for the
option is --pa.
Note: Boolean option values are set to true if the option is specified without a value.

preload-xbrl-schemas

--preload-xbrl-schemas = true|false

Preloads schemas of the XBRL 2.1 specification. Default is true.
Note: Boolean option values are set to true if the option is specified without a value.

recurse

--recurse = true|false

Used to select files within a ZIP archive. If true, the command's InputFile argument will

select the specified file also in subdirectories. For example: test.zip|zip\test.xml will
select files named test.xml at all folder levels of the zip folder. The wildcard characters *
and ? may be used. So, *.xml will select all .xml files in the zip folder. The parameter's
default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation

| load-by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs:import elements, each of which has an optional namespace
attribute and an optional schemaLocation attribute: <import namespace="someNS"
schemaLocation="someURL">. The behavior is as follows:

load-by-schemalocation: The value of the schemaLocation attribute is used to
locate the schema, taking account of catalog mappings. If the namespace attribute is
present, the namespace is imported (licensed).
load-preferring-schemalocation: If the schemaLocation attribute is present, it is
used, taking account of catalog mappings. If no schemaLocation attribute is present,
then the value of the namespace attribute is used via a catalog mapping. This is the

84 Command Line Interface (CLI) XBRL Validation Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

default value.
load-by-namespace: The value of the namespace attribute is used to locate the
schema via a catalog mapping.
load-combining-both: If either the namespace or schemaLocation attribute has a
catalog mapping, then the mapping is used. If both have catalog mappings, then the
value of the --schema-mapping option (XBRL option and XML/XSD option) decides
which mapping is used. If no catalog mapping is present, the schemaLocation
attribute is used.
license-namespace-only: The namespace is imported. No schema document is
imported.

schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

If either the --schemalocation-hints or the --schema-imports option has a value of
load-combining-both, and if the namespace and URL parts involved both have catalog
mappings, then the value of this option specifies which of the two mappings to use
(namespace mapping or URL mapping; the prefer-schemalocation value refers to the
URL mapping). Default is prefer-schemalocation.

schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace |

load-combining-both | ignore

The load-by-schemalocation value uses the URL of the schema location in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML or
XBRL instance documents. This is the default value.
The load-by-namespace value takes the namespace part of xsi:schemaLocation
and an empty string in the case of xsi:noNamespaceSchemaLocation and locates
the schema via a catalog mapping.
If load-combining-both is used and if either the namespace part or the URL part
has a catalog mapping, then the catalog mapping is used. If both have catalog
mappings, then the value of the --schema-mapping option (XBRL option and XML/XSD
option) decides which mapping is used. If neither the namespace nor URL has a
catalog mapping, the URL is used.
If the option's value is ignore, then the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

script

--script = FILE

Executes the Python script in the submitted file after validation has been completed.

script-param

--script-param = KEY:VALUE

Additional user-specified parameters that can be accessed during the execution of Python
scripts.

treat-inconsistencies-as-errors

--treat-inconsistencies-as-errors = true|false

Causes XBRL validation to fail if the file contains any inconsistency as defined by the
XBRL 2.1 specification. Default value is false.

© 2014 Altova GmbH

XBRL Validation Commands 85Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

Note: Boolean option values are set to true if the option is specified without a value.

validate-dts-only

--validate-dts-only = true|false

The DTS is discovered by starting from the XBRL instance document. All referenced
taxonomy schemas and linkbases are discovered and validated. The rest of the XBRL
instance document is ignored. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

xinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false,
XInclude's include elements are ignored.
Note: Boolean option values are set to true if the option is specified without a value.

XBRL formulas and assertions
assertions-output

--assertions-output = FILE

Writes the output of the assertion evaluation to the specified FILE. If set, automatically

specifies --formula-execution=true.

assertions-output-format

--assertions-output-format = json|xml

Specifies the output format of the assertion evaluation. Default is json.

evaluate-referenced-parameters-only

--evaluate-referenced-parameters-only = true|false

If false, forces evaluation of all parameters even if they are not referenced by any
formulas/assertions/tables. Default is: true.

formula

--formula = true|false

Enables XBRL Formula 1.0 extensions. Default is true.
Note: Boolean option values are set to true if the option is specified without a value.

formula-assertion-set [[DEPRECATED]]

--formula-assertion-set = VALUE

Limits formula execution to the given assertion set only. Add the option multiple times to
specify more than one assertion set. Short form is --as. The VALUE is either the value of

the @id attribute, or a URI with an XPointer fragment that identifies the resource. The
special values ##none and ##all can also be used.

formula-execution

--formula-execution = true|false

Enables evaluation of XBRL formulas. Default is true. If true, automatically specifies --
formula=true.

86 Command Line Interface (CLI) XBRL Validation Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Note: Boolean option values are set to true if the option is specified without a value.

formula-output

--formula-output = FILE

Writes the output of formula evaluation to the specified FILE. If set, automatically

specifies --formula-execution=true.

formula-parameters

--formula-parameters = JSON-ARRAY

Specifies the parameters for XBRL formula evaluation in JSON format directly on the CLI.
See the section, Formula Parameters. Care must be taken with escaping on the
command line.

formula-parameters-file

--formula-parameters-file = FILE

Specifies a FILE containing the parameters for XBRL formula evaluation. The file can be

either an XML file or JSON file. See the section, Formula Parameters.

preload-formula-schemas

--preload-formula-schemas = true|false

Preloads schemas of the XBRL Formula 1.0 specification. Default is false.
Note: Boolean option values are set to true if the option is specified without a value.

process-assertion [a]

--a | --process-assertion = VALUE

Limits formula execution to the given assertion only. Add the option multiple times to
specify more than one assertion. Short form is --a. The VALUE is either the value of the

@id attribute, or a URI with an XPointer fragment that identifies the resource. The special
values ##none and ##all can also be used.

process-assertion-set [as]

--as | --process-assertion-set = VALUE

Limits formula execution to the given assertion set only. Add the option multiple times to
specify more than one assertion set. Short form is --as. The VALUE is either the value of

the @id attribute, or a URI with an XPointer fragment that identifies the resource. The
special values ##none and ##all can also be used.

process-formula [f]

--f | --process-formula = VALUE

Limits formula execution to the given formula only. Add the option multiple times to
specify more than one formula. Short form is --f. The VALUE is either the value of the @id

attribute, or a URI with an XPointer fragment that identifies the resource. The special
values ##none and ##all can also be used.

variableset-execution-timeout

--variableset-execution-timeout = VALUE

Applied when executing formulas (--formula-execution=true). Specifies the maximum

time allowed for executing a single variable set (a formula or a value, or an existence or

© 2014 Altova GmbH

XBRL Validation Commands 87Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

consistency assertion). The time is specified in minutes and must be a positive number.
The default is 30min. If a particular variable set doesn’t finish execution before the timeout
is reached, then it is aborted. An error message is displayed (and entered in the a
verbose log). Note, however, that the timeout check is carried out only after every variable
set evaluation—and not during execution of individual XPath expressions. So, if a single
XPath expression takes long to execute, the timeout limit might be crossed. Execution of
a variable set is aborted only once a complete variable set evaluation has been executed.

XBRL tables
concept-label-linkrole

--concept-label-linkrole = VALUE

Specifies the preferred extended link role to use when rendering concept labels.

concept-label-role

--cconcept-label-role = VALUE

Specifies the preferred label role to use when rendering concept labels. Default is:
http://www.xbrl.org/2003/role/label.

evaluate-referenced-parameters-only

--evaluate-referenced-parameters-only = true|false

If false, forces evaluation of all parameters even if they are not referenced by any
formulas/assertions/tables. Default is: true.

generic-label-linkrole

--generic-label-linkrole = VALUE

Specifies the preferred extended link role to use when rendering generic labels.

generic-label-role

--generic-label-role = VALUE

Specifies the preferred label role to use when rendering generic labels. Default is: http://
www.xbrl.org/2003/role/label.

label-lang

--label-lang = VALUE

Specifies the preferred label language to use when rendering labels. Default is: en.

preload-table-schemas

--preload-table-schemas = true|false

Preloads schemas of the XBRL Table 1.0 specification. Default is false.
Note: Boolean option values are set to true if the option is specified without a value.

process-table [t]

--t | --process-table = VALUE

Limits formula execution to the given table only. Add the option multiple times to specify
more than one table. Short form is --t. The VALUE is either the value of the @id attribute,

or a URI with an XPointer fragment that identifies the resource. The special values ##none

88 Command Line Interface (CLI) XBRL Validation Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

and ##all can also be used.

table

--table = true|false

Enables the XBRL Table 1.0 extension. Default value is true. If true, automatically
specifies --formula=true and --dimensions=true.
Note: Boolean option values are set to true if the option is specified without a value.

table-elimination

--table-elimination = true|false

Enables elimination of empty table rows/columns in HTML output. Default is true.
Note: Boolean option values are set to true if the option is specified without a value.

table-execution

--table-execution = true|false

Enables evaluation of XBRL tables. Default is false. Will be set to true if --table-
output is specified. If true, automatically specifies --table=true.
Note: Boolean option values are set to true if the option is specified without a value.

table-linkbase-namespace

--table-linkbase-namespace =

 ##detect |

 http://xbrl.org/PWD/2013-05-17/table |

 http://xbrl.org/PWD/2013-08-28/table |

 http://xbrl.org/CR/2013-11-13/table |

 http://xbrl.org/PR/2013-12-18/table |

 http://xbrl.org/2014/table

Enables loading of table linkbases written with a previous draft specification.
Table linkbase validation, resolution, and layout is, however, always performed according
to the Table Linkbase 1.0 Recommendation of 18 March 2014. Use ##detect to enable
auto-detection.

table-output

--table-output = FILE

Writes the table output to the specified FILE. If set, automatically specifies --table-

execution=true.

table-output-format

--table-output-format = xml|html

Specifies the format of the table output. Default is xml.

Catalogs and global resources
catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file.
The default value is the absolute path to the installed root catalog file (<installation-

© 2014 Altova GmbH

XBRL Validation Commands 89Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

folder>\Altova\RaptorXMLXBRLServer2015\etc\RootCatalog.xml). See the section,
XML Catalogs, for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog.
See the section, XML Catalogs, for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources).

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources).

Messages, errors, help, timeout, version
error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate
XML formats, with longxml generating more detail.

error-limit

--error-limit = N

Specifies the error limit. Default value is 100. Values of 1 to 999 are allowed. Useful for
limiting processor use during validation. When the error limit is reached, validation stops.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help
command can be used with an argument. For example: help valany.)

log-output

--log-output = FILE

Writes the message output to the specified file URL instead of to the console. Ensure that
the CLI has write permission to the output location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in seconds for remote I/O operations. Default is: 40.

90 Command Line Interface (CLI) XBRL Validation Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is
false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML+XBRL Server. If used with a command, place --
version before the command.

© 2014 Altova GmbH

XBRL Validation Commands 91Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

3.3.2 valxbrltaxonomy (dts)

The valxbrltaxonomy | dts command validates one or more XBRL taxonomies (schemas)

according to the XBRL 2.1, Dimensions 1.0 and Formula 1.0 specifications.

Windows RaptorXMLXBRL valxbrltaxonomy | dts [options] InputFile

Linux raptorxmlxbrl valxbrltaxonomy | dts [options] InputFile

Mac raptorxmlxbrl valxbrltaxonomy | dts [options] InputFile

The InputFile argument is the XBRL taxonomy to validate. To validate multiple documents,

either: (i) list the files to be validated on the CLI, with each file separated from the next by a
space; or (ii) list the files to be validated in a text file (.txt file), with one filename per line, and
supply this text file as the InputFile argument together with the --listfile option set to true

(see the Options list below).

Examples

raptorxmlxbrl valxbrltaxonomy c:\Test.xsd

raptorxmlxbrl dts --listfile c:\FileList.txt

Casing on the command line

RaptorXMLXBRL on Windows

raptorxmlxbrl on Unix (Linux, Mac)

* Note that lowercase (raptorxmlxbrl) works on all platforms (Windows, Linux, and Mac),
while upper-lower (RaptorXMLXBRL) works only on Windows and Mac.

Options
The command's options are listed below, organized into groups. Values can be specified without
quotes except in two cases: (i) when the value string contains spaces, or (ii) when explicitly
stated in the description of the option that quotes are required.

XBRL validation and processing
dimensions

--dimensions = true|false

Enables XBRL Dimension 1.0 extensions. Default is true.
Note: Boolean option values are set to true if the option is specified without a value.

evaluate-referenced-parameters-only

--evaluate-referenced-parameters-only = true|false

If false, forces evaluation of all parameters even if they are not referenced by any
formulas/assertions/tables. Default is: true.

formula

92 Command Line Interface (CLI) XBRL Validation Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

--formula = true|false

Enables XBRL Formula 1.0 extensions. Default is true.
Note: Boolean option values are set to true if the option is specified without a value.

formula-parameters

--formula-parameters = JSON-ARRAY

Specifies the parameters for XBRL formula evaluation in JSON format directly on the CLI.
See the section, Formula Parameters. Care must be taken with escaping on the
command line.

formula-parameters-file

--formula-parameters-file = FILE

Specifies a FILE containing the parameters for XBRL formula evaluation. The file can be

either an XML file or JSON file. See the section, Formula Parameters.

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename

per line. Default value is false. (An alternative is to list the files on the CLI with a space
as separator. Note, however, that CLIs have a maximum-character limitation.) Note that
the --listfile option applies only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

preload-formula-schemas

--preload-formula-schemas = true|false

Preloads schemas of the XBRL Formula 1.0 specification. Default is false.
Note: Boolean option values are set to true if the option is specified without a value.

preload-xbrl-schemas

--preload-xbrl-schemas = true|false

Preloads schemas of the XBRL 2.1 specification. Default is true.
Note: Boolean option values are set to true if the option is specified without a value.

recurse

--recurse = true|false

Used to select files within a ZIP archive. If true, the command's InputFile argument will

select the specified file also in subdirectories. For example: test.zip|zip\test.xml will
select files named test.xml at all folder levels of the zip folder. The wildcard characters *
and ? may be used. So, *.xml will select all .xml files in the zip folder. The parameter's
default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation

| load-by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs:import elements, each of which has an optional namespace
attribute and an optional schemaLocation attribute: <import namespace="someNS"
schemaLocation="someURL">. The behavior is as follows:

load-by-schemalocation: The value of the schemaLocation attribute is used to

© 2014 Altova GmbH

XBRL Validation Commands 93Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

locate the schema, taking account of catalog mappings. If the namespace attribute is
present, the namespace is imported (licensed).
load-preferring-schemalocation: If the schemaLocation attribute is present, it is
used, taking account of catalog mappings. If no schemaLocation attribute is present,
then the value of the namespace attribute is used via a catalog mapping. This is the
default value.
load-by-namespace: The value of the namespace attribute is used to locate the
schema via a catalog mapping.
load-combining-both: If either the namespace or schemaLocation attribute has a
catalog mapping, then the mapping is used. If both have catalog mappings, then the
value of the --schema-mapping option (XBRL option and XML/XSD option) decides
which mapping is used. If no catalog mapping is present, the schemaLocation
attribute is used.
license-namespace-only: The namespace is imported. No schema document is
imported.

schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

If either the --schemalocation-hints or the --schema-imports option has a value of
load-combining-both, and if the namespace and URL parts involved both have catalog
mappings, then the value of this option specifies which of the two mappings to use
(namespace mapping or URL mapping; the prefer-schemalocation value refers to the
URL mapping). Default is prefer-schemalocation.

schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace |

load-combining-both | ignore

The load-by-schemalocation value uses the URL of the schema location in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML or
XBRL instance documents. This is the default value.
The load-by-namespace value takes the namespace part of xsi:schemaLocation
and an empty string in the case of xsi:noNamespaceSchemaLocation and locates
the schema via a catalog mapping.
If load-combining-both is used and if either the namespace part or the URL part
has a catalog mapping, then the catalog mapping is used. If both have catalog
mappings, then the value of the --schema-mapping option (XBRL option and XML/XSD
option) decides which mapping is used. If neither the namespace nor URL has a
catalog mapping, the URL is used.
If the option's value is ignore, then the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

script

--script = FILE

Executes the Python script in the submitted file after validation has been completed.

script-param

--script-param = KEY:VALUE

Additional user-specified parameters that can be accessed during the execution of Python
scripts.

94 Command Line Interface (CLI) XBRL Validation Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

treat-inconsistencies-as-errors

--treat-inconsistencies-as-errors = true|false

Causes XBRL validation to fail if the file contains any inconsistency as defined by the
XBRL 2.1 specification. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

xinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false,
XInclude's include elements are ignored.
Note: Boolean option values are set to true if the option is specified without a value.

XBRL tables
concept-label-linkrole

--concept-label-linkrole = VALUE

Specifies the preferred extended link role to use when rendering concept labels.

concept-label-role

--cconcept-label-role = VALUE

Specifies the preferred label role to use when rendering concept labels. Default is:
http://www.xbrl.org/2003/role/label.

evaluate-referenced-parameters-only

--evaluate-referenced-parameters-only = true|false

If false, forces evaluation of all parameters even if they are not referenced by any
formulas/assertions/tables. Default is: true.

generic-label-linkrole

--generic-label-linkrole = VALUE

Specifies the preferred extended link role to use when rendering generic labels.

generic-label-role

--generic-label-role = VALUE

Specifies the preferred label role to use when rendering generic labels. Default is: http://
www.xbrl.org/2003/role/label.

label-lang

--label-lang = VALUE

Specifies the preferred label language to use when rendering labels. Default is: en.

preload-table-schemas

--preload-table-schemas = true|false

Preloads schemas of the XBRL Table 1.0 specification. Default is false.
Note: Boolean option values are set to true if the option is specified without a value.

process-table [t]

© 2014 Altova GmbH

XBRL Validation Commands 95Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

--t | --process-table = VALUE

Limits formula execution to the given table only. Add the option multiple times to specify
more than one table. Short form is --t. The VALUE is either the value of the @id attribute,

or a URI with an XPointer fragment that identifies the resource. The special values ##none
and ##all can also be used.

table

--table = true|false

Enables the XBRL Table 1.0 extension. Default value is true. If true, automatically
specifies --formula=true and --dimensions=true.
Note: Boolean option values are set to true if the option is specified without a value.

table-execution

--table-execution = true|false

Enables evaluation of XBRL tables. Default is false. Will be set to true if --table-
output is specified. If true, automatically specifies --table=true.
Note: Boolean option values are set to true if the option is specified without a value.

table-linkbase-namespace

--table-linkbase-namespace =

 ##detect |

 http://xbrl.org/PWD/2013-05-17/table |

 http://xbrl.org/PWD/2013-08-28/table |

 http://xbrl.org/CR/2013-11-13/table |

 http://xbrl.org/PR/2013-12-18/table |

 http://xbrl.org/2014/table

Enables loading of table linkbases written with a previous draft specification.
Table linkbase validation, resolution, and layout is, however, always performed according
to the Table Linkbase 1.0 Recommendation of 18 March 2014. Use ##detect to enable
auto-detection.

table-output

--table-output = FILE

Writes the table output to the specified FILE. If set, automatically specifies --table-

execution=true.

table-output-format

--table-output-format = xml|html

Specifies the format of the table output. Default is xml.

Catalogs and global resources
catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file.
The default value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLXBRLServer2015\etc\RootCatalog.xml). See the section,

96 Command Line Interface (CLI) XBRL Validation Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

XML Catalogs, for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog.
See the section, XML Catalogs, for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources).

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources).

Messages, errors, help, timeout, version
error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate
XML formats, with longxml generating more detail.

error-limit

--error-limit = N

Specifies the error limit. Default value is 100. Values of 1 to 999 are allowed. Useful for
limiting processor use during validation. When the error limit is reached, validation stops.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help
command can be used with an argument. For example: help valany.)

log-output

--log-output = FILE

Writes the message output to the specified file URL instead of to the console. Ensure that
the CLI has write permission to the output location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in seconds for remote I/O operations. Default is: 40.

© 2014 Altova GmbH

XBRL Validation Commands 97Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is
false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML+XBRL Server. If used with a command, place --
version before the command.

98 Command Line Interface (CLI) XBRL Validation Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

3.3.3 valany

The valany command validates an XBRL instance document or XBRL taxonomy according to the

XBRL 2.1, Dimensions 1.0 and Formula 1.0 specifications. The type of document is detected
automatically.

Windows RaptorXMLXBRL valany [options] InputFile

Linux raptorxmlxbrl valany [options] InputFile

Mac raptorxmlxbrl valany [options] InputFile

The InputFile argument is the document to validate. Note that only one document can be

submitted as the argument of the command. The type of the submitted document is detected
automatically.

Examples

raptorxmlxbrl valany c:\Test.xsd
raptorxmlxbrl valany --errorformat=text c:\Test.xbrl

Casing on the command line

RaptorXMLXBRL on Windows

raptorxmlxbrl on Unix (Linux, Mac)

* Note that lowercase (raptorxmlxbrl) works on all platforms (Windows, Linux, and Mac),
while upper-lower (RaptorXMLXBRL) works only on Windows and Mac.

Options
The command's options are listed below, organized into groups. Values can be specified without
quotes except in two cases: (i) when the value string contains spaces, or (ii) when explicitly
stated in the description of the option that quotes are required.

XBRL validation and processing
recurse

--recurse = true|false

Used to select files within a ZIP archive. If true, the command's InputFile argument will

select the specified file also in subdirectories. For example: test.zip|zip\test.xml will
select files named test.xml at all folder levels of the zip folder. The wildcard characters *
and ? may be used. So, *.xml will select all .xml files in the zip folder. The parameter's
default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation

| load-by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs:import elements, each of which has an optional namespace

© 2014 Altova GmbH

XBRL Validation Commands 99Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

attribute and an optional schemaLocation attribute: <import namespace="someNS"
schemaLocation="someURL">. The behavior is as follows:

load-by-schemalocation: The value of the schemaLocation attribute is used to
locate the schema, taking account of catalog mappings. If the namespace attribute is
present, the namespace is imported (licensed).
load-preferring-schemalocation: If the schemaLocation attribute is present, it is
used, taking account of catalog mappings. If no schemaLocation attribute is present,
then the value of the namespace attribute is used via a catalog mapping. This is the
default value.
load-by-namespace: The value of the namespace attribute is used to locate the
schema via a catalog mapping.
load-combining-both: If either the namespace or schemaLocation attribute has a
catalog mapping, then the mapping is used. If both have catalog mappings, then the
value of the --schema-mapping option (XBRL option and XML/XSD option) decides
which mapping is used. If no catalog mapping is present, the schemaLocation
attribute is used.
license-namespace-only: The namespace is imported. No schema document is
imported.

schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace |

load-combining-both | ignore

The load-by-schemalocation value uses the URL of the schema location in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML or
XBRL instance documents. This is the default value.
The load-by-namespace value takes the namespace part of xsi:schemaLocation
and an empty string in the case of xsi:noNamespaceSchemaLocation and locates
the schema via a catalog mapping.
If load-combining-both is used and if either the namespace part or the URL part
has a catalog mapping, then the catalog mapping is used. If both have catalog
mappings, then the value of the --schema-mapping option (XBRL option and XML/XSD
option) decides which mapping is used. If neither the namespace nor URL has a
catalog mapping, the URL is used.
If the option's value is ignore, then the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

If either the --schemalocation-hints or the --schema-imports option has a value of
load-combining-both, and if the namespace and URL parts involved both have catalog
mappings, then the value of this option specifies which of the two mappings to use
(namespace mapping or URL mapping; the prefer-schemalocation value refers to the
URL mapping). Default is prefer-schemalocation.

Catalogs and global resources
catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file.
The default value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLXBRLServer2015\etc\RootCatalog.xml). See the section,

100 Command Line Interface (CLI) XBRL Validation Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

XML Catalogs, for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog.
See the section, XML Catalogs, for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources).

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources).

Messages, errors, help, timeout, version
error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate
XML formats, with longxml generating more detail.

error-limit

--error-limit = N

Specifies the error limit. Default value is 100. Values of 1 to 999 are allowed. Useful for
limiting processor use during validation. When the error limit is reached, validation stops.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help
command can be used with an argument. For example: help valany.)

log-output

--log-output = FILE

Writes the message output to the specified file URL instead of to the console. Ensure that
the CLI has write permission to the output location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in seconds for remote I/O operations. Default is: 40.

© 2014 Altova GmbH

XBRL Validation Commands 101Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is
false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML+XBRL Server. If used with a command, place --
version before the command.

102 Command Line Interface (CLI) XSLT Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

3.4 XSLT Commands

The XSLT commands are:

xslt: for transforming XML documents with an XSLT document
valxslt: for validating XSLT documents

The arguments and options for each command are listed in the sub-sections, xslt and
valxslt.

© 2014 Altova GmbH

XSLT Commands 103Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

3.4.1 xslt

The xslt command takes an XSLT file as its single argument and uses it to transform an input

XML file to produce an output file. The input and output files are specified as options.

Windows RaptorXMLXBRL xslt [options] XSLT-File

Linux raptorxmlxbrl xslt [options] XSLT-File

Mac raptorxmlxbrl xslt [options] XSLT-File

The XSLT-File argument is the path and name of the XSLT file to use for the transformation. An

input XML file (--input) or a named template entry point (--template-entry-point) is required.
If no --output option is specified, output is written to standard output. You can use XSLT 1.0,
2.0, or 3.0. By default XSLT 3.0 is used.

Examples

raptorxmlxbrl xslt --input=c:\Test.xml --output=c:\Output.xml c:

\Test.xslt
raptorxmlxbrl xslt --template-entry-point=StartTemplate --output=c:

\Output.xml c:\Test.xslt
raptorxmlxbrl xslt --input=c:\Test.xml --output=c:\Output.xml --

param=date://node[1]/@att1 --p=title:'stringwithoutspace' --

param=title:"'string with spaces'" --p=amount:456 c:\Test.xslt

Casing on the command line

RaptorXMLXBRL on Windows

raptorxmlxbrl on Unix (Linux, Mac)

* Note that lowercase (raptorxmlxbrl) works on all platforms (Windows, Linux, and Mac),
while upper-lower (RaptorXMLXBRL) works only on Windows and Mac.

Options
The command's options are listed below, organized into groups. Values can be specified without
quotes except in two cases: (i) when the value string contains spaces, or (ii) when explicitly
stated in the description of the option that quotes are required.

XSLT processing
indent-characters

--indent-characters = VALUE

Specifies the character string to be used as indentation.

input

--input = FILE

The URL of the XML file to be transformed.

104 Command Line Interface (CLI) XSLT Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

output

output = FILE

The URL of the primary-output file. For example, in the case of multiple-file HTML output,
the primary-output file will be the location of the entry point HTML file. If no --output
option is specified, output is written to standard output.

param [p]

--p | --param = KEY:VALUE

XQuery

Specifies the value of an external parameter. An external parameter is declared in the
XQuery document with the declare variable declaration followed by a variable name
and then the external keyword followed by the trailing semi-colon. For example:
 declare variable $foo as xs:string external;

Because of the external keyword $foo becomes an external parameter, the value of
which is passed at runtime from an external source. The external parameter is given a
value with the CLI command. For example:
 --param=foo:'MyName'

In the description statement above, KEY is the external parameter name, VALUE is the

value of the external parameter, given as an XPath expression. Parameter names used
on the CLI must be declared in the XQuery document. If multiple external parameters
are passed values on the CLI, each must be given a separate --param option. Double
quotes must be used if the XPath expression contains spaces.

XSLT

Specifies a global stylesheet parameter. KEY is the parameter name, VALUE is an

XPath expression that provides the parameter value. Parameter names used on the CLI
must be declared in the stylesheet. If multiple parameters are used, the --param
switch must be used before each parameter. Double quotes must be used around the
XPath expression if it contains a space—whether the space is in the XPath expression
itself or in a string literal in the expression. For example:

raptorxmlxbrl xslt --input=c:\Test.xml --output=c:\Output.xml --

param=date://node[1]/@att1 --p=title:'stringwithoutspace' --
param=title:"'string with spaces'" --p=amount:456 c:\Test.xslt

streaming

--streaming = true|false

Enables streaming validation. Default is true. In streaming mode, data stored in memory
is minimized and processing is faster. The downside is that information that might be
required subsequently—for example, a data model of the XML instance document—will
not be available. In situations where this is significant, streaming mode will need to be
turned off (by giving --streaming a value of false). When using the --script option with
the valxml-withxsd command, disable streaming. Note that the --streaming option is
ignored if --parallel-assessment is set to true.
Note: Boolean option values are set to true if the option is specified without a value.

template-entry-point

--template-entry-point = VALUE

Gives the name of a named template in the XSLT stylesheet that is the entry point of the
transformation.

© 2014 Altova GmbH

XSLT Commands 105Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

template-mode

--template-mode = VALUE

Specifies the template mode to use for the transformation.

xslt-version

--xslt-version = 1|2|3

Specifies whether the XSLT processor should use XSLT 1.0, XSLT 2.0, or XSLT 3.0.
Default value is 3.

XML Schema and XML instance
load-xml-with-psvi

--load-xml-with-psvi = true|false

Enables validation of input XML files and generates post-schema-validation information for
them. Default is: false.

schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation

| load-by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs:import elements, each of which has an optional namespace
attribute and an optional schemaLocation attribute: <import namespace="someNS"
schemaLocation="someURL">. The behavior is as follows:

load-by-schemalocation: The value of the schemaLocation attribute is used to
locate the schema, taking account of catalog mappings. If the namespace attribute is
present, the namespace is imported (licensed).
load-preferring-schemalocation: If the schemaLocation attribute is present, it is
used, taking account of catalog mappings. If no schemaLocation attribute is present,
then the value of the namespace attribute is used via a catalog mapping. This is the
default value.
load-by-namespace: The value of the namespace attribute is used to locate the
schema via a catalog mapping.
load-combining-both: If either the namespace or schemaLocation attribute has a
catalog mapping, then the mapping is used. If both have catalog mappings, then the
value of the --schema-mapping option (XBRL option and XML/XSD option) decides
which mapping is used. If no catalog mapping is present, the schemaLocation
attribute is used.
license-namespace-only: The namespace is imported. No schema document is
imported.

schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace |

load-combining-both | ignore

The load-by-schemalocation value uses the URL of the schema location in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML or
XBRL instance documents. This is the default value.
The load-by-namespace value takes the namespace part of xsi:schemaLocation
and an empty string in the case of xsi:noNamespaceSchemaLocation and locates
the schema via a catalog mapping.
If load-combining-both is used and if either the namespace part or the URL part
has a catalog mapping, then the catalog mapping is used. If both have catalog

106 Command Line Interface (CLI) XSLT Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

mappings, then the value of the --schema-mapping option (XBRL option and XML/XSD
option) decides which mapping is used. If neither the namespace nor URL has a
catalog mapping, the URL is used.
If the option's value is ignore, then the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

If either the --schemalocation-hints or the --schema-imports option has a value of
load-combining-both, and if the namespace and URL parts involved both have catalog
mappings, then the value of this option specifies which of the two mappings to use
(namespace mapping or URL mapping; the prefer-schemalocation value refers to the
URL mapping). Default is prefer-schemalocation.

xinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false,
XInclude's include elements are ignored.
Note: Boolean option values are set to true if the option is specified without a value.

xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use: wf=wellformed check; id=wellformed with ID/
IDREF checks; valid=validation. Default value is wf.

xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This
option can also be useful to find out in what ways a schema which is 1.0-compatible is
not 1.1-compatible. The detect option is an Altova-specific feature. It enables the version
of the XML Schema document (1.0 or 1.1) to be detected by reading the value of the
vc:minVersion attribute of the document's <xs:schema> element. If the value of the
@vc:minVersion attribute is 1.1, the schema is detected as being version 1.1. For any
other value, or if the @vc:minVersion attribute is absent, the schema is detected as
being version 1.0.

Catalogs and global resources
catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file.
The default value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLXBRLServer2015\etc\RootCatalog.xml). See the section,
XML Catalogs, for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog.

© 2014 Altova GmbH

XSLT Commands 107Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

See the section, XML Catalogs, for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources).

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources).

Extensions
These options define the handling of special extension functions that are available in a number
of Enterprise-level Altova products (such as XMLSpy Enterprise Edition). Their use is described
in the user manuals of these products.

chartext-disable

--chartext-disable = true|false

Disables chart extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

dotnetext-disable

--dotnetext-disable = true|false

Disables .NET extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

javaext-barcode-location

--javaext-barcode-location = FILE

Specifies the location of the barcode extension file.

javaext-disable

--javaext-disable = true|false

Disables Java extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

Messages, errors, help, timeout, version
error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate
XML formats, with longxml generating more detail.

error-limit

108 Command Line Interface (CLI) XSLT Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

--error-limit = N

Specifies the error limit. Default value is 100. Values of 1 to 999 are allowed. Useful for
limiting processor use during validation. When the error limit is reached, validation stops.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help
command can be used with an argument. For example: help valany.)

network-timeout

--network-timeout = VALUE

Specifies the timeout in seconds for remote I/O operations. Default is: 40.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is
false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML+XBRL Server. If used with a command, place --
version before the command.

© 2014 Altova GmbH

XSLT Commands 109Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

3.4.2 valxslt

The valxslt command takes an XSLT file as its single argument and validates it.

Windows RaptorXMLXBRL valxslt [options] XSLT-File

Linux raptorxmlxbrl valxslt [options] XSLT-File

Mac raptorxmlxbrl valxslt [options] XSLT-File

The XSLT-File argument is the path and name of the XSLT file to be validated. Validation can be

according to the XSLT 1.0, 2.0, or 3.0 specification. By default XSLT 3.0 is the specification used.

Examples

raptorxmlxbrl valxslt c:\Test.xslt

raptorxmlxbrl valxslt --xslt-version=2 c:\Test.xslt

Casing on the command line

RaptorXMLXBRL on Windows

raptorxmlxbrl on Unix (Linux, Mac)

* Note that lowercase (raptorxmlxbrl) works on all platforms (Windows, Linux, and Mac),
while upper-lower (RaptorXMLXBRL) works only on Windows and Mac.

Options
The command's options are listed below, organized into groups. Values can be specified without
quotes except in two cases: (i) when the value string contains spaces, or (ii) when explicitly
stated in the description of the option that quotes are required.

XSLT processing
template-entry-point

--template-entry-point = VALUE

Gives the name of a named template in the XSLT stylesheet that is the entry point of the
transformation.

template-mode

--template-mode = VALUE

Specifies the template mode to use for the transformation.

xslt-version

--xslt-version = 1|2|3

Specifies whether the XSLT processor should use XSLT 1.0, XSLT 2.0, or XSLT 3.0.
Default value is 3.

110 Command Line Interface (CLI) XSLT Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

XML Schema and XML instance
load-xml-with-psvi

--load-xml-with-psvi = true|false

Enables validation of input XML files and generates post-schema-validation information for
them. Default is: false.

schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation

| load-by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs:import elements, each of which has an optional namespace
attribute and an optional schemaLocation attribute: <import namespace="someNS"
schemaLocation="someURL">. The behavior is as follows:

load-by-schemalocation: The value of the schemaLocation attribute is used to
locate the schema, taking account of catalog mappings. If the namespace attribute is
present, the namespace is imported (licensed).
load-preferring-schemalocation: If the schemaLocation attribute is present, it is
used, taking account of catalog mappings. If no schemaLocation attribute is present,
then the value of the namespace attribute is used via a catalog mapping. This is the
default value.
load-by-namespace: The value of the namespace attribute is used to locate the
schema via a catalog mapping.
load-combining-both: If either the namespace or schemaLocation attribute has a
catalog mapping, then the mapping is used. If both have catalog mappings, then the
value of the --schema-mapping option (XBRL option and XML/XSD option) decides
which mapping is used. If no catalog mapping is present, the schemaLocation
attribute is used.
license-namespace-only: The namespace is imported. No schema document is
imported.

schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace |

load-combining-both | ignore

The load-by-schemalocation value uses the URL of the schema location in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML or
XBRL instance documents. This is the default value.
The load-by-namespace value takes the namespace part of xsi:schemaLocation
and an empty string in the case of xsi:noNamespaceSchemaLocation and locates
the schema via a catalog mapping.
If load-combining-both is used and if either the namespace part or the URL part
has a catalog mapping, then the catalog mapping is used. If both have catalog
mappings, then the value of the --schema-mapping option (XBRL option and XML/XSD
option) decides which mapping is used. If neither the namespace nor URL has a
catalog mapping, the URL is used.
If the option's value is ignore, then the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

If either the --schemalocation-hints or the --schema-imports option has a value of
load-combining-both, and if the namespace and URL parts involved both have catalog

© 2014 Altova GmbH

XSLT Commands 111Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

mappings, then the value of this option specifies which of the two mappings to use
(namespace mapping or URL mapping; the prefer-schemalocation value refers to the
URL mapping). Default is prefer-schemalocation.

xinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false,
XInclude's include elements are ignored.
Note: Boolean option values are set to true if the option is specified without a value.

xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use: wf=wellformed check; id=wellformed with ID/
IDREF checks; valid=validation. Default value is wf.

xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This
option can also be useful to find out in what ways a schema which is 1.0-compatible is
not 1.1-compatible. The detect option is an Altova-specific feature. It enables the version
of the XML Schema document (1.0 or 1.1) to be detected by reading the value of the
vc:minVersion attribute of the document's <xs:schema> element. If the value of the
@vc:minVersion attribute is 1.1, the schema is detected as being version 1.1. For any
other value, or if the @vc:minVersion attribute is absent, the schema is detected as
being version 1.0.

Catalogs and global resources
catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file.
The default value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLXBRLServer2015\etc\RootCatalog.xml). See the section,
XML Catalogs, for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog.
See the section, XML Catalogs, for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources).

112 Command Line Interface (CLI) XSLT Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources).

Extensions
These options define the handling of special extension functions that are available in a number
of Enterprise-level Altova products (such as XMLSpy Enterprise Edition). Their use is described
in the user manuals of these products.

chartext-disable

--chartext-disable = true|false

Disables chart extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

dotnetext-disable

--dotnetext-disable = true|false

Disables .NET extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

javaext-barcode-location

--javaext-barcode-location = FILE

Specifies the location of the barcode extension file.

javaext-disable

--javaext-disable = true|false

Disables Java extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

Messages, errors, help, timeout, version
error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate
XML formats, with longxml generating more detail.

error-limit

--error-limit = N

Specifies the error limit. Default value is 100. Values of 1 to 999 are allowed. Useful for
limiting processor use during validation. When the error limit is reached, validation stops.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help
command can be used with an argument. For example: help valany.)

network-timeout

© 2014 Altova GmbH

XSLT Commands 113Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

--network-timeout = VALUE

Specifies the timeout in seconds for remote I/O operations. Default is: 40.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is
false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML+XBRL Server. If used with a command, place --
version before the command.

114 Command Line Interface (CLI) XQuery Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

3.5 XQuery Commands

The XQuery commands are:

xquery: for executing XQuery documents, optionally with an input document
xqueryupdate: for executing an XQuery update, using an XQuery document and,
optionally, the input XML document to update
valxquery: for validating XQuery documents

The arguments and options for each command are listed in the sub-sections, xquery and
valxquery.

© 2014 Altova GmbH

XQuery Commands 115Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

3.5.1 xquery

The xquery command takes an XQuery file as its single argument and executes it with an

optional input file to produce an output file. The input and output files are specified as options.

Windows RaptorXMLXBRL xquery [options] XQuery-File

Linux raptorxmlxbrl xquery [options] XQuery-File

Mac raptorxmlxbrl xquery [options] XQuery-File

The argument XQuery-File is the path and name of the XQuery file to be executed. You can use

XQuery 1.0 or 3.0. By default XQuery 3.0 is used.

Examples

raptorxmlxbrl xquery --output=c:\Output.xml c:\TestQuery.xq

raptorxmlxbrl xquery --input=c:\Input.xml --output=c:\Output.xml --

param=company:"Altova" --p=date:"2006-01-01" c:\TestQuery.xq

raptorxmlxbrl xquery --input=c:\Input.xml --output=c:\Output.xml --

param=source:" doc('c:\test\books.xml')//book "

raptorxmlxbrl xquery --output=c:\Output.xml --omit-xml-declaration=false

--output-encoding=ASCII c:\TestQuery.xq

Casing on the command line

RaptorXMLXBRL on Windows

raptorxmlxbrl on Unix (Linux, Mac)

* Note that lowercase (raptorxmlxbrl) works on all platforms (Windows, Linux, and Mac),
while upper-lower (RaptorXMLXBRL) works only on Windows and Mac.

Options
The command's options are listed below, organized into groups. Values can be specified without
quotes except in two cases: (i) when the value string contains spaces, or (ii) when explicitly
stated in the description of the option that quotes are required.

XQuery Processing
indent-characters

--indent-characters = VALUE

Specifies the character string to be used as indentation.

input

--input = FILE

The URL of the XML file to be transformed.

omit-xml-declaration

--omit-xml-declaration = true|false

116 Command Line Interface (CLI) XQuery Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Serialization option to specify whether the XML declaration should be omitted from the
output or not. If true, there will be no XML declaration in the output document. If false,
an XML declaration will be included. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

output

output = FILE

The URL of the primary-output file. For example, in the case of multiple-file HTML output,
the primary-output file will be the location of the entry point HTML file. If no --output
option is specified, output is written to standard output.

output-encoding

--output-encoding = VALUE

The value of the encoding attribute in the output document. Valid values are names in the
IANA character set registry. Default value is UTF-8.

output-indent

--output-indent = true|false

If true, the output will be indented according to its hierarchic structure. If false, there will
be no hierarchical indentation. Default is false.
Note: Boolean option values are set to true if the option is specified without a value.

output-method

--output-method = xml|html|xhtml|text

Specifies the output format. Default value is xml.

param [p]

--p | --param = KEY:VALUE

XQuery

Specifies the value of an external parameter. An external parameter is declared in the
XQuery document with the declare variable declaration followed by a variable name
and then the external keyword followed by the trailing semi-colon. For example:
 declare variable $foo as xs:string external;

Because of the external keyword $foo becomes an external parameter, the value of
which is passed at runtime from an external source. The external parameter is given a
value with the CLI command. For example:
 --param=foo:'MyName'

In the description statement above, KEY is the external parameter name, VALUE is the

value of the external parameter, given as an XPath expression. Parameter names used
on the CLI must be declared in the XQuery document. If multiple external parameters
are passed values on the CLI, each must be given a separate --param option. Double
quotes must be used if the XPath expression contains spaces.

XSLT

Specifies a global stylesheet parameter. KEY is the parameter name, VALUE is an

XPath expression that provides the parameter value. Parameter names used on the CLI
must be declared in the stylesheet. If multiple parameters are used, the --param
switch must be used before each parameter. Double quotes must be used around the
XPath expression if it contains a space—whether the space is in the XPath expression

© 2014 Altova GmbH

XQuery Commands 117Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

itself or in a string literal in the expression. For example:

raptorxmlxbrl xslt --input=c:\Test.xml --output=c:\Output.xml --

param=date://node[1]/@att1 --p=title:'stringwithoutspace' --
param=title:"'string with spaces'" --p=amount:456 c:\Test.xslt

xquery-version

--xquery-version = 1|3

Specifies whether the XQuery processor should use XQuery 1.0 or XQuery 3.0. Default
value is 3.

XML Schema and XML instance
load-xml-with-psvi

--load-xml-with-psvi = true|false

Enables validation of input XML files and generates post-schema-validation information for
them. Default is: false.

xinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false,
XInclude's include elements are ignored.
Note: Boolean option values are set to true if the option is specified without a value.

xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use: wf=wellformed check; id=wellformed with ID/
IDREF checks; valid=validation. Default value is wf.

xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This
option can also be useful to find out in what ways a schema which is 1.0-compatible is
not 1.1-compatible. The detect option is an Altova-specific feature. It enables the version
of the XML Schema document (1.0 or 1.1) to be detected by reading the value of the
vc:minVersion attribute of the document's <xs:schema> element. If the value of the
@vc:minVersion attribute is 1.1, the schema is detected as being version 1.1. For any
other value, or if the @vc:minVersion attribute is absent, the schema is detected as
being version 1.0.

Catalogs and global resources
catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file.
The default value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLXBRLServer2015\etc\RootCatalog.xml). See the section,
XML Catalogs, for information about working with catalogs.

118 Command Line Interface (CLI) XQuery Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog.
See the section, XML Catalogs, for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources).

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources).

Messages, errors, help, timeout, version
error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate
XML formats, with longxml generating more detail.

error-limit

--error-limit = N

Specifies the error limit. Default value is 100. Values of 1 to 999 are allowed. Useful for
limiting processor use during validation. When the error limit is reached, validation stops.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help
command can be used with an argument. For example: help valany.)

network-timeout

--network-timeout = VALUE

Specifies the timeout in seconds for remote I/O operations. Default is: 40.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is
false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

© 2014 Altova GmbH

XQuery Commands 119Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML+XBRL Server. If used with a command, place --
version before the command.

120 Command Line Interface (CLI) XQuery Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

3.5.2 xqueryupdate

The xqueryupdate command takes an XQuery file as its single argument and executes it with an

optional input file to produce an updated output file. The input and output files are specified as
options.

Windows RaptorXMLXBRL xqueryupdate [options] XQuery-File

Linux raptorxmlxbrl xqueryupdate [options] XQuery-File

Mac raptorxmlxbrl xqueryupdate [options] XQuery-File

The argument XQuery-File is the path and name of the XQuery file to be executed. You can

specify whether XQuery Update 1.0 or 3.0 should be used. By default XQuery Update 3.0 is used.

Examples

raptorxmlxbrl xqueryupdate --output=c:\Output.xml c:\TestQuery.xq

raptorxmlxbrl xqueryupdate --input=c:\Input.xml --output=c:\Output.xml

--param=company:"Altova" --p=date:"2006-01-01" c:\TestQuery.xq

raptorxmlxbrl xqueryupdate --input=c:\Input.xml --output=c:\Output.xml

--param=source:" doc('c:\test\books.xml')//book "

raptorxmlxbrl xqueryupdate --output=c:\Output.xml --omit-xml-

declaration=false --output-encoding=ASCII c:\TestQuery.xq

Casing on the command line

RaptorXMLXBRL on Windows

raptorxmlxbrl on Unix (Linux, Mac)

* Note that lowercase (raptorxmlxbrl) works on all platforms (Windows, Linux, and Mac),
while upper-lower (RaptorXMLXBRL) works only on Windows and Mac.

Options
The command's options are listed below, organized into groups. Values can be specified without
quotes except in two cases: (i) when the value string contains spaces, or (ii) when explicitly
stated in the description of the option that quotes are required.

XQuery Update Processing
indent-characters

--indent-characters = VALUE

Specifies the character string to be used as indentation.

input

--input = FILE

The URL of the XML file to be transformed.

© 2014 Altova GmbH

XQuery Commands 121Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

omit-xml-declaration

--omit-xml-declaration = true|false

Serialization option to specify whether the XML declaration should be omitted from the
output or not. If true, there will be no XML declaration in the output document. If false,
an XML declaration will be included. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

output

output = FILE

The URL of the primary-output file. For example, in the case of multiple-file HTML output,
the primary-output file will be the location of the entry point HTML file. If no --output
option is specified, output is written to standard output.

output-encoding

--output-encoding = VALUE

The value of the encoding attribute in the output document. Valid values are names in the
IANA character set registry. Default value is UTF-8.

output-indent

--output-indent = true|false

If true, the output will be indented according to its hierarchic structure. If false, there will
be no hierarchical indentation. Default is false.
Note: Boolean option values are set to true if the option is specified without a value.

output-method

--output-method = xml|html|xhtml|text

Specifies the output format. Default value is xml.

param [p]

--p | --param = KEY:VALUE

XQuery

Specifies the value of an external parameter. An external parameter is declared in the
XQuery document with the declare variable declaration followed by a variable name
and then the external keyword followed by the trailing semi-colon. For example:
 declare variable $foo as xs:string external;

Because of the external keyword $foo becomes an external parameter, the value of
which is passed at runtime from an external source. The external parameter is given a
value with the CLI command. For example:
 --param=foo:'MyName'

In the description statement above, KEY is the external parameter name, VALUE is the

value of the external parameter, given as an XPath expression. Parameter names used
on the CLI must be declared in the XQuery document. If multiple external parameters
are passed values on the CLI, each must be given a separate --param option. Double
quotes must be used if the XPath expression contains spaces.

XSLT

Specifies a global stylesheet parameter. KEY is the parameter name, VALUE is an

XPath expression that provides the parameter value. Parameter names used on the CLI
must be declared in the stylesheet. If multiple parameters are used, the --param

122 Command Line Interface (CLI) XQuery Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

switch must be used before each parameter. Double quotes must be used around the
XPath expression if it contains a space—whether the space is in the XPath expression
itself or in a string literal in the expression. For example:

raptorxmlxbrl xslt --input=c:\Test.xml --output=c:\Output.xml --

param=date://node[1]/@att1 --p=title:'stringwithoutspace' --
param=title:"'string with spaces'" --p=amount:456 c:\Test.xslt

xquery-update-version

--xquery-update-version = 1|3

Specifies whether the XQuery processor should use XQuery Update Facility 1.0 or XQuery
Update Facility 3.0. Default value is 3.

keep-formatting

--keep-formatting = true|false

Keeps the formatting of the target document to the maximum extent that this is possible.
Default is: true.

updated-xml

--updated-xml = discard|writeback|asmainresult

Specifies how the updated XML file should be handled. The updates can be either:
discarded and not written to file (discard)
written back to the input XML file that is specified with the --input option
(writeback)
saved either to standard output or to the location specified in the --output option
(if this is defined)

Default is: discard.

XML Schema and XML instance
load-xml-with-psvi

--load-xml-with-psvi = true|false

Enables validation of input XML files and generates post-schema-validation information for
them. Default is: false.

xinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false,
XInclude's include elements are ignored.
Note: Boolean option values are set to true if the option is specified without a value.

xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use: wf=wellformed check; id=wellformed with ID/
IDREF checks; valid=validation. Default value is wf.

xsd-version

--xsd-version = 1.0|1.1|detect

© 2014 Altova GmbH

XQuery Commands 123Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This
option can also be useful to find out in what ways a schema which is 1.0-compatible is
not 1.1-compatible. The detect option is an Altova-specific feature. It enables the version
of the XML Schema document (1.0 or 1.1) to be detected by reading the value of the
vc:minVersion attribute of the document's <xs:schema> element. If the value of the
@vc:minVersion attribute is 1.1, the schema is detected as being version 1.1. For any
other value, or if the @vc:minVersion attribute is absent, the schema is detected as
being version 1.0.

Catalogs and global resources
catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file.
The default value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLXBRLServer2015\etc\RootCatalog.xml). See the section,
XML Catalogs, for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog.
See the section, XML Catalogs, for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources).

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources).

Extensions
These options define the handling of special extension functions that are available in a number
of Enterprise-level Altova products (such as XMLSpy Enterprise Edition). Their use is described
in the user manuals of these products.

chartext-disable

--chartext-disable = true|false

Disables chart extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

dotnetext-disable

--dotnetext-disable = true|false

124 Command Line Interface (CLI) XQuery Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Disables .NET extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

javaext-barcode-location

--javaext-barcode-location = FILE

Specifies the location of the barcode extension file.

javaext-disable

--javaext-disable = true|false

Disables Java extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

Messages, errors, help, timeout, version
error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate
XML formats, with longxml generating more detail.

error-limit

--error-limit = N

Specifies the error limit. Default value is 100. Values of 1 to 999 are allowed. Useful for
limiting processor use during validation. When the error limit is reached, validation stops.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help
command can be used with an argument. For example: help valany.)

network-timeout

--network-timeout = VALUE

Specifies the timeout in seconds for remote I/O operations. Default is: 40.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is
false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML+XBRL Server. If used with a command, place --

© 2014 Altova GmbH

XQuery Commands 125Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

version before the command.

126 Command Line Interface (CLI) XQuery Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

3.5.3 valxquery

The valxquery command takes an XQuery file as its single argument and validates it.

Windows RaptorXMLXBRL valxquery [options] XQuery-File

Linux raptorxmlxbrl valxquery [options] XQuery-File

Mac raptorxmlxbrl valxquery [options] XQuery-File

The XQuery-File argument is the path and name of the XQuery file to be validated.

Examples

raptorxmlxbrl valxquery c:\Test.xquery

raptorxmlxbrl valxquery --xquery-version=1 c:\Test.xquery

Casing on the command line

RaptorXMLXBRL on Windows

raptorxmlxbrl on Unix (Linux, Mac)

* Note that lowercase (raptorxmlxbrl) works on all platforms (Windows, Linux, and Mac),
while upper-lower (RaptorXMLXBRL) works only on Windows and Mac.

Options
The command's options are listed below, organized into groups. Values can be specified without
quotes except in two cases: (i) when the value string contains spaces, or (ii) when explicitly
stated in the description of the option that quotes are required.

XQuery processing
omit-xml-declaration

--omit-xml-declaration = true|false

Serialization option to specify whether the XML declaration should be omitted from the
output or not. If true, there will be no XML declaration in the output document. If false,
an XML declaration will be included. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

xquery-version

--xquery-version = 1|3

Specifies whether the XQuery processor should use XQuery 1.0 or XQuery 3.0. Default
value is 3.

XML Schema and XML instance
load-xml-with-psvi

--load-xml-with-psvi = true|false

© 2014 Altova GmbH

XQuery Commands 127Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

Enables validation of input XML files and generates post-schema-validation information for
them. Default is: false.

xinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false,
XInclude's include elements are ignored.
Note: Boolean option values are set to true if the option is specified without a value.

xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use: wf=wellformed check; id=wellformed with ID/
IDREF checks; valid=validation. Default value is wf.

xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This
option can also be useful to find out in what ways a schema which is 1.0-compatible is
not 1.1-compatible. The detect option is an Altova-specific feature. It enables the version
of the XML Schema document (1.0 or 1.1) to be detected by reading the value of the
vc:minVersion attribute of the document's <xs:schema> element. If the value of the
@vc:minVersion attribute is 1.1, the schema is detected as being version 1.1. For any
other value, or if the @vc:minVersion attribute is absent, the schema is detected as
being version 1.0.

Catalogs and global resources
catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file.
The default value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLXBRLServer2015\etc\RootCatalog.xml). See the section,
XML Catalogs, for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog.
See the section, XML Catalogs, for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources).

128 Command Line Interface (CLI) XQuery Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources).

Extensions
These options define the handling of special extension functions that are available in a number
of Enterprise-level Altova products (such as XMLSpy Enterprise Edition). Their use is described
in the user manuals of these products.

chartext-disable

--chartext-disable = true|false

Disables chart extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

dotnetext-disable

--dotnetext-disable = true|false

Disables .NET extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

javaext-barcode-location

--javaext-barcode-location = FILE

Specifies the location of the barcode extension file.

javaext-disable

--javaext-disable = true|false

Disables Java extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

Messages, errors, help, timeout, version
error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate
XML formats, with longxml generating more detail.

error-limit

--error-limit = N

Specifies the error limit. Default value is 100. Values of 1 to 999 are allowed. Useful for
limiting processor use during validation. When the error limit is reached, validation stops.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help
command can be used with an argument. For example: help valany.)

network-timeout

--network-timeout = VALUE

© 2014 Altova GmbH

XQuery Commands 129Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

Specifies the timeout in seconds for remote I/O operations. Default is: 40.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is
false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML+XBRL Server. If used with a command, place --
version before the command.

130 Command Line Interface (CLI) XQuery Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

3.5.4 valxqueryupdate

The valxqueryupdate command takes an XQuery file as its single argument and validates it.

Windows RaptorXMLXBRL valxqueryupdate [options] XQuery-File

Linux raptorxmlxbrl valxqueryupdate [options] XQuery-File

Mac raptorxmlxbrl valxqueryupdate [options] XQuery-File

The XQuery-File argument is the path and name of the XQuery file to be validated.

Examples

raptorxmlxbrl valxqueryupdae c:\Test.xqu

raptorxmlxbrl valxqueryupdate --xquery-version=1 c:\Test.xqu

Casing on the command line

RaptorXMLXBRL on Windows

raptorxmlxbrl on Unix (Linux, Mac)

* Note that lowercase (raptorxmlxbrl) works on all platforms (Windows, Linux, and Mac),
while upper-lower (RaptorXMLXBRL) works only on Windows and Mac.

Options
The command's options are listed below, organized into groups. Values can be specified without
quotes except in two cases: (i) when the value string contains spaces, or (ii) when explicitly
stated in the description of the option that quotes are required.

XQuery processing
omit-xml-declaration

--omit-xml-declaration = true|false

Serialization option to specify whether the XML declaration should be omitted from the
output or not. If true, there will be no XML declaration in the output document. If false,
an XML declaration will be included. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

xquery-update-version

--xquery-update-version = 1|3

Specifies whether the XQuery processor should use XQuery Update Facility 1.0 or XQuery
Update Facility 3.0. Default value is 3.

XML Schema and XML instance
load-xml-with-psvi

--load-xml-with-psvi = true|false

© 2014 Altova GmbH

XQuery Commands 131Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

Enables validation of input XML files and generates post-schema-validation information for
them. Default is: false.

xinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false,
XInclude's include elements are ignored.
Note: Boolean option values are set to true if the option is specified without a value.

xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use: wf=wellformed check; id=wellformed with ID/
IDREF checks; valid=validation. Default value is wf.

xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This
option can also be useful to find out in what ways a schema which is 1.0-compatible is
not 1.1-compatible. The detect option is an Altova-specific feature. It enables the version
of the XML Schema document (1.0 or 1.1) to be detected by reading the value of the
vc:minVersion attribute of the document's <xs:schema> element. If the value of the
@vc:minVersion attribute is 1.1, the schema is detected as being version 1.1. For any
other value, or if the @vc:minVersion attribute is absent, the schema is detected as
being version 1.0.

Catalogs and global resources
catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file.
The default value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLXBRLServer2015\etc\RootCatalog.xml). See the section,
XML Catalogs, for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog.
See the section, XML Catalogs, for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources).

132 Command Line Interface (CLI) XQuery Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources).

Extensions
These options define the handling of special extension functions that are available in a number
of Enterprise-level Altova products (such as XMLSpy Enterprise Edition). Their use is described
in the user manuals of these products.

chartext-disable

--chartext-disable = true|false

Disables chart extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

dotnetext-disable

--dotnetext-disable = true|false

Disables .NET extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

javaext-barcode-location

--javaext-barcode-location = FILE

Specifies the location of the barcode extension file.

javaext-disable

--javaext-disable = true|false

Disables Java extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

Messages, errors, help, timeout, version
error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate
XML formats, with longxml generating more detail.

error-limit

--error-limit = N

Specifies the error limit. Default value is 100. Values of 1 to 999 are allowed. Useful for
limiting processor use during validation. When the error limit is reached, validation stops.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help
command can be used with an argument. For example: help valany.)

network-timeout

--network-timeout = VALUE

© 2014 Altova GmbH

XQuery Commands 133Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

Specifies the timeout in seconds for remote I/O operations. Default is: 40.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is
false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML+XBRL Server. If used with a command, place --
version before the command.

134 Command Line Interface (CLI) Help and License Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

3.6 Help and License Commands

This section describes two important features of RaptorXML+XBRL Server:

Help Command: Describes how to display information about available commands, or
about a command's arguments and options
Licensing: Describes how to license RaptorXML

© 2014 Altova GmbH

Help and License Commands 135Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

3.6.1 Help Command

The help command takes a single argument: the name of the command for which help is

required. It displays the syntax of the command and other information relevant to the correct
execution of the command.

Windows RaptorXMLXBRL help Command

Linux raptorxmlxbrl help Command

Mac raptorxmlxbrl help Command

Note: When no argument is submitted, running the help command causes all available
commands to be displayed, each with a short description of what it does.

Example
Example of the help command:

raptorxmlxbrl help valany

The command above contains one argument: the command valany, for which help is required.
When this command is executed, it will display help information about the valany command.

Casing on the command line

RaptorXMLXBRL on Windows

raptorxmlxbrl on Unix (Linux, Mac)

* Note that lowercase (raptorxmlxbrl) works on all platforms (Windows, Linux, and Mac),
while upper-lower (RaptorXMLXBRL) works only on Windows and Mac.

The --help option

Help information about a command is also available by using the --help option with that
command. For example, using the --help option with the valany command, as follows:

raptorxmlxbrl valany --help

achieves the same result as does using the help command with an argument of valany:

raptorxmlxbrl help valany

In both cases, help information about the valany command is displayed.

Casing on the command line

RaptorXMLXBRL on Windows

raptorxmlxbrl on Unix (Linux, Mac)

136 Command Line Interface (CLI) Help and License Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

* Note that lowercase (raptorxmlxbrl) works on all platforms (Windows, Linux, and Mac),
while upper-lower (RaptorXMLXBRL) works only on Windows and Mac.

© 2014 Altova GmbH

Help and License Commands 137Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

3.6.2 License Commands

The licenseserver command registers RaptorXML+XBRL Server with Altova LicenseServer. It
takes as its argument the name or IP address of the server running LicenseServer.

Windows RaptorXMLXBRL licenseserver [options] Server-Or-IP-Address

Linux raptorxmlxbrl licenseserver [options] Server-Or-IP-Address

Mac raptorxmlxbrl licenseserver [options] Server-Or-IP-Address

On successfully registering RaptorXML+XBRL Server with LicenseServer, the URL of the
LicenseServer web interface will be returned. Enter the URL in a browser window to access the
web interface, and then go through the licensing process as described in the LicenseServer
documentation.

Example
Here's an example of the licenseserver command:

raptorxmlxbrl licenseserver DOC.altova.com

The command specifies that the machine named DOC.altova.com is the machine running Altova
LicenseServer.

Casing on the command line

RaptorXMLXBRL on Windows

raptorxmlxbrl on Unix (Linux, Mac)

* Note that lowercase (raptorxmlxbrl) works on all platforms (Windows, Linux, and Mac),
while upper-lower (RaptorXMLXBRL) works only on Windows and Mac.

Options
The following options are available:

--j|json=true|false

Prints the result of the registration attempt as a machine-parsable JSON object.

--h|help

Displays the command's help text.

--version

Displays the version number of RaptorXML+XBRL Server. The option should be placed before
the command. So: raptorxmlxbrl --version licenseserver.

138 Command Line Interface (CLI) Localization Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

3.7 Localization Commands

You can create a localized version of the RaptorXML application for any language of your choice.
Four localized versions (English, German, Spanish, and Japanese) are already available in the
<ProgramFilesFolder>\Altova\RaptorXMLXBRLServer2015\bin\ folder. These four language

versions therefore do not need to be created.

Create a localized version in another language as follows:

1. Generate an XML file containing the resource strings. Do this with the
exportresourcestrings command. The resource strings in the generated XML file will
be one of the four supported languages: English (en), German (de), Spanish (es), or
Japanese (ja), according to the argument used with the command.

2. Translate the resource strings from the language of the generated XML file into the target
language. The resource strings are the contents of the <string> elements in the XML
file. Do not translate variables in curly brackets, such as {option} or {product}.

3. Contact Altova Support to generate a localized RaptorXML DLL file from your translated
XML file.

4. After you receive your localized DLL file from Altova Support, save the DLL in the
<ProgramFilesFolder>\Altova\RaptorXMLXBRLServer2015\bin\ folder. Your DLL file

will have a name of the form RaptorXMLXBRLServer_lc.dll. The _lc part of the name
contains the language code. For example, in RaptorXMLXBRLServer_de.dll, the de part
is the language code for German (Deutsch).

5. Run the setdeflang command to set your localized DLL file as the RaptorXML
application to use. For the argument of the setdeflang command, use the language
code that is part of the DLL name.

Note: Altova RaptorXML+XBRL Server is delivered with support for four languages: English,
German, Spanish, and Japanese. So you do not need to create a localized version of
these languages. To set any of these four languages as the default language, use the
CLI's setdeflang command.

http://www.altova.com/support
http://www.altova.com/support

© 2014 Altova GmbH

Localization Commands 139Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

3.7.1 exportresourcestrings

The exportresourcestrings command outputs an XML file containing the RaptorXML resource

strings. The command takes two arguments: (i) the language of the resource strings in the output
XML file, and (ii) the path and name of the output XML file. Allowed export languages (with their
language codes in parentheses) are: English (en), German, (de), Spanish (es), and Japanese
(ja).

Windows RaptorXMLXBRL exportresourcestrings LanguageCode XMLOutputFile

Linux raptorxmlxbrl exportresourcestrings LanguageCode XMLOutputFile

Mac raptorxmlxbrl exportresourcestrings LanguageCode XMLOutputFile

Arguments
The exportresourcestrings command takes the following arguments:

LanguageCode Specifies the target language of the export, that is, the language of resource
strings in the exported XML file. Supported languages are: en, de, es, ja

XMLOutputFile Specifies the location and name of the exported XML file..

Example
This command creates a file called Strings.xml at c:\ that contains all the resource strings of
the RaptorXML application translated into German.

raptorxmlxbrl exportresourcestrings de c:\Strings.xml

Casing on the command line

RaptorXMLXBRL on Windows

raptorxmlxbrl on Unix (Linux, Mac)

* Note that lowercase (raptorxmlxbrl) works on all platforms (Windows, Linux, and Mac),
while upper-lower (RaptorXMLXBRL) works only on Windows and Mac.

140 Command Line Interface (CLI) Localization Commands

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

3.7.2 setdeflang

The setdeflang command (short form is sdl) sets the default language of RaptorXML. It takes a

mandatory LanguageCode argument.

Windows RaptorXMLXBRL setdeflang | sdl LangaugeCode

Linux raptorxmlxbrl setdeflang | sdl LangaugeCode

Mac raptorxmlxbrl setdeflang | sdl LangaugeCode

Example
This command sets the default language of the application's messages to German.

raptorxmlxbrl setdeflang de

Casing on the command line

RaptorXMLXBRL on Windows

raptorxmlxbrl on Unix (Linux, Mac)

* Note that lowercase (raptorxmlxbrl) works on all platforms (Windows, Linux, and Mac),
while upper-lower (RaptorXMLXBRL) works only on Windows and Mac.

Supported languages
The table below lists the languages currently supported together with their language codes.

en English

de German

es Spanish

ja Japanese

© 2014 Altova GmbH

Options 141Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

3.8 Options

This section contains a description of all CLI options, organized by functionality. To find out which
options may be used with each command, see the description of the respective commands.

Catalogs, Global Resources, ZIP Files
Messages, Errors, Help
Processing
XBRL
XML
XSD
XQuery
XSLT

142 Command Line Interface (CLI) Options

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

3.8.1 Catalogs, Global Resources, ZIP Files

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The
default value is the absolute path to the installed root catalog file (<installation-folder>
\Altova\RaptorXMLXBRLServer2015\etc\RootCatalog.xml). See the section, XML
Catalogs, for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See
the section, XML Catalogs, for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources).

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources).

recurse

--recurse = true|false

Used to select files within a ZIP archive. If true, the command's InputFile argument will

select the specified file also in subdirectories. For example: test.zip|zip\test.xml will
select files named test.xml at all folder levels of the zip folder. The wildcard characters *
and ? may be used. So, *.xml will select all .xml files in the zip folder. The parameter's
default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

© 2014 Altova GmbH

Options 143Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

3.8.2 Messages, Errors, Help, Timeout, Version

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate
XML formats, with longxml generating more detail.

error-limit

--error-limit = N

Specifies the error limit. Default value is 100. Values of 1 to 999 are allowed. Useful for
limiting processor use during validation. When the error limit is reached, validation stops.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help
command can be used with an argument. For example: help valany.)

log-output

--log-output = FILE

Writes the message output to the specified file URL instead of to the console. Ensure that
the CLI has write permission to the output location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in seconds for remote I/O operations. Default is: 40.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is
false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML+XBRL Server. If used with a command, place --version
before the command.

144 Command Line Interface (CLI) Options

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

3.8.3 Processing

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per

line. Default value is false. (An alternative is to list the files on the CLI with a space as
separator. Note, however, that CLIs have a maximum-character limitation.) Note that the --
listfile option applies only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

parallel-assessment [pa]

--pa | --parallel-assessment = true|false

If set to true, schema validity assessment is carried out in parallel. This means that if there
are more than 128 elements at any level, these elements are processed in parallel using
multiple threads. Very large XML files can therefore be processed faster if this option is
enabled. Parallel assessment takes place on one hierarchical level at a time, but can occur
at multiple levels within a single infoset. Note that parallel assessment does not work in
streaming mode. For this reason, the --streaming option is ignored if --parallel-
assessment is set to true. Also, memory usage is higher when the --parallel-
assessment option is used. The default setting is false. Short form for the option is --pa.
Note: Boolean option values are set to true if the option is specified without a value.

script

--script = FILE

Executes the Python script in the submitted file after validation has been completed.

streaming

--streaming = true|false

Enables streaming validation. Default is true. In streaming mode, data stored in memory is
minimized and processing is faster. The downside is that information that might be required
subsequently—for example, a data model of the XML instance document—will not be
available. In situations where this is significant, streaming mode will need to be turned off (by
giving --streaming a value of false). When using the --script option with the valxml-
withxsd command, disable streaming. Note that the --streaming option is ignored if --
parallel-assessment is set to true.
Note: Boolean option values are set to true if the option is specified without a value.

© 2014 Altova GmbH

Options 145Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

3.8.4 XBRL

XBRL validation and processing options
dimensions

--dimensions = true|false

Enables XBRL Dimension 1.0 extensions. Default is true.
Note: Boolean option values are set to true if the option is specified without a value.

evaluate-referenced-parameters-only

--evaluate-referenced-parameters-only = true|false

If false, forces evaluation of all parameters even if they are not referenced by any
formulas/assertions/tables. Default is: true.

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename

per line. Default value is false. (An alternative is to list the files on the CLI with a space
as separator. Note, however, that CLIs have a maximum-character limitation.) Note that
the --listfile option applies only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

parallel-assessment [pa]

--pa | --parallel-assessment = true|false

If set to true, schema validity assessment is carried out in parallel. This means that if
there are more than 128 elements at any level, these elements are processed in parallel
using multiple threads. Very large XML files can therefore be processed faster if this
option is enabled. Parallel assessment takes place on one hierarchical level at a time, but
can occur at multiple levels within a single infoset. Note that parallel assessment does
not work in streaming mode. For this reason, the --streaming option is ignored if --
parallel-assessment is set to true. Also, memory usage is higher when the --
parallel-assessment option is used. The default setting is false. Short form for the
option is --pa.
Note: Boolean option values are set to true if the option is specified without a value.

preload-xbrl-schemas

--preload-xbrl-schemas = true|false

Preloads schemas of the XBRL 2.1 specification. Default is true.
Note: Boolean option values are set to true if the option is specified without a value.

recurse

--recurse = true|false

Used to select files within a ZIP archive. If true, the command's InputFile argument will

select the specified file also in subdirectories. For example: test.zip|zip\test.xml will
select files named test.xml at all folder levels of the zip folder. The wildcard characters *
and ? may be used. So, *.xml will select all .xml files in the zip folder. The parameter's
default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

schema-imports

146 Command Line Interface (CLI) Options

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

--schema-imports = load-by-schemalocation | load-preferring-schemalocation

| load-by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs:import elements, each of which has an optional namespace
attribute and an optional schemaLocation attribute: <import namespace="someNS"
schemaLocation="someURL">. The behavior is as follows:

load-by-schemalocation: The value of the schemaLocation attribute is used to
locate the schema, taking account of catalog mappings. If the namespace attribute is
present, the namespace is imported (licensed).
load-preferring-schemalocation: If the schemaLocation attribute is present, it is
used, taking account of catalog mappings. If no schemaLocation attribute is present,
then the value of the namespace attribute is used via a catalog mapping. This is the
default value.
load-by-namespace: The value of the namespace attribute is used to locate the
schema via a catalog mapping.
load-combining-both: If either the namespace or schemaLocation attribute has a
catalog mapping, then the mapping is used. If both have catalog mappings, then the
value of the --schema-mapping option (XBRL option and XML/XSD option) decides
which mapping is used. If no catalog mapping is present, the schemaLocation
attribute is used.
license-namespace-only: The namespace is imported. No schema document is
imported.

schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

If either the --schemalocation-hints or the --schema-imports option has a value of
load-combining-both, and if the namespace and URL parts involved both have catalog
mappings, then the value of this option specifies which of the two mappings to use
(namespace mapping or URL mapping; the prefer-schemalocation value refers to the
URL mapping). Default is prefer-schemalocation.

schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace |

load-combining-both | ignore

The load-by-schemalocation value uses the URL of the schema location in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML or
XBRL instance documents. This is the default value.
The load-by-namespace value takes the namespace part of xsi:schemaLocation
and an empty string in the case of xsi:noNamespaceSchemaLocation and locates
the schema via a catalog mapping.
If load-combining-both is used and if either the namespace part or the URL part
has a catalog mapping, then the catalog mapping is used. If both have catalog
mappings, then the value of the --schema-mapping option (XBRL option and XML/XSD
option) decides which mapping is used. If neither the namespace nor URL has a
catalog mapping, the URL is used.
If the option's value is ignore, then the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

script

--script = FILE

Executes the Python script in the submitted file after validation has been completed.

© 2014 Altova GmbH

Options 147Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

script-param

--script-param = KEY:VALUE

Additional user-specified parameters that can be accessed during the execution of Python
scripts.

treat-inconsistencies-as-errors

--treat-inconsistencies-as-errors = true|false

Causes XBRL validation to fail if the file contains any inconsistency as defined by the
XBRL 2.1 specification. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

validate-dts-only

--validate-dts-only = true|false

The DTS is discovered by starting from the XBRL instance document. All referenced
taxonomy schemas and linkbases are discovered and validated. The rest of the XBRL
instance document is ignored. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

xinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false,
XInclude's include elements are ignored.
Note: Boolean option values are set to true if the option is specified without a value.

XBRL formulas and assertion options
assertions-output

--assertions-output = FILE

Writes the output of the assertion evaluation to the specified FILE. If set, automatically

specifies --formula-execution=true.

assertions-output-format

--assertions-output-format = json|xml

Specifies the output format of the assertion evaluation. Default is json.

formula

--formula = true|false

Enables XBRL Formula 1.0 extensions. Default is true.
Note: Boolean option values are set to true if the option is specified without a value.

formula-assertion-set [[DEPRECATED]]

--formula-assertion-set = VALUE

Limits formula execution to the given assertion set only. Add the option multiple times to
specify more than one assertion set. Short form is --as. The VALUE is either the value of

the @id attribute, or a URI with an XPointer fragment that identifies the resource. The
special values ##none and ##all can also be used.

148 Command Line Interface (CLI) Options

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

formula-execution

--formula-execution = true|false

Enables evaluation of XBRL formulas. Default is true. If true, automatically specifies --
formula=true.
Note: Boolean option values are set to true if the option is specified without a value.

formula-output

--formula-output = FILE

Writes the output of formula evaluation to the specified FILE. If set, automatically

specifies --formula-execution=true.

formula-parameters

--formula-parameters = JSON-ARRAY

Specifies the parameters for XBRL formula evaluation in JSON format directly on the CLI.
See the section, Formula Parameters. Care must be taken with escaping on the
command line.

formula-parameters-file

--formula-parameters-file = FILE

Specifies a FILE containing the parameters for XBRL formula evaluation. The file can be

either an XML file or JSON file. See the section, Formula Parameters.

preload-formula-schemas

--preload-formula-schemas = true|false

Preloads schemas of the XBRL Formula 1.0 specification. Default is false.
Note: Boolean option values are set to true if the option is specified without a value.

process-assertion [a]

--a | --process-assertion = VALUE

Limits formula execution to the given assertion only. Add the option multiple times to
specify more than one assertion. Short form is --a. The VALUE is either the value of the

@id attribute, or a URI with an XPointer fragment that identifies the resource. The special
values ##none and ##all can also be used.

process-assertion-set [as]

--as | --process-assertion-set = VALUE

Limits formula execution to the given assertion set only. Add the option multiple times to
specify more than one assertion set. Short form is --as. The VALUE is either the value of

the @id attribute, or a URI with an XPointer fragment that identifies the resource. The
special values ##none and ##all can also be used.

process-formula [f]

--f | --process-formula = VALUE

Limits formula execution to the given formula only. Add the option multiple times to
specify more than one formula. Short form is --f. The VALUE is either the value of the @id

attribute, or a URI with an XPointer fragment that identifies the resource. The special
values ##none and ##all can also be used.

© 2014 Altova GmbH

Options 149Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

variableset-execution-timeout

--variableset-execution-timeout = VALUE

Applied when executing formulas (--formula-execution=true). Specifies the maximum

time allowed for executing a single variable set (a formula or a value, or an existence or
consistency assertion). The time is specified in minutes and must be a positive number.
The default is 30min. If a particular variable set doesn’t finish execution before the timeout
is reached, then it is aborted. An error message is displayed (and entered in the a
verbose log). Note, however, that the timeout check is carried out only after every variable
set evaluation—and not during execution of individual XPath expressions. So, if a single
XPath expression takes long to execute, the timeout limit might be crossed. Execution of
a variable set is aborted only once a complete variable set evaluation has been executed.

XBRL table options
concept-label-linkrole

--concept-label-linkrole = VALUE

Specifies the preferred extended link role to use when rendering concept labels.

concept-label-role

--cconcept-label-role = VALUE

Specifies the preferred label role to use when rendering concept labels. Default is:
http://www.xbrl.org/2003/role/label.

evaluate-referenced-parameters-only

--evaluate-referenced-parameters-only = true|false

If false, forces evaluation of all parameters even if they are not referenced by any
formulas/assertions/tables. Default is: true.

generic-label-linkrole

--generic-label-linkrole = VALUE

Specifies the preferred extended link role to use when rendering generic labels.

generic-label-role

--generic-label-role = VALUE

Specifies the preferred label role to use when rendering generic labels. Default is: http://
www.xbrl.org/2003/role/label.

label-lang

--label-lang = VALUE

Specifies the preferred label language to use when rendering labels. Default is: en.

preload-table-schemas

--preload-table-schemas = true|false

Preloads schemas of the XBRL Table 1.0 specification. Default is false.
Note: Boolean option values are set to true if the option is specified without a value.

process-table [t]

150 Command Line Interface (CLI) Options

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

--t | --process-table = VALUE

Limits formula execution to the given table only. Add the option multiple times to specify
more than one table. Short form is --t. The VALUE is either the value of the @id attribute,

or a URI with an XPointer fragment that identifies the resource. The special values ##none
and ##all can also be used.

table

--table = true|false

Enables the XBRL Table 1.0 extension. Default value is true. If true, automatically
specifies --formula=true and --dimensions=true.
Note: Boolean option values are set to true if the option is specified without a value.

table-elimination

--table-elimination = true|false

Enables elimination of empty table rows/columns in HTML output. Default is true.
Note: Boolean option values are set to true if the option is specified without a value.

table-execution

--table-execution = true|false

Enables evaluation of XBRL tables. Default is false. Will be set to true if --table-
output is specified. If true, automatically specifies --table=true.
Note: Boolean option values are set to true if the option is specified without a value.

table-linkbase-namespace

--table-linkbase-namespace =

 ##detect |

 http://xbrl.org/PWD/2013-05-17/table |

 http://xbrl.org/PWD/2013-08-28/table |

 http://xbrl.org/CR/2013-11-13/table |

 http://xbrl.org/PR/2013-12-18/table |

 http://xbrl.org/2014/table

Enables loading of table linkbases written with a previous draft specification.
Table linkbase validation, resolution, and layout is, however, always performed according
to the Table Linkbase 1.0 Recommendation of 18 March 2014. Use ##detect to enable
auto-detection.

table-output

--table-output = FILE

Writes the table output to the specified FILE. If set, automatically specifies --table-

execution=true.

table-output-format

--table-output-format = xml|html

Specifies the format of the table output. Default is xml.

© 2014 Altova GmbH

Options 151Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

3.8.5 XML

assessment-mode

--assessment-mode = lax|strict

Specifies the schema-validity assessment mode as defined in the XSD specifications.
Default value is strict. The XML instance document will be validated according to the mode
specified with this option.

dtd

--dtd = FILE

Specifies the external DTD document to use for validation. If a reference to an external DTD
is present in the XML document, then the CLI option overrides the external reference.

load-xml-with-psvi

--load-xml-with-psvi = true|false

Enables validation of input XML files and generates post-schema-validation information for
them. Default is: false.

namespaces

--namespaces = true|false

Enables namespace-aware processing. This is useful for checking the XML instance for
errors due to incorrect namespaces. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

xinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false, XInclude's
include elements are ignored.
Note: Boolean option values are set to true if the option is specified without a value.

xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use: wf=wellformed check; id=wellformed with ID/
IDREF checks; valid=validation. Default value is wf.

xsd

--xsd = FILE

Specifies one or more XML Schema documents to use for the validation of XML instance
documents. Add the option multiple times to specify multiple schema documents.

152 Command Line Interface (CLI) Options

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

3.8.6 XSD

assessment-mode

--assessment-mode = lax|strict

Specifies the schema-validity assessment mode as defined in the XSD specifications.
Default value is strict. The XML instance document will be validated according to the mode
specified with this option.

namespaces

--namespaces = true|false

Enables namespace-aware processing. This is useful for checking the XML instance for
errors due to incorrect namespaces. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation |

load-by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs:import elements, each of which has an optional namespace
attribute and an optional schemaLocation attribute: <import namespace="someNS"
schemaLocation="someURL">. The behavior is as follows:

load-by-schemalocation: The value of the schemaLocation attribute is used to locate
the schema, taking account of catalog mappings. If the namespace attribute is present,
the namespace is imported (licensed).
load-preferring-schemalocation: If the schemaLocation attribute is present, it is
used, taking account of catalog mappings. If no schemaLocation attribute is present,
then the value of the namespace attribute is used via a catalog mapping. This is the
default value.
load-by-namespace: The value of the namespace attribute is used to locate the schema
via a catalog mapping.
load-combining-both: If either the namespace or schemaLocation attribute has a
catalog mapping, then the mapping is used. If both have catalog mappings, then the
value of the --schema-mapping option (XBRL option and XML/XSD option) decides
which mapping is used. If no catalog mapping is present, the schemaLocation attribute
is used.
license-namespace-only: The namespace is imported. No schema document is
imported.

schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace | load-

combining-both | ignore

The load-by-schemalocation value uses the URL of the schema location in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML or XBRL
instance documents. This is the default value.
The load-by-namespace value takes the namespace part of xsi:schemaLocation and
an empty string in the case of xsi:noNamespaceSchemaLocation and locates the
schema via a catalog mapping.
If load-combining-both is used and if either the namespace part or the URL part has
a catalog mapping, then the catalog mapping is used. If both have catalog mappings,
then the value of the --schema-mapping option (XBRL option and XML/XSD option)
decides which mapping is used. If neither the namespace nor URL has a catalog
mapping, the URL is used.

© 2014 Altova GmbH

Options 153Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

If the option's value is ignore, then the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

If either the --schemalocation-hints or the --schema-imports option has a value of load-
combining-both, and if the namespace and URL parts involved both have catalog mappings,
then the value of this option specifies which of the two mappings to use (namespace
mapping or URL mapping; the prefer-schemalocation value refers to the URL mapping).
Default is prefer-schemalocation.

xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This
option can also be useful to find out in what ways a schema which is 1.0-compatible is not
1.1-compatible. The detect option is an Altova-specific feature. It enables the version of the
XML Schema document (1.0 or 1.1) to be detected by reading the value of the
vc:minVersion attribute of the document's <xs:schema> element. If the value of the
@vc:minVersion attribute is 1.1, the schema is detected as being version 1.1. For any
other value, or if the @vc:minVersion attribute is absent, the schema is detected as being
version 1.0.

154 Command Line Interface (CLI) Options

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

3.8.7 XQuery

indent-characters

--indent-characters = VALUE

Specifies the character string to be used as indentation.

input

--input = FILE

The URL of the XML file to be transformed.

keep-formatting

--keep-formatting = true|false

Keeps the formatting of the target document to the maximum extent that this is possible.
Default is: true.

omit-xml-declaration

--omit-xml-declaration = true|false

Serialization option to specify whether the XML declaration should be omitted from the output
or not. If true, there will be no XML declaration in the output document. If false, an XML
declaration will be included. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

output

output = FILE

The URL of the primary-output file. For example, in the case of multiple-file HTML output, the
primary-output file will be the location of the entry point HTML file. If no --output option is
specified, output is written to standard output.

output-encoding

--output-encoding = VALUE

The value of the encoding attribute in the output document. Valid values are names in the
IANA character set registry. Default value is UTF-8.

output-indent

--output-indent = true|false

If true, the output will be indented according to its hierarchic structure. If false, there will be
no hierarchical indentation. Default is false.
Note: Boolean option values are set to true if the option is specified without a value.

output-method

--output-method = xml|html|xhtml|text

Specifies the output format. Default value is xml.

param [p]

--p | --param = KEY:VALUE

XQuery

Specifies the value of an external parameter. An external parameter is declared in the

© 2014 Altova GmbH

Options 155Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

XQuery document with the declare variable declaration followed by a variable name
and then the external keyword followed by the trailing semi-colon. For example:
 declare variable $foo as xs:string external;

Because of the external keyword $foo becomes an external parameter, the value of
which is passed at runtime from an external source. The external parameter is given a
value with the CLI command. For example:
 --param=foo:'MyName'

In the description statement above, KEY is the external parameter name, VALUE is the

value of the external parameter, given as an XPath expression. Parameter names used on
the CLI must be declared in the XQuery document. If multiple external parameters are
passed values on the CLI, each must be given a separate --param option. Double quotes
must be used if the XPath expression contains spaces.

XSLT

Specifies a global stylesheet parameter. KEY is the parameter name, VALUE is an XPath

expression that provides the parameter value. Parameter names used on the CLI must be
declared in the stylesheet. If multiple parameters are used, the --param switch must be
used before each parameter. Double quotes must be used around the XPath expression if
it contains a space—whether the space is in the XPath expression itself or in a string
literal in the expression. For example:

raptorxmlxbrl xslt --input=c:\Test.xml --output=c:\Output.xml --

param=date://node[1]/@att1 --p=title:'stringwithoutspace' --
param=title:"'string with spaces'" --p=amount:456 c:\Test.xslt

updated-xml

--updated-xml = discard|writeback|asmainresult

Specifies how the updated XML file should be handled. The updates can be either:
discarded and not written to file (discard)
written back to the input XML file that is specified with the --input option
(writeback)
saved either to standard output or to the location specified in the --output option (if
this is defined)

Default is: discard.

xquery-update-version

--xquery-update-version = 1|3

Specifies whether the XQuery processor should use XQuery Update Facility 1.0 or XQuery
Update Facility 3.0. Default value is 3.

xquery-version

--xquery-version = 1|3

Specifies whether the XQuery processor should use XQuery 1.0 or XQuery 3.0. Default value
is 3.

156 Command Line Interface (CLI) Options

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

3.8.8 XSLT

chartext-disable

--chartext-disable = true|false

Disables chart extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

dotnetext-disable

--dotnetext-disable = true|false

Disables .NET extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

indent-characters

--indent-characters = VALUE

Specifies the character string to be used as indentation.

input

--input = FILE

The URL of the XML file to be transformed.

javaext-barcode-location

--javaext-barcode-location = FILE

Specifies the location of the barcode extension file.

javaext-disable

--javaext-disable = true|false

Disables Java extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

output

output = FILE

The URL of the primary-output file. For example, in the case of multiple-file HTML output, the
primary-output file will be the location of the entry point HTML file. If no --output option is
specified, output is written to standard output.

param [p]

--p | --param = KEY:VALUE

XQuery

Specifies the value of an external parameter. An external parameter is declared in the
XQuery document with the declare variable declaration followed by a variable name
and then the external keyword followed by the trailing semi-colon. For example:
 declare variable $foo as xs:string external;

Because of the external keyword $foo becomes an external parameter, the value of
which is passed at runtime from an external source. The external parameter is given a
value with the CLI command. For example:
 --param=foo:'MyName'

In the description statement above, KEY is the external parameter name, VALUE is the

value of the external parameter, given as an XPath expression. Parameter names used on

© 2014 Altova GmbH

Options 157Command Line Interface (CLI)

Altova RaptorXML+XBRL Server 2015

the CLI must be declared in the XQuery document. If multiple external parameters are
passed values on the CLI, each must be given a separate --param option. Double quotes
must be used if the XPath expression contains spaces.

XSLT

Specifies a global stylesheet parameter. KEY is the parameter name, VALUE is an XPath

expression that provides the parameter value. Parameter names used on the CLI must be
declared in the stylesheet. If multiple parameters are used, the --param switch must be
used before each parameter. Double quotes must be used around the XPath expression if
it contains a space—whether the space is in the XPath expression itself or in a string
literal in the expression. For example:

raptorxmlxbrl xslt --input=c:\Test.xml --output=c:\Output.xml --

param=date://node[1]/@att1 --p=title:'stringwithoutspace' --
param=title:"'string with spaces'" --p=amount:456 c:\Test.xslt

streaming

--streaming = true|false

Enables streaming validation. Default is true. In streaming mode, data stored in memory is
minimized and processing is faster. The downside is that information that might be required
subsequently—for example, a data model of the XML instance document—will not be
available. In situations where this is significant, streaming mode will need to be turned off (by
giving --streaming a value of false). When using the --script option with the valxml-
withxsd command, disable streaming. Note that the --streaming option is ignored if --
parallel-assessment is set to true.
Note: Boolean option values are set to true if the option is specified without a value.

template-entry-point

--template-entry-point = VALUE

Gives the name of a named template in the XSLT stylesheet that is the entry point of the
transformation.

template-mode

--template-mode = VALUE

Specifies the template mode to use for the transformation.

xslt-version

--xslt-version = 1|2|3

Specifies whether the XSLT processor should use XSLT 1.0, XSLT 2.0, or XSLT 3.0. Default
value is 3.

Chapter 4

HTTP Interface

160 HTTP Interface

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

4 HTTP Interface

RaptorXML+XBRL Server accepts validation jobs submitted via HTTP. The job description as well
as the results are exchanged in JSON format. The basic workflow is as shown in the diagram
below.

Security concerns related to the HTTP interface

© 2014 Altova GmbH

 161HTTP Interface

Altova RaptorXML+XBRL Server 2015

The HTTP interface, by default, allows result documents to be written to any
location specified by the client (that is accessible with the HTTP protocol). It is
important therefore to consider this security aspect when configuring
RaptorXML+XBRL Server.

If there is a concern that security might be compromised or that the interface
might be misused, the server can be configured to write result documents to a
dedicated output directory on the server itself. This is specified by setting the
server.unrestricted-filesystem-access option of the server configuration
file to false. When access is restricted in this way, the client can download
result documents from the dedicated output directory with GET requests.
Alternatively, an administrator can copy/upload result document files from the
server to the target location.

In this section
Before sending a client request, RaptorXML+XBRL Server must be started and properly
configured. How to do this is described in the section Server Setup. How to send client requests
is described in the section Client Requests.

162 HTTP Interface Server Setup

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

4.1 Server Setup

To correctly set up RaptorXML+XBRL Server, do the following. We assume that RaptorXML+XBRL
Server has already been correctly installed and licensed.

1. RaptorXML+XBRL Server must be either started as a service or an application in order for
it to be correctly accessed via HTTP. How to do this differs according to operating system
and is described here: on Windows, on Linux, on Mac OS X.

2. Use the initial server configuration to test the connection to the server. (The initial server
configuration is the default configuration you get on installation.) You can use a simple
HTTP GET request like http://localhost:8087/v1/version to test the connection.
(The request can also be typed in the address bar of a browser window.) If the service is
running you must get a response to an HTTP test request such as the version request
above .

3. Look at the server configuration file, server_config.xml. If you wish to change any
settings in the file, edit the server configuration file and save the changes.

4. If you have edited the server configuration file, then restart RaptorXML+XBRL Server as a
service so that the new configuration settings are applied. Test the connection again to
make sure that the service is running and accessible.

Note: Server startup errors, the server configuration file used, and license errors are reported in
the system log. So, refer to the system log if there are problems with the server.

© 2014 Altova GmbH

Server Setup 163HTTP Interface

Altova RaptorXML+XBRL Server 2015

4.1.1 Starting the Server

This section:

Location of the Server executable
Starting RaptorXML as a service on Windows
Starting RaptorXML as a service on Linux
Starting RaptorXML as a service on Mac OS X

Location of the Server executable file
The RaptorXML+XBRL Server executable is installed by default in the folder:

<ProgramFilesFolder>\Altova\RaptorXMLXBRLServer2015\bin\RaptorXMLXBRL.exe

The executable can be used to start RaptorXML+XBRL Server as a service.

Starting as a service on Windows
The installation process will have registered RaptorXML+XBRL Server as a service on Windows.
You must, however, start RaptorXML+XBRL Server as a service. You can do this in the following
ways:

Via the Altova ServiceController, which is available as an icon in the system tray. If the
icon is not available, you can start Altova ServiceController and add its icon to the system
tray by going to the Start menu, then selecting All Programs | Altova | Altova
LicenseServer | Altova ServiceController.
Via the Windows Services Management Console: Control Panel | All Control Panel
Items | Administrative Tools | Services.
Via the command prompt started with administrator rights. Use the following command
under any directory: net start "Altova RaptorXML+XBRL Server"

Via the RaptorXML+XBRL Server executable in a command prompt window:
RaptorXMLXBRLServer.exe debug. This starts the server, with server activity information

going directly to the command prompt window. The display of server activity information
can be turned on and off with the http.log-screen setting of the server configuration file.
To stop the server, press Ctrl+Break (or Ctrl+Pause). When the server is started this
way—rather than as a service as described in the three previous steps—the server will
stop when the command line console is closed or when the user logs off.

Starting as a service on Linux
Start RaptorXML+XBRL Server as a service with the following command:

[Debian] sudo /etc/init.d/raptorxmlxbrlserver start

[Ubuntu] sudo initctl start raptorxmlxbrlserver

164 HTTP Interface Server Setup

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

[CentOS] sudo initctl start raptorxmlxbrlserver

[RedHat] sudo initctl start raptorxmlxbrlserver

If at any time you need to stop RaptorXML+XBRL Server, use:

[Debian] sudo /etc/init.d/raptorxmlxbrlserver stop

[Ubuntu] sudo initctl stop raptorxmlxbrlserver

[CentOS] sudo initctl stop raptorxmlxbrlserver

[RedHat] sudo initctl stop raptorxmlxbrlserver

Starting as a service on Mac OS X
Start RaptorXML+XBRL Server as a service with the following command:

sudo launchctl load /Library/LaunchDaemons/

com.altova.RaptorXMLXBRLServer2015.plist

If at any time you need to stop RaptorXML+XBRL Server, use:

sudo launchctl unload /Library/LaunchDaemons/

com.altova.RaptorXMLXBRLServer2015.plist

© 2014 Altova GmbH

Server Setup 165HTTP Interface

Altova RaptorXML+XBRL Server 2015

4.1.2 Testing the Connection

This section:

GET request to test the connection
Server response and JSON data structure listing

GET request to test the connection
After RaptorXML+XBRL Server has been started, test the connection using a GET request. (You
can also type this request in the address bar of a browser window.)

http://localhost:8087/v1/version

Note: The interface and port number of RaptorXML+XBRL Server is specified in the server
configuration file, server_config.xml, which is described in the next section, Server
Configuration.

Server response and JSON data structure listing
If the service is running and the server is correctly configured, the request should never fail.
RaptorXML+XBRL Server will return its version information as a JSON data structure (listing
below).

{
"copyright": "Copyright (c) 1998-2013 Altova GmbH. ...",
"name": "Altova RaptorXML+XBRL Server 2013 rel. 2 sp1",
"eula": "http://www.altova.com/server_software_license_agreement.html"

}

Note: If you modify the server configuration—by editing the server configuration file—you should
test the connection again.

166 HTTP Interface Server Setup

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

4.1.3 Configuring the Server

This section:

Server configuration file: initial settings
Server configuration file: modifying the initial settings, reverting to initial settings
Server configuration file: listing and settings
Server configuration file: description of settings
Configuring the server address

Server configuration file: initial settings
RaptorXML+XBRL Server is configured by means of a configuration file called
server_config.xml, which is located by default at:

C:\Program Files (x86)\Altova\RaptorXMLXBRLServer2015\etc\server_config.xml

The initial configuration for RaptorXML+XBRL Server defines the following:

A port number of 8087 as the server's port.
That the server listens only for local connections (localhost).
That the server writes output to C:\ProgramData\Altova\RaptorXMLXBRLServer2015
\Output\.

Other default settings are shown in the listing of server_config.xml below.

Server configuration file: modifying the initial settings, reverting to initial settings
If you wish to change the initial settings, you must edit the server configuration file,
server_config.xml (see listing below), save it, and then restart RaptorXML+XBRL Server as a
service.

If you wish to recreate the original server configuration file (so that the server is configured with the
initial settings again), run the command createconfig:

RaptorXMLXBRL.exe createconfig

On running this command, the initial settings file will be recreated and will overwrite the file
server_config.xml. The createconfig command is useful if you wish to reset server
configuration to the initial settings.

Server configuration file: listing and settings
The server configuration file, server_config.xml, is listed below with initial settings. Settings

available in it are explained below the listing.

© 2014 Altova GmbH

Server Setup 167HTTP Interface

Altova RaptorXML+XBRL Server 2015

server_config.xml

<config xmlns="http://www.altova.com/schemas/altova/raptorxml/config"
xsi:schemaLocation="http://www.altova.com/schemas/altova/raptorxml/config
http://www.altova.com/schemas/altova/raptorxml/config.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<language>en</language>
<server.unrestricted-filesystem-access>true</server.unrestricted-filesystem-
access>
<server.output-root-dir>C:\ProgramData\Altova\RaptorXMLXBRLServer2015\Output
\</server.output-root-dir>
<server.script-root-dir>C:\Program Files (x86)\Altova\RaptorXMLXBRLServer2015
\etc\scripts\</server.script-root-dir>
<!--<server.catalog-file>catalog.xml</server.catalog-file>-->
<server.log-file>C:\ProgramData\Altova\RaptorXMLXBRLServer2015\Log
\server.log</server.log-file>
<http.environment>production</http.environment>
<!--<http.socket-host>localhost</http.socket-host>-->
<http.socket-port>8087</http.socket-port>

 <http.log-screen>true</http.log-screen>
<http.access-file>C:\ProgramData\Altova\RaptorXMLXBRLServer2015\Log
\access.log</http.access-file>
<http.error-file>C:\ProgramData\Altova\RaptorXMLXBRLServer2015\Log\error.log</
http.error-file>

</config>

Settings

language

Sets the language of server messages, in an optional language element. The default value is en
(English). Allowed values are en|de|es|ja (English, German, Spanish, and Japanese,
respectively). See Localization Commands for an overview of how to localize RaptorXML.

server.unrestricted-filesystem-access

When set to true (the default value), output files will be written directly to the location specified
by the user and in Python scripts (possibly overwriting existing files of the same name). When set
to false, files will be written to the job's directory in the output directory, and the URI of the file
will be included in the result document. Setting the value to false provides a layer of security,
since files can be written to disk only in a dedicated and known job directory on the server. Job
output files can subsequently be copied by trusted means to other locations.

server.output-root-dir

Directory in which the output of all submitted jobs is saved.

168 HTTP Interface Server Setup

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

server.script-root-dir

Directory in which trusted Python scripts are to be saved. The script option, when used via the
HTTP interface, will only work when scripts from this trusted directory are used. Specifying a
Python script from any other directory will result in an error. See 'Mak ing Python Scripts Safe'.

server.catalog-file

URL of the XML catalog file to use. By default, the catalog file RootCatalog.xml, which is located
in the folder <ProgramFilesFolder>\Altova\RaptorXMLXBRLServer2015\etc, will be used. Use

the server.catalog-file setting only if you wish to change the default catalog file.

server.log-file

Name and location of the server log file. Events on the server, like Server started/stopped, are
logged continuously in the system's event log and displayed in a system event viewer such as
Windows Event Viewer. In addition to the viewer display, log messages can also be written to the
file specified with the server.log-file option. The server log file will contain information about all
activities on the server, including server startup errors, the configuration file used, and license
errors.

http.environment

Internal environments of raptorxml: production | development. The Development environment
will be more geared to the needs of developers, allowing easier debugging than when the
Production environment is used.

http.socket-host

The interface via which RaptorXML+XBRL Server is accessed. If you wish RaptorXML+XBRL
Server to accept connections from remote machines, uncomment the element and set its content
to: 0.0.0.0, like this: <http.socket-host>0.0.0.0</http.socket-host>. This hosts the
service on every addressable interface of the server machine. In this case, ensure that firewall
settings are suitably configured. Inbound firewall exceptions for Altova products must be
registered as follows: Altova LicenseServer: port 8088; Altova RaptorXML+XBRL Server: port 8087;
Altova FlowForce Server: port 8082.

http.socket-port

The port via which the service is accessed. The port must be fixed and known so that HTTP
requests can be correctly addressed to the service.

http.log-screen

If RaptorXML+XBRL Server is started with the command RaptorXMLXBRLServer.exe debug,
(see Starting the Server) and if http.log-screen is set to true, then server activity is displayed
in the command line console. Otherwise server activity is not displayed. The log screen is
displayed in addition to the writing of log files.

http.access-file

Name and location of the HTTP access file. The access file contains information about access-
related activity. It contains information that is useful for resolving connection issues.

© 2014 Altova GmbH

Server Setup 169HTTP Interface

Altova RaptorXML+XBRL Server 2015

http.error-file

Name and location of the HTTP error file. The error file contains errors related to traffic to and from
the server. If there are connection problems, this file can provide useful information towards
resolving them.

The RaptorXML+XBRL Server address
The HTTP address of the server consists of the socket-host and socket-port:
http://{socket-host}:{socket-port}/

The address as set up with the initial configuration will be:
http://localhost:8087/

To change the address, modify the http.socket-host and http.socket-port settings in
the server configuration file, server_config.xml. For example, say the server machine
has an IP address of 100.60.300.6, and that the following server configuration settings
have been made:

<http.socket-host>0.0.0.0</http.socket-host>
<http.socket-port>8087</http.socket-port>

RaptorXML+XBRL Server can then be addressed with:
http://100.60.300.6:8087/

Note: After server_config.xml has been modified, RaptorXML+XBRL Server must be restarted
for the new values to be applied.

Note: If there are problems connecting to RaptorXML+XBRL Server, information in the files
named in http.access-file and http.error-file can help resolve issues.

Note: Messages submitted to RaptorXML+XBRL Server must contain path names that are valid
on the server machine. Documents on the server machine can be accessed either locally
or remotely (in the latter case with HTTP URIs, for example).

170 HTTP Interface Client Requests

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

4.2 Client Requests

After RaptorXML+XBRL Server has been started as a service, its functionality can be accessed by
any HTTP client which can:

use the HTTP methods GET, PUT, POST, and DELETE
set the Content-Type header field

An easy-to-use HTTP client
There are a number of web clients available for download from the Internet. An easy-to-use
and reliable web client we found was Mozilla's RESTClient, which can be added as a Firefox
plugin. It's easy to install, supports the HTTP methods required by RaptorXML, and provides
sufficiently good JSON syntax coloring. If you have no previous experience with HTTP
clients, you might want to try RESTClient. Note, however, that installation and usage of
RESTClient is at your own risk.

A typical client request would consist of a series of steps as shown in the diagram below.

https://addons.mozilla.org/de/firefox/addon/restclient/
https://addons.mozilla.org/de/firefox/addon/restclient/
https://addons.mozilla.org/de/firefox/addon/restclient/

© 2014 Altova GmbH

Client Requests 171HTTP Interface

Altova RaptorXML+XBRL Server 2015

The important points about each step are noted below. Key terms are in bold.

1. An HTTP POST method is used to make a request, with the body of the request being in
JSON format. The request could be for any functionality of RaptorXML+XBRL Server. For
example, the request could be for a validation, or for an XSLT transformation. The
commands, arguments, and options used in the request are the same as those used on
the command line. The request is posted to: http://localhost:8087/v1/queue,

assuming localhost:8087 is the address of RaptorXML+XBRL Server (the initial address

of the server). Such a request is termed a RaptorXML+XBRL Server job.

2. If the request is received and accepted for processing by RaptorXML+XBRL Server, a
result document containing the results of the server action will be created after the job
has been processed. The URI of this result document (the Result-Doc-URI in the

172 HTTP Interface Client Requests

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

diagram above), is returned to the client. Note that the URI will be returned immediately
after the job has been accepted (queued) for processing and even if processing has not
been completed.

3. The client sends a request for the result document (using the result document URI) in a
GET method to the server. If processing of the job has not yet started or has not yet been
completed at the time the request is received, the server returns a status of Running. The
GET request must be repeated till such time that job processing has been completed and
the result document been created.

4. RaptorXML+XBRL Server returns the result document in JSON format. The result
document might contain the URIs of error or output documents produced by
RaptorXML+XBRL Server processing the original request. Error logs are returned, for
example, if a validation returned errors. Primary output documents, such as the result of
an XSLT transformation, are returned if an output-producing job is completed
successfully.

5. The client sends the URIs of the output documents received in Step 4 via an HTTP GET
method to the server. Each request is sent in a separate GET method.

6. RaptorXML+XBRL Server returns the requested documents in response to the GET
requests made in Step 5.

7. The client can delete unwanted documents on the server that were generated as a result
of a job request. This is done by submitting, in an HTTP DELETE method, the URI of the
result document in question. All files on disk related to that job are deleted. This includes
the result document file, any temporary files, and error and output document files. This
step is useful for freeing up space on the server's hard disk.

The details of each step are described in the sub-sections of this section.

© 2014 Altova GmbH

Client Requests 173HTTP Interface

Altova RaptorXML+XBRL Server 2015

4.2.1 Initiating Jobs with POST

This section:

Sending the request
JSON syntax for POST requests
Uploading files with the POST request

Sending the request
A RaptorXML+XBRL Server job is initiated with the HTTP POST method

HTTP Method URI Content-Type Body

POST http://localhost:8087/v1/queue/ application/json JSON

Note the following points:

The URI above has a server address that uses the settings of the initial configuration.
The URI has a /v1/queue/ path, which must be present in the URI. It can be considered
to be an abstract folder in memory into which the job is placed.
The correct version number /vN is the one that the server returns (and not necessarily
the one in this documentation). The number that the server returns is the version number
of the current HTTP interface. Previous version numbers indicate older versions of the
HTTP interface, which are still supported for backward compatibility.
The header must contain the field: Content-Type: application/json. However, if you
wish to upload files within the body of the POST request, then the message header must
have its content type set to multipart/form-data (i.e. Content-Type: multipart/
form-data). See the section Uploading files with the POST request for details.
The body of the request must be in JSON format.
Files to be processed must be on the server. So files must either be copied to the server
before a request is made, or be uploaded along with the POST request. In this case the
message header must have its content type set to multipart/form-data. See the
section Uploading files with the POST request below for details.

To check the well-formedness of an XML file, the request in JSON format would look something
like this:

{
 "command": "wfxml", "args": ["file:///c:/Test/Report.xml"]

}

Valid commands, and their arguments and options, are as documented in the Command Line
section.

JSON syntax for HTTP POST requests

174 HTTP Interface Client Requests

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

{

"command": "Command-Name",

"options": {"opt1": "opt1-value", "opt2": "opt2-value"},

"args" : ["file:///c:/filename1", "file:///c:/filename2"]

 }

All black text is fixed and must be included. This includes all braces, double quotes,
colons, commas, and square brackets. Whitespace can be normalized.

Blue italics are placeholders and stand for command names, options and option values,
and argument values. Refer to the command line section for a description of the
commands.

The command and args keys are mandatory. The options key is optional. Some
options keys have default values; so, of these options, only those for which the default
values need to be changed need be specified.

All strings must be enclosed in double quotes. Boolean values and numbers must not
have quotes. So: {"error-limit": "unlimited"} and {"error-limit": 1} is correct
usage.

Notice that file URIs—rather than file paths—are recommended and that they use
forward slashes. Windows file paths, if used, take backslashes. Furthermore, Windows
file-path backslashes must be escaped in JSON (with backslash escapes; so "c:\\dir
\\filename"). Note that file URIs and file paths are strings and, therefore, must be in
quotes.

Here is an example with options. Notice that some options (like input or xslt-version) take a
straight option value, while others (like param) take a key-value pair as their value, and therefore
require a different syntax.

{
 "command": "xslt",
 "args": [
 "file:///C:/Work/Test.xslt"

],
 "options": {

 "input": "file:///C:/Work/Test.xml",

 "xslt-version": 1,

 "param": {

 "key": "myTestParam",
 "value": "SomeParamValue"
 },
 "output": "file:///C:/temp/out2.xml"

 }
}

© 2014 Altova GmbH

Client Requests 175HTTP Interface

Altova RaptorXML+XBRL Server 2015

The example below shows a third type of option: that of an array of values (as for the xsd option
below). In this case, the syntax to be used is that of a JSON Array.

{
 "command": "xsi",
 "args": [
 "file:///C:/Work/Test.xml"
],
 "options": {
 "xsd" : ["file:///C:/Work/File1.xsd", "file:///C:/Work/File2.xsd"]
 }
}

Uploading files with the POST request
Files to be processed can be uploaded within the body of the POST request. In this case, the POST
request must be made as follows.

Request header
In the request header, set Content-Type: multipart/form-data and specify any arbitrary string
as the boundary. Here is an example header:

Content-Type: multipart/form-data; boundary=---MyBoundary

The purpose of the boundary is to set the boundaries of the different form-data parts in the request
body (see below).

Request body: Message part
The body of the request has the following form-data parts, separated by the boundary string
specified in the request header (see above):

Mandatory form-data parts: msg, which specifies the processing action requested, and

args, which contains the files to be uploaded as the argument/s of the command

specified in the msg form-data part. See the listing below.
Optional form-data part: A form-data part name additional_files, which contains files

referenced from files in the msg or args form-data parts. Additionally form-data parts
named after an option of the command can also contain files to be uploaded.

Note: All uploaded files are created in a single virtual directory.

Given below is a listing of the body of a POST request. It has numbered callouts that are explained
below. The command submitted in the listing request would have a CLI equivalent of:

raptorxmlxbrl xsi First.xml Second.xml --xsd=Demo.xsd

176 HTTP Interface Client Requests

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

The request is for the validation of two XML files according to a schema. The body of the request
would look something like this, assuming that ---PartBoundary has been specified in the header
as the boundary string (see Request Header above).

---PartBoundary

Content-Disposition: form-data; name="msg"

Content-Type: application/json

1

{"command": "xsi", "options": {}, "args": []} 2

---PartBoundary

Content-Disposition: attachment; filename="First.xml"; name="args"

Content-Type: application/octet-stream

3

<?xml version="1.0" encoding="UTF-8"?>
<test xsi:noNamespaceSchemaLocation="Demo.xsd" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance">42</test>

4

---PartBoundary

Content-Disposition: attachment; filename="Second.xml"; name="args"

Content-Type: application/octet-stream

5

<?xml version="1.0" encoding="UTF-8"?>
<test xsi:noNamespaceSchemaLocation="Demo.xsd" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance">35</test>

6

---PartBoundary

Content-Disposition: attachment; filename="Demo.xsd";

name="additional_files"

Content-Type: application/octet-stream

7

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="test" type="xs:int"/>
</xs:schema>

8

---PartBoundary-- 9

1 The name of the main form-data part boundaries are declared in the request header. The
first form-data part (in this example) is msg. Note that the content type is application/

json.

2 This is the standard syntax for HTTP POST requests. If args contains a reference to a
file and if additional files are uploaded, both sets of files will be passed to the server.

3 The first member of the args array is a file attachment called First.xml.

© 2014 Altova GmbH

Client Requests 177HTTP Interface

Altova RaptorXML+XBRL Server 2015

4 The text of the file First.xml. It contains a reference to a schema called Demo.xsd,
which will also be uploaded—in the additional_files form-data part.

5 The second member of the args array is an attachment called Second.xml.

6 The text of the file Second.xml. It too contains a reference to the schema Demo.xsd.
See callout 7.

7 The first additional files part contains the Demo.xsd attachment metadata.

8 The text of the file Demo.xsd.

9 The end of the Demo.xsd additional files part, and the additional_files form-data part.

178 HTTP Interface Client Requests

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

4.2.2 Server Response to POST Request

This section:

Overview of possible server responses
Response: Request failed, no response from server
Response: Request communicated, but job rejected by server
Response: Job executed (with positive or negative result)

When a POST request is made successfully to the server, the job is placed in the server queue. A
201 Created message and a result document URI are returned. The job will be processed at the
earliest. In the meanwhile, if the the result document is requested, a "status": "Running"
message is returned if the job has not been completed; the client should try again at a later time.
A Dispatched state indicates that the job is in the server queue but has not yet bee started.

The result of the job (for example, a validation request) may be negative (validation failed) or
positive (validation successful). In either case a 201 Created message is returned and a result
document is generated. It is also possible that the POST request was not communicated to the
server (Request failed), or the request was communicated but the job was rejected by the server
(Request communicated, but job rejected). The various possible outcomes are shown in the
diagram below.

The possible outcomes to the client's POST request are as follows:

© 2014 Altova GmbH

Client Requests 179HTTP Interface

Altova RaptorXML+XBRL Server 2015

Request failed, no response from server
When requests cannot be made successfully to the server, the most common errors are those
listed below:

Message Explanation

404 Not Found The correct path is: http://localhost:8087/v1/queue/

405 Method Not Allowed Specified method is invalid for this resource. Use the POST
method.

415 Unsupported Media
Type

The message header should be Content-Type:application/
json.

Request communicated, but job rejected by server
When requests are made successfully to the server, the server could reject them for the following
reasons:

Message Explanation

400 Bad Request (bad
cmd)

The RaptorXML command is incorrect.

400 Bad Request (json
error)

The request body has a JSON syntax error.

404 File Not Found Check file URI (or filepath) syntax of all files named in the
command.

Job executed (with positive or negative result)
When a job (for example, a validation job) is executed, its result can be positive (OK) or negative
(Failed). For example, the result of a validation job is positive (OK) when the document to be
validated is valid, negative (Failed) if the document is invalid.

In both cases, the job is executed, but with different results. A 201 Created message is returned
in both cases as soon as the job is successfully placed in the queue. Also, in both cases a result
document URI is returned to the HTTP client that made the request. (The result document itself
might not yet have been created if processing of the job has not yet started or completed.) After
the result document has been created, it can be fetched with an HTTP GET request. In addition to
the result document, other documents may be generated also, as follows:

Job executed with result 'Failed': An error log is created in three formats: text, long XML,
and short XML. The URIs of these three documents are sent in the result document
(which is in JSON format). The URIs can be used in an HTTP GET request to fetch the
error documents.
Job executed with result 'OK': The job is processed successfully and output documents—
such as the output produced by an XSLT transformation—are created. If output files have

180 HTTP Interface Client Requests

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

been generated, their URIs are sent in the JSON-format result document. The URIs can
then be used in an HTTP GET request to fetch the output documents. Note that not all
jobs will have output files; for example, a validation job. Also a job can finish with a state
of 'OK', but there might have been warnings and/or other messages that were written to
error files. In this case, error file URIs are also sent in the result document (that is, in
addition to output documents).

See Getting the Result Document and Getting Error/Output Documents for a description of these
documents and how to access them.

© 2014 Altova GmbH

Client Requests 181HTTP Interface

Altova RaptorXML+XBRL Server 2015

4.2.3 Getting the Result Document

This section:

The Result Document URI
Fetching the Result Document

Result Document containing URIs of error documents
Result Document containing URIs of output documents
Result Document containing no URI

Accessing error and output documents listed in the Result Document

The Result Document URI
A result document will be created every time a job is created, no matter whether the result of a job
(for example, a validation) is positive (document valid) or negative (document invalid). In both
cases a 201 Created message is returned. This message will be in JSON format and will contain
a relative URI of the result document. The JSON fragment will look something like this:

{
"result": "/v1/results/E6C4262D-8ADB-49CB-8693-990DF79EABEB",
"jobid": "E6C4262D-8ADB-49CB-8693-990DF79EABEB"

}

The result object contains the relative URI of the result document. The URI is relative to the
server address. For example, if the server address is http://localhost:8087/ (the initial
configuration address), then the expanded URI of the result document specified in the listing
above will be:

http://localhost:8087/v1/results/E6C4262D-8ADB-49CB-8693-990DF79EABEB

Note: The correct version number /vN is the one that the server returns (and is not necessarily
the one in this documentation). The number that the server returns is the version number
of the current HTTP interface. Previous version numbers indicate older versions of the
HTTP interface, which, however, are still supported for backward compatibility.

Fetching the Result Document
To get the result document submit the document's expanded URI (see above), in an HTTP GET
request. The result document is returned and could be one of the generic types described below.

Note: When a job is successfully placed in the server queue, the server returns the URI of the
result document. If the client requests the result before the job has been started (it is still
in the queue), a "status": "Dispatched" message will be returned. If the job has been
started but not completed (say, because it is a large job), a "status": "Running"
message will be returned. In these two situations, the client should wait for some time
before making a fresh request for the result document.

Note: The example documents below all assume restricted client access. So error documents,

182 HTTP Interface Client Requests

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

message documents, and output documents are all assumed to be saved in the relevant
job directory on the server. The URIs for them in the result document are therefore all
relative URIs. None is a file URI (which would be the kind of URI generated in cases of
unrestricted client access). For the details of these URIs, see the section Getting Error/
Message/Output Documents.

Result document containing URIs of error documents
If the requested job finished with a state of Failed, then the job returned a negative result. For
example, a validation job returned a document-invalid result. The errors encountered while
executing the job are stored in error logs, created in three file formats: (i) text, (ii) long-XML
(detailed error log), and (iii) short-XML (less-detailed error log). See the JSON listing below.

{
"jobid": "6B4EE31B-FAC9-4834-B50A-582FABF47B58",
"state": "Failed",
"error":
{
 "text": "/v1/results/6B4EE31B-FAC9-4834-B50A-582FABF47B58/error/error.txt",
 "longxml": "/v1/results/6B4EE31B-FAC9-4834-B50A-582FABF47B58/error/
long.xml",
 "shortxml": "/v1/results/6B4EE31B-FAC9-4834-B50A-582FABF47B58/error/
short.xml"
},
"jobs":
[
 {
 "file": "file:///c:/Test/ExpReport.xml",
 "jobid": "20008201-219F-4790-BB59-C091C276FED2",
 "output":
 {
 },
 "state": "Failed",
 "error":
 {
 "text": "/v1/results/20008201-219F-4790-BB59-C091C276FED2/error/
error.txt",
 "longxml": "/v1/results/20008201-219F-4790-BB59-C091C276FED2/error/
long.xml",
 "shortxml": "/v1/results/20008201-219F-4790-BB59-C091C276FED2/error/
short.xml"
 }
 }
]

}

Note the following:

Jobs have sub-jobs.
Errors at sub-job level propagate up to the top-level job. The state of the top-level job will
be OK only if all of its sub-jobs have a state of OK.
Each job or sub-job has its own error log.
Error logs include warning logs. So, even though a job finishes with a state of OK, it might
have URIs of error files.
The URIs of the error files are relative to the server address (see above).

© 2014 Altova GmbH

Client Requests 183HTTP Interface

Altova RaptorXML+XBRL Server 2015

Result document containing URIs of output documents
If the requested job finished with a state of OK, then the job returned a positive result. For
example, a validation job returned a document-valid result. If the job produced an output document
—for example, the result of an XSLT transformation—then the URI of the output document is
returned. See the JSON listing below.

{
"jobid": "5E47A3E9-D229-42F9-83B4-CC11F8366466",
"state": "OK",
"error":
{
},
"jobs":
[
 {
 "file": "file:///c:/Test/SimpleExample.xml",
 "jobid": "D34B5684-C6FF-4A7A-BF35-EBB9A8A8C2C8",
 "output":
 {
 "xslt-output-file":
 [
 "/v1/results/D34B5684-C6FF-4A7A-BF35-EBB9A8A8C2C8/output/test.html"
]
 },
 "state": "OK",
 "output-mapping":
 {

"/v1/results/D34B5684-C6FF-4A7A-BF35-EBB9A8A8C2C8/output/1": "file:///
c:/temp/test.html"

 },
 "error":
 {
 }
 }
]

}

Note the following:

The output file is created in the output folder of the job. You can use its relative URI to
access the file.
The URIs of the output files are relative to the server address (see above).
The output-mapping item maps the output document in the job directory on the server to
the file location specified by the client in the job request. Notice that only output
documents specified by the client in the job request have a mapping; job-related files
generated by the server (such as error files) have no mapping.

Result document containing no URI
If the requested job finished with a state of OK, then the job returned a positive result. For
example, a validation job returned a document-valid result. Some jobs—such as a validation or
well-formed-test—produce no output document. If a job of this type finishes with a state of OK,
then the result document will have neither the URI of an output document nor the URI of an error
log. See the JSON listing below.

184 HTTP Interface Client Requests

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

{
"jobid": "3FC8B90E-A2E5-427B-B9E9-27CB7BB6B405",
"state": "OK",
"error":
{
},
"jobs":
[
 {
 "file": "file:///c:/Test/SimpleExample.xml",
 "jobid": "532F14A9-F9F8-4FED-BCDA-16A17A848FEA",
 "output":
 {
 },
 "state": "OK",
 "error":
 {
 }
 }
]

}

Note the following:

Both the output and error components of the sub-job in the listing above are empty.
A job could finish with a state of OK but still contain warnings or other messages, which
are logged in error files. In such cases, the result document will contain URIs of error files
even though the job finished with a state of OK.

Accessing error and output documents listed in the Result Document
Error and output documents can be accessed with HTTP GET requests. These are described in
the next section, Getting Error/Output Documents.

© 2014 Altova GmbH

Client Requests 185HTTP Interface

Altova RaptorXML+XBRL Server 2015

4.2.4 Getting Error/Message/Output Documents

A result document can contain the file URIs or relative URIs of error documents, message
documents (such as logs), and/or output documents. (There are some situations in which a result
document might not contain any URI.) The various kinds of URIs are described below.

To access these documents via HTTP, do the following:

1. Expand the relative URI of the file in the result document to its absolute URI
2. Use the expanded URI in an HTTP GET request to access the file

URIs (in the result document) of error/message/output documents
The result document contains URIs of error, message, and/or output documents. Error and
message documents are job-related documents that are generated by the server; they are always
saved in the job directory on the server. Output documents (such as the output of XSLT
transformations) can be saved to one of the following locations:

To any file location accessible to the server. For output files to be saved to any location,
the server must be configured to allow the client unrestricted access (the default setting).
To the job directory on the server. The server is configured to restrict client access.

If a client specifies that an output file be created, the location to which the output file is saved will
be determined by the server.unrestricted-filesystem-access option of the server
configuration file.

If access is unrestricted, the file will be saved to the location specified by the client and
the URI returned for the document will be a file URI.
If access is restricted, the file will be saved to the job directory and its URI will be a
relative URI. Additionally, there will be a mapping of this relative URI to the file URL
specified by the client. (See the listing of Result document containing URIs of output
documents.)

In summary, therefore, the following kinds of URIs will be encountered:

File URI of error/message documents
These documents are saved in the job directory on the server. File URIs will have this form:
file:///<output-root-dir>/JOBID/message.doc

File URI of output documents
These documents are saved at any location. File URIs will have this form:
file:///<path-to-file>/output.doc

HTTP URI of error/messag/output documents
These documents are saved in the job directory on the server. URIs are relative to the server
address and must be expanded to the full HTTP URI. The relative will have this form:
/vN/results/JOBID/error/error.txt for error documents
/vN/results/JOBID/output/verbose.log for message documents
/vN/results/JOBID/output/1 for output documents

In the case of output documents, output mappings are given (see example listing). These

186 HTTP Interface Client Requests

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

mappings map each output document URI in the result document to the corresponding document
in the client request.

Expand the relative URI
Expand the relative URI in the result document to an absolute HTTP URI by prefixing the relative
URI with the server address. For example, if the server address is:

http://localhost:8087/ (the initial configuration address)

and the relative URI of an error file in the result document is:

/v1/results/20008201-219F-4790-BB59-C091C276FED2/error/error.txt

then the expanded absolute address will be

http://localhost:8087/v1/results/20008201-219F-4790-BB59-C091C276FED2/error/
error.txt

For more related information, see the sections: Configuring the Server and Getting the Result
Document.

Use an HTTP GET request to access the file

Use the expanded URI in an HTTP GET request to obtain the required file. RaptorXML+XBRL
Server returns the requested document.

© 2014 Altova GmbH

Client Requests 187HTTP Interface

Altova RaptorXML+XBRL Server 2015

4.2.5 Freeing Server Resources after Processing

RaptorXML+XBRL Server keeps the result document file, temporary files, and error and output
document files related to a processed job on hard disk. These files can be deleted in one of two
ways:

By providing the URI of the result document with the HTTP DELETE method. This deletes
all files related to the job indicated by the submitted result-document URI, including error
and output documents.
Manual deletion of individual files on the server by an administrator.

The structure of the URI to use with the he HTTP DELETE method is as shown below. Notice that
the full URI consists of the server address plus the relative URI of the result document.

HTTP
Method

URI

DELETE http://localhost:8087/v1/result/D405A84A-AB96-482A-96E7-
4399885FAB0F

To locate the output directory of a job on disk, construct the URI as follows:

[<server.output-root-dir> see server configuration file] + [jobid]

Note: Since a large number of error and output document files can be created, it is advisable to
monitor hard disk usage and schedule deletions according to your environment and
requirements.

Chapter 5

Python Interface

190 Python Interface

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5 Python Interface

The Python interface of RaptorXML+XBRL Server enables data in XML documents, XML Schema
documents, XBRL instance documents, and XBRL taxonomy documents to be accessed and
retrieved via Python APIs for XML, XSD and XBRL. What data in the source documents to process
and how to process it is specified in a Python script passed to RaptorXML+XBRL Server.

The Python APIs
The Python APIs (for XML, XSD and XBRL) provide access to the meta-information, structural
information, and data contained in XML, XSD, and XBRL instance and taxonomy documents. As a
result, Python scripts can be created that make use of the APIs to access and process
document information. For example, a Python script can be passed to RaptorXML+XBRL Server
that writes data from an XML or XBRL instance document to a database or to a CSV file.

The Python APIs are described in the sections:

Python XML API
Python XSD API
Python XBRL API

Python scripts
A user-created Python script is submitted with the --script parameter of the following

commands:

valxml-withxsd (xsi)
valxsd (xsd)
valxbrltaxonomy (dts)

valxbrl (xbrl)

These commands invoking Python scripts can be used both on the Command Line Interface (CLI)
and via the HTTP Interface. The usage of Python scripts with the Python APIs of RaptorXML
+XBRL Server are described in the sections Creating Python Scripts and Executing Python
Scripts.

Making Python scripts safe
When a Python script is specified in a command via HTTP to RaptorXML+XBRL Server, the script
will only work if it is located in the trusted directory. The script is executed from the trusted
directory. Specifying a Python script from any other directory will result in an error. The trusted
directory is specified in the server.script-root-dir setting of the server configuration file, and
a trusted directory must be specified if you wish to use Python scripts. Make sure that all Python
scripts to be used are saved in this directory.

© 2014 Altova GmbH

 191Python Interface

Altova RaptorXML+XBRL Server 2015

Though all output generated by the server for HTTP job requests is written to the job output
directory (which is a sub-directory of the output-root-directory), this limitation does not apply
to Python scripts, which can write to any location. The server administrator must review the
Python scripts in the trusted directory for potential vulnerability issues.

192 Python Interface Creating Python Scripts

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.1 Creating Python Scripts

This section:

Python version
Saving Python scripts
Passing a Python script to RaptorXML Server
Entry-point Python functions
Simplified structure of the Python script
The entry-point Python function in detail

Python version
User-created Python scripts must conform to Python 3.3.1 at the minimum.

Making Python scripts safe
When a Python script is specified in a command via HTTP to RaptorXML+XBRL Server, the script
will only work if it is located in the trusted directory. The script is executed from the trusted
directory. Specifying a Python script from any other directory will result in an error. The trusted
directory is specified in the server.script-root-dir setting of the server configuration file, and
a trusted directory must be specified if you wish to use Python scripts. Make sure that all Python
scripts to be used are saved in this directory.

Though all output generated by the server for HTTP job requests is written to the job output
directory (which is a sub-directory of the output-root-directory), this limitation does not apply
to Python scripts, which can write to any location. The server administrator must review the
Python scripts in the trusted directory for potential vulnerability issues.

Passing a Python script to RaptorXML+XBRL Server
A Python script is passed with the --script parameter of the following commands:

valxml-withxsd (xsi)
valxsd (xsd)
valxbrltaxonomy (dts)

valxbrl (xbrl)

These commands can be used on the command line interface or via the HTTP interface. For
examples, see the section, Executing Python Scripts.

© 2014 Altova GmbH

Creating Python Scripts 193Python Interface

Altova RaptorXML+XBRL Server 2015

Entry-point Python functions
The commands that allow access to the Python interface (see list above) are validation
commands, and the Python script will be executed only if the files submitted with the command
are valid. After validation has completed successfully, RaptorXML+XBRL Server will call a specific
function, according to which command was executed. The called function (see table below),
therefore, must be defined in the Python script. It must be defined with two parameters: the first is
the job object, the second varies according to which command was executed (see table).

Command Function called by RaptorXML+XBRL Server

valxml-withxsd (xsi) on_xsi_valid(job,instance)

valxsd (xsd) on_xsd_valid(job,schema)

valxbrltaxonomy (dts) on_dts_valid(job,dts)

valxbrl (xbrl) on_xbrl_valid(job,instance)

Simplified structure of the Python script
The broad structure of a Python script used to access the Python interface is as follows. Notice
how the entry-point Python function is defined.

1 import os
from altova import xml, xsd, xbrl

2 def on_xsi_valid(job,instance):
filename = os.path.join(job.output_dir,'script_out.txt')
job.append_output_filename(filename)
f = open(filename,'w')
f.write(str(type(job))+'\n')
f.write(str(job)+'\n')
f.write(job.output_dir+'\n')
f.close()
filename2 = os.path.join(job.output_dir,'script_out2.txt')
job.append_output_filename(filename2)
f2 = open(filename2,'w')
print_instance(f2,instance)
f2.close()

3 CodeBlock-1
 ...
CodeBlock-N

Description of the script structure shown above:

1 Imports Python's built-in os module, and then the xml, xsd, xbrl modules of

the altova library.

2 The entry-point Python function (see below). This could be one of:
on_xsi_valid(job,instance), on_xsd_valid(job,schema),

194 Python Interface Creating Python Scripts

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

on_dts_valid(job,dts), on_xbrl_valid(job,instance).

3 Additional blocks of code, each containing function definitions or other code.

The entry-point Python function in detail
In this section, we note important points of the entry-point Python function with the help of the
following entry-point function definition.

def on_xsi_valid(job,instance):
filename = os.path.join(job.output_dir,'script_out.txt')
job.append_output_filename(filename)
f = open(filename,'w')
f.write(str(type(job))+'\n')
f.write(str(job)+'\n')
f.write(job.output_dir+'\n')
f.close()
filename2 = os.path.join(job.output_dir,'script_out2.txt')
job.append_output_filename(filename2)
f2 = open(filename2,'w')
print_instance(f2,instance)
f2.close

The line def on_xsi_valid(job,instance): starts the function's definition block.
The function is called on_xsi_valid(job,instance) and it takes two arguments: job

and instance.
This is the function that is invoked after RaptorXML+XBRL Server has successfully
executed the command valxml-withxsd (xsi) and found the submitted XML file/s to
be valid.
The values of the job and instance arguments are provided by RaptorXML+XBRL Server.
The value of the filename variable is constructed using job.output_dir, the value of
which, in the case of HTTP use, is specified in the server configuration file, and in the
case of CLI use is the working directory.
The job.append_output_filename function appends a filename to the job output.

© 2014 Altova GmbH

Executing Python Scripts 195Python Interface

Altova RaptorXML+XBRL Server 2015

5.2 Executing Python Scripts

Python scripts are passed to RaptorXMLXBRL Server by giving the script's URL as the value of
the --script option. The --script option is supported for the following commands:

valxml-withxsd (xsi)
valxsd (xsd)
valxbrltaxonomy (dts)

valxbrl (xbrl)

These commands can be used on the command line interface or via the HTTP interface.

Examples
Here are examples of usage with the different commands:

raptorxmlxbrl xsi --script=xml.py --streaming=false c:\HasXSDRef.xml

raptorxmlxbrl xsd --script=xsd.py c:\Test.xsd

raptorxmlxbrl dts --script=dts.py c:\Test.xsd

raptorxmlxbrl xbrl --script=xbrl.py c:\Test.xbrl

Note: When using the --script option with the valxml-withxsd command, make sure to
specify --streaming=false. Otherwise a warning saying the script was not executed is
returned.

Starting the script
After the command has been successfully submitted and the file/s to be validated are found to be
valid, RaptorXML+XBRL Server calls the entry-point Python function corresponding to the just-
executed command and supplies it the values of the function's two arguments. If the entry-point
function is defined in the script that was passed with the --script parameter, then execution of
the script is started.

196 Python Interface Example-Script 01: Process XML

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.3 Example-Script 01: Process XML

This Python script processes data in the file NanonullOrg.xml (located in the examples folder of

the RaptorXML application folder), and creates an output document called summary.html that

contains a table summarizing the total number of shares owned by each department's employees.

The script is passed on the CLI with a command like this:

raptorxmlxbrl xsi --streaming=false --script=sharesummary.py NanonullOrg.xml

This section contains the following listings:

The annotated Python script
The result document produced by the script

© 2014 Altova GmbH

Example-Script 01: Process XML 197Python Interface

Altova RaptorXML+XBRL Server 2015

5.3.1 Script Listing

The annotated Python script listed below processes data in the file NanonullOrg.xml (located in

the examples folder of the RaptorXML application folder), and creates an output document called
summary.html. The output document contains a table summarizing the total number of shares

owned by each department's employees.

The script can be passed on the CLI with a command like this:

raptorxmlxbrl xsi --streaming=false --script=sharesummary.py NanonullOrg.xml

Note: When using the --script option with the valxml-withxsd | xsi command, make sure
to specify --streaming=false. Otherwise a warning saying the script was not executed
is returned.

Filename: sharesummary.py

import os

from altova import xml

def getElemTextValue(elem):

"""Returns the text content of an XML element"""

text = ''
for child in elem.children:

if isinstance(child,xml.Character):
text += child.character_code

return text

def getChildElemsWithName(elemParent,name):

"""Returns a list of all child elements with the given name"""

elems = []
for child in elemParent.children:

if isinstance(child,xml.Element) and child.local_name == name:
elems.append(child)

return elems

def getDepartmentName(elemDepartment):

"""Returns the name of the department specified in the <Name> element"""

return getElemTextValue(getChildElemsWithName(elemDepartment,'Name')[0])

def getDepartmentTotalShares(elemDepartment):

"""Returns the number of shares held by each person in that department"""

Initialize total shares to 0
totalShares = 0
Sum the shares of each <Person> within the deparment
for elemPerson in getChildElemsWithName(elemDepartment,'Person'):

198 Python Interface Example-Script 01: Process XML

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

elemShares = getChildElemsWithName(elemPerson,'Shares')
<Shares> element is optional, thus we need to check for its existence
if len(elemShares):

Get the value of the <Shares> element, convert it to an integer and
add it to the total sum
totalShares += int(getElemTextValue(elemShares[0]))

return totalShares

def calcSharesPerDepartment(instance):

"""Return a map containing the number of shares held by the persons in each
department"""

Get XML root element
elemOrgChart = instance.document.document_element
Check if the root element is <OrgChart>
if not elemOrgChart or elemOrgChart.local_name != 'OrgChart' or
elemOrgChart.namespace_name != 'http://www.xmlspy.com/schemas/orgchart':

Otherwise raise error
raise Error('This script must be used with a valid OrgChart instance!')

mapSharesPerDepartment = {}
Go through each <Department> in each <Office> and set the number of shares
held by each person in that department
for elemOffice in getChildElemsWithName(elemOrgChart,'Office'):

for elemDepartment in getChildElemsWithName(elemOffice,'Department'):
mapSharesPerDepartment[getDepartmentName(elemDepartment)] =
getDepartmentTotalShares(elemDepartment)

return mapSharesPerDepartment

def writeSummary(mapSharesPerDepartment,filename):

"""Write a summary containing the number of shares for each department to the
give filename"""

Open file for writing
f = open(filename,'w')
f.write('<html><title>Summary</title><body><table border="1">\n')
f.write('<tr><th>Department</th><th>Shares</th></tr>\n')
Generate a table row for each department with the deparment's name and its
total number of shares
for name,shares in sorted(mapSharesPerDepartment.items()):

f.write('<tr><td>%s</td><td>%d</td></tr>\n'%(name,shares))
f.write('</table></body></html>\n')
Close file
f.close()

def on_xsi_valid(job,instance):

"""This method will be automatically called by RaptorXML after successful
validation of the XML instance"""

Create a 'summary.html' file in the job's ouptut directory (when run from

the CLI this will be the current working directory)
filename = os.path.join(job.output_dir,'summary.html')

© 2014 Altova GmbH

Example-Script 01: Process XML 199Python Interface

Altova RaptorXML+XBRL Server 2015

Calculate the number of shares per department and write a summary to
'summary.html'
writeSummary(calcSharesPerDepartment(instance),filename)
Register the newly generated 'summary.html' output file
job.append_output_filename(filename)

200 Python Interface Example-Script 01: Process XML

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.3.2 Result Document

Given below is a listing of the document summary.html produced by the Python script
sharesummary.py.

Filename: summary.html

<html><title>Summary</title><body>
 <table border="1">
 <tr><th>Department</th><th>Shares</th></tr>
 <tr><td>Administration</td><td>2500</td></tr>
 <tr><td>Engineering</td><td>5500</td></tr>
 <tr><td>IT & Technical Support</td><td>1750</td></tr>
 <tr><td>Marketing</td><td>3000</td></tr>
 <tr><td>Research & Development</td><td>5500</td></tr>
 </table>
</body></html>

© 2014 Altova GmbH

Example-Script 02: Re-format XML 201Python Interface

Altova RaptorXML+XBRL Server 2015

5.4 Example-Script 02: Re-format XML

The Python script in this example reformats the XML file NanonullOrg.xml (located in the

examples folder of the RaptorXML application folder). Each element is indented with tabs and
each attribute is placed on a separate line (which could make visual comparison using a
differencing tool easier). The output document is called output.xml.

The script is passed on the CLI with a command like this:

raptorxmlxbrl xsi --streaming=false --script=reformat.py NanonullOrg.xml

This section contains the following listings:

The annotated Python script
The result document produced by the script

202 Python Interface Example-Script 02: Re-format XML

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.4.1 Script Listing

The annotated Python script listed below (reformat.py) reformats the XML file NanonullOrg.xml

(located in the examples folder of the RaptorXML application folder). Each element is indented
with tabs and each attribute is placed on a separate line (which could make visual comparison
using a differencing tool easier). The output document is called output.xml.

The script can be passed on the CLI with a command like this:

raptorxmlxbrl xsi --streaming=false --script=reformat.py NanonullOrg.xml

Note: When using the --script option with the valxml-withxsd | xsi command, make sure
to specify --streaming=false. Otherwise a warning saying the script was not executed
is returned.

Filename: reformat.py

import os

from altova import xml, xsd

def writeCharacter(f,char,depth):

"""Output XML for the charater node"""

Ignore text nodes containing only whitespace characters
if not char.element_content_whitespace:

Write the text content
f.write("\t"*depth + char.character_code+'\n')

def writeComment(f,comment,depth):

"""Output XML for the comment node"""

Write the comment
f.write("\t"*depth + '<!-- '+comment.content+'-->\n')

def writeAttribute(f,attr,depth):

"""Output XML for the attribute node (on a separate line)"""

Look up prefix for the namespace in the inscope namespace map
prefix = None
if attr.namespace_name:

inscope = {}
for namespace in attr.owner_element.inscope_namespaces:

inscope[namespace.namespace_name] = namespace.prefix
prefix = inscope[attr.namespace_name]
if prefix:

prefix += ':'
if not prefix:

prefix = ''

Write the attribute with its value

© 2014 Altova GmbH

Example-Script 02: Re-format XML 203Python Interface

Altova RaptorXML+XBRL Server 2015

f.write("\t"*depth + "@"+prefix+attr.local_name+"=\""+attr.normalized_value
+"\"\n")

def writeNSAttribute(f,attr,depth):

"""Output XML for the namespace attribute node (on a separate line)"""

prefix = ""
if attr.local_name != 'xmlns':

prefix = 'xmlns:'

Write the namespace attribute with its value
f.write("\t"*depth + "@"+prefix+attr.local_name+"=\""+attr.normalized_value
+"\"\n")

def writeChildren(f,elem,depth):

"""Output XML for all the child nodes (indented by the given depth)"""

Iterate over all child nodes
for child in elem.children:

if isinstance(child,xml.Element):
writeElement(f,child,depth)

elif isinstance(child,xml.Comment):
writeComment(f,child,depth)

elif isinstance(child,xml.Character):
writeCharacter(f,child,depth)

def writeElement(f,elem,depth):

"""Output XML for the element node with all its child nodes (indented by the
given depth)"""

Look up prefix for the namespace in the inscope namespace map
prefix = None
if elem.namespace_name:

inscope = {}
for namespace in elem.inscope_namespaces:

inscope[namespace.namespace_name] = namespace.prefix
prefix = inscope[elem.namespace_name]
if prefix:

prefix += ':'
if not prefix:

prefix = ''

if len(list(elem.attributes)) + len(list(elem.namespace_attributes)) == 0:
Write complete start tag (without attributes)
f.write("\t"*depth + "<"+prefix+elem.local_name+'>\n')

else:
Write start tag without the closing '>'
f.write("\t"*depth + "<"+prefix+elem.local_name+'\n')

Write namespace attributes on separate lines
for attr in elem.namespace_attributes:
writeNSAttribute(f,attr,depth+1)
Write attributes on separate lines

204 Python Interface Example-Script 02: Re-format XML

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

for attr in elem.attributes:
writeAttribute(f,attr,depth+1)
Close the start tag
f.write("\t"*depth + ">\n")

Write all element's children
writeChildren(f,elem,depth+1)

Write end tag
f.write("\t"*depth + "</"+prefix+elem.local_name+">\n")

def writeInstance(instance,filename):

"""Ouptput XML for the given instance where each element is indented by tabs
and each attribute is placed on a separate line"""

Open output file
f = open(filename,'w')
Write the content of the XML instance document
writeChildren(f,instance.document,0)
Close output file
f.close()

def on_xsi_valid(job,instance):

"""This method will be automatically called by RaptorXML after successful
validation of the XML instance"""

Create a 'output.xml' file in the job's ouptut directory (when run from the
CLI this will be the current working directory)
filename = os.path.join(job.output_dir,'output.xml')
Write a reformatted version of the instance XML file where each attribute
is placed on a separate line
writeInstance(instance,filename)
Register the newly generated 'output.xml' output file
job.append_output_filename(filename)

© 2014 Altova GmbH

Example-Script 02: Re-format XML 205Python Interface

Altova RaptorXML+XBRL Server 2015

5.4.2 Result Document

Given below is a listing of the document output.xml produced by the Python script
reformat.py.

Filename: output.xml

<OrgChart

@xmlns="http://www.xmlspy.com/schemas/orgchart"

@xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

@xmlns:ipo2="http://www.altova.com/IPO"

@xmlns:ts="http://www.xmlspy.com/schemas/textstate"

@xsi:schemaLocation="http://www.xmlspy.com/schemas/orgchart OrgChart.xsd"
>

<CompanyLogo

@href="http://www.altova.com/nanonull.gif"

>

</CompanyLogo>

<Name>

Organization Chart

</Name>

<Office>

<Name>

Nanonull, Inc.

</Name>

<Desc>

<para>

The company was established

<Style

@css="font-weight: bold"

>

in Beverly in 1995

</Style>

 as a privately held software company. Since 1996,
Nanonull has been actively involved in developing nanoelectronic software
technologies. It released the first version of its acclaimed

<Style

@css="font-style: italic"

>

NanoSoft Development Suite

</Style>

 in February 1999. Also in 1999, Nanonull increased
its capital base with investment from a consortium of private investment firms.
The company has been expanding rapidly ever since.

</para>

<para>

Due to the fact that nanoelectronic software
components are new and that sales are restricted to corporate customers,
Nanonull and its product line have not received much media publicity in the
company's early years. This has however changed in recent months as trade
journals have realized the importance of this revolutionary technology.

</para>

206 Python Interface Example-Script 02: Re-format XML

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

</Desc>

<Location>

US

</Location>

<Address

@xsi:type="ipo2:US-Address"

>

<ipo2:street

@xmlns:ipo="http://www.altova.com/IPO"

>

900 Cummings Center

</ipo2:street>

<ipo2:city>

Boston

</ipo2:city>

<ipo2:state>

MA

</ipo2:state>

<ipo2:zip>

3234

</ipo2:zip>

</Address>

<Phone>

+1 (321) 555 5155 0

</Phone>

<Fax>

+1 (321) 555 5155 4

</Fax>

<EMail>

office@nanonull.com

</EMail>

<Department>

<Name>

Administration

</Name>

<Person

@union="fred"

>

<First>

Vernon

</First>

<Last>

Callaby

</Last>

<Title>

Office Manager

</Title>

<PhoneExt>

582

</PhoneExt>

<EMail>

v.callaby@nanonull.com

</EMail>

© 2014 Altova GmbH

Example-Script 02: Re-format XML 207Python Interface

Altova RaptorXML+XBRL Server 2015

<Shares>

1500

</Shares>

<LeaveTotal>

25

</LeaveTotal>

<LeaveUsed>

4

</LeaveUsed>

<LeaveLeft>

21

</LeaveLeft>

<union>

3

</union>

<list>

abc def

</list>

<bool>

true

</bool>

<idref>

fred

</idref>

<idrefs>

fred joe

</idrefs>

<entity>

myUnparsedEntity

</entity>

<notation>

Altova-Orgchart

</notation>

</Person>
 ...

</Department>
 ...

</Office>
 ...
</OrgChart>

208 Python Interface Example-Script 03: XBRL Report

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.5 Example-Script 03: XBRL Report

This Python script processes data in any XBRL taxonomy document. It creates an output
document called report.html that contains a a list of all concept items and tuples in the

taxonomy.

The script is passed on the CLI with a command like this:

raptorxmlxbrl dts --script=dtsreport.py AnyTaxonomy.xsd

This section contains the following listings:

The annotated Python script
The result document produced by the script

© 2014 Altova GmbH

Example-Script 03: XBRL Report 209Python Interface

Altova RaptorXML+XBRL Server 2015

5.5.1 Script Listing

The annotated Python script listed below processes data in any XBRL taxonomy document,
producing a list of all concept items and tuples in the taxonomy. The output document is called
report.html.

The script can be passed on the CLI with a command like this:

raptorxmlxbrl dts --script=dtsreport.py AnyTaxonomy.xsd

Filename: dtsreport.py

import os

from altova import xml, xsd, xbrl

def getBalance(item):

"""Return the balance as string for the given item concept"""

if item.balance == xbrl.Concept.DEBIT:
return 'Debit'

elif item.balance == xbrl.Concept.CREDIT:
return 'Credit'

else:
return 'None'

def getPeriodType(item):

"""Return the period type as string for the given item concept"""

if item.period_type == xbrl.Concept.INSTANT:
return 'Instant'

elif item.period_type == xbrl.Concept.DURATION:
return 'Duration'

else:
return 'None'

def getElemTextValue(elem):

"""Return the text content of an XML element"""

text = ''
Iterate through all child nodes and concatenate all character nodes
for child in elem.children:

if isinstance(child,xml.Character):
text += child.character_code

return text

def getLabel(concept):

"""Return the text of the first label connected to this concept"""

for label in concept.label_elements:
Return the text value for the first connected label element

210 Python Interface Example-Script 03: XBRL Report

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

return getElemTextValue(label)
If there are no labels connected to this concept return a non-breaking
space
return ' '

def writeItem(f,item):

"""Write some information about the item concept"""

f.write('<h3>'+item.qname.local_name+'</h3>\n')
f.write('<p><table border="1">\n')
f.write('<tr><td>Name</td><td>'+item.qname.local_name+'</td></tr>')
f.write('<tr><td>Namespace</td><td>'+item.qname.namespace_name+'</td></tr>')
f.write('<tr><td>Type</td><td>'+item.element_declaration.type_definition.name
+'</td></tr>')
f.write('<tr><td>Abstract</td><td>'+str(item.is_abstract())+'</td></tr>')
f.write('<tr><td>Nillable</td><td>'+str(item.is_nillable())+'</td></tr>')
f.write('<tr><td>Numeric</td><td>'+str(item.is_numeric())+'</td></tr>')
f.write('<tr><td>Balance</td><td>'+getBalance(item)+'</td></tr>')
f.write('<tr><td>Period Type</td><td>'+getPeriodType(item)+'</td></tr>')
f.write('<tr><td>Label</td><td>'+getLabel(item)+'</td></tr>')
f.write('</table></p>\n')

def writeTuple(f,tuple):

"""Write some information about the tuple concept"""

f.write('<h3>'+tuple.qname.local_name+'</h3>\n')
f.write('<p><table border="1">\n')
f.write('<tr><td>Name</td><td>'+tuple.qname.local_name+'</td></tr>')
f.write('<tr><td>Namespace</td><td>'+tuple.qname.namespace_name+'</td></tr>')
f.write('<tr><td>Abstract</td><td>'+str(tuple.is_abstract())+'</td></tr>')
f.write('<tr><td>Nillable</td><td>'+str(tuple.is_nillable())+'</td></tr>')
f.write('<tr><td>Label</td><td>'+getLabel(tuple)+'</td></tr>')
f.write('</table></p>\n')

def writeReport(dts,filename):

"""Write a report listing all the item and tuple concepts in the taxonomy"""

Open output file
f = open(filename,'w')
f.write('<html><title>Report</title><body>\n')
Write all item concepts
f.write('<h1><center>Item Concepts</center></h1>\n')
for item in dts.items:

writeItem(f,item)
Write all tuple concepts
f.write('<h1><center>Tuple Concepts</center></h1>\n')
for tuple in dts.tuples:

writeTuple(f,tuple)
f.write('</body></html>\n')
Close output file
f.close()

© 2014 Altova GmbH

Example-Script 03: XBRL Report 211Python Interface

Altova RaptorXML+XBRL Server 2015

def on_dts_valid(job,dts):

"""This method will be automatically called by RaptorXMLXBRL after successful
validation of the XBRL taxonomy"""

Create a 'report.html' file in the job's ouptut directory (when run from

the CLI this will be the current working directory)
filename = os.path.join(job.output_dir,'report.html')
Create report html document of the DTS taxonomy
writeReport(dts,filename)
Register the newly generated 'report.html' output file
job.append_output_filename(filename)

212 Python Interface Example-Script 03: XBRL Report

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.5.2 Result Document

Given below is a listing of the document summary.html produced by the Python script
dtsreport.py.

Filename: report.html

<html><title>Report</title><body>

<h1><center>Item Concepts</center></h1>

<h3>street</h3>
<p><table border="1">
<tr><td>Name</td><td>street</td></tr><tr><td>Namespace</td><td>http://
www.example.com/test</td></tr><tr><td>Type</td><td>stringItemType</td></
tr><tr><td>Abstract</td><td>False</td></tr><tr><td>Nillable</td><td>False</td></
tr><tr><td>Numeric</td><td>False</td></tr><tr><td>Balance</td><td>None</td></
tr><tr><td>Period Type</td><td>Instant</td></tr><tr><td>Label</td><td> </
td></tr></table></p>

<h3>city</h3>
<p><table border="1">
<tr><td>Name</td><td>city</td></tr><tr><td>Namespace</td><td>http://
www.example.com/test</td></tr><tr><td>Type</td><td>stringItemType</td></
tr><tr><td>Abstract</td><td>False</td></tr><tr><td>Nillable</td><td>False</td></
tr><tr><td>Numeric</td><td>False</td></tr><tr><td>Balance</td><td>None</td></
tr><tr><td>Period Type</td><td>Instant</td></tr><tr><td>Label</td><td> </
td></tr></table></p>

<h3>stateOrProvince</h3>
<p><table border="1">
<tr><td>Name</td><td>stateOrProvince</td></tr><tr><td>Namespace</td><td>http://
www.example.com/test</td></tr><tr><td>Type</td><td>stringItemType</td></
tr><tr><td>Abstract</td><td>False</td></tr><tr><td>Nillable</td><td>False</td></
tr><tr><td>Numeric</td><td>False</td></tr><tr><td>Balance</td><td>None</td></
tr><tr><td>Period Type</td><td>Instant</td></tr><tr><td>Label</td><td> </
td></tr></table></p>

<h3>country</h3>
<p><table border="1">
<tr><td>Name</td><td>country</td></tr><tr><td>Namespace</td><td>http://
www.example.com/test</td></tr><tr><td>Type</td><td>stringItemType</td></
tr><tr><td>Abstract</td><td>False</td></tr><tr><td>Nillable</td><td>False</td></
tr><tr><td>Numeric</td><td>False</td></tr><tr><td>Balance</td><td>None</td></
tr><tr><td>Period Type</td><td>Instant</td></tr><tr><td>Label</td><td> </
td></tr></table></p>

<h3>zipOrPostalCode</h3>
<p><table border="1">
<tr><td>Name</td><td>zipOrPostalCode</td></tr><tr><td>Namespace</td><td>http://
www.example.com/test</td></tr><tr><td>Type</td><td>stringItemType</td></
tr><tr><td>Abstract</td><td>False</td></tr><tr><td>Nillable</td><td>False</td></
tr><tr><td>Numeric</td><td>False</td></tr><tr><td>Balance</td><td>None</td></
tr><tr><td>Period Type</td><td>Instant</td></tr><tr><td>Label</td><td> </

© 2014 Altova GmbH

Example-Script 03: XBRL Report 213Python Interface

Altova RaptorXML+XBRL Server 2015

td></tr></table></p>

<h1><center>Tuple Concepts</center></h1>
<h3>address</h3>
<p><table border="1">
<tr><td>Name</td><td>address</td></tr><tr><td>Namespace</td><td>http://
www.example.com/test</td></tr><tr><td>Abstract</td><td>False</td></
tr><tr><td>Nillable</td><td>False</td></tr><tr><td>Label</td><td> </td></
tr></table></p>

<h3>anotherAddress</h3>
<p><table border="1">
<tr><td>Name</td><td>anotherAddress</td></tr><tr><td>Namespace</td><td>http://
www.example.com/test</td></tr><tr><td>Abstract</td><td>False</td></
tr><tr><td>Nillable</td><td>False</td></tr><tr><td>Label</td><td> </td></
tr></table></p>

</body></html>

214 Python Interface Python API: The Job Object

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.6 Python API: The Job Object

class Job

A Job class represents a validation job in RaptorXML.

The Job class provides the following instance attribute (read-only):

Job.output_dir

Returns a file url with the job’s output directory (when in server mode) otherwise the current
working directory.

Job.script_params

Returns a dict (a built-in Python data structure) with the user-specified script parameters (using
the --script-param option).

The Job class provides the following instance method:

Job.append_ouptput_filename(filename)

Adds an additional output filename to the list of the job’s output files. This list is shown in the
output on the command line, and in the job's result document returned via the HTTP interface.

https://docs.python.org/2/tutorial/datastructures.html#dictionaries

© 2014 Altova GmbH

Python XML API 215Python Interface

Altova RaptorXML+XBRL Server 2015

5.7 Python XML API

The xml module provides a Python interface for the XML Infoset specification. It uses the

underlying C++ Infoset implementation. This Python interface enables the user to navigate the
XML document tree and access information from any XML node.

Available types
The following types are available. They are described in detail in the sub-sections of this section.

class xml.Document
The Document class represents an XML document and exposes the properties of the Document
Information Item defined in the XML Infoset specification.

class xml.Element
The Element class represents an XML element and exposes the properties of the Element
Information Item defined in the XML Infoset specification.

class xml.Attribute
The Attribute class represents an XML attribute and exposes the properties of the Attribute
Information Item defined in the XML Infoset specification.

class xml.NSAttribute
The NSAttribute class represents an XML namespace attribute and exposes the properties of
the Attribute Information Item defined in the XML Infoset specification.

class xml.ProcessingInstruction
The ProcessingInstruction class represents an XML processing instruction and exposes the
properties of the Processing Instruction Information Item defined in the XML Infoset
specification.

class xml.UnexpandedEntityReference
The UnexpandedEntityReference class represents an unexpanded XML entity reference and
exposes the properties of the Unexpanded Entity Reference Information Item defined in the XML
Infoset specification.

class xml.Character
The Character class represents XML character data and exposes the properties of the
Character Information Item defined in the XML Infoset specification.

class xml.Comment
The Comment class represents an XML comment and exposes the properties of the Comment
Information Item defined in the XML Infoset specification.

class xml.UnparsedEntity
The UnparsedEntity class represents an unparsed XML entity and exposes the properties of
the Unparsed Entity Information Item defined in the XML Infoset specification.

class xml.Notation
The Notation class represents an XML notation and exposes the properties of the Notation

216 Python Interface Python XML API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Information Item defined in the XML Infoset specification.

class xml.Namespace
The Namespace class represents an XML namespace binding and exposes the properties of the
Namespace Information Item defined in the XML Infoset specification.

class xml.QName
The QName class represents an XML qualified name.

© 2014 Altova GmbH

Python XML API 217Python Interface

Altova RaptorXML+XBRL Server 2015

5.7.1 xml.Attribute

class xml.Attribute

An Attribute object represents an XML attribute information item. It represents only normal XML
attributes, not special namespace binding XML attributes. It provides the following instance
attributes (read-only):

Attribute.namespace_name

The namespace name, if any, of the attribute. Otherwise, this attribute is None.

Attribute.local_name

The local part of the attribute name. This does not include any namespace prefix or following
colon.

Attribute.prefix

The namespace prefix part of the attribute name. If the name is unprefixed, this attribute is
None.

Attribute.normalized_value

The normalized attribute value.

Attribute.specified

A flag indicating whether this attribute was actually specified in the start-tag of its element, or
was defaulted from the DTD.

Attribute.owner_element

The element information item which contains this information item in its attributes attribute.

218 Python Interface Python XML API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.7.2 xml.Character

class xml.Character

A Character object represents XML character information items. It provides the following instance
attributes (read-only):

Character.character_code

A string representing all merged adjecent character information item’s code points.

Character.element_content_whitespace

A boolean indicating whether the character is white space appearing within element content.

Character.parent

The element information item which contains this information item in its children attribute.

© 2014 Altova GmbH

Python XML API 219Python Interface

Altova RaptorXML+XBRL Server 2015

5.7.3 xml.Comment

class xml.Comment

A Comment object represents a XML comment information item. It provides the following instance
attributes (read-only):

Comment.content

A string representing the content of the comment.

Comment.parent

The document or element information item which contains this information item in its children
attribute.

220 Python Interface Python XML API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.7.4 xml.Document

class xml.Document

A Document object represents an XML document information item. It provides the following
instance attributes (read-only):

Document.children

An ordered list of child information items, in document order. The list contains exactly one
element information item. The list also contains one processing instruction information item for
each processing instruction outside the document element, and one comment information item
for each comment outside the document element. Processing instructions and comments
within the DTD are excluded. If there is a document type declaration, the list also contains a
document type declaration information item.

Document.document_element

The element information item corresponding to the document element.

Document.notations

An unordered set of notation information items, one for each notation declared in the DTD.

Document.unparsed_entities

An unordered set of unparsed entity information items, one for each unparsed entity declared in
the DTD.

Document.base_URI

The base URI of the document entity.

Document.character_encoding_scheme

The name of the character encoding scheme in which the document entity is expressed.

Document.standalone

An indication of the standalone status of the document, either True or False. This attribute is
derived from the optional standalone document declaration in the XML declaration at the
beginning of the document entity, and returns None if there is no standalone document
declaration.

Document.version

A string representing the XML version of the document. This attribute is derived from the XML
declaration optionally present at the beginning of the document entity, and is None if there is no
XML declaration.

© 2014 Altova GmbH

Python XML API 221Python Interface

Altova RaptorXML+XBRL Server 2015

5.7.5 xml.Element

class xml.Element

An Element object represents an XML element information item. It provides the following instance
attributes (read-only):

Element.namespace_name

The namespace name, if any, of the element type. If the element does not belong to a
namespace, this attribute is None.

Element.local_name

The local part of the element-type name. This does not include any namespace prefix or
following colon.

Element.prefix

The namespace prefix part of the element-type name. If the name is unprefixed, this attribute is
None.

Element.children

An ordered list of child information items, in document order. This list contains element,
processing instruction, unexpanded entity reference, character, and comment information
items, one for each element, processing instruction, reference to an unprocessed external
entity, data character, and comment appearing immediately within the current element. If the
element is empty, this list has no members.

Element.attributes

An unordered set of attribute information items, one for each of the attributes (specified or
defaulted from the DTD) of this element. Namespace declarations do not appear in this set. If
the element has no attributes, this set has no members.

Element.namespace_attributes

An unordered set of attribute information items, one for each of the namespace declarations
(specified or defaulted from the DTD) of this element. Declarations of the form xmlns="" and
xmlns:name="", which undeclare the default namespace and prefixes respectively, count as
namespace declarations. Prefix undeclaration was added in Namespaces in XML 1.1. By
definition, all namespace attributes (including those named xmlns, whose prefix attribute has
no value) have a namespace URI of http://www.w3.org/2000/xmlns/. If the element has no
namespace declarations, this set has no members.

Element.inscope_namespaces

An unordered set of namespace information items, one for each of the namespaces in effect for
this element. This set always contains an item with the prefix xml which is implicitly bound to
the namespace name http://www.w3.org/XML/1998/namespace. It does not contain an item
with the prefix xmlns (used for declaring namespaces), since an application can never
encounter an element or attribute with that prefix. The set will include namespace items
corresponding to all of the members of namespace_attributes, except for any representing
declarations of the form xmlns="" or xmlns:name="", which do not declare a namespace but
rather undeclare the default namespace and prefixes. When resolving the prefixes of qualified
names this attribute should be used in preference to the namespace_attributes attribute

Element.base_URI

222 Python Interface Python XML API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

The base URI of the element.

Element.parent

The document or element information item which contains this information item in its children
attribute.

© 2014 Altova GmbH

Python XML API 223Python Interface

Altova RaptorXML+XBRL Server 2015

5.7.6 xml.Namespace

class xml.Namespace(prefix, namespace_name)

A Namespace object represents an XML namespace binding and constructs an object of class
Namespace. All arguments are required. The Namespace class provides the following instance
attributes:

Namespace.prefix

The prefix whose binding this item describes. Syntactically, this is the part of the attribute
name following the xmlns: prefix. If the attribute name is simply xmlns, so that the declaration
is of the default namespace, this attribute is None.

Namespace.namespace_name

The namespace name to which the prefix is bound.

224 Python Interface Python XML API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.7.7 xml.Notation

class xml.Notation

A Notation object represents an XML notation information item. It provides the following instance
attributes (read-only):

Notation.name

The name of the notation.

Notation.system_identifier

The system identifier of the notation, as it appears in the declaration of the notation. If no
system identifier was specified, this attribute is None.

Notation.public_identifier

The public identifier of the notation. If the notation has no public identifier, this attribute is None.

Notation.declaration_base_URI

The base URI relative to which the system identifier should be resolved.

© 2014 Altova GmbH

Python XML API 225Python Interface

Altova RaptorXML+XBRL Server 2015

5.7.8 xml.NSAttribute

class xml.NSAttribute

An NSAttribute object represents only special namespace binding XML attribute information
item. It provides the following instance attributes (read-only):

NSAttribute.namespace_name

The namespace name which is always http://www.w3.org/2000/xmlns/.

NSAttribute.local_name

The local part of the attribute name. This does not include any namespace prefix or following
colon.

NSAttribute.prefix

The namespace prefix part of the attribute name. If the name is unprefixed, this attribute is
None.

NSAttribute.normalized_value

The normalized attribute value.

NSAttribute.specified

A flag indicating whether this attribute was actually specified in the start-tag of its element, or
was defaulted from the DTD.

NSAttribute.owner_element

The element information item which contains this information item in its attributes attribute.

226 Python Interface Python XML API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.7.9 xml.ProcessingInstruction

class xml.ProcessingInstruction

A ProcessingInstruction object represents an XML processing instruction information item. It
provides the following instance attributes (read-only):

ProcessingInstruction.target

A string representing the target part of the processing instruction.

ProcessingInstruction.content

A string representing the content of the processing instruction, excluding the target and any
white space immediately following it. If there is no such content, the value of this attribute will
be an empty string.

ProcessingInstruction.parent

The document, element, or document type declaration information item which contains this
information item in its children attribute.

© 2014 Altova GmbH

Python XML API 227Python Interface

Altova RaptorXML+XBRL Server 2015

5.7.10 xml.QName

class xml.QName(local_name, namespace_name)

A QName object represents a XML qualified name and constructs an object of class QName. All
arguments are required. The QName class provides the following instance attributes:

QName.local_name

The local name part of the qualified name.

QName.namespace_name

The namespace name part of the qualified name.

228 Python Interface Python XML API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.7.11 xml.UnexpandedEntityReference

class xml.UnexpandedEntityReference

An UnexpandedEntityReference object represents an unexpanded XML entity reference
information item. It provides the following instance attributes (read-only):

UnexpandedEntityReference.name

The name of the entity referenced.

UnexpandedEntityReference.parent

The element information item which contains this information item in its children attribute.

© 2014 Altova GmbH

Python XML API 229Python Interface

Altova RaptorXML+XBRL Server 2015

5.7.12 xml.UnparsedEntity

class xml.UnparsedEntity

An UnparsedEntity object represents an unparsed XML entity information item. It provides the
following instance attributes (read-only):

UnparsedEntity.name

The name of the entity.

UnparsedEntity.system_identifier

The system identifier of the entity, as it appears in the declaration of the entity.

UnparsedEntity.public_identifier

The public identifier of the entity. If the entity has no public identifier, this attribute is None.

UnparsedEntity.declaration_base_URI

The base URI relative to which the system identifier should be resolved.

UnparsedEntity.notation_name

The notation name associated with the entity

UnparsedEntity.notation

The notation information item named by the notation name. If there is no declaration for a
notation with that name, this attribute is None.

230 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8 Python XSD API

The xsd module provides a Python interface for the C++ implementation of the XML Schema data

model layer. This Python interface enables the user to navigate and access the XML Schema
document and the Post Schema Validation Infoset (PSVI).

Available types
The following types are available. They are described in detail in the sub-sections of this section.

class xsd.Annotation
The Annotation class represents represents human- and machine-targeted annotations of
schema components.

class xsd.Any
An Any class provides for validation of attribute and element information items dependent on
their namespace names and optionally on their local names.

class xsd.AnyAttribute
An AnyAttribute class provides for validation of attribute information items dependent on their
namespace names and optionally on their local names.

class xsd.Assertion
The Assertion class constrains the existence and values of related elements and attributes.

class xsd.AttributeDeclaration
An AttributeDeclaration class provides for: (i) local validation of attribute information item
values using a simple type definition, and (ii) specifying default or fixed values for attribute
information items.

class xsd.AttributeGroupDefinition
An AttributeGroupDefinition class does not participate in validation as such, but
constructs one or more complex type definitions in whole or part. Attribute groups are identified
by their name and target namespace. They must be unique within an XSD schema.

class xsd.AttributePSVI
The AttributePSVI class contains PSVI information about an attribute.

class xsd.AttributeUse
The AttributeUse class represents represents human- and machine-targeted annotations of
schema components.

class xsd.Block
The Block class is part of the definition of an element declaration in the schema.

class xsd.ComplexTypeDefinition
A ComplexTypeDefinition class defines the properties of a complex type through its instance
attributes.

class xsd.ContentType

© 2014 Altova GmbH

Python XSD API 231Python Interface

Altova RaptorXML+XBRL Server 2015

A ContentType class specifies the element's content type.

class xsd.Defined
The Defined class represents a keyword member of the set of values allowed for the
disallowed_names attribute of NamespaceConstraint.

class xsd.DerivationMethod
A DerivationMethod class provides information about the derivation method.

class xsd.ENTITY
The ENTITY class represents the ENTITY attribute type of XML.

class xsd.ElementDeclaration
The ElementDeclaration class provides for: (i) Local validation of element information item
values using a type definition; (ii) Specifying default or fixed values for element information
items; (iii) Establishing uniquenesses and reference constraint relationships among the values
of related elements and attributes; (iv) Controlling the substitutability of elements through the
mechanism of element substitution groups.

class xsd.ElementPSVI
If the schema-validity of an element information item has been assessed, then the PSVI
properties are returned in instance attributes of the ElementPSVI class.

class xsd.Final
A complex type with an empty specification for Final can be used as a base type definition for
other types derived by either of extension or restriction; the explicit values extension and
restriction prevent further derivations by extension and restriction respectively. If all values
are specified, then the complex type is said to be final, because no further derivations are
possible.

class xsd.ID
The ID class represents the ID attribute type of XML.

class xsd.IDREF
The IDREF class represents represents a sequence of ID attribute types of XML.

class xsd.ID_IDREF_binding
The ID_IDREF_binding class represents a binding between ID and IDREF.

class xsd.ID_IDREF_table
The ID_IDREF_table class represents a set of ID-IDREF mappings.

class xsd.IdentityConstraintDefinition
The IdentityConstraintDefinition class provides for uniqueness and reference constraints
with respect to the contents of multiple elements and attributes.

class xsd.Instance
The Instance class represents the instance document.

class xsd.ModelGroup
The ModelGroup class specifies a sequential (sequence), disjunctive (choice) or conjunctive
(all) interpretation of it particles attribute.

232 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

class xsd.ModelGroupDefinition
A ModelGroupDefinition class is identified by its name and target namespace. Model group
identities must be unique within an XSD schema. Model group definitions do not participate in
validation, but the term of a Particle may correspond in whole or in part to a ModelGroup from
a ModelGroupDefinition. The model_group instance attribute is the ModelGroup for which
ModelGroupDefinition provides a name.

class xsd.NCName
The NCName class represents a non-colonized name.

class xsd.NMTOKEN
The NMTOKEN class represents the NMTOKEN attribute type from XML.

class xsd.NOTATION
The NOTATION class represents the NOTATION attribute type from XML.

class xsd.Name
The Name class represents an XML name.

class xsd.NamespaceBinding
The NamespaceBinding class provides the binding of a namespace to a prefix.

class xsd.NamespaceConstraint
The NamespaceConstraint class provides for validation of attribute and element items that are
selected according to the specified constraint.

class xsd.NotationDeclaration
A NotationDeclaration class specifies a valid element or attribute value. Notation
declarations do not participate in validation as such. They are referenced in the course of
validating strings as members of the NOTATION simple type. An element or attribute information
item with its governing type definition or its validating type derived from the NOTATION simple
type is valid only if its value was among the enumerations of such simple type. As a
consequence such a value is required to be the name of a notation declaration.

class xsd.OpenContent
An OpenContent property record. Optional if variety is element-only or mixed, otherwise must
be absent.

class xsd.PSVI
The PSVI class provides element and attribute schema-validity assessment.

class xsd.Particle
A Particle class contains the components which it either directly contains or indirectly
contains. It directly contains the component which is the value of its term attribute. It indirectly
contains the particles, groups, wildcards, and element declarations which are contained by the
value of its term property.

class xsd.QName
The QName class represents an XML qualified name.

class xsd.Schema
The schema class contains a collection of schema components, e.g. type definitions and
element declarations, which have a common target namespace.

© 2014 Altova GmbH

Python XSD API 233Python Interface

Altova RaptorXML+XBRL Server 2015

class xsd.Scope
The Scope class represents a Scope property record. Required.

class xsd.Sibling
The Sibling class represents a keyword member of the set of values allowed for the
disallowed_names attribute of NamespaceConstraint.

class xsd.SimpleTypeDefinition
The SimpleTypeDefinition class represents simple types identified by their name and target
namespace attributes.

class xsd.TypeAlternative
The TypeAlternative class is used by an ElementDeclaration to specify a condition (test)
under which a particular type (type_definition) is used as the governing type definition for
element information items governed by that ElementDeclaration. Each
ElementDeclarationmay have multiple Type Alternatives in its TypeTable.

class xsd.TypeTable
The type definition against which an element information item is validated (its governing type
definition) can be different from the declared type definition}. The TypeTable property of an
ElementDeclaration, which governs conditional type assignment, and the xsi:type attribute
of an element information item can cause the governing type definition and the declared type
definition to be different.

class xsd.Unbounded

The Unbounded class is a string value. It represents the upper value of the maxOccurs property.

class xsd.ValueConstraint
The ValueConstraint class represents a property of the AttributeUse class.

class xsd.XPathExpression
To check an assertion, an instance of the XPath 2.0 data model is constructed, in which the
element information item being assessed is the (parentless) root node, and elements and
attributes are assigned types and values according to XPath 2.0 data model construction rules.
When evaluated against this data model instance, test evaluates to either True or False.

Special Built-in Datatype Objects
anyAtomicType
anySimpleType

anyURI

String Datatype Objects
language
normalizedString
string
token

Boolean Datatype Object
boolean

Number Datatype Objects
byte

234 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

decimal
double
float
int
integer
long
negativeInteger
nonNegativeInteger
nonPositiveInteger
positiveInteger
short
unsignedByte
unsignedInt
unsignedLong
unsignedShort

Duration Datatype Objects
dayTimeDuration
duration

yearMonthDuration

Date and Time Datatype Objects
date
dateTime
dateTimeStamp
gDay
gMonth
gYear
gYearMonth
time

Binary Datatype Objects
base64Binary

hexBinary

Facet Objects
assertionsFacet
enumerationFacet
fractionDigitsFacet
lengthFacet
maxExclusiveFacet
maxInclusiveFacet
maxLengthFacet
minExclusiveFacet
minInclusiveFacet
minLengthFacet
pattern
totalDigitsFacet

© 2014 Altova GmbH

Python XSD API 235Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.1 xsd.Annotation

class xsd.Annotation

An Annotation class represents human- and machine-targeted annotations of schema
components. Go to description.

The Annotation class provides the following instance attributes (read-only)

Annotation.application_information

A sequence of Element information items intended for automatic processing

Annotation.user_information

A sequence of Element information items intended for human consumption.

http://www.w3.org/TR/xmlschema11-1/#Annotation_details

236 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8.2 xsd.Any

class xsd.Any

An Any class provides for validation of attribute and element information items dependent on their
namespace names and optionally on their local names. Go to description.

The Any class provides the following constants:

Any.SKIP

No constraints at all: the item must simply be well-formed XML.

Any.STRICT

There must be a top-level declaration for the item available, or the item must have an xsi:type,
and the item must be valid as appropriate.

Any.LAX

If the item has a uniquely determined declaration available, it must be valid with respect to that
declaration. This means: validate if possible, otherwise no need to validate.

The Any class provides the following instance attributes (read-only):

Any.annotations

A sequence of Annotation components.

Any.namespace_constraint

A Namespace Constraint property record. Required.

Any.process_contents

Controls the impact on assessment of the information items allowed by wildcards. Takes one
of SKIP, STRICT, LAX. Required.

http://www.w3.org/TR/xmlschema11-1/#Wildcard_details

© 2014 Altova GmbH

Python XSD API 237Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.3 xsd.AnyAttribute

class xsd.AnyAttribute

An AnyAttribute class provides for validation of attribute information items dependent on their
namespace names and optionally on their local names. Go to description.

The AnyAttribute class provides the following constants:

Any.SKIP

No constraints at all: the item must simply be correct XML.

Any.STRICT

There must be a top-level declaration for the item available, or the item must have an xsi:type,
and the item must be valid as appropriate.

Any.LAX

If the item has a uniquely determined declaration available, it must be valid with respect to that
declaration. This means: validate if possible, otherwise no need to validate.

The AnyAttribute class provides the following instance attributes (read-only):

AnyAttribute.annotations

A sequence of Annotation components.

AnyAttribute.namespace_constraint

A Namespace Constraint property record. Required.

AnyAttribute.process_contents

Controls the impact on assessment of the information items allowed by wildcards. Takes one
of SKIP, STRICT, LAX. Required.

http://www.w3.org/TR/xmlschema11-1/#Wildcard_details

238 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8.4 xsd.Assertion

class xsd.Assertion

An Assertion class constrains the existence and values of related elements and attributes. Go
to description.

The Assertion class provides the following instance attributes (read-only):

Assertion.annotations

A sequence of Annotation components.

Assertion.test

An XPath Expression property record. Required.

http://www.w3.org/TR/xmlschema11-1/#Assertion_details
http://www.w3.org/TR/xmlschema11-1/#Assertion_details

© 2014 Altova GmbH

Python XSD API 239Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.5 xsd.AttributeDeclaration

class xsd.AttributeDeclaration

An AttributeDeclaration class provides for: (i) local validation of attribute information item
values using a simple type definition, and (ii) specifying default or fixed values for attribute
information items. Go to description.

The AttributeDeclaration class provides the following instance attributes (read-only):

AttributeDeclaration.annotations

A sequence of Annotation components.

AttributeDeclaration.name

An xs:NCName value. Required.

AttributeDeclaration.target_namespace

An xs:anyURI value. Optional.

AttributeDeclaration.type_definition

A Simple Type Definition component. Required.

AttributeDeclaration.scope

A Scope property record. Required.

AttributeDeclaration.value_constraint

A Value Constraint property record. Optional.

AttributeDeclaration.inheritable

An xs:boolean value. Required.

http://www.w3.org/TR/xmlschema11-1/#ad

240 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8.6 xsd.AttributeGroupDefinition

class xsd.AttributeGroupDefinition

An AttributeGroupDefinition class does not participate in validation as such, but constructs
one or more complex type definitions in whole or part. Attribute groups are identified by their name
and target namespace. They must be unique within an XSD schema. Go to description.

The AttributeGroupDefinition class provides the following instance attributes (read-only):

AttributeGroupDefinition.annotations

A sequence of Annotation components.

AttributeGroupDefinition.name

An xs:NCName value. Required.

AttributeGroupDefinition.target_namespace

An xs:anyURI value. Optional.

AttributeGroupDefinition.attribute_uses

A set of Attribute Use components.

AttributeGroupDefinition.attribute_wildcard

A Wildcard component. Optional.

http://www.w3.org/TR/xmlschema11-1/#agd

© 2014 Altova GmbH

Python XSD API 241Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.7 xsd.AttributePSVI

class xsd.AttributePSVI

The AttributePSVI class contains PSVI information about an attribute. Go to description.

The AttributePSVI class provides the following instance attributes (read-only):

AttributePSVI.validity

The appropriate case among the following: if strictly assessed and locally valid, then valid; if
strictly assessed and locally invalid, then invalid; otherwise notKnown.

AttributePSVI.validation_attempted

The appropriate case among the following: if strictly assessed, then full; otherwise none.

AttributePSVI.attribute_declaration

An item isomorphic to the governing type definition component.

AttributePSVI.schema_normalized_value

If the attribute's normalized value is valid with respect to the governing type definition, then the
normalized value as validated, otherwise absent.

AttributePSVI.schema_actual_value

If the schema normalized value is not absent, then the corresponding actual value, otherwise
absent.

AttributePSVI.type_definition

An item isomorphic to the governing type definition component.

AttributePSVI.type_definition_type

simple.

AttributePSVI.type_definition_namespace

The target namespace of the type definition.

AttributePSVI.type_definition_anonymous

True if the name of the type definition is absent, otherwise False.

AttributePSVI.type_definition_name

The name of the type definition, if the name is not absent. If the type definition's name property is
absent, then schema processors may, but need not, provide a value which uniquely identifies
this type definition among those with the same target namespace.

AttributePSVI.member_type_definition

An item isomorphic to the validating type of the schema actual value

AttributePSVI.member_type_definition_namespace

The target namespace of the validating type.

AttributePSVI.member_type_definition_anonymous

True if the name of the validating type is absent, otherwise False.

http://www.w3.org/TR/xmlschema11-1/#cvc-assess-attr

242 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

AttributePSVI.member_type_definition_name

The name of the validating type, if it is not absent.

AttributePSVI.member_type_definitions

A sequence of Simple Type Definition components with the same length as the schema actual
value, each one an item isomorphic to the validating type of the corresponding item in the
schema actual value.

© 2014 Altova GmbH

Python XSD API 243Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.8 xsd.AttributeUse

class xsd.AttributeUse

An AttributeUse class is a utility component which controls the occurrence and defaulting
behavior of attribute declarations. It plays the same role for attribute declarations in complex types
that particles play for element declarations. Go to description.

The AttributeUse class provides the following instance attributes (read-only):

AttributeUse.annotations

A sequence of Annotation components.

AttributeUse.required

An xs:boolean value. Required.

AttributeUse.attribute_declaration

An AttributeDeclaration component. Required.

AttributeUse.value_constraint

A ValueConstraint property record. Optional.

AttributeUse.inheritable

An xs:boolean value. Required.

http://www.w3.org/TR/xmlschema11-1/#AU_details

244 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8.9 xsd.Block

class xsd.Block

Part of the definition of an element declaration in the schema. Required. Go to description.

The Block class provides the following constants:

Block.NONE

Block.EXTENSION

Block.RESTRICTION

Block.SUBSTITUTION

http://www.w3.org/TR/xmlschema11-1/#declare-element

© 2014 Altova GmbH

Python XSD API 245Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.10 xsd.ComplexTypeDefnition

class xsd.ComplexTypeDefinition

A ComplexTypeDefinition class defines the properties of a complex type through its instance
attributes (listed below). Go to description.

The ComplexTypeDefinition class provides the following instance attributes (read-only):

ComplexTypeDefinition.annotations

A sequence of Annotation components.

ComplexTypeDefinition.name

An xs:NCName value. Optional.

ComplexTypeDefinition.target_namespace

An xs:anyURI value. Optional.

ComplexTypeDefinition.base_type_definition

A type definition component. Required.

ComplexTypeDefinition.final

A subset of {extension, restriction}.

ComplexTypeDefinition.context

Required if name instance attribute (see above) is absent. Otherwise must be absent. Either an
ElementDeclaration or a ComplexTypeDefinition.

ComplexTypeDefinition.derivation_method

One of {extension, restriction}. Required.

ComplexTypeDefinition.abstract

An xs:boolean value. Required.

ComplexTypeDefinition.attribute_uses

A set of AttributeUse components.

ComplexTypeDefinition.attribute_wildcard

A Wildcard component. Optional.

ComplexTypeDefinition.content_type

A ContentType property record. Required.

ComplexTypeDefinition.prohibited_substitutions

A subset of {extension, restriction}.

ComplexTypeDefinition.assertions

A sequence of Assertion components.

http://www.w3.org/TR/xmlschema11-1/#ctd
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#

246 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8.11 xsd.ContentType

class xsd.ContentType

A ContentType class specifies the element's content type. Go to description

The ContentType class provides the following constants:

ContentType.EMPTY

ContentType.SIMPLE

ContentType.ELEMENT_ONLY

ContentType.MIXED

The ContentType class provides the following instance attributes (read-only):

ContentType.variety

One of {empty, simple, element-only, mixed}. Required.

ContentType.particle

A Particle component. Required if {variety} is element-only or mixed, otherwise must be
absent.

ContentType.open_content

An OpenContent property record. Optional if {variety} is element-only or mixed, otherwise
must be absent.

ContentType.simple_type_definition

A SimpleTypeDefinition component. Required if {variety} is simple, otherwise must be
absent.

http://www.w3.org/TR/xmlschema11-1/#ct

© 2014 Altova GmbH

Python XSD API 247Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.12 xsd.Defined

class xsd.Defined

The Defined class represents a keyword member of the set of values allowed for the
disallowed_names attribute of NamespaceConstraint. Go to description.

The Defined class provides the following instance method:

Defined.__str__()

http://www.w3.org/TR/xmlschema11-1/#Wildcard_details

248 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8.13 xsd.DerivationMethod

class xsd.DerivationMethod

A DerivationMethod class provides information about the derivation method. Go to description.

The DerivationMethod class provides the following constants:

DerivationMethod.NONE

DerivationMethod.RESTRICTION

DerivationMethod.EXTENSION

DerivationMethod.LIST

DerivationMethod.UNION

http://www.w3.org/TR/xmlschema11-1/#ctd-derivation_method

© 2014 Altova GmbH

Python XSD API 249Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.14 xsd.ENTITY

class xsd.ENTITY

Represents the ENTITY attribute type of XML. Go to description.

The ENTITY class provides the following instance attributes (read-only):

ENTITY.value

A string that provides the value of the entity.

http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#ENTITY

250 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8.15 xsd.ElementDeclaration

class xsd.ElementDeclaration

Element declarations provide for: (i) Local validation of element information item values using a
type definition; (ii) Specifying default or fixed values for element information items; (iii) Establishing
uniquenesses and reference constraint relationships among the values of related elements and
attributes; (iv) Controlling the substitutability of elements through the mechanism of element
substitution groups. Go to description.

The ElementDeclaration class provides the following instance attributes (read-only):

ElementDeclaration.annotations

A sequence of Annotation components.

ElementDeclaration.name

An xs:NCName value. Required.

ElementDeclaration.target_namespace

An xs:anyURI value. Optional.

ElementDeclaration.type_definition

A Type Definition component. Required.

ElementDeclaration.type_table

A TypeTable property record. Optional.

ElementDeclaration.scope

A Scope property record. Required.

ElementDeclaration.value_constraint

A ValueConstraint property record. Optional.

ElementDeclaration.nillable

An xs:boolean value. Required.

ElementDeclaration.identity_constraint_definitions

A set of IdentityConstraintDefinition components.

ElementDeclaration.substitution_group_affiliations

A set of ElementDeclaration components.

ElementDeclaration.substitution_group_exclusions

A subset of {extension, restriction}.

ElementDeclaration.disallowed_substitutions

A subset of {substitution, extension, restriction}.

ElementDeclaration.abstract

An xs:boolean value. Required.

http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/structures.html#ed

© 2014 Altova GmbH

Python XSD API 251Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.16 xsd.ElementPSVI

class xsd.ElementPSVI

If the schema-validity of an element information item has been assessed, then the PSVI
properties are returned in instance attributes of the class. Go to description.

The ElementPSVI class provides the following instance attributes (read-only):

ElementPSVI.validity

One of valid, invalid, or notKNown. Go to description for details.

ElementPSVI.validation_attempted

One of full, none, or partial. Go to description for details.

ElementPSVI.element_declaration

An item isomorphic to the governing declaration component itself.

ElementPSVI.nil

A value of True if clause 3.2.3 of Element Locally Valid (Element) is satisfied, otherwise False.

ElementPSVI.schema_normalized_value

If a governing type definition is known for an element information item, then in the post-schema-
validation infoset the value of the item. See Element information items.

ElementPSVI.schema_actual_value

If a governing type definition is known for an element information item, then in the post-schema-
validation infoset the value of the item. See Element information items.

ElementPSVI.type_definition

If a governing type definition is known for an element information item, then in the post-schema-
validation infoset the value of the item. See Element information items.

ElementPSVI.type_definition_type

If a governing type definition is known for an element information item, then in the post-schema-
validation infoset the value of the item. See Element information items.

ElementPSVI.type_definition_namespace

If a governing type definition is known for an element information item, then in the post-schema-
validation infoset the value of the item. See Element information items.

ElementPSVI.type_definition_anonymous

If a governing type definition is known for an element information item, then in the post-schema-
validation infoset the value of the item. See Element information items.

ElementPSVI.type_definition_name

If a governing type definition is known for an element information item, then in the post-schema-
validation infoset the value of the item. See Element information items.

ElementPSVI.member_type_definition

If a governing type definition is known for an element information item, then in the post-schema-
validation infoset the value of the item. See Element information items.

http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/structures.html#edisc
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/structures.html#edisc
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/structures.html#edisc
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/structures.html#c-nl-11
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/structures.html#sec-sic-eltType
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/structures.html#sec-sic-eltType
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/structures.html#sec-sic-eltType
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/structures.html#sec-sic-eltType
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/structures.html#sec-sic-eltType
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/structures.html#sec-sic-eltType
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/structures.html#sec-sic-eltType
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/structures.html#sec-sic-eltType

252 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

ElementPSVI.member_type_definition_namespace

If a governing type definition is known for an element information item, then in the post-schema-
validation infoset the value of the item. See Element information items.

ElementPSVI.member_type_definition_anonymous

If a governing type definition is known for an element information item, then in the post-schema-
validation infoset the value of the item. See Element information items.

ElementPSVI.member_type_definition_name

If a governing type definition is known for an element information item, then in the post-schema-
validation infoset the value of the item. See Element information items.

ElementPSVI.member_type_definitions

If a governing type definition is known for an element information item, then in the post-schema-
validation infoset the value of the item. See Element information items.

ElementPSVI.inherited_attributes

A list of inherited attribute information items. Inheritance is described here.

http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/structures.html#sec-sic-eltType
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/structures.html#sec-sic-eltType
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/structures.html#sec-sic-eltType
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/structures.html#sec-sic-eltType
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/structures.html#Inherited_attributes

© 2014 Altova GmbH

Python XSD API 253Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.17 xsd.Final

class xsd.Final

A complex type with an empty specification for Final can be used as a base type definition for
other types derived by either of extension or restriction; the explicit values extension and
restriction prevent further derivations by extension and restriction respectively. If all values are
specified, then the complex type is said to be final, because no further derivations are possible.
Go to description.

The Final class provides the following constants:

Final.NONE

Final.EXTENSION

Final.RESTRICTION

Final.LIST

Final.UNION

http://www.w3.org/TR/xmlschema11-1/#ctd-final

254 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8.18 xsd.ID

class xsd.ID

Represents the ID attribute type of XML. Go to description.

The ID class provides the following instance attribute (read-only):

ID.value

A string that gives the value of the ID.

http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#ID

© 2014 Altova GmbH

Python XSD API 255Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.19 xsd.IDREF

class xsd.IDREF

Represents a sequence of ID attribute types of XML. Go to description.

The IDREF class provides the following instance attribute (read-only):

IDREF.value

A sequence of ID values.

http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#IDREFS

256 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8.20 xsd.ID_IDREF_binding

class xsd.ID_IDREF_binding

The ID_IDREF_binding class represents a binding between ID and IDREF. Go to description

The ID_IDREF_binding class provides the following instance attributes (read-only):

ID_IDREF_binding.id

ID_IDREF_binding.binding

http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#ID

© 2014 Altova GmbH

Python XSD API 257Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.21 xsd.ID_IDREF_table

class xsd.ID_IDREF_table

The ID_IDREF_table class represents a set of ID-IDREF mappings. Go to description

The ID_IDREF_table class provides the following instance methods:

ID_IDREF_table.__len__()

ID_IDREF_table.__iter__()

http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#ID

258 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8.22 xsd.IdentityConstraintDefinition

class xsd.IdentityConstraintDefinition

Identity-constraint definition components provide for uniqueness and reference constraints with
respect to the contents of multiple elements and attributes. Go to description.

The IdentityConstraintDefinition class provides the following constants:

IdentityConstraintDefinition.KEY

The identity-constraint definition asserts uniqueness as for unique. The constant key further
asserts that all selected content actually has such tuples.

IdentityConstraintDefinition.KEYREF

The identity-constraint definition asserts a correspondence, with respect to the content
identified by selector, of the tuples resulting from evaluation of the field's XPath expression(s),
with those of the referenced key.

IdentityConstraintDefinition.UNIQUE

The identity-constraint definition asserts uniqueness, with respect to the content identified by
selector, of the tuples resulting from evaluation of the field's XPath expression(s).

The IdentityConstraintDefinition class provides the following instance attributes (read-
only):

IdentityConstraintDefinition.annotations

A sequence of Annotation components.

IdentityConstraintDefinition.name

An xs:NCName value. Required.

IdentityConstraintDefinition.target_namespace

An xs:anyURI value. Optional.

IdentityConstraintDefinition.identity_constraint_category

One of {key, keyref, unique}. Required.

IdentityConstraintDefinition.selector

An XPathExpression property record. Required.

IdentityConstraintDefinition.fields

A sequence of XPathExpression property records.

IdentityConstraintDefinition.referenced_key

An IdentityConstraintDefinition component. Required if
identity_constraint_category is keyref, otherwise (if identity_constraint_category is
key or unique) must be absent. If a value is present, its identity_constraint_category
must be key or unique.

http://www.w3.org/TR/xmlschema11-1/#Identity-constraint_Definition_details

© 2014 Altova GmbH

Python XSD API 259Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.23 xsd.Instance

class xsd.Instance

The Instance class represents the instance document. Go to description

The Instance class provides the following instance attributes (read-only):

Instance.filename

Instance.document

Instance.psvi

Instance.schema

http://www.w3.org/TR/xmlschema11-1/

260 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8.24 xsd.ModelGroup

class xsd.ModelGroup

The ModelGroup class specifies a sequential (sequence), disjunctive (choice) or conjunctive (all)
interpretation of the particles attribute. Go to description.

The ModelGroup class provides the following constants:

ModelGroup.ALL

Determines whether the element information item children validated by the model group must
correspond to the specified particles. The elements can occur in any order.

ModelGroup.CHOICE

Determines whether the element information item children validated by the model group must
correspond to exactly one of the specified particles.

ModelGroup.SEQUENCE

Determines whether the element information item children validated by the model group must
correspond, in order, to the specified particles.

The ModelGroup class provides the following instance attributes (read-only):

ModelGroup.annotations

A sequence of Annotation components.

ModelGroup.compositor

Oe of {all, choice, sequence}. Required.

ModelGroup.particles

A sequence of Particle components.

http://www.w3.org/TR/xmlschema11-1/#Model_Group_details

© 2014 Altova GmbH

Python XSD API 261Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.25 xsd.ModelGroupDefinition

class xsd.ModelGroupDefinition

A ModelGroupDefinition class is identified by its name and target namespace. Model group
identities must be unique within an XSD schema. Model group definitions do not participate in
validation, but the term of a Particle may correspond in whole or in part to a ModelGroup from a
ModelGroupDefinition. The model_group instance attribute is the ModelGroup for which
ModelGroupDefinition provides a name. Go to description.

The ModelGroupDefinition class provides the following instance attributes (read-only):

ModelGroupDefinition.annotations

A sequence of Annotation components.

ModelGroupDefinition.name

An xs:NCName value. Required.

ModelGroupDefinition.target_namespace

An xs:anyURI value. Optional.

ModelGroupDefinition.model_group

A ModelGroup component. Required.

http://www.w3.org/TR/xmlschema11-1/#Model_Group_Definition_details

262 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8.26 xsd.NCName

class xsd.NCName

The NCName class represents a non-colonized name. Go to description.

The NCName class provides the following instance attribute (read-only):

NCName.value

http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#NCName

© 2014 Altova GmbH

Python XSD API 263Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.27 xsd.NMTOKEN

class xsd.NMTOKEN

The NMTOKEN class represents the NMTOKEN attribute type from XML. Go to description.

The NMTOKEN class provides the following instance attribute (read-only):

NMTOKEN.value

http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#NMTOKEN

264 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8.28 xsd.NOTATION

class xsd.NOTATION

The NOTATION class represents the NOTATION attribute type from XML. Go to description.

The NOTATION class provides the following instance attributes (read-only):

NOTATION.namespace_name

NOTATION.local_part

http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#NOTATION

© 2014 Altova GmbH

Python XSD API 265Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.29 xsd.Name

class xsd.Name

The Name class represents an XML name. Go to description.

The Name class provides the following instance attribute (read-only):

Name.value

http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#Name

266 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8.30 xsd.NamespaceBinding

class xsd.NamespaceBinding

The NamespaceBinding class provides the binding of a namespace to a prefix. Go to description.

The NamespaceBinding class provides the following instance attributes (read-only):

NamespaceBinding.prefix

NamespaceBinding.namespace

http://www.w3.org/TR/xmlschema11-1/#nss_langids

© 2014 Altova GmbH

Python XSD API 267Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.31 xsd.NamespaceConstraint

class xsd.NamespaceConstraint

The NamespaceConstraint class provides for validation of attribute and element items that are
selected according to the specified constraint. Go to description.

The NamespaceConstraint class provides the following constants:

NamespaceConstraint.ANY

NamespaceConstraint.ENUMERATION

NamespaceConstraint.NOT

The NamespaceConstraint class provides the following instance attributes (read-only):

NamespaceConstraint.variety

One of {any, enumeration, not}. Required.

NamespaceConstraint.namespaces

A set, each of whose members is either an xs:anyURI value or the distinguished value absent.
Required.

NamespaceConstraint.disallowed_names

A set, each of whose members is either an xs:QName value, or the keyword defined, or the
keyword sibling. Required.

http://www.w3.org/TR/xmlschema11-1/#w-namespace_constraint

268 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8.32 xsd.NotationDeclaration

class xsd.NotationDeclaration

A NotationDeclaration class specifies a valid element or attribute value. Notation declarations
do not participate in validation as such. They are referenced in the course of validating strings as
members of the NOTATION simple type. An element or attribute information item with its governing
type definition or its validating type derived from the NOTATION simple type is valid only if its value
was among the enumerations of such simple type. As a consequence such a value is required to
be the name of a notation declaration. Go to description.

The NotationDeclaration class provides the following instance attributes (read-only):

NotationDeclaration.annotations

A sequence of Annotation components.

NotationDeclaration.name

An xs:NCName value. Required.

NotationDeclaration.target_namespace

An xs:anyURI value. Optional.

NotationDeclaration.system_identifier

An xs:anyURI value. Required if public_identifier is absent, otherwise optional.

NotationDeclaration.public_identifier

A public ID value. Required if system_identifier is absent, otherwise optional.

http://www.w3.org/TR/xmlschema11-1/#Notation_Declaration_details

© 2014 Altova GmbH

Python XSD API 269Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.33 xsd.OpenContent

class xsd.OpenContent

An OpenContent property record. Optional if variety is element-only or mixed, otherwise must
be absent. Go to description.

The OpenContent class provides the following constants:

OpenContent.INTERLEAVE

OpenContent.SUFFIX

The OpenContent class provides the following instance attributes (read-only):

OpenContent.mode

One of {interleave, suffix}. Required.

OpenContent.wildcard

A wildcard component. Required.

http://www.w3.org/TR/xmlschema11-1/#ct-open_content

270 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8.34 xsd.PSVI

class xsd.PSVI

The PSVI class provides element and attribute schema-validity assessment. Go to description.

The PSVI class provides the following constants. Also see xsd.ElementPSVI and
xsd.AttributePSVI.

PSVI.NOTKNOWN

PSVI.VALID

PSVI.INVALID

PSVI.NONE

PSVI.FULL

PSVI.PARTIAL

PSVI.SIMPLE

PSVI.COMPLEX

The PSVI class provides the following instance attribute (read-only):

PSVI.ID_IDREF_table

See xsd.ID_IDREF_table.

The PSVI class provides the following instance methods:

PSVI.element()

Provides an element for schema-validity assessment. Also see xsd.ElementPSVI.

PSVI.attribute()

Provides an attribute for schema-validity assessment. Also see xsd.AttributePSVI.

http://www.w3.org/TR/xmlschema11-1/#validation_outcome

© 2014 Altova GmbH

Python XSD API 271Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.35 xsd.Particle

class xsd.Particle

A Particle class contains the components which it either directly contains or indirectly contains.
It directly contains the component which is the value of its term attribute. It indirectly contains the
particles, groups, wildcards, and element declarations which are contained by the value of its
term property. Go to description.

The Particle class provides the following instance attributes (read-only):

Particle.min_occurs

An xs:nonNegativeInteger value. Required.

Particle.max_occurs

Either a positive integer or unbounded. Required.

Particle.term

A Term component. Required.

Particle.annotations

A sequence of Annotation components.

http://www.w3.org/TR/xmlschema11-1/#Particle_details

272 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8.36 xsd.QName

class xsd.QName

The QName class represents an XML qualified name. Go to description

The QName class provides the following instance attributes (read-only):

QName.namespace_name

The name of the namespace part of the qualified name.

QName.local_part

The local part of the qualified name.

http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#QName

© 2014 Altova GmbH

Python XSD API 273Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.37 xsd.Schema

class xsd.Schema

The schema class contains a collection of schema components, e.g. type definitions and element
declarations, which have a common target namespace. Go to description.

The Schema class provides the following instance attributes (read-only):

Schema.type_definitions

A set of type definition components. Could be a SimpleTypeDefinition or a
ComplexTypeDefinition.

Schema.attribute_declarations

A set of AttributeDeclaration components.

Schema.element_declarations

A set of ElementDeclaration components.

Schema.attribute_group_definitions

A set of AttributeGroupDefinition components.

Schema.model_group_definitions

A set of ModelGroupDefinition components.

Schema.notation_declarations

A set of NotationDeclaration components.

Schema.identity_constraint_definitions

A set of IdentityConstraintDefinition components.

The Schema class provides the following instance methods:

Schema.resolve_type_definition()

Provides type definitions.

Schema.resolve_attribute_declaration()

Provides attribute declarations.

Schema.resolve_element_declaration()

Provides element declarations.

Schema.resolve_attribute_group_definition()

Provides attribute group definitions.

Schema.resolve_model_group_definition()

Provides model group definitions.

Schema.resolve_notation_declaration()

Provides notation declarations.

http://www.w3.org/TR/xmlschema11-1/#Schemas

274 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Schema.resolve_identity_constraint_definition()

Provides identity constraint definitions.

© 2014 Altova GmbH

Python XSD API 275Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.38 xsd.Scope

class xsd.Scope

A Scope property record. Required. Go to description

The Scope class provides the following constants:

Scope.GLOBAL

Scope.LOCAL

The Scope class provides the following instance attributes (read-only):

Scope.variety

One of {global, local}. Required.

Scope.parent

Either a ComplexTypeDefinition or a AttributeGroupDefinition. Required if variety is
local, otherwise must be absent.

http://www.w3.org/TR/xmlschema11-1/#ad-scope

276 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8.39 xsd.Sibling

class xsd.Sibling

The Sibling class represents a keyword member of the set of values allowed for the
disallowed_names attribute of NamespaceConstraint. Go to description.

The Sibling class provides the following instance methods:

Sibling.__str__()

http://www.w3.org/TR/xmlschema11-1/#Wildcard_details

© 2014 Altova GmbH

Python XSD API 277Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.40 xsd.SimpleTypeDefinition

class xsd.SimpleTypeDefinition

The SimpleTypeDefinition class represents simple types identified by their name and target
namespace attributes. For details, go to description.

The SimpleTypeDefinition class provides the following constants:

SimpleTypeDefinition.ATOMIC

SimpleTypeDefinition.LIST

SimpleTypeDefinition.UNION

The SimpleTypeDefinition class provides the following instance attributes (read-only):

SimpleTypeDefinition.annotations

A sequence of Annotation components.

SimpleTypeDefinition.name

An xs:NCName value. Optional.

SimpleTypeDefinition.target_namespace

An xs:anyURI value. Optional.

SimpleTypeDefinition.context

Required if name instance attribute (see above) is absent. Otherwise must be absent. Either an
AttributeDeclaration, ElementDeclaration, ComplexTypeDefinition, or a
SimpleTypeDefinition.

SimpleTypeDefinition.base_type_definition

A type definition component. Required.

SimpleTypeDefinition.facets

A set of Constraining Facet components.

SimpleTypeDefinition.final

A subset of {extension, restriction, list, union}.

SimpleTypeDefinition.variety

One of {atomic, list, union}. Required for all simple type definitions except
xs:anySimpleType, in which it is absent.

SimpleTypeDefinition.primitive_type_definition

A simple type definition component. With one exception, required if variety is atomic,
otherwise must be absent. The exception is xs:anyAtomicType, whose
primitive_type_definition is absent. If non-absent, must be a primitive definition.

SimpleTypeDefinition.item_type_definition

A simple type definition component. Required if variety is list, otherwise must be absent.
The value of this property must be a primitive or ordinary simple type definition with

http://www.w3.org/TR/xmlschema11-1/#Simple_Type_Definition_details
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#

278 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

variety=atomic, or an ordinary simple type definition with variety=union whose basic
members are all atomic; the value must not itself be a list type (have variety=list) or have
any basic members which are list types.

SimpleTypeDefinition.member_type_definitions

A sequence of primitive or ordinary SimpleTypeDefinition components. Must be present (but
may be empty) if variety=union, otherwise must be absent. The sequence may contain any
primitive or ordinary simple type definition, but must not contain any special type definitions.

© 2014 Altova GmbH

Python XSD API 279Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.41 xsd.TypeAlternative

class xsd.TypeAlternative

The TypeAlternative class is used by an ElementDeclaration to specify a condition (test)
under which a particular type (type_definition) is used as the governing type definition for
element information items governed by that ElementDeclaration. Each ElementDeclaration
may have multiple Type Alternatives in its TypeTable. Go to description

The TypeAlternative class provides the following instance attributes (read-only):

TypeAlternative.annotations

A sequence of Annotation components.

TypeAlternative.test

An XPathExpression property record that is used to specify a condition for selecting the
governing type declaration of an element declaration. Optional.

TypeAlternative.type_definition

A Type Definition (xsd.ComplexTypeDefnition or xsd.SimpleTypeDefinition) component.
Required.

http://www.w3.org/TR/xmlschema11-1/#TA_details

280 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8.42 xsd.TypeTable

class xsd.TypeTable

The type definition against which an element information item is validated (its governing type
definition) can be different from the declared type definition}. The TypeTable property of an
ElementDeclaration, which governs conditional type assignment, and the xsi:type attribute of
an element information item can cause the governing type definition and the declared type
definition to be different. Go to description.

The TypeTable class provides the following instance attributes (read-only):

TypeTable.alternatives

A sequence of TypeAlternative components.

TypeTable.default_type_definition

A TypeAlternative component. Required.

http://www.w3.org/TR/xmlschema11-1/#ed-type_table

© 2014 Altova GmbH

Python XSD API 281Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.43 xsd.Unbounded

class xsd.Unbounded

The Unbounded class is a string value. It represents the upper value of the maxOccurs property.
Go to description.

The Unbounded class provides the following instance methods:

Unbounded.__str__()

http://www.w3.org/TR/xmlschema11-1/

282 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8.44 xsd.ValueConstraint

class xsd.ValueConstraint

The ValueConstraint class represents a property of the AttributeUse class. Go to description.

The ValueConstraint class provides the following constants:

ValueConstraint.DEFAULT

ValueConstraint.FIXED

The ValueConstraint class provides the following instance attributes (read-only):

ValueConstraint.variety

One of {default, fixed}. Required.

ValueConstraint.value

An actual value. Required.

ValueConstraint.lexical_form

A character string. Required.

http://www.w3.org/TR/xmlschema11-1/#au-value_constraint

© 2014 Altova GmbH

Python XSD API 283Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.45 xsd.XPathExpression

class xsd.XPathExpression

To check an assertion, an instance of the XPath 2.0 data model is constructed, in which the
element information item being assessed is the (parentless) root node, and elements and
attributes are assigned types and values according to XPath 2.0 data model construction rules.
When evaluated against this data model instance, test evaluates to either True or False. Go to
description.

The XPathExpression class provides the following instance attributes (read-only):

XPathExpression.namespace_bindings

A set of NamespaceBinding property records for the XPath expression.

XPathExpression.default_namespace

An xs:anyURI value. Optional.

XPathExpression.base_URI

An xs:anyURI value. Optional. The base URI for relative paths in the XPath expression.

XPathExpression.expression

An XPath 2.0 expression. Required.

http://www.w3.org/TR/xmlschema11-1/#x
http://www.w3.org/TR/xmlschema11-1/#x

284 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8.46 Special Built-in Datatype Objects

The following special built-in datatype objects are available. For a detailed description of the
datatype, see its description in the Special Built-in Datatypes and Primitive Datatypes sections of
the XML Schema specification.

class xsd.anyAtomicType

An anyAtomicType class represents a restriction of anySimpleType and is the base type of the
primitive types.

class xsd.anySimpleType

An anySimpleType class represents a restriction of anyType and is the base type of the
anyAtomicType.

class xsd.anyURI

An anyURI class represents an Internationalized Resource Identifier (IRI) reference. Its value can
be absolute or relative. It has a single read-only instance attribute: anyURI.value.

http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#special-datatypes
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#built-in-primitive-datatypes

© 2014 Altova GmbH

Python XSD API 285Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.47 String Datatype Objects

The following string datatype objects are available. Each is listed with its read-only instance
attributes.

Class Instance attributes (read-only)

xsd.language language.value

xsd.normalizedString normalizedString.value

xsd.string string.value

xsd.token token.value

For a detailed description of the datatype, see its description in the Primitive Datatypes and Other
Built-in Datatypes sections of the XML Schema specification.

http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#built-in-primitive-datatypes
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#ordinary-built-ins
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#ordinary-built-ins

286 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8.48 Boolean Datatype Object

class xsd.boolean

A boolean object represents an XBRL instance document. It provides the following read-only
instance attribute: boolean.value, which returns a boolean value. For a detailed description of

the datatype, see its description in the Primitive Datatypes section of the XML Schema
specification.

http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#built-in-primitive-datatypes

© 2014 Altova GmbH

Python XSD API 287Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.49 Number Datatype Objects

The following number datatype objects are available. Each has a single read-only instance
attribute: value, the lexical representation of each of which is different according to the object.

Class Instance attribute (read-only)

xsd.byte byte.value

xsd.decimal decimal.value

xsd.double double.value

xsd.float float.value

xsd.int int.value

xsd.integer integer.value

xsd.long long.value

xsd.negativeInteger negativeInteger.value

xsd.nonNegativeInteger nonNegativeInteger.value

xsd.nonPositiveInteger nonPositiveInteger.value

xsd.positiveInteger positiveInteger.value

xsd.short short.value

xsd.unsignedByte unsignedByte.value

xsd.unsignedInt unsignedInt.value

xsd.unsignedLong unsignedLong.value

xsd.unsignedShort unsignedShort.value

For a detailed description of the datatype, see its definition in the Primitive Datatypes and Other
Built-in Datatypes sections of the XML Schema specification.

http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#built-in-primitive-datatypes
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#ordinary-built-ins
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#ordinary-built-ins

288 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8.50 Duration Datatype Objects

The following duration datatype objects are available. Each is listed with its read-only instance
attributes.

Class Instance attributes (read-only)

xsd.dayTimeDuration dayTimeDuration.months
dayTimeDuration.seconds

xsd.duration duration.months
duration.seconds

xsd.yearMonthDuration yearMonthDuration.months
yearMonthDuration.seconds

For a detailed description of the datatype, see its definition in the Primitive Datatypes and Other
Built-in Datatypes sections of the XML Schema specification.

http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#built-in-primitive-datatypes
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#ordinary-built-ins
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#ordinary-built-ins

© 2014 Altova GmbH

Python XSD API 289Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.51 Date and Time Datatype Objects

The following duration datatype objects are available. Each is listed with its read-only instance
attributes. If a value attribute exists, it is composed of fragments that are available as other
attributes of the object. For example: time.value consists of the time.hour, time.minute,
time.second, and time.timezoneOffset fragments.

Class Instance attributes (read-only)

xsd.date dayTimeDuration.months
dayTimeDuration.seconds

xsd.dateTime duration.months
duration.seconds

xsd.dateTimeStamp dateTimeStamp.value
dateTimeStamp.year
dateTimeStamp.month
dateTimeStamp.day
dateTimeStamp.hour
dateTimeStamp.minute
dateTimeStamp.second
dateTimeStamp.timezoneOffset

xsd.gDay gDay.day
gDay.timezoneOffset

xsd.gMonth gMonth.month
gMonth.timezoneOffset

xsd.gMonthDay gMonthDay.month
gMonthDay.days
gMonthDay.timezoneOffset

xsd.gYear gYear.year
gYear.timezoneOffset

xsd.gYearMonth gYearMonth.year
gYearMonth.month
gYearMonth.timezoneOffset

xsd.time time.value
time.hour
time.minute
time.second
time.timezoneOffset

For a detailed description of the datatype, see its definition in the Primitive Datatypes and Other
Built-in Datatypes sections of the XML Schema specification.

http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#built-in-primitive-datatypes
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#ordinary-built-ins
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#ordinary-built-ins

290 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.8.52 Binary Datatype Objects

The following binary datatype objects are available. Each is listed with its read-only instance
attributes.

Class Instance attributes (read-only)

xsd.base64Binary base64Binary.value

xsd.hexBinary hexBinary.value

For a detailed description of the datatype, see its definition in the Primitive Datatypes section of
the XML Schema specification.

http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#built-in-primitive-datatypes

© 2014 Altova GmbH

Python XSD API 291Python Interface

Altova RaptorXML+XBRL Server 2015

5.8.53 Facet Objects

Datatypes derived by restriction may also have constraining facets as allowed by the
specification. The following facet objects are available. The table lists facet objects that have only
read-only instance attributes. The xsd.explicitTimezoneFacet and xsd.whiteSpaceFacet
objects have constants in addition to their read-only instance attributes and are listed below the
table.

For a detailed description of a facet, see its description in the Constraining Facets section of the
XML Schema specification. (Clicking a facet object's link in the table below takes you directly to
its description.)

Class Instance attributes (read-only)

xsd.assertionsFacet assertionsFacet.annotations
assertionsFacet.value

xsd.enumerationFacet enumerationFacet.annotations
enumerationFacet.value

xsd.fractionDigitsFacet fractionDigitsFacet.annotations
fractionDigitsFacet.value

xsd.lengthFacet lengthFacet.annotations
lengthFacet.value
lengthFacet.fixed

xsd.maxExclusiveFacet maxExclusiveFacet.annotations
maxExclusiveFacet.value
maxExclusiveFacet.fixed

xsd.maxInclusiveFacet maxInclusiveFacet.annotations
maxInclusiveFacet.value
maxInclusiveFacet.fixed

xsd.maxLengthFacet maxLengthFacet.annotations
maxLengthFacet.value
maxLengthFacet.fixed

xsd.minExclusiveFacet minExclusiveFacet.annotations
minExclusiveFacet.value
minExclusiveFacet.fixed

xsd.minInclusiveFacet minInclusiveFacet.annotations
minInclusiveFacet.value
minInclusiveFacet.fixed

xsd.minLengthFacet minLengthFacet.annotations
minLengthFacet.value
minLengthFacet.fixed

xsd.pattern patternFacet.annotations
patternFacet.value

xsd.totalDigitsFacet totalDigitsFacet.annotations
totalDigitsFacet.value
totalDigitsFacet.fixed

xsd.explicitTimezoneFacet

Constants:

http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#rf-facets
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#rf-assertions
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#rf-enumeration
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#rf-fractionDigits
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#rf-length
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#rf-maxExclusive
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#rf-maxInclusive
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#rf-maxLength
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#rf-minExclusive
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#rf-minInclusive
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#rf-minLength
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#rf-pattern
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#rf-totalDigits
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#rf-explicitTimezone

292 Python Interface Python XSD API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

explicitTimezoneFacet.REQUIRED
explicitTimezoneFacet.PROHIBITED
explicitTimezoneFacet.OPTIONAL

Read-only instance attributes:
whiteSpaceFacet.annotations
whiteSpaceFacet.value
whiteSpaceFacet.fixed

xsd.whiteSpaceFacet

Constants:
whiteSpaceFacet.PRESERVE
whiteSpaceFacet.REPLACE
whiteSpaceFacet.COLLAPSE

Read-only instance attributes:
whiteSpaceFacet.annotations
whiteSpaceFacet.value
whiteSpaceFacet.fixed

http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes.html#rf-whiteSpace

© 2014 Altova GmbH

Python XBRL API 293Python Interface

Altova RaptorXML+XBRL Server 2015

5.9 Python XBRL API

The xbrl module provides a Python interface to the C++ implementation of the XBRL data model

layer. For table linkbases, the current RaptorXML+XBRL Server implementation follows the Table
Linkbase 1.0 Recommendation of 18 March 2014, and uses the namespace http://
xbrl.org/2014/table.

Available types
The following types are available. They are described in detail in the sub-sections of this section.

class xbrl.BreakdownResource
The BreakdownResource class represents a breakdown resource in the table linkbase.

class xbrl.Concept
The Concept class represents an XBRL concept in the DTS.

class xbrl.ConceptAspectValue
The ConceptAspectValue class represents a value for the concept aspect.

class xbrl.ConstraintSet
The ConstraintSet class represents a set of constraints for the aspects in the dimensional
aspect model.

class xbrl.Context
The Context class represents an XBRL context in the instance document.

class xbrl.DefinitionNodeResource
The DefinitionNodeResource class represents a definitionNode resource in the table
linkbase.

class xbrl.DTS
The DTS class represents an XBRL Discovery Taxonomy Set (DTS).

class xbrl.Entity
The Entity class represents the entity part of an XBRL context.

class xbrl.EntityIdentifier
The EntityIdentifier class represents the entity identifier part of an XBRL context.

class xbrl.EntityIdentifierAspectValue
The EntityIdentifierAspectValue class represents a value for the entity identifier aspect.

class xbrl.Error
The Error class is the base class for any XBRL-related errors.

class xbrl.ExplicitDimensionAspectValue
The ExplicitDimensionAspectValue class represents a value for the dimension aspect.

class xbrl.Fact

http://www.xbrl.org/specification/table-linkbase/REC-2014-03-18/table-linkbase-REC-2014-03-18.html
http://www.xbrl.org/specification/table-linkbase/REC-2014-03-18/table-linkbase-REC-2014-03-18.html

294 Python Interface Python XBRL API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

The Fact class represents a fact element in an XBRL instance document.

class xbrl.FootnoteResource
The FootnoteResource class represents a footnote resource.

class xbrl.FactSet
The FactSet class represents a set of XBRL instance facts.

class xbrl.Fraction
The Fraction class represents the fraction value of an XBRL fact item of type.

class xbrl.Instance
The Instance class represents an XBRL instance document.

class xbrl.LabelResource
The LabelResource class represents a label resource.

class xbrl.LayoutCell
The LayoutCell class represents a cell in the generated table.

class xbrl.LayoutDataCell
The LayoutDataCell class represents a data cell in the generated table.

class xbrl.LayoutHeaderCell
The LayoutHeaderCell class represents a header cell in the generated table.

class xbrl.LayoutRow
The LayoutRow class represents a row of the generated table.

class xbrl.LayoutTable
The LayoutTable class represents the table after applying the resolution and layout process.

class xbrl.LayoutTableSet
The LayoutTableSet class represents the table set after applying the resolution and layout
process.

class xbrl.Period
The Period class represents the period part of an XBRL context.

class xbrl.PeriodAspectValue
The PeriodAspectValue class represents a value for the period aspect.

class xbrl.ReferencePart
The ReferencePart class represents a reference part.

class xbrl.ReferenceResource
The ReferenceResource class represents a reference resource.

class xbrl.Resource
The Resource class represents an XLink resource element within an extended link.

class xbrl.ScenarioAspectValue
The ScenarioAspectValue class represents a value for the non-XDT scenario aspect.

© 2014 Altova GmbH

Python XBRL API 295Python Interface

Altova RaptorXML+XBRL Server 2015

class xbrl.SegmentAspectValue
The SegmentAspectValue class represents a value for the non-XDT segment aspect.

class xbrl.TableError
The TableError class represents an error that is raised during the table resolution or layout
process.

class xbrl.TableResource
The TableResource class represents a table resource in the table linkbase.

class xbrl.TypedDimensionAspectValue
The TypedDimensionAspectValue class represents a value for the dimension aspect.

class xbrl.Unit
The Unit class represents an XBRL unit.

class xbrl.UnitAspectValue
The UnitAspectValue class represents a value for the unit aspect.

296 Python Interface Python XBRL API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.9.1 xbrl.BreakdownResource

class xbrl.BreakdownResource(xbrl.Resource)

The BreakdownResource class represents a breakdown resource in the table linkbase (http://
www.xbrl.org/specification/table-linkbase/pr-2013-12-18/table-linkbase-pr-2013-

12-18.html#sec-definition-breakdowns).

http://www.xbrl.org/specification/table-linkbase/pr-2013-12-18/table-linkbase-pr-2013-12-18.html#sec-definition-breakdowns
http://www.xbrl.org/specification/table-linkbase/pr-2013-12-18/table-linkbase-pr-2013-12-18.html#sec-definition-breakdowns
http://www.xbrl.org/specification/table-linkbase/pr-2013-12-18/table-linkbase-pr-2013-12-18.html#sec-definition-breakdowns

© 2014 Altova GmbH

Python XBRL API 297Python Interface

Altova RaptorXML+XBRL Server 2015

5.9.2 xbrl.Concept

class xbrl.Concept

A Concept class represents an XBRL concept in the DTS.

The Concept class provides the following constants:

Concept.ITEM

Denotes that the concept is in the substitution group of the xbrli:item XBRL concept.

Concept.TUPLE

Denotes that the concept is in the substitution group of the xbrli:tuple XBRL concept.

Concept.HYPERCUBE

Denotes that the concept is in the substitution group of the xbrli:hypercube XBRL concept.

Concept.DIMENSION_EXPLICIT

Denotes that the concept is in the substitution group of the xbrli:dimension XBRL concept
and it does not have the attribute xbrldt:typedDomainRef set.

Concept.DIMENSION_TYPED

Denotes that the concept is in the substitution group of the xbrli:dimension XBRL concept
and it does have the attribute xbrldt:typedDomainRef set.

Concept.DEBIT

Denotes that the concept has the attribute xbrli:balance set to debit.

Concept.CREDIT

Denotes that the concept has the attribute xbrli:balance set to credit.

Concept.INSTANT

Denotes that the concept has the attribute xbrli:periodType set to instant.

Concept.DURATION

Denotes that the concept has the attribute xbrli:periodType set to duration.

Concept.DECIMAL_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:decimalItemType or a type definition
derived from it.

Concept.FLOAT_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:floatItemType or a type definition derived
from it.

Concept.DOUBLE_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:doubleItemType or a type definition
derived from it.

Concept.INTEGER_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:integerItemType or a type definition
derived from it.

298 Python Interface Python XBRL API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Concept.NON_POSITIVE_INTEGER_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:nonPositiveIntegerItemType or a type
definition derived from it.

Concept.NEGATIVE_INTEGER_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:negativeIntegerItemType or a type
definition derived from it.

Concept.LONG_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:longItemType or a type definition derived
from it.

Concept.INT_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:intItemType or a type definition derived
from it.

Concept.SHORT_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:shortItemType or a type definition derived
from it.

Concept.BYTE_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:byteItemType or a type definition derived
from it.

Concept.NON_NEGATIVE_INTEGER_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:nonNegativeIntegerItemType or a type
definition derived from it.

Concept.UNSIGNED_LONG_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:unsignedLongItemType or a type definition
derived from it.

Concept.UNSIGNED_INT_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:unsignedIntItemType or a type definition
derived from it.

Concept.UNSIGNED_SHORT_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:unsignedShortItemType or a type
definition derived from it.

Concept.UNSIGNED_BYTE_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:unsignedByteItemType or a type definition
derived from it.

Concept.POSITIVE_INTEGER_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:positiveIntegerItemType or a type
definition derived from it.

Concept.MONETARY_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:monetaryItemType or a type definition
derived from it.

© 2014 Altova GmbH

Python XBRL API 299Python Interface

Altova RaptorXML+XBRL Server 2015

Concept.SHARES_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:sharesItemType or a type definition
derived from it.

Concept.PURE_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:pureItemType or a type definition derived
from it.

Concept.FRACTION_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:fractionItemType or a type definition
derived from it.

Concept.STRING_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:stringItemType or a type definition
derived from it.

Concept.BOOLEAN_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:booleanItemType or a type definition
derived from it.

Concept.HEXBINARY_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:hexBinaryItemType or a type definition
derived from it.

Concept.BASE64BINARY_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:base64BinaryItemType or a type definition
derived from it.

Concept.ANYURI_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:anyURIItemType or a type definition
derived from it.

Concept.QNAME_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:QNameItemType or a type definition derived
from it.

Concept.DURATION_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:durationItemType or a type definition
derived from it.

Concept.DATETIME_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:dateItemItemType or a type definition
derived from it.

Concept.TIME_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:timeItemType or a type definition derived
from it.

Concept.DATE_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:dateItemType or a type definition derived
from it.

Concept.GYEARMONTH_ITEM_TYPE

300 Python Interface Python XBRL API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Denotes that the concept’s type definition is xbrli:gYearMonthItemType or a type definition
derived from it.

Concept.GYEAR_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:gYearItemType or a type definition derived
from it.

Concept.GMONTHDAY_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:gMonthDayItemType or a type definition
derived from it.

Concept.GDAY_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:gDayItemType or a type definition derived
from it.

Concept.GMONTH_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:gMonthItemType or a type definition
derived from it.

Concept.NORMALIZED_STRING_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:normalizedStringItemType or a type
definition derived from it.

Concept.TOKEN_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:tokenItemType or a type definition derived
from it.

Concept.LANGUAGE_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:languageItemType or a type definition
derived from it.

Concept.NAME_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:NameItemType or a type definition derived
from it.

Concept.NCNAME_ITEM_TYPE

Denotes that the concept’s type definition is xbrli:NCNameItemType or a type definition
derived from it.

The Concept class provides the following instance attributes (read-only):

Concept.element

Returns an xml.Element object which represents the XML element information item of the
concept’s schema element declaration.

Concept.element_declaration

Returns an xsd.ElementDeclaration object which represents the concept’s schema element
declaration.

Concept.id

Returns the id attribute value as a string, or "None" if the XML element doesn't have an id

© 2014 Altova GmbH

Python XBRL API 301Python Interface

Altova RaptorXML+XBRL Server 2015

attribute.

Concept.qname

Returns an xml.QName object which represents the XML qualified name of the concept.

Concept.balance

Returns DEBIT or CREDIT if the concept’s schema element declaration contains an
xbrli:balance attribute. Otherwise this attribute is None.

Concept.period_type

Returns INSTANT or DURATION if the concept’s schema element declaration contains an
xbrli:periodType attribute. Otherwise this attribute is None.

Concept.concept_type

Returns one of ITEM, TUPLE, HYPERCUBE, DIMENSION_EXPLICIT, or DIMENSION_TYPED
depending on the substitution group affiliation of the concept’s schema element declaration.

Concept.item_type

Returns the built-in XBRL type from which the concept’s type definition is derived from.
Examples are, for example, STRING_ITEM_TYPE, MONETARY_ITEM_TYPE, SHARES_ITEM_TYPE.

Concept.label_elements

Returns a generator object of xml.Element objects representing all label resources that are
associated with this concept.

Concept.labels

Returns a generator object of xbrl.LabelResource objects for each label that has a concept-
label (http://www.xbrl.org/2003/arcrole/concept-label) relationship to this concept.

Concept.reference_elements

Returns a generator object of xml.Element objects representing all reference resources that
are associated with this concept.

Concept.references

Returns a generator object of xbrl.ReferenceResource objects for each label that has a
concept-reference (http://www.xbrl.org/2003/arcrole/concept-reference) relationship to
this concept.

The Concept class provides the following instance methods:

Concept.is_numeric()

Returns True if the concept’s type definition is derived from one of the built-in XBRL numeric
types.

Concept.is_non_numeric()

Returns True if the concept’s type definition is derived from one of the built-in XBRL non-
numeric types.

Concept.is_fraction()

Returns True if the concept’s type definition is derived from xbrli:fractionItemType.

302 Python Interface Python XBRL API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Concept.is_abstract()

Returns True if the concept’s schema element declaration has the abstract component
property set to True.

Concept.is_nillable()

Returns True if the concept’s schema element declaration has the nillable component
property set to True.

Concept.select_labels(label_role = None, link_role = None, lang = None)

Returns a generator object of xbrl.LabelResource objects for each label that has a concept-
label relationship (http://www.xbrl.org/2003/arcrole/concept-label) to this concept and
also matches the given parameters.

Concept.select_references(reference_role = None, link_role = None)

Returns a generator object of xbrl.ReferenceResource objects for each reference that has a
concept-reference relationship (http://www.xbrl.org/2003/arcrole/concept-reference) to
this concept and also matches the given parameters.

© 2014 Altova GmbH

Python XBRL API 303Python Interface

Altova RaptorXML+XBRL Server 2015

5.9.3 xbrl.ConceptAspectValue

class xbrl.ConceptAspectValue

The ConceptAspectValue class represents a value for the concept aspect. The constructor takes
the following arguments:

ConceptAspectValue(DTS dts, Concept concept = None)

The ConceptAspectValue class provides the following instance attributes (read-only):

ConceptAspectValue.qname

Returns an xml.QName object representing the concept's QName.

ConceptAspectValue.concept

Returns an xbrl.Concept object.

http://www.xbrl.org/specification/variables/rec-2009-06-22/variables-rec-2009-06-22+corrected-errata-2013-11-18.html#term-concept-aspect

304 Python Interface Python XBRL API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.9.4 xbrl.ConstraintSet

class xbrl.ConstraintSet(Instance instance)

The ConstraintSet class represents a set of constraints for the aspects in the dimensional
aspect model. For each aspect, zero or one aspect can be specified.

The ConstraintSet class provides the following constructor:

ConstraintSet.ConstraintSet

Creates a new empty xbrl.ConstraintSet object. It takes an xbrl.DTS or xbrl.Instance object
as as a parameter.

The ConstraintSet class provides the following instance attributes:

ConstraintSet.allow_additional_dimensions

Read/write of type Boolean value. If set to false, restricts the facts returned by
Instance.select_facts() and FactSet.filter() methods to contain only facts whose
assigned contexts don’t contain any additional dimensions.

ConstraintSet.concept_aspect

Returns an xbrl.ConceptAspectValue object representing the constraint for the concept
aspect, or None if no constraint was specified. Is also writable.

ConstraintSet.entity_identifier_aspect

Returns an xbrl.EntityIdentifierAspectValue object representing the constraint for the
entity identifier aspect, or None if no constraint was specified. Is also writable.

ConstraintSet.period_aspect

Returns an xbrl.PeriodAspectValue object representing the constraint for the period aspect,
or None if no constraint was specified. Is also writable.

ConstraintSet.scenario_aspect

Returns an xbrl.ScenarioAspectValue object representing the constraint for the non-XDT
scenario aspect, or None if no constraint was specified. Is also writable.

ConstraintSet.segment_aspect

Returns an xbrl.SegmentAspectValue object representing the constraint for the non-XDT
segment aspect, or None if no constraint was specified. Is also writable.

ConstraintSet.unit_aspect

Returns an xbrl.UnitAspectValue object representing the constraint for the unit aspect, or
None if no constraint was specified. Is also writable.

ConstraintSet.dimension_aspects

Returns a generator object of xbrl.ExplicitDimensionAspectValue and
xbrl.TypedDimensionAspectValue objects representing the constraints for the dimension
aspect.

http://www.xbrl.org/specification/table-linkbase/pr-2013-12-18/table-linkbase-pr-2013-12-18.html#term-constraint-set
http://www.xbrl.org/specification/table-linkbase/pr-2013-12-18/table-linkbase-pr-2013-12-18.html#term-constraint-set

© 2014 Altova GmbH

Python XBRL API 305Python Interface

Altova RaptorXML+XBRL Server 2015

The ConstraintSet class provides the following instance methods:

ConstraintSet.copy()

Returns a new xbrl.ConstraintSet object containing the same constraints.

ConstraintSet.clear()

Removes any constraints for all aspects.

ConstraintSet.append(aspectValue)

Adds a new constraint. Any existing constraint for this aspect will be overwritten.

ConstraintSet.extend(constraintSet)

Adds all the constraints from xbrl.ConstraintSet constraint-set. Any existing constraints will
be overwritten.

ConstraintSet.dimension_aspect(dimension)

Returns an xbrl.ExplicitDimensionAspectValue or xbrl.TypedDimensionAspectValue
object for the given dimension aspect, or None if no constraint was specified.

ConstraintSet.set_dimension_aspect(dimensionAspectValue)

Sets a constraint for the dimension aspect. Any existing constraint for this aspect will be
overwritten.

306 Python Interface Python XBRL API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.9.5 xbrl.Context

class xbrl.Context

A Context class represents an XBRL context in the instance document.

The Context class provides the following instance attributes (read-only):

Context.element

Returns an xml.Element object which represents the XML element information item of the
XBRL context.

Context.id

Returns a string with the value of the id attribute of the XBRL context.

Context.period

Returns an xbrl.Period object which represents the period part of the XBRL context.

Context.entity

Returns an xbrl.Entity object which represents the entity part of the XBRL context.

Context.scenario_element

Returns an xml.Element object which represents the scenario child XML element information
item of the XBRL context.

© 2014 Altova GmbH

Python XBRL API 307Python Interface

Altova RaptorXML+XBRL Server 2015

5.9.6 xbrl.DefinitionNodeResource

class xbrl.DefinitionNodeResource(xbrl.Resource)

The DefinitionNodeResource class represents a definitionNode resource in the table
linkbase (http://www.xbrl.org/specification/table-linkbase/pr-2013-12-18/table-
linkbase-pr-2013-12-18.html#sec-definition-nodes).

308 Python Interface Python XBRL API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.9.7 xbrl.DTS

class xbrl.DTS

A DTS class represents an XBRL Discoverable Taxonomy Set (DTS).

The DTS class provides the following instance attributes (read-only):

DTS.dimensions

Returns an iterator over Concept objects which represent all XBRL concepts in the DTS that are
in the substitution group of xbrldt:dimensionItem.

DTS.hypercubes

Returns an iterator over Concept objects which represent all XBRL concepts in the DTS that are
in the substitution group of xbrldt:hypercubeItem.

DTS.items

Returns an iterator over Concept objects which represent all XBRL concepts in the DTS that are
in the substitution group of xbrli:item.

DTS.linkbases

Returns a list of xml.Document objects which represent all XBRL linkbases in the DTS.

DTS.schema

Returns an xsd.Schema object which represents the XML Schema component of the underlying
DTS.

DTS.schemas

Returns a list of xml.Document objects which represent all XBRL taxonomy schemas in the
DTS.

DTS.tables

Returns a generator object of xbrl.TableResource objects which represent all the table
resources in the table linkbase.

DTS.tuples

Returns an iterator over Concept objects which represent all XBRL concepts in the DTS that are
in the substitution group of xbrli:tuple.

The DTS class provides the following instance methods:

DTS.resolve_concept(qname)

Returns a Concept object which represents the XBRL concept with the given XML qualified
name qname in the DTS. If there is no such concept, this method returns None.

DTS.resolve_table(identifier)

Returns a list of xbrl.TableResource objects that match the identifier. The identifier can be
either the value of the id attribute or an XPointer URL pointing to the table resource.

© 2014 Altova GmbH

Python XBRL API 309Python Interface

Altova RaptorXML+XBRL Server 2015

5.9.8 xbrl.Entity

class xbrl.Entity

An Entity class represents the entity part of an XBRL context in the instance document.

The Entity class provides the following instance attributes (read-only):

Entity.element

Returns an xml.Element object which represents the entity child XML element information
item of the XBRL context.

Entity.identifier

Returns an xbrl.EntityIdentifier object which represents the entity identifier part of the
XBRL context.

Entity.segment_element

Returns an xml.Element object which represents the segment child XML element information
item of the XBRL context.

310 Python Interface Python XBRL API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.9.9 xbrl.EntityIdentifier

class xbrl.EntityIdentifier

An EntityIdentifier class represents the entity identifier part of an XBRL context in the
instance document.

The EntityIdentifier class provides the following instance attributes (read-only):

EntityIdentifier.aspect_value

Returns an xbrl.EntityIdentifierAspectValue object representing the value of the entity
identifier aspect.

EntityIdentifier.element

Returns a xml.Element object which represents the identifier child XML element information
item of the XBRL context.

EntityIdentifier.value

Returns a string with the text value of the identifier child XML element information item of
the XBRL context.

EntityIdentifier.scheme

Returns a string with the text value of the scheme attribute of the identifier child XML
element information item.

© 2014 Altova GmbH

Python XBRL API 311Python Interface

Altova RaptorXML+XBRL Server 2015

5.9.10 xbrl.EntityIdentifierAspectValue

class xbrl.EntityIdentifierAspectValue

The EntityIdentifierAspectValue class represents a value for the entity identifier aspect. The
constructor takes the following arguments:

EntityIdentifierAspectValue(DTS dts, identifier = None, scheme = None)

The EntityIdentifierAspectValue class provides the following instance attributes (read-only):

EntityIdentifierAspectValue.identifier

Returns the identifier as a string.

EntityIdentifierAspectValue.scheme

Returns the identifier scheme as a string.

http://www.xbrl.org/specification/variables/rec-2009-06-22/variables-rec-2009-06-22+corrected-errata-2013-11-18.html#term-entity-identifier-aspect

312 Python Interface Python XBRL API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.9.11 xbrl.Error

class xbrl.Error(Exception)

This is the base class for any XBRL-related errors.

© 2014 Altova GmbH

Python XBRL API 313Python Interface

Altova RaptorXML+XBRL Server 2015

5.9.12 xbrl.ExplicitDimensionAspectValue

class xbrl.ExplicitDimensionAspectValue

The ExplicitDimensionAspectValue class represents a value for the dimension aspect. The
constructor takes the following arguments:

ExplicitDimensionAspectValue(DTS dts, dimension = None, domainMember = None)

The ExplicitDimensionAspectValue class provides the following instance attributes (read-
only):

ExplicitDimensionAspectValue.is_explicit

Returns True.

ExplicitDimensionAspectValue.is_typed

Returns False.

ExplicitDimensionAspectValue.dimension

Returns an xbrl.Concept object representing the dimension.

ExplicitDimensionAspectValue.value

Returns an xbrl.Concept object representing the dimension's domain member value. The
absent dimension aspect value is denoted by None.

http://www.xbrl.org/specification/variables/rec-2009-06-22/variables-rec-2009-06-22+corrected-errata-2013-11-18.html#term-dimension-aspect

314 Python Interface Python XBRL API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.9.13 xbrl.Fact

class xbrl.Fact

A Fact class represents a fact element in an XBRL instance document.

The Fact class provides the following instance attributes (read-only):

Fact.element

Returns an xml.Element object which represents the XML element information item of the
XBRL fact.

Fact.qname

Returns an xml.QName object which represents the XML qualified name of the XBRL fact.

Fact.concept

Returns a Concept object which represents the XBRL concept associated with this XBRL fact.

Fact.context

Returns a Context object which represents the XBRL context associated with this XBRL fact.

Fact.id

Returns the id attribute value as a string, or "None" if the XML element doesn't have an id

attribute.

Fact.footnotes

Returns a generator object of xbrl.FootnoteResource objects for each footnote that has a
concept-label relationship (http://www.xbrl.org/2003/arcrole/fact-footnote) to this fact.

Fact.unit

Returns a Unit object which represents the XBRL unit associated with this XBRL fact.

Fact.nil

Returns True if the XBRL fact’s element information item has the xsi:nil attribute set to True.

Fact.decimals

Returns a string containing the value of the decimals attribute on the fact’s element information
item. If no decimals attribute has been defined, then the attribute is None.

Fact.precision

Returns a string containing the value of the precision attribute on the fact’s element
information item. If no precision attribute has been defined, then the attribute is None.

Fact.normalized_value

Returns the XBRL fact’s schema normalized value as a string.

Fact.effective_numeric_value

Returns a decimal.Decimal object which represents the XBRL fact’s effective numeric value
after rounding with the information provided by the decimals or precision attribute. If the fact’s
type definition is not derived from a built-in XBRL numeric type definition, then the attribute
returns NaN.

© 2014 Altova GmbH

Python XBRL API 315Python Interface

Altova RaptorXML+XBRL Server 2015

Fact.fraction_value

Returns a Fraction object which represents the fraction value denoted by the XBRL fact. If the
fact’s type definition is not derived from the built-in XBRL type definition
xbrli:fractionItemType, then the attribute returns None.

Fact.child_facts

Returns a generator object of Fact objects representing all XBRL facts which are direct children
of this fact.

Fact.child_items

Returns a generator object of Fact objects representing only XBRL item facts which are direct
children of this fact.

Fact.child_tuples

Returns a generator object of Fact objects representing only XBRL tuple facts which are direct
children of this fact.

Fact.footnote_elements

Returns a generator object of xml.Element objects representing all footnote resources that are
associated with this fact.

The Fact class provides the following instance methods:

Fact.is_item()

Returns True if the fact is an XBRL item fact.

Fact.is_tuple()

Returns True if the fact is an XBRL tuple fact.

Fact.location_aspect()

Returns an xml.Element object which represents the location aspect of this XBRL fact.

Fact.concept_aspect()

Returns a Concept object which represents the concept aspect of this XBRL fact.

Fact.entity_identifier_aspect()

Returns an EntityIdentifier object which represents the entity identifier aspect of this
XBRL fact. If the XBRL fact has no entity identifier aspect, then this attribute is None.

Fact.select_footnotes(footnote_role = None, arc_role = None, link_role = None,

lang = None)

Returns a generator object of xbrl.FootnoteResource objects for each footnote that has a
concept-label relationship (http://www.xbrl.org/2003/arcrole/fact-footnote) to this fact
and also matches the given parameters.

Fact.period_aspect()

Returns a Period object which represents the period aspect of this XBRL fact. If the XBRL fact
has no period aspect, then this attribute is None.

Fact.unit_aspect()

Returns a Unit object which represents the unit aspect of this XBRL fact. If the XBRL fact has

316 Python Interface Python XBRL API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

no unit aspect, then this attribute is None.

Fact.complete_segment_aspect()

Returns an xml.Element object which represents the complete segment aspect of this XBRL
fact. If the XBRL fact has no complete segment aspect, then this attribute is None.

Fact.complete_scenario_aspect()

Returns an xml.Element object which represents the complete scenario aspect of this XBRL
fact. If the XBRL fact has no complete scenario aspect, then this attribute is None.

Fact.non_xdt_segment_aspect()

Returns a list of xml.Element objects which represent the non-XDT segment aspect of this
XBRL fact. If the XBRL fact has no non-XDT segment aspect, then this attribute is None.

Fact.non_xdt_scenario_aspect()

Returns a list of xml.Element objects which represent the non-XDT scenario aspect of this
XBRL fact. If the XBRL fact has no non-XDT scenario aspect, then this attribute is None.

Fact.explicit_dimension_aspect(qname)

Returns an xml.QName object which represents the given qname dimension aspect of this
XBRL fact (which is the domain member QName). If the XBRL fact has no such dimension
aspect, then this attribute is None. The argument qname must be an object of class
xml.QName.

Fact.typed_dimension_aspect(qname)

Returns an xml.Element object which represents the given qname dimension aspect of this
XBRL fact (which is the typed domain element). If the XBRL fact has no such dimension
aspect, then this attribute is None. The argument qname must be an object of class
xml.QName.

© 2014 Altova GmbH

Python XBRL API 317Python Interface

Altova RaptorXML+XBRL Server 2015

5.9.14 xbrl.FactSet

class xbrl.FactSet

A FactSet class represents a set of XBRL instance facts.

The FactSet class provides the following instance methods:

FactSet.copy()

Returns an xbrl.FactSet object which is an independent copy of the current fact set.

FactSet.merge(factSet)

Merges the facts represented by this object with the given factSet (equivalent to a set union).

FactSet.intersect(factSet)

Intersects the facts represented by this object with the given factSet (equivalent to a set
intersection).

FactSet.filter(constraintSet)

Filters any facts that do not match the constraints specified in the constraintSet.

318 Python Interface Python XBRL API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.9.15 xbrl.FootnoteResource

class xbrl.FootnoteResource(xbrl.Resource)

The FootnoteResource class represents a footnote resource.

The FootnoteResource class provides the following instance attributes (read-only):

xbrl.FootnoteResource.lang

Returns the xml:lang attribute value as a string.

xbrl.FootnoteResource.text

Returns the text content of the footnote resource as a string.

© 2014 Altova GmbH

Python XBRL API 319Python Interface

Altova RaptorXML+XBRL Server 2015

5.9.16 xbrl.Fraction

class xbrl.Fraction(numerator, denominator)

A Fraction object represents the fraction value of an XBRL fact item of type fractionItemType.
It constructs an object of class Fraction. All arguments are required.

The Fraction class provides the following instance attributes:

Fraction.numerator

Returns a decimal.Decimal object which represents the numerator part of the fraction value.

Fraction.denominator

Returns a decimal.Decimal object which represents the denominator part of the fraction value.

320 Python Interface Python XBRL API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.9.17 xbrl.Instance

class xbrl.Instance

An Instance object represents an XBRL instance document.

The Instance class provides the following instance attributes (read-only):

Instance.filename

Returns a string with the URL of the XBRL instance document.

Instance.document

Returns an xml.Document object which represents the XML document information item of the
XBRL instance document.

Instance.psvi

Returns an xsd.PSVI object which represents the XML Schema PSVI information.

Instance.dts

Returns a DTS object which represents the XBRL Discoverable Taxonomy Set.

Instance.contexts

Returns a generator object of Context objects which represents all XBRL contexts present in
the instance document.

Instance.units

Returns a generator object of Unit objects which represents all XBRL units present in the
instance document.

Instance.facts

Returns a generator object of Fact objects which represents all XBRL facts present in the
instance document. This also includes facts which are children of other tuples.

Instance.non_nil_facts

Returns a generator object of Fact objects which represents all non-nil XBRL facts present in
the instance document. This also includes facts which are children of other tuples.

Instance.items

Returns a generator object of Fact objects which represents all top-level XBRL item facts
present in the instance document. Facts that are children of other tuples are not included.

Instance.select_facts(constraintSet)

Returns an xbrl.FactSet representing the facts that match the constraints in the
constraintSet.

Instance.tuples

Returns a generator object of Fact objects which represents all top-level XBRL tuple facts
present in the instance document. Facts that are children of other tuples are not included.

© 2014 Altova GmbH

Python XBRL API 321Python Interface

Altova RaptorXML+XBRL Server 2015

5.9.18 xbrl.LabelResource

class xbrl.LabelResource(xbrl.Resource)

The LabelResource class represents a label resource.

The LabelResource class provides the following instance attributes (read-only):

LabelResource.lang

Returns the xml:lang attribute value as a string.

LabelResource.text

Returns the text content of the label resource as a string.

322 Python Interface Python XBRL API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.9.19 xbrl.LayoutCell

class xbrl.LayoutCell

The LayoutCell class represents a cell in the generated table.

The LayoutCell class provides the following instance attributes (read-only):

LayoutCell.row

Returns the table cell's Y coordinate.

LayoutCell.col

Returns the table cell's X coordinate.

LayoutCell.row_span

Returns the table cell's span in the vertical direction.

LayoutCell.col_span

Returns the table cell's span in the horizontal direction.

LayoutCell.is_span_start

Returns True if this table cell is the top left cell within a spanned region. Also returns True if
the table cell doesn't have a span.

LayoutCell.is_header

Returns True if this table cell represents a header cell.

LayoutCell.is_data

Returns True if this table cell represents a data cell.

© 2014 Altova GmbH

Python XBRL API 323Python Interface

Altova RaptorXML+XBRL Server 2015

5.9.20 xbrl.LayoutDataCell

class xbrl.LayoutDataCell(xbrl.LayoutCell)

The LayoutDataCell class represents a data cell in the generated table.

The LayoutDataCell class provides the following instance attributes (read-only):

LayoutDataCell.facts

Returns an xbrl.FactSet representing the facts that match the constraints of the cell. For
under-specified tables, the returned fact set can contain multiple facts.

324 Python Interface Python XBRL API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.9.21 xbrl.LayoutHeaderCell

class xbrl.LayoutHeaderCell(xbrl.LayoutCell)

The LayoutHeaderCell class represents a header cell in the generated table.

The LayoutHeaderCell class provides the following instance attributes (read-only):

LayoutHeaderCell.definition_node

Returns an xbrl.DefinitionNodeResource object representing the orignial definition node
resource in the table linkbase.

LayoutHeaderCell.preferred_label_role

For header cells generated by a tree walk of the presentation linkbase, the preferredLabel
value on the relationship leading to a given concept is returned. Otherwise None is returned.

LayoutHeaderCell.constraint_sets

Returns a generator object of tag to constraint set mappings. The untagged constraint set can
be accessed with None as the key.

LayoutHeaderCell.tag_selectors

Returns a generator object of tag selectors (either directly specified or inherited).

LayoutHeaderCell.is_rollup

Returns True if the header cell represents a roll-up node (http://www.xbrl.org/
specification/table-linkbase/pr-2013-12-18/table-linkbase-pr-2013-12-

18.html#sec-roll-up-nodes).

The LayoutHeaderCell class provides the following instance methods:

LayoutHeaderCell.constraint_set(tag=None)

Returns an xbrl.ConstraintSet object for the given tag, or None if no constraint set with the
given tag was found. If the tag is None, the untagged constraint set is returned.

© 2014 Altova GmbH

Python XBRL API 325Python Interface

Altova RaptorXML+XBRL Server 2015

5.9.22 xbrl.LayoutRow

class xbrl.LayoutRow

The LayoutRow class represents a row of the generated table.

The LayoutRow class provides the following instance attributes (read-only):

LayoutRow.index

Returns the table row's coordinates.

LayoutRow.is_header_row

Returns True if this table row contains only header cells.

LayoutRow.cells

Returns a generator object of xbrl.LayoutHeaderCell and xbrl.LayoutDataCell objects
representing the cells in the table row (header and data cells).

326 Python Interface Python XBRL API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.9.23 xbrl.LayoutTable

class xbrl.LayoutTable

The LayoutTable class represents the table after applying the resolution and layout process.

The LayoutTable class provides the following instance attributes (read-only):

LayoutTable.tables

Returns an xbrl.TableResource object representing the original table resource in the table
linkbase.

LayoutTable.rows

Returns a generator object of xbrl.LayoutRow objects representing the rows in the table (both
header and data rows).

LayoutTable.width

Returns the total number of table columns (header and data columns).

LayoutTable.height

Returns the total number of table rows (header and data rows).

LayoutTable.header_width

Returns the number of header columns.

LayoutTable.header_height

Returns the number of header rows.

LayoutTable.data_width

Returns the number of data columns.

LayoutTable.data_height

Returns the number of data rows.

The LayoutTable class provides the following instance methods::

LayoutTable.cell(row, col)

Returns a xbrl.LayoutCell object representing the table cell in the row specified by row and
the column specified by col.

© 2014 Altova GmbH

Python XBRL API 327Python Interface

Altova RaptorXML+XBRL Server 2015

5.9.24 xbrl.LayoutTableSet

class xbrl.LayoutTableSet

The LayoutTableSet class represents the table set after applying the resolution and layout
process.

The LayoutTableSet class provides the following instance attributes (read-only):

LayoutTableSet.tables

Returns a generator object of xbrl.LayoutTable objects.

328 Python Interface Python XBRL API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.9.25 xbrl.Period

class xbrl.Period

A Period class represents the period part of an XBRL context in the instance document.

The Period class provides the following constants:

Period.INSTANT

Denotes that the period contains an instant child XML information item.

Period.DURATION

Denotes that the period contains startDate and endDate child XML information items.

Period.FOREVER

Denotes that the period contains a forever child XML information item.

The Period class provides the following instance attributes (read-only):

Period.aspect_value

Returns an xbrl.PeriodAspectValue object representing the value of the period aspect.

Period.element

Returns an xml.Element object which represents the period child XML element information
item of the XBRL context.

Period.period_type

Returns INSTANT, DURATION or FOREVER depending on the period’s child XML element
information items.

Period.instant

Returns a string with the text value of the instant child XML element information item. If the
period doesn’t have an instant child XML element information item, the attribute is None.

Period.start_date

Returns a string with the text value of the startDate child XML element information item. If the
period doesn’t have an startDate child XML element information item, the attribute is None.

Period.end_date

Returns a string with the text value of the endDate child XML element information item. If the
period doesn’t have an endDate child XML element information item, the attribute is None.

Period.effective_instant

Returns a datetime.datetime object with effective date and time calculated from the value of
the instant child XML element information item. If the period doesn’t have an instant child
XML element information item, the attribute is None.

Period.effective_start_date

Returns a datetime.datetime object with effective date and time calculated from the value of
the startDate child XML element information item. If the period doesn’t have a startDate child
XML element information item, the attribute is None.

© 2014 Altova GmbH

Python XBRL API 329Python Interface

Altova RaptorXML+XBRL Server 2015

Period.effective_end_date

Returns a datetime.datetime object with effective date and time calculated from the value of
the endDate child XML element information item. If the period doesn’t have an endDate child
XML element information item, the attribute is None.

330 Python Interface Python XBRL API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.9.26 xbrl.PeriodAspectValue

class xbrl.PeriodAspectValue

The PeriodAspectValue class represents a value for the period aspect. The constructor takes
the following arguments:

PeriodAspectValue(DTS dts, start = None, end = None)

The PeriodAspectValue class provides the following constants:

PeriodAspectValue.INSTANT

Denotes that the period represents a point in time.

PeriodAspectValue.DURATION

Denotes that the period represents a duration with a start point and end point.

PeriodAspectValue.FOREVER

Denotes that the period represents a duration without a start point or end point.

The PeriodAspectValue class provides the following instance attributes (read-only):

PeriodAspectValue.period_type

Returns INSTANT, DURATION, or FOREVER.

PeriodAspectValue.instant

If period_type is INSTANT, it returns a datetime.datetime object representing the single
point in time. Otherwise it returns None.

PeriodAspectValue.start

If period_type is DURATION, it returns a datetime.datetime object representing the duration
start point. Otherwise it returns None.

PeriodAspectValue.end

If period_type is DURATION, it returns a datetime.datetime object representing the duration
end point. Otherwise it returns None.

http://www.xbrl.org/specification/variables/rec-2009-06-22/variables-rec-2009-06-22+corrected-errata-2013-11-18.html#term-period-aspect

© 2014 Altova GmbH

Python XBRL API 331Python Interface

Altova RaptorXML+XBRL Server 2015

5.9.27 xbrl.ReferencePart

class xbrl.ReferencePart

The ReferencePart class represents a reference part.

The ReferencePart class provides the following instance attributes (read-only):

ReferencePart.element

Returns an xml.Element object which represents the XML element information item of the
reference part.

ReferencePart.qname

Returns an xml.QName object which represents the XML qualified name of the reference part.

ReferencePart.text

Returns the text content of the reference part as a string.

332 Python Interface Python XBRL API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.9.28 xbrl.ReferenceResource

class xbrl.ReferenceResource(xbrl.Resource)

The ReferenceResource class represents a reference resource.

The ReferenceResource class provides the following instance attributes (read-only):

ReferenceResource.parts

Returns a generator object of xbrl.ReferencePart objects for each reference part.

The ReferenceResource class provides the following instance methods:

ReferenceResource.find_part(qname)

Returns an xbrl.ReferencePart object if a reference part with the given xml.QName, qname,
was found, otherwise None.

© 2014 Altova GmbH

Python XBRL API 333Python Interface

Altova RaptorXML+XBRL Server 2015

5.9.29 xbrl.Resource

class xbrl.Resource

The Resource class represents an XLink resource element within an extended link.

The Resource class provides the following instance attributes (read-only):

Resource.element

Returns an xml.Element object representing the XML element in the extended link.

Resource.id

Returns the id attribute value as a string, or None if the XML element doesn't have an id
attribute.

Resource.role

Returns the xlink:role attribute value as a string, or None if the XML element doesn't have an
xlink:role attribute.

Resource.labels

Returns a generator object of xbrl.LabelResource objects for each generic label that has an
element-label (http://xbrl.org/arcrole/2008/element-label) relationship to this resource.

Resource.references

Returns a generator object of xbrl.ReferenceResource objects for each generic reference that
has an element-reference (http://xbrl.org/arcrole/2008/element-reference) relationship
to this resource.

The Resource class provides the following instance methods:

Resource.select_labels(label_role = None, link_role = None, lang = None)

Returns a generator object of xbrl.LabelResource objects for each generic label that has an
element-label relationship (http://xbrl.org/arcrole/2008/element-label) to this resource
and also matches the given parameters.

Resource.select_references(reference_role = None, link_role = None)

Returns a generator object of xbrl.ReferenceResource objects for each generic reference that
has an element-reference relationship (http://xbrl.org/arcrole/2008/element-reference)
to this resource and also matches the given parameters.

334 Python Interface Python XBRL API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.9.30 xbrl.ScenarioAspectValue

class xbrl.ScenarioAspectValue

The ScenarioAspectValue class represents a value for the non-XDT scenario aspect. The
constructor takes the following arguments:

ScenarioAspectValue(DTS dts, elements = None)

The ScenarioAspectValue class provides the following instance attributes (read-only):

ScenarioAspectValue.elements

Returns a generator object of xml.Element objects representing the non-XDT child elements of
the <scenario> XML element.

http://www.xbrl.org/specification/variables/rec-2009-06-22/variables-rec-2009-06-22+corrected-errata-2013-11-18.html#term-nonxdt-scenario-aspect

© 2014 Altova GmbH

Python XBRL API 335Python Interface

Altova RaptorXML+XBRL Server 2015

5.9.31 xbrl.SegmentAspectValue

class xbrl.SegmentAspectValue

The SegmentAspectValue class represents a value for the non-XDT segment aspect. The
constructor takes the following arguments:

SegmentAspectValue(DTS dts, elements = None)

The SegmentAspectValue class provides the following instance attributes (read-only):

SegmentAspectValue.elements

Returns a generator object of xml.Element objects representing the non-XDT child elements of
the <segment> XML element.

http://www.xbrl.org/specification/variables/rec-2009-06-22/variables-rec-2009-06-22+corrected-errata-2013-11-18.html#term-nonxdt-segment-aspect

336 Python Interface Python XBRL API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.9.32 xbrl.TableError

class xbrl.TableError(xbrl.Error)

The xbrl.TableError class represents an error that is raised during the table resolution or layout
process.

© 2014 Altova GmbH

Python XBRL API 337Python Interface

Altova RaptorXML+XBRL Server 2015

5.9.33 xbrl.TableResource

class xbrl.TableResource(xbrl.Resource)

The TableResource class represents a table resource in the table linkbase (http://
www.xbrl.org/specification/table-linkbase/pr-2013-12-18/table-linkbase-pr-2013-

12-18.html#sec-tables).

The TableResource class provides the following instance method:

TableResource.layout(instance)

Returns an xbrl.LayoutTableSet object representing the generated table set. If an error
occurs during the resolution or layout process, an xbrl.TableError is raised.

338 Python Interface Python XBRL API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.9.34 xbrl.TypedDimensionAspectValue

class xbrl.TypedDimensionAspectValue

The TypedDimensionAspectValue class represents a value for the dimension aspect. The
constructor takes the following arguments:

TypedDimensionAspectValue(DTS dts, dimension = None, value = None)

The TypedDimensionAspectValue class provides the following instance attributes (read-only):

TypedDimensionAspectValue.is_explicit

Returns True.

TypedDimensionAspectValue.is_typed

Returns False.

TypedDimensionAspectValue.dimension

Returns an xbrl.Concept object representing the dimension.

TypedDimensionAspectValue.value

Returns an xml.Element object representing the dimension's typed domain value. The absent
dimension aspect value is denoted by None.

http://www.xbrl.org/specification/variables/rec-2009-06-22/variables-rec-2009-06-22+corrected-errata-2013-11-18.html#term-dimension-aspect

© 2014 Altova GmbH

Python XBRL API 339Python Interface

Altova RaptorXML+XBRL Server 2015

5.9.35 xbrl.Unit

class xbrl.Unit

A Unit class represents an XBRL unit in the instance document.

The Unit class provides the following instance attributes (read-only):

Unit.aspect_value

Returns an xbrl.UnitAspectValue object representing the value of the unit aspect.

Unit.element

Returns an xml.Element object which represents the XML element information item of the
XBRL unit.

Unit.id

Returns a string with the value of the id attribute of the XBRL unit.

Unit.numerators

Returns a list of xml.QName objects which represents the QNames in the numerator of the
XBRL unit.

Unit.denominators

Returns a list of xml.QName objects which represents the QNames in the denominator of the
XBRL unit.

340 Python Interface Python XBRL API

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

5.9.36 xbrl.UnitAspectValue

class xbrl.UnitAspectValue

The UnitAspectValue class represents a value for the unit aspect. The constructor takes the
following arguments:

UnitAspectValue (DTS dts, nominators = None, denominators = None)

The UnitAspectValue class provides the following instance attributes (read-only):

UnitAspectValue.numerators

Returns a list of xml.QName objects which represents the QNames in the numerator of the
XBRL unit.

UnitAspectValue.denominators

Returns a list of xml.QName objects which represents the QNames in the denominator of the
XBRL unit.

http://www.xbrl.org/specification/variables/rec-2009-06-22/variables-rec-2009-06-22+corrected-errata-2013-11-18.html#term-unit-aspect

Chapter 6

Java Interface

342 Java Interface

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

6 Java Interface

The RaptorXML API can be accessed from Java code. To access RaptorXML+XBRL Server from
Java code, the libraries listed below must reside in the classpath. These libraries are installed in
the bin folder of the installation folder.

RaptorXMLServer.jar: The library that communicates with the RaptorXML server using
HTTP requests
RaptorXMLServer_JavaDoc.zip: A Javadoc file containing help documentation for the
Java API

Note: In order to use the Java API, the Jar file must be on the Java Classpath. You may copy
the Jar file to any location if this fits your project setup better than referencing it from the
installed location.

Overview of the interface
The Java API is packaged in the com.altova.raptorxml package. The RaptorXML class provides
an entry-point method called getFactory(), which returns RaptorXMLFactory objects. So, a
RaptorXMLFactory instance can be created with the call: RaptorXML.getFactory().

The RaptorXMLFactory interface provides methods for getting engine objects for validation and
further processing (such as XSLT transformation).

Note: The getFactory method returns the respective factory object according to the RaptorXML
edition installed.

The public interface of RaptorXMLFactory is described by the following listing:

public interface RaptorXMLFactory

{
 public XMLValidator getXMLValidator();

 public XBRL getXBRL();

 public XQuery getXQuery();

 public XSLT getXSLT();

 public void setServerName(String name) throws RaptorXMLException;

 public void setServerFile(String file) throws RaptorXMLException;

 public void setServerPort(int port) throws RaptorXMLException;

 public void setGlobalCatalog(String catalog);

 public void setUserCatalog(String catalog);

 public void setGlobalResourcesFile(String file);

 public void setGlobalResourceConfig(String config);

 public void setErrorFormat(ENUMErrorFormat format);

 public void setErrorLimit(int limit);

 public void setReportOptionalWarnings(boolean report);

© 2014 Altova GmbH

 343Java Interface

Altova RaptorXML+XBRL Server 2015

}

For more details, see the descriptions of RaptorXMLFactory and the respective Java interfaces.
Also see the Example Java Project.

344 Java Interface Example Java Project

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

6.1 Example Java Project

The Jave code listing below shows how basic functionality can be accessed. It is structured into
the following parts:

Locate the examples folder, and create a RaptorXML COM object instance
Validate an XML file
Perform an XSLT transformation, return the result as a string
Process an XQuery document, return the result as a string
Run the project

This basic functionality is included in the files in the examples/API folder of the RaptorXML+XBRL
Server application folder.

public class RunRaptorXML
{
 // Locate samples installed with the product
 // (will be two levels higher from examples/API/Java)
 // REMARK: You might need to modify this path
 static final String strExamplesFolder = System.getProperty("user.dir") +
"/../../" ;

 static com.altova.raptorxml.RaptorXMLFactory rxml;

 static void ValidateXML() throws com.altova.raptorxml.RaptorXMLException
 {
 com.altova.raptorxml.XMLValidator xmlValidator =
rxml.getXMLValidator();
 System.out.println("RaptorXML Java - XML validation");
 xmlValidator.setInputXMLFromText("<!DOCTYPE root [<!ELEMENT root
(#PCDATA)>]> <root>simple input document</root>");
 if(xmlValidator.isWellFormed())
 System.out.println("The input string is well-formed");
 else
 System.out.println("Input string is not well-formed: " +
xmlValidator.getLastErrorMessage());

 if(xmlValidator.isValid())
 System.out.println("The input string is valid");
 else
 System.out.println("Input string is not valid: " +
xmlValidator.getLastErrorMessage());
 }

 static void RunXSLT() throws com.altova.raptorxml.RaptorXMLException
 {

© 2014 Altova GmbH

Example Java Project 345Java Interface

Altova RaptorXML+XBRL Server 2015

 System.out.println("RaptorXML Java - XSL Transformation");
 com.altova.raptorxml.XSLT xsltEngine = rxml.getXSLT();
 xsltEngine.setInputXMLFileName(strExamplesFolder + "simple.xml");
 xsltEngine.setXSLFileName(strExamplesFolder + "transform.xsl");
 String result = xsltEngine.executeAndGetResultAsString();
 if(result == null)
 System.out.println("Transformation failed: " +
xsltEngine.getLastErrorMessage());
 else
 System.out.println("Result is " + result);
 }

 static void RunXQuery() throws com.altova.raptorxml.RaptorXMLException
 {
 System.out.println("RaptorXML Java - XQuery execution");
 com.altova.raptorxml.XQuery xqEngine = rxml.getXQuery();
 xqEngine.setInputXMLFileName(strExamplesFolder + "simple.xml");
 xqEngine.setXQueryFileName(strExamplesFolder + "CopyInput.xq");
 System result = xqEngine.executeAndGetResultAsString();
 if(result == null)
 System.out.println("Execution failed: " +
xqEngine.getLastErrorMessage());
 else
 System.out.println("Result is " + result);
 }

 public static void main(String[] args)
 {
 try
 {
 rxml = com.altova.raptorxml.RaptorXML.getFactory();
 rxml.setErrorLimit(3);

 ValidateXML();
 RunXSLT();
 RunXQuery();
 }

 catch(com.altova.raptorxml.RaptorXMLException e)
 {
 e.printStackTrace();
 }

 }

}

346 Java Interface RaptorXML Interfaces for Java

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

6.2 RaptorXML Interfaces for Java

Given below is a summary of the Java interfaces of the RaptorXML API. Detailed descriptions are
given in the respective sections.

RaptorXMLFactory

Creates a new RaptorXML COM object instance via a native call, and provides access to
RaptorXML engines.
XMLValidator

Interface for the XMLValidator Engine.
XSLT

Interface for the XSLT Engines.
XQuery

Interface for the XQuery Engines.
XBRL

Interface for the XBRL Engine.
RaptorXMLException

Interface for the RaptorXMLException method.

© 2014 Altova GmbH

RaptorXML Interfaces for Java 347Java Interface

Altova RaptorXML+XBRL Server 2015

6.2.1 RaptorXMLFactory

public interface RaptorXMLFactory

Description
Use RaptorXMLFactory() to create a new RaptorXML COM object instance. This provides
access to the RaptorXML engines. The relationship between RaptorXMLFactory and the
RaptorXML COM object is one-to-one. This means that subsequent calls to the
get<ENGINENAME>() function will return interfaces for the same engine instance.

The methods of the RaptorXMLFactory interface are described first, followed by its enumerations.

Methods
The methods of the class are described below in alphabetical order. In the table, they are
organized into groups for ease of reference.

Engines Errors, Warnings

getXBRL setErrorFormat

getXMLValidator setErrorLimit

getXQuery setReportOptionalWarnings

getXSLT

Catalogs Global Resources HTTP Server

setGlobalCatalog setGlobalResourceConfig setServerFile

setUserCatalog setGlobalResourcesFile setServerName

setServerPort

Product Information

getProductName Is64Bit

getProductNameAndVersion getAPIMajorVersion

getMajorVersion getAPIMinorVersion

getMinorVersion getAPIServicePackVersion

getServicePackVersion

Top | Methods | Enumerations

getAPIMajorVersion

348 Java Interface RaptorXML Interfaces for Java

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

public int getAPIMajorVersion()

Returns the major version of the API as an integer. The major version of the API could be different
from the product's major version if the API is connected to another server.
Returns:
an integer that is the major version of the API.

Top | Methods | Enumerations

getAPIMinorVersion

public int getAPIMinorVersion()

Returns the minor version of the API as an integer. The minor version of the API could be different
from the product's minor version if the API is connected to another server.
Returns:
an integer that is the minor version of the API.

Top | Methods | Enumerations

getAPIServicePackVersion

public int getAPIServicePackVersion()

Returns the service pack version of the API as an integer. The service pack version of the API
could be different from the product's service pack version if the API is connected to another
server.
Returns:
an integer that is the service pack version of the API.

Top | Methods | Enumerations

getMajorVersion

public int getMajorVersion()

Returns the major version of the product as an integer. Example: For Altova RaptorXML+XBRL
Server 2014r2sp1(x64), returns 16 (the difference between the major version (2014) and the
initial year 1998). Throws a RaptorXMLException in case of an error.
Returns:
an integer that is the product's major version.

Top | Methods | Enumerations

getMinorVersion

public int getMinorVersion()

Returns the minor version of the product as an integer. Example: For Altova RaptorXML+XBRL
Server 2015r2sp1(x64), returns 2 (from the minor version number r2). Throws a
RaptorXMLException in case of an error.
Returns:

© 2014 Altova GmbH

RaptorXML Interfaces for Java 349Java Interface

Altova RaptorXML+XBRL Server 2015

an integer that is the product's minor version.

Top | Methods | Enumerations

getProductName

public string getProductName()

Returns the name of the product as a string. Example: For Altova RaptorXML+XBRL Server
2015r2sp1(x64), returns Altova RaptorXML+XBRL Server. Throws a RaptorXMLException in
case of an error.
Returns:
a string that is the product's name.

Top | Methods | Enumerations

getProductNameAndVersion

public string getProductNameAndVersion()

Returns the service pack version of the product as an integer. Example: For Altova RaptorXML
+XBRL Server 2015r2sp1(x64), returns Altova RaptorXML+XBRL Server 2015r2sp1(x64).
Throws a RaptorXMLException in case of an error.
Returns:
a string that is the product's name and version.

Top | Methods | Enumerations

getServicePackVersion

public int getServicePackVersion()

Returns the service pack version of the product as an integer. Example: For RaptorXML+XBRL
Server 2015r2sp1(x64), returns 1 (from the service pack version number sp1). Throws a
RaptorXMLException in case of an error.
Returns:
an integer that is the product's service pack version.

Top | Methods | Enumerations

getXBRL

public XBRL getXBRL

Retrieves the XBRL engine.
Returns:
a new XBRL instance of this RaptorXMLFactory.

Top | Methods | Enumerations

350 Java Interface RaptorXML Interfaces for Java

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

getXMLValidator

public XMLValidator getXMLValidator()

Retrieves the XMLValidator.
Returns:
a new XMLValidator instance of this RaptorXMLFactory.

Top | Methods | Enumerations

getXQuery

public XQuery getXQuery()

Retrieves the XQuery engine.
Returns:
a new XQuery instance of this RaptorXMLFactory.

Top | Methods | Enumerations

getXSLT

public XSLT getXSLT()

Retrieves the XSLT engine.
Returns:
a new XSLT instance of this RaptorXMLFactory.

Top | Methods | Enumerations

is64Bit

public boolean is64Bit()

Checks if the application is a 64-bit executable. Example: For Altova RaptorXML+XBRL Server
2015r2sp1(x64), returns true. Throws a RaptorXMLException in case of an error.
Returns:
boolean true if the application is 64 bit, false if it is not.

Top | Methods | Enumerations

setErrorFormat

public void setErrorFormat(ENUMErrorFormat format)

Sets the RaptorXML error format to one of the ENUMErrorFormat literals (Text, ShortXML,
LongXML).
Parameters:
format: Holds the value of the selected ENUMErrorFormat literal.

© 2014 Altova GmbH

RaptorXML Interfaces for Java 351Java Interface

Altova RaptorXML+XBRL Server 2015

Top | Methods | Enumerations

setErrorLimit

public void setErrorLimit(int limit)

Sets the RaptorXML validation error limit.
Parameters:
limit: Is of type int, and specifies the number of errors to be reported before execution is halted.
Use -1 to set limit to be unlimited (that is, all errors will be reported). The default value is 100.

Top | Methods | Enumerations

setGlobalCatalog

public void setGlobalCatalog(String catalog)

Sets the location, as a URL, of the main (entry-point) catalog file.
Parameters:
catalog: The supplied string must be an absolute URL that gives the exact location of the main
catalog file to use.

Top | Methods | Enumerations

setGlobalResourceConfig

public void setGlobalResourceConfig(String config)

Sets the active configuration of the global resource.
Parameters:
config: Is of type String, and specifies the name of the configuration used by the active global
resource.

Top | Methods | Enumerations

setGlobalResourcesFile

public void setGlobalResourcesFile(String file)

Sets the location, as a URL, of the Global Resources XML File.
Parameters:
file: The supplied string must be an absolute URL that gives the exact location of the Global
Resources XML File.

Top | Methods | Enumerations

setReportOptionalWarnings

public void setReportOptionalWarnings(boolean report)

Enables/disables the reporting of warnings. A value of true enables warnings; false disables

352 Java Interface RaptorXML Interfaces for Java

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

them.
Parameters:
report: Takes boolean true or false.

Top | Methods | Enumerations

setServerFile

public void setServerFile(String file)

Sets the location of the HTTP server's configuration file relative to the HTTP server address.
Raises a RaptorXMLException if an error occurs.
Parameters:
file: A string that gives the address of the HTTP server configuration file relative to the server
address.

Top | Methods | Enumerations

setServerName

public void setServerName(String name)

Sets the name of the HTTP server. Raises a RaptorXMLException if an error occurs.
Parameters:
name: A string that gives the name of the HTTP server.

setServerPort

public void setServerPort(int port)

Sets the port on the HTTP server via which the service is accessed. The port must be fixed and
known so that HTTP requests can be correctly addressed to the service. Raises a
RaptorXMLException if an error occurs.
Parameters:
port: An integer that specifies the access port on the HTTP server.

Top | Methods | Enumerations

setUserCatalog

public void setUserCatalog(String catalog)

Sets the location, as a URL, of the custom user catalog file.
Parameters:
catalog: The supplied string must be an absolute URL that gives the exact location of the
custom catalog file to use.

Top | Methods | Enumerations

© 2014 Altova GmbH

RaptorXML Interfaces for Java 353Java Interface

Altova RaptorXML+XBRL Server 2015

Enumerations

ENUMErrorFormat

ENUMErrorFormat

public enum ENUMErrorFormat {

 eFormatText

 eFormatShortXML
 eFormatLongXML }

ENUMErrorFormat can take one of the enumeration literals: eFormatText, eFormatShortXML,
eFormatLongXML. These set the format of the error messages, with eLongXML providing the most
detailed messages. The default is eFormatText.

Used by (Interface::Method):
RaptorXMLFactory setErrorFormat

Top | Methods | Enumerations

354 Java Interface RaptorXML Interfaces for Java

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

6.2.2 XMLValidator

public interface XMLValidator

Description
Validates the supplied XML document, schema document, or DTD document. XML document
validation can be done with internal or external DTDs or XML Schemas. Also checks the well-
formedness of XML, DTD, and XML Schema documents. The methods of the interface are
described first, followed by its enumerations.

Methods
The methods of the class are described below in alphabetical order. In the table, they are
organized into groups for ease of reference.

Processing Input Files XML Schema

isValid(ENUM type) setInputXMLFileName setSchemaImports

isValid setInputXMLFromText setSchemalocationHints

isWellFormed(ENUM type) setInputXMLFileCollection setSchemaMapping

isWellFormed setInputXMLTextCollection setXSDVersion

getLastErrorMessage setSchemaFileName

setAssessmentMode setSchemaFromText XML

setPythonScriptFile setSchemaFileCollection setEnableNamespaces

setStreaming setSchemaTextCollection setXincludeSupport

setDTDFileName setXMLValidationMode

setDTDFromText

Top | Methods | Enumerations

getLastErrorMessage

public String getLastErrorMessage()

Retrieves the last error message from the XML Validator engine.
Returns:
a string that is the last error message from the XML Validator engine.

Top | Methods | Enumerations

isValid

© 2014 Altova GmbH

RaptorXML Interfaces for Java 355Java Interface

Altova RaptorXML+XBRL Server 2015

public boolean isValid(ENUMValidationType type)

Returns the result of validating the XML document, schema document, or DTD document. The
type of document to validate is specified by the type parameter, which takes an
ENUMValidationType literal as its value. The result is true on success, false on failure. If an
error occurs, a RaptorXMLException is raised. Use the getLastErrorMessage method to access
additional information.
Parameters:
type: An ENUMValidationType literal, which specifies whether the validation is of an XML
Schema, or of a DTD, or of an XML document against an XML Schema, or of an XML document
against a DTD.
Returns:
boolean true on success, false on failure.

Top | Methods | Enumerations

isValid

public boolean isValid()

Returns the result of validating the submitted document.The result is true on success, false on
failure.
Returns:
boolean true on success, false on failure.

Top | Methods | Enumerations

isWellFormed

public boolean isWellFormed(ENUMWellformedCheckType type)

Returns the result of checking the XML document or DTD document for well-formedness. The type
of document to check is specified by the type parameter, which takes an
ENUMWellformedCheckType literal as its value. The result is true on success, false on failure. If
an error occurs, a RaptorXMLException is raised. Use the getLastErrorMessage method to
access additional information.
Parameters:
type: An ENUMWellformedCheckType literal, which specifies whether an XML document or DTD
will be checked for well-formedness.
Returns:
boolean true on success, false on failure.

Top | Methods | Enumerations

isWellFormed

public boolean isWellFormed()

Returns the result of checking the XML document or DTD document for well-formedness. The
result is true on success, false on failure.
Returns:
boolean true on success, false on failure.

356 Java Interface RaptorXML Interfaces for Java

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Top | Methods | Enumerations

setAssessmentMode

public void setAssessmentMode(ENUMAssessmentMode mode)

Sets the assessment mode of the XML validation (Strict/Lax), which is defined in the mode
parameter that takes an ENUMAssessmentMode literal.
Parameters:
mode: An ENUMAssessmentMode literal, which specifies whether the validation should be strict or
lax or should be skipped.

Top | Methods | Enumerations

setDTDFileName

public void setDTDFileName(String filePath)

Sets the location, as a URL, of the DTD document to use for validation.
Parameters:
filePath: The supplied string must be an absolute URL that gives the exact location of the DTD
file to use.

Top | Methods | Enumerations

setDTDFromText

public void setDTDFromText(String dtdText)

Supplies the content of the DTD document as text.
Parameters:
dtdText: The supplied string is the DTD document to be used for validation.

Top | Methods | Enumerations

setEnableNamespaces

public void setEnableNamespaces(boolean enable)

Enables namespace-aware processing. This is useful for checking the XML instance for errors due
to incorrect namespaces. A value of true enables namespace-aware processing; false disables
it. Default is false.
Parameters:
support: Takes boolean true or false.

Top | Methods | Enumerations

© 2014 Altova GmbH

RaptorXML Interfaces for Java 357Java Interface

Altova RaptorXML+XBRL Server 2015

setInputXMLFileCollection

public void setInputXMLFileCollection(Collection<?> fileCollection)

Supplies the collection of XML files that will be used as input data. The files are identified by their
URLs.
Parameters:
fileCollection: A collection of strings, each of which is the absolute URL of an input XML file.

Top | Methods | Enumerations

setInputXMLFileName

public void setInputXMLFileName(String filePath)

Sets the location, as a URL, of the XML document to be validated.
Parameters:
filePath: The supplied string must be an absolute URL that gives the exact location of the XML
file.

Top | Methods | Enumerations

setInputXMLFromText

public void setInputXMLFromText(String inputText)

Supplies the contents of the XML document to validate.
Parameters:
inputText: The supplied string is the content of the XML document to validate.

Top | Methods | Enumerations

setInputXMLTextCollection

public void setInputXMLTextCollection(Collection<?> stringCollection)

Supplies the content of multiple XML files that will be used as input data.
Parameters:
stringCollection: A collection of strings, each of which is the content of an input XML file.

Top | Methods | Enumerations

setParallelAssessment

public void setParallelAssessment(boolean support)

Enables or disables the use of parallel assessment. A value of true enables parallel asessment;
false disables it. The default value is false.
Parameters:
support: Takes boolean true or false.

358 Java Interface RaptorXML Interfaces for Java

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Top | Methods | Enumerations

setPythonScriptFile

public void setPythonScriptFile(String file)

Sets the location, as a URL, of the Python script file.
Parameters:
file: The supplied string must be an absolute URL that gives the exact location of the Python
file.

Top | Methods | Enumerations

setSchemaFileCollection

public void setSchemaFileCollection(Collection<?> fileCollection)

Supplies the collection of XML files that will be used as external XML Schemas. The files are
identified by their URLs.
Parameters:
fileCollection: A collection of strings, each of which is the absolute URL of an XML Schema
file.

Top | Methods | Enumerations

setSchemaFileName

public void setSchemaFileName(String filePath)

Sets the location, as a URL, of the XML Schema document to be used.
Parameters:
filePath: The supplied string must be an absolute URL that gives the exact location of the XML
Schema file.

Top | Methods | Enumerations

setSchemaFromText

public void setSchemaFromText(String schemaText)

Supplies the contents of the XML Schema document to use.
Parameters:
schemaText: The supplied string is the content of the XML Schema document to use.

Top | Methods | Enumerations

setSchemaImports

public void setSchemaImports(ENUMSchemaImports opt)

Specifies how schema imports are to be handled based on the attribute values of the xs:import

© 2014 Altova GmbH

RaptorXML Interfaces for Java 359Java Interface

Altova RaptorXML+XBRL Server 2015

elements. The kind of handling is specified by the ENUMSchemaImports literal that is selected.
Parameters:
opt: Holds the ENUMSchemaImports literal, which determines the handling of schema imports.
See the description of ENUMSchemaImports for details.

Top | Methods | Enumerations

setSchemalocationHints

public void setSchemalocationHints(ENUMLoadSchemalocation opt)

Specifies the mechanism to use to locate the schema. The mechanism is specified by the
ENUMLoadSchemalocation literal that is selected.
Parameters:
opt: Holds the ENUMLoadSchemalocation literal, which determines which schema location
mechanism to use. See the description of ENUMLoadSchemalocation for details.

Top | Methods | Enumerations

setSchemaMapping

public void setSchemaMapping(ENUMSchemaMapping opt)

Sets what mapping to use in order to locate the schema. The mapping is specified by the
ENUMSchemaMapping literal that is selected.
Parameters:
opt: Holds the ENUMSchemaMapping literal. See the description of ENUMSchemaMapping for details.

Top | Methods | Enumerations

setInputSchemaTextCollection

public void setInputSchemaTextCollection(Collection<?> stringCollection)

Supplies the content of multiple XML Schema documents.
Parameters:
stringCollection: A collection of strings, each of which is the content of an XML Schema
document.

Top | Methods | Enumerations

setStreaming

public void setStreaming(boolean support)

Enables streaming validation. In streaming mode, data stored in memory is minimized and
processing is faster.
Parameters:
support: A value of true enables streaming; false disables it. Default is true.

360 Java Interface RaptorXML Interfaces for Java

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Top | Methods | Enumerations

setXincludeSupport

public void setXIncludeSupport(boolean support)

Enables or disables the use of XInclude elements. A value of true enables XInclude support;
false disables it. The default value is false.
Parameters:
support: Takes boolean true or false.

Top | Methods | Enumerations

setXMLValidationMode

public void setXMLValidationMode(ENUMXMLValidationMode mode)

Sets the XML validation mode, which is an enumeration literal of ENUMXMLValidationMode.
Parameters:
mode: Is an enumeration literal of ENUMXMLValidationMode that determines whether to check
validity or well-formedness.

Top | Methods | Enumerations

setXSDVersion

public void setXSDVersion(ENUMXSDVersion version)

Sets the XML Schema version against which the XML document will be validated.
Parameters:
version: Is an enumeration literal of ENUMXSDVersion that sets the XML Schema version.

Top | Methods | Enumerations

Enumerations

ENUMAssessmentMode

ENUMLoadSchemalocation

ENUMSchemaImports

ENUMSchemaMapping

ENUMXMLValidationMode

ENUMValidationType

ENUMWellformedCheckType

ENUMXSDVersion

© 2014 Altova GmbH

RaptorXML Interfaces for Java 361Java Interface

Altova RaptorXML+XBRL Server 2015

Top | Methods | Enumerations

ENUMAssessmentMode

public enum ENUMAssessmentMode {

 eAssessmentModeLax

 eAssessmentModeStrict }

ENUMAssessmentMode takes one of the enumeration literals: eAssessmentModeLax,
eAssessmentModeStrict. These set whether validation should be lax or strict.

Used by (Interface::Method):
XMLValidator setAssessmentMode

Top | Methods | Enumerations

ENUMLoadSchemalocation

public enum ENUMLoadSchemalocation {

 eLoadBySchemalocation

 eLoadByNamespace

 eLoadCombiningBoth

 eLoadIgnore }

ENUMLoadSchemalocation contains the enumeration literal that specifies the schema locating
mechanism. The selection is based on the schema location attribute of the XML or XBRL instance
document. This attribute could be xsi:schemaLocation or xsi:noNamespaceSchemaLocation.

eLoadBySchemalocation uses the URL of the schema location attribute in the XML or
XBRL instance document. This enumeration literal is the default value.
eLoadByNamespace uses the namespace part of xsi:schemaLocation and an empty
string in the case of xsi:noNamespaceSchemaLocation to locate the schema via a
catalog mapping.
eLoadCombiningBoth: If either the namespace URL or schema location URL has a
catalog mapping, then the catalog mapping is used. If both have catalog mappings, then
the value of ENUMSchemaMapping decides which mapping is used. If neither the
namespace nor schema location has a catalog mapping, the schema location URL is
used.
eLoadCombiningBoth: The xsi:schemaLocation and xsi:noNamespaceSchemaLocation
attributes are both ignored.

Used by (Interface::Method):
XMLValidator setSchemalocationHints

XSLT setSchemalocationHints

XBRL setSchemalocationHints

Top | Methods | Enumerations

362 Java Interface RaptorXML Interfaces for Java

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

ENUMSchemaImports

public enum ENUMSchemaImports {

 eSILoadBySchemalocation

 eSILoadPreferringSchemalocation

 eSILoadByNamespace

 eSILoadCombiningBoth

 eSILicenseNamespaceOnly }

ENUMSchemaImports contains the enumeration literal that defines the behavior of the schema's
xs:import elements, each of which has an optional namespace attribute and an optional
schemaLocation attribute.

eSILoadBySchemalocation uses the value of the schemaLocation attribute to locate the
schema, taking account of catalog mappings. If the namespace attribute is present, the
namespace is imported (licensed).
eSILoadPreferringSchemalocation: If the schemaLocation attribute is present, it is
used, taking account of catalog mappings. If no schemaLocation attribute is present,
then the value of the namespace attribute is used via a catalog mapping. This enumeration
literal is the default value.
eSILoadByNamespace uses the value of the namespace attribute to locate the schema via
a catalog mapping.
eSILoadCombiningBoth: If either the namespace URL or schemaLocation URL has a
catalog mapping, then the catalog mapping is used. If both have catalog mappings, then
the value of ENUMSchemaMapping decides which mapping is used. If neither the
namespace nor schemaLocation URL has a catalog mapping, the schemaLocation URL
is used.
eSILicenseNamespaceOnly: The namespace is imported. No schema document is
imported.

Used by (Interface::Method):
XMLValidator setSchemaImports

XSLT setSchemaImports

XBRL setSchemaImports

Top | Methods | Enumerations

ENUMSchemaMapping

public enum ENUMSchemaMapping {

 eSMPreferSchemalocation

 eSMPreferNamespace }

ENUMSchemaMapping contains the enumeration literal that specifies whether the namespace or the
schema-location is to be selected.

eSMPreferNamespace: Selects the namespace.
eSMPreferSchemalocation: Selects the schema location. This is the default value.

Used by (Interface::Method):
XMLValidator setSchemaMapping

XSLT setSchemaMapping

© 2014 Altova GmbH

RaptorXML Interfaces for Java 363Java Interface

Altova RaptorXML+XBRL Server 2015

XBRL setSchemaMapping

Top | Methods | Enumerations

ENUMXMLValidationMode

public enum ENUMXMLValidationMode {

 eProcessingModeValid

 eProcessingModeWF }

ENUMXMLValidationMode contains the enumeration literal specifying the type of XML validation to
perform (validation or well-formedness check).

eProcessingModeValid: Sets the XML processing mode to validation.
eProcessingModeValid: Sets the XML processing mode to wellformed. This is the
default value.

Used by (Interface::Method):
XMLValidator setXMLValidationMode

XSLT setXMLValidationMode

XQuery setXMLValidationMode

Top | Methods | Enumerations

ENUMValidationType

public enum ENUMValidationType {

 eValidateAny

 eValidateXMLWithDTD

 eValidateXMLWithXSD

 eValidateDTD

 eValidateXSD }

ENUMValidationType contains the enumeration literal specifying what validation to carry out and,
in the case of XML documents, whether validation is against a DTD or XSD.

eValidateAny: The document type is detected automatically.
eValidateXMLWithDTD: Validates an XML document against a DTD.
eValidateXMLWithXSD: Validates an XML document against an XSD (XML Schema).
eValidateDTD: Validates a DTD document.
eValidateXSD: Validates an XSD document.

Used by (Interface::Method):
XMLValidator isValid

Top | Methods | Enumerations

364 Java Interface RaptorXML Interfaces for Java

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

ENUMWellformedCheckType

public enum ENUMWellformedCheckType {

 eWellformedAny

 eWellformedXML

 eWellformedDTD }

ENUMWellformedCheckType contains the enumeration literal specifying the type of well-formed
check to make (for XML or DTD documents).

eWellformedAny: The document type is detected automatically.
eWellformedXML: Checks an XML document for well-formedness.
eWellformedDTD: Checks a DTD document for well-formedness.

Used by (Interface::Method):
XMLValidator isWellformed

Top | Methods | Enumerations

ENUMXSDVersion

public enum ENUMXSDVersion {

 eXSDVersionAuto

 eXSDVersion10

 eXSDVersion11 }

ENUMXSDVersion contains the enumeration literal specifying the XML Schema version.

eXSDVersionAuto: The XML Schema version is detected automatically from the XSD
document's vc:minVersion attribute. If the XSD document's vc:minVersion attribute
has a value of 1.1, the document will be considered to be XSD 1.1. If the attribute has
any other value, or does not exist, the document will be considered to be XSD 1.0.
eXSDVersion10: Sets the XML Schema version for validation to XML Schema 1.0.
eXSDVersion11: Sets the XML Schema version for validation to XML Schema 1.1.

Used by (Interface::Method):
XMLValidator setXSDVersion

XSLT setXSDVersion

XQuery setXSDVersion

Top | Methods | Enumerations

© 2014 Altova GmbH

RaptorXML Interfaces for Java 365Java Interface

Altova RaptorXML+XBRL Server 2015

6.2.3 XSLT

public interface XSLT

Description
Transforms XML using the supplied XSLT 1.0, 2.0, or 3.0 document. XML and XSLT documents
can be provided as files (via a URL) or as a text string. Output is returned as a file (at a named
location) or as a text string. XSLT parameters can be supplied, and Altova extension functions
can be enabled for specialized processing, such as for charts. The XSLT document can also be
validated. Where string inputs are to be interpreted as URLs, absolute paths should be used.

The methods of the XSLT interface are described first, followed by its enumerations.

Methods
The methods of the class are described below in alphabetical order. In the table, they are
organized into groups for ease of reference.

Processing XSLT

isValid setVersion

execute setXSLFileName

executeAndGetResultAsString setXSLFromText

executeAndGetResultAsStringWithBaseOutputURI setaddExternalParameter

getLastErrorMessage setclearExternalParametersList

setIndentCharacters setInitialTemplateMode

setStreamingSerialization setNamedTemplateEntryPoint

XML Schema XML Extensions

setSchemaImports setInputXMLFileName setChartExtensionsEnabled

setSchemalocationHints setInputXMLFromText setDotNetExtensionsEnabled

setSchemaMapping setLoadXMLWithPSVI setJavaExtensionsEnabled

setXSDVersion setXincludeSupport setJavaBarcodeExtensionLocation

setXMLValidationMode

Top | Methods | Enumerations

addExternalParameter

public void addExternalParameter(String name, String value)

Adds the name and value of a new external parameter. Each external parameter and its value is to

366 Java Interface RaptorXML Interfaces for Java

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

be specified in a separate call to the method. Parameters must be declared in the XSLT
document. Since parameter values are XPath expressions, parameter values that are strings must
be enclosed in single quotes.
Parameters:
name: Holds the name of the parameter, which is a QName, as a string.
value: Holds the value of the parameter as a string.

Top | Methods | Enumerations

clearExternalParameterList

public void clearExternalVariableList()

Clears the external parameters list created by the AddExternalParameter method.

Top | Methods | Enumerations

execute

public boolean execute(String outputFile)

Executes the XSLT transformation according to the XSLT specification named in
ENUMXSLTVersion (see the setVersion method), and saves the result to the output file named in
the outputFile parameter. If an error occurs, a RaptorXMLException is raised. Use the
getLastErrorMessage method to access additional information.
Parameters:
outputFile: A string that provides the location (path and filename) of the output file.
Returns:
boolean true on successful execution, false on failure.

Top | Methods | Enumerations

executeAndGetResultAsString

public String executeAndGetResultAsString()

Executes the XSLT transformation according to the XSLT specification named in
ENUMXSLTVersion (see the setVersion method), and returns the result as a string. If an error
occurs, a RaptorXMLException is raised. Use the getLastErrorMessage method to access
additional information.
Returns:
a string that is the result of the XSLT transformation.

Top | Methods | Enumerations

executeAndGetResultAsStringWithBaseOutputURI

public String executeAndGetResultAsStringWithBaseOutputURI(String baseURI)

Executes the XSLT transformation according to the XSLT specification named in

© 2014 Altova GmbH

RaptorXML Interfaces for Java 367Java Interface

Altova RaptorXML+XBRL Server 2015

ENUMXSLTVersion (see the setVersion method), and returns the result as a string at the location
defined by the base URI.. If an error occurs, a RaptorXMLException is raised. Use the
getLastErrorMessage method to access additional information.
Parameters:
baseURI: A string that provides a URI.
Returns:
a string that is the result of the XSLT transformation.

Top | Methods | Enumerations

getLastErrorMessage

public String getLastErrorMessage()

Retrieves the last error message from the XSLT engine.
Returns:
a string that is the last error message from the XSLT engine.

Top | Methods | Enumerations

isValid

public boolean isValid()

Returns the result of validating the XSLT document according to the XSLT specification named in
ENUMXSLTVersion (see the setVersion method). The result is true on success, false on
failure. If an error occurs, a RaptorXMLException is raised. Use the getLastErrorMessage
method to access additional information.
Returns:
boolean true on success, false on failure.

Top | Methods | Enumerations

setChartExtensionsEnabled

public void setChartExtensionsEnabled(boolean enable)

Enables or disables Altova's chart extension functions.
Parameters:
enable: A value of true enables chart extensions; false disables them. Default value is true.

Top | Methods | Enumerations

setDotNetExtensionsEnabled

public void setDotNetExtensionsEnabled(boolean enable)

Enables or disables .NET extension functions.
Parameters:
enable: A value of true enables .NET extensions; false disables them. Default value is true.

368 Java Interface RaptorXML Interfaces for Java

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Top | Methods | Enumerations

setJavaBarcodeExtensionLocation

public void setJavaBarcodeExtensionLocation(String path)

Specifies the location of the barcode extension file. See the section on Altova's barcode extension
functions for more information.
Parameters:
path: The supplied string must be an absolute URL that gives the base location of the file to use.

Top | Methods | Enumerations

setJavaExtensionsEnabled

public void setJavaExtensionsEnabled(boolean enable)

Enables or disables Java extension functions.
Parameters:
enable: A value of true enables Java extensions; false disables them. Default value is true.

Top | Methods | Enumerations

setIndentCharacters

public void setIndentCharacters(String chars)

Sets the character string that will be used as indentation in the output.
Parameters:
chars: Holds the indentation character string.

Top | Methods | Enumerations

setInitialTemplateMode

public void setInitialTemplateMode(String mode)

Sets the name of the initial template mode. Processing will start with templates having this mode
value. Transformation must be started after assigning the XML and XSLT documents.
Parameters:
mode: The name of the initial template mode, as a string.

Top | Methods | Enumerations

setInputXMLFileName

public void setInputXMLFileName(String xmlFile)

Sets the location, as a URL, of the XML document to be transformed.

© 2014 Altova GmbH

RaptorXML Interfaces for Java 369Java Interface

Altova RaptorXML+XBRL Server 2015

Parameters:
xmlFile: The supplied string must be an absolute URL that gives the exact location of the XML
file to use.

Top | Methods | Enumerations

setInputXMLFromText

public void setInputXMLFromText(String xmlText)

Supplies the contents of the XML input document as text.
Parameters:
xmlText: The supplied string is the XML data to be processed.

Top | Methods | Enumerations

setLoadXMLWithPSVI

public void setLoadXMLWithPSVI(boolean load)

Enables or disables the option to load and use the Post Schema Validation Infoset (PSVI). If the
PSVI is loaded, information obtained from the schema can be used to qualify data in the XML
document. A value of true enables PSVI loading; false disables it.
Parameters:
load: Takes boolean true or false.

Top | Methods | Enumerations

setNamedTemplateEntryPoint

public void setNamedTemplateEntryPoint(String template)

Gives the name of the named template with which processing is to start.
Parameters:
template: The name of the named template, as a string.

Top | Methods | Enumerations

setSchemaImports

public void setSchemaImports(ENUMSchemaImports opt)

Specifies how schema imports are to be handled based on the attribute values of the xs:import
elements. The kind of handling is specified by the ENUMSchemaImports literal that is selected.
Parameters:
opt: Holds the ENUMSchemaImports literal, which determines the handling of schema imports.

Top | Methods | Enumerations

370 Java Interface RaptorXML Interfaces for Java

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

setSchemalocationHints

public void setSchemalocationHints(ENUMLoadSchemalocation opt)

Specifies the mechanism to use to locate the schema. The mechanism is specified by the
ENUMLoadSchemalocation literal that is selected.
Parameters:
opt: Holds the ENUMLoadSchemalocation literal, which determines which schema location
mechanism to use.

Top | Methods | Enumerations

setSchemaMapping

public void setSchemaMapping(ENUMSchemaMapping opt)

Sets what mapping to use in order to locate the schema. The mapping is specified by the
ENUMSchemaMapping literal that is selected.
Parameters:
opt: Holds the ENUMSchemaMapping literal.

Top | Methods | Enumerations

setStreamingSerialization

public void setStreamingSerialization(boolean support)

Enables streaming serialization. In streaming mode, data stored in memory is minimized and
processing is faster.
Parameters:
support: A value of true enables streaming serialization; false disables it.

Top | Methods | Enumerations

setVersion

public void setVersion(EnumXSLTVersion version)

Sets the XSLT version to use for processing (validation or XSLT transformation).
Parameters:
version: Holds an EnumXSLTVersion enumeration literal eVersion10, eVersion20, or
eVersion30.

Top | Methods | Enumerations

setXincludeSupport

public void setXIncludeSupport(boolean support)

Enables or disables the use of XInclude elements. A value of true enables XInclude support;
false disables it. The default value is false.

© 2014 Altova GmbH

RaptorXML Interfaces for Java 371Java Interface

Altova RaptorXML+XBRL Server 2015

Parameters:
support: Takes boolean true or false.

Top | Methods | Enumerations

setXMLValidationMode

public void setXMLValidationMode(ENUMXMLValidationMode mode)

Sets the XML validation mode, which is an enumeration literal of ENUMXMLValidationMode.
Parameters:
mode: Is an enumeration literal of ENUMXMLValidationMode.

Top | Methods | Enumerations

setXSDVersion

public void setXSDVersion(ENUMXSDVersion version)

Sets the XML Schema version against which the XML document will be validated.
Parameters:
version: Is an enumeration literal of ENUMXSDVersion.

Top | Methods | Enumerations

setXSLFileName

public void setXSLFileName(String xslFile)

Sets the location, as a URL, of the XSLT document to be used for the transformation.
Parameters:
xslFile: The supplied string must be an absolute URL that gives the exact location of the XSLT
file.

Top | Methods | Enumerations

setXSLFromText

public void setXSLFromText(String xslText)

Supplies the contents of the XSLT document as text.
Parameters:
xslText: The supplied string is the XSLT document to be used for the transformation.

Top | Methods | Enumerations

372 Java Interface RaptorXML Interfaces for Java

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Enumerations

ENUMXSLTVersion

ENUMXSLTVersion

public enum ENUMXSLTVersion {

 eVersion10

 eVersion20
 eVersion30 }

ENUMXSLTVersion takes one of the enumeration literals: eVersion10, eVersion20, eVersion30.
These set the XSLT version to be used for processing (validation or XSLT transformation).

Used by (Interface::Method):
XSLT setVersion

Top | Methods | Enumerations

© 2014 Altova GmbH

RaptorXML Interfaces for Java 373Java Interface

Altova RaptorXML+XBRL Server 2015

6.2.4 XQuery

public interface XQuery

Description
Executes XQuery 1.0 and 3.0 documents using the RaptorXML engine. XQuery and XML
documents can be provided as a file (via a URL) or as a text string. Output is returned as a file (at
a named location) or as a text string. External XQuery variables can be supplied, and a number of
serialization options are available. The XQuery document can also be validated. Where string
inputs are to be interpreted as URLs, absolute paths should be used.

The methods of the XQuery interface are described first, followed by its enumerations.

Methods
The methods of the class are described below in alphabetical order. In the table, they are
organized into groups for ease of reference.

Processing XML XQuery

isValid setInputXMLFileName setVersion

isValidUpdate setInputXMLFromText setXQueryFileName

execute setLoadXMLWithPSVI setXQueryFromText

executeAndGetResultAsString setXincludeSupport addExternalVariable

executeUpdate setXMLValidationMode clearExternalVariableList

executeUpdateAndGetResultAsStri
ng

setXSDVersion

getLastErrorMessage

setUpdatedXMLWriteMode

Serialization Options Extensions

setIndentCharacters setChartExtensionsEnabled

setKeepFormatting setDotNetExtensionsEnabled

setOutputEncoding setJavaExtensionsEnabled

setOutputIndent

setOutputMethod

setOutputOmitXMLDeclaration

Top | Methods | Enumerations

374 Java Interface RaptorXML Interfaces for Java

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

addExternalVariable

public void addExternalVariable(String name, String value)

Adds the name and value of a new external variable. Each external variable and its value is to be
specified in a separate call to the method. Variables must be declared in the XQuery document
(with an optional type declaration). If the variable value is a string, enclose the value in single
quotes.
Parameters:
name: Holds the name of the variable, which is a QName, as a string.
value: Holds the value of the variable as a string.

Top | Methods | Enumerations

clearExternalVariableList

public void clearExternalVariableList()

Clears the external variables list created by the AddExternalVariable method.

Top | Methods | Enumerations

execute

public boolean execute(String outputFile)

Executes the XQuery transformation according to the XQuery specification named in
ENUMXQueryVersion (see the setVersion method), and saves the result to the output file named
in the outputFile parameter.
Parameters:
outputFile: A string that provides the location (path and filename) of the output file.
Returns:
boolean true on successful execution, false on failure.

Top | Methods | Enumerations

executeUpdate

public boolean executeUpdate(String outputFile)

Executes the XQuery update according to the XQuery Update specification named in
ENUMXQueryVersion (see the setVersion method), and saves the result to the output file named
in the outputFile parameter.
Parameters:
outputFile: A string that provides the location (path and filename) of the output file.
Returns:
boolean true on successful execution, false on failure.

Top | Methods | Enumerations

© 2014 Altova GmbH

RaptorXML Interfaces for Java 375Java Interface

Altova RaptorXML+XBRL Server 2015

executeAndGetResultAsString

public String executeAndGetResultAsString()

Executes the XQuery transformation according to the XQuery specification named in
ENUMXQueryVersion (see the setVersion method), and returns the result as a string.
Returns:
a string that is the result of the XQuery execution.

Top | Methods | Enumerations

executeUpdateAndGetResultAsString

public String executeUpdateAndGetResultAsString()

Executes the XQuery update according to the XQuery Update specification named in
ENUMXQueryVersion (see the setVersion method), and returns the result as a string.
Returns:
a string that is the result of the XQuery update.

Top | Methods | Enumerations

getLastErrorMessage

public String getLastErrorMessage()

Retrieves the last error message from the XQuery engine.
Returns:
a string that is the last error message from the XQuery engine.

Top | Methods | Enumerations

isValid

public boolean isValid()

Returns the result of validating the XQuery document according to the XQuery specification named
in ENUMXQueryVersion (see the setVersion method). The result is true on success, false on
failure. If an error occurs, a RaptorXMLException is raised. Use the getLastErrorMessage
method to access additional information.
Returns:
boolean true on success, false on failure.

Top | Methods | Enumerations

isValidUpdate

public boolean isValidUpdate()

Returns the result of validating the XQuery Update document according to the XQuery Update
specification named in ENUMXQueryVersion (see the setVersion method). The result is true on

376 Java Interface RaptorXML Interfaces for Java

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

success, false on failure. If an error occurs, a RaptorXMLException is raised. Use the
getLastErrorMessage method to access additional information.
Returns:
boolean true on success, false on failure.

Top | Methods | Enumerations

setChartExtensionsEnabled

public void setChartExtensionsEnabled(boolean enable)

Enables or disables Altova's chart extension functions.
Parameters:
enable: A value of true enables chart extensions; false disables them. Default value is true.

Top | Methods | Enumerations

setDotNetExtensionsEnabled

public void setDotNetExtensionsEnabled(boolean enable)

Enables or disables .NET extension functions.
Parameters:
enable: A value of true enables .NET extensions; false disables them. Default value is true.

Top | Methods | Enumerations

setIndentCharacters

public void setIndentCharacters(String chars)

Sets the character string that will be used as indentation in the output.
Parameters:
chars: Holds the indentation character string.

Top | Methods | Enumerations

setInputXMLFileName

public void setInputXMLFileName(String xmlFile)

Sets the location, as a URL, of the XML document to be used for the XQuery execution.
Parameters:
xmlFile: The supplied string must be an absolute URL that gives the exact location of the XML
file to use.

Top | Methods | Enumerations

© 2014 Altova GmbH

RaptorXML Interfaces for Java 377Java Interface

Altova RaptorXML+XBRL Server 2015

setInputXMLFromText

public void setInputXMLFromText(String xmlText)

Supplies the contents of the XML input document as text.
Parameters:
xmlText: The supplied string is the XML data to be processed.

Top | Methods | Enumerations

setJavaExtensionsEnabled

public void setJavaExtensionsEnabled(boolean enable)

Enables or disables Java extension functions.
Parameters:
enable: A value of true enables Java extensions; false disables them. Default value is true.

Top | Methods | Enumerations

setKeepFormatting

public void setKeepFormatting(boolean keep)

Enables or disables the option to keep the original formatting of files that will be updated by
executeUpdate.
Parameters:
keep: Takes boolean true or false.

Top | Methods | Enumerations

setLoadXMLWithPSVI

public void setLoadXMLWithPSVI(boolean load)

Enables or disables the option to load and use the Post Schema Validation Infoset (PSVI). If the
PSVI is loaded, information obtained from the schema can be used to qualify data in the XML
document. A value of true enables PSVI loading; false disables it.
Parameters:
load: Takes boolean true or false.

Top | Methods | Enumerations

setOutputEncoding

public void setOutputEncoding(String encoding)

Sets the encoding of the result document.
Parameters:
encoding: Use an official IANA encoding name, such as UTF-8, UTF-16, US-ASCII, ISO-8859-1,
as a string.

378 Java Interface RaptorXML Interfaces for Java

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Top | Methods | Enumerations

setOutputIndent

public void setOutputIndent(boolean indent)

Enables or disables indentation in the output document.
Parameters:
indent: A value of true enables indentation; false disables it.

Top | Methods | Enumerations

setOutputMethod

public void setOutputMethod(String outputMethod)

Specifies the serialization of the output document.
Parameters:
outputMethod: Valid values are: xml | xhtml | html | text, given as a string. Default value
is xml.

Top | Methods | Enumerations

setOutputOmitXMLDeclaration

public void setOutputOmitXMLDeclaration(boolean omit)

Enables or disables the inclusion of the XML declaration in the result document.
Parameters:
omit: A value of true omits the declaration; false includes it. Default value is false.

Top | Methods | Enumerations

setUpdatedXMLWriteMode

public void setUpdatedXMLWriteMode(EnumXQueryUpdatedXML mode)

Sets the mode to use for updating.
Parameters:
mode: Holds an EnumXQueryUpdatedXML enumeration literal eUpdatedDiscard,
eUpdatedWriteback or eUpdatedAsMainResult.

Top | Methods | Enumerations

setVersion

public void setVersion(EnumXQueryVersion version)

Sets the XQuery version to use for processing (validation or XQuery execution).
Parameters:

© 2014 Altova GmbH

RaptorXML Interfaces for Java 379Java Interface

Altova RaptorXML+XBRL Server 2015

version: Holds an EnumXQueryVersion enumeration literal eVersion10 or eVersion30. Default
is eVersion30ml.

Top | Methods | Enumerations

setXincludeSupport

public void setXIncludeSupport(boolean support)

Enables or disables the use of XInclude elements. A value of true enables XInclude support;
false disables it. The default value is false.
Parameters:
support: Takes boolean true or false.

Top | Methods | Enumerations

setXMLValidationMode

public void setXMLValidationMode(ENUMXMLValidationMode mode)

Sets the XML validation mode, which is an enumeration literal of ENUMXMLValidationMode.
Parameters:
mode: Is an enumeration literal of ENUMXMLValidationMode.

Top | Methods | Enumerations

setXQueryFileName

public void setXQueryFileName(String queryFile)

Sets the location, as a URL, of the XQuery file to be executed.
Parameters:
queryFile: The supplied string must be an absolute URL that gives the exact location of the XML
file to use.

Top | Methods | Enumerations

setXQueryFromText

public void setXQueryFromText(String queryText)

Supplies the contents of the XQuery document as text.
Parameters:
queryText: The supplied string is the XQuery document to be processed.

Top | Methods | Enumerations

setXSDVersion

380 Java Interface RaptorXML Interfaces for Java

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

public void setXSDVersion(ENUMXSDVersion version)

Sets the XML Schema version against which the XML document will be validated.
Parameters:
version: Is an enumeration literal of ENUMXSDVersion.

Top | Methods | Enumerations

Enumerations

ENUMXQueryUpdatedXML

ENUMXQueryVersion

ENUMXQueryUpdatedXML

public enum ENUMXQueryUpdatedXML {

 eUpdatedDiscard

 eUpdatedWriteback
 eeUpdatedAsMainResult }

ENUMXQueryVersion takes one of the enumeration literals:
eUpdatedDiscard: Updates are discarded and not written to file.
eUpdatedWriteback: Updates are written to the input XML file specified with
setInputXMLFileName.
eUpdatedAsMainResult: Updates are written to the location specified by the outputFile
parameter of ExecuteUpdate.

Used by (Interface::Method):
XQuery setUpdatedXMLWriteMode

Top | Methods | Enumerations

ENUMXQueryVersion

public enum ENUMXQueryVersion {

 eVersion10

 eVersion30 }

ENUMXQueryVersion takes one of the enumeration literals: eVersion10, eVersion30. These set
the XQuery version to be used for processing (execution or validation).

Used by (Interface::Method):
XQuery setVersion

Top | Methods | Enumerations

© 2014 Altova GmbH

RaptorXML Interfaces for Java 381Java Interface

Altova RaptorXML+XBRL Server 2015

382 Java Interface RaptorXML Interfaces for Java

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

6.2.5 XBRL

public interface XBRL

Description
Validates the supplied XBRL instance document or XBRL taxonomy document. The methods of
the interface are described first, followed by its enumerations.

Utility class
A utility class for FormulaParam is defined. It holds two members and a constructor.

ParamValuePair

public class ParamValuePair

public class ParamValuePair

 {
 public String paramType;

 public String paramValue;

 public ParamValuePair(String type, String value)

 {
 paramType = type;
 paramValue = value;
 }
 };

Methods
The methods of the class are described below in alphabetical order. They are also organized into
groups, according to functionality, for ease of reference.

Grouped by functionality

Processing
isValid(ENUM type)
isValid
getLastErrorMessage
setEvaluateReferencedParametersOnly
setParallelAssessment
setPythonScriptFile

Input Files
setInputFileName
setInputFileCollection
setInputFromText
setInputTextCollection

© 2014 Altova GmbH

RaptorXML Interfaces for Java 383Java Interface

Altova RaptorXML+XBRL Server 2015

Formulas and Assertions
addAssertionForProcessing
addAssertionSetForProcessing
addFormulaArrayParameter
addFormulaForProcessing
addFormulaParameter(with NS)
addFormulaParameter
addFormulaParameterNamespace
clearFormulaParameterList
readFormulaAssertions
readFormulaOutput
setFormulaAssertionsAsXML
setFormulaAssertionsOutput
setFormulaOutput
evaluateFormula
setFormulaExtensionEnabled
setFormulaPreloadSchemas

Tables
addTableForProcessing
generateTables
setTableEliminateEmptyRows
setTableExtensionEnabled
setTableLinkbaseNamespace
setTableOutput
setTableOutputFormat
setTablePreloadSchemas

XML & XML Schema
setXincludeSupport
setSchemaImports
setSchemalocationHints
setSchemaMapping

General XBRL
setConceptLabelLinkrole
setConceptLabelRole
setGenericLabelLinkrole
setGenericLabelRole
setLabelLang
setDimensionExtensionEnabled
setPreloadSchemas
setTreatXBRLInconsistenciesAsErrors

addAssertionForProcessing

public void addAssertionForProcessing(String assertion)

Limits assertion execution to the given assertion only. Call multiple times to specify more than
one assertion.
Parameters:
assertion: The supplied string holds the name of the assertion. Use ##none for processing no
assertion and ##all for processing all assertions.

384 Java Interface RaptorXML Interfaces for Java

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

addAssertionSetForProcessing

public void addAssertionSetForProcessing(String assertionSet)

Limits assertion set execution to the given assertion set only. Call multiple times to specify
more than one assertion set.
Parameters:
assertionSet: The supplied string holds the name of the assertion set. Use ##none for
processing no assertion set and ##all for processing all assertion sets.

addFormulaArrayParameter

public void addFormulaArrayParameter(String type, String name, Object[]

values)

Adds an array-parameter used in the formula evaluation process.
Parameters:
type: A string that gives the default datatype of non-pair values inside array values. Default is
xs:string.
name: A string that gives the parameter's name.
values: An array of values and datatype-value pairs.
For more information and code samples, see the section, XBRL Formula Parameters.

addFormulaForProcessing

public void addFormulaForProcessing(String formula)

Limits formula execution to the given formula only. Call multiple times to specify more than one
formula.
Parameters:
formula: The supplied string holds the name of the formula. Use ##none for processing no
formula and ##all for processing all formulas.

addFormulaParameter (with namespace) DEPRECATED

public void addFormulaParameter(String type, String name, String value, String

 namespace)

Adds a parameter used in the formula evaluation process.
Parameters:
type: A string that gives the parameter's datatye.
name: A string that gives the parameter's name.
value: A string that gives the parameter's value.
namespace: A string that gives the parameter's namespace.
Note: If this method is used, the namespace is passed to addFormulaParameterNamespace.

addFormulaParameter

public void addFormulaParameter(String type, String name, String value)

Adds a parameter used in the formula evaluation process.
Parameters:
type: A string that gives the parameter's datatype.
name: A string that gives the parameter's name.
value: A string that gives the parameter's value.

© 2014 Altova GmbH

RaptorXML Interfaces for Java 385Java Interface

Altova RaptorXML+XBRL Server 2015

addFormulaParameterNamespace

public void addFormulaParameter(String prefix, String URI)

Defines a namespace used in the QNames of parameter names, types, or values.
Parameters:
prefix: The namespace-prefix of values passed to addFormulaArrayParameter.
URI: The namespace URI.

addTableForProcessing

public void addTableForProcessing(String table)

Limits table generation to the given table only. Call multiple times to specify more than one
table.
Parameters:
table: The supplied string holds the name of the table. Use ##none for processing no table
and ##all for processing all tables.

clearFormulaParameterList

public void clearFormulaParameterList()

Clears the list of formula parameters created with the addFormulaParameter method.

evaluateFormula

public boolean evaluateFormula()

Returns the result of evaluating XBRL formulas in an XBRL instance file. The result is true on
success, false on failure. If an error occurs, a RaptorXMLException is raised. Use the
getLastErrorMessage method to access additional information.
Returns:
boolean true on success, false on failure.

generateTables

public boolean generateTables()

Evaluates XBRL tables in an instance file. The result is true on success, false on failure. If
an error occurs, a RaptorXMLException is raised. Use the getLastErrorMessage method to
access additional information.
Returns:
boolean true on success, false on failure.

getLastErrorMessage

public String getLastErrorMessage()

Retrieves the last error message from the XBRL engine.
Returns:
a string that is the last error message from the XBRL engine.

isValid

public boolean isValid(ENUMValidationType type)

Returns the result of validating the XBRL instance document or XBRL taxonomy document.
The type of document to validate is specified by the type parameter, which takes an
ENUMValidationType literal as its value. The result is true on success, false on failure. If an

386 Java Interface RaptorXML Interfaces for Java

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

error occurs, a RaptorXMLException is raised. Use the getLastErrorMessage method to
access additional information.
Parameters:
type: An ENUMValidationType literal, which specifies whether the validation is of an XBRL
instance document or of an XBRL taxonomy.
Returns:
boolean true on success, false on failure.

isValid

public boolean isValid()

Returns the result of validating the submitted XBRL document.The result is true on success,
false on failure.
Returns:
boolean true on success, false on failure.

readFormulaAssertions

public String readFormulaAssertions()

Retrieves formula assertions from the specified file.
Returns:
a string containing the formula assertions.

readFormulaOutput

public String readFormulaOutput()

Evaluates formula assertions in the specified file and returns the result.
Returns:
a string that is an evaluation of the formula assertions.

setConceptLabelLinkrole

public void setConceptLabelLinkrole(String labelLinkrole)

Specifies the preferred extended link role to use when rendering concept labels.
Parameters:
labelLinkrole: The supplied string holds the preferred link role.

setConceptLabelRole

public void setConceptLabelRole(String labelRole)

Specifies the preferred label role to use when rendering concept labels.
Parameters:
labelRole: The supplied string holds the preferred label role. Default is: http://
www.xbrl.org/2008/role/label.

setDimensionExtensionEnabled

public void setDimensionExtensionEnabled(boolean bEnable)

Enables XBRL Dimension extension validation. A value of true enables support; false
disables it. Default is true.
Parameters:
bEnable: Takes boolean true or false.

© 2014 Altova GmbH

RaptorXML Interfaces for Java 387Java Interface

Altova RaptorXML+XBRL Server 2015

setEvaluateReferencedParametersOnly

public void setEvaluateReferencedParametersOnly(boolean bEnable)

If false, forces evaluation of all parameters even if they are not referenced by any formulas/
assertions/tables. Default is: true.
Parameters:
bEnable: Takes boolean true or false.

setFormulaAssertionsAsXML

public void setFormulaAssertionsAsXML(boolean bEnable)

Enables XML formatting of the assertion file when RaptorXML+XBRL is run with assertions
enabled. A value of true enables XML output; false generates JSON output. Default is false.
Parameters:
bEnable: Takes boolean true or false.

setFormulaAssertionsOutput

public void setFormulaAssertionsOutput(String outputFile)

Sets the location of the file containing the retrieved formula assertions.
Parameters:
outputFile: The supplied string holds the full path of the output file.

setFormulaOutput

public void setFormulaOutput(String outputFile)

Sets the location of the file containing the output of formula evaluation.
Parameters:
outputFile: The supplied string holds the full path of the output file.

setFormulaExtensionEnabled

public void setFormulaExtensionEnabled(boolean bEnable)

Enables XBRL formula extensions for validation. A value of true enables support; false
disables it. Default is true.
Parameters:
bEnable: Takes boolean true or false.

setFormulaPreloadSchemas

public void setFormulaPreloadSchemas(boolean bEnable)

Defines whether XBRL formula schemas will be preloaded. A value of true preloads the
schemas; false does not. The default value is false.
Parameters:
bEnable: Takes boolean true or false.

setGenericLabelLinkrole

public void setGenericLabelLinkrole(String labelLinkrole)

Specifies the preferred extended link role to use when rendering generic labels.
Parameters:

388 Java Interface RaptorXML Interfaces for Java

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

labelLinkrole: The supplied string holds the preferred link role.

setGenericLabelRole

public void setGenericLabelRole(String labelRole)

Specifies the preferred label role to use when rendering generic labels.
Parameters:
labelRole: The supplied string holds the preferred label role. Default is: http://
www.xbrl.org/2008/role/label.

setInputFileCollection

public void setInputFileCollection(Collection<?> fileCollection)

Supplies the collection of XBRL files that will be used as input data. The files are identified by
their URLs.
Parameters:
fileCollection: A collection of strings, each of which is the absolute URL of an input XBRL
file.

setInputFileName

public void setInputXMLFileName(String filePath)

Sets the location, as a URL, of the XBRL document to be validated.
Parameters:
filePath: The supplied string must be an absolute URL that gives the exact location of the
XBRL file.

setInputFromText

public void setInputFromText(String inputText)

Supplies the contents of the XBRL document as text.
Parameters:
inputText: The supplied string is the content of the XBRL document to validate.

setInputTextCollection

public void setInputTextCollection(Collection<?> stringCollection)

Supplies the content of multiple XBRL files that will be used as input data.
Parameters:
stringCollection: A collection of strings, each of which is the content of an input XBRL
document.

setLabelLang

public void setLabelLang(String labelLang)

Specifies the preferred label language to use when rendering labels.
Parameters:
labelLang: The supplied string holds the preferred label language. Default is: en.

setParallelAssessment

public void setParallelAssessment(boolean support)

© 2014 Altova GmbH

RaptorXML Interfaces for Java 389Java Interface

Altova RaptorXML+XBRL Server 2015

Enables or disables the use of parallel assessment. A value of true enables parallel
asessment; false disables it. The default value is false.
Parameters:
support: Takes boolean true or false.

setPreloadSchemas

public void setPreloadSchemas(boolean preload)

Defines whether XBRL 2.1 schemas will be pre-loaded. A value of true indicates preloads;
false disables it. Default is true.
Parameters:
support: Takes boolean true or false. Default is false.

setPythonScriptFile

public void setPythonScriptFile(String file)

Sets the location, as a URL, of the Python script file.
Parameters:
file: The supplied string must be an absolute URL that gives the exact location of the Python
file.

setSchemaImports

public void setSchemaImports(ENUMSchemaImports opt)

Specifies how schema imports are to be handled based on the attribute values of the
xs:import elements. The kind of handling is specified by the ENUMSchemaImports literal that
is selected.
Parameters:
opt: Holds the ENUMSchemaImports literal, which determines the handling of schema imports.
See the description of ENUMSchemaImports for details.

setSchemalocationHints

public void setSchemalocationHints(ENUMLoadSchemalocation opt)

Specifies the mechanism to use to locate the schema. The mechanism is specified by the
ENUMLoadSchemalocation literal that is selected.
Parameters:
opt: Holds the ENUMLoadSchemalocation literal, which determines which schema location
mechanism to use. See the description of ENUMLoadSchemalocation for details.

setSchemaMapping

public void setSchemaMapping(ENUMSchemaMapping opt)

Sets what mapping to use in order to locate the schema. The mapping is specified by the
ENUMSchemaMapping literal that is selected.
Parameters:
opt: Holds the ENUMSchemaMapping literal. See the description of ENUMSchemaMapping for
details.

setTableEliminateEmptyRows

public void setTableEliminateEmptyRows(boolean bEnable)

390 Java Interface RaptorXML Interfaces for Java

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Enables the elimination of empty table rows/columns in HTML output only. A value of true
enables support; false disables it.
Parameters:
bEnable: Takes boolean true or false.

setTableExtensionEnabled

public void setTableExtensionEnabled(boolean bEnable)

Enables XBRL Table 1.0 extensions for validation. A value of true enables support; false
disables it.
Parameters:
bEnable: Takes boolean true or false.

setTableLinkbaseNamespace

public void setTableLinkbaseNamespace(String namespace)

Enables the loading of table linkbases written with a previous draft specification. The
namespace parameter specifies the table linkbase. Table linkbase validation, resolution, and
layout is, however, always performed according to the Table Linkbase 1.0 Recommendation of
18 March 2014. Use ##detect to enable auto-detection.
Parameters:
namespace: The following values are recognized:
##detect
http://xbrl.org/PWD/2013-05-17/table
http://xbrl.org/PWD/2013-08-28/table
http://xbrl.org/CR/2013-11-13/table
http://xbrl.org/PR/2013-12-18/table
http://xbrl.org/2014/table

setTableOutput

public void setTableOutput(String outputFile)

Sets the location of the file containing the output of table generation.
Parameters:
outputFile: The supplied string holds the full path of the output file.

setTableOutputFormat

public void setTableOutputAsXML(ENUMTableOutputFormat format)

Sets the format of the table output file. The format will be the value of
ENUMTableOutputFormat.
Parameters:
format: Holds the value of ENUMTableOutputFormat.

setTablePreloadSchemas

public void setTablePreloadSchemas(boolean bEnable)

Enables preloading of schemas of the XBRL Table 1.0 specification. A value of true enables
support; false disables it. Default is false.
Parameters:
bEnable: Takes boolean true or false.

© 2014 Altova GmbH

RaptorXML Interfaces for Java 391Java Interface

Altova RaptorXML+XBRL Server 2015

setTreatXBRLInconsistenciesAsErrors

public void setTreatXBRLInconsistenciesAsErrors(boolean treat)

A value of true causes XBRL validation to fail if the file contains any inconsistencies as
defined by the XBRL 2.1 specification. Default is false. When false, XBRL inconsistencies
according to the XBRL 2.1 specification are not treated as errors.
Parameters:
support: Takes boolean true or false.

setXincludeSupport

public void setXIncludeSupport(boolean support)

Enables or disables the use of XInclude elements. A value of true enables XInclude support;
false disables it. The default value is false.
Parameters:
support: Takes boolean true or false.

Top | Methods | Enumerations

Enumerations

ENUMValidationType

public enum ENUMValidationType {

 eValidateAny

 eValidateInstance

 eValidateTaxonomy }

ENUMValidationType contains the enumeration literal specifying what validation to carry out
and, in the case of XML documents, whether validation is against a DTD or XSD.

eValidateAny: The document type is detected automatically.
eValidateInstance: Validates an XBRL instance document (.xbrl file extension).
eValidateTaxonomy: Validates an XBRL taxonomy (.xsd file extension).

Used by (Interface::Method):
XBRL isValid

ENUMTableOutputFormat

public enum ENUMTableOutputFormat {

 eFormatXML

 eFormatHTML }

ENUMTableOutputFormat contains the enumeration literal that specifies the output format of
the document containing the generated tables.

eFormatXML: The output document with the generated tables is in XML format.
eFormatHTML: The output document with the generated tables is in HTML format.

392 Java Interface RaptorXML Interfaces for Java

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Used by (Interface::Method):
XBRL setTableOutputFormat

Top | Methods | Enumerations

© 2014 Altova GmbH

RaptorXML Interfaces for Java 393Java Interface

Altova RaptorXML+XBRL Server 2015

6.2.6 RaptorXMLException

public interface RaptorXMLException

Description
Has a single method that generates the exception.

RaptorXMLException

public void RaptorXMLException(String message)

Generates an exception that contains information about an error that occurs during processing.
Parameters:
message: A string that provides information about the error.

Chapter 7

COM and .NET Interfaces

396 COM and .NET Interfaces

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

7 COM and .NET Interfaces

Two interfaces, one API
The COM and .NET interfaces of RaptorXML+XBRL Server use a single API: the COM/.NET API of
RaptorXML+XBRL Server. The .NET interface is built as a wrapper around the COM interface.

You can use RaptorXML with:

Scripting languages, such as JavaScript, via the COM interface
Programming languages, such as C#, via the .NET interface

Organization of this section
This section is organized as follows:

About the COM Interface, which describes how the COM interface works and steps you
need to take to work with the COM interface
About the .NET Interface, which describes how to set up your environment for working
with the .NET interface.
Programming Languages, which provides code listings in commonly used programming
languages that show how to call RaptorXML functionality.
The API Reference, which documents the object model, objects, and properties of the
API.

© 2014 Altova GmbH

About the COM Interface 397COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

7.1 About the COM Interface

RaptorXML+XBRL Server is automatically registered as a COM server object when RaptorXML
+XBRL Server is installed. So it can be invoked from within applications and scripting languages
that have programming support for COM calls. If you wish to change the location of the RaptorXML
+XBRL Server installation package, it is best to de-install RaptorXML+XBRL Server and then re-
install it at the required location. In this way the necessary de-registration and registration are
carried out by the installer process.

Check the success of the registration
If the registration was successful, the Registry will contain the classes RaptorXML.Server. These
two classes will typically be found under HKEY_LOCAL_MACHINE\SOFTWARE\Classes.

Code examples
A VBScript example showing how the RaptorXML API can be used via its COM interface is listed
in the section Programming Languages. An example file corresponding to this listing is available
in the examples/API folder of the RaptorXML application folder.

398 COM and .NET Interfaces About the .NET Interface

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

7.2 About the .NET Interface

The .NET interface is built as a wrapper around the RaptorXML COM interface. It is provided as a
primary interop assembly signed by Altova; it uses the namespace Altova.RaptorXMLServer.

Adding the RaptorXML DLL as a reference to a Visual Studio .NET project
In order to use RaptorXML in your .NET project, add a reference to the RaptorXML DLL
(Altova.RaptorXMLServer.dll) in your project. Your RaptorXML+XBRL Server installation
contains a signed DLL file, named Altova.RaptorXMLServer.dll. This DLL file will automatically
be added to the global assembly cache (GAC) when RaptorXML is installed using the RaptorXML
installer. The GAC is typically in the folder: C:\WINDOWS\assembly.

To add the RaptorXML DLL as a reference in a .NET project, do the following:

1. With the .NET project open, click Project | Add Reference. The Add Reference dialog
(screenshot below) pops up.

2. In the Browse tab, go to the folder: <RaptorXML application folder>/bin, select the

RaptorXML DLL Altova.RaptorXMLServer.dll, and click OK.
3. Select the command View | Object Browser to see the objects of the RaptorXML API.

Once the Altova.RaptorXMLServer.dll is available to the .NET interface and RaptorXML has
been registered as a COM server object, RaptorXML functionality will be available in your .NET
project.

© 2014 Altova GmbH

About the .NET Interface 399COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

Note: RaptorXML will automatically be registered as a COM server object during installation.
There is no need for a manual registration.

Note: If you receive an access error, check that permissions are correctly set. Go to
Component Services and give permissions to the same account that runs the application
pool containing RaptorXML.

Code examples
A C# example and a Visual Basic .NET example showing how the RaptorXML API can be used
via its .NET interface are listed in the section Programming Languages. The files corresponding
to these listings are available in the examples/API folder of the RaptorXML application folder.

400 COM and .NET Interfaces Programming Languages

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

7.3 Programming Languages

Programming languages differ in the way they support COM and .NET access. A few examples
for the most frequently used languages (links below) will help you get started. The code listings in
this section show how basic functionality can be accessed. This basic functionality is included in
the files in the examples/API folder of the RaptorXML+XBRL Server application folder.

VBScript
VBScript can be use to access the COM API of RaptorXML+XBRL Server. The VBScript listing
demonstrates the following basic functionality:

Connect to the RaptorXML+XBRL Server COM API
Validate an XML file
Carry out an XSL Transformation
Do an XQuery execution

C#
C# can be used to access the .NET API of RaptorXML+XBRL Server. The C# code listing shows
how to access the API for the following basic functionality:

Connect to the RaptorXML+XBRL Server .NET API
Validate an XML file
Carry out an XSL Transformation
Do an XQuery execution

Visual Basic .NET
Visual Basic.NET is different than C# in it syntax only, the .NET API accessing works in the
same way. The Visual Basic code listing describes the following basic operations:

Connect to the RaptorXML+XBRL Server .NET API
Validate an XML file
Carry out an XSL Transformation
Do an XQuery execution

This section contains the following code examples:

For the COM interface

An example in VBScript

For the .NET interface

An example in C#
An example in Visual Basic

© 2014 Altova GmbH

Programming Languages 401COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

7.3.1 COM Example: VBScript

The VBScript example below is structured into the following parts:

Set up and initialize the RaptorXML COM object
Validate an XML file
Perform an XSLT transformation, return the result as a string
Process an XQuery document, save the result in a file
Set up the execution sequence of the script and its entry point

' The RaptorXML COM object
dim objRaptor

' Initialize the RaptorXML COM object
sub Init

objRaptor = Null

On Error Resume Next

' Try to load the 32-bit COM object; do not throw exceptions if object is
not found

Set objRaptor = WScript.GetObject("", "RaptorXML.Server")

On Error Goto 0

if (IsNull(objRaptor)) then

' Try to load the 64-bit object (exception will be thrown if not
found)

Set objRaptor = WScript.GetObject("", "RaptorXML_x64.Server")

end if

' Configure the server: error reporting, HTTP server name and port (IPv6
localhost in this example)

objRaptor.ErrorLimit = 1

objRaptor.ReportOptionalWarnings = true

objRaptor.ServerName = "::1"

objRaptor.ServerPort = 8087
end sub

' Validate one file
sub ValidateXML

' Get a validator instance from the Server object

dim objXMLValidator

Set objXMLValidator = objRaptor.GetXMLValidator()

' Configure input data

objXMLValidator.InputXMLFileName = "MyXMLFile.xml"

' Validate; in case of invalid file report the problem returned by
RaptorXML

if (objXMLValidator.IsValid()) then

MsgBox("Input string is valid")

else

MsgBox(objXMLValidator.LastErrorMessage)

402 COM and .NET Interfaces Programming Languages

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

end if
end sub

' Perform a transformation; return the result as a string
sub RunXSLT

' Get an XSLT engine instance from the Server object

dim objXSLT

set objXSLT = objRaptor.GetXSLT

' Configure input data

objXSLT.InputXMLFileName = "MyXMLFile.xml"

objXSLT.XSLFileName = "MyTransformation.xsl"

' Run the transformation; in case of success the result will be returned,
in case of errors the engine returns an error listing

MsgBox(objXSLT.ExecuteAndGetResultAsString())
end sub

' Execute an XQuery; save the result in a file
sub RunXQuery

' Get an XQuery engine instance from the Server object

dim objXQ

set objXQ = objRaptor.GetXQuery()

' Configure input data

objXQ.InputXMLFileName = "MyXMLFile.xml"

objXQ.XQueryFileName = "MyQuery.xq"

' Configure serialization (optional - for fine-tuning the result's
formatting)

objXQ.OutputEncoding = "UTF8"

objXQ.OutputIndent = true

objXQ.OutputMethod = "xml"

objXQ.OutputOmitXMLDeclaration = false

' Run the query; the result will be serialized to the given path

call objXQ.Execute("MyQueryResult.xml")
end sub

' Perform all sample functions
sub main

Init

ValidateXML

RunXSLT

RunXQuery
end sub

' Script entry point; run the main function
main

© 2014 Altova GmbH

Programming Languages 403COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

404 COM and .NET Interfaces Programming Languages

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

7.3.2 .NET Example: C#

The C# example below does the following:

Set up and initialize the RaptorXML .NET object
Validate an XML file
Perform an XSLT transformation, return the result as a string
Process an XQuery document, save the result in a file
Set up the execution sequence of the code and its entry point

using System;
using System.Text;
using Altova.RaptorXMLServer;

namespace RaptorXMLRunner
{
 class Program

 {
 // The RaptorXML Server .NET object

 static ServerClass objRaptorXMLServer;

 // Initialize the RaptorXML Server .NET object

 static void Init()

 {
 // Allocate a RaptorXML Server object

 objRaptorXMLServer = new ServerClass();

 // Configure the server: error reporting, HTTP server name and port

 // (IPv6 localhost in this example)

 objRaptorXMLServer.ErrorLimit = 1;
 objRaptorXMLServer.ReportOptionalWarnings = true;

 objRaptorXMLServer.ServerName = "::1"
 objRaptorXMLServer.ServerPort = 8087
 }

 // Validate one file

 static void ValidateXML()

 {
 // Get a validator engine instance from the Server object

 XMLValidator objXMLValidator =
objRaptorXMLServer.GetXMLValidator();

 // Configure input data

 objXMLValidator.InputXMLFileName = "MyXMLFile.xml";

 // Validate; in case of invalid file,

 report the problem returned by RaptorXML

© 2014 Altova GmbH

Programming Languages 405COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

 if (objXMLValidator.IsValid())

 Console.WriteLine("Input string is valid");
 else

 Console.WriteLine(objXMLValidator.LastErrorMessage);
 }

 // Perform an XSLT transformation, and

 // return the result as a string

 static void RunXSLT()

 {
 // Get an XSLT engine instance from the Server object

 XSLT objXSLT = objRaptorXMLServer.GetXSLT();

 // Configure input data

 objXSLT.InputXMLFileName = "MyXMLFile.xml";
 objXSLT.XSLFileName = "MyTransformation.xsl";

 // Run the transformation.

 // In case of success, the result is returned.

 // In case of errors, an error listing

 Console.WriteLine(objXSLT.ExecuteAndGetResultAsString());
 }

 // Execute an XQuery, save the result in a file

 static void RunXQuery()

 {
 // Get an XQuery engine instance from the Server object

 XQuery objXQuery = objRaptorXMLServer.GetXQuery();

 // Configure input data

 objXQuery.InputXMLFileName = exampleFolder + "simple.xml";
 objXQuery.XQueryFileName = exampleFolder + "CopyInput.xq";

 // Configure serialization (optional, for better formatting)

 objXQuery.OutputEncoding = "UTF8"
 objXQuery.OutputIndent = true

 objXQuery.OutputMethod = "xml"
 objXQuery.OutputOmitXMLDeclaration = false

 // Run the query; result serialized to given path

 objXQuery.Execute("MyQueryResult.xml");
 }

 static void Main(string[] args)

406 COM and .NET Interfaces Programming Languages

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

 {
 try

 {
 // Entry point. Perform all functions

 Init();
 ValidateXML();
 RunXSLT();
 RunXQuery();
 }
 catch (System.Exception ex)

 {
 Console.WriteLine(ex.Message);
 Console.WriteLine(ex.ToString());
 }
 }
 }
}

© 2014 Altova GmbH

Programming Languages 407COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

7.3.3 .NET Example: Visual Basic .NET

The Visual Basic example below does the following:

Set up and initialize the RaptorXML .NET object
Validate an XML file
Perform an XSLT transformation, return the result as a string
Process an XQuery document, save the result in a file
Set up the execution sequence of the code and its entry point

Option Explicit On
Imports Altova.RaptorXMLServer

Module RaptorXMLRunner

 ' The RaptorXML .NET object
 Dim objRaptor As Server

 ' Initialize the RaptorXML .NET object
 Sub Init()

 ' Allocate a RaptorXML object
 objRaptor = New Server()

 ' Configure the server: error reporting, HTTP server name and port (IPv6
localhost in this example)
 objRaptor.ErrorLimit = 1
 objRaptor.ReportOptionalWarnings = True
 objRaptor.ServerName = "::1"
 objRaptor.ServerPort = 8087
 End Sub

 ' Validate one file
 Sub ValidateXML()

 ' Get a validator instance from the RaptorXML object
 Dim objXMLValidator As XMLValidator
 objXMLValidator = objRaptor.GetXMLValidator()

 ' Configure input data
 objXMLValidator.InputXMLFileName = "MyXMLFile.xml"

 ' Validate; in case of invalid file report the problem returned by
RaptorXML
 If (objXMLValidator.IsValid()) Then
 Console.WriteLine("Input string is valid")
 Else
 Console.WriteLine(objXMLValidator.LastErrorMessage)
 End If
 End Sub

408 COM and .NET Interfaces Programming Languages

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

 ' Perform a transformation; return the result as a string
 Sub RunXSLT()

 ' Get an XSLT engine instance from the Server object
 Dim objXSLT As XSLT
 objXSLT = objRaptor.GetXSLT()

 ' Configure input data
 objXSLT.InputXMLFileName = "MyXMLFile.xml"
 objXSLT.XSLFileName = "MyTransformation.xsl"

 ' Run the transformation; in case of success the result will be returned,
in case of errors the engine returns an error listing
 Console.WriteLine(objXSLT.ExecuteAndGetResultAsString())
 End Sub

 ' Execute an XQuery; save the result in a file
 Sub RunXQuery()

 ' Get an XQuery engine instance from the Server object
 Dim objXQ As XQuery
 objXQ = objRaptor.GetXQuery()

 ' Configure input data
 objXQ.InputXMLFileName = "MyXMLFile.xml"
 objXQ.XQueryFileName = "MyQuery.xq"

 ' Configure serialization (optional - for fine-tuning the result's
formatting)
 objXQ.OutputEncoding = "UTF8"
 objXQ.OutputIndent = true
 objXQ.OutputMethod = "xml"
 objXQ.OutputOmitXMLDeclaration = false

 ' Run the query; the result will be serialized to the given path
 objXQ.Execute("MyQueryResult.xml")
 End Sub

 Sub Main()
 ' Entry point; perform all sample functions
 Init()
 ValidateXML()
 RunXSLT()
 RunXQuery()
 End Sub

End Module

© 2014 Altova GmbH

API Reference 409COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

7.4 API Reference

This section describes the API specification: its object model and the details of its interfaces and
enumerations.

The starting point for using the functionality of RaptorXML is the IServer interface. This object
contains the objects that provide the RaptorXML functionality: XML validation, XBRL validation,
XSLT transformations, and XQuery document processing. The object model of the RaptorXML API
is depicted in the following diagram.

The hierarchy of the object model is shown below, and the interfaces are described in detail in the
corresponding sections. The methods and properties of each interface are described in the
section for that interface.

-- IServer
 |-- IXMLValidator
 |-- IXSLT
 |-- IXQuery
 |-- IXBRL

410 COM and .NET Interfaces API Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

7.4.1 Interfaces

The following interfaces are defined. They are described in the sub-sections of this section.

IServer

IXMLValidator

IXSLT

IXQuery

IXBRL

IServer

The IServer interface provides methods to return interfaces of the respective RaptorXML engine:

XML Validator, XBRL, XSLT and XQuery. The properties define the parameters of the interface.

Methods

IXMLValidator

IXBRL

IXSLT

IXQuery

Properties

APIMajorVersion GlobalResourcesFile ServerName

APIMinorVersion Is64Bit ServerPath

APIServicePackVersion MajorVersion ServerPort

ErrorFormat MinorVersion ServicePackVersion

ErrorLimit ProductName UserCatalog

GlobalCatalog ProductNameAndVersion

GlobalResourceConfig ReportOptionalWarnings

Methods
The methods of the IServer interface return interfaces of the respective RaptorXML engine: XML

Validator, XBRL, XSLT and XQuery.

IXMLValidator GetXMLValidator() [Top | Methods | Properties]

Returns an instance of the XML Validator Engine.

© 2014 Altova GmbH

API Reference 411COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

IXBRL GetXBRL() [Top | Methods | Properties]

Returns an instance of the XBRL Engine.

IXSLT GetXSLT() [Top | Methods | Properties]

Returns an instance of the XSLT Engine.

IXQuery GetXQuery() [Top | Methods | Properties]

Returns an instance of the XQuery Engine.

Properties
The properties of the IServer interface are described below in alphabetical order. The table

arranges the properties in groups for ease of reference. Note that string inputs to be interpreted as
URLs must provide absolute paths. If a relative path is used, a mechanism to resolve the relative
path should be defined in the calling module.

Errors and Warnings Catalogs Global Resources HTTP Server

ErrorFormat GlobalCatalog GlobalResourceConfig ServerName

ErrorLimit UserCatalog GlobalResourcesFile ServerPath

ReportOptionalWarnings ServerPort

Product Information

ProductName Is64Bit

ProductNameAndVersion APIMajorVersion

MajorVersion APIMinorVersion

MinorVersion APIServicePackVersion

ServicePackVersion

int APIMajorVersion [Top | Methods | Properties]

Returns the major version of the API as an integer. The major version of the API could be different
from the product's major version if the API is connected to another server.

int APIMinorVersion [Top | Methods | Properties]

Returns the minor version of the API as an integer. The minor version of the API could be different

412 COM and .NET Interfaces API Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

from the product's minor version if the API is connected to another server.

int APIServicePackVersion [Top | Methods | Properties]

Returns the service pack version of the API as an integer. The service pack version of the API
could be different from the product's service pack version if the API is connected to another
server.

ENUMErrorFormat ErrorFormat [Top | Methods | Properties]

Sets the RaptorXML error format and is an ENUMErrorFormat literal (Text | ShortXML |
LongXML).

int ErrorLimit [Top | Methods | Properties]

Configures the RaptorXML validation error limit. Type is uint. If the error limit is reached,
execution is halted. The default value is 100.

string GlobalCatalog [Top | Methods | Properties]

Specifies the location of the main (entry-point) catalog file. The supplied string must be an
absolute URL that gives the exact location of the catalog file to use.

string GlobalResourceConfig [Top | Methods | Properties]

Specifies the active configuration of the global resource to be used.

string GlobalResourcesFile [Top | Methods | Properties]

Specifies the global resource file. The supplied string must be an absolute URL that gives the
exact location of the global resources file to use.

bool Is64Bit [Top | Methods | Properties]

Checks if the application is a 64-bit executable. Example: For Altova RaptorXML+XBRL Server
2015r2sp1(x64), returns true.

int MajorVersion [Top | Methods | Properties]

Returns the major version of the product as an integer. Example: For Altova RaptorXML+XBRL
Server 2014r2sp1(x64), returns 16 (the difference between the major version (2014) and the
initial year 1998).

int MinorVersion [Top | Methods | Properties]

Returns the minor version of the product as an integer. Example: For Altova RaptorXML+XBRL

© 2014 Altova GmbH

API Reference 413COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

Server 2015r2sp1(x64), returns 2 (from the minor version number r2).

string ProductName [Top | Methods | Properties]

Returns the name of the product as a string. Example: For Altova RaptorXML+XBRL Server
2015r2sp1(x64), returns Altova RaptorXML+XBRL Server.

string ProductNameAndVersion [Top | Methods | Properties]

Returns the name and version of the product as a string. Example: For Altova RaptorXML+XBRL
Server 2015r2sp1(x64), returns Altova RaptorXML+XBRL Server 2015r2sp1(x64).

bool ReportOptionalWarnings [Top | Methods | Properties]

Enables or disables the reporting of warnings. A value of true enables warnings; false disables
them.

string ServerName [Top | Methods | Properties]

Sets the name of the HTTP server. A RaptorXMLException is raised if an error occurs.

string ServerPath [Top | Methods | Properties]

Specifies, in the form of a URL, the path to the HTTP server. A RaptorXMLException is raised if
an error occurs.

int ServerPort [Top | Methods | Properties]

Specifies the server port of the HTTP server. Type is ushort. A RaptorXMLException is raised if
an error occurs.

int ServicePackVersion [Top | Methods | Properties]

Returns the service pack version of the product as an integer. Example: For RaptorXML+XBRL
Server 2015r2sp1(x64), returns 1 (from the service pack version number sp1).

string UserCatalog [Top | Methods | Properties]

Specifies, as a URL, the location of the user-defined catalog file. The supplied string must be an
absolute URL that gives the exact location of the user catalog file to use.

IXMLValidator

The IXMLValidator interface provides methods to test:

The validity of an XML document, DTD, or XML Schema document: IsValid. XML
documents can be validated against a DTD or XML Schema, references to which can be

414 COM and .NET Interfaces API Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

within the XML document or be supplied via the code.
The well-formedness of an XML document: IsWellFormed.

Both methods return boolean TRUE or FALSE. The properties define the parameters of the interface.

Methods

IsValid

IsWellFormed

Properties

AssessmentMode InputXMLFromText SchemalocationHints

DTDFileName LastErrorMessage SchemaMapping

DTDFromText PythonScriptFile SchemaTextArray

EnableNamespaces SchemaFileArray Streaming

InputFileArray SchemaFileName XincludeSupport

InputTextArray SchemaFromText XMLValidationMode

InputXMLFileName SchemaImports XSDVersion

Methods
The two methods of the IXMLValidator interface are IsValid and IsWellFormed. They test,

respectively, the validity and well-formedness of the specified document. Both methods return
boolean true or false.

bool IsValid(ENUMValidationType nType) [Top | Methods | Properties]

Returns the result of the validation specified by the value of ENUMValidationType.
Returns true on success, false on failure.
nType is the value of ENUMValidationType. The validation type specifies whether XML is
to be validated against a DTD or XSD, or whether a DTD or XSD is to be validated. Default
is eValidateAny, which indicates that the type of document shoud be determined by
RaptorXML automatically.
If an error occurs during execution, a RaptorXMLException is raised. Use the
LastErrorMessage operation to access additional information.

© 2014 Altova GmbH

API Reference 415COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

bool IsWellFormed(ENUMWellformedCheckType nType) [Top | Methods | Properties]

Returns the result of the well-formedness check specified by the value of
ENUMWellformedCheckType. Returns true on success, false on failure.
nType is the value of ENUMWellformedCheckType. Its value specifies whether an XML
document or DTD document is to be checked. Default is eWellformedAny.
If an error occurs during execution, a RaptorXMLException is raised. Use the
LastErrorMessage operation to access additional information.

Properties
The properties of the IXMLValidator interface are described below in alphabetical order. The

table arranges the properties in groups for ease of reference. Note that string inputs to be
interpreted as URLs must provide absolute paths. If a relative path is used, a mechanism to
resolve the relative path should be defined in the calling module.

Data Files Schema Files Processing

InputFileArray DTDFileName AssessmentMode

InputTextArray DTDFromText EnableNamespaces

InputXMLFileName SchemaFileArray LastErrorMessage

InputXMLFromText SchemaFileName PythonScriptFile

SchemaFromText Streaming

SchemaImports XincludeSupport

SchemalocationHints XMLValidationMode

SchemaMapping XSDVersion

SchemaTextArray

ENUMAssessmentMode AssessmentMode [Top | Methods | Properties]

Sets the assessment mode of the XML validator (strict or lax), as specified by
ENUMAssessmentMode literals.

string DTDFileName [Top | Methods | Properties]

Specifies the external DTD document to use for validation. The supplied string must be an
absolute URL that gives the base location of the DTD to use.

string DTDFromText [Top | Methods | Properties]

Provides the entire DTD as a string.

416 COM and .NET Interfaces API Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

bool EnableNamespaces [Top | Methods | Properties]

Enables namespace-aware processing. This is useful for checking the XML instance for errors due
to incorrect namespaces. A value of true enables namespace-aware processing; false disables
it. Default value is false.

object InputFileArray [Top | Methods | Properties]

Provides an array of the URLs of the XML files to be used as input data. The property supplies an
object containing, as strings, the absolute URLs of each of the XML files.

object InputTextArray [Top | Methods | Properties]

Provides an array of the URLs of the text-files to be used as input data. The property supplies an
object containing, as strings, the absolute URLs of each of the text files.

string InputXMLFileName [Top | Methods | Properties]

Specifies the XML file to be validated. The supplied string must be an absolute URL that gives the
base location of the XML file to use.

string InputXMLFromText [Top | Methods | Properties]

Supplies, as a text string, the contents of the XML document to be validated.

string LastErrorMessage [Top | Methods | Properties]

Retrieves the last error message from the RaptorXML Engine as a string.

bool ParallelAssessment [Top | Methods | Properties]

Enables/disables parallel schema validity assessment.

string PythonScriptFile [Top | Methods | Properties]

Specifies the Python script file that provides additional processing of the XML or XSD file
submitted for validation. The supplied string must be an absolute URL that gives the base location
of the Python script.

object SchemaFileArray [Top | Methods | Properties]

Provides an array of the URLs of the XSD files to be used as external XML Schemas. The property
supplies an object containing, as strings, the absolute URLs of each of the XML Schema files.

string SchemaFileName [Top | Methods | Properties]

© 2014 Altova GmbH

API Reference 417COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

Specifies the external XML Schema file to be used for validation. The supplied string must be an
absolute URL that gives the base location of the XML Schema file to use.

string SchemaFromText [Top | Methods | Properties]

Supplies, as a text string, the contents of the XML Schema document to be used for validation.

ENUMSchemaImports SchemaImports [Top | Methods | Properties]

Specifies how schema imports are to be handled according to the attribute values of the
xs:import elements. The handling is specified by the ENUMSchemaImports literal that is selected.

ENUMLoadSchemalocation SchemalocationHints [Top | Methods | Properties]

Specifies the mechanism to use to locate the schema. The mechanism is specified by the
ENUMLoadSchemalocation literal that is selected.

ENUMSchemaMapping SchemaMapping [Top | Methods | Properties]

Sets what mapping to use in order to locate the schema. The mapping is specified by the
ENUMSchemaMapping literal that is selected.

object SchemaTextArray [Top | Methods | Properties]

Provides an array of strings that are the XSD files to be used as external XML Schemas. The
property supplies an object containing, as strings, the text strings of each of the XML Schema
files.

bool Streaming [Top | Methods | Properties]

Enables streaming validation. In streaming mode, data stored in memory is minimized and
processing is faster. A value of true enables streaming validation; false disables it. Default is
true.

bool XincludeSupport [Top | Methods | Properties]

Enables the use of XInclude elements. A value of true enables XInclude support; false disables
it. The default value is false.

ENUMXMLValidationMode XMLValidationMode [Top | Methods | Properties]

Sets the XML validation mode (validation or well-formed check). The mode is that specified by the
ENUMXMLValidationMode literal.

ENUMXSDVersion XSDVersion [Top | Methods | Properties]

418 COM and .NET Interfaces API Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Specifies the XML Schema version against which the XML document will be validated. Values are
the ENUMXSDVersion literals.

IXSLT

The IXSLT interface provides methods and properties to execute an XSLT 1.0, XSLT 2.0, or XSLT

3.0 transformation. Results can be saved to a file or returned as a string. The interface also
enables XSLT parameters to be passed to the XSLT stylesheet. The URLs of XML and XSLT files
can be supplied as strings via the properties of the interface. Alternatively, the XML and XSLT
documents can be constructed within the code as text strings.

Note: Where string inputs are to be interpreted as URLs, absolute paths should be used. If a
relative path is used, a mechanism to resolve the relative path should be defined in the
calling module.

Note: The XSLT 2.0 or 3.0 Engine of RaptorXML can be used in its backward compatibility
mode to process an XSLT 1.0 stylesheet. The output, however, could be different than
that produced by the XSLT 1.0 Engine processing the same XSLT 1.0 stylesheet.

Methods

IsValid

Execute

ExecuteAndGetResultAsString

ExecuteAndGetResultAsStringWithBaseOutputURI

AddExternalParameter

ClearExternalParameterList

Properties

ChartExtensionsEnabled JavaBarcodeExtensionLocation SchemaMapping

DotNetExtensionsEnabled JavaExtensionsEnabled StreamingSerialization

EngineVersion LastErrorMessage XincludeSupport

IndentCharacters LoadXMLWithPSVI XMLValidationMode

InitialTemplateMode NamedTemplateEntryPoint XSDVersion

InputXMLFileName SchemaImports XSLFileName

InputXMLFromText SchemalocationHints XSLFromText

Methods
The methods of the IXSLT interface are described below. Note that string inputs to be interpreted

© 2014 Altova GmbH

API Reference 419COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

as URLs must provide absolute paths. If a relative path is used, a mechanism to resolve the
relative path should be defined in the calling module.

Methods

IsValid

Execute

ExecuteAndGetResultAsString

ExecuteAndGetResultAsStringWithBaseOutputURI

AddExternalParameter

ClearExternalParameterList

bool IsValid() [Top | Methods | Properties]

Returns the result of validating the XSLT stylesheet according to the XSLT specification
named in ENUMXSLTVersion (see the EngineVersion property). The result is true on
success, false on failure.
If an error occurs, a RaptorXMLException is raised. Use the LastErrorMessage
operation to access additional information.

bool Execute(string bstrResultFileName) [Top | Methods | Properties]

Executes the XSLT transformation according to the XSLT specification named in
ENUMXSLTVersion (see the EngineVersion property), and saves the result to an output
file.
The output file is defined by bstrResultFileName, which is a string that provides the
URL of the output file.
The result is true on success, false on failure.
If an error occurs during the transformation, a RaptorXMLException is raised. Use the
LastErrorMessage operation to access additional information.

string ExecuteAndGetResultAsString() [Top | Methods | Properties]

Executes the XSLT transformation according to the XSLT specification named in
ENUMXSLTVersion (see the EngineVersion property), and returns the transformation
result as a string.
If an error occurs during the transformation, a RaptorXMLException is raised. Use the
LastErrorMessage operation to access additional information.

420 COM and .NET Interfaces API Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

string ExecuteAndGetResultAsStringWithBaseOutputURI(string bstrBaseURI) [Top |

Methods | Properties]

Executes the XSLT transformation according to the XSLT specification named in
ENUMXSLTVersion (see the EngineVersion property), and returns the transformation
result as a string at the location defined by the base URI (the string bstrBaseURI).
If an error occurs during the transformation, a RaptorXMLException is raised. Use the
LastErrorMessage operation to access additional information.

void AddExternalParameter(string bstrName, string bstrValue) [Top | Methods |

Properties]

Adds the name and value of an external parameter: bstrName and bstrValue are strings.
Each external parameter and its value must be specified in a separate call to the method.
Parameters must be declared in the XSLT document, optionally with a type declaration.
Whatever the type declaration in the XSLT document, no special delimiter is needed when
the parameter value is submitted with AddExternalParameter.

void ClearExternalParameterList() [Top | Methods | Properties]

Clears the external parameters list created with the AddExternalParameter method.

Properties
The properties of the IXSLT interface are described below in alphabetical order. The table arranges

the properties in groups for ease of reference. Note that string inputs to be interpreted as URLs
must provide absolute paths. If a relative path is used, a mechanism to resolve the relative path
should be defined in the calling module.

XML XSLT Schema

InputXMLFileName EngineVersion SchemaImports

InputXMLFromText XSLFileName SchemalocationHints

LoadXMLWithPSVI XSLFromText SchemaMapping

XincludeSupport XSDVersion

XMLValidationMode

Processing Extensions

IndentCharacters ChartExtensionsEnabled

© 2014 Altova GmbH

API Reference 421COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

InitialTemplateMode DotNetExtensionsEnabled

LastErrorMessage JavaBarcodeExtensionLocation

NamedTemplateEntryPoint JavaExtensionsEnabled

StreamingSerialization

bool ChartExtensionsEnabled [Top | Methods | Properties]

Enables or disables Altova's chart extension functions. A value of true enables chart
extensions; false disables them. Default value is true.

bool DotNetExtensionsEnabled [Top | Methods | Properties]

Enables or disables Visual Studio .NET extension functionss. A value of true enables .NET
extensions; false disables them. Default value is true.

ENUMXSLTVersion EngineVersion [Top | Methods | Properties]

Specifies the XSLT version to use (1.0, 2.0, or 3.0). The property value is an ENUMXSLTVersion
literal.

string IndentCharacters [Top | Methods | Properties]

Sets the character string that will be used as indentation.

string InitialTemplateMode [Top | Methods | Properties]

Sets the initial mode for XSLT processing. Templates with a mode value equal to the submitted
string will be processed.

string InputXMLFileName [Top | Methods | Properties]

Specifies the location of the XML file to be transformed. The supplied string must be an absolute
URL that gives the exact location of the XML file to use.

string InputXMLFromText [Top | Methods | Properties]

Supplies, as a text string, the contents of the XML document to be transformed.

string JavaBarcodeExtensionLocation [Top | Methods | Properties]

Specifies the location of the barcode extension file. See the section on Altova's barcode extension
functions for more information. The supplied string must be an absolute URL that gives the base
location of the file to use.

422 COM and .NET Interfaces API Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

bool JavaExtensionsEnabled [Top | Methods | Properties]

Enables or disables Java extensions. A value of true enables Java extensions; false disables
them. Default value is true.

string LastErrorMessage [Top | Methods | Properties]

Retrieves the last error message from the RaptorXML Engine as a string.

bool LoadXMLWithPSVI [Top | Methods | Properties]

Enables the option to load and use the Post Schema Validation Infoset (PSVI). If the PSVI is
loaded, information obtained from the schema can be used to qualify data in the XML document.
A value of true enables PSVI loading; false disables it.

string NamedTemplateEntryPoint [Top | Methods | Properties]

Specifies the name, as a string, of the named template to use as an entry point for the
transformation.

ENUMSchemaImports SchemaImports [Top | Methods | Properties]

Specifies how schema imports are to be handled according to the attribute values of the
xs:import elements. The handling is specified by the ENUMSchemaImports literal that is selected.

ENUMLoadSchemalocation SchemalocationHints [Top | Methods | Properties]

Specifies the mechanism to use to locate the schema. The mechanism is specified by the
ENUMLoadSchemalocation literal that is selected.

ENUMSchemaMapping SchemaMapping [Top | Methods | Properties]

Sets what mapping to use in order to locate the schema. The mapping is specified by the
ENUMSchemaMapping literal that is selected.

bool StreamingSerialization [Top | Methods | Properties]

Enables streaming serialization. In streaming mode, data stored in memory is minimized and
processing is faster. A value of true enables streaming serialization; false disables it.

bool XincludeSupport [Top | Methods | Properties]

Enables the use of XInclude elements. A value of true enables XInclude support; false disables
it. The default value is false.

ENUMXMLValidationMode XMLValidationMode [Top | Methods | Properties]

© 2014 Altova GmbH

API Reference 423COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

Sets the XML validation mode (validation or well-formed check). The mode is that specified by the
ENUMXMLValidationMode literal.

ENUMXSDVersion XSDVersion [Top | Methods | Properties]

Specifies the XML Schema version against which the XML document will be validated. Values are
the ENUMXSDVersion literals.

string XSLFileName [Top | Methods | Properties]

Specifies the XSLT file to be used for the transformation. The supplied string must be an absolute
URL that gives the location of the XSLT file to use.

string XSLFromText [Top | Methods | Properties]

Supplies, as a text string, the contents of the XSLT document to be used for the transformation.

IXQuery

The IXQuery interface provides methods and properties to execute an XQuery 1.0 or XQuery 3.0

document. Results can be saved to a file or returned as a string. The interface also enables
external XQuery variables to be passed to the XQuery document. The URLs of XQuery and XML
files can be supplied as strings via the properties of the interface. Alternatively, the XML and
XQuery documents can be constructed within the code as text strings.

Note: Where string inputs are to be interpreted as URLs, absolute paths should be used. If a
relative path is used, a mechanism to resolve the relative path should be defined in the
calling module.

Methods

IsValid

IsValidUpdate

Execute

ExecuteUpdate

ExecuteAndGetResultAsString

ExecuteUpdateAndGetResultAsString

AddExternalVariable

ClearExternalParameterList

Properties

ChartExtensionsEna
bled

InputXMLFromText OutputEncoding XMLValidationM
ode

DotNetExtensionsEn
abled

JavaBarcodeExtensionLo
cation

OutputIndent XQueryFileName

424 COM and .NET Interfaces API Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

EngineVersion JavaExtensionsEnabled OutputMethod XQueryFromText

IndentCharacters LastErrorMessage OutputOmitXMLDeclar
ation

XSDVersion

InputXMLFileName LoadXMLWithPSVI XincludeSupport

Methods
The methods of the IXQuery interface are described below. Note that string inputs to be

interpreted as URLs must provide absolute paths. If a relative path is used, a mechanism to
resolve the relative path should be defined in the calling module.

Methods

IsValid

IsValidUpdate

Execute

ExecuteUpdate

ExecuteAndGetResultAsString

ExecuteUpdateAndGetResultAsString

AddExternalVariable

ClearExternalParameterList

bool IsValid() [Top | Methods | Properties]

Returns the result of validating the XQuery document according to the XQuery
specification named in ENUMXQueryVersion (see the EngineVersion property). The
result is true on success, false on failure.
If an error occurs, a RaptorXMLException is raised. Use the LastErrorMessage
operation to access additional information.

bool IsValidUpdate() [Top | Methods | Properties]

Returns the result of validating the XQuery Update document according to the XQuery
specification named in ENUMXQueryVersion (see the EngineVersion property). The
result is true on success, false on failure.
If an error occurs, a RaptorXMLException is raised. Use the LastErrorMessage
operation to access additional information.

© 2014 Altova GmbH

API Reference 425COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

bool Execute(string bstrOutputFile) [Top | Methods | Properties]

Executes the XQuery according to the XQuery specification named in
ENUMXQueryVersion (see the EngineVersion property), and saves the result to an output
file.
The output file is defined by bstrOutputFile, which is a string that provides the URL of
the output file.
Boolean true is returned on success, false on failure.
If an error occurs during the transformation, a RaptorXMLException is raised. Use the
LastErrorMessage operation to access additional information.

bool ExecuteUpdate(string bstrOutputFile) [Top | Methods | Properties]

Executes the XQuery update according to the XQuery Update specification named in
ENUMXQueryVersion (see the EngineVersion property), and saves the result to an output
file.
The output file is defined by bstrOutputFile, which is a string that provides the URL of
the output file.
Boolean true is returned on success, false on failure.
If an error occurs during the transformation, a RaptorXMLException is raised. Use the
LastErrorMessage operation to access additional information.

string ExecuteAndGetResultAsString() [Top | Methods | Properties]

Executes the XQuery transformation according to the XQuery specification named in
ENUMXQueryVersion (see the EngineVersion property), and returns the transformation
result as a string.
If an error occurs during the transformation, a RaptorXMLException is raised. Use the
LastErrorMessage operation to access additional information.

string ExecuteUpdateAndGetResultAsString() [Top | Methods | Properties]

Executes the XQuery update according to the XQuery Update specification named in
ENUMXQueryVersion (see the EngineVersion property), and returns the transformation
result as a string.
If an error occurs during the transformation, a RaptorXMLException is raised. Use the
LastErrorMessage operation to access additional information.

426 COM and .NET Interfaces API Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

void AddExternalVariable(string bstrName, string bstrValue) [Top | Methods |

Properties]

Adds the name and value of an external variable: bstrName and bstrValue are strings.
Each external variable and its value must be specified in a separate call to the method.
Variables must be declared in the XQuery document, optionally with a type declaration. If
the variable value is a string, enclose the value in single quotes.

void ClearExternalVariableList() [Top | Methods | Properties]

Clears the external variables list created with the AddExternalVariable method.

Properties
The properties of the IXQuery interface are described below in alphabetical order. The table

arranges the properties in groups for ease of reference. Note that string inputs to be interpreted as
URLs must provide absolute paths. If a relative path is used, a mechanism to resolve the relative
path should be defined in the calling module.

XML XQuery Processing Extensions

InputXMLFileNam
e

EngineVersion IndentCharacters ChartExtensionsEnabled

KeepFormatting XQueryFileName LastErrorMessage DotNetExtensionsEnabled

InputXMLFromTex
t

XQueryFromText OutputEncoding JavaBarcodeExtensionLoca
tion

LoadXMLWithPSVI OutputIndent JavaExtensionsEnabled

XincludeSupport OutputMethod

XMLValidationMo
de

OutputOmitXMLDeclar
ation

XSDVersion UpdatedXMLWriteMode

bool ChartExtensionsEnabled [Top | Methods | Properties]

Enables or disables Altova's chart extension functions. A value of true enables chart extensions;
false disables them. Default value is true.

bool DotNetExtensionsEnabled [Top | Methods | Properties]

Enables or disables Visual Studio .NET extension functionss. A value of true enables .NET

© 2014 Altova GmbH

API Reference 427COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

extensions; false disables them. Default value is true.

ENUMXQueryVersion EngineVersion [Top | Methods | Properties]

Specifies the XQuery version to use (1.0 or 3.0). The property value is an ENUMXQueryVersion
literal.

string IndentCharacters [Top | Methods | Properties]

Sets the character string that will be used as indentation.

string InputXMLFileName [Top | Methods | Properties]

Specifies the location of the XML file to be processed. The supplied string must be an absolute
URL that gives the exact location of the XML file to use.

string InputXMLFromText [Top | Methods | Properties]

Supplies, as a text string, the contents of the XML document to be processed.

string JavaBarcodeExtensionLocation [Top | Methods | Properties]

Specifies the location of the barcode extension file. See the section on Altova's barcode extension
functions for more information. The supplied string must be an absolute URL that gives the base
location of the file to use.

bool JavaExtensionsEnabled [Top | Methods | Properties]

Enables or disables Java extensions. A value of true enables Java extensions; false disables
them. Default value is true.

bool KeepFormatting [Top | Methods | Properties]

Specifies whether the formatting of the original document should be kept (as far as possible) or
not. A value of true keeps formatting; false does not keep formatting. Default value is true.

string LastErrorMessage [Top | Methods | Properties]

Retrieves the last error message from the RaptorXML Engine as a string.

bool LoadXMLWithPSVI [Top | Methods | Properties]

Enables or disables the option to load and use the Post Schema Validation Infoset (PSVI). If the
PSVI is loaded, information obtained from the schema can be used to qualify data in the XML
document. A value of true enables PSVI loading; false disables it.

428 COM and .NET Interfaces API Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

string OutputEncoding [Top | Methods | Properties]

Sets the encoding for the result document. Use an official IANA encoding name, such as UTF-8,
UTF-16, US-ASCII, ISO-8859-1, as a string.

bool OutputIndent [Top | Methods | Properties]

Enables or disables indentation in the output document. A value of true enables indentation;
false disables it.

string OutputMethod [Top | Methods | Properties]

Specifies the serialization of the output document. Valid values are: xml | xhtml | html |
text. Default value is xml.

bool OutputOmitXMLDeclaration [Top | Methods | Properties]

Enables/disables the inclusion of the XML declaration in the result document. A value of true
omits the declaration; false includes it. Default value is false.

ENUMXQueryUpdatedXML UpdatedXMLWriteMode [Top | Methods | Properties]

Specifies how updates to the XML file are handled. The property value is an
ENUMXQueryUpdatedXML literal.

bool XincludeSupport [Top | Methods | Properties]

Enables or disables the use of XInclude elements. A value of true enables XInclude support;
false disables it. The default value is false.

ENUMXMLValidationMode XMLValidationMode [Top | Methods | Properties]

Sets the XML validation mode (validation or well-formed check). The mode is that specified by the
ENUMXMLValidationMode literal.

string XQueryFileName [Top | Methods | Properties]

Specifies the XQuery file to use. The supplied string must be an absolute URL that gives the
location of the XSLT file to use.

string XQueryFromText [Top | Methods | Properties]

Supplies, as a text string, the contents of the XQuery document to use.

ENUMXSDVersion XSDVersion [Top | Methods | Properties]

© 2014 Altova GmbH

API Reference 429COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

Specifies the XML Schema version against which the XML document will be validated. Values are
the ENUMXSDVersion literals.

IXBRL

The IXBRL interface provides methods to validate XBRL instance and taxonomy documents, as

well as formulas. Results are boolean true or false. The interface also enables formula
parameters to be passed through for formula evaluation. Formula assertions and output can also
read, and returned as strings. The properties define the parameters of the interface.

Note: Where string inputs are to be interpreted as URLs, absolute paths should be used. If a
relative path is used, a mechanism to resolve the relative path should be defined in the
calling module.

Structures
The following structure is defined.

public struct XBRLParamValuePair
{
 String ParamType;
 String ParamValue;
};

Methods
The methods of the IXBRL interface are described below. Note that string inputs to be interpreted

as URLs must provide absolute paths. If a relative path is used, a mechanism to resolve the
relative path should be defined in the calling module.

bool IsValid(ENUMXBRLValidationType nType) [Top | Methods | Properties]

Returns the result of validating the XBRL instance document or XBRL taxonomy
document.
nType is the value of ENUMXBRLValidationType. The validation type specifies whether the
XBRL instance document or XBRL taxonomy is to be validated. Default is
eValidateXBRLAny, which indicates that the type of document shoud be determined by
RaptorXML automatically.
If an error occurs during execution, a RaptorXMLException is raised. Use the
LastErrorMessage operation to access additional information.

430 COM and .NET Interfaces API Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

bool EvaluateFormula() [Top | Methods | Properties]

Evaluates XBRL formulas in an XBRL instance document. Returns true if valid, false if
any formula is invalid.
If an error occurs during execution, a RaptorXMLException is raised. Use the
LastErrorMessage operation to access additional information.

bool GenerateTables() [Top | Methods | Properties]

Evaluates XBRL table in an XBRL instance document. Returns true on success, false
on failure.
If an error occurs during execution, a RaptorXMLException is raised. Use the
LastErrorMessage operation to access additional information.

void AddFormulaArrayParameter(string sDefaultType, string sName, object[]

variantValues) [Top | Methods | Properties]

Adds an array-parameter used in the formula evaluation process..
All the arguments are strings: sDefaultType is the default datatype of non-pair values
inside array values. Default is xs:string; sName is the parameter's name;
variantValues is an array of value and datatype-value pairs.
For more information and code samples, see the section, XBRL Formula Parameters.

void AddFormulaParameter(string sType, string sName, string sValue, string

sNamespace) [Top | Methods | Properties]

Adds a parameter for formula evaluation. It is deprecated.
All the arguments are strings: sType is the datatype of the parameter; sName is the
parameter's name; sValue is the parameter value; and sNamespace is the parameter's
namespace.
Each parameter must be specified in a separate call to the method.

void AddFormulaParameter(string sType, string sName, string sValue, string

sNamespace = "") [Top | Methods | Properties]

Adds a parameter for formula evaluation.
All the arguments are strings: sType is the datatype of the parameter; sName is the
parameter's name; sValue is the parameter value; and sNamespace is the parameter's
namespace and is the empty string.
Each parameter must be specified in a separate call to the method.

© 2014 Altova GmbH

API Reference 431COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

void AddFormulaParameterNamespace(string sPrefix, string sURI) [Top | Methods

| Properties]

Defines a namespace used in the QNames of parameter names, types, or values.
All the arguments are strings: sPrefix is the The namespace-prefix of values passed to
AddFormulaArrayParameter; sURI is the namespace URI.
Each parameter must be specified in a separate call to the method.

void ClearFormulaParameterList() [Top | Methods | Properties]

Clears the list of formula parameters created with the AddFormulaParameter method.

string ReadFormulaAssertions() [Top | Methods | Properties]

Reads formula assertions from the file being evaluated.

string ReadFormulaOutput() [Top | Methods | Properties]

Reads the output of the file's formula assertions.

Properties
The properties of the IXBRL interface are described below in alphabetical order. The table arranges

the properties in groups for ease of reference. Note that string inputs to be interpreted as URLs
must provide absolute paths. If a relative path is used, a mechanism to resolve the relative path
should be defined in the calling module.

string AddAssertionForProcessing [Top | Methods | Properties]

Limits assertion evaluation to the given assertion only. Call multiple times to specify more than
one assertion. Use ##none for no assertion, and ##all for all assertions.

string AddAssertionSetForProcessing [Top | Methods | Properties]

432 COM and .NET Interfaces API Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Limits assertion set evaluation to the given assertion set only. Call multiple times to specify more
than one assertion set. Use ##none for no assertion set, and ##all for all assertion sets.

string AddTableForProcessing [Top | Methods | Properties]

Limits table generation to the given table only. Call multiple times to specify more than one table.
Use ##none for no table, and ##all for all tables.

string ConceptLabelLinkrole [Top | Methods | Properties]

Specifies the preferred extended link role to use when rendering concept labels.

string ConceptLabelRole [Top | Methods | Properties]

Specifies the preferred label role to use when rendering concept labels. Default is: http://
www.xbrl.org/2008/role/label.

bool DimensionExtensionEnabled [Top | Methods | Properties]

Enables or disables XBRL dimension extensions validation. A value of true enables dimension
extensions validation; false disables it. Default is true.

bool EvaluateReferencedParametersOnly [Top | Methods | Properties]

If false, forces evaluation of all parameters even if they are not referenced by any formulas/
assertions/tables. Default is: true.

bool FormulaAssertionsAsXML [Top | Methods | Properties]

Enables XML formatting of the formula assertions file when RaptorXML is run with assertions
enabled. A value of true enables XML formating; a value of false generates JSON output. Default
is false.

string FormulaAssertionsOutput [Top | Methods | Properties]

Specifies the location of the formula assertion output file. The full path must be specified.

bool FormulaExtensionEnabled [Top | Methods | Properties]

Enables or disables XBRL formula extensions validation. A value of true enables formula
extensions validation; false disables it. Default is true.

string FormulaOutput [Top | Methods | Properties]

Specifies the location of the output of the XBRL formula evaluation file. The full path must be
specified.

© 2014 Altova GmbH

API Reference 433COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

string FormulaParameterFile [Top | Methods | Properties]

Specifies the location of the formula parameter file. The full path must be specified.

bool FormulaPreloadSchemas [Top | Methods | Properties]

Defines whether the formula schemas will be preloaded. A value of true preloads the schemas.
The default is false, which causes these schemas not to be preloaded.

string GenericLabelLinkrole [Top | Methods | Properties]

Specifies the preferred extended link role to use when rendering generic labels.

string GenericLabelRole [Top | Methods | Properties]

Specifies the preferred label role to use when rendering generic labels. Default is: http://
www.xbrl.org/2008/role/label.

object InputFileArray [Top | Methods | Properties]

Sets the array of XBRL files that will be used as input data/instances. The array is an object
containing the strings of the absolute URLs of each of the input files.

string InputFileName [Top | Methods | Properties]

Specifies the filename and location of the XBRL instance file. The submitted string must be either
an absolute URL; relative paths can be resolved relative to a base location, according to a
mechanism defined in the calling module.

string InputFromText [Top | Methods | Properties]

Supplies the contents of the XBRL input document as text.

object InputTextArray [Top | Methods | Properties]

Sets the array of text files that will be used as input data. The array is an object containing the
strings of the absolute URLs of each of the input files.

string LabelLang [Top | Methods | Properties]

Specifies the preferred label language to use when rendering labels. Default is: en.

string LastErrorMessage [Top | Methods | Properties]

Retrieves the last error message from the RaptorXML Engine as a string.

434 COM and .NET Interfaces API Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

bool ParallelAssessment [Top | Methods | Properties]

Enables/disables parallel schema validity assessment.

bool PreloadSchemas [Top | Methods | Properties]

Defines whether the XBRL 2.1 schemas will be preloaded. A value of true preloads the schemas.
The default is true.

string PythonScriptFile [Top | Methods | Properties]

Specifies the Python script file that provides additional processing of the XML or XSD file
submitted for validation. The supplied string must be an absolute URL that gives the base location
of the Python script.

ENUMSchemaImports SchemaImports [Top | Methods | Properties]

Specifies how schema imports are to be handled according to the attribute values of the
xs:import elements. The handling is specified by the ENUMSchemaImports literal that is selected.

ENUMLoadSchemalocation SchemalocationHints [Top | Methods | Properties]

Specifies the mechanism to use to locate the schema. The mechanism is specified by the
ENUMLoadSchemalocation literal that is selected.

ENUMSchemaMapping SchemaMapping [Top | Methods | Properties]

Sets what mapping to use in order to locate the schema. The mapping is specified by the
ENUMSchemaMapping literal that is selected.

bool TableEliminateEmptyRows [Top | Methods | Properties]

Enables the elimination of empty rows/columns in the HTML output of table generation.

bool TableExtensionEnabled [Top | Methods | Properties]

Enables/disables the XBRL Table 1.0 extension.

string TableLinkbaseNamespace [Top | Methods | Properties]

Enables the loading of table linkbases written with a previous draft specification. The supplied
string value specifies the table linkbase. Table linkbase validation, resolution, and layout is,
however, always performed according to the Table Linkbase 1.0 Recommendation of 18 March
2014. Use ##detect to enable auto-detection. The following values are recognized:
##detect

© 2014 Altova GmbH

API Reference 435COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

http://xbrl.org/PWD/2013-05-17/table
http://xbrl.org/PWD/2013-08-28/table
http://xbrl.org/CR/2013-11-13/table
http://xbrl.org/PR/2013-12-18/table
http://xbrl.org/2014/table

string TableOutput [Top | Methods | Properties]

Specifies the filename and location of the output of table generation. The submitted string must be
the full path of the output file.

ENUMTableOutputFormat TableOutputFormat [Top | Methods | Properties]

Specifies the format of the table-generation output file.

bool TablePreloadSchemas [Top | Methods | Properties]

Enables/disables preloading of the XBRL Table 1.0 specification schemas.

bool TreatXBRLInconsistenciesAsErrors [Top | Methods | Properties]

A value of true causes XBRL validation to fail if the file contains any inconsistencies as defined
by the XBRL 2.1 specification. Default is false: XBRL inconsistencies according to the XBRL 2.1
specification are not treated as errors.

bool XincludeSupport [Top | Methods | Properties]

Enables the use of XInclude elements. A value of true enables XInclude support; false disables
it.

436 COM and .NET Interfaces API Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

7.4.2 Enumerations

The following enumerations are defined. They are described in the sub-sections of this section.

ENUMAssessmentMode

ENUMErrorFormat

ENUMLoadSchemalocation

ENUMQueryVersion

ENUMSchemaImports

ENUMSchemaMapping

ENUMValidationType

ENUMWellformedCheckType

ENUMXBRLValidationType

ENUMXMLValidationMode

ENUMXQueryVersion

ENUMXSDVersion

ENUMXSLTVersion

ENUMAssessmentMode

Description
Contains enumeration literals that define the assessment mode of the XML Validator: Strict or
Lax.

Used by

Interface Operation

IXMLValidator AssessmentMode

Enumeration literals

eAssessmentModeStrict = 0

eAssessmentModeLax = 1

eAssessmentModeStrict

Sets the schema-validity assessment mode to Strict. This is the default value.

© 2014 Altova GmbH

API Reference 437COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

eAssessmentModeLax

Sets the schema-validity assessment mode to Lax.

ENUMErrorFormat

Description
Contains enumeration literals specifying the format of error output.

Used by

Interface Operation

IServer ErrorFormat

Enumeration literals

eFormatText = 0

eFormatShortXML = 1

eFormatLongXML = 2

eFormatText

Sets the error output format to Text. The default value.

eFormatShortXML

Sets the error output format to ShortXML. This format is an abbreviated form of the LongXML
format.

eFormatLongXML

Sets the error output format to LongXML. This format provides the most detail of all three output
formats.

ENUMLoadSchemalocation

Description
Contains enumeration literals that indicate how the schema's location should be determined.

Used by

Interface Operation

IXBRL SchemalocationHints

IXMLValidator SchemalocationHints

IXSLT SchemalocationHints

438 COM and .NET Interfaces API Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Enumeration literals

eSHLoadBySchemalocation = 0

eSHLoadByNamespace = 1

eSHLoadCombiningBoth = 2

eSHLoadIgnore = 3

eSHLoadBySchemalocation

Sets Load Schemalocation to LoadBySchemalocation. Uses the URL of the schema location in
the xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML or XBRL
instance documents. This is the default value.

eSHLoadByNamespace

Sets Load Schemalocation to LoadByNamespace. Uses the namespace part of
xsi:schemaLocation (an empty string in the case of xsi:noNamespaceSchemaLocation), and
locates the schema via a catalog mapping.

eSHLoadCombiningBoth

Sets Load Schemalocation to CombiningBoth. If either the namespace or URL has a catalog
mapping, then the catalog mapping is used. If both have catalog mappings, then the value of the
ENUMSchemaMapping parameter decides which mapping is used. If neither the namespace nor
URL has a catalog mapping, the URL is used.

eSHLoadIgnore

Sets Load Schemalocation to LoadIgnore. If the parameter's value is eSHLoadIgnore, then the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes are both ignored.

ENUMQueryVersion

Description
Contains enumeration literals that specify the XQuery version to use: XQuery 1.0 or 3.0.

Enumeration literals

eXQVersion10 = 1

eXQVersion30 = 3

eXQVersion10

Sets the XQuery version to XQuery 1.0.

© 2014 Altova GmbH

API Reference 439COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

eXQVersion30

Sets the XQuery version to XQuery 3.0.

ENUMSchemaImports

Description
Contains the enumeration literals that define the behaviour of xs:import elements. The
xs:import element has namespace and schemaLocation attributes, both optional.

Used by

Interface Operation

IXBRL SchemaImports

IXMLValidator SchemaImports

IXSLT SchemaImports

Enumeration literals

eSILoadBySchemalocation = 0

eSILoadPreferringSchemalocation = 1

eSILoadByNamespace = 2

eSICombiningBoth = 3

eSILicenseNamespaceOnly = 4

eSILoadBySchemalocation

Sets the Schema Import to LoadBySchemalocation. The value of the schemaLocation attribute is
used to locate the schema, taking account of catalog mappings. If the namespace attribute is
present, the namespace is imported (licensed).

eSILoadPreferringSchemalocation

Sets the Schema Import to LoadPreferringSchemalocation. If the schemaLocation attribute is
present, it is used, taking account of catalog mappings. If no schemaLocation attribute is
present, then the value of the namespace attribute is used via a catalog mapping. This literal is
the default value of the enumeration.

eSILoadByNamespace

Sets the Schema Import to LoadByNamespace. The value of the namespace attribute is used to
locate the schema via a catalog mapping.

eSICombiningBoth

440 COM and .NET Interfaces API Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Sets the Schema Import to CombiningBoth. If either the namespace or schemaLocation attribute
has a catalog mapping, then that catalog mapping is used. If both have catalog mappings, then
the value of the ENUMSchemaMapping parameter decides which mapping is used. If no catalog
mapping is present, the value of the schemaLocation attribute (which should be a URL) is used.

eSILicenseNamespaceOnly

Sets the Schema Import to LicenseNamespaceOnly. The namespace is imported. No schema
document is imported.

ENUMSchemaMapping

Description
Contains the enumeration literals that define which of two catalog mappings is preferred:
namespaces or schema-location URLs. This enumeration is useful for disambiguating
ENUMLoadSchemalocation and ENUMSchemaImports.

Used by

Interface Operation

IXBRL SchemaMapping

IXMLValidator SchemaMapping

IXSLT SchemaMapping

Enumeration literals

eSMPreferSchemalocation = 0

eSMPreferNamespace = 1

eSMPreferSchemalocation

Sets the schema mapping option to select the schema location URL.

eSMPreferNamespace

Sets the schema mapping option to select the namespace.

ENUMTableOutputFormat

Description
Contains the enumeration literals that that specifies the output format of the document containing
the generated tables.

Used by

Interface Operation

© 2014 Altova GmbH

API Reference 441COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

IXBRL TableOutputFormat

Enumeration literals

eFormatXML = 0

eFormatHTML = 1

eSMPreferSchemalocation

Sets the schema mapping option to select the schema location URL.

eSMPreferNamespace

Sets the schema mapping option to select the namespace.

ENUMValidationType

Description
Contains enumeration literals that define the type of document to validate.

Used by

Interface Operation

IXMLValidator IsValid

Enumeration literals

eValidateAny = 0

eValidateXMLWithDTD = 1

eValidateXMLWithXSD = 2

eValidateDTD = 3

eValidateXSD = 4

eValidateAny

Sets the validation type to Any. This validates a document after automatically detecting its type.

eValidateXMLWithDTD

Sets the validation type to XMLWithDTD. This specifies validation of an XML document against a
DTD.

442 COM and .NET Interfaces API Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

eValidateXMLWithXSD

Sets the validation type to XMLWithXSD. This specifies validation of an XML document against an
XML Schema.

eValidateDTD

Sets the validation type to ValidateDTD. This specifies validation of a DTD document.

eValidateXSD

Sets the validation type to ValidateXSD. This specifies validation of a W3C XML Schema
document.

ENUMWellformedCheckType

Description
Contains the enumeration literals that define the type of document to check: XML or DTD.

Used by

Interface Operation

IXMLValidator IsWellFormed

Enumeration literals

eWellFormedAny = 0

eWellFormedXML = 1

eWellFormedDTD = 2

eWellformedAny

Sets the well-formed check type to Any. This checks an XML or DTD document for well-
formedness after automatically detecting which of the two types it is.

eWellformedXML

Sets the well-formed check type to XML. This checks an XML document for well-formedness
according to the XML 1.0 or XML 1.1 specification.

eWellformedDTD

Sets the well-formed check type to DTD. This checks a DTD document for well-formedness.

© 2014 Altova GmbH

API Reference 443COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

ENUMXBRLValidationType

Description
Contains enumeration literals that define the type of XBRL document to validate: XBRL instance or
XBRL taxonomy.

Used by

Interface Operation

IXBRL IsValid

Enumeration literals

eValidateXBRLAny = 0

eValidateXBRLInstance = 1

eValidateXBRLTaxonomy = 2

eValidateXBRLAny

Sets the validation type to Any. This validates the XBRL document after detecting its type
(instance or taxonomy) automatically.

eValidateXBRLInstance

Sets the validation type to Instance. This specifies validation of one or more XBRL instance
documents.

eValidateXBRLTaxonomy

Sets the validation type to Taxonomy. This specifies validation of one or more XBRL taxonomy
documents.

ENUMXMLValidationMode

Description
Contains the enumeration literals that define the XML processing mode to use: Validation or
Wellformed.

Used by

Interface Operation

IXMLValidator XMLValidationMode

IXQuery XMLValidationMode

IXSLT XMLValidationMode

444 COM and .NET Interfaces API Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Enumeration literals

eXMLValidationModeWF = 0

eXMLValidationModeID = 1

eXMLValidationModeValid = 2

eXMLValidationModeWF

Sets the XML processing mode to Wellformed. This is the default value.

eXMLValidationModeID

Internal.

eXMLValidationModeValid

Sets the XML processing mode to Validation.

ENUMXQueryVersion

Description
Contains enumeration literals that specify the XQuery version to use: XQuery 1.0 or 3.0.

Used by

Interface Operation

IXQuery EngineVersion

Enumeration literals

eXQVersion10 = 1

eXQVersion30 = 3

eXQVersion10

Sets the XQuery version to XQuery 1.0.

eXQVersion30

Sets the XQuery version to XQuery 3.0. This is the default value.

ENUMXQueryUpdatedXML

Description
Contains enumeration literals to specify how XQuery updates are handled.

© 2014 Altova GmbH

API Reference 445COM and .NET Interfaces

Altova RaptorXML+XBRL Server 2015

Used by

Interface Operation

IXQuery UpdatedXMLWriteMode

Enumeration literals

eUpdatedDiscard = 1

eUpdatedWriteback = 2

eUpdatedAsMainResult = 3

eUpdatedDiscard

Updates are discarded and not written to file.

eUpdatedWriteback

Updates are written to the input XML file specified with InputXMLFileName.

eUpdatedAsMainResult

Updates are written to the location specified by the outputFile parameter of ExecuteUpdate .

ENUMXSDVersion

Description
Contains enumeration literals that indicate the XML Schema version to use for validation: XSD 1.0
or 1.1.

Used by

Interface Operation

IXMLValidator XSDVersion

IXQuery XSDVersion

IXSLT XSDVersion

Enumeration literals

eXSDVersionAuto = 0

eXSDVersion10 = 1

eXSDVersion11 = 2

446 COM and .NET Interfaces API Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

eXSDVersionAuto

Sets the XML Schema version for validation to Auto-detect. The XSD version will be detected
automatically after parsing the XSD document. If the XSD document's vc:minVersion attribute
has a value of 1.1, the document will be considered to be XSD 1.1. If the attribute has any other
value, or does not exist, the document will be considered to be XSD 1.0.

eXSDVersion10

Sets the XML Schema version for validation to XML Schema 1.0.

eXSDVersion11

Sets the XML Schema version for validation to XML-Schema 1.1.

ENUMXSLTVersion

Description
Contains enumeration literals that define the XSLT version to use: XSLT 1.0, 2.0, or 3.0.

Used by

Interface Operation

IXSLT EngineVersion

Enumeration literals

eVersion10 = 1

eVersion20 = 2

eVersion30 = 3

eVersion10

Sets the XSLT version to XSLT 1.0.

eVersion20

Sets the XSLT version to XSLT 2.0.

eVersion30

Sets the XSLT version to XSLT 3.0.

Chapter 8

Additional Information

448 Additional Information

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

8 Additional Information

This section contains the following additional information:

XBRL Formula Parameter

© 2014 Altova GmbH

Schema Location Hints 449Additional Information

Altova RaptorXML+XBRL Server 2015

8.1 Schema Location Hints

Instance documents can use hints to indicate the schema location. Two attributes are used for
hints:

xsi:schemaLocation for schema documents with target namespaces. The attribute's
value is a pair of items, the first of which is a namespace, the second is a URL that
locates a schema document. The namespace name must match the target namespace of
the schema document.
<document xmlns="http://www.altova.com/schemas/test03"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.altova.com/schemas/test03
Test.xsd">

xsi:noNamespaceSchemaLocation for schema documents without target namespaces.
The attribute's value is the schema document's URL. The referenced schema document
must have no target namespace.
<document xmlns="http://www.altova.com/schemas/test03"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="Test.xsd">

The --schemalocation-hints option specifies how these two attributes are to be used as hints,
especially how the schemaLocation attribute information is to be handled (see the option's
description above). Note that RaptorXML+XBRL Server considers the namespace part of the
xsi:noNamespaceSchemaLocation value to be the empty string.

Schema location hints can also be given in an import statement of an XML Schema document.

<import namespace="someNS" schemaLocation="someURL">

In the import statement, too, hints can be given via a namespace that can be mapped to a
schema in a catalog file, or directly as a URL in the schemaLocation attribute. The --schema-
imports option (for XBRL and XSD/XML) specifies how the schema location is to be selected.

450 Additional Information XBRL Formula Parameters

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

8.2 XBRL Formula Parameters

This section contains the following topics:

Formula Parameter Formats, which gives examples of the XML and JSON formats of
XBRL formula parameters.
Using Formula Parameters contains listings in Java, VB.NET, C#, VBScript, and JScript
that show formula parameters can be used using objects from the Java and COM/.NET
API libraries.

© 2014 Altova GmbH

XBRL Formula Parameters 451Additional Information

Altova RaptorXML+XBRL Server 2015

8.2.1 Formula Parameter Formats

Formula parameters can be given in XML format or JSON format.

XML format
The listing below shows formula parameters in XML format.

<?xml version="1.0" encoding="utf-8"?>
<options:formula-parameters
 xmlns:options="http://www.altova.com/schemas/altova/raptorxml/options"
 xmlns:p="http://xbrl.org/formula/conformance/paramstuff"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.altova.com/schemas/altova/raptorxml/options
http://www.altova.com/schemas/altova/raptorxml/options.xsd">

 <options:parameter name="p1">
 <options:value type="xs:string">hello world from new xml (without namespace)
</options:value>
 </options:parameter>
 <options:parameter name="p:p1" type="xs:string" value="hello world from new
xml"/>

</options:formula-parameters>

Note the following points:

The @type attribute is optional and defaults to xs:string.
Multiple <options:value> child elements can be specified in order to assign an XPath
sequence to a parameter.
@value and <options:value> cannot be used at the same time.

JSON format
The listing below shows formula parameters in JSON format.

{
 "formula-parameters": [
 {
 "name": "p1",
 "values": [
 {
 "type": "xs:string",
 "value": "hello world from json new (without namespace)"
 }
]
 }, {
 "name": "ns1:p1",
 "values": [

452 Additional Information XBRL Formula Parameters

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

 {
 "type": "xs:string",
 "value": "hello world from json new"
 }
]
 }
],
 "namespaces": {
 "xs": "http://www.w3.org/2001/XMLSchema",
 "ns1": "http://xbrl.org/formula/conformance/paramstuff"
 }
}

Note the following points:

The type key is optional and defaults to xs:string.
The xs key is optional and defaults to http://www.w3.org/2001/XMLSchema.
The type in the parameter map is used if a value is specified directly as a JSON string.
Other ways of writing are currently also supported:

 {
 "name": "p2",
 "type": "xs:string",
 "value": "hello world from json new (without namespace)"
 }, {
 "name": "p3",
 "type": "xs:int",
 "values": ["1", "2"]
 }, {
 "name": "p4",
 "type": "xs: int",
 "values": ["1", {"type": "xs:string", "value": "abc"}, "2"]
 }

© 2014 Altova GmbH

XBRL Formula Parameters 453Additional Information

Altova RaptorXML+XBRL Server 2015

8.2.2 Using Formula Parameters

The example listings below shows how XBRL formula parameters can be used in various
programming languages. For Java, see the Java API's XBRL class. For the other languages, refer
to the COM/.NET API's XBRL interface.

Java

 RaptorXMLFactory rxml = RaptorXML.getFactory();

 XBRL xbrl = rxml.getXBRL();

 xbrl.addFormulaParameter("ns1:string", "ns1:Param1", "ns1:theqname");
 xbrl.addFormulaParameterNamespace("ns1", "www.www.www");

 // The parameter is an array of dates
 xbrl.addFormulaArrayParameter("", "startDates", new Object[]{ new

FormulaParam("xs:date", "2010-01-01"), new FormulaParam("xs:date",

"2012-01-01") });

 // The parameter is an array of figs
 xbrl.addFormulaArrayParameter("ns1:figs", "startFigs", new Object[]

{ "fig1", "fig2", "fig3" });

 // The parameter is an array of figs, dates and raisins (rather wild
example)
 xbrl.addFormulaArrayParameter("ns1:figs", "startDryFruit", new Object[]

{ "fig1", "fig2", new FormulaParam("xs:date", "2010-01-01"), new

FormulaParam("ns1:raisin", "dried grape"), "fig3" });

VB.NET

Dim objRaptor As New Server()
 Dim objXBRL As XBRL
 objXBRL = objRaptor.GetXBRL()

 objXBRL.AddFormulaParameter("ns1:string", "ns1:Param1", "ns1:theqname")
 objXBRL.AddFormulaParameterNamespace("ns1", "www.www.www")

 'The parameter is an array of dates
 objXBRL.AddFormulaArrayParameter("", "startDates", {New XBRLFormulaParam
 With {.ParamType = "xs:date", .ParamValue = "2010-01-01"}, New
XBRLFormulaParam With {.ParamType = "xs:date", .ParamValue = "2012-01-
01"}})

 'The parameter is an array of figs
 objXBRL.AddFormulaArrayParameter("ns1:figs", "startFigs", {"fig1",
"fig2", "fig3"})

 'The parameter is an array of figs, dates and raisins (rather wild
example)
 objXBRL.AddFormulaArrayParameter("ns1:figs", "startDryFruit", {"fig1",
"fig2", New XBRLFormulaParam With {.ParamType = "xs:date", .ParamValue =

454 Additional Information XBRL Formula Parameters

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

"2010-01-01"}, New XBRLFormulaParam With {.ParamType =
"ns1:raisin", .ParamValue = "dried grape"}, "fig3"})

C#

Server app = new Server();
 XBRL objXBRL = app.GetXBRL();

 objXBRL.AddFormulaParameter("ns1:string", "ns1:Param1", "ns1:theqname");
 objXBRL.AddFormulaParameterNamespace("ns1", "www.www.www");

 //The parameter is an array of dates
 objXBRL.AddFormulaArrayParameter("", "startDates", new object[] {new
XBRLFormulaParam { ParamType = "xs:date", ParamValue = "2010-01-01"}, new
XBRLFormulaParam {ParamType = "xs:date", ParamValue = "2012-01-01"}});

 //The parameter is an array of figs
 objXBRL.AddFormulaArrayParameter("ns1:figs", "startFigs", new object[]
{"fig1", "fig2", "fig3"});

 //The parameter is an array of figs, dates and raisins (rather wild
example)
 objXBRL.AddFormulaArrayParameter("ns1:figs", "startDryFruit", new
object[] { "fig1", "fig2", new XBRLFormulaParam { ParamType = "xs:date",
ParamValue = "2010-01-01" }, new XBRLFormulaParam { ParamType =
"ns1:raisin", ParamValue = "dried grape" }, "fig3" });

VBScript

Since the Raptor type library cannot be loaded by scripting languages, and because the
type XBRLFormulaParameters doesn't exist, the VBScript user, instead of using
XBRL.FormulaParam objects, must declare a class in his/her program. The class must
have two public properties, ParamName and ParamValue (just as the XBRL.FormulaParam
has). The class should have a constructor that takes the type and value, since this
simplifies usage; otherwise the object needs to be created and have its members set). See
the COM/.NET API's XBRL interface.

Class MyPair
 Public ParamType
 Public ParamValue
 Public Default Function Init(inType, inValue)
 ParamType = inType
 ParamValue = inValue
 set Init = Me
 End Function
End Class

© 2014 Altova GmbH

XBRL Formula Parameters 455Additional Information

Altova RaptorXML+XBRL Server 2015

Sub Main
 Dim objRaptor
 Set objRaptor = WScript.GetObject("", "RaptorXML.Server")
 Dim objXBRL
 Set objXBRL = objRaptor.GetXBRL

 Call objXBRL.AddFormulaParameter("ns1:string", "ns1:Param1",
"ns1:theqname")
 Call objXBRL.AddFormulaParameterNamespace("ns1", "www.www.www")

 'The parameter is an array of dates
 Call objXBRL.AddFormulaArrayParameter("", "startDates", Array((New
MyPair)("xs:date", "2010-01-01"), (New MyPair)("xs:date", "2012-01-
01")))

 'The parameter is an array of figs
 Call objXBRL.AddFormulaArrayParameter("ns1:figs", "startFigs",
Array("fig1", "fig2", "fig3"))

 'The parameter is an array of figs, dates and raisins (rather wild
example)
 Call objXBRL.AddFormulaArrayParameter("ns1:figs", "startDryFruit",
Array("fig1", "fig2", (New MyPair)("xs:date", "2010-01-01"(, (New MyPair)
("ns1:raisin", "dried grape"), "fig3"))
End Sub

Call Main

JScript

Since the Raptor type library cannot be loaded by scripting languages, and because the
type XBRLFormulaParameters doesn't exist, the JScript user, instead of using
XBRL.FormulaParam objects, must declare function-classes in his/her program that holds
the type-value pair. Names of members must be ParamType and ParamValue. See the
COM/.NET API's XBRL interface.

function FormulaParam(inType, inValue)
{
 this.ParamType = inType;
 this.ParamValue = inValue;
}

function main()
{
 var objRaptor = new ActiveXObject("RaptorXML.Server");
 var objXBRL = objRaptor.GetXBRL();

 objXBRL.addFormulaParameter("ns1:string", "ns1:Param1",
"ns1:theqname");
 objXBRL.addFormulaParameter("xs:string", "Param1", "bla",

456 Additional Information XBRL Formula Parameters

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

"www.www.www");

 // The parameter is an array of dates
 objXBRL.addFormulaArrayParameter("", "startDates", [new
FormulaParam("xs:date", "2010-01-01"), new FormulaParam("xs:date", "2012-
01-01")]);

 // The parameter is an array of figs
 objXBRL.addFormulaArrayParameter("ns1:figs", "startFigs", ["fig1",
"fig2", "fig3"]);

 // The parameter is an array of figs, dates and raisins (rather wild
example)
 objXBRL.addFormulaArrayParameter("ns1:figs", "startDryFruit", ["fig1",
"fig2", new FormulaParam("xs:date", "2010-01-01"), new
FormulaParam("ns1:raisin", "dried grape"), "fig3"]);
}

main()

Chapter 9

XSLT and XQuery Engine Information

458 XSLT and XQuery Engine Information

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

9 XSLT and XQuery Engine Information

The XSLT and XQuery engines of RaptorXML+XBRL Server follow the W3C specifications closely
and are therefore stricter than previous Altova engines—such as those in previous versions of
XMLSpy and those of AltovaXML, the predecessor of RaptorXML. As a result, minor errors that
were ignored by previous engines are now flagged as errors by RaptorXML+XBRL Server.

For example:

It is a type error (err:XPTY0018) if the result of a path operator contains both nodes and
non-nodes.
It is a type error (err:XPTY0019) if E1 in a path expression E1/E2 does not evaluate to a
sequence of nodes.

If you encounter this kind of error, modify either the XSLT/XQuery document or the instance
document as appropriate.

This section describes implementation-specific features of the engines, organized by
specification:

XSLT 1.0
XSLT 2.0
XSLT 3.0
XQuery 1.0
XQuery 3.0

© 2014 Altova GmbH

XSLT 1.0 459XSLT and XQuery Engine Information

Altova RaptorXML+XBRL Server 2015

9.1 XSLT 1.0

The XSLT 1.0 Engine of RaptorXML+XBRL Server conforms to the World Wide Web Consortium's
(W3C's) XSLT 1.0 Recommendation of 16 November 1999 and XPath 1.0 Recommendation of 16
November 1999. Note the following information about the implementation.

Notes about the implementation
When the method attribute of xsl:output is set to HTML, or if HTML output is selected by
default, then special characters in the XML or XSLT file are inserted in the HTML document as
HTML character references in the output. For instance, the character (the decimal
character reference for a non-breaking space) is inserted as in the HTML code.

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

460 XSLT and XQuery Engine Information XSLT 2.0

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

9.2 XSLT 2.0

This section:

Engine conformance
Backward compatibility
Namespaces
Schema awareness
Implementation-specific behavior

Conformance
The XSLT 2.0 engine of RaptorXML+XBRL Server conforms to the World Wide Web Consortium's
(W3C's) XSLT 2.0 Recommendation of 23 January 2007 and XPath 2.0 Recommendation of 14
December 2010.

Backwards Compatibility
The XSLT 2.0 engine is backwards compatible. The only time the backwards compatibility of the
XSLT 2.0 engine comes into effect is when using the XSLT 2.0 engine (CLI parameter --xslt=2)
to process an XSLT 1.0 stylesheet. Note that there could be differences in the outputs produced
by the XSLT 1.0 Engine and the backwards-compatible XSLT 2.0 engine.

Namespaces
Your XSLT 2.0 stylesheet should declare the following namespaces in order for you to be able to
use the type constructors and functions available in XSLT 2.0. The prefixes given below are
conventionally used; you could use alternative prefixes if you wish.

Namespace Name Prefix Namespace URI

XML Schema types xs: http://www.w3.org/2001/XMLSchema

XPath 2.0 functions fn: http://www.w3.org/2005/xpath-functions

Typically, these namespaces will be declared on the xsl:stylesheet or xsl:transform
element, as shown in the following listing:

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fn="http://www.w3.org/2005/xpath-functions"
...

</xsl:stylesheet>

The following points should be noted:

http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/

© 2014 Altova GmbH

XSLT 2.0 461XSLT and XQuery Engine Information

Altova RaptorXML+XBRL Server 2015

The XSLT 2.0 engine uses the XPath 2.0 and XQuery 1.0 Functions namespace (listed in
the table above) as its default functions namespace. So you can use XPath 2.0 and
XSLT 2.0 functions in your stylesheet without any prefix. If you declare the XPath 2.0
Functions namespace in your stylesheet with a prefix, then you can additionally use the
prefix assigned in the declaration.
When using type constructors and types from the XML Schema namespace, the prefix
used in the namespace declaration must be used when calling the type constructor (for
example, xs:date).
Some XPath 2.0 functions have the same name as XML Schema datatypes. For
example, for the XPath functions fn:string and fn:boolean there exist XML Schema
datatypes with the same local names: xs:string and xs:boolean. So if you were to use
the XPath expression string('Hello'), the expression evaluates as
fn:string('Hello')—not as xs:string('Hello').

Schema-awareness
The XSLT 2.0 engine is schema-aware. So you can use user-defined schema types and the
xsl:validate instruction.

Implementation-specific behavior
Given below is a description of how the XSLT 2.0 engine handles implementation-specific aspects
of the behavior of certain XSLT 2.0 functions.

xsl:result-document

Additionally supported encodings are (the Altova-specific): x-base16tobinary and x-
base64tobinary.

function-available

The function tests for the availability of in-scope functions (XSLT 2.0, XPath 2.0, and extension
functions).

unparsed-text

The href attribute accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths
with or without the file:// protocol. Additionally supported encodings are (the Altova-specific):
x-binarytobase16 and x-binarytobase64.

unparsed-text-available

The href attribute accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths
with or without the file:// protocol. Additionally supported encodings are (the Altova-specific):
x-binarytobase16 and x-binarytobase64.

Note: The following encoding values, which were implemented in earlier versions of RaptorXML's
predecessor product, AltovaXML, are now deprecated: base16tobinary,
base64tobinary, binarytobase16 and binarytobase64.

462 XSLT and XQuery Engine Information XSLT 2.0

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

© 2014 Altova GmbH

XSLT 3.0 463XSLT and XQuery Engine Information

Altova RaptorXML+XBRL Server 2015

9.3 XSLT 3.0

The XSLT 3.0 Engine of RaptorXML+XBRL Server conforms to the World Wide Web Consortium's
(W3C's) XSLT 3.0 Last Call Working Draft of 12 December 2013 and XPath 3.0 Recommendation
of 8 April 2014.

The XSLT 3.0 engine has the same implementation-specific characteristics as the XSLT 2.0
engine. Additionally, it includes support for the following XSLT 3.0 features: xsl:evaluate,
xsl:try, xsl:catch, xsl:map, xsl:map-entry, text value templates, XPath/XQuery 3.0
functions and operators, and the XPath 3.0 specification.

The following XSLT 3.0 instructions are currently unsupported:

xsl:accept
xsl:accumulator
xsl:accumulator-rule
xsl:assert
xsl:break
xsl:context-item
xsl:expose
xsl:fork
xsl:iterate
xsl:merge
xsl:merge-action
xsl:merge-key
xsl:merge-source
xsl:mode
xsl:next-iteration
xsl:next-match
xsl:on-completion
xsl:override
xsl:package
xsl:stream
xsl:use-package

http://www.w3.org/TR/xslt-30/
http://www.w3.org/TR/xpath-30/
http://www.w3.org/TR/xpath-30/
http://www.w3.org/TR/xpath-30/

464 XSLT and XQuery Engine Information XQuery 1.0

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

9.4 XQuery 1.0

This section:

Engine conformance
Schema awareness
Encoding
Namespaces
XML source and validation
Static and dynamic type checking
Library modules
External modules
Collations
Precision of numeric data
XQuery instructions support

Conformance
The XQuery 1.0 Engine of RaptorXML+XBRL Server conforms to the World Wide Web
Consortium's (W3C's) XQuery 1.0 Recommendation of 14 December 2010. The XQuery standard
gives implementations discretion about how to implement many features. Given below is a list
explaining how the XQuery 1.0 Engine implements these features.

Schema awareness
The XQuery 1.0 Engine is schema-aware.

Encoding
The UTF-8 and UTF-16 character encodings are supported.

Namespaces
The following namespace URIs and their associated bindings are pre-defined.

Namespace Name Prefix Namespace URI

XML Schema types xs: http://www.w3.org/2001/XMLSchema

Schema instance xsi: http://www.w3.org/2001/XMLSchema-instance

Built-in functions fn: http://www.w3.org/2005/xpath-functions

Local functions local: http://www.w3.org/2005/xquery-local-functions

http://www.w3.org/TR/xquery/

© 2014 Altova GmbH

XQuery 1.0 465XSLT and XQuery Engine Information

Altova RaptorXML+XBRL Server 2015

The following points should be noted:

The XQuery 1.0 Engine recognizes the prefixes listed above as being bound to the
corresponding namespaces.
Since the built-in functions namespace listed above is the default functions namespace in
XQuery, the fn: prefix does not need to be used when built-in functions are invoked (for

example, string("Hello") will call the fn:string function). However, the prefix fn: can
be used to call a built-in function without having to declare the namespace in the query
prolog (for example: fn:string("Hello")).
You can change the default functions namespace by declaring the default function
namespace expression in the query prolog.
When using types from the XML Schema namespace, the prefix xs: may be used
without having to explicitly declare the namespaces and bind these prefixes to them in
the query prolog. (Example: xs:date and xs:yearMonthDuration.) If you wish to use
some other prefix for the XML Schema namespace, this must be explicitly declared in the
query prolog. (Example: declare namespace alt = "http://www.w3.org/2001/
XMLSchema"; alt:date("2004-10-04").)
Note that the untypedAtomic, dayTimeDuration, and yearMonthDuration datatypes
have been moved, with the CRs of 23 January 2007, from the XPath Datatypes
namespace to the XML Schema namespace, so: xs:yearMonthDuration.

If namespaces for functions, type constructors, node tests, etc are wrongly assigned, an error is
reported. Note, however, that some functions have the same name as schema datatypes, e.g.
fn:string and fn:boolean. (Both xs:string and xs:boolean are defined.) The namespace
prefix determines whether the function or type constructor is used.

XML source document and validation
XML documents used in executing an XQuery document with the XQuery 1.0 Engine must be
well-formed. However, they do not need to be valid according to an XML Schema. If the file is not
valid, the invalid file is loaded without schema information. If the XML file is associated with an
external schema and is valid according to it, then post-schema validation information is generated
for the XML data and will be used for query evaluation.

Static and dynamic type checking
The static analysis phase checks aspects of the query such as syntax, whether external
references (e.g. for modules) exist, whether invoked functions and variables are defined, and so
on. If an error is detected in the static analysis phase, it is reported and the execution is
stopped.

Dynamic type checking is carried out at run-time, when the query is actually executed. If a type is
incompatible with the requirement of an operation, an error is reported. For example, the
expression xs:string("1") + 1 returns an error because the addition operation cannot be
carried out on an operand of type xs:string.

466 XSLT and XQuery Engine Information XQuery 1.0

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Library Modules
Library modules store functions and variables so they can be reused. The XQuery 1.0 Engine
supports modules that are stored in a single external XQuery file. Such a module file must
contain a module declaration in its prolog, which associates a target namespace. Here is an
example module:

module namespace libns="urn:module-library";
declare variable $libns:company := "Altova";
declare function libns:webaddress() { "http://www.altova.com" };

All functions and variables declared in the module belong to the namespace associated with the
module. The module is used by importing it into an XQuery file with the import module statement
in the query prolog. The import module statement only imports functions and variables declared
directly in the library module file. As follows:

import module namespace modlib = "urn:module-library" at "modulefilename.xq";

if ($modlib:company = "Altova")
then modlib:webaddress()
else error("No match found.")

External functions
External functions are not supported, i.e. in those expressions using the external keyword, as
in:

declare function hoo($param as xs:integer) as xs:string external;

Collations
The default collation is the Unicode-codepoint collation, which compares strings on the basis of
their Unicode codepoint. Other supported collations are the ICU collations listed here. To use a
specific collation, supply its URI as given in the list of supported collations. Any string
comparisons, including for the fn:max and fn:min functions, will be made according to the
specified collation. If the collation option is not specified, the default Unicode-codepoint collation
is used.

Precision of numeric types
The xs:integer datatype is arbitrary-precision, i.e. it can represent any number of digits.
The xs:decimal datatype has a limit of 20 digits after the decimal point.
The xs:float and xs:double datatypes have limited-precision of 15 digits.

http://site.icu-project.org/

© 2014 Altova GmbH

XQuery 1.0 467XSLT and XQuery Engine Information

Altova RaptorXML+XBRL Server 2015

XQuery Instructions Support
The Pragma instruction is not supported. If encountered, it is ignored and the fallback expression
is evaluated.

468 XSLT and XQuery Engine Information XQuery 3.0

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

9.5 XQuery 3.0

The XQuery 3.0 Engine of RaptorXML+XBRL Server conforms to the World Wide Web
Consortium's (W3C's) XQuery 3.0 Recommendation of 8 April 2014 and includes support for XPath
and XQuery Functions 3.0.

Implementation-specific characteristics are the same as for XQuery 1.0.

http://www.w3.org/TR/xquery-30/

Chapter 10

XSLT and XPath/XQuery Functions

470 XSLT and XPath/XQuery Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

10 XSLT and XPath/XQuery Functions

This section lists Altova extension functions and other extension functions that can be used in
XPath and/or XQuery expressions. Altova extension functions can be used with Altova's XSLT and
XQuery engines, and provide functionality additional to that available in the function libraries
defined in the W3C standards.

General points
The following general points should be noted:

Functions from the core function libraries defined in the W3C specifications can be called
without a prefix. That's because the XSLT and XQuery engines read non-prefixed functions
as belonging to a default functions namespace which is that specified in the XPath/
XQuery functions specificationshttp://www.w3.org/2005/xpath-functions. If this
namespace is explicitly declared in an XSLT or XQuery document, the prefix used in the
namespace declaration can also optionally be used on function names.
In general, if a function expects a sequence of one item as an argument, and a sequence
of more than one item is submitted, then an error is returned.
All string comparisons are done using the Unicode codepoint collation.
Results that are QNames are serialized in the form [prefix:]localname.

Precision of xs:decimal
The precision refers to the number of digits in the number, and a minimum of 18 digits is required
by the specification. For division operations that produce a result of type xs:decimal, the
precision is 19 digits after the decimal point with no rounding.

Implicit timezone
When two date, time, or dateTime values need to be compared, the timezone of the values being
compared need to be known. When the timezone is not explicitly given in such a value, the
implicit timezone is used. The implicit timezone is taken from the system clock, and its value can
be checked with the implicit-timezone() function.

Collations
The default collation is the Unicode codepoint collation, which compares strings on the basis of
their Unicode codepoint. Other supported collations are the ICU collations listed below. To use a
specific collation, supply its URI as given in the list of supported collations (table below). Any
string comparisons, including for the max and min functions, will be made according to the
specified collation. If the collation option is not specified, the default Unicode-codepoint collation
is used.

Language URIs

da: Danish da_DK

de: German de_AT, de_BE, de_CH, de_DE, de_LI, de_LU

http://site.icu-project.org/

© 2014 Altova GmbH

 471XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

en: English en_AS, en_AU, en_BB, en_BE, en_BM, en_BW, en_BZ, en_CA,
en_GB, en_GU, en_HK, en_IE, en_IN, en_JM, en_MH, en_MP,
en_MT, en_MU, en_NA, en_NZ, en_PH, en_PK, en_SG, en_TT,
en_UM, en_US, en_VI, en_ZA, en_ZW

es: Spanish es_419, es_AR, es_BO, es_CL, es_CO, es_CR, es_DO, es_EC,
es_ES, es_GQ, es_GT, es_HN, es_MX, es_NI, es_PA, es_PE,
es_PR, es_PY, es_SV, es_US, es_UY, es_VE

fr: French fr_BE, fr_BF, fr_BI, fr_BJ, fr_BL, fr_CA, fr_CD, fr_CF,
fr_CG, fr_CH, fr_CI, fr_CM, fr_DJ, fr_FR, fr_GA, fr_GN,
fr_GP, fr_GQ, fr_KM, fr_LU, fr_MC, fr_MF, fr_MG, fr_ML,
fr_MQ, fr_NE, fr_RE, fr_RW, fr_SN, fr_TD, fr_TG

it: Italian it_CH, it_IT

ja: Japanese ja_JP

nb: Norwegian
Bokmal

nb_NO

nl: Dutch nl_AW, nl_BE, nl_NL

nn: Nynorsk nn_NO

pt: Portuguese pt_AO, pt_BR, pt_GW, pt_MZ, pt_PT, pt_ST

ru: Russian ru_MD, ru_RU, ru_UA

sv: Swedish sv_FI, sv_SE

Namespace axis
The namespace axis is deprecated in XPath 2.0. Use of the namespace axis is, however,
supported. To access namespace information with XPath 2.0 mechanisms, use the in-scope-
prefixes(), namespace-uri() and namespace-uri-for-prefix() functions.

472 XSLT and XPath/XQuery Functions Altova Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

10.1 Altova Extension Functions

Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions namespace,
http://www.altova.com/xslt-extensions, and are indicated in this section with the prefix

altova:, which is assumed to be bound to this namespace. Note that, in future versions of your

product, support for a function might be discontinued or the behavior of individual functions might
change. Consult the documentation of future releases for information about support for Altova
extension functions in that release.

Functions defined in the W3C's XPath/XQuery Functions specifications can be used in: (i) XPath
expressions in an XSLT context, and (ii) in XQuery expressions in an XQuery document. In this
documentation we indicate the functions that can be used in the former context (XPath in XSLT)
with an XP symbol and call them XPath functions; those functions that can be used in the latter
(XQuery) context are indicated with an XQ symbol; they work as XQuery functions. The W3C's
XSLT specifications—not XPath/XQuery Functions specifications—also define functions that can
be used in XPath expressions in XSLT documents. These functions are marked with an XSLT

symbol and are called XSLT functions. The XPath/XQuery and XSLT versions in which a function
can be used are indicated in the description of the function (see symbols below). Functions from
the XPath/XQuery and XSLT function libraries are listed without a prefix. Extension functions from
other libraries, such as Altova extension functions, are listed with a prefix.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3

XSLT functions
XSLT functions can only be used in XPath expressions in an XSLT context (similarly to XSLT
2.0's current-group() or key() functions). These functions are not intended for, and will not
work in, a non-XSLT context (for instance, in an XQuery context). Note that XSLT functions for
XBRL can be used only with editions of Altova products that have XBRL support.

XPath/XQuery functions
XPath/XQuery functions (general, date/time, and string) can be used both in XPath expressions in
XSLT contexts as well as in XQuery expressions.

Chart functions (Enterprise and Server Editions only)
Altova extension functions for charts are supported only in the Enterprise and Server Editions of
Altova products and enable charts to be generated from XML data.

Barcode functions
Altova's barcode extension functions enable barcodes to be generated and placed in output

© 2014 Altova GmbH

Altova Extension Functions 473XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

generated via XSLT stylesheets.

474 XSLT and XPath/XQuery Functions Altova Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

10.1.1 XSLT Functions

XSLT extension functions can be used in XPath expressions in an XSLT context. They will not
work in a non-XSLT context (for instance, in an XQuery context).

Note about naming of functions and language applicability
Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions namespace,
http://www.altova.com/xslt-extensions, and are indicated in this section with the prefix

altova:, which is assumed to be bound to this namespace. Note that, in future versions of your

product, support for a function might be discontinued or the behavior of individual functions might
change. Consult the documentation of future releases for information about support for Altova
extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3

Standard functions
distinct-nodes [altova:]

altova:distinct-nodes(node()*) as node()* XSLT1 XSLT2 XSLT3

Takes a set of one or more nodes as its input and returns the same set minus nodes with
duplicate values. The comparison is done using the XPath/XQuery function fn:deep-equal.

Examples
altova:distinct-nodes(country) returns all child country nodes less those having

duplicate values.

evaluate [altova:]

altova:evaluate(XPathExpression as xs:string[, ValueOf$p1, ... ValueOf$pN])

XSLT1 XSLT2 XSLT3

Takes an XPath expression, passed as a string, as its mandatory argument. It returns the
output of the evaluated expression. For example: altova:evaluate('//Name[1]') returns

the contents of the first Name element in the document. Note that the expression //Name[1]
is passed as a string by enclosing it in single quotes.

The altova:evaluate function can optionally take additional arguments. These arguments
are the values of in-scope variables that have the names p1, p2, p3... pN. Note the following
points about usage: (i) The variables must be defined with names of the form pX, where X is
an integer; (ii) the altova:evaluate function's arguments (see signature above), from the
second argument onwards, provide the values of the variables, with the sequence of the
arguments corresponding to the numerically ordered sequence of variables: p1 to pN: The
second argument will be the value of the variable p1, the third argument that of the variable
p2, and so on; (iii) The variable values must be of type item*.

Example

© 2014 Altova GmbH

Altova Extension Functions 475XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />

<xsl:value-of select="altova:evaluate($xpath, 10, 20, 'hi')" />
outputs "hi 20 10"

In the listing above, notice the following:

The second argument of the altova:evaluate expression is the value assigned
to the variable $p1, the third argument that assigned to the variable $p2, and so
on.
Notice that the fourth argument of the function is a string value, indicated by its
being enclosed in quotes.
The select attribute of the xs:variable element supplies the XPath expression.
Since this expression must be of type xs:string, it is enclosed in single quotes.

Examples to further illustrate the use of variables
<xsl:variable name="xpath" select="'$p1'" />
<xsl:value-of select="altova:evaluate($xpath, //Name[1])" />
Outputs value of the first Name element.

<xsl:variable name="xpath" select="'$p1'" />
<xsl:value-of select="altova:evaluate($xpath, '//Name[1]')" />

Outputs "//Name[1]"

The altova:evaluate() extension function is useful in situations where an XPath
expression in the XSLT stylesheet contains one or more parts that must be evaluated
dynamically. For example, consider a situation in which a user enters his request for the
sorting criterion and this criterion is stored in the attribute UserReq/@sortkey. In the
stylesheet, you could then have the expression: <xsl:sort
select="altova:evaluate(../UserReq/@sortkey)" order="ascending"/>. The

altova:evaluate() function reads the sortkey attribute of the UserReq child element of the
parent of the context node. Say the value of the sortkey attribute is Price, then Price is
returned by the altova:evaluate() function and becomes the value of the select attribute:
<xsl:sort select="Price" order="ascending"/>. If this sort instruction occurs within

the context of an element called Order, then the Order elements will be sorted according to
the values of their Price children. Alternatively, if the value of @sortkey were, say, Date,
then the Order elements would be sorted according to the values of their Date children. So
the sort criterion for Order is selected from the sortkey attribute at runtime. This could not
have been achieved with an expression like: <xsl:sort select="../UserReq/@sortkey"

order="ascending"/>. In the case shown above, the sort criterion would be the sortkey
attribute itself, not Price or Date (or any other current content of sortkey).

Note: The static context includes namespaces, types, and functions—but not variables—
from the calling environment. The base URI and default namespace are inherited.

More examples
Static variables: <xsl:value-of select="$i3, $i2, $i1" />
Outputs the values of three variables.

Dynamic XPath expression with dynamic variables:
<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />
<xsl:value-of select="altova:evaluate($xpath, 10, 20, 30)" />
Outputs "30 20 10"

mailto:.

476 XSLT and XPath/XQuery Functions Altova Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Dynamic XPath expression with no dynamic variable:
<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />
<xsl:value-of select="altova:evaluate($xpath)" />
Outputs error: No variable defined for $p3.

encode-for-rtf [altova:]

altova:encode-for-rtf(input as xs:string, preserveallwhitespace as

xs:boolean, preservenewlines as xs:boolean) as xs:string XSLT2 XSLT3

Converts the input string into code for RTF. Whitespace and new lines will be preserved
according to the boolean value specified for their respective arguments.

[Top]

XBRL functions
Altova XBRL functions can be used only with editions of Altova products that have XBRL support.

xbrl-footnotes [altova:]

altova:xbrl-footnotes(node()) as node()* XSLT2 XSLT3

Takes a node as its input argument and returns the set of XBRL footnote nodes referenced
by the input node.

xbrl-labels [altova:]

altova:xbrl-labels(xs:QName, xs:string) as node()* XSLT2 XSLT3

Takes two input arguments: a node name and the taxonomy file location containing the node.
The function returns the XBRL label nodes associated with the input node.

[Top]

© 2014 Altova GmbH

Altova Extension Functions 477XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

10.1.2 XPath/XQuery Functions: Date and Time

Altova's date/time extension functions can be used in XPath and XQuery expressions and provide
additional functionality for the processing of data held as XML Schema's various date and time
datatypes. The functions in this section can be used with Altova's XPath 3.0 and XQuery 3.0
engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability
Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions namespace,
http://www.altova.com/xslt-extensions, and are indicated in this section with the prefix

altova:, which is assumed to be bound to this namespace. Note that, in future versions of your

product, support for a function might be discontinued or the behavior of individual functions might
change. Consult the documentation of future releases for information about support for Altova
extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3

Grouped by functionality
Add duration to xs:dateTime and return xs:dateTime
Add a duration to xs:date and return xs:date
Add a duration to xs:time and return xs:time
Remove timezone from functions that generate current date/time
Return weekday as integer from date
Return week number as integer from date
Build date, time, or duration type from lexical components of each type
Construct date, dateTime, or time type from string input
Age-related functions

Grouped alphabetically
altova:add-days-to-date
altova:add-days-to-dateTime
altova:add-hours-to-dateTime
altova:add-hours-to-time
altova:add-minutes-to-dateTime
altova:add-minutes-to-time
altova:add-months-to-date
altova:add-months-to-dateTime
altova:add-seconds-to-dateTime
altova:add-seconds-to-time
altova:add-years-to-date
altova:add-years-to-dateTime
altova:age
altova:age-details
altova:build-date
altova:build-duration
altova:build-time
altova:current-dateTime-no-TZ
altova:current-date-no-TZ
altova:current-time-no-TZ

478 XSLT and XPath/XQuery Functions Altova Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

altova:parse-date
altova:parse-dateTime
altova:parse-time
altova:weekday-from-date
altova:weekday-from-dateTime
altova:weeknumber-from-date
altova:weeknumber-from-dateTime

[Top]

Add a duration to xs:dateTime XP3 XQ3

These functions add a duration to xs:dateTime and return xs:dateTime. The xs:dateTime type

has a format of CCYY-MM-DDThh:mm:ss.sss. This is a concatenation of the xs:date and xs:time
formats separated by the letter T. A timezone suffix+01:00 (for example) is optional.

add-years-to-dateTime [altova:]

altova:add-years-to-dateTime(DateTime as xs:dateTime, Years as xs:integer) as
xs:dateTime XP3 XQ3

Adds a duration in years to an xs:dateTime (see examples below). The second argument is
the number of years to be added to the xs:dateTime supplied as the first argument. The
result is of type xs:dateTime.

Examples
altova:add-years-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10)

returns 2024-01-15T14:00:00
altova:add-years-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -4)

returns 2010-01-15T14:00:00

add-months-to-dateTime [altova:]

altova:add-months-to-dateTime(DateTime as xs:dateTime, Months as xs:integer)

as xs:dateTime XP3 XQ3

Adds a duration in months to an xs:dateTime (see examples below). The second argument
is the number of months to be added to the xs:dateTime supplied as the first argument. The
result is of type xs:dateTime.

Examples
altova:add-months-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10)

returns 2014-11-15T14:00:00
altova:add-months-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -2)

returns 2013-11-15T14:00:00

add-days-to-dateTime [altova:]

altova:add-days-to-dateTime(DateTime as xs:dateTime, Days as xs:integer) as
xs:dateTime XP3 XQ3

Adds a duration in days to an xs:dateTime (see examples below). The second argument is
the number of days to be added to the xs:dateTime supplied as the first argument. The
result is of type xs:dateTime.

Examples
altova:add-days-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10)

© 2014 Altova GmbH

Altova Extension Functions 479XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

returns 2014-01-25T14:00:00
altova:add-days-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -8)

returns 2014-01-07T14:00:00

add-hours-to-dateTime [altova:]

altova:add-hours-to-dateTime(DateTime as xs:dateTime, Hours as xs:integer) as
xs:dateTime XP3 XQ3

Adds a duration in hours to an xs:dateTime (see examples below). The second argument is
the number of hours to be added to the xs:dateTime supplied as the first argument. The
result is of type xs:dateTime.

Examples
altova:add-hours-to-dateTime(xs:dateTime("2014-01-15T13:00:00"), 10)

returns 2014-01-15T23:00:00
altova:add-hours-to-dateTime(xs:dateTime("2014-01-15T13:00:00"), -8)

returns 2014-01-15T05:00:00

add-minutes-to-dateTime [altova:]

altova:add-minutes-to-dateTime(DateTime as xs:dateTime, Minutes as

xs:integer) as xs:dateTime XP3 XQ3

Adds a duration in minutes to an xs:dateTime (see examples below). The second argument
is the number of minutes to be added to the xs:dateTime supplied as the first argument. The
result is of type xs:dateTime.

Examples
altova:add-minutes-to-dateTime(xs:dateTime("2014-01-15T14:10:00"), 45)

returns 2014-01-15T14:55:00
altova:add-minutes-to-dateTime(xs:dateTime("2014-01-15T14:10:00"), -5)

returns 2014-01-15T14:05:00

add-seconds-to-dateTime [altova:]

altova:add-seconds-to-dateTime(DateTime as xs:dateTime, Seconds as

xs:integer) as xs:dateTime XP3 XQ3

Adds a duration in seconds to an xs:dateTime (see examples below). The second argument
is the number of seconds to be added to the xs:dateTime supplied as the first argument.
The result is of type xs:dateTime.

Examples
altova:add-seconds-to-dateTime(xs:dateTime("2014-01-15T14:00:10"), 20)

returns 2014-01-15T14:00:30
altova:add-seconds-to-dateTime(xs:dateTime("2014-01-15T14:00:10"), -5)

returns 2014-01-15T14:00:05

[Top]

Add a duration to xs:date XP3 XQ3

These functions add a duration to xs:date and return xs:date. The xs:date type has a format of

480 XSLT and XPath/XQuery Functions Altova Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

CCYY-MM-DD.

add-years-to-date [altova:]

altova:add-years-to-date(Date as xs:date, Years as xs:integer) as xs:date

XP3 XQ3

 Adds a duration in years to a date. The second argument is the number of years to be
added to the xs:date supplied as the first argument. The result is of type xs:date.

Examples
altova:add-years-to-date(xs:date("2014-01-15"), 10) returns 2024-01-15

altova:add-years-to-date(xs:date("2014-01-15"), -4) returns 2010-01-15

add-months-to-date [altova:]

altova:add-months-to-date(Date as xs:date, Months as xs:integer) as xs:date

XP3 XQ3

Adds a duration in months to a date. The second argument is the number of months to be
added to the xs:date supplied as the first argument. The result is of type xs:date.

Examples
altova:add-months-to-date(xs:date("2014-01-15"), 10) returns 2014-11-15

altova:add-months-to-date(xs:date("2014-01-15"), -2) returns 2013-11-15

add-days-to-date [altova:]

altova:add-days-to-date(Date as xs:date, Days as xs:integer) as xs:date XP3

XQ3

Adds a duration in days to a date. The second argument is the number of days to be added
to the xs:date supplied as the first argument. The result is of type xs:date.

Examples
altova:add-days-to-date(xs:date("2014-01-15"), 10) returns 2014-01-25

altova:add-days-to-date(xs:date("2014-01-15"), -8) returns 2014-01-07

[Top]

Add a duration to xs:time XP3 XQ3

These functions add a duration to xs:time and return xs:time. The xs:time type has a lexical

form of hh:mm:ss.sss. An optional time zone may be suffixed. The letter Z indicates Coordinated
Universal Time (UTC). All other time zones are represented by their difference from UTC in the
format +hh:mm, or -hh:mm. If no time zone value is present, it is considered unknown; it is not
assumed to be UTC.

add-hours-to-time [altova:]

altova:add-hours-to-time(Time as xs:time, Hours as xs:integer) as xs:time

XP3 XQ3

Adds a duration in hours to a time. The second argument is the number of hours to be added
to the xs:time supplied as the first argument. The result is of type xs:time.

Examples
altova:add-hours-to-time(xs:time("11:00:00"), 10) returns 21:00:00

altova:add-hours-to-time(xs:time("11:00:00"), -7) returns 04:00:00

© 2014 Altova GmbH

Altova Extension Functions 481XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

add-minutes-to-time [altova:]

altova:add-minutes-to-time(Time as xs:time, Minutes as xs:integer) as xs:time

 XP3 XQ3

Adds a duration in minutes to a time. The second argument is the number of minutes to be
added to the xs:time supplied as the first argument. The result is of type xs:time.

Examples
altova:add-minutes-to-time(xs:time("14:10:00"), 45) returns 14:55:00

altova:add-minutes-to-time(xs:time("14:10:00"), -5) returns 14:05:00

add-seconds-to-time [altova:]

altova:add-seconds-to-time(Time as xs:time, Minutes as xs:integer) as xs:time

 XP3 XQ3

Adds a duration in seconds to a time. The second argument is the number of seconds to be
added to the xs:time supplied as the first argument. The result is of type xs:time. The
Seconds component can be in the range of 0 to 59.999.

Examples
altova:add-seconds-to-time(xs:time("14:00:00"), 20) returns 14:00:20

altova:add-seconds-to-time(xs:time("14:00:00"), 20.895) returns
14:00:20.895

[Top]

Remove the timezone part from date/time datatypes XP3 XQ3

These functions remove the timezone from the current xs:dateTime, xs:date, or xs:time values,

respectively. Note that the difference between xs:dateTime and xs:dateTimeStamp is that in the
case of the latter the timezone part is required (while it is optional in the case of the former). So
the format of an xs:dateTimeStamp value is: CCYY-MM-DDThh:mm:ss.sss±hh:mm. or CCYY-MM-
DDThh:mm:ss.sssZ. If the date and time is read from the system clock as xs:dateTimeStamp,
the current-dateTime-no-TZ() function can be used to remove the timezone if so required.

current-dateTime-no-TZ [altova:]

altova:current-dateTime-no-TZ() as xs:dateTime XP3 XQ3

This function takes no argument. It removes the timezone part of current-dateTime()
(which is the current date-and-time according to the system clock) and returns an
xs:dateTime value.

Examples
If the current dateTime is 2014-01-15T14:00:00+01:00:

altova:current-dateTime-no-TZ() returns 2014-01-15T14:00:00

current-date-no-TZ [altova:]

altova:current-date-no-TZ() as xs:date XP3 XQ3

This function takes no argument. It removes the timezone part of current-date() (which is
the current date according to the system clock) and returns an xs:date value.

482 XSLT and XPath/XQuery Functions Altova Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Examples
If the current date is 2014-01-15+01:00:

altova:current-date-no-TZ() returns 2014-01-15

current-time-no-TZ [altova:]

altova:current-time-no-TZ() as xs:time XP3 XQ3

This function takes no argument. It removes the timezone part of current-time() (which is
the current time according to the system clock) and returns an xs:time value.

Examples
If the current time is 14:00:00+01:00:

altova:current-time-no-TZ() returns 14:00:00

[Top]

Return the weekday from xs:dateTime or xs:date XP3 XQ3

These functions return the weekday (as an integer) from xs:dateTime or xs:date. The days of
the week are numbered (using the American format) from 1 to 7, with Sunday=1. In the European
format, the week starts with Monday (=1). The American format, where Sunday=1, can be set by
using the integer 0 where an integer is accepted to indicate the format.

weekday-from-dateTime [altova:]

altova:weekday-from-dateTime(DateTime as xs:dateTime) as xs:integer XP3 XQ3

Takes a date-with-time as its single argument and returns the day of the week of this date as
an integer. The weekdays are numbered starting with Sunday=1. If the European format is
required (where Monday=1), use the other signature of this function (see next signature
below).

Examples
altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00")) returns

2, which would indicate a Monday.

altova:weekday-from-dateTime(DateTime as xs:dateTime, Format as xs:integer)

as xs:integer XP3 XQ3

Takes a date-with-time as its first argument and returns the day of the week of this date as
an integer. The weekdays are numbered starting with Monday=1. If the second (integer)
argument is 0, then the weekdays are numbered 1 to 7 starting with Sunday=1. If the second
argument is an integer other than 0, then Monday=1. If there is no second argument, the
function is read as having the other signature of this function (see previous signature).

Examples
altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 1)

returns 1, which would indicate a Monday
altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 4)

returns 1, which would indicate a Monday
altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 0)

returns 2, which would indicate a Monday.

weekday-from-date [altova:]

© 2014 Altova GmbH

Altova Extension Functions 483XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

altova:weekday-from-date(Date as xs:date) as xs:integer XP3 XQ3

Takes a date as its single argument and returns the day of the week of this date as an
integer. The weekdays are numbered starting with Sunday=1. If the European format is
required (where Monday=1), use the other signature of this function (see next signature
below).

Examples
altova:weekday-from-date(xs:date("2014-02-03+01:00")) returns 2, which would

indicate a Monday.

altova:weekday-from-date(Date as xs:date, Format as xs:integer) as xs:integer

 XP3 XQ3

Takes a date as its first argument and returns the day of the week of this date as an integer.
The weekdays are numbered starting with Monday=1. If the second (Format) argument is 0,
then the weekdays are numbered 1 to 7 starting with Sunday=1. If the second argument is an
integer other than 0, then Monday=1. If there is no second argument, the function is read as
having the other signature of this function (see previous signature).

Examples
altova:weekday-from-date(xs:date("2014-02-03"), 1) returns 1, which would

indicate a Monday
altova:weekday-from-date(xs:date("2014-02-03"), 4) returns 1, which would

indicate a Monday
altova:weekday-from-date(xs:date("2014-02-03"), 0) returns 2, which would

indicate a Monday.

[Top]

Return the week number from xs:dateTime or xs:date XP2 XQ1 XP3 XQ3

These functions return the week number (as an integer) from xs:dateTime or xs:date. Week-
numbering is available in the US, ISO/European, and Islamic calendar formats. Week-numbering
is different in these calendar formats because the week is considered to start on different days (on
Sunday in the US format, Monday in the ISO/European format, and Saturday in the Islamic
format).

weeknumber-from-date [altova:]

altova:weeknumber-from-date(Date as xs:date, Calendar as xs:integer) as
xs:integer XP2 XQ1 XP3 XQ3

Returns the week number of the submitted Date argument as an integer. The second

argument (Calendar) specifies the calendar system to follow.

Supported Calendar values are:

 0 = US calendar (week starts Sunday)

 1 = ISO standard, European calendar (week starts Monday)

 2 = Islamic calendar (week starts Saturday)

Default is 0.

Examples
altova:weeknumber-from-date(xs:date("2014-03-23"), 0) returns 13

altova:weeknumber-from-date(xs:date("2014-03-23"), 1) returns 12

484 XSLT and XPath/XQuery Functions Altova Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

altova:weeknumber-from-date(xs:date("2014-03-23"), 2) returns 13

altova:weeknumber-from-date(xs:date("2014-03-23")) returns 13

The day of the date in the examples above (2014-03-23) is Sunday. So the US and
Islamic calendars are one week ahead of the European calendar on this day.

weeknumber-from-dateTime [altova:]

altova:weeknumber-from-dateTime(DateTime as xs:dateTime, Calendar as

xs:integer) as xs:integer XP2 XQ1 XP3 XQ3

Returns the week number of the submitted DateTime argument as an integer. The second

argument (Calendar) specifies the calendar system to follow.

Supported Calendar values are:

 0 = US calendar (week starts Sunday)

 1 = ISO standard, European calendar (week starts Monday)

 2 = Islamic calendar (week starts Saturday)

Default is 0.

Examples
altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 0)

returns 13
altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 1)

returns 12
altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 2)

returns 13
altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"))

returns 13

The day of the dateTime in the examples above (2014-03-23T00:00:00) is Sunday. So
the US and Islamic calendars are one week ahead of the European calendar on this day.

[Top]

Build date, time, and duration datatypes from their lexical components XP3 XQ3

The functions take the lexical components of the xs:date, xs:time, or xs:duration datatype as
input arguments and combine them to build the respective datatype.

build-date [altova:]

altova:build-date(Year as xs:integer, Month as xs:integer, Date as

xs:integer) as xs:date XP3 XQ3

The first, second, and third arguments are, respectively, the year, month, and date. They are
combined to build a value of xs:date type. The values of the integers must be within the
correct range of that particular date part. For example, the second argument (for the month
part) should not be greater than 12.

Examples
altova:build-date(2014, 2, 03) returns 2014-02-03

© 2014 Altova GmbH

Altova Extension Functions 485XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

build-time [altova:]

altova:build-time(Hours as xs:integer, Minutes as xs:integer, Seconds as

xs:integer) as xs:time XP3 XQ3

The first, second, and third arguments are, respectively, the hour (0 to 23), minutes (0 to 59),
and seconds (0 to 59) values. They are combined to build a value of xs:time type. The
values of the integers must be within the correct range of that particular time part. For
example, the second (Minutes) argument should not be greater than 59. To add a timezone
part to the value, use the other signature of this function (see next signature).

Examples
altova:build-time(23, 4, 57) returns 23:04:57

altova:build-time(Hours as xs:integer, Minutes as xs:integer, Seconds as

xs:integer, TimeZone as xs:string) as xs:time XP3 XQ3

The first, second, and third arguments are, respectively, the hour (0 to 23), minutes (0 to 59),
and seconds (0 to 59) values. The fourth argument is a string that provides the timezone part
of the value. The four arguments are combined to build a value of xs:time type. The values of
the integers must be within the correct range of that particular time part. For example, the
second (Minutes) argument should not be greater than 59.

Examples
altova:build-time(23, 4, 57, '+1') returns 23:04:57+01:00

build-duration [altova:]

altova:build-duration(Years as xs:integer, Months as xs:integer) as
xs:yearMonthDuration XP3 XQ3

Takes two arguments to build a value of type xs:yearMonthDuration. The first arguments
provides the Years part of the duration value, while the second argument provides the Months
part. If the second (Months) argument is greater than or equal to 12, then the integer is
divided by 12; the quotient is added to the first argument to provide the Years part of the
duration value while the remainder (of the division) provides the Months part. To build a
duration of type xs:dayTimeDuration., see the next signature.

Examples
altova:build-duration(2, 10) returns P2Y10M

altova:build-duration(14, 27) returns P16Y3M

altova:build-duration(2, 24) returns P4Y

altova:build-duration(Days as xs:integer, Hours as xs:integer, Minutes as

xs:integer, Seconds as xs:integer) as xs:dayTimeDuration XP3 XQ3

Takes four arguments and combines them to build a value of type xs:dayTimeDuration. The
first argument provides the Days part of the duration value, the second, third, and fourth
arguments provide, respectively, the Hours, Minutes, and Seconds parts of the duration
value. Each of the three Time arguments is converted to an equivalent value in terms of the
next higher unit and the result is used for calculation of the total duration value. For example,
72 seconds is converted to 1M+12S (1 minute and 12 seconds), and this value is used for
calculation of the total duration value. To build a duration of type xs:yearMonthDuration.,
see the previous signature.

Examples
altova:build-duration(2, 10, 3, 56) returns P2DT10H3M56S

altova:build-duration(1, 0, 100, 0) returns P1DT1H40M

altova:build-duration(1, 0, 0, 3600) returns P1DT1H

486 XSLT and XPath/XQuery Functions Altova Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

[Top]

Construct date, dateTime, and time datatypes from string input XP2 XQ1 XP3 XQ3

These functions take strings as arguments and construct xs:date, xs:dateTime, or xs:time
datatypes. The string is analyzed for components of the datatype based on a submitted pattern
argument.

parse-date [altova:]

altova:parse-date(Date as xs:string, DatePattern as xs:string) as xs:date

XP2 XQ1 XP3 XQ3

Returns the input string Date as an xs:date value. The second argument DatePattern

specifies the pattern (sequence of components) of the input string. DatePattern is described

with the component specifiers listed below and with component separators that can be any
character. See the examples below.

D Date

M Month

Y Year

The pattern in DatePattern must match the pattern in Date. Since the output is of type

xs:date, the output will always have the lexical format YYYY-MM-DD.

Examples
altova:parse-date(xs:string("06-03-2014"), "[D]-[M]-[Y]") returns 2014-03-

06
altova:parse-date(xs:string("06-03-2014"), "[M]-[D]-[Y]") returns 2014-06-
03

altova:parse-date("06/03/2014", "[M]/[D]/[Y]") returns 2014-06-03

altova:parse-date("06 03 2014", "[M] [D] [Y]") returns 2014-06-03

altova:parse-date("6 3 2014", "[M] [D] [Y]") returns 2014-06-03

parse-dateTime [altova:]

altova:parse-dateTime(DateTime as xs:string, DateTimePattern as xs:string) as
xs:dateTime XP2 XQ1 XP3 XQ3

Returns the input string DateTime as an xs:dateTime value.The second argument

DateTimePattern specifies the pattern (sequence of components) of the input string.

DateTimePattern is described with the component specifiers listed below and with

component separators that can be any character. See the examples below.

D Date

M Month

Y Year

H Hour

m minutes

s seconds

The pattern in DateTimePattern must match the pattern in DateTime. Since the output is of

© 2014 Altova GmbH

Altova Extension Functions 487XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

type xs:dateTime, the output will always have the lexical format YYYY-MM-DDTHH:mm:ss.

Examples
altova:parse-dateTime(xs:string("06-03-2014 13:56:24"), "[D]-[M]-[Y]

[H]:[m]:[s]") returns 2014-03-06T13:56:24
altova:parse-dateTime("time=13:56:24; date=06-03-2014", "time=[H]:[m]:

[s]; date=[D]-[M]-[Y]") returns 2014-03-06T13:56:24

parse-time [altova:]

altova:parse-time(Time as xs:string, TimePattern as xs:string) as xs:time

XP2 XQ1 XP3 XQ3

Returns the input string Time as an xs:time value.The second argument TimePattern

specifies the pattern (sequence of components) of the input string. TimePattern is described

with the component specifiers listed below and with component separators that can be any
character. See the examples below.

H Hour

m minutes

s seconds

The pattern in TimePattern must match the pattern in Time. Since the output is of type

xs:time, the output will always have the lexical format HH:mm:ss.

Examples
altova:parse-time(xs:string("13:56:24"), "[H]:[m]:[s]") returns 13:56:24

altova:parse-time("13-56-24", "[H]-[m]") returns 13:56:00

altova:parse-time("time=13h56m24s", "time=[H]h[m]m[s]s") returns 13:56:24

altova:parse-time("time=24s56m13h", "time=[s]s[m]m[H]h") returns 13:56:24

[Top]

Age-related functions XP3 XQ3

These functions return the age as calculated (i) between one input argument date and the current
date, or (ii) between two input argument dates. The altova:age function returns the age in terms

of years, the altova:age-details function returns the age as a sequence of three integers giving

the years, months, and days of the age.

age [altova:]

altova:age(StartDate as xs:date) as xs:integer XP3 XQ3

Returns an integer that is the age in years of some object, counting from a start-date
submitted as the argument and ending with the current date (taken from the system clock). If
the input argument is a date anything greater than or equal to one year in the future, the
return value will be negative.

Examples
If the current date is 2014-01-15:

altova:age(xs:date("2013-01-15")) returns 1

488 XSLT and XPath/XQuery Functions Altova Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

altova:age(xs:date("2013-01-16")) returns 0

altova:age(xs:date("2015-01-15")) returns -1

altova:age(xs:date("2015-01-14")) returns 0

altova:age(StartDate as xs:date, EndDate as xs:date) as xs:integer XP3 XQ3

Returns an integer that is the age in years of some object, counting from a start-date that is
submitted as the first argument up to an end-date that is the second argument. The return
value will be negative if the first argument is one year or more later than the second
argument.

Examples
If the current date is 2014-01-15:

altova:age(xs:date("2000-01-15"), xs:date("2010-01-15")) returns 10

altova:age(xs:date("2000-01-15"), current-date()) returns 14 if the current

date is 2014-01-15
altova:age(xs:date("2014-01-15"), xs:date("2010-01-15")) returns -4

age-details [altova:]

altova:age-details(InputDate as xs:date) as (xs:integer)* XP3 XQ3

Returns three integers that are, respectively, the years, months, and days between the date
that is submitted as the argument and the current date (taken from the system clock). The
sum of the returned years+months+days together gives the total time difference between the
two dates (the input date and the current date). The input date may have a value earlier or
later than the current date, but whether the input date is earlier or later is not indicated by the
sign of the return values; the return values are always positive.

Examples
If the current date is 2014-01-15:

altova:age-details(xs:date("2014-01-16")) returns (0 0 1)

altova:age-details(xs:date("2014-01-14")) returns (0 0 1)

altova:age-details(xs:date("2013-01-16")) returns (1 0 1)

altova:age-details(current-date()) returns (0 0 0)

altova:age-details(Date-1 as xs:date, Date-2 as xs:date) as (xs:integer)* XP3

 XQ3

Returns three integers that are, respectively, the years, months, and days between the two
argument dates. The sum of the returned years+months+days together gives the total time
difference between the two input dates; it does not matter whether the earlier or later of the
two dates is submitted as the first argument. The return values do not indicate whether the
input date occurs earlier or later than the current date. Return values are always positive.

Examples
altova:age-details(xs:date("2014-01-16"), xs:date("2014-01-15")) returns

(0 0 1)
altova:age-details(xs:date("2014-01-15"), xs:date("2014-01-16")) returns

(0 0 1)

[Top]

© 2014 Altova GmbH

Altova Extension Functions 489XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

10.1.3 XPath/XQuery Functions: String

The following general-purpose XPath/XQuery extension functions are supported in the current
version of your Altova product and can be used in (i) XPath expressions in an XSLT context, or (ii)
XQuery expressions in an XQuery document.

Note about naming of functions and language applicability
Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions namespace,
http://www.altova.com/xslt-extensions, and are indicated in this section with the prefix

altova:, which is assumed to be bound to this namespace. Note that, in future versions of your

product, support for a function might be discontinued or the behavior of individual functions might
change. Consult the documentation of future releases for information about support for Altova
extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3

camel-case [altova:]

altova:camel-case(InputString as xs:string) as xs:string XP3 XQ3

Returns the input string InputString in CamelCase. The string is analyzed using the regular

expression '\s' (which is a shortcut for the whitespace character). The first non-whitespace

character after a whitespace or sequence of consecutive whitespaces is capitalized. The first
character in the output string is capitalized.

Examples
altova:camel-case("max") returns Max

altova:camel-case("max max") returns Max Max

altova:camel-case("file01.xml") returns File01.xml

altova:camel-case("file01.xml file02.xml") returns File01.xml File02.xml

altova:camel-case("file01.xml file02.xml") returns File01.xml

File02.xml
altova:camel-case("file01.xml -file02.xml") returns File01.xml -file02.xml

altova:camel-case(InputString as xs:string, SplitChars as xs:string, IsRegex

 as xs:boolean) as xs:string XP3 XQ3

Converts the input string InputString to camel case by using SplitChars to determine the

character/s that trigger the next capitalization. SplitChars is used as a regular expression

when IsRegex = true(), or as plain characters when IsRegex = false(). The first

character in the output string is capitalized.
Examples
altova:camel-case("setname getname", "set|get", true()) returns setName

getName
altova:camel-case("altova\documents\testcases", "\", false()) returns
Altova\Documents\Testcases

490 XSLT and XPath/XQuery Functions Altova Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

char [altova:]

altova:char(Position as xs:integer) as xs:string XP3 XQ3

Returns a string containing the character at the position specified by the Position
argument, in the string obtained by converting the value of the context item to xs:string.
The result string will be empty if no character exists at the index submitted by the Position
argument.

Examples
If the context item is 1234ABCD:

altova:char(2) returns 2

altova:char(5) returns A

altova:char(9) returns the empty string.

altova:char(-2) returns the empty string.

altova:char(InputString as xs:string, Position as xs:integer) as xs:string

XP3 XQ3

Returns a string containing the character at the position specified by the Position
argument, in the string submitted as the InputString argument. The result string will be
empty if no character exists at the index submitted by the Position argument.

Examples
altova:char("2014-01-15", 5) returns -

altova:char("USA", 1) returns U

altova:char("USA", 10) returns the empty string.

altova:char("USA", -2) returns the empty string.

first-chars [altova:]

altova:first-chars(X-Number as xs:integer) as xs:string XP3 XQ3

Returns a string containing the first X-Number of characters of the string obtained by
converting the value of the context item to xs:string.

Examples
If the context item is 1234ABCD:

altova:first-chars(2) returns 12

altova:first-chars(5) returns 1234A

altova:first-chars(9) returns 1234ABCD

altova:first-chars(InputString as xs:string, X-Number as xs:integer) as
xs:string XP3 XQ3

Returns a string containing the first X-Number of characters of the string submitted as the
InputString argument.

Examples
altova:first-chars("2014-01-15", 5) returns 2014-

altova:first-chars("USA", 1) returns U

last-chars [altova:]

altova:last-chars(X-Number as xs:integer) as xs:string XP3 XQ3

Returns a string containing the last X-Number of characters of the string obtained by
converting the value of the context item to xs:string.

Examples
If the context item is 1234ABCD:

© 2014 Altova GmbH

Altova Extension Functions 491XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

altova:last-chars(2) returns CD

altova:last-chars(5) returns 4ABCD

altova:last-chars(9) returns 1234ABCD

altova:last-chars(InputString as xs:string, X-Number as xs:integer) as
xs:string XP3 XQ3

Returns a string containing the last X-Number of characters of the string submitted as the
InputString argument.

Examples
altova:last-chars("2014-01-15", 5) returns 01-15

altova:last-chars("USA", 10) returns USA

pad-string-left [altova:]

altova:pad-string-left(StringToPad as xs:string, Repeats as xs:integer,

PadCharacter as xs:string) as xs:string XP3 XQ3

The PadCharacter argument is a single character that is padded to the left of the string
submitted as the StringToPad argument. The Repeats argument gives the number of times
the pad-character is to be repeated at the left of StringToPad.

Examples
altova:pad-string-left('AP', 1, 'Z') returns 'ZAP'

altova:pad-string-left('AP', 3, 'Z') returns 'ZZZAP'

altova:pad-string-left('AP', 0, 'Z') returns 'AP'

altova:pad-string-left('AP', 3, 'YZ') returns a pad-character-too-long error

pad-string-right [altova:]

altova:pad-string-right(StringToPad as xs:string, Repeats as xs:integer,

PadCharacter as xs:string) as xs:string XP3 XQ3

The PadCharacter argument is a single character that is padded to the right of the string
submitted as the StringToPad argument. The Repeats argument gives the number of times
the pad-character is to be repeated at the right of StringToPad.

Examples
altova:pad-string-right('AP', 1, 'Z') returns 'APZ'

altova:pad-string-right('AP', 3, 'Z') returns 'APZZZ'

altova:pad-string-right('AP', 0, 'Z') returns 'AP'

altova:pad-string-right('AP', 3, 'YZ') returns a pad-character-too-long error

repeat-string [altova:]

altova:repeat-string(InputString as xs:string, Repeats as xs:integer) as
xs:string XP2 XQ1 XP3 XQ3

Generates a string that is composed of the first InputString argument repeated Repeats
number of times.

Examples
altova:repeat-string("Altova #", 3) returns "Altova #Altova #Altova #"

substring-after-last [altova:]

492 XSLT and XPath/XQuery Functions Altova Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

altova:substring-after-last(MainString as xs:string, CheckString as

xs:string) as xs:string XP3 XQ3

If CheckString is found in MainString, then the substring that occurs after CheckString in
MainString is returned. If CheckString is not found in MainString, then the empty string is
returned. If CheckString is an empty string, then MainString is returned in its entirety. If
there is more than one occurrence of CheckString in MainString, then the substring after
the last occurrence of CheckString is returned.

Examples
altova:substring-after-last('ABCDEFGH', 'B') returns 'CDEFGH'

altova:substring-after-last('ABCDEFGH', 'BC') returns 'DEFGH'

altova:substring-after-last('ABCDEFGH', 'BD') returns ''

altova:substring-after-last('ABCDEFGH', 'Z') returns ''

altova:substring-after-last('ABCDEFGH', '') returns 'ABCDEFGH'

altova:substring-after-last('ABCD-ABCD', 'B') returns 'CD'

altova:substring-after-last('ABCD-ABCD-ABCD', 'BCD') returns ''

substring-before-last [altova:]

altova:substring-before-last(MainString as xs:string, CheckString as

xs:string) as xs:string XP3 XQ3

If CheckString is found in MainString, then the substring that occurs before CheckString
in MainString is returned. If CheckString is not found in MainString, or if CheckString is
an empty string, then the empty string is returned. If there is more than one occurrence of
CheckString in MainString, then the substring before the last occurrence of CheckString
is returned.

Examples
altova:substring-before-last('ABCDEFGH', 'B') returns 'A'

altova:substring-before-last('ABCDEFGH', 'BC') returns 'A'

altova:substring-before-last('ABCDEFGH', 'BD') returns ''

altova:substring-before-last('ABCDEFGH', 'Z') returns ''

altova:substring-before-last('ABCDEFGH', '') returns ''

altova:substring-before-last('ABCD-ABCD', 'B') returns 'ABCD-A'

altova:substring-before-last('ABCD-ABCD-ABCD', 'ABCD') returns 'ABCD-

ABCD-'

substring-pos [altova:]

altova:substring-pos(StringToCheck as xs:string, StringToFind as xs:string)

as xs:integer XP3 XQ3

Returns the character position of the first occurrence of StringToFind in the string
StringToCheck. The character position is returned as an integer. The first character of
StringToCheck has the position 1. If StringToFind does not occur within StringToCheck,
the integer 0 is returned. To check for the second or a later occurrence of StringToCheck,
use the next signature of this function.

Examples
altova:substring-pos('Altova', 'to') returns 3

altova:substring-pos('Altova', 'tov') returns 3

altova:substring-pos('Altova', 'tv') returns 0

altova:substring-pos('AltovaAltova', 'to') returns 3

© 2014 Altova GmbH

Altova Extension Functions 493XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

altova:substring-pos(StringToCheck as xs:string, StringToFind as xs:string,

Integer as xs:integer) as xs:integer XP3 XQ3

Returns the character position of StringToFind in the string, StringToCheck. The search
for StringToFind starts from the character position given by the Integer argument; the
character substring before this position is not searched. The returned integer, however, is the
position of the found string within the entire string, StringToCheck. This signature is useful
for finding the second or a later position of a string that occurs multiple times with the
StringToCheck. If StringToFind does not occur within StringToCheck, the integer 0 is
returned.

Examples
altova:substring-pos('Altova', 'to', 1) returns 3

altova:substring-pos('Altova', 'to', 3) returns 3

altova:substring-pos('Altova', 'to', 4) returns 0

altova:substring-pos('Altova-Altova', 'to', 0) returns 3

altova:substring-pos('Altova-Altova', 'to', 4) returns 10

trim-string [altova:]

altova:trim-string(InputString as xs:string) as xs:string XP3 XQ3

This function takes an xs:string argument, removes any leading and trailing whitespace,
and returns a "trimmed" xs:string.

Examples
altova:trim-string(" Hello World ")) returns "Hello World"

altova:trim-string("Hello World ")) returns "Hello World"

altova:trim-string(" Hello World")) returns "Hello World"

altova:trim-string("Hello World")) returns "Hello World"

altova:trim-string("Hello World")) returns "Hello World"

trim-string-left [altova:]

altova:trim-string-left(InputString as xs:string) as xs:string XP3 XQ3

This function takes an xs:string argument, removes any leading whitespace, and returns a
left-trimmed xs:string.

Examples
altova:trim-string-left(" Hello World ")) returns "Hello World "

altova:trim-string-left("Hello World ")) returns "Hello World "

altova:trim-string-left(" Hello World")) returns "Hello World"

altova:trim-string-left("Hello World")) returns "Hello World"

altova:trim-string-left("Hello World")) returns "Hello World"

trim-string-right [altova:]

altova:trim-string-right(InputString as xs:string) as xs:string XP3 XQ3

This function takes an xs:string argument, removes any trailing whitespace, and returns a
right-trimmed xs:string.

Examples
altova:trim-string-right(" Hello World ")) returns " Hello World"

altova:trim-string-right("Hello World ")) returns "Hello World"

altova:trim-string-right(" Hello World")) returns " Hello World"

494 XSLT and XPath/XQuery Functions Altova Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

altova:trim-string-right("Hello World")) returns "Hello World"

altova:trim-string-right("Hello World")) returns "Hello World"

© 2014 Altova GmbH

Altova Extension Functions 495XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

10.1.4 XPath/XQuery Functions: Miscellaneous

The following general-purpose XPath/XQuery extension functions are supported in the current
version of your Altova product and can be used in (i) XPath expressions in an XSLT context, or (ii)
XQuery expressions in an XQuery document.

Note about naming of functions and language applicability
Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions namespace,
http://www.altova.com/xslt-extensions, and are indicated in this section with the prefix

altova:, which is assumed to be bound to this namespace. Note that, in future versions of your

product, support for a function might be discontinued or the behavior of individual functions might
change. Consult the documentation of future releases for information about support for Altova
extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3

Auto-numbering functions
generate-auto-number [altova:]

altova:generate-auto-number(ID as xs:string, StartsWith as xs:double,

Increment as xs:double, ResetOnChange as xs:string) as xs:integer XP1 XP2 XQ1

 XP3 XQ3

Generates a number each time the function is called. The first number, which is generated
the first time the function is called, is specified by the StartsWith argument. Each
subsequent call to the function generates a new number, this number being incremented over
the previously generated number by the value specified in the Increment argument. In effect,
the altova:generate-auto-number function creates a counter having a name specified by
the ID argument, with this counter being incremented each time the function is called. If the
value of the ResetOnChange argument changes from that of the previous function call, then
the value of the number to be generated is reset to the StartsWith value. Auto-numbering
can also be reset by using the altova:reset-auto-number function.

Examples
altova:generate-auto-number("ChapterNumber", 1, 1, "SomeString") will

return one number each time the function is called, starting with 1, and incrementing
by 1 with each call to the function. As long as the fourth argument remains
"SomeString" in each subsequent call, the incrementing will continue. When the value
of the fourth argument changes, the counter (called ChapterNumber) will reset to 1. The
value of ChapterNumber can also be reset by a call to the altova:reset-auto-
number function, like this: altova:reset-auto-number("ChapterNumber").

reset-auto-number [altova:]

altova:reset-auto-number(ID as xs:string) XP1 XP2 XQ1 XP3 XQ3

This function resets the number of the auto-numbering counter named in the ID argument.

496 XSLT and XPath/XQuery Functions Altova Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

The number is reset to the number specified by the StartsWith argument of the
altova:generate-auto-number function that created the counter named in the ID
argument.

Examples
altova:reset-auto-number("ChapterNumber") resets the number of the auto-

numbering counter named ChapterNumber that was created by the altova:generate-
auto-number function. The number is reset to the value of the StartsWith argument of
the altova:generate-auto-number function that created ChapterNumber.

[Top]

Numeric functions
hex-string-to-integer [altova:]

altova:hex-string-to-integer(HexString as xs:string) as xs:integer XP3 XQ3

Takes a string argument that is the Base-16 equivalent of an integer in the decimal system
(Base-10), and returns the decimal integer.

Examples
altova:hex-string-to-integer('1') returns 1

altova:hex-string-to-integer('9') returns 9

altova:hex-string-to-integer('A') returns 10

altova:hex-string-to-integer('B') returns 11

altova:hex-string-to-integer('F') returns 15

altova:hex-string-to-integer('G') returns an error

altova:hex-string-to-integer('10') returns 16

altova:hex-string-to-integer('01') returns 1

altova:hex-string-to-integer('20') returns 32

altova:hex-string-to-integer('21') returns 33

altova:hex-string-to-integer('5A') returns 90

altova:hex-string-to-integer('USA') returns an error

integer-to-hex-string [altova:]

altova:integer-to-hex-string(Integer as xs:integer) as xs:string XP3 XQ3

Takes an integer argument and returns its Base-16 equivalent as a string.
Examples
altova:integer-to-hex-string(1) returns '1'

altova:integer-to-hex-string(9) returns '9'

altova:integer-to-hex-string(10) returns 'A'

altova:integer-to-hex-string(11) returns 'B'

altova:integer-to-hex-string(15) returns 'F'

altova:integer-to-hex-string(16) returns '10'

altova:integer-to-hex-string(32) returns '20'

altova:integer-to-hex-string(33) returns '21'

altova:integer-to-hex-string(90) returns '5A'

© 2014 Altova GmbH

Altova Extension Functions 497XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

[Top]

Sequence functions
attributes [altova:]

altova:attributes(AttributeName as xs:string) as attribute()* XP3 XQ3

Returns all attributes that have a local name which is the same as the name supplied in the
input argument, AttributeName. The search is case-sensitive and conducted along the
attribute:: axis.

Examples
altova:attributes("MyAttribute") returns MyAttribute()*

altova:attributes(AttributeName as xs:string, SearchOptions as xs:string) as
attribute()* XP3 XQ3

Returns all attributes that have a local name which is the same as the name supplied in the
input argument, AttributeName. The search is case-sensitive and conducted along the
attribute:: axis. The second argument is a string containing option flags. Available flags
are:
r = switches to a regular-expression search; AttributeName must then be a regular-

expression search string;
i = switches to a case-insensitive search;

p = includes the namespace prefix in the search; AttributeName should then contain the

namespace prefix, for example: altova:MyAttribute.
The flags can be written in any order. Invalid flags will generate errors. One or more flags can
be omitted. The empty string is allowed, and will produce the same effect as the function
having only one argument (previous signature). However, an empty sequence is not allowed.

Examples
altova:attributes("MyAttribute", "rip") returns MyAttribute()*

altova:attributes("MyAttribute", "pri") returns MyAttribute()*

altova:attributes("MyAttribute", "") returns MyAttribute()*

altova:attributes("MyAttribute", "Rip") returns an unrecognized-flag error.

altova:attributes("MyAttribute",) returns a missing-second-argument error.

elements [altova:]

altova:elements(ElementName as xs:string) as element()* XP3 XQ3

Returns all elements that have a local name which is the same as the name supplied in the
input argument, ElementName. The search is case-sensitive and conducted along the
child:: axis.

Examples
altova:elements("MyElement") returns MyElement()*

altova:elements(ElementName as xs:string, SearchOptions as xs:string) as
element()* XP3 XQ3

Returns all elements that have a local name which is the same as the name supplied in the
input argument, ElementName. The search is case-sensitive and conducted along the
child:: axis. The second argument is a string containing option flags. Available flags are:
r = switches to a regular-expression search; ElementName must then be a regular-

expression search string;

498 XSLT and XPath/XQuery Functions Altova Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

i = switches to a case-insensitive search;

p = includes the namespace prefix in the search; ElementName should then contain the

namespace prefix, for example: altova:MyElement.
The flags can be written in any order. Invalid flags will generate errors. One or more flags can
be omitted. The empty string is allowed, and will produce the same effect as the function
having only one argument (previous signature). However, an empty sequence is not allowed.

Examples
altova:elements("MyElement", "rip") returns MyElement()*

altova:elements("MyElement", "pri") returns MyElement()*

altova:elements("MyElement", "") returns MyElement()*

altova:elements("MyElement", "Rip") returns an unrecognized-flag error.

altova:elements("MyElement",) returns a missing-second-argument error.

find-first [altova:]

altova:find-first((Sequence as item()*), (Condition(Sequence-Item as

xs:boolean)) as item()? XP3 XQ3

This function takes two arguments. The first argument is a sequence of one or more items of
any datatype. The second argument, Condition, is a reference to an XPath function that
takes one argument (has an arity of 1) and returns a boolean. Each item of Sequence is

submitted, in turn, to the function referenced in Condition. (Remember: This function takes
a single argument.) The first Sequence item that causes the function in Condition to

evaluate to true() is returned as the result of altova:find-first, and the iteration stops.

Examples
altova:find-first(5 to 10, function($a) {$a mod 2 = 0}) returns xs:integer

6
The Condition argument references the XPath 3.0 inline function, function(), which

declares an inline function named $a and then defines it. Each item in the Sequence

argument of altova:find-first is passed, in turn, to $a as its input value. The input

value is tested on the condition in the function definition ($a mod 2 = 0). The first input
value to satisfy this condition is returned as the result of altova:find-first (in this

case 6).

altova:find-first((1 to 10), (function($a) {$a+3=7})) returns xs:integer 4

Further examples
If the file C:\Temp\Customers.xml exists:

altova:find-first(("C:\Temp\Customers.xml", "http://www.altova.com/

index.html"), (doc-available#1)) returns xs:string C:\Temp\Customers.xml

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/

index.html exists:

altova:find-first(("C:\Temp\Customers.xml", "http://www.altova.com/

index.html"), (doc-available#1)) returns xs:string http://www.altova.com/
index.html

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/

© 2014 Altova GmbH

Altova Extension Functions 499XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

index.html also does not exist:

altova:find-first(("C:\Temp\Customers.xml", "http://www.altova.com/

index.html"), (doc-available#1)) returns no result

Notes about the examples given above
The XPath 3.0 function, doc-available, takes a single string argument, which is used
as a URI, and returns true if a document node is found at the submitted URI. (The
document at the submitted URI must therefore be an XML document.)
The doc-available function can be used for Condition, the second argument of

altova:find-first, because it takes only one argument (arity=1), because it takes
an item() as input (a string which is used as a URI), and returns a boolean value.
Notice that the doc-available function is only referenced, not called. The #1 suffix that
is attached to it indicates a function with an arity of 1. In its entirety doc-available#1
simply means: Use the doc-availabe() function that has arity=1, passing to it as its
single argument, in turn, each of the items in the first sequence. As a result, each of
the two strings will be passed to doc-available(), which uses the string as a URI and

 tests whether a document node exists at the URI. If one does, the doc-available()

evaluates to true() and that string is returned as the result of the altova:find-first

function. Note about the doc-available() function: Relative paths are resolved relative to
the the current base URI, which is by default the URI of the XML document from which
the function is loaded.

find-first-combination [altova:]

altova:find-first-combination((Seq-01 as item()*), (Seq-02 as item()*),

(Condition(Seq-01-Item, Seq-02-Item as xs:boolean)) as item()* XP3 XQ3

This function takes three arguments:
The first two arguments, Seq-01 and Seq-02, are sequences of one or more items of

any datatype.
The third argument, Condition, is a reference to an XPath function that takes two

arguments (has an arity of 2) and returns a boolean.

The items of Seq-01 and Seq-02 are passed in ordered pairs (one item from each sequence

making up a pair) as the arguments of the function in Condition. The pairs are ordered as

follows.
If Seq-01 = X1, X2, X3 ... Xn

And Seq-02 = Y1, Y2, Y3 ... Yn

Then (X1 Y1), (X1 Y2), (X1 Y3) ... (X1 Yn), (X2 Y1), (X2 Y2) ... (Xn Yn)

The first ordered pair that causes the Condition function to evaluate to true() is returned

as the result of altova:find-first-combination. Note that: (i) If the Condition function

iterates through the submitted argument pairs and does not once evaluate to true(), then

altova:find-first-combination returns No results; (ii) The result of altova:find-first-

combination will always be a pair of items (of any datatype) or no item at all.

Examples
altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b =

32}) returns the sequence of xs:integers (11, 21)
altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b =

33}) returns the sequence of xs:integers (11, 22)
altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b =

500 XSLT and XPath/XQuery Functions Altova Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

34}) returns the sequence of xs:integers (11, 23)

find-first-pair [altova:]

altova:find-first-pair((Seq-01 as item()*), (Seq-02 as item()*),

(Condition(Seq-01-Item, Seq-02-Item as xs:boolean)) as item()* XP3 XQ3

This function takes three arguments:
The first two arguments, Seq-01 and Seq-02, are sequences of one or more items of

any datatype.
The third argument, Condition, is a reference to an XPath function that takes two

arguments (has an arity of 2) and returns a boolean.

The items of Seq-01 and Seq-02 are passed in ordered pairs as the arguments of the

function in Condition. The pairs are ordered as follows.
If Seq-01 = X1, X2, X3 ... Xn

And Seq-02 = Y1, Y2, Y3 ... Yn

Then (X1 Y1), (X2 Y2), (X3 Y3) ... (Xn Yn)

The first ordered pair that causes the Condition function to evaluate to true() is returned

as the result of altova:find-first-pair. Note that: (i) If the Condition function iterates

through the submitted argument pairs and does not once evaluate to true(), then

altova:find-first-pair returns No results; (ii) The result of altova:find-first-pair

will always be a pair of items (of any datatype) or no item at all.

Examples
altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b =

32}) returns the sequence of xs:integers (11, 21)
altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b =

33}) returns No results

Notice from the two examples above that the ordering of the pairs is: (11, 21) (12, 22)
(13, 23)...(20, 30). This is why the second example returns No results (because no
ordered pair gives a sum of 33).

find-first-pair-pos [altova:]

altova:find-first-pair-pos((Seq-01 as item()*), (Seq-02 as item()*),

(Condition(Seq-01-Item, Seq-02-Item as xs:boolean)) as xs:integer XP3 XQ3

This function takes three arguments:
The first two arguments, Seq-01 and Seq-02, are sequences of one or more items of

any datatype.
The third argument, Condition, is a reference to an XPath function that takes two

arguments (has an arity of 2) and returns a boolean.

The items of Seq-01 and Seq-02 are passed in ordered pairs as the arguments of the

function in Condition. The pairs are ordered as follows.
If Seq-01 = X1, X2, X3 ... Xn

And Seq-02 = Y1, Y2, Y3 ... Yn

Then (X1 Y1), (X2 Y2), (X3 Y3) ... (Xn Yn)

© 2014 Altova GmbH

Altova Extension Functions 501XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

The index position of the first ordered pair that causes the Condition function to evaluate to

true() is returned as the result of altova:find-first-pair-pos. Note that if the

Condition function iterates through the submitted argument pairs and does not once

evaluate to true(), then altova:find-first-pair-pos returns No results.

Examples
altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b =

32}) returns 1
altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b =

33}) returns No results

Notice from the two examples above that the ordering of the pairs is: (11, 21) (12, 22)
(13, 23)...(20, 30). In the first example, the first pair causes the Condition function

to evaluate to true(), and so its index position in the sequence, 1, is returned. The

second example returns No results because no pair gives a sum of 33.

find-first-pos [altova:]

altova:find-first-pos((Sequence as item()*), (Condition(Sequence-Item as

xs:boolean)) as xs:integer XP3 XQ3

This function takes two arguments. The first argument is a sequence of one or more items of
any datatype. The second argument, Condition, is a reference to an XPath function that
takes one argument (has an arity of 1) and returns a boolean. Each item of Sequence is

submitted, in turn, to the function referenced in Condition. (Remember: This function takes
a single argument.) The first Sequence item that causes the function in Condition to

evaluate to true() has its index position in Sequence returned as the result of

altova:find-first-pos, and the iteration stops.

Examples
altova:find-first-pos(5 to 10, function($a) {$a mod 2 = 0}) returns

xs:integer 2
The Condition argument references the XPath 3.0 inline function, function(), which

declares an inline function named $a and then defines it. Each item in the Sequence

argument of altova:find-first-pos is passed, in turn, to $a as its input value. The

input value is tested on the condition in the function definition ($a mod 2 = 0). The index
position in the sequence of the first input value to satisfy this condition is returned as the
result of altova:find-first-pos (in this case 2, since 6, the first value (in the

sequence) to satisfy the condition, is at index position 2 in the sequence).

altova:find-first-pos((2 to 10), (function($a) {$a+3=7})) returns

xs:integer 3

Further examples
If the file C:\Temp\Customers.xml exists:

altova:find-first-pos(("C:\Temp\Customers.xml", "http://www.altova.com/

index.html"), (doc-available#1)) returns 1

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/

index.html exists:

502 XSLT and XPath/XQuery Functions Altova Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

altova:find-first-pos(("C:\Temp\Customers.xml", "http://www.altova.com/

index.html"), (doc-available#1)) returns 2

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/

index.html also does not exist:

altova:find-first-pos(("C:\Temp\Customers.xml", "http://www.altova.com/

index.html"), (doc-available#1)) returns no result

Notes about the examples given above
The XPath 3.0 function, doc-available, takes a single string argument, which is used
as a URI, and returns true if a document node is found at the submitted URI. (The
document at the submitted URI must therefore be an XML document.)
The doc-available function can be used for Condition, the second argument of

altova:find-first-pos, because it takes only one argument (arity=1), because it
takes an item() as input (a string which is used as a URI), and returns a boolean
value.
Notice that the doc-available function is only referenced, not called. The #1 suffix that
is attached to it indicates a function with an arity of 1. In its entirety doc-available#1
simply means: Use the doc-availabe() function that has arity=1, passing to it as its
single argument, in turn, each of the items in the first sequence. As a result, each of
the two strings will be passed to doc-available(), which uses the string as a URI and

tests whether a document node exists at the URI. If one does, the doc-available()

function evaluates to true() and the index position of that string in the sequence is
returned as the result of the altova:find-first-pos function. Note about the doc-

available() function: Relative paths are resolved relative to the the current base URI,
which is by default the URI of the XML document from which the function is loaded.

substitute-empty [altova:]

altova:substitute-empty(FirstSequence as item()*, SecondSequence as item())

as item()* XP3 XQ3

If FirstSequence is empty, returns SecondSequence. If FirstSequence is not empty,
returns FirstSequence.

Examples
altova:substitute-empty((1,2,3), (4,5,6)) returns (1,2,3)

altova:substitute-empty((), (4,5,6)) returns (4,5,6)

[Top]

URI functions
get-temp-folder [altova:]

altova:get-temp-folder() as xs:string XP2 XQ1 XP3 XQ3

This function takes no argument. It returns the path to the temporary folder of the current
user.

Examples
altova:get-temp-folder() would return, on a Windows machine, something like C:

\Users\<UserName>\AppData\Local\Temp\ as an xs:string.

© 2014 Altova GmbH

Altova Extension Functions 503XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

[Top]

504 XSLT and XPath/XQuery Functions Altova Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

10.1.5 Chart Functions

The chart functions listed below enable you to create, generate, and save charts as images. They
are supported in the current version of your Altova product in the manner described below.
However, note that in future versions of your product, support for one or more of these functions
might be discontinued or the behavior of individual functions might change. Consult the
documentation of future releases for information about support for Altova extension functions in
that release.

The chart functions are XPath functions (not XSLT functions), and organized into two groups:

Functions for generating and saving charts
Functions for creating charts

Note: Chart functions are supported only in Altova's Server products and the Enterprise
Editions of Altova products.

Note: Supported image formats for charts in server editions are jpg, png, and bmp. The best
option is png because it is lossless and compressed. In Enterprise editions, the
supported formats are jpg. png, bmp, and gif.

Functions for generating and saving charts
These functions take the chart object (obtained with the chart creation functions) and either
generate an image or save an image to file

altova:generate-chart-image ($chart, $width, $height, $encoding) as atomic

where

$chart is the chart extension item obtained with the altova:create-chart function
$width and $height must be specified with a length unit
$encoding may be binarytobase64 or binarytobase16

The function returns the chart image in the specified encoding.

altova:generate-chart-image ($chart, $width, $height, $encoding, $imagetype) as
atomic

where

$chart is the chart extension item obtained with the altova:create-chart function
$width and $height must be specified with a length unit
$encoding may be base64Binary or hexBinary
$imagetype may be one of the following image formats: png, gif, bmp, jpg, jpeg. Note
that gif is not supported on server products. Also see note at top of page.

The function returns the chart image in the specified encoding and image format.

© 2014 Altova GmbH

Altova Extension Functions 505XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

altova:save-chart-image ($chart, $filename, $width, $height) as empty() (Windows

only)

where

$chart is the chart extension item obtained with the altova:create-chart function
$filename is the path to and name of the file to which the chart image is to be saved
$width and $height must be specified with a length unit

The function saves the chart image to the file specified in $filename.

altova:save-chart-image ($chart, $filename, $width, $height, $imagetype) as

empty() (Windows only)

where

$chart is the chart extension item obtained with the altova:create-chart function
$filename is the path to and name of the file to which the chart image is to be saved
$width and $height must be specified with a length unit
$imagetype may be one of the following image formats: png, gif, bmp, jpg, jpeg. Note
that gif is not supported on server products. Also see note at top of page.

The function saves the chart image to the file specified in $filename in the image format
specified.

Functions for creating charts
The following functions are used to create charts.

altova:create-chart($chart-config, $chart-data-series*) as chart extension item

where

$chart-config is the chart-config extension item obtained with the altova:create-
chart-config function or or via the altova:create-chart-config-from-xml function
$chart-data-series is the chart-data-series extension item obtained with the
altova:create-chart-data-series function or altova:create-chart-data-
series-from-rows function

The function returns a chart extension item, which is created from the data supplied via the
arguments.

506 XSLT and XPath/XQuery Functions Altova Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

altova:create-chart-config($type-name, $title) as chart-config extension item

where

$type-name specifies the type of chart to be created: Pie, Pie3d, BarChart,
BarChart3d, BarChart3dGrouped, LineChart, ValueLineChart, RoundGauge,
BarGauge

$title is the name of the chart

The function returns a chart-config extension item containing the configuration information of
the chart.

altova:create-chart-config-from-xml($xml-struct) as chart-config extension item

where

$xml-struct is the XML structure containing the configuration information of the chart

The function returns a chart-config extension item containing the configuration information of
the chart. This information is supplied in an XML data fragment.

altova:create-chart-data-series($series-name?, $x-values*, $y-values*) as chart-

data-series extension item

where

$series-name specifies the name of the series
$x-values gives the list of X-Axis values
$y-values gives the list of Y-Axis values

The function returns a chart-data-series extension item containing the data for building the
chart: that is, the names of the series and the Axes data.

altova:create-chart-data-row(x, y1, y2, y3, ...) as chart-data-x-Ny-row

extension item

where

x is the value of the X-Axis column of the chart data row
yN are the values of the Y-Axis columns

The function returns a chart-data-x-Ny-row extension item, which contains the data for the X-

© 2014 Altova GmbH

Altova Extension Functions 507XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

Axis column and Y-Axis columns of a single series.

altova:create-chart-data-series-from-rows($series-names as xs:string*, $row*) as

chart-data-series extension item

where

$series-name is the name of the series to be created
$row is the chart-data-x-Ny-row extension item that is to be created as a series

The function returns a chart-data-series extension item, which contains the data for the X-Axis
and Y-Axes of the series.

altova:create-chart-layer($chart-config, $chart-data-series*) as chart-layer

extension item

where

$chart-config is the chart-config extension item obtained with the altova:create-
chart-config function or or via the altova:create-chart-config-from-xml function
$chart-data-series is the chart-data-series extension item obtained with the
altova:create-chart-data-series function or altova:create-chart-data-
series-from-rows function

The function returns a chart-layer extension item, which contains chart-layer data.

altova:create-multi-layer-chart($chart-config, $chart-data-series*, $chart-

layer*)

where

$chart-config is the chart-config extension item obtained with the altova:create-
chart-config function or or via the altova:create-chart-config-from-xml function
$chart-data-series is the chart-data-series extension item obtained with the
altova:create-chart-data-series function or altova:create-chart-data-
series-from-rows function
$chart-layer is the chart-layer extension item obtained with the altova:create-
chart-layer function

The function returns a multi-layer-chart item.

508 XSLT and XPath/XQuery Functions Altova Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

altova:create-multi-layer-chart($chart-config, $chart-data-series*, $chart-

layer*, xs:boolean $mergecategoryvalues)

where

$chart-config is the chart-config extension item obtained with the altova:create-
chart-config function or or via the altova:create-chart-config-from-xml function
$chart-data-series is the chart-data-series extension item obtained with the
altova:create-chart-data-series function or altova:create-chart-data-
series-from-rows function
$chart-layer is the chart-layer extension item obtained with the altova:create-
chart-layer function

The function returns a multi-layer-chart item.

Chart Data XML Structure

Given below is the XML structure of chart data, how it might appear for the Altova extension
functions for charts. This affects the appearance of the specific chart. Not all elements are used
for all chart kinds, e.g. the <Pie> element is ignored for bar charts.

Note: Chart functions are supported only in the Enterprise and Server Editions of Altova
products.

<chart-config>
<General

SettingsVersion="1" must be provided
ChartKind="BarChart" Pie, Pie3d, BarChart, StackedBarChart, BarChart3d,

BarChart3dGrouped, LineChart, ValueLineChart, AreaChart, StackedAreaChart, RoundGauge,
BarGauge, CandleStick

BKColor="#ffffff" Color
BKColorGradientEnd="#ffffff" Color. In case of a gradient, BKColor and

BKColorGradientEnd define the gradient's colors
BKMode="#ffffff" Solid, HorzGradient, VertGradient
BKFile="Path+Filename" String. If file exists, its content is drawn over the

background.
BKFileMode="Stretch" Stretch, ZoomToFit, Center, Tile
ShowBorder="1" Bool
PlotBorderColor="#000000" Color
PlotBKColor="#ffffff" Color
Title="" String
ShowLegend="1" Bool
OutsideMargin="3.%" PercentOrPixel
TitleToPlotMargin="3.%" PercentOrPixel
LegendToPlotMargin="3.%" PercentOrPixel
Orientation="vert" Enumeration: possible values are: vert, horz
>

<TitleFont

Color="#000000" Color
Name="Tahoma" String
Bold="1" Bool

© 2014 Altova GmbH

Altova Extension Functions 509XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

Italic="0" Bool
Underline="0" Bool
MinFontHeight="10.pt" FontSize (only pt values)
Size="8.%" FontSize />

<LegendFont
Color="#000000"
Name="Tahoma"
Bold="0"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="3.5%" />

<AxisLabelFont
Color="#000000"
Name="Tahoma"
Bold="1"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="5.%" />

</General>

<Line

ConnectionShapeSize="1.%" PercentOrPixel
DrawFilledConnectionShapes="1" Bool
DrawOutlineConnectionShapes="0" Bool
DrawSlashConnectionShapes="0" Bool
DrawBackslashConnectionShapes="0" Bool

/>

<Bar

ShowShadow="1" Bool
ShadowColor="#a0a0a0" Color
OutlineColor="#000000" Color
ShowOutline="1" Bool

/>

<Area

Transparency="0" UINT (0-255) 255 is fully transparent, 0 is opaque
OutlineColor="#000000" Color
ShowOutline="1" Bool

/>

<CandleStick

FillHighClose="0" Bool. If 0, the body is left empty. If 1, FillColorHighClose is used
for the candle body

FillColorHighClose="#ffffff" Color. For the candle body when close > open
FillHighOpenWithSeriesColor="1" Bool. If true, the series color is used to fill the

candlebody when open > close
FillColorHighOpen="#000000" Color. For the candle body when open > close and

FillHighOpenWithSeriesColor is false
/>

510 XSLT and XPath/XQuery Functions Altova Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

<Colors User-defined color scheme: By default this element is empty except for the style

and has no Color attributes
UseSubsequentColors ="1" Boolean. If 0, then color in overlay is used. If 1, then

subsequent colors from previous chart layer is used
Style="User" Possible values are: "Default", "Grayscale", "Colorful", "Pastel", "User"
Colors="#52aca0" Color: only added for user defined color set
Colors1="#d3c15d" Color: only added for user defined color set
Colors2="#8971d8" Color: only added for user defined color set
...

ColorsN="" Up to ten colors are allowed in a set: from Colors to Colors9
</Colors>

<Pie

ShowLabels="1" Bool
OutlineColor="#404040" Color
ShowOutline="1" Bool
StartAngle="0." Double
Clockwise="1" Bool
Draw2dHighlights="1" Bool
Transparency="0" Int (0 to 255: 0 is opaque, 255 is fully transparent)
DropShadowColor="#c0c0c0" Color
DropShadowSize="5.%" PercentOrPixel
PieHeight="10.%" PercentOrPixel. Pixel values might be different in the result

because of 3d tilting
Tilt="40.0" Double (10 to 90: The 3d tilt in degrees of a 3d pie)
ShowDropShadow="1" Bool
ChartToLabelMargin="10.%" PercentOrPixel
AddValueToLabel="0" Bool
AddPercentToLabel="0" Bool
AddPercentToLabels_DecimalDigits="0" UINT (0 – 2)
>

<LabelFont
Color="#000000"
Name="Arial"
Bold="0"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="4.%"/>

</Pie>

<XY>

<XAxis Axis
AutoRange="1" Bool
AutoRangeIncludesZero="1" Bool
RangeFrom="0." Double: manual range
RangeTill="1." Double : manual range
LabelToAxisMargin="3.%" PercentOrPixel
AxisLabel="" String
AxisColor="#000000" Color
AxisGridColor="#e6e6e6" Color
ShowGrid="1" Bool
UseAutoTick="1" Bool
ManualTickInterval="1." Double

© 2014 Altova GmbH

Altova Extension Functions 511XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

AxisToChartMargin="0.px" PercentOrPixel
TickSize="3.px" PercentOrPixel
ShowTicks="1" Bool
ShowValues="1" Bool
AxisPosition="LeftOrBottom" Enums: "LeftOrBottom", "RightOrTop", "AtValue"
AxisPositionAtValue = "0" Double
>

<ValueFont
Color="#000000"
Name="Tahoma"
Bold="0"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="3.%"/>

</XAxis>

<YAxis Axis (same as for XAxis)
AutoRange="1"
AutoRangeIncludesZero="1"
RangeFrom="0."
RangeTill="1."
LabelToAxisMargin="3.%"
AxisLabel=""
AxisColor="#000000"
AxisGridColor="#e6e6e6"
ShowGrid="1"
UseAutoTick="1"
ManualTickInterval="1."
AxisToChartMargin="0.px"
TickSize="3.px"

ShowTicks="1" Bool
ShowValues="1" Bool
AxisPosition="LeftOrBottom" Enums: "LeftOrBottom", "RightOrTop", "AtValue"
AxisPositionAtValue = "0" Double
>
<ValueFont

Color="#000000"
Name="Tahoma"
Bold="0"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="3.%"/>

</YAxis>
</XY>

<XY3d

AxisAutoSize="1" Bool: If false, XSize and YSize define the aspect ration of x and y
axis. If true, aspect ratio is equal to chart window

XSize="100.%" PercentOrPixel. Pixel values might be different in the result because of
3d tilting and zooming to fit chart

YSize="100.%" PercentOrPixel. Pixel values might be different in the result because of
3d tilting and zooming to fit chart

SeriesMargin="30.%" PercentOrPixel. Pixel values might be different in the result
because of 3d tilting and zooming to fit chart

512 XSLT and XPath/XQuery Functions Altova Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Tilt="20." Double. -90 to +90 degrees
Rot="20." Double. -359 to +359 degrees
FoV="50."> Double. Field of view: 1-120 degree
>
<ZAxis

AutoRange="1"
AutoRangeIncludesZero="1"
RangeFrom="0."
RangeTill="1."
LabelToAxisMargin="3.%"
AxisLabel=""
AxisColor="#000000"
AxisGridColor="#e6e6e6"
ShowGrid="1"
UseAutoTick="1"
ManualTickInterval="1."
AxisToChartMargin="0.px"
TickSize="3.px" >
<ValueFont

Color="#000000"
Name="Tahoma"
Bold="0"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="3.%"/>

</ZAxis>
</XY3d>

<Gauge

MinVal="0." Double
MaxVal="100." Double
MinAngle="225" UINT: -359-359
SweepAngle="270" UINT: 1-359
BorderToTick="1.%" PercentOrPixel
MajorTickWidth="3.px" PercentOrPixel
MajorTickLength="4.%" PercentOrPixel
MinorTickWidth="1.px" PercentOrPixel
MinorTickLength="3.%" PercentOrPixel
BorderColor="#a0a0a0" Color
FillColor="#303535" Color
MajorTickColor="#a0c0b0" Color
MinorTickColor="#a0c0b0" Color
BorderWidth="2.%" PercentOrPixel
NeedleBaseWidth="1.5%" PercentOrPixel
NeedleBaseRadius="5.%" PercentOrPixel
NeedleColor="#f00000" Color
NeedleBaseColor="#141414" Color
TickToTickValueMargin="5.%" PercentOrPixel
MajorTickStep="10." Double
MinorTickStep="5." Double
RoundGaugeBorderToColorRange="0.%" PercentOrPixel
RoundGaugeColorRangeWidth ="6.%" PercentOrPixel
BarGaugeRadius="5.%" PercentOrPixel
BarGaugeMaxHeight="20.%" PercentOrPixel

© 2014 Altova GmbH

Altova Extension Functions 513XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

RoundGaugeNeedleLength="45.%" PercentOrPixel
BarGaugeNeedleLength="3.%" PercentOrPixel
>

<TicksFont
Color="#a0c0b0"
Name="Tahoma"
Bold="0"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="4.%"

/>

<ColorRanges> User-defined color ranges. By default empty with no child element
entries

<Entry

From="50. " Double
FillWithColor="1" Bool
Color="#00ff00" Color

/>
<Entry

From="50.0"
FillWithColor="1"
Color="#ff0000"

/>
...

</ColorRanges>
</Gauge>

</chart-config>

Example: Chart Functions

The example XSLT document below shows how Altova extension functions for charts can be
used. Given further below are an XML document and a screenshot of the output image generated
when the XML document is processed with the XSLT document using the XSLT 2.0 or 3.0 Engine.

Note: Chart functions are supported only in the Enterprise and Server Editions of Altova
products.

Note: For more information about how chart data tables are created, see the documentation of
Altova's XMLSpy and StyleVision products.

XSLT document
This XSLT document (listing below) uses Altova chart extension functions to generate a pie chart.
It can be used to process the XML document listed further below.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:altovaext="http://www.altova.com/xslt-extensions"

http://www.altova.com
http://www.altova.com

514 XSLT and XPath/XQuery Functions Altova Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

exclude-result-prefixes="#all">

<xsl:output version="4.0" method="html" indent="yes" encoding="UTF-8"/>

<xsl:template match="/">

<html>

<head>

<title>

<xsl:text>HTML Page with Embedded Chart</xsl:text>

</title>

</head>

<body>

<xsl:for-each select="/Data/Region[1]">

<xsl:variable name="extChartConfig" as="item()*">

<xsl:variable name="ext-chart-settings" as="item()*">

<chart-config>

<General

SettingsVersion="1"

ChartKind="Pie3d"

BKColor="#ffffff"

ShowBorder="1"

PlotBorderColor="#000000"

PlotBKColor="#ffffff"

Title="{@id}"

ShowLegend="1"

OutsideMargin="3.2%"

TitleToPlotMargin="3.%"

LegendToPlotMargin="6.%"

>

<TitleFont

Color="#023d7d"

Name="Tahoma"

Bold="1"

Italic="0"

Underline="0"

MinFontHeight="10.pt"

Size="8.%" />

</General>

</chart-config>

</xsl:variable>

<xsl:sequence select="altovaext:create-chart-config-from-
xml($ext-chart-settings)"/>

</xsl:variable>

<xsl:variable name="chartDataSeries" as="item()*">

<xsl:variable name="chartDataRows" as="item()*">

<xsl:for-each select="(Year)">

<xsl:sequence select="altovaext:create-chart-data-
row((@id), (.))"/>

</xsl:for-each>

</xsl:variable>

<xsl:variable name="chartDataSeriesNames" as="xs:string*"
select=" (("Series 1"), '')[1]"/>

<xsl:sequence

select="altovaext:create-chart-data-series-from-
rows($chartDataSeriesNames, $chartDataRows)"/>

© 2014 Altova GmbH

Altova Extension Functions 515XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

</xsl:variable>

<xsl:variable name="ChartObj" select="altovaext:create-
chart($extChartConfig, ($chartDataSeries), false())"/>

<xsl:variable name="sChartFileName" select="'mychart1.png'"/>

<img src="{$sChartFileName, altovaext:save-chart-
image($ChartObj, $sChartFileName, 400, 400) }"/>

</xsl:for-each>

</body>

</html>

</xsl:template>
</xsl:stylesheet>

XML document
This XML document can be processed with the XSLT document above. Data in the XML document
is used to generate the pie chart shown in the screenshot below.

<?xml version="1.0" encoding="UTF-8"?>
<Data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="YearlySales.xsd">

<ChartType>Pie Chart 2D</ChartType>

<Region id="Americas">

<Year id="2005">30000</Year>

<Year id="2006">90000</Year>

<Year id="2007">120000</Year>

<Year id="2008">180000</Year>

<Year id="2009">140000</Year>

<Year id="2010">100000</Year>

</Region>

<Region id="Europe">

<Year id="2005">50000</Year>

<Year id="2006">60000</Year>

<Year id="2007">80000</Year>

<Year id="2008">100000</Year>

<Year id="2009">95000</Year>

<Year id="2010">80000</Year>

</Region>

<Region id="Asia">

<Year id="2005">10000</Year>

<Year id="2006">25000</Year>

<Year id="2007">70000</Year>

<Year id="2008">110000</Year>

<Year id="2009">125000</Year>

<Year id="2010">150000</Year>

</Region>
</Data>

516 XSLT and XPath/XQuery Functions Altova Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Output image
The pie chart show below is generated when the XML document listed above is processed with
the XSLT document.

© 2014 Altova GmbH

Altova Extension Functions 517XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

10.1.6 Barcode Functions

The XSLT Engine uses third-party Java libraries to create barcodes. Given below are the classes
and the public methods used. The classes are packaged in AltovaBarcodeExtension.jar,
which is located in the folder <ProgramFilesFolder>\Altova\Common2015\jar.

The Java libraries used are in sub-folders of the folder <ProgramFilesFolder>\Altova

\Common2015\jar:

barcode4j\barcode4j.jar (Website: http://barcode4j.sourceforge.net/)
zxing\core.jar (Website: http://code.google.com/p/zxing/)

The license files are also located in the respective folders.

The com.altova.extensions.barcode package

The package, com.altova.extensions.barcode, is used to generate most of the barcode types.

The following classes are used:

public class BarcodeWrapper

static BarcodeWrapper newInstance(String name, String msg, int dpi, int
orientation, BarcodePropertyWrapper[] arrProperties)

double getHeightPlusQuiet()
double getWidthPlusQuiet()
org.w3c.dom.Document generateBarcodeSVG()
byte[] generateBarcodePNG()
String generateBarcodePngAsHexString()

public class BarcodePropertyWrapper Used to store the barcode properties that will be

dynamically set later
BarcodePropertyWrapper(String methodName, String propertyValue)
BarcodePropertyWrapper(String methodName, Integer propertyValue)
BarcodePropertyWrapper(String methodName, Double propertyValue)
BarcodePropertyWrapper(String methodName, Boolean propertyValue)
BarcodePropertyWrapper(String methodName, Character propertyValue)
String getMethodName()
Object getPropertyValue()

public class AltovaBarcodeClassResolver Registers the class

com.altova.extensions.barcode.proxy.zxing.QRCodeBean for the qrcode bean, additionally
to the classes registered by the org.krysalis.barcode4j.DefaultBarcodeClassResolver.

The com.altova.extensions.barcode.proxy.zxing package

The package, com.altova.extensions.barcode.proxy.zxing, is used to generate the QRCode
barcode type.

The following classes are used:

http://barcode4j.sourceforge.net/
http://code.google.com/p/zxing/

518 XSLT and XPath/XQuery Functions Altova Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

class QRCodeBean

Extends org.krysalis.barcode4j.impl.AbstractBarcodeBean
Creates an AbstractBarcodeBean interface for com.google.zxing.qrcode.encoder

void generateBarcode(CanvasProvider canvasImp, String msg)
void setQRErrorCorrectionLevel(QRCodeErrorCorrectionLevel level)
BarcodeDimension calcDimensions(String msg)
double getVerticalQuietZone()
double getBarWidth()

class QRCodeErrorCorrectionLevel Error correction level for the QRCode
static QRCodeErrorCorrectionLevel byName(String name)
“L” = ~7% correction
“M” = ~15% correction
“H” = ~25% correction
“Q” = ~30% correction

XSLT example
Given below is an XSLT example showing how barcode functions are used in an XSLT stylesheet.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions"
 xmlns:altova="http://www.altova.com"
 xmlns:altovaext=”http://www.altova.com/xslt-extensions”
 xmlns:altovaext-barcode="java:com.altova.extensions.barcode.BarcodeWrapper"
 xmlns:altovaext-barcode-
property="java:com.altova.extensions.barcode.BarcodePropertyWrapper">
 <xsl:output method="html" encoding="UTF-8" indent="yes"/>
 <xsl:template match="/">
 <html>
 <head><title/></head>
 <body>

 </body>
 </html>
 <xsl:result-document
 href="{altovaext:get-temp-folder()}barcode.png"
 method="text" encoding="base64tobinary" >
 <xsl:variable name="barcodeObject"
 select="altovaext-
barcode:newInstance('Code39',string('some value'),
 96,0, (altovaext-barcode-property:new('setModuleWidth',
25.4 div 96 * 2)))"/>
 <xsl:value-of select="xs:base64Binary(xs:hexBinary(string(altovaext-
barcode:generateBarcodePngAsHexString($barcodeObject))))"/>
 </xsl:result-document>
 </xsl:template>
</xsl:stylesheet>

© 2014 Altova GmbH

Miscellaneous Extension Functions 519XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

10.2 Miscellaneous Extension Functions

There are several ready-made functions in programming languages such as Java and C# that are
not available as XQuery/XPath functions or as XSLT functions. A good example would be the math
functions available in Java, such as sin() and cos(). If these functions were available to the
designers of XSLT stylesheets and XQuery queries, it would increase the application area of
stylesheets and queries and greatly simplify the tasks of stylesheet creators. The XSLT and
XQuery engines used in a number of Altova products support the use of extension functions in
Java and .NET, as well as MSXSL scripts for XSLT. They also support XBRL functions for XSLT.
This section describes how to use extension functions and MSXSL scripts in your XSLT
stylesheets and XQuery documents. The available extension functions are organized into the
following sections:

Java Extension Functions
.NET Extension Functions
XBRL functions for XSLT
MSXSL Scripts for XSLT

The two main issues considered in the descriptions are: (i) how functions in the respective
libraries are called; and (ii) what rules are followed for converting arguments in a function call to
the required input format of the function, and what rules are followed for the return conversion
(function result to XSLT/XQuery data object).

Requirements
For extension functions support, a Java Runtime Environment (for access to Java functions) and
.NET Framework 2.0 (minimum, for access to .NET functions) must be installed on the machine
running the XSLT transformation or XQuery execution, or must be accessible for the
transformations.

520 XSLT and XPath/XQuery Functions Miscellaneous Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

10.2.1 Java Extension Functions

A Java extension function can be used within an XPath or XQuery expression to invoke a Java
constructor or call a Java method (static or instance).

A field in a Java class is considered to be a method without any argument. A field can be static or
instance. How to access fields is described in the respective sub-sections, static and instance.

This section is organized into the following sub-sections:

Java: Constructors
Java: Static Methods and Static Fields
Java: Instance Methods and Instance Fields
Datatypes: XPath/XQuery to Java
Datatypes: Java to XPath/XQuery

Form of the extension function
The extension function in the XPath/XQuery expression must have the form prefix:fname().

The prefix: part identifies the extension function as a Java function. It does so by
associating the extension function with an in-scope namespace declaration, the URI of
which must begin with java: (see below for examples). The namespace declaration
should identify a Java class, for example: xmlns:myns="java:java.lang.Math".
However, it could also simply be: xmlns:myns="java" (without a colon), with the
identification of the Java class being left to the fname() part of the extension function.
The fname() part identifies the Java method being called, and supplies the arguments for
the method (see below for examples). However, if the namespace URI identified by the
prefix: part does not identify a Java class (see preceding point), then the Java class
should be identified in the fname() part, before the class and separated from the class by
a period (see the second XSLT example below).

Note: The class being called must be on the classpath of the machine.

XSLT example
Here are two examples of how a static method can be called. In the first example, the class name
(java.lang.Math) is included in the namespace URI and, therefore, must not be in the fname()
part. In the second example, the prefix: part supplies the prefix java: while the fname() part
identifies the class as well as the method.

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(3.14)" />

<xsl:value-of xmlns:jmath="java"
select="jmath:java.lang.Math.cos(3.14)" />

The method named in the extension function (cos() in the example above) must match the name
of a public static method in the named Java class (java.lang.Math in the example above).

© 2014 Altova GmbH

Miscellaneous Extension Functions 521XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

XQuery example
Here is an XQuery example similar to the XSLT example above:

<cosine xmlns:jMath="java:java.lang.Math">

 {jMath:cos(3.14)}

</cosine>

User-defined Java classes
If you have created your own Java classes, methods in these classes are called differently
according to: (i) whether the classes are accessed via a JAR file or a class file, and (ii) whether
these files (JAR or class) are located in the current directory (the same directory as the XSLT or
XQuery document) or not. How to locate these files is described in the sections User-Defined
Class Files and User-Defined Jar Files. Note that paths to class files not in the current directory
and to all JAR files must be specified.

User-Defined Class Files

If access is via a class file, then there are two possibilities:

The class file is in a package. The XSLT or XQuery file is in the same folder as the Java
package. (See example below.)
The class file is not packaged. The XSLT or XQuery file is in the same folder as the class
file. (See example below.)
The class file is in a package. The XSLT or XQuery file is at some random location. (See
example below.)
The class file is not packaged. The XSLT or XQuery file is at some random location. (See
example below.)

Consider the case where the class file is not packaged and is in the same folder as the XSLT or
XQuery document. In this case, since all classes in the folder are found, the file location does not
need to be specified. The syntax to identify a class is:

java:classname

where

java: indicates that a user-defined Java function is being called; (Java classes in the
current directory will be loaded by default)
classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a
method call.

Class file packaged, XSLT/XQuery file in same folder as Java package

522 XSLT and XPath/XQuery Functions Miscellaneous Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

The example below calls the getVehicleType()method of the Car class of the
com.altova.extfunc package. The com.altova.extfunc package is in the folder JavaProject.
The XSLT file is also in the folder JavaProject.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:com.altova.extfunc.Car" >

<xsl:output exclude-result-prefixes="fn car xsl fo xs"/>

<xsl:template match="/">
 <a>

 <xsl:value-of select="car:getVehicleType()"/>

</xsl:template>

</xsl:stylesheet>

Class file not packaged, XSLT/XQuery file in same folder as class file
The example below calls the getVehicleType()method of the Car class of the
com.altova.extfunc package. The Car class file is in the following folder location:
JavaProject/com/altova/extfunc. The XSLT file is also in the folder JavaProject/com/
altova/extfunc.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:Car" >

<xsl:output exclude-result-prefixes="fn car xsl fo xs"/>

<xsl:template match="/">
 <a>

 <xsl:value-of select="car:getVehicleType()"/>

</xsl:template>

</xsl:stylesheet>

Class file packaged, XSLT/XQuery file at any location
The example below calls the getCarColor()method of the Car class of the com.altova.extfunc
package. The com.altova.extfunc package is in the folder JavaProject. The XSLT file is at any
location. In this case, the location of the package must be specified within the URI as a query
string. The syntax is:

© 2014 Altova GmbH

Miscellaneous Extension Functions 523XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

java:classname[?path=uri-of-package]

where

java: indicates that a user-defined Java function is being called
uri-of-package is the URI of the Java package
classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a
method call. The example below shows how to access a class file that is located in
another directory than the current directory.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:com.altova.extfunc.Car?path=file:///C:/

JavaProject/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:new('red')" />

 <a><xsl:value-of select="car:getCarColor($myCar)"/>

</xsl:template>

</xsl:stylesheet>

Class file not packaged, XSLT/XQuery file at any location
The example below calls the getCarColor()method of the Car class of the com.altova.extfunc
package. The com.altova.extfunc package is in the folder JavaProject. The XSLT file is at any
location. The location of the class file is specified within the namespace URI as a query string.
The syntax is:

java:classname[?path=uri-of-classfile]

where

java: indicates that a user-defined Java function is being called
uri-of-classfile is the URI of the folder containing the class file
classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a
method call. The example below shows how to access a class file that is located in
another directory than the current directory.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

524 XSLT and XPath/XQuery Functions Miscellaneous Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:Car?path=file:///C:/JavaProject/com/altova/

extfunc/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:new('red')" />

 <a><xsl:value-of select="car:getCarColor($myCar)"/>

</xsl:template>

</xsl:stylesheet>

Note: When a path is supplied via the extension function, the path is added to the ClassLoader.

User-Defined Jar Files

If access is via a JAR file, the URI of the JAR file must be specified using the following syntax:

xmlns:classNS="java:classname?path=jar:uri-of-jarfile!/"

The method is then called by using the prefix of the namespace URI that identifies the
class: classNS:method()

In the above:

java: indicates that a Java function is being called
classname is the name of the user-defined class
? is the separator between the classname and the path
path=jar: indicates that a path to a JAR file is being given
uri-of-jarfile is the URI of the jar file
!/ is the end delimiter of the path
classNS:method() is the call to the method

Alternatively, the classname can be given with the method call. Here are two examples of the
syntax:

xmlns:ns1="java:docx.layout.pages?path=jar:file:///c:/projects/docs/
docx.jar!/"

ns1:main()

xmlns:ns2="java?path=jar:file:///c:/projects/docs/docx.jar!/"
ns2:docx.layout.pages.main()

Here is a complete XSLT example that uses a JAR file to call a Java extension function:

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java?path=jar:file:///C:/test/Car1.jar!/" >

© 2014 Altova GmbH

Miscellaneous Extension Functions 525XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:Car1.new('red')" />

 <a><xsl:value-of select="car:Car1.getCarColor($myCar)"/>

</xsl:template>

<xsl:template match="car"/>

</xsl:stylesheet>

Note: When a path is supplied via the extension function, the path is added to the ClassLoader.

Java: Constructors

An extension function can be used to call a Java constructor. All constructors are called with the
pseudo-function new().

If the result of a Java constructor call can be implicitly converted to XPath/XQuery datatypes, then
the Java extension function will return a sequence that is an XPath/XQuery datatype. If the result
of a Java constructor call cannot be converted to a suitable XPath/XQuery datatype, then the
constructor creates a wrapped Java object with a type that is the name of the class returning that
Java object. For example, if a constructor for the class java.util.Date is called
(java.util.Date.new()), then an object having a type java.util.Date is returned. The lexical
format of the returned object may not match the lexical format of an XPath datatype and the value
would therefore need to be converted to the lexical format of the required XPath datatype and then
to the required XPath datatype.

There are two things that can be done with a Java object created by a constructor:

It can be assigned to a variable:
<xsl:variable name="currentdate" select="date:new()"
xmlns:date="java:java.util.Date" />

It can be passed to an extension function (see Instance Method and Instance Fields):
<xsl:value-of select="date:toString(date:new())"

xmlns:date="java:java.util.Date" />

Java: Static Methods and Static Fields

A static method is called directly by its Java name and by supplying the arguments for the
method. Static fields (methods that take no arguments), such as the constant-value fields E and
PI, are accessed without specifying any argument.

XSLT examples
Here are some examples of how static methods and fields can be called:

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(3.14)" />

526 XSLT and XPath/XQuery Functions Miscellaneous Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(jMath:PI())" />

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:E() * jMath:cos(3.14)" />

Notice that the extension functions above have the form prefix:fname(). The prefix in all three
cases is jMath:, which is associated with the namespace URI java:java.lang.Math. (The
namespace URI must begin with java:. In the examples above it is extended to contain the class
name (java.lang.Math).) The fname() part of the extension functions must match the name of a
public class (e.g. java.lang.Math) followed by the name of a public static method with its
argument/s (such as cos(3.14)) or a public static field (such as PI()).

In the examples above, the class name has been included in the namespace URI. If it were not
contained in the namespace URI, then it would have to be included in the fname() part of the
extension function. For example:

<xsl:value-of xmlns:java="java:"
select="java:java.lang.Math.cos(3.14)" />

XQuery example
A similar example in XQuery would be:

<cosine xmlns:jMath="java:java.lang.Math">

 {jMath:cos(3.14)}

</cosine>

Java: Instance Methods and Instance Fields

An instance method has a Java object passed to it as the first argument of the method call. Such
a Java object typically would be created by using an extension function (for example a constructor
call) or a stylesheet parameter/variable. An XSLT example of this kind would be:

<xsl:stylesheet version="1.0" exclude-result-prefixes="date"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:date="java:java.util.Date"
 xmlns:jlang="java:java.lang">
 <xsl:param name="CurrentDate" select="date:new()"/>

 <xsl:template match="/">
 <enrollment institution-id="Altova School"
 date="{date:toString($CurrentDate)}"

 type="
{jlang:Object.toString(jlang:Object.getClass(date:new()))}">

 </enrollment>
 </xsl:template>
</xsl:stylesheet>

In the example above, the value of the node enrollment/@type is created as follows:

1. An object is created with a constructor for the class java.util.Date (with the
date:new() constructor).

2. This Java object is passed as the argument of the jlang.Object.getClass method.

© 2014 Altova GmbH

Miscellaneous Extension Functions 527XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

3. The object obtained by the getClass method is passed as the argument to the
jlang.Object.toString method.

The result (the value of @type) will be a string having the value: java.util.Date.

An instance field is theoretically different from an instance method in that it is not a Java object
per se that is passed as an argument to the instance field. Instead, a parameter or variable is
passed as the argument. However, the parameter/variable may itself contain the value returned by
a Java object. For example, the parameter CurrentDate takes the value returned by a constructor
for the class java.util.Date. This value is then passed as an argument to the instance method
date:toString in order to supply the value of /enrollment/@date.

Datatypes: XPath/XQuery to Java

When a Java function is called from within an XPath/XQuery expression, the datatype of the
function's arguments is important in determining which of multiple Java classes having the same
name is called.

In Java, the following rules are followed:

If there is more than one Java method with the same name, but each has a different
number of arguments than the other/s, then the Java method that best matches the
number of arguments in the function call is selected.
The XPath/XQuery string, number, and boolean datatypes (see list below) are implicitly
converted to a corresponding Java datatype. If the supplied XPath/XQuery type can be
converted to more than one Java type (for example, xs:integer), then that Java type is
selected which is declared for the selected method. For example, if the Java method
being called is fx(decimal) and the supplied XPath/XQuery datatype is xs:integer,
then xs:integer will be converted to Java's decimal datatype.

The table below lists the implicit conversions of XPath/XQuery string, number, and boolean types
to Java datatypes.

xs:string java.lang.String

xs:boolean boolean (primitive), java.lang.Boolean

xs:integer int, long, short, byte, float, double, and the
wrapper classes of these, such as
java.lang.Integer

xs:float float (primitive), java.lang.Float, double
(primitive)

xs:double double (primitive), java.lang.Double

xs:decimal float (primitive), java.lang.Float,
double(primitive), java.lang.Double

Subtypes of the XML Schema datatypes listed above (and which are used in XPath and XQuery)
will also be converted to the Java type/s corresponding to that subtype's ancestor type.

In some cases, it might not be possible to select the correct Java method based on the supplied
information. For example, consider the following case.

528 XSLT and XPath/XQuery Functions Miscellaneous Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

The supplied argument is an xs:untypedAtomic value of 10 and it is intended for the
method mymethod(float).
However, there is another method in the class which takes an argument of another
datatype: mymethod(double).
Since the method names are the same and the supplied type (xs:untypedAtomic) could
be converted correctly to either float or double, it is possible that xs:untypedAtomic is
converted to double instead of float.
Consequently the method selected will not be the required method and might not produce
the expected result. To work around this, you can create a user-defined method with a
different name and use this method.

Types that are not covered in the list above (for example xs:date) will not be converted and will
generate an error. However, note that in some cases, it might be possible to create the required
Java type by using a Java constructor.

Datatypes: Java to XPath/XQuery

When a Java method returns a value, the datatype of the value is a string, numeric or boolean
type, then it is converted to the corresponding XPath/XQuery type. For example, Java's
java.lang.Boolean and boolean datatypes are converted to xsd:boolean.

One-dimensional arrays returned by functions are expanded to a sequence. Multi-dimensional
arrays will not be converted, and should therefore be wrapped.

When a wrapped Java object or a datatype other than string, numeric or boolean is returned, you
can ensure conversion to the required XPath/XQuery type by first using a Java method (e.g
toString) to convert the Java object to a string. In XPath/XQuery, the string can be modified to fit
the lexical representation of the required type and then converted to the required type (for
example, by using the cast as expression).

© 2014 Altova GmbH

Miscellaneous Extension Functions 529XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

10.2.2 .NET Extension Functions

If you are working on the .NET platform on a Windows machine, you can use extension functions
written in any of the .NET languages (for example, C#). A .NET extension function can be used
within an XPath or XQuery expression to invoke a constructor, property, or method (static or
instance) within a .NET class.

A property of a .NET class is called using the syntax get_PropertyName().

This section is organized into the following sub-sections:

.NET: Constructors

.NET: Static Methods and Static Fields

.NET: Instance Methods and Instance Fields
Datatypes: XPath/XQuery to .NET
Datatypes: .NET to XPath/XQuery

Form of the extension function
The extension function in the XPath/XQuery expression must have the form prefix:fname().

The prefix: part is associated with a URI that identifies the .NET class being
addressed.
The fname() part identifies the constructor, property, or method (static or instance) within
the .NET class, and supplies any argument/s, if required.
The URI must begin with clitype: (which identifies the function as being a .NET
extension function).
The prefix:fname() form of the extension function can be used with system classes
and with classes in a loaded assembly. However, if a class needs to be loaded, additional
parameters containing the required information will have to be supplied.

Parameters
To load an assembly, the following parameters are used:

asm The name of the assembly to be loaded.

ver The version number (maximum of four integers separated by periods).

sn The key token of the assembly's strong name (16 hex digits).

from A URI that gives the location of the assembly (DLL) to be loaded. If the
URI is relative, it is relative to the XSLT or XQuery document. If this
parameter is present, any other parameter is ignored.

partialname The partial name of the assembly. It is supplied to
Assembly.LoadWith.PartialName(), which will attempt to load the
assembly. If partialname is present, any other parameter is ignored.

loc The locale, for example, en-US. The default is neutral.

530 XSLT and XPath/XQuery Functions Miscellaneous Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

If the assembly is to be loaded from a DLL, use the from parameter and omit the sn parameter. If
the assembly is to be loaded from the Global Assembly Cache (GAC), use the sn parameter and
omit the from parameter.

A question mark must be inserted before the first parameter, and parameters must be separated
by a semi-colon. The parameter name gives its value with an equals sign (see example below).

Examples of namespace declarations
An example of a namespace declaration in XSLT that identifies the system class
System.Environment:

xmlns:myns="clitype:System.Environment"

An example of a namespace declaration in XSLT that identifies the class to be loaded as
Trade.Forward.Scrip:

xmlns:myns="clitype:Trade.Forward.Scrip?asm=forward;version=10.6.2.1"

An example of a namespace declaration in XQuery that identifies the system class
MyManagedDLL.testClass:. Two cases are distinguished:

1. When the assembly is loaded from the GAC:
declare namespace cs="clitype:MyManagedDLL.testClass?asm=MyManagedDLL;
ver=1.2.3.4;loc=neutral;sn=b9f091b72dccfba8";

2. When the assembly is loaded from the DLL (complete and partial references below):
declare namespace cs="clitype:MyManagedDLL.testClass?from=file:///C:/

Altova
Projects/extFunctions/MyManagedDLL.dll;

declare namespace cs="clitype:MyManagedDLL.testClass?
from=MyManagedDLL.dll;

XSLT example
Here is a complete XSLT example that calls functions in system class System.Math:

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions">
 <xsl:output method="xml" omit-xml-declaration="yes" />
 <xsl:template match="/">
 <math xmlns:math="clitype:System.Math">

 <sqrt><xsl:value-of select="math:Sqrt(9)"/></sqrt>

 <pi><xsl:value-of select="math:PI()"/></pi>

 <e><xsl:value-of select="math:E()"/></e>

 <pow><xsl:value-of select="math:Pow(math:PI(), math:E())"/></pow>

 </math>

© 2014 Altova GmbH

Miscellaneous Extension Functions 531XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

 </xsl:template>
</xsl:stylesheet>

The namespace declaration on the element math associates the prefix math: with the URI
clitype:System.Math. The clitype: beginning of the URI indicates that what follows identifies
either a system class or a loaded class. The math: prefix in the XPath expressions associates
the extension functions with the URI (and, by extension, the class) System.Math. The extension
functions identify methods in the class System.Math and supply arguments where required.

XQuery example
Here is an XQuery example fragment similar to the XSLT example above:

<math xmlns:math="clitype:System.Math">

 {math:Sqrt(9)}

</math>

As with the XSLT example above, the namespace declaration identifies the .NET class, in this
case a system class. The XQuery expression identifies the method to be called and supplies the
argument.

.NET: Constructors

An extension function can be used to call a .NET constructor. All constructors are called with the
pseudo-function new(). If there is more than one constructor for a class, then the constructor that
most closely matches the number of arguments supplied is selected. If no constructor is deemed
to match the supplied argument/s, then a 'No constructor found' error is returned.

Constructors that return XPath/XQuery datatypes
If the result of a .NET constructor call can be implicitly converted to XPath/XQuery datatypes, then
the .NET extension function will return a sequence that is an XPath/XQuery datatype.

Constructors that return .NET objects
If the result of a .NET constructor call cannot be converted to a suitable XPath/XQuery datatype,
then the constructor creates a wrapped .NET object with a type that is the name of the class
returning that object. For example, if a constructor for the class System.DateTime is called (with
System.DateTime.new()), then an object having a type System.DateTime is returned.

The lexical format of the returned object may not match the lexical format of a required XPath
datatype. In such cases, the returned value would need to be: (i) converted to the lexical format of
the required XPath datatype; and (ii) cast to the required XPath datatype.

There are three things that can be done with a .NET object created by a constructor:

532 XSLT and XPath/XQuery Functions Miscellaneous Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

It can be used within a variable:
<xsl:variable name="currentdate" select="date:new(2008, 4, 29)"

xmlns:date="clitype:System.DateTime" />

It can be passed to an extension function (see Instance Method and Instance Fields):
<xsl:value-of select="date:ToString(date:new(2008, 4, 29))"

xmlns:date="clitype:System.DateTime" />
It can be converted to a string, number, or boolean:
<xsl:value-of select="xs:integer(data:get_Month(date:new(2008, 4, 29)))"

xmlns:date="clitype:System.DateTime" />

.NET: Static Methods and Static Fields

A static method is called directly by its name and by supplying the arguments for the method.
The name used in the call must exactly match a public static method in the class specified. If the
method name and the number of arguments that were given in the function call matches more
than one method in a class, then the types of the supplied arguments are evaluated for the best
match. If a match cannot be found unambiguously, an error is reported.

Note: A field in a .NET class is considered to be a method without any argument. A property is
called using the syntax get_PropertyName().

Examples
An XSLT example showing a call to a method with one argument (System.Math.Sin(arg)):

<xsl:value-of select="math:Sin(30)" xmlns:math="clitype:System.Math"/>

An XSLT example showing a call to a field (considered a method with no argument)
(System.Double.MaxValue()):

<xsl:value-of select="double:MaxValue()" xmlns:double="clitype:System.Double"/>

An XSLT example showing a call to a property (syntax is get_PropertyName())
(System.String()):

<xsl:value-of select="string:get_Length('my string')"
xmlns:string="clitype:System.String"/>

An XQuery example showing a call to a method with one argument (System.Math.Sin(arg)):

<sin xmlns:math="clitype:System.Math">
 { math:Sin(30) }
</sin>

.NET: Instance Methods and Instance Fields

An instance method has a .NET object passed to it as the first argument of the method call. This
.NET object typically would be created by using an extension function (for example a constructor
call) or a stylesheet parameter/variable. An XSLT example of this kind would be:

© 2014 Altova GmbH

Miscellaneous Extension Functions 533XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions">
 <xsl:output method="xml" omit-xml-declaration="yes"/>
 <xsl:template match="/">
 <xsl:variable name="releasedate"

 select="date:new(2008, 4, 29)"

 xmlns:date="clitype:System.DateTime"/>

 <doc>
 <date>
 <xsl:value-of select="date:ToString(date:new(2008, 4, 29))"

 xmlns:date="clitype:System.DateTime"/>

 </date>
 <date>
 <xsl:value-of select="date:ToString($releasedate)"

 xmlns:date="clitype:System.DateTime"/>

 </date>
 </doc>
 </xsl:template>
</xsl:stylesheet>

In the example above, a System.DateTime constructor (new(2008, 4, 29)) is used to create a
.NET object of type System.DateTime. This object is created twice, once as the value of the
variable releasedate, a second time as the first and only argument of the
System.DateTime.ToString() method. The instance method System.DateTime.ToString() is
called twice, both times with the System.DateTime constructor (new(2008, 4, 29)) as its first
and only argument. In one of these instances, the variable releasedate is used to get the .NET
object.

Instance methods and instance fields
The difference between an instance method and an instance field is theoretical. In an instance
method, a .NET object is directly passed as an argument; in an instance field, a parameter or
variable is passed instead—though the parameter or variable may itself contain a .NET object. For
example, in the example above, the variable releasedate contains a .NET object, and it is this
variable that is passed as the argument of ToString() in the second date element constructor.
Therefore, the ToString() instance in the first date element is an instance method while the
second is considered to be an instance field. The result produced in both instances, however, is
the same.

Datatypes: XPath/XQuery to .NET

When a .NET extension function is used within an XPath/XQuery expression, the datatypes of the
function's arguments are important for determining which one of multiple .NET methods having the
same name is called.

In .NET, the following rules are followed:

If there is more than one method with the same name in a class, then the methods

534 XSLT and XPath/XQuery Functions Miscellaneous Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

available for selection are reduced to those that have the same number of arguments as
the function call.
The XPath/XQuery string, number, and boolean datatypes (see list below) are implicitly
converted to a corresponding .NET datatype. If the supplied XPath/XQuery type can be
converted to more than one .NET type (for example, xs:integer), then that .NET type is
selected which is declared for the selected method. For example, if the .NET method
being called is fx(double) and the supplied XPath/XQuery datatype is xs:integer,
then xs:integer will be converted to .NET's double datatype.

The table below lists the implicit conversions of XPath/XQuery string, number, and boolean types
to .NET datatypes.

xs:string StringValue, string

xs:boolean BooleanValue, bool

xs:integer IntegerValue, decimal, long, integer,
short, byte, double, float

xs:float FloatValue, float, double

xs:double DoubleValue, double

xs:decimal DecimalValue, decimal, double, float

Subtypes of the XML Schema datatypes listed above (and which are used in XPath and XQuery)
will also be converted to the .NET type/s corresponding to that subtype's ancestor type.

In some cases, it might not be possible to select the correct .NET method based on the supplied
information. For example, consider the following case.

The supplied argument is an xs:untypedAtomic value of 10 and it is intended for the
method mymethod(float).
However, there is another method in the class which takes an argument of another
datatype: mymethod(double).
Since the method names are the same and the supplied type (xs:untypedAtomic) could
be converted correctly to either float or double, it is possible that xs:untypedAtomic is
converted to double instead of float.
Consequently the method selected will not be the required method and might not produce
the expected result. To work around this, you can create a user-defined method with a
different name and use this method.

Types that are not covered in the list above (for example xs:date) will not be converted and will
generate an error.

Datatypes: .NET to XPath/XQuery

When a .NET method returns a value and the datatype of the value is a string, numeric or boolean
type, then it is converted to the corresponding XPath/XQuery type. For example, .NET's decimal
datatype is converted to xsd:decimal.

When a .NET object or a datatype other than string, numeric or boolean is returned, you can
ensure conversion to the required XPath/XQuery type by first using a .NET method (for example

© 2014 Altova GmbH

Miscellaneous Extension Functions 535XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

System.DateTime.ToString()) to convert the .NET object to a string. In XPath/XQuery, the
string can be modified to fit the lexical representation of the required type and then converted to
the required type (for example, by using the cast as expression).

536 XSLT and XPath/XQuery Functions Miscellaneous Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

10.2.3 XBRL Functions for XSLT

Functions defined in the XBRL function registry can be called from within an XSLT context for
transforming XBRL instance documents. These XBRL functions are defined in one of two
namespaces:

http://www.xbrl.org/2008/function/instance (usually used with the xfi: prefix)
http://www.xbrl.org/2010/function/formula (usually used with the xff: prefix)

So the XBRL function xfi:context, for example, expands to http://www.xbrl.org/2008/
function/instance:context (assuming this namespace has been bound to the xfi: prefix).

For a complete list of the functions, go to http://www.xbrl.org/functionregistry/functionregistry.xml.

http://www.xbrl.org/functionregistry/functionregistry.xml
http://www.xbrl.org/functionregistry/functionregistry.xml
http://www.xbrl.org/functionregistry/functionregistry.xml

© 2014 Altova GmbH

Miscellaneous Extension Functions 537XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

10.2.4 MSXSL Scripts for XSLT

The <msxsl:script> element contains user-defined functions and variables that can be called
from within XPath expressions in the XSLT stylesheet. The <msxsl:script> is a top-level
element, that is, it must be a child element of <xsl:stylesheet> or <xsl:transform>.

The <msxsl:script> element must be in the namespace urn:schemas-microsoft-com:xslt
(see example below).

Scripting language and namespace
The scripting language used within the block is specified in the <msxsl:script> element's
language attribute and the namespace to be used for function calls from XPath expressions is
identified with the implements-prefix attribute (see below).

<msxsl:script language="scripting-language" implements-prefix="user-namespace-
prefix">

 function-1 or variable-1
 ...
 function-n or variable-n

</msxsl:script>

The <msxsl:script> element interacts with the Windows Scripting Runtime, so only languages
that are installed on your machine may be used within the <msxsl:script> element. The .NET
Framework 2.0 platform or higher must be installed for MSXSL scripts to be used.
Consequently, the .NET scripting languages can be used within the <msxsl:script> element.

The language attribute accepts the same values as the language attribute on the HTML
<script> element. If the language attribute is not specified, then Microsoft JScript is assumed
as the default.

The implements-prefix attribute takes a value that is a prefix of a declared in-scope namespace.
This namespace typically will be a user namespace that has been reserved for a function library.
All functions and variables defined within the <msxsl:script> element will be in the namespace
identified by the prefix specified in the implements-prefix attribute. When a function is called
from within an XPath expression, the fully qualified function name must be in the same
namespace as the function definition.

Example
Here is an example of a complete XSLT stylesheet that uses a function defined within a
<msxsl:script> element.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

538 XSLT and XPath/XQuery Functions Miscellaneous Extension Functions

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt"

 xmlns:user="http://mycompany.com/mynamespace">

 <msxsl:script language="VBScript" implements-prefix="user">

 <![CDATA[
 ' Input: A currency value: the wholesale price
 ' Returns: The retail price: the input value plus 20% margin,
 ' rounded to the nearest cent
 dim a as integer = 13
 Function AddMargin(WholesalePrice) as integer

 AddMargin = WholesalePrice * 1.2 + a
 End Function
]]>
 </msxsl:script>

 <xsl:template match="/">
 <html>
 <body>
 <p>
 Total Retail Price =
 $<xsl:value-of select="user:AddMargin(50)"/>

 Total Wholesale Price =
 $<xsl:value-of select="50"/>

 </p>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

Datatypes
The values of parameters passed into and out of the script block are limited to XPath datatypes.
This restriction does not apply to data passed among functions and variables within the script
block.

Assemblies
An assembly can be imported into the script by using the msxsl:assembly element. The

assembly is identified via a name or a URI. The assembly is imported when the stylesheet is
compiled. Here is a simple representation of how the msxsl:assembly element is to be used.

<msxsl:script>
<msxsl:assembly name="myAssembly.assemblyName" />
<msxsl:assembly href="pathToAssembly" />

© 2014 Altova GmbH

Miscellaneous Extension Functions 539XSLT and XPath/XQuery Functions

Altova RaptorXML+XBRL Server 2015

...

</msxsl:script>

The assembly name can be a full name, such as:

"system.Math, Version=3.1.4500.1 Culture=neutral
PublicKeyToken=a46b3f648229c514"

or a short name, such as "myAssembly.Draw".

Namespaces
Namespaces can be declared with the msxsl:using element. This enables assembly classes to

be written in the script without their namespaces, thus saving you some tedious typing. Here is
how the msxsl:using element is used so as to declare namespaces.

<msxsl:script>
<msxsl:using namespace="myAssemblyNS.NamespaceName" />

...

</msxsl:script>

The value of the namespace attribute is the name of the namespace.

Chapter 11

Altova LicenseServer

542 Altova LicenseServer

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

11 Altova LicenseServer

Altova LicenseServer (hereafter also called LicenseServer for short) provides a central location
for the management of licenses for Altova products. Altova applications running in a network can
have licenses assigned to them from the LicenseServer, thus giving administrators the flexibility to
manage and monitor licenses.

Current version: 1.11

Licensing process with Altova LicenseServer
To assign an Altova server product a license via Altova LicenseServer, you need to do the
following:

1. Start LicenseServer
2. Open the LicenseServer Configuration page, which is the Web UI of LicenseServer, on

Windows, Linux, or Mac OS X.
3. Upload the license/s you have received from Altova to LicenseServer. Do this in the

License Pool tab of the Configuration page.
4. Register Altova server products (FlowForce Server, MapForce Server, StyleVision Server,

RaptorXML(+XBRL) Server) with LicenseServer.
5. Assign licenses to Altova server In the Server Management tab of the Configuration page.

Licenses can thereafter be conveniently monitored and managed centrally with LicenseServer.
See the Configuration Page Reference for available functionality.

Note: The LicenseServer Configuration page does not support SSL.

LicenseServer versions and their compatibility with Altova server products
New versions of Altova server products can only be licensed with the version of LicenseServer
that is the latest at the time of the server product's release. However, older versions of Altova
server products will work with newer versions of LicenseServer.

So, if you are installing a new version of an Altova server product and if your current
LicenseServer version is not the latest, de-install this older version and install the latest version
available on the Altova website. All registration and licensing information held in your older
version of LicenseServer will be saved at the time of de-installation to a database on your
server machine, and will be imported automatically into the newer version. When you install a
newer version of LicenseServer, the older version will be de-installed before the newer version is
installed.

The version number of the currently installed LicenseServer is given at the bottom of the
LicenseServer configuration page (all tabs).

Current version: 1.11

© 2014 Altova GmbH

 543Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

About this documentation
This documentation is organized into the following parts:

Introductory information about: network requirements; installation on Windows, Linux,
and Mac OS X; and Altova ServiceController.
How to Assign Licenses, which describes in a step-by-step way how to assign licenses
with Altova LicenseServer.
Configuration Page Reference: A description of the administrator's interface with
LicenseServer.

Last updated: 09-15-2014

544 Altova LicenseServer Network Information

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

11.1 Network Information

Altova LicenseServer must be installed on a server machine that is accessible by all clients
running Altova products that require a license. Any firewall on both the client and server must
allow the network traffic to and from the LicenseServer that is necessary for the LicenseServer to
operate correctly.

On the LicenseServer machine, port 35355 is used to distribute licenses, and therefore it must be
open for network traffic with client machines.

The following are the default networking parameters and requirements of LicenseServer:

For LicenseServer license distribution:
Either one or both of
IPv4 TCP connection on port 35355
IPv6 TCP connection on port 35355

For administrative tasks, the LicenseServer is accessed by a web interface that uses port 8088.
The port used can be configured to suit your requirements.

Connection to the Master Licensing Server at altova.com
The Altova LicenseServer needs to be able to communicate with the Master Licensing Server
at altova.com to validate and authenticate license-related data and to ensure continuous
compliance with the Altova license agreements. This communication occurs over HTTPS
using port 443. If the Altova LicenseServer, after making the initial verification with the
altova.com Master Licensing Server, is unable to again connect with altova.com for a
duration of more than 5 days (= 120 hours), then the Altova LicenseServer will no longer
permit the usage of any Altova software products connected to the Altova LicenseServer.

Any such loss of connection with the altova.com master servers will be logged in the
Messages tab of the Configuration page of the Altova LicenseServer. In addition, the
administrator can configure the Altova LicenseServer to automatically send an alert email
when the connection to altova.com is lost. Alert Mail settings are available in the Settings
tab of the Configuration page.

© 2014 Altova GmbH

Installation (Windows) 545Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

11.2 Installation (Windows)

Altova LicenseServer can be installed on Windows systems in one of two ways:

As an independent installation.
As part of an Altova server product installation. (Altova server products are: Altova
FlowForce Server, Altova MapForce Server, Altova StyleVision Server, and Altova
RaptorXML(+XBRL).)

If LicenseServer is not installed on your system at the time an Altova server product is installed,
the option to install LicenseServer is selected by default during installation setup. If LicenseServer
is already installed, the option to install it is deselected by default. You can change the default
option if you like.

For information about how to proceed with assigning licenses, see the section How to Assign
Licenses.

LicenseServer versions and their compatibility with Altova server products
New versions of Altova server products can only be licensed with the version of LicenseServer
that is the latest at the time of the server product's release. However, older versions of Altova
server products will work with newer versions of LicenseServer.

So, if you are installing a new version of an Altova server product and if your current
LicenseServer version is not the latest, de-install this older version and install the latest version
available on the Altova website. All registration and licensing information held in your older
version of LicenseServer will be saved at the time of de-installation to a database on your
server machine, and will be imported automatically into the newer version. When you install a
newer version of LicenseServer, the older version will be de-installed before the newer version is
installed.

The version number of the currently installed LicenseServer is given at the bottom of the
LicenseServer configuration page (all tabs).

Current version: 1.11

The version number of the LicenseServer that is appropriate for any particular version of a server
product is displayed during the installation of that version of the server product. You can choose to
install this version of LicenseServer along with the server product, or you can install the newer
version of LicenseServer separately. In both cases, the installer will automatically de-install the
previous version and install the new version.

546 Altova LicenseServer Installation (Linux)

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

11.3 Installation (Linux)

Altova LicenseServer can be installed on Linux systems (Debian, Ubuntu, CentOS, RedHat).

Uninstalling old versions of LicenseServer
On the Linux command line interface (CLI), you can check whether LicenseServer is installed with
the following command:

[Debian, Ubuntu]: dpkg --list | grep Altova

[CentOS, RedHat]: rpm -qa | grep server

If LicenseServer is not installed, go ahead with the installation as documented in the next steps. If
LicenseServer is installed and you wish to install a newer version of it, uninstall the old version
with the command:

[Debian, Ubuntu]: sudo dpkg --remove licenseserver

[CentOS, RedHat]: sudo rpm -e licenseserver

Installing Altova LicenseServer
On Linux systems, LicenseServer must be installed independently of other Altova server products.
It is not included as part of the installation packages of Altova server products. Download Altova
LicenseServer from the Altova website and copy the package to any directory on the Linux
system.

Distribution Installer extension

Debian .deb

Ubuntu .deb

CentOS .rpm

RedHat .rpm

In a terminal window, switch to the directory where you have copied the Linux package. For
example, if you copied it to a user directory called MyAltova (that is located, say, in the /home/
User directory), then switch to this directory as follows:

cd /home/User/MyAltova

Install LicenseServer with the following command:

[Debian]: sudo dpkg --install licenseserver-1.11-debian.deb

[Ubuntu]: sudo dpkg --install licenseserver-1.11-ubuntu.deb

[CentOS]: sudo rpm -ivh licenseserver-1.11-1.x86_64.rpm

[RedHat]: sudo rpm -ivh licenseserver-1.11-1.x86_64.rpm

The LicenseServer package will be installed in:

http://www.altova.com/

© 2014 Altova GmbH

Installation (Linux) 547Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

/opt/Altova/LicenseServer

For information about how to proceed with assigning licenses, see the section How to Assign
Licenses.

LicenseServer versions and their compatibility with Altova server products
New versions of Altova server products can only be licensed with the version of LicenseServer
that is the latest at the time of the server product's release. However, older versions of Altova
server products will work with newer versions of LicenseServer.

So, if you are installing a new version of an Altova server product and if your current
LicenseServer version is not the latest, de-install this older version and install the latest version
available on the Altova website. All registration and licensing information held in your older
version of LicenseServer will be saved at the time of de-installation to a database on your
server machine, and will be imported automatically into the newer version. When you install a
newer version of LicenseServer, the older version will be de-installed before the newer version is
installed.

The version number of the currently installed LicenseServer is given at the bottom of the
LicenseServer configuration page (all tabs).

Current version: 1.11

548 Altova LicenseServer Installation (Mac OS X)

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

11.4 Installation (Mac OS X)

Altova LicenseServer can be installed on Mac OS X systems (version 10.7 or higher). Since you
might need to uninstall a previous version, uninstalling is described first.

Uninstalling old versions of LicenseServer
Before uninstalling LicenseServer, stop the service with the following command:

sudo launchctl unload /Library/LaunchDaemons/com.altova.LicenseServer.plist

To check whether the service has been stopped, open the Activity Monitor terminal and make
sure that LicenseServer is not in the list.

In the Applications terminal, right-click the LicenseServer icon and select Move to Trash. The
application will be moved to Trash. You will, however, still need to remove the application from the
usr folder. Do this with the command:

sudo rm -rf /usr/local/Altova/LicenseServer

Installing Altova LicenseServer
Download Altova LicenseServer from the Altova website (the installer file has a .pkg file
extension), and double-click the installer package to start the installation. Follow the on-screen
instructions. You will need to accept the license agreement for installation to proceed.

The LicenseServer package will be installed in the folder:

/usr/local/Altova/LicenseServer

http://www.altova.com/

© 2014 Altova GmbH

Altova ServiceController 549Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

11.5 Altova ServiceController

Altova ServiceController (ServiceController for short) is an application for conveniently starting,
stopping and configuring Altova services on Windows systems.

ServiceController is installed with Altova LicenseServer and with Altova server products that are
installed as services (FlowForce Server, RaptorXML(+XBRL) Server, and Mobile Together Server).
It can be started by clicking Start | Altova LicenseServer | Altova ServiceController. (This
command is also available in the Start menu folders of Altova server products that are installed as
services (FlowForce Server, RaptorXML(+XBRL) Server, and Mobile Together Server).) After
ServiceController has been started, it can be accessed via the system tray (screenshot below).

To specify that ServiceController starts automatically on logging in to the system, click the
ServiceController icon in the system tray to display the ServiceController menu (screenshot
below), and then toggle on the command Run Altova ServiceController at Startup. (This
command is toggled on by default.) To exit ServiceController, click the ServiceController icon in
the system tray and, in the menu that appears (see screenshot below), click Exit Altova
ServiceController.

Starting and stopping Altova services
Each installed Altova service component will have an entry in the ServiceController menu (see
screenshot above). An Altova service can be started or stopped via a command in its
ServiceController sub-menu. Additionally, important administration tasks of individual services can
be accessed via the ServiceController menu. In the screenshot above, for example, Altova
LicenseServer service has a sub-menu in which you can choose to access LicenseServer's
Configuration page via the Configure command.

550 Altova LicenseServer How to Assign Licenses

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

11.6 How to Assign Licenses

To assign an Altova server product a license using Altova LicenseServer, do the following:

1. Start LicenseServer
2. Open the LicenseServer Configuration page, which is the administrator's interface with

LicenseServer, on Windows, Linux, or Mac OS X.
3. Upload the license/s you have received from Altova to the license pool of your Altova

LicenseServer. Do this in the License Pool tab of the LicenseServer Configuration page.
4. Register the Altova server product (FlowForce Server, MapForce Server, StyleVision

Server, RaptorXML(+XBRL) Server) with LicenseServer. Depending on the product's type,
the method of registering it with LicenseServer will be different: either via the product's
Web UI or its command line. See the documentation of your Altova server product for
additional information.

5. In the Server Management tab of the LicenseServer Configuration page, assign a license
to the Altova server product according to the number of cores on the product machine.

Note on cores and licenses
The licensing of Altova server products, except MobileTogether Server***, is based on the number
of processor cores available on the product machine. For example, a dual-core processor has two
cores, a quad-core processor four cores, a hexa-core processor six cores, and so on. The number
of cores licensed for a product on a particular server machine must be greater than or equal to the
number of cores available on that server, whether it's a physical or virtual machine.

For example, if a server has eight cores (an octa-core processor), you must purchase at least an
8-core license. You can also combine licenses to achieve the core count. So, two 4-core licenses
can also be used for an octa-core server instead of an 8-core license.

If you are using a computer server with a large number of CPU cores but only have a low volume
to process, you may also create a virtual machine that is allocated a smaller number of cores,
and purchase a license for that number. Such a deployment, of course, will have less processing
speed than if all available cores on the server were utilized.

Note: Each license can be used for only one client machine at a time, even if it has unused
licensing capacity. For example, if a 10-core license is used for a client machine that has
6 CPU cores, then the remaining 4 cores of the license cannot be used simultaneously
for another client machine.

*** MobileTogether Server licenses are assigned on the basis of the number of users, that is,
the number of client devices that connect to MobileTogether Server.

© 2014 Altova GmbH

How to Assign Licenses 551Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

11.6.1 Start LicenseServer

This section:

How to start LicenseServer on Windows systems
How to start LicenseServer on Linux systems
How to start LicenseServer on Mac OS X systems
Note about Connection to altova.com

Windows systems
You can start LicenseServer via the Altova ServiceController, which is available in the system tray.

First, click Start | All Programs | Altova LicenseServer | Altova ServiceController to start
Altova ServiceController and display its icon in the system tray (see screenshot below). If you
select the Run Altova ServiceController at Startup option, Altova ServiceController will start up on
system start and its icon will be available in the system tray from then onwards.

To start LicenseServer, click the Altova ServiceController icon in the system tray, hover over
Altova LicenseServer in the menu that pops up (see screenshot below), and then select Start
Service from the LicenseServer submenu. If LicenseServer is already running, the Start Service
option will be disabled.

Linux systems
To start LicenseServer as a service on Linux systems, run the following command in a terminal
window.

 [Debian]: sudo /etc/init.d/licenseserver start
 [Ubuntu]: sudo initctl start licenseserver
 [CentOS]: sudo initctl start licenseserver
 [RedHat]: sudo initctl start licenseserver

(If you need to stop LicenseServer, replace start with stop in the above command.)

552 Altova LicenseServer How to Assign Licenses

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Mac OS X systems
To start LicenseServer as a service on Mac OS X systems, run the following command in a
terminal window:

sudo launchctl load /Library/LaunchDaemons/com.altova.LicenseServer.plist

If at any time you need to stop LicenseServer, use:

sudo launchctl unload /Library/LaunchDaemons/com.altova.LicenseServer.plist

Connection to the Master Licensing Server at altova.com
The Altova LicenseServer needs to be able to communicate with the Master Licensing Server
at altova.com to validate and authenticate license-related data and to ensure continuous
compliance with the Altova license agreements. This communication occurs over HTTPS
using port 443. If the Altova LicenseServer, after making the initial verification with the
altova.com Master Licensing Server, is unable to again connect with altova.com for a
duration of more than 5 days (= 120 hours), then the Altova LicenseServer will no longer
permit the usage of any Altova software products connected to the Altova LicenseServer.

Any such loss of connection with the altova.com master servers will be logged in the
Messages tab of the Configuration page of the Altova LicenseServer. In addition, the
administrator can configure the Altova LicenseServer to automatically send an alert email
when the connection to altova.com is lost. Alert Mail settings are available in the Settings
tab of the Configuration page.

© 2014 Altova GmbH

How to Assign Licenses 553Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

11.6.2 Open LicenseServer's Config Page (Windows)

This section:

Opening the Configuration page if LicenseServer is on the same machine
Opening the Configuration page if LicenseServer is on another machine
Logging in with the initial password
Setting a fixed port for the Configuration page

Opening the Configuration page if LicenseServer is on the same machine
On Windows systems, if LicenseServer is on the same machine, you can open the Configuration
page of LicenseServer in one of two ways:

Click Start | All Programs | Altova LicenseServer | LicenseServer Configuration
Page. The Configuration page opens in a new tab of your Internet browser.
Click the Altova ServiceController icon in the system tray, mouse over Altova
LicenseServer in the menu that pops up (see screenshot below), and then select
Configure from the LicenseServer submenu.

The Configuration page opens in a new browser window, and its login mask is displayed
(screenshot below).

Opening the Configuration page if LicenseServer is on another machine
To open the LicenseServer Configuration page from some other Windows machine on the local
network (than that on which LicenseServer is installed), enter the URL of the LicenseServer
Configuration page in the address bar of a browser and press Enter. By default, the URL of the
Configuration page will be:

http://<serverIPAddressOrName>:8088/

The URL is present in the HTML code of the Configuration page itself, which is named
WebUI.html and is located at:

554 Altova LicenseServer How to Assign Licenses

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

C:/ProgramData/Altova/LicenseServer/WebUI.html

If you have set the URL of the Configuration page to be generated dynamically (in the Settings tab
of the Configuration page), then a new URL is generated each time LicenseServer is started. You
will need to check the current version of WebUI.html to find out the current URL of the

Configuration page.

The dynamically generated URL in WebUI.html will have a form something like:

http://127.0.0.1:55541/optionally-an-additional-string, and it is located in the

function checkIfServiceRunning()in a script near the end of the <head> element. While the port
number in the URL is dynamically assigned, the IP address part identifies the server on which
LicenseServer has been installed. If you wish to access the LicenseServer Configuration page
from another machine, make sure that the IP address part of the URL has the correct IP address
or name of the server on which LicenseServer has been installed. For example, the URL could be
something like: http://MyServer:55541.

Logging in with the initial password
After going through the steps above, the Configuration page is opened with the login mask
displayed (screenshot below). You can log in with the initial password of default. After you have
logged in, you can change your password in the Settings tab.

Setting a fixed or dynamic port for the Configuration page
The port of the Configuration page (Web UI)—and consequently its address—can be specified in
the Settings page. By default the port is 8088. You can set any other port you want for the
LicenseServer Configuration page (see screenshot below). Alternatively, you allow the port to be
selected dynamically each time LicenseServer starts up. In this case, you will need to find out the
URL of the Configuration page from the file WebUI.html (see Open LicenseServer Config Page
(Windows) and Open LicenseServer Config Page (Linux)).

© 2014 Altova GmbH

How to Assign Licenses 555Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

The advantage of a fixed port is that the page URL is known in advance and therefore can be
accessed easily. If the port is assigned dynamically, the port part of the URL will have to be
looked up in the file WebUI.html each time LicenseServer is started.

556 Altova LicenseServer How to Assign Licenses

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

11.6.3 Open LicenseServer's Config Page (Linux)

This section:

Opening the Configuration page for the first time with the returned URL
URL of the LicenseServer Configuration page
Logging in with the initial password
Setting a fixed port for the Configuration page

Opening the Configuration page for the first time with the returned URL
On Linux systems, when you register your Altova server product with LicenseServer via the CLI,
the URL of the LicenseServer Configuration page is returned. On opening this URL in a browser,
you are prompted to read and accept the license agreement. After accepting the license
agreement, the Configuration page's login mask is displayed (screenshot below).

URL of the LicenseServer Configuration page
To open the LicenseServer Configuration page at any time, enter its URL in the address bar of a
browser and press Enter. By default, the URL of the Configuration page will be:

http://<serverIPAddressOrName>:8088/

The URL is present in the HTML code of the Configuration page itself, which is named
webUI.html and is located at:

/var/opt/Altova/LicenseServer/webUI.html

If you have set the URL of the Configuration page to be generated dynamically (in the Settings tab
of the Configuration page), then a new URL is generated each time LicenseServer is started. You
will need to check the current version of webUI.html to find out the current URL of the

Configuration page.

The dynamically generated URL in webUI.html will have a form something like:

http://127.0.0.1:55541, and it is located in the function checkIfServiceRunning() in a script
near the end of the <head> element. While the port number in the URL is dynamically assigned,
the IP address part identifies the server on which LicenseServer has been installed. If you wish to
access the LicenseServer Configuration page from another machine, make sure that the IP
address part of the URL has the correct IP address or name of the server on which LicenseServer
has been installed. For example, the URL could be something like: http://MyServer:55541.

Logging in with the initial password
After going through the steps above, the Configuration page is opened with the login mask
displayed (screenshot below). You can log in with the initial password of default. After you have
logged in, you can change your password in the Settings tab.

© 2014 Altova GmbH

How to Assign Licenses 557Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

Setting a fixed or dynamic port for the Configuration page
The port of the Configuration page (Web UI)—and consequently its address—can be specified in
the Settings page. By default the port is 8088. You can set any other port you want for the
LicenseServer Configuration page (see screenshot below). Alternatively, you allow the port to be
selected dynamically each time LicenseServer starts up. In this case, you will need to find out the
URL of the Configuration page from the file WebUI.html (see Open LicenseServer Config Page
(Windows) and Open LicenseServer Config Page (Linux)).

The advantage of a fixed port is that the page URL is known in advance and therefore can be
accessed easily. If the port is assigned dynamically, the port part of the URL will have to be
looked up in the file WebUI.html each time LicenseServer is started.

558 Altova LicenseServer How to Assign Licenses

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

11.6.4 Open LicenseServer's Config Page (Mac OS X)

This section:

Opening the Configuration page for the first time with the returned URL
URL of the LicenseServer Configuration page
Logging in with the initial password
Setting a fixed port for the Configuration page

Opening the Configuration page for the first time with the returned URL
On Mac OS X systems, when you register your Altova server product with LicenseServer via the
CLI, the URL of the LicenseServer Configuration page is returned. On opening this URL in a
browser, you are prompted to read and accept the license agreement. After accepting the license
agreement, the Configuration page's login mask is displayed (screenshot below).

URL of the LicenseServer Configuration page
To open the LicenseServer Configuration page at any time, enter its URL in the address bar of a
browser and press Enter. By default, the URL of the Configuration page will be:

http://<serverIPAddressOrName>:8088/

The URL is present in the HTML code of the Configuration page itself, which is named
webUI.html and is located at:

/var/Altova/LicenseServer/webUI.html

If you have set the URL of the Configuration page to be generated dynamically (in the Settings tab
of the Configuration page), then a new URL is generated each time LicenseServer is started. You
will need to check the current version of webUI.html to find out the current URL of the

Configuration page.

The dynamically generated URL in webUI.html will have a form something like:

http://127.0.0.1:55541, and it is located in the function checkIfServiceRunning() in a script
near the end of the <head> element. While the port number in the URL is dynamically assigned,
the IP address part identifies the server on which LicenseServer has been installed. If you wish to
access the LicenseServer Configuration page from another machine, make sure that the IP
address part of the URL has the correct IP address or name of the server on which LicenseServer
has been installed. For example, the URL could be something like: http://MyServer:55541.

Note: The Configuration page can also be accessed directly via the Finder | Applications |
Altova License Server icon.

Logging in with the initial password

© 2014 Altova GmbH

How to Assign Licenses 559Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

After going through the steps above, the Configuration page is opened with the login mask
displayed (screenshot below). You can log in with the initial password of default. After you have
logged in, you can change your password in the Settings tab.

Setting a fixed or dynamic port for the Configuration page
The port of the Configuration page (Web UI)—and consequently its address—can be specified in
the Settings page. By default the port is 8088. You can set any other port you want for the
LicenseServer Configuration page (see screenshot below). Alternatively, you allow the port to be
selected dynamically each time LicenseServer starts up. In this case, you will need to find out the
URL of the Configuration page from the file WebUI.html (see Open LicenseServer Config Page
(Windows) and Open LicenseServer Config Page (Linux)).

The advantage of a fixed port is that the page URL is known in advance and therefore can be

560 Altova LicenseServer How to Assign Licenses

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

accessed easily. If the port is assigned dynamically, the port part of the URL will have to be
looked up in the file WebUI.html each time LicenseServer is started.

© 2014 Altova GmbH

How to Assign Licenses 561Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

11.6.5 Upload Licenses to LicenseServer

This section:

Uploading a license file to the license pool of LicenseServer
License status
Activating the licenses you wish to use
Next steps

Uploading a license file to the license pool of LicenseServer
After you have obtained a license file from Altova, you must upload it to the Altova LicenseServer.
(How to do this is described below.) Each license file can contain one or more licenses and
depends on your purchase. When you upload a license file, all the licenses in it will be uploaded
to LicenseServer and can be assigned to an Altova product that has been registered with that
LicenseServer. All the uploaded licenses, from one or more license files and for all Altova
products, are collected in a license pool on the LicenseServer. The license pool is displayed in
the License Pool tab of the LicenseServer Configuration page (screenshot below).

License files are uploaded to the LicenseServer using the Upload function of the License Pool tab
(see screenshot below).

Click the Browse button and select the license file you want. The license file will appear in the
Upload License File text field and the Upload button will be enabled. Click the Upload button to
upload the license file. All the licenses in the file are uploaded and displayed in the License Pool
tab. The screenshot below shows multiple licenses, uploaded from multiple license files.

562 Altova LicenseServer How to Assign Licenses

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

License status
License status values are as follows:

Activating: When a license is uploaded into the license pool of LicenseServer, the server
will transmit license-related data to the altova.com master licensing server to validate,
authenticate, and activate the license that was supplied. This is necessary to ensure
compliance with the Altova license agreements. During this initial activation and
authentication transaction—which typically lasts between 30 seconds and a couple of
minutes, depending on your Internet connection, speed, and overall network traffic—the
status of the license will be indicated as Activating....

Failed Verification: If a connection with the altova.com master licensing server cannot be
made, then the status of the license in the pool will be shown as Failed Verification. If
this happens, check your Internet connection and firewall rules to ensure that
LicenseServer is able to communicate with the altova.com master licensing server.

Active: Once the license has been authenticated and activated, the status in the pool will
change to Active.

Inactive: If a license has been verified, but is present on another LicenseServer on the
network, the status in the pool will be shown as Inactive. An Inactive status also results
when a license is manually deactivated in the license pool by the administrator.

Blocked: A license is shown in the license pool as Blocked if there was a problem
authenticating the license and the altova.com master licensing server has not granted
permission to the LicenseServer to use this license. This could be the result of a license
agreement violation, over-usage of a license, or other compliance issues. Should you see
a license showing up as Blocked, please contact Altova Support with your license

© 2014 Altova GmbH

How to Assign Licenses 563Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

information and any other relevant data.

These statuses are summarized in the table below:

Status Meaning

Activating... On upload, license information is sent to altova.com for verification.
Refresh the browser to view the updated status. Verification and activation
can take a few minutes.

Failed Verification A connection to altova.com could not be made. After establishing a
connection, either restart the service or activate the license (with the
Activate button).

Active Verification was successful, the license is active.

Inactive Verification was successful, but the license is on another LicenseServer on
the network. Licenses can be made inactive with the Deactivate button.

Blocked Verification was not successful. License is invalid and is blocked. Contact
Altova Support.

Note: After a license has been sent to altova.com for verification, the browser must be
refreshed to see the updated status. Verification and activation can take a few minutes.

Note: If a connection to altova.com could not be made, the status will be Failed Verification.
After establishing a connection, either restart the service or try activating the license with
the Activate button.

Note: When a license is given a status of Inactive or Blocked, a message explaining the status
is also added to the Messages log.

Only an active license can be assigned to a product installation. An inactive license can be
activated or deleted from the license pool. If a license is deleted from the license pool, it can be
uploaded again to the pool by uploading the license file containing it. When a license file is
updated, only those licenses in it that are not already in the pool will be uploaded to the pool. To
activate, deactivate, or delete a license, select it and then click the Activate, Deactivate, or
Delete button, respectively.

Activate the license/s you wish to use
Before you can assign a license to an Altova product, it must be active. So do ensure it is active.
If it is inactive, select it and click Activate.

Next Steps
After you have uploaded the license file to the LicenseServer and checked that the license you

http://www.altova.com/support

564 Altova LicenseServer How to Assign Licenses

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

want is active, do the following:

1. Register the Altova server product (FlowForce Server, MapForce Server, StyleVision
Server) with LicenseServer. (If you have already done this prior to uploading the license
file, you can now start assigning licenses.)

2. Assign a license to your Altova product that has been registered with the LicenseServer.

© 2014 Altova GmbH

How to Assign Licenses 565Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

11.6.6 Register Product/s

Before you can assign a license to an Altova server product, you must register the product
installation with LicenseServer. The registration is done from the Altova server product, and the
process is different for those server products that have Web UIs and those that are run from the
command line only. You will need the server name or IP Address of the machine on which
LicenseServer is installed to carry out the registration.

This section describes how to register different Altova server products:

Register FlowForce Server
Register MapForce Server
Register StyleVision Server
Register RaptorXML(+XBRL) Server
Register MobileTogether Server

Register FlowForce Server

This section:

Methods of registering FlowForce Server with LicenseServer
Accessing the FlowForce Server Setup page (Windows)
Accessing the FlowForce Server Setup page (Linux)
Registering FlowForce Server via the Setup page
Registering FlowForce Server via the FlowForce CLI (Windows)
Registering FlowForce Server via the FlowForce CLI (Linux)
Next steps

Methods of registering FlowForce Server
FlowForce Server can be registered with LicenseServer using any of the following methods:

Via the FlowForce Server Setup page
Via the FlowForce CLI (Windows)
Via the FlowForce CLI (Linux)

Accessing the FlowForce Server Setup page (Windows)
The FlowForce Server Setup page can be accessed in one of the following ways:

Via the Start menu:
Start | Altova FlowForce Server 2015 | FlowForce Server Setup Page

Via Altova ServiceController: Click the ServiceController icon in the system tray. In the
menu that pops up, select Altova FlowForce Web | Setup.

This pops up the FlowForce Server Setup page (screenshot above).

566 Altova LicenseServer How to Assign Licenses

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Accessing the FlowForce Server Setup page (Linux)
After you have installed FlowForce Server on Linux (see the FlowForce Server user documentation
for information about how to do this), start FlowForce Web Server as a service with the following
command:

sudo /etc/init.d/flowforcewebserver start

A message containing the URL of the FlowForce Server Setup appears in the terminal window:

FlowForceWeb running on http://127.0.1.1:3459/setup?key=52239315203

Enter the URL in the address field of a browser and hit Enter to access the FlowForce Server
Setup page (screenshot below).

Registering FlowForce Server via the Setup page
In the Setup page (screenshot below)—how to access it is described above—the LicenseServer
field specifies the Altova LicenseServer to be used for registration.

© 2014 Altova GmbH

How to Assign Licenses 567Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

The LicenseServer can be specified in one of two ways.

You can search for Altova LicenseServers that are currently available on the network—
that is, those that are currently running. Do this by clicking the Search for Altova
LicenseServers button (highlighted yellow in the screenshot below).

The search returns a list of available Altova LicenseServers on the network. One
LicenseServer will be selected (screenshot below) and the others will be available in the
dropdown list of the combo box. Select the LicenseServer on which your FlowForce
license is stored.

568 Altova LicenseServer How to Assign Licenses

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Alternatively, you can enter the address of the LicenseServer in the LicenseServer field. If
the currently running LicenseServers are available as a dropdown list, you must click the
Manually Enter Address button to be able to enter an address in the LicenseServer
field.

After you have specified the LicenseServer, click Register with LicenseServer. The Altova
server application will be registered with the specified LicenseServer, and that LicenseServer's
Configuration page will open in a browser with its Server Management tab active (screenshot
below).

Note: You may need to allow pop-ups in order for the LicenseServer Configuration page to be
displayed.

© 2014 Altova GmbH

How to Assign Licenses 569Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

In the screenshot below, three Altova products have been registered with the Altova LicenseServer
at DOC.altova.com. How to assign licenses is described in the next section, Assign Licenses to
Registered Products.

Registering FlowForce Server via the FlowForce CLI (Windows)
On Windows machines, FlowForce Server can also be registered with an Altova LicenseServer on
your network via the command line (CLI) by using the licenseserver command:

FlowForceServer licenseserver Server-Or-IP-Address

For example, if LicenseServer is running on http://localhost:8088, then register FlowForce
Server with:

FlowForceServer licenseserver localhost

If FlowForce Server was installed with other Altova server products as sub-packages, registering
FlowForce Server will automatically also register the Altova server products. After successfully

570 Altova LicenseServer How to Assign Licenses

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

registering FlowForce Server, you can go to LicenseServer and assign a license to FlowForce
Server. How to do this is described in the section Assign Licenses to Registered Products.

Registering FlowForce Server via the FlowForce CLI (Linux)
On Linux machines, FlowForce Server can be registered with LicenseServer by using the
licenseserver command of the FlowForce Server CLI. Note that FlowForce Server must be
started with root rights.

sudo /opt/Altova/FlowForceServer2015/bin/flowforceserver licenseserver

localhost

In the command above, localhost is the name of the server on which LicenseServer is installed.
Notice also that the location of the FlowForce Server executable is:

/opt/Altova/MapForceServer2015/bin

After successfully registering FlowForce Server, you can go to LicenseServer and assign a
license to FlowForce Server. How to do this is described in the section Assign Licenses to
Registered Products.

Next Steps
After you have registered your Altova product with LicenseServer, do the following:

1. If you have not already uploaded your license file/s to the LicenseServer (see previous
section, Upload the license/s), upload the license file now and check that the license you
want is active. If you have already done this, carry on to the next step, Assign Licenses.

2. Assign a license to your Altova product that has been registered with the LicenseServer.

Register MapForce Server

This section:

Registering MapForce Server from FlowForce Server (Windows)
Registering a standalone MapForce Server (Windows)
Registering MapForce Server (Linux)
Next steps

MapForce Server can be installed as part of the FlowForce Server package or as a standalone
server product. In either case, it must be registered with Altova LicenseServer. Only after it has
been registered with LicenseServer can a license be assigned to it from LicenseServer. On
Windows systems, if MapForce Server was installed as part of the FlowForce Server package, it
will automatically be registered when FlowForce is registered. On Linux systems, only if

© 2014 Altova GmbH

How to Assign Licenses 571Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

MapForce Server is installed after FlowForce Server will it be registered automatically when
FlowForce Server is registered subsequently.

Registering MapForce Server from FlowForce Server (Windows)
MapForce Server is packaged with FlowForce Server, so when FlowForce Server is registered with
an Altova LicenseServer on your network, MapForce Server will automatically also be registered
with LicenseServer. How to register FlowForce Server is described in the FlowForce Server
documentation and in the section, Register FlowForce Server with LicenseServer.

After the registration, you can go to LicenseServer and assign a MapForce Server license to
MapForce Server. How to do this is described in the section, Assign Licenses to Registered
Products.

Registering a standalone MapForce Server (Windows)
If you have installed MapForce Server as a standalone package, you must register it with an
Altova LicenseServer on your network and then license it from the Altova LicenseServer. You can
register MapForce Server via its command line interface (CLI) by using the licenseserver
command:

MapForceServer licenseserver Server-Or-IP-Address

For example, if LicenseServer is running on http://localhost:8088, then register MapForce
Server with:

MapForceServer licenseserver localhost

After successfully registering MapForce Server, you can go to LicenseServer and assign a license
to MapForce Server. How to do this is described in the section, Assign Licenses to Registered
Products.

Registering MapForce Server (Linux)
On Linux machines, MapForce Server can be registered with LicenseServer by using the
licenseserver command of the MapForce Server CLI. Note that MapForce Server must be
started with root rights.

sudo /opt/Altova/MapForceServer2015/bin/mapforceserver licenseserver localhost

In the command above, localhost is the name of the server on which LicenseServer is installed.
Notice also that the location of the MapForce Server executable is:

/opt/Altova/MapForceServer2015/bin

572 Altova LicenseServer How to Assign Licenses

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

After successfully registering MapForce Server, you can go to LicenseServer and assign a license
to MapForce Server. How to do this is described in the section Assign Licenses to Registered
Products.

Next Steps
After you have registered your Altova product with LicenseServer, do the following:

1. If you have not already uploaded your license file/s to the LicenseServer (see previous
section, Upload the license/s), upload the license file now and check that the license you
want is active. If you have already done this, carry on to the next step, Assign Licenses.

2. Assign a license to your Altova product that has been registered with the LicenseServer.

Register StyleVision Server

This section:

Registering StyleVision Server from FlowForce Server (Windows)
Registering a standalone StyleVision Server (Windows)
Registering StyleVision Server (Linux)
Next steps

StyleVision Server can be installed as part of the FlowForce Server package or as a standalone
server product. In either case, it must be registered with Altova LicenseServer. Only after it has
been registered with LicenseServer can a license be assigned to it from LicenseServer. On
Windows systems, if StyleVision Server was installed as part of the FlowForce Server package, it
will automatically be registered when FlowForce is registered. On Linux systems, only if
StyleVision Server is installed after FlowForce Server will it be registered automatically when
FlowForce Server is registered subsequently.

Registering StyleVision Server from FlowForce (Windows)
StyleVision Server is packaged with FlowForce Server, so when FlowForce Server is registered
with an Altova LicenseServer on your network, StyleVision Server will automatically also be
registered with LicenseServer. How to register FlowForce Server is described in the FlowForce
Server documentation and in the section, Register FlowForce Server with LicenseServer.

After the registration, you can go to LicenseServer and assign a StyleVision Server license to
StyleVision Server. How to do this is described in the section Assign Licenses to Registered
Products.

© 2014 Altova GmbH

How to Assign Licenses 573Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

Registering a standalone StyleVision Server (Windows)
If you have installed StyleVision Server as a standalone package on Windows, you must register
it with an Altova LicenseServer on your network and then license it from the Altova LicenseServer.
You can register StyleVision Server via its command line interface (CLI) by using the
licenseserver command:

StyleVisionServer licenseserver Server-Or-IP-Address

For example, if LicenseServer is running on http://localhost:8088, then register StyleVision
Server with:

StyleVisionServer licenseserver localhost

After successfully registering StyleVision Server, you can go to LicenseServer and assign a
license to StyleVision Server. How to do this is described in the section Assign Licenses to
Registered Products.

Registering StyleVision Server (Linux)
On Linux machines, StyleVision Server can be registered with LicenseServer by using the
licenseserver command of the StyleVision Server CLI. Note that StyleVision Server must be
started with root rights.

sudo /opt/Altova/StyleVisionServer2015/bin/stylevisionserver licenseserver

localhost

In the command above, localhost is the name of the server on which LicenseServer is installed.
Notice also that the location of the StyleVision Server executable is:

/opt/Altova/StyleVisionServer2015/bin

After successfully registering StyleVision Server, you can go to LicenseServer and assign a
license to StyleVision Server. How to do this is described in the section Assign Licenses to
Registered Products.

Next Steps
After you have registered your Altova product with LicenseServer, do the following:

1. If you have not already uploaded your license file/s to the LicenseServer (see previous
section, Upload the license/s), upload the license file now and check that the license you
want is active. If you have already done this, carry on to the next step, Assign Licenses.

2. Assign a license to your Altova product that has been registered with the LicenseServer.

574 Altova LicenseServer How to Assign Licenses

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Register RaptorXML(+XBRL) Server

This section:

Registering RaptorXML(+XBRL) Server (Windows)
Registering RaptorXML(+XBRL) Server (Linux)
Next steps

RaptorXML(+XBRL) Server must be installed on the server machine or network to which
LicenseServer is connected and then be started as a service. It must then be registered with
LicenseServer. Only after registration can a license be assigned to it from LicenseServer. This
section describes how to register RaptorXML(+XBRL) Server with LicenseServer.

Registering RaptorXML(+XBRL) Server (Windows)
You can register RaptorXML(+XBRL) Server via its command line interface (CLI) by using the
licenseserver command:

RaptorXML Server: RaptorXML licenseserver Server-Or-IP-Address

RaptorXML+XBRL
Server:

RaptorXMLXBRL licenseserver Server-Or-IP-Address

For example, if LicenseServer is running on http://localhost:8088, then register
RaptorXML(+XBRL) Server with:

RaptorXML Server: RaptorXML licenseserver localhost

RaptorXML+XBRL
Server:

RaptorXMLXBRL licenseserver localhost

After successfully registering RaptorXML(+XBRL) Server, you can go to LicenseServer and assign
a license to RaptorXML(+XBRL) Server. How to do this is described in the section Assign
Licenses to Registered Products.

Registering RaptorXML(+XBRL) Server (Linux)
On Linux machines, RaptorXML(+XBRL) Server can be registered with LicenseServer by using
the licenseserver command of the RaptorXML(+XBRL) Server CLI. Note that RaptorXML(+XBRL)
Server must be started with root rights.

sudo /opt/Altova/RaptorXMLServer2015/bin/raptorxmlserver licenseserver

localhost

© 2014 Altova GmbH

How to Assign Licenses 575Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

sudo /opt/Altova/RaptorXMLXBRLServer2015/bin/raptorxmlxbrlserver licenseserver

localhost

In the command above, localhost is the name of the server on which LicenseServer is installed.
Notice also that the location of the RaptorXML(+XBRL) Server executable is:

/opt/Altova/RaptorXMLServer2015/bin

/opt/Altova/RaptorXMLXBRLServer2015/bin

After successfully registering RaptorXML(+XBRL) Server, you can go to LicenseServer and assign
a license to RaptorXML(+XBRL) Server. How to do this is described in the section Assign
Licenses to Registered Products.

Next Steps
After you have registered your Altova product with LicenseServer, do the following:

1. If you have not already uploaded your license file/s to the LicenseServer (see previous
section, Upload the license/s), upload the license file now and check that the license you
want is active. If you have already done this, carry on to the next step, Assign Licenses.

2. Assign a license to your Altova product that has been registered with the LicenseServer.

Register MobileTogether Server

To start MobileTogether Server, click the ServiceController icon in the system tray, hover over
Altova MobileTogether Server in the menu that pops up (see screenshot below), and then
select Start Service from the MobileTogether Server submenu. If MobileTogether Server is
already running, the Start Service option will be disabled.

Register MobileTogether Server via:

The Settings tab of the MobileTogether Server Web UI: (i) Start MobileTogether Server via
ServiceController (see previous point); (ii) Enter your password to access the Setup page;
(iii) Select the LicenseServer name or address, and click Register with LicenseServer.

its CLI, using the licenseserver command:

576 Altova LicenseServer How to Assign Licenses

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

MobileTogetherServer licenseserver [options] ServerName-Or-IP-Address

For example, if localhost is the name of the server on which LicenseServer is installed:
MobileTogetherServer licenseserver localhost

After successful registration, go to the Server Management tab of LicenseServer's configuration
page to assign a license to MobileTogether Server.

© 2014 Altova GmbH

How to Assign Licenses 577Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

11.6.7 Assign Licenses to Registered Products

This section:

Before assigning a license
The Server Management tab
Icons in the Server Management tab
Note on cores and licenses
Assigning a license
Unregistering products from LicenseServer

Before assigning a license
Before you assign a license to an Altova product, make sure that:

The relevant license has been uploaded to the license pool of LicenseServer and that the
license is active.
Your Altova product has been registered with LicenseServer.

The Server Management tab
Licenses are assigned in the Server Management tab of the LicenseServer Configuration page
(screenshot below). The screenshot shows that three Altova products have been registered with
LicenseServer. (Since MapForce Server and StyleVision Server are bundled with FlowForce
Server, registering FlowForce Server with LicenseServer automatically also registers MapForce
Server and StyleVision Server. No additional registration of the latter two products are required if
FlowForce Server is registered.)

578 Altova LicenseServer How to Assign Licenses

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Note the following points about the Server Management tab:

Each product is listed under the name of its client machine. In the screenshot above, one
client machine, named Doc.altova.com, is listed. This client machine (Doc.altova.com)
has three Altova products registered with the LicenseServer. If an Altova product on a
different client machine is registered with this LicenseServer, then that client machine,
with its registered products, will also be listed in the Server Management tab.
Each registered Altova product on a client machine has its own Key Code entry, which
takes the key code of a license. A registered product's key code is assigned by clicking
its Edit Assigned Licenses button (see icon list below) and selecting the required
license from those available for that product (for example, FlowForce Server) in the
license pool. This procedure is explained in more detail below.
Each product also has a line stating how many CPU cores need to be licensed to run
that product on that client. If the number of licensed cores is less than the number
required, then the information is marked in red (see screenshot above). (The number of
CPU cores that need to be licensed is the number of CPU cores on that client and is
obtained from the client machine by LicenseServer.)
If multiple versions of a single product (for example, StyleVision Server 2013 and
StyleVision Server 2014) have been installed on one machine and if each of these
installations has been registered with a single LicenseServer, then the multiple
registrations are consolidated in a single registration in the Server Management tab and
displayed as a single registration. When a license is assigned to this single registration,

© 2014 Altova GmbH

How to Assign Licenses 579Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

all the installations indicated by that registration will be licensed. However, multiple
instances of only one installation can be run simultaneously on the client machine. For
example, multiple instances of StyleVision Server 2013 or multiple instances of
StyleVision Server 2014 can be run simultaneously, but not one instance of StyleVision
Server 2013 and one instance of StyleVision Server 2014. Note that newly installed
versions must be registered for them to run.
New versions of Altova server products can only be licensed with the latest version of
LicenseServer at the time of the product's release. Older Altova server products will work
with newer versions of LicenseServer. So, if you are installing a new version of an Altova
server product and if your current LicenseServer version is not the latest, de-install the
older version of LicenseServer and install the latest version. All registration and licensing
information held in your older version of LicenseServer will be saved, at the time of de-
installation, to a database on the server, and will be imported automatically into the newer
version. (The version number of the LicenseServer that is appropriate for any particular
version of a server product is displayed during the installation of that server product. You
can choose to install this version along with the server product. The version of the
currently installed LicenseServer is given at the bottom of the LicenseServer configuration
page.)

Icons in the Server Management tab

Edit Assigned Licenses. Available with each product. Pops up the Manage Licenses
dialog, in which new licenses can be assigned to the product and already assigned
licenses can be edited.

Show Licenses. Appears with each license. Switches to the License Pool tab and
highlights the selected license, so that license details can be read.

Unregister This Product. Available with each product. The selected product (on the
selected client machine) will be unregistered from LicenseServer.

Note on cores and licenses
The licensing of Altova server products, except MobileTogether Server***, is based on the number
of processor cores available on the product machine. For example, a dual-core processor has two
cores, a quad-core processor four cores, a hexa-core processor six cores, and so on. The number
of cores licensed for a product on a particular server machine must be greater than or equal to the
number of cores available on that server, whether it's a physical or virtual machine.

For example, if a server has eight cores (an octa-core processor), you must purchase at least an
8-core license. You can also combine licenses to achieve the core count. So, two 4-core licenses
can also be used for an octa-core server instead of an 8-core license.

If you are using a computer server with a large number of CPU cores but only have a low volume
to process, you may also create a virtual machine that is allocated a smaller number of cores,
and purchase a license for that number. Such a deployment, of course, will have less processing
speed than if all available cores on the server were utilized.

580 Altova LicenseServer How to Assign Licenses

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Note: Each license can be used for only one client machine at a time, even if it has unused
licensing capacity. For example, if a 10-core license is used for a client machine that has
6 CPU cores, then the remaining 4 cores of the license cannot be used simultaneously
for another client machine.

*** MobileTogether Server licenses are assigned on the basis of the number of users, that is,
the number of client devices that connect to MobileTogether Server.

Assigning a license
To assign a license to a registered product, click the Edit Assigned Licenses button of that
product. This pops up the Manage Licenses dialog (screenshot below).

Note the following points about the licenses displayed in the Manage Licenses dialog:

The product to be licensed is listed at the top left of the dialog. In the screenshot above
the product is Altova FlowForce Server 2013.
The dialog displays all the currently active licenses for that product in the license pool. In
our screenshot, four currently active FlowForce Server licenses are in the license pool.
LicenseServer will automatically detect from each license in the pool the product for
which it has been issued.
The licenses in the screenshot above have been licensed, respectively, for 3 CPU cores,
2 CPU cores, 4 CPU cores, and 4 CPU cores.
You need to know the number of processor cores on the server on which the Altova server
product has been installed. If the machine has a dual-core processor, you need a two-

© 2014 Altova GmbH

How to Assign Licenses 581Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

core (the CPU Cores count) license. This license could be, for example, the second
license in the list shown in the screenshot above. You can also combine licenses. So, if
the machine's processor is octa-core (eight-core), you can combine two 4-core licenses;
for example, the third and fourth licenses in the list shown in the screenshot above.
The Manage Licenses dialog will list only currently active licenses for that product.
Licenses for other Altova products will not be listed.
Licenses that have been assigned already—for example, to another installation of the
product on the network—will have their check boxes checked. So only unchecked
licenses may be selected.
CPU cores indicates for how many CPU cores a license is valid.
If you wish to make modifications to the license pool—for example, to upload, activate,
deactivate, or delete a license—click the Go to License Pool button.

Select the license you wish to assign. The license's check box will be checked. Also, the total
number of CPU cores licensed for that product on that client is listed near the top left of the dialog
as Max licensed CPU cores (see screenshot above). You can select more licenses if you wish to
increase the number of licensed CPU cores for that product on that client. The Max licensed CPU
cores in this case will be the sum of the CPU cores of all the selected licenses.

After selecting the license/s, click Apply Changes. The license/s will be assigned to that product
and displayed in the Server Management tab (see screenshot below). The screenshot below
shows that a 2-CPU-core license for Altova FlowForce Server has been assigned (to the client
machine Doc.altova.com).

Unregistering products
Each Altova product registered with LicenseServer is listed in the Server Management tab under
its client machine name and has an Unregister icon to its right. Click this icon to unregister the
product. If a license was assigned to the product, the assignment will be terminated when the
product is unregistered. To unregister all products, click the Unregister Server and All
Products button at the bottom of the Server Management tab (see first screenshot in this
section).

To re-register a product, go to the product's pre-configuration page.

582 Altova LicenseServer Configuration Page Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

11.7 Configuration Page Reference

The LicenseServer Configuration page is the administrator's interface with LicenseServer (Web UI).
It allows the management of LicenseServer and the licensing of Altova products that have been
registered with LicenseServer (FlowForce Server, MapForce Server, StyleVision Server,
RaptorXML(+XBRL) Server). The LicenseServer Configuration page is viewed in a web browser.
How to open the Configuration page is described in the sections, Open LicenseServer Config
Page (Windows) and Open LicenseServer Config Page (Linux).

This section is a user reference for the Configuration page and is organized by the tabs of the
Configuration page:

License Pool
Server Management
Server Monitoring
Settings
Messages, Log Out

For a step-by-step guide of how to assign licenses with LicenseServer, see the section How to
Assign Licenses.

© 2014 Altova GmbH

Configuration Page Reference 583Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

11.7.1 License Pool

This section:

Uploading a license
License status
Activating, de-activating, and deleting a license
Icons in the License Pool tab
License information
Note on cores and licenses

The License Pool tab displays all the licenses that are currently on the LicenseServer (see
screenshot below). When a license file is uploaded to the LicenseServer with the Upload button
on this page, all the licenses contained in the license file are placed in the license pool on the
server and are displayed on the License Pool page.

The License Pool page displays information about all the licenses currently on the LicenseServer
and thus provides a convenient overview of all Altova product licenses. On this page you can also
activate, deactivate, and delete selected licenses.

Uploading a license
To upload a license file (which you receive from Altova GmbH for your Altova server product), click
the Browse button, browse for the license file and select it. On clicking Upload, all the licenses

584 Altova LicenseServer Configuration Page Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

contained in the license file are placed in the license pool and displayed on the License Pool page
(screenshot above).

License status
License status values are as follows:

Activating: When a license is uploaded into the license pool of LicenseServer, the server
will transmit license-related data to the altova.com master licensing server to validate,
authenticate, and activate the license that was supplied. This is necessary to ensure
compliance with the Altova license agreements. During this initial activation and
authentication transaction—which typically lasts between 30 seconds and a couple of
minutes, depending on your Internet connection, speed, and overall network traffic—the
status of the license will be indicated as Activating....

Failed Verification: If a connection with the altova.com master licensing server cannot be
made, then the status of the license in the pool will be shown as Failed Verification. If
this happens, check your Internet connection and firewall rules to ensure that
LicenseServer is able to communicate with the altova.com master licensing server.

Active: Once the license has been authenticated and activated, the status in the pool will
change to Active.

Inactive: If a license has been verified, but is present on another LicenseServer on the
network, the status in the pool will be shown as Inactive. An Inactive status also results
when a license is manually deactivated in the license pool by the administrator.

Blocked: A license is shown in the license pool as Blocked if there was a problem
authenticating the license and the altova.com master licensing server has not granted
permission to the LicenseServer to use this license. This could be the result of a license
agreement violation, over-usage of a license, or other compliance issues. Should you see
a license showing up as Blocked, please contact Altova Support with your license
information and any other relevant data.

These statuses are summarized in the table below:

Status Meaning

Activating... On upload, license information is sent to altova.com for verification.
Refresh the browser to view the updated status. Verification and activation
can take a few minutes.

Failed Verification A connection to altova.com could not be made. After establishing a
connection, either restart the service or activate the license (with the
Activate button).

Active Verification was successful, the license is active.

Inactive Verification was successful, but the license is on another LicenseServer on
the network. Licenses can be made inactive with the Deactivate button.

© 2014 Altova GmbH

Configuration Page Reference 585Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

Blocked Verification was not successful. License is invalid and is blocked. Contact
Altova Support.

Note: After a license has been sent to altova.com for verification, the browser must be
refreshed to see the updated status. Verification and activation can take a few minutes.

Note: If a connection to altova.com could not be made, the status will be Failed Verification.
After establishing a connection, either restart the service or try activating the license with
the Activate button.

Note: When a license is given a status of Inactive or Blocked, a message explaining the status
is also added to the Messages log.

Only an active license can be assigned to a product installation. An inactive license can be
activated or deleted from the license pool. If a license is deleted from the license pool, it can be
uploaded again to the pool by uploading the license file containing it. When a license file is
updated, only those licenses in it that are not already in the pool will be uploaded to the pool. To
activate, deactivate, or delete a license, select it and then click the Activate, Deactivate, or
Delete button, respectively.

Connection to the Master Licensing Server at altova.com
The Altova LicenseServer needs to be able to communicate with the Master Licensing Server
at altova.com to validate and authenticate license-related data and to ensure continuous
compliance with the Altova license agreements. This communication occurs over HTTPS
using port 443. If the Altova LicenseServer, after making the initial verification with the
altova.com Master Licensing Server, is unable to again connect with altova.com for a
duration of more than 5 days (= 120 hours), then the Altova LicenseServer will no longer
permit the usage of any Altova software products connected to the Altova LicenseServer.

Any such loss of connection with the altova.com master servers will be logged in the
Messages tab of the Configuration page of the Altova LicenseServer. In addition, the
administrator can configure the Altova LicenseServer to automatically send an alert email
when the connection to altova.com is lost. Alert Mail settings are available in the Settings
tab of the Configuration page.

Activating, deactivating, and deleting a license
An active license can be deactivated by selecting the license and clicking Deactivate. An
inactive license can be activated (Activate button) or deleted (Delete button). When a license is
deleted it is removed from the license pool. A deleted license can be added again to the license
pool by uploading the license file containing it. If a license file is re-uploaded, only licenses that
are not already in the license pool will be added to the license pool; licenses that are already in
the pool will not be re-added.

http://www.altova.com/support

586 Altova LicenseServer Configuration Page Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Icons in the License Pool tab

Edit Assigned Licenses. Appears with each license (in the Assignments column). Pops
up the Manage Licenses dialog, in which new licenses can be assigned to the product
and already assigned licenses can be edited.

Show License Information. Appears with each license (in the Assignments column).
Provides information about the currently active clients.

License information
The following license information is displayed:

Status: Can be one of the following values: Failed Verification | Activating | Active |
Inactive | Blocked. See License status above.
Name, Company: The name and company of the licensee. This information was
submitted at the time of purchase.
Product, Edition, Version: The version and edition of the licensed products.
Key, Expires in days, SMP (days left): The license key to unlock the product, and the
number of days left before the license expires. Each licensed purchase comes with a
Support & Maintenance Package, which is valid for a certain number of days. The SMP
column notes how many SMP days are still left.
Users | CPU Cores: The number of users or CPU cores that the license allows. In the
case of Altova's MobileTogether Server product, licenses are assigned on the basis of the
number of MobileTogether client devices that connect to MobileTogether Server. In the
case of all other Altova server products, licenses are assigned on the basis of CPU cores
(see note below).
Assignments: Access to editing dialogs and information of individual licenses.

Note on cores and licenses
The licensing of Altova server products, except MobileTogether Server***, is based on the number
of processor cores available on the product machine. For example, a dual-core processor has two
cores, a quad-core processor four cores, a hexa-core processor six cores, and so on. The number
of cores licensed for a product on a particular server machine must be greater than or equal to the
number of cores available on that server, whether it's a physical or virtual machine.

For example, if a server has eight cores (an octa-core processor), you must purchase at least an
8-core license. You can also combine licenses to achieve the core count. So, two 4-core licenses
can also be used for an octa-core server instead of an 8-core license.

If you are using a computer server with a large number of CPU cores but only have a low volume
to process, you may also create a virtual machine that is allocated a smaller number of cores,
and purchase a license for that number. Such a deployment, of course, will have less processing
speed than if all available cores on the server were utilized.

Note: Each license can be used for only one client machine at a time, even if it has unused
licensing capacity. For example, if a 10-core license is used for a client machine that has

© 2014 Altova GmbH

Configuration Page Reference 587Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

6 CPU cores, then the remaining 4 cores of the license cannot be used simultaneously
for another client machine.

*** MobileTogether Server licenses are assigned on the basis of the number of users, that is,
the number of client devices that connect to MobileTogether Server.

588 Altova LicenseServer Configuration Page Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

11.7.2 Server Management

This section:

Icons in the Server Management tab
Assigning licenses
One client machine under different names
Requesting an evaluation license
Unregistering products

In the Server Management tab (screenshot below), you can assign licenses to registered
products.

Note the following points about the Server Management tab:

Each product is listed under the name of its client machine. In the screenshot above, one
client machine, named Doc.altova.com, has three Altova products registered with the
LicenseServer. If an Altova product on a different client machine is registered with this
LicenseServer, then that client machine, with its registered products, will also be listed in

© 2014 Altova GmbH

Configuration Page Reference 589Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

the Server Management tab.
Each registered Altova product on a client machine has its own Key Code entry, which
takes the key code of a license. A registered product's key code is assigned by clicking
its Edit Assigned Licenses button and selecting the required license from those
available for that product (for example, FlowForce Server) in the license pool. This
procedure is explained in more detail below.
Each product (except MobileTogether Server) also has a line stating how many CPU
cores need to be licensed to run that product on that client. If the number of licensed
cores is less than the number required, then the information is marked in red (see
screenshot above). (The number of CPU cores that need to be licensed is the number of
CPU cores on that client and is obtained from the client machine by LicenseServer.)

Single thread execution
If a product license for only one core is available in the license pool, a machine with multiple
cores can be assigned this one-core license. In such a case, the machine will run that
product on a single core. Processing will therefore be slower as multi-threading (which is
possible on multiple cores) will not be available. The product will be executed in single thread
mode on that machine.

To assign a single-core license to a multiple-core machine, select the Limit to single thread
execution check box for that product.

Icons in the Server Management tab

Edit Assigned Licenses. Available with each product. Pops up the Manage Licenses
dialog, in which new licenses can be assigned to the product and already assigned
licenses can be edited.

Show Licenses. Appears with each license. Switches to the License Pool tab and
highlights the selected license, so that license details can be read.

Unregister This Product. Available with each product. The selected product (on the
selected client machine) will be unregistered from LicenseServer.

Assigning a license
To assign a license to a registered product, click the Edit Assigned Licenses button of that
product. This pops up the Manage Licenses dialog (screenshot below).

590 Altova LicenseServer Configuration Page Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Select the license you wish to assign. After selecting the license/s, click Apply Changes. The
license/s will be assigned to that product and displayed in the Server Management tab (see
screenshot below).

One client machine under different names
If a client machine is registered more than once with LicenseServer, it might appear in the Server
Management tab under multiple names, that is, with multiple entries. This could happen, for
example, if a machine is re-registered with the host name given in a different form.

To ensure that additional licenses are not redundantly assigned to the same machine under its
different names, you should unregister redundant client machine entries by clicking the
Unregister server and all products button of these machines. (Note: While the client machines
are considered for the purposes of this documentation to be clients of LicenseServer, they are in
effect servers of their own products.) Also, if the same license is assigned multiple times to the
same machine under its different names, licensing conflicts could arise. So, to avoid these two
situations (redundant licensing and multiple assignments of a single license), it is recommended
that redundant entries of a single client machine be unregistered.

Given below are forms a machine name might take in the Server Management tab:

© 2014 Altova GmbH

Configuration Page Reference 591Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

Host name with domain name (the fully qualified domain name, FQDN), such as: "win80-
x64_1.my.domain.com" or "Doc3.my.domain.com". This happens when the host name of
the machine (with or without the domain information) is passed as the argument of the
licenseserver CLI command that is used to register the server product with
LicenseServer. For example: <AltovaServerProduct> licenseserver Doc3. This

produces an FQDN such as: Doc3.my.domain.com.

An FQDN is also produced when localhost is supplied on Windows 7 systems as the
host name.

Host name without domain name. For example: "win80-x64_1" or "Doc3". This happens
on Windows 8 systems when localhost is given as the machine name.

localhost. In some cases, localhost is also displayed as a machine name.

Note: If, during installation of the Altova server product on Windows machines, the machine is
automatically registered with LicenseServer, localhost is used by the installer as the
machine name.

Requesting an evaluation license
You can obtain a 30-day free evaluation license for each of a client's installed Altova products that
have been registered with LicenseServer. Click the Request Evaluation Licenses button near
the bottom of the Server Management tab. A dialog pops up containing a list of the Altova server
products (on that client machine) which have been registered with LicenseServer. Make sure that
the products for which you want an evaluation license are checked, then fill in the registration
fields, and send the request. You will receive an e-mail from Altova containing the 30-day
evaluation license/s. The number of cores for which the license will be valid per product will be
exactly the number required by the product at the time the request is sent. Save the license/s to
disk and upload to the license pool.

Unregistering products
Each Altova product registered with LicenseServer is listed in the Server Management tab under
its client machine name and has an Unregister icon to its right. Click this icon to unregister the
product. If a license was assigned to the product, the assignment will be terminated when the
product is unregistered. To unregister all products, click the Unregister Server and All
Products button at the bottom of the Server Management tab (see first screenshot in this
section).

To re-register a product with LicenseServer, go to the product's Setup page or its CLI and register
it. See: Register FlowForce Server, Register MapForce Server, Register StyleVision Server, and
Register RaptorXML(+XBRL) Server.

For more information, see the section, Assigning Licenses to Registered Products.

592 Altova LicenseServer Configuration Page Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

11.7.3 Server Monitoring

The Server Monitoring tab provides an overview of servers currently running licensed Altova
products. It contains product information along with information about users and licenses.

© 2014 Altova GmbH

Configuration Page Reference 593Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

11.7.4 Settings

This section:

Network settings
Alert Mail settings
Miscellaneous settings

The Settings tab is described below. You can set the following:

The password for logging in to LicenseServer. Enter the desired password and click
Change Password.
Test connectivity to Altova by clicking Test Connection to Altova. Note that you must
save new settings (by clicking the Save button at the bottom of the pane) before testing
the connection. The Test Connection to Altova button is disabled while the test is in
progress, and becomes enabled again when the test has been completed.
Client statistics
Network settings for the web-based configuration page (Web UI), the proxy server used to
connect to the Internet (if any), for and for LicenseServer (License Service). These
settings are described in Network settings below.
Email server settings and the alert mail recipient to contact in the event of a significant
LicenseServer occurrence. These settings are described in Alert Mail settings below.
After you change a setting, click Save at the bottom of the pane. A changed setting will
not take effect till it is saved.

Network settings
Administrators can specify network access points to the LicenseServer configuration page and to
LicenseServer.

594 Altova LicenseServer Configuration Page Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

Web UI: Allowed IP addresses can vary from all interfaces and IP addresses on that
machine to a fixed address, and ports can be either dynamically calculated or fixed. This
allows a wide range of allowed IP-Address:Port settings. The default port setting is 8088.
Proxy Server (available from v1.3 onwards): If a proxy server is being used to connect to
the Internet, the details of the proxy server must be entered in the Proxy Server pane (see
screenshot above). These fields need to be filled in only if a proxy server is being used.
Also, proxy servers often do not need authentication (a user-name and password), in
which case these two fields can be left blank. To configure LicenseServer for the proxy
server, enter the proxy server's host name, and, if required, a port number.
License Service: IP addresses can vary from all interfaces and IP addresses on that
machine to a fixed address. If you list hostnames and/or IP addresses, use a comma-
separated list without any spaces (for example: hostname1,IPAddress1,hostname2).The
port number is fixed at 35355.

By default, these settings allow unrestricted access to LicenseServer and its configuration page
from within the networks to which LicenseServer is connected. If you wish to restrict access to

© 2014 Altova GmbH

Configuration Page Reference 595Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

either LicenseServer or its configuration page, enter the appropriate settings and click Save.

Run a connectivity test (see above) to check that the settings are correct.

Alert Mail settings
Altova LicenseServer needs to be connected to the altova.com server. If the connection is broken
for more than 24*5 hours (5 days), LicenseServer will not allow licenses. As a result, work
sessions with Altova products licensed by LicenseServer could be disrupted.

In order to alert the administrator that a connection is broken, an alert mail can be sent to an
email address. The Alert Mail pane (see screenshot below) is where you enter settings for
sending alert mails to an administrator's email address.

SMTP Host and SMTP Port are the access details of the email server from which the email alert
will be sent. User Authentication and User Password are the user's credentials for accessing the

596 Altova LicenseServer Configuration Page Reference

© 2014 Altova GmbHAltova RaptorXML+XBRL Server 2015

email server. The From field takes the address of the email account from which the email will be
sent. The To field takes the recipient's email address.

Click Save when done. After saving the Alert Mail settings, email alerts will be sent to the
address specified whenever a significant event occurs, such as when connection to altova.com
is lost. Note that such events are also recorded in the Messages tab, and can be looked up there.

Miscellaneous settings

Show hints for receiving and deploying evaluation licenses
Checking this box (see secreenshot above) displays, at the top of the configuration page, brief
instructions about how to evaluate and deploy evaluation licenses.

Send a warning email if contact with a running product is lost
A warning message is sent from the From address to the To address if a connection with a
product that is licensed and running is lost.

© 2014 Altova GmbH

Configuration Page Reference 597Altova LicenseServer

Altova RaptorXML+XBRL Server 2015

11.7.5 Messages, Log Out

The Messages tab displays all messages relevant to licenses in the license pool of the
LicenseServer. Each message has a Delete button that allows you to delete that particular
message.

The Log Out tab serves as the Log Out button. Clicking the tab logs you out immediately and
then displays the Login mask.

© 2014 Altova GmbH

Index 599

Index

.

.NET extension functions,

constructors, 531

datatype conversions, .NET to XPath/XQuery, 534

datatype conversions, XPath/XQuery to .NET, 533

for XSLT and XQuery, 529

instance methods, instance fields, 532

overview, 529

static methods, static fields, 532

.NET interface, 5

A
Administrator interface, 582

Alert emails, 593

Altova extensions,

chart functions (see chart functions), 472

Altova LicenseServer,

(see LicenseServer), 542

Altova ServiceController, 549

Assigning licenses, 577, 588

C
Catalogs, 33

Chart functions,

chart data structure for, 508

example, 513

listing, 504

COM interface, 5

Comman line,

options, 141

Command line,

and XQuery, 114

usage summary, 46

Configuration page, 582

opening on Linux, 556

opening on Mac OS X, 558

opening on Windows, 553

URL of, 553

URL of (Linux), 556

URL of (Mac OS X), 558

D
Default password, 553

E
Extension functions for XSLT and XQuery, 519

Extension Functions in .NET for XSLT and XQuery,

see under .NET extension functions, 529

Extension Functions in Java for XSLT and XQuery,

see under Java extension functions, 520

Extension Functions in MSXSL scripts, 537

F
FlowForce Server,

registering with LicenseServer, 565

G
Global resources, 41

H
Help command on CLI, 135

HTTP interface, 5, 160

client requests, 170

security issues, 43

server configuration, 166

server setup, 162

Index

© 2014 Altova GmbH

600

I
Installation on Linux, 22

Installation on Mac OS X, 28

Installation on Windows, 16

Interfaces,

overview of, 5

J
Java extension functions,

constructors, 525

datatype conversions, Java to Xpath/XQuery, 528

datatype conversions, XPath/XQuery to Java, 527

for XSLT and XQuery, 520

instance methods, instance fields, 526

overview, 520

static methods, static fields, 525

user-defined class files, 521

user-defined JAR files, 524

Java interface, 5

L
License commands on CLI, 137

License Pool, 561, 583

Licenses,

assigning, 577, 588

uploading, 561, 583

LicenseServer,

Configuration page, 582

installation on Mac OS X, 548

installation on Windows, 545, 546

interface with, 582

registering FlowForce Server with, 565

registering MapForce Server with, 570

registering StyleVision Server with, 572

settings, 593

starting, 551

steps for assigning licenses, 550

LicenseServer configuration page,

(see Configuration page), 553, 556, 558

Licensing on Linux, 25

Licensing on Mac OS X, 31

Licensing on Windows, 18

Linux,

installation on, 22

licensing on, 25

Localization, 138

Logout, 597

M
Mac OS X,

installation on, 28

licensing on, 31

MapForce Server,

registering with LicenseServer, 570

Messages, 597

msxsl:script, 537

N
Network information, 544

Network settings, 593

P
Password,

default at startup, 553

Python,

security issues, 43

Python API,

Job object, 214

XBRL API, 293

XML API, 215

XSD API, 230

Python interface, 5, 190

creating scripts, 192

executing scripts, 195

Python script example, 196, 201, 208

© 2014 Altova GmbH

Index 601

R
RaptorXML,

command line interface, 5

editions and interfaces, 5

features, 8

HTTP interface, 5

interfaces with COM, Java, .NET, 5

introduction, 3

Python interface, 5

supported specifications, 10

system requirements, 7

Registering FlowForce Server with LicenseServer, 565

Registering MapForce Server with LicenseServer, 570

Registering StyleVision Server with LicenseServer, 572

S
Scripts in XSLT/XQuery,

see under Extension functions, 519

Security issues, 43

Server configuration, 166

Server Management tab, 577, 588

Server Monitoring tab, 592

ServiceController, 549

Settings, 593

Setup,

on Linux, 21

on Mac OS X, 27

on Windows, 15

StyleVision Server,

registering with LicenseServer, 572

U
Uploading licenses, 561, 583

V
Validation,

of any document, 67, 98

of DTD, 59

of XBRL instance, 82

of XBRL instance and taxonomy, 81

of XBRL taxonomy, 91

of XML instance with DTD, 49

of XML instance with XSD, 53

of XQuery document, 126

of XSD, 62

of XSLT document, 109

W
Well-formedness check, 71

Windows,

installation on, 16

licensing on, 18

X
XBRL validation,

see Validation, 81

XML catalogs, 33

XQuery,

Extension functions, 519

XQuery commands, 114

XQuery document validation, 126

XQuery execution, 115

XSLT,

Extension functions, 519

XSLT commands, 102

XSLT document validation, 109

XSLT transformation, 103

	About RaptorXML+XBRL Server
	Editions and Interfaces
	System Requirements
	Features
	Supported Specifications

	Setting Up RaptorXML
	Setup on Windows
	Installation on Windows
	Licensing on Windows

	Setup on Linux
	Installation on Linux
	Licensing on Linux

	Setup on Mac OS X
	Installation on Mac OS X
	Licensing on Mac OS X

	XML Catalogs
	How Catalogs Work
	Altova's XML Catalog Mechanism
	Variables for Windows System Locations

	Global Resources
	Security Issues

	Command Line Interface (CLI)
	XML, DTD, XSD Validation Commands
	valxml-withdtd (xml)
	valxml-withxsd (xsi)
	valdtd (dtd)
	valxsd (xsd)
	valany

	Well-formedness Check Commands
	wfxml
	wfdtd
	wfany

	XBRL Validation Commands
	valxbrl (xbrl)
	valxbrltaxonomy (dts)
	valany

	XSLT Commands
	xslt
	valxslt

	XQuery Commands
	xquery
	xqueryupdate
	valxquery
	valxqueryupdate

	Help and License Commands
	Help Command
	License Commands

	Localization Commands
	exportresourcestrings
	setdeflang

	Options
	Catalogs, Global Resources, ZIP Files
	Messages, Errors, Help, Timeout, Version
	Processing
	XBRL
	XML
	XSD
	XQuery
	XSLT

	HTTP Interface
	Server Setup
	Starting the Server
	Testing the Connection
	Configuring the Server

	Client Requests
	Initiating Jobs with POST
	Server Response to POST Request
	Getting the Result Document
	Getting Error/Message/Output Documents
	Freeing Server Resources after Processing

	Python Interface
	Creating Python Scripts
	Executing Python Scripts
	Example-Script 01: Process XML
	Script Listing
	Result Document

	Example-Script 02: Re-format XML
	Script Listing
	Result Document

	Example-Script 03: XBRL Report
	Script Listing
	Result Document

	Python API: The Job Object
	Python XML API
	xml.Attribute
	xml.Character
	xml.Comment
	xml.Document
	xml.Element
	xml.Namespace
	xml.Notation
	xml.NSAttribute
	xml.ProcessingInstruction
	xml.QName
	xml.UnexpandedEntityReference
	xml.UnparsedEntity

	Python XSD API
	xsd.Annotation
	xsd.Any
	xsd.AnyAttribute
	xsd.Assertion
	xsd.AttributeDeclaration
	xsd.AttributeGroupDefinition
	xsd.AttributePSVI
	xsd.AttributeUse
	xsd.Block
	xsd.ComplexTypeDefnition
	xsd.ContentType
	xsd.Defined
	xsd.DerivationMethod
	xsd.ENTITY
	xsd.ElementDeclaration
	xsd.ElementPSVI
	xsd.Final
	xsd.ID
	xsd.IDREF
	xsd.ID_IDREF_binding
	xsd.ID_IDREF_table
	xsd.IdentityConstraintDefinition
	xsd.Instance
	xsd.ModelGroup
	xsd.ModelGroupDefinition
	xsd.NCName
	xsd.NMTOKEN
	xsd.NOTATION
	xsd.Name
	xsd.NamespaceBinding
	xsd.NamespaceConstraint
	xsd.NotationDeclaration
	xsd.OpenContent
	xsd.PSVI
	xsd.Particle
	xsd.QName
	xsd.Schema
	xsd.Scope
	xsd.Sibling
	xsd.SimpleTypeDefinition
	xsd.TypeAlternative
	xsd.TypeTable
	xsd.Unbounded
	xsd.ValueConstraint
	xsd.XPathExpression
	Special Built-in Datatype Objects
	String Datatype Objects
	Boolean Datatype Object
	Number Datatype Objects
	Duration Datatype Objects
	Date and Time Datatype Objects
	Binary Datatype Objects
	Facet Objects

	Python XBRL API
	xbrl.BreakdownResource
	xbrl.Concept
	xbrl.ConceptAspectValue
	xbrl.ConstraintSet
	xbrl.Context
	xbrl.DefinitionNodeResource
	xbrl.DTS
	xbrl.Entity
	xbrl.EntityIdentifier
	xbrl.EntityIdentifierAspectValue
	xbrl.Error
	xbrl.ExplicitDimensionAspectValue
	xbrl.Fact
	xbrl.FactSet
	xbrl.FootnoteResource
	xbrl.Fraction
	xbrl.Instance
	xbrl.LabelResource
	xbrl.LayoutCell
	xbrl.LayoutDataCell
	xbrl.LayoutHeaderCell
	xbrl.LayoutRow
	xbrl.LayoutTable
	xbrl.LayoutTableSet
	xbrl.Period
	xbrl.PeriodAspectValue
	xbrl.ReferencePart
	xbrl.ReferenceResource
	xbrl.Resource
	xbrl.ScenarioAspectValue
	xbrl.SegmentAspectValue
	xbrl.TableError
	xbrl.TableResource
	xbrl.TypedDimensionAspectValue
	xbrl.Unit
	xbrl.UnitAspectValue

	Java Interface
	Example Java Project
	RaptorXML Interfaces for Java
	RaptorXMLFactory
	XMLValidator
	XSLT
	XQuery
	XBRL
	RaptorXMLException

	COM and .NET Interfaces
	About the COM Interface
	About the .NET Interface
	Programming Languages
	COM Example: VBScript
	.NET Example: C#
	.NET Example: Visual Basic .NET

	API Reference
	Interfaces
	IServer
	IXMLValidator
	IXSLT
	IXQuery
	IXBRL

	Enumerations
	ENUMAssessmentMode
	ENUMErrorFormat
	ENUMLoadSchemalocation
	ENUMQueryVersion
	ENUMSchemaImports
	ENUMSchemaMapping
	ENUMTableOutputFormat
	ENUMValidationType
	ENUMWellformedCheckType
	ENUMXBRLValidationType
	ENUMXMLValidationMode
	ENUMXQueryVersion
	ENUMXQueryUpdatedXML
	ENUMXSDVersion
	ENUMXSLTVersion

	Additional Information
	Schema Location Hints
	XBRL Formula Parameters
	Formula Parameter Formats
	Using Formula Parameters

	XSLT and XQuery Engine Information
	XSLT 1.0
	XSLT 2.0
	XSLT 3.0
	XQuery 1.0
	XQuery 3.0

	XSLT and XPath/XQuery Functions
	Altova Extension Functions
	XSLT Functions
	XPath/XQuery Functions: Date and Time
	XPath/XQuery Functions: String
	XPath/XQuery Functions: Miscellaneous
	Chart Functions
	Chart Data XML Structure
	Example: Chart Functions

	Barcode Functions

	Miscellaneous Extension Functions
	Java Extension Functions
	User-Defined Class Files
	User-Defined Jar Files
	Java: Constructors
	Java: Static Methods and Static Fields
	Java: Instance Methods and Instance Fields
	Datatypes: XPath/XQuery to Java
	Datatypes: Java to XPath/XQuery

	.NET Extension Functions
	.NET: Constructors
	.NET: Static Methods and Static Fields
	.NET: Instance Methods and Instance Fields
	Datatypes: XPath/XQuery to .NET
	Datatypes: .NET to XPath/XQuery

	XBRL Functions for XSLT
	MSXSL Scripts for XSLT

	Altova LicenseServer
	Network Information
	Installation (Windows)
	Installation (Linux)
	Installation (Mac OS X)
	Altova ServiceController
	How to Assign Licenses
	Start LicenseServer
	Open LicenseServer's Config Page (Windows)
	Open LicenseServer's Config Page (Linux)
	Open LicenseServer's Config Page (Mac OS X)
	Upload Licenses to LicenseServer
	Register Product/s
	Register FlowForce Server
	Register MapForce Server
	Register StyleVision Server
	Register RaptorXML(+XBRL) Server
	Register MobileTogether Server

	Assign Licenses to Registered Products

	Configuration Page Reference
	License Pool
	Server Management
	Server Monitoring
	Settings
	Messages, Log Out

