
User and Reference Manual

All rights reserved. No parts of this work may be reproduced in any form or by any
means - graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems - without the written permission of the
publisher.

Products that are referred to in this document may be either trademarks and/or
registered trademarks of the respective owners. The publisher and the author make no
claim to these trademarks.

While every precaution has been taken in the preparation of this document, the
publisher and the author assume no responsibility for errors or omissions, or for
damages resulting from the use of information contained in this document or from the
use of programs and source code that may accompany it. In no event shall the publisher
and the author be liable for any loss of profit or any other commercial damage caused or
alleged to have been caused directly or indirectly by this document.

Published: 2014

© 2014 Altova GmbH

Altova MapForce 2015 User & Reference
Manual

1Altova MapForce 2015

Table of Contents

1 MapForce 2015 3

2 What's new... 6

3 MapForce overview 10

... 123.1 Terminology

4 RaptorXML Server 18

5 MapForce tutorial 20

... 225.1 Setting up the mapping environment

... 235.1.1 Adding components to the Mapping pane

... 265.2 Creating a mapping

... 275.2.1 Mapping schema items

... 305.2.2 Using functions to map data

... 345.2.3 Filtering data

... 385.3 Generating XSLT 1.0, or 2.0 code

... 395.4 Handling multiple target schemas / documents

... 405.4.1 Creating a second target component

... 435.4.2 Viewing and generating multiple target schema output

... 455.5 Mapping multiple source items to single target items

... 465.5.1 Creating the mappings

... 495.5.2 Duplicating input items

... 545.6 Multi-file input / output

... 555.6.1 Processing multiple files per input/output component

6 MapForce user interface 60

... 626.1 Libraries tab

... 646.2 Mapping pane

... 666.3 XSLT/XSLT2 pane

Altova MapForce 20152

... 676.4 Output pane

... 696.5 Overview window

... 706.6 Messages window

7 Working with MapForce 72

... 737.1 Connectors moving / keeping

... 787.2 Missing items

... 827.3 Selecting a transformation language

... 837.4 Previewing the transformation output

... 847.5 Previewing the XSLT code

... 857.6 Validating mappings and mapping output

... 887.7 Command line parameters

... 907.8 Catalog files in MapForce

8 Mapping between components 96

... 1008.1 Methods of mapping data (Standard / Mixed Content / Copy Child Items)

... 1018.1.1 Target-driven / Standard mapping

... 1028.1.2 Source-driven / mixed content mapping

... 102Mapping mixed content

... 107Mixed content example

... 108Using standard mapping on mixed content items

... 1108.1.3 Copy-all connections

... 1138.2 Connection settings

... 1158.3 Connections and mapping results

... 1168.4 Sequence of processing mapping components

... 1198.5 Chained mappings / pass-through components

... 1218.5.1 Chained mappings - Pass-through active

... 1268.5.2 Chained mappings - Pass-through inactive

... 1318.5.3 Chained mapping example

... 1338.6 Using Functions

... 1368.7 Loops, groups and hierarchies

... 1378.8 Mapping rules and strategies

9 Data Sources and Targets 144

... 1459.1 XML and XML schema

... 1469.1.1 Using DTDs as "schema" components

3Altova MapForce 2015

... 1479.1.2 Derived XML Schema types - mapping to

... 1499.1.3 QName support

... 1529.1.4 Nil Values / Nillable

... 1559.1.5 Comments and Processing Instructions

... 1579.1.6 CDATA Sections

... 1599.1.7 Wildcards - xs:any / xs:anyAttribute

... 1649.2 HL7 v3.x to/from XML schema mapping

10 How To... Filter, Transform, Aggregate 166

... 16810.1 Filter components - Tips

... 17010.2 Sort component - sorting input sequences

... 17710.3 Value-Map - transforming input data

... 18010.3.1 Passing data through a Value-Map unchanged

... 18310.3.2 Value-Map component properties

... 18510.4 Aggregate functions: min, max, sum, count, avg

... 18710.5 Mappings and root element of target documents

... 18810.6 Boolean comparison of input nodes

... 19010.7 Priority Context node/item

... 19210.8 Merging multiple files into one target

... 19410.9 Command line - defining input parameters

... 19510.10 Input parameters - default and preview settings

... 19810.11 Component Names

... 19910.12 Node testing, position and grouping

... 20110.12.1 Mapping missing nodes - using Not-exists

... 20310.12.2 Position of context items in a sequence

... 20610.12.3 Grouping nodes / node content

... 21210.13 Recursive user-defined mapping

... 21410.13.1 Defining a recursive user-defined function

11 Global Resources 222

... 22311.1 Global Resources - Files

... 22411.1.1 Defining / Adding global resources

... 22711.1.2 Assigning a global resource

... 22911.1.3 Using / activating a global resource

... 23111.2 Global Resources - Folders

... 23411.3 Global Resources - Application workflow

... 23911.3.1 Start application workflow

Altova MapForce 20154

... 24211.4 Global Resources - Properties

12 Dynamic input/output files per component 246

... 24812.1 Dynamic file names - input / output

... 25112.2 Dynamic file names as Input parameters

... 25212.3 Multiple XML files from single XML source file

... 25512.4 Relative and absolute file paths

13 Intermediate variables 260

... 26513.1 Variables - use cases

14 Libraries and Functions 270

... 27114.1 Defining User-defined functions

... 27714.1.1 Function parameters

... 28014.1.2 Inline and regular user-defined functions

... 28214.1.3 Creating a simple look-up function

... 28714.1.4 Complex user-defined function - XML node as input

... 288Complex input components - defining

... 29314.1.5 Complex user-defined function - XML node as output

... 293Complex output components - defining

... 29814.1.6 User-defined function - example

... 30414.2 Adding custom XSLT and XQuery functions

... 30514.2.1 Adding custom XSLT 1.0 functions

... 30914.2.2 Adding custom XSLT 2.0 functions

... 31014.2.3 Aggregate functions - summing nodes in XSLT1 and 2

... 31314.3 Functions Reference

... 31414.3.1 core

... 314aggregates

... 317conversion functions

... 323file path functions

... 325generator functions

... 327logical functions

... 329math functions

... 332node functions

... 334sequence functions

... 339string functions
.. 342Tokenize examples
.. 346Regular expressions

5Altova MapForce 2015

... 35014.3.2 xpath2

... 350accessors

... 350anyURI functions

... 351boolean functions

... 351constructors

... 352context functions

... 353durations, date and time functions

... 355node functions

... 356numeric functions

... 356qname-related functions

... 357string functions

... 36014.3.3 xslt

... 360xpath functions

... 362xslt functions

15 Menu Reference 366

... 36715.1 File

... 37115.2 Edit

... 37215.3 Insert

... 37415.4 Component

... 37915.5 Connection

... 38415.6 Function

... 38715.7 Output

... 38915.8 View

... 39115.9 Tools

... 39815.10 Window

... 39915.11 Help Menu

... 40015.11.1 Table of Contents, Index, Search

... 40115.11.2 Activation, Order Form, Registration, Updates

... 40215.11.3 Other Commands

16 Appendices 404

... 40516.1 Engine information

... 40616.1.1 XSLT and XQuery Engine Information

... 406XSLT 1.0

... 406XSLT 2.0

... 408XQuery 1.0

... 41216.1.2 XSLT and XPath/XQuery Functions

Altova MapForce 20156

... 413Altova Extension Functions
.. 414XSLT Functions
.. 417XPath/XQuery Functions: Date and Time
.. 429XPath/XQuery Functions: String
.. 434XPath/XQuery Functions: Miscellaneous

... 442Miscellaneous Extension Functions
.. 442Java Extension Functions

User-Defined Class Files... 444
User-Defined Jar Files... 447
Java: Constructors... 448
Java: Static Methods and Static Fields... 448
Java: Instance Methods and Instance Fields... 449
Datatypes: XPath/XQuery to Java... 450
Datatypes: Java to XPath/XQuery... 451

.. 451.NET Extension Functions
.NET: Constructors... 453
.NET: Static Methods and Static Fields... 454
.NET: Instance Methods and Instance Fields... 455
Datatypes: XPath/XQuery to .NET... 456
Datatypes: .NET to XPath/XQuery... 457

.. 457MSXSL Scripts for XSLT

... 46116.2 Technical Data

... 46216.2.1 OS and Memory Requirements

... 46316.2.2 Altova XML Validator

... 46416.2.3 Altova XSLT and XQuery Engines

... 46516.2.4 Unicode Support

... 46616.2.5 Internet Usage

... 46716.3 License Information

... 46816.3.1 Electronic Software Distribution

... 46916.3.2 Software Activation and License Metering

... 47016.3.3 Intellectual Property Rights

... 47116.3.4 Altova End User License Agreement

Index

Chapter 1

MapForce 2015

© 2014 Altova GmbH

 3MapForce 2015

Altova MapForce 2015

1 MapForce 2015

MapForce® 2015 Basic Edition is a visual data mapping tool for advanced data integration
projects. MapForce® is a 32/64-bit Windows application that runs on Windows 8, Windows 7,
Windows Vista, Windows XP, and Windows Server 2003/2008/2012. 64-bit support is available for
the Enterprise and Professional editions.

Last updated: 09/15/2014

Chapter 2

What's new...

6 What's new...

© 2014 Altova GmbHAltova MapForce 2015

2 What's new...

New features in MapForce Version 2015 include:
New language argument available in the format-date and format-dateTime functions
New sequence function: replicate-item

New features in MapForce Version 2014 R2 include:
New sequence functions: generate sequence, item-at, etc.
Ability to define CDATA sections in output components
Keeping connectors after deleting components
Automatic highlighting of mandatory items in target components

New features in MapForce Version 2014 include:
Integration of RaptorXML validator and basic support for XML Schema 1.1
Integration of new RaptorXML XSLT engines
XML Schema Wildcard support, xs:any and xs:anyAttribute
Support for Comments and Processing Instructions in XML target components

New features in MapForce Version 2013 R2 SP1 include:

New super-fast transformation engine

New features in MapForce Version 2013 R2 include:
Internal updates and optimizations.

New features in MapForce Version 2013 include:
Internal updates and optimizations

New features in MapForce Version 2012 R2 include:

New Sort component for XSLT 2.0, XQuery, and the Built-in execution engine
User defined component names

New features in MapForce Version 2012 include:
Auto-alignment of components in the mapping window
Prompt to connect to target parent node
Specific rules governing the sequence that components are processed in a mapping

New features in MapForce Version 2011R3 include:
Intermediate variables

New features in MapForce Version 2011R2 include:

Find function capability in Library window
Reverse mapping
Extendable IF-ELSE function

© 2014 Altova GmbH

 7What's new...

Altova MapForce 2015

Node Name and parsing functions in Core Library

New features in MapForce Version 2011 include:

Ability to preview intermediate components in a mapping chain of two or more
components connected to a target component (pass-through preview).
Formatting functions for dateTime and numbers for all supported languages
Enhancement to auto-number function

New features in MapForce Version 2010 Release 3 include:

Support for Nillable values, and xsi:nil attribute in XML instance files
Ability to disable automatic casting to target types in XML documents

New features in MapForce Version 2010 Release 2 include:

Automatic connection of identical child connectors when moving a parent connector
Ability to tokenize input strings for further processing

New features in MapForce Version 2010 include:

Multiple input/output files per component
Upgraded relative path support
xsi:type support allowing use of derived types
New internal data type system
Improved user-defined function navigation
Enhanced handling of mixed content in XML elements

New features in MapForce Version 2009 SP1 include:

Parameter order in user-defined functions can be user-defined
Ability to process XML files that are not valid against XML Schema
Regular (Standard) user-defined functions now support complex hierarchical parameters

New features in MapForce Version 2009 include:

EDI HL7 versions 3.x XML as source and target components
Grouping of nodes or node content
Ability to filter data based on a nodes position in a sequence
QName support
Item/node search in components

New features in MapForce Version 2008 Release 2 include:

Ability to automatically generate XML Schemas for XML files
Support for Altova Global Resources
Performance optimizations

8 What's new...

© 2014 Altova GmbHAltova MapForce 2015

New features in MapForce Version 2008 include:

Aggregate functions
Value-Map lookup component
Enhanced XML output options: pretty print XML output, omit XML schema reference and
Encoding settings for individual components
Various internal updates

Chapter 3

MapForce overview

10 MapForce overview

© 2014 Altova GmbHAltova MapForce 2015

3 MapForce overview

Altova web site: Introduction to MapForce

What is mapping?
Basically the contents of a component are mapped, or transformed, to another component. An
XML, or text document can be mapped to a different target XML document. The transformation is
accomplished by an automatically generated XSLT 1.0, or 2.0, Stylesheet.

MapForce also has the ability to have a single component process multiple input files of a
directory and output multiple files to a single component as well.

When creating an XSLT transformation, a source schema is mapped to a target schema. Thus
elements/attributes in the source schema are "connected" to other elements/attributes in the
target schema. As an XML document instance is associated to, and defined by, a schema file,
you actually end up mapping two XML documents to each other.

MapForce® supports:

Graphical mapping from and to any combination and any number of:
- XML Schemas as source and target

Professional Edition, additionally:
- Flat files: delimited (CSV) and fixed-length formats as source and target
- Relational databases as source and target

Enterprise Edition, additionally:
- EDI files: UN/EDIFACT, ANSI X12 including HIPAA, HL7 2.x, IATA PADIS, and SAP
IDocs as source and target
- FlexText™ files as source and target
- Office Open XML Excel 2007 and higher files, as source and target
- XBRL instance files and taxonomies

Automatic code generation
- XSLT 1.0 and 2.0

Professional Edition and Enterprise Edition, additionally:
- XQuery
- Java, C# and C++
- 64-bit version support

On-the-fly transformation and preview of all mappings, without code generation or
compilation
Ability to preview intermediate components in a mapping chain of two or more
components connected to a target component (pass-through preview).
Ability to preview output of target components using StyleVision Power Stylesheets
Powerful visual function builder for creating user-defined functions
Accessing MapForce user interface and functions through MapForce API (ActiveX control)
Definition of custom XSLT 1.0 and 2.0 libraries
Support for XPath 2.0 functions in XSLT 2.0 and XQuery
Definition of user-defined functions/components, having complex in/outputs
Support for source-driven / mixed content mapping and copy-all connections
Automatic retention of mapping connectors of missing nodes/items
Support for HL7 version 3.x. as it is XML Schema based

http://www.altova.com/mapforce.html

© 2014 Altova GmbH

 11MapForce overview

Altova MapForce 2015

Professional Edition, additionally:
XML data mapping to/from databases - IBM DB2 and others
Direct querying of databases
SQL-WHERE filter and SQL statement wizard
SQL SELECT statements as mapping data sources
Integration of custom C++, Java and C# functions
Project management functions to group mappings
MapForce plug-in for Eclipse versions 4.2 / 4.3 / 4.4
MapForce for Microsoft Visual Studio versions 2005/2008/2010/2012/2013
Documentation of the mapping design

Enterprise Edition, additionally:
Creation of SOAP 1.1 and SOAP 1.2 Web service projects and mapping of Web service
operations from WSDL 1.1 and 2.0 files
Direct calling of Web service functions
FlexText™: advanced legacy file processing

All transformations are available in one workspace where multiple sources and multiple targets
can be mixed, and a rich and extensible function library provides support for any kind of data
manipulation.

12 MapForce overview Terminology

© 2014 Altova GmbHAltova MapForce 2015

3.1 Terminology

The terms used in this documentation are defined below.

Library
A Library is a collection of functions visible in the Libraries window. There are several types of
functions, core and language specific, as well as user-defined and custom functions. Please see
the section on functions for more details.

Component
In MapForce many of graphical elements you can insert/import or place in the Mapping tab,
become components. Components have small triangles which allow you to map data between
source and target components by creating connections between them.

The following files become components when placed in the mapping area:

Schemas and DTDs: Source and target schemas
Function types: XSLT/XSLT2, as well as Constants, Filters and Conditions

Function
A function is predefined component that operates on data e.g. Concat. Functions have input and/
or output parameters, where each parameter has its own input/output icon. Functions are
available in the Libraries window and are logically grouped; hitting CTRL+F allows you to search
for a function. Dragging a function into the Mapping window creates a function component. Please
see the section Functions and Libraries for more details.

Java selected

Item
An item represents the data that can be mapped from component to component. An item can be
either an element, an attribute.

Each item has an input and output icon. It is not mandatory that items be of the same type
(element or attribute) when you create a mapping between them.

© 2014 Altova GmbH

Terminology 13MapForce overview

Altova MapForce 2015

Input, Output icon
The small triangles visible on components are input and output icons. Clicking an icon and
dragging, creates a connector which connects to another icon when you "drop" it there. The
connector represents a mapping between the two sets of data the icons represent. Please see
the section "Mapping between components" for more information.

Connector
The connector is the line that joins two icons. It represents the mapping between the two sets of
data the icons represent. Please see the section "Mapping between components" for more
information.

Several types of connector can be defined:
Target Driven (Standard) connectors, see: "source-driven / mixed content vs. standard
mapping"
Copy-all connectors, please see "Copy-all connections"
Source Driven (mixed content) connectors, see "source driven and mixed content
mapping"

Constant
A constant is a component that supplies fixed data to an input icon of a function or component.
E.g. the string "Travel" is connected to the "b" parameter of the equal function . The data is
entered into a dialog box when creating, or double clicking, the component. There is only one
output icon on a constant function. You can select from the following types of data: String,
Number, and All other (String).

Variable

14 MapForce overview Terminology

© 2014 Altova GmbHAltova MapForce 2015

Inserts an Intermediate Variable which is equivalent to a regular (non-inline) user-defined function.
Variables are structural components, without instance files, and are used to simplify the mapping
process.

Sort component
A sort component sorts input data according to the specific key that you define/map. The sort
order can be changed by clicking the A=>Z icon in the "key" parameter field of the component.

Filter: Node/Row
A filter is a component that filters data using two input and output parameters: node/row and
bool, and on-true, on-false. If the Boolean is true, then the value/content of the node/row
parameter is forwarded to the on-true parameter.

The on-false output parameter, outputs the complement node set defined by the mapping, please
see Multiple target schemas / documents for more information.

Value-Map
The Value-Map component allows you to transform a set of input data, into a different set of
output data, using a type of lookup table.

Double clicking the component, opens the value map table. The left column of the table defines
the input, while the right column defines the transformed data you want to output.

© 2014 Altova GmbH

Terminology 15MapForce overview

Altova MapForce 2015

IF-Else Condition
A condition is a component which allows you to pass on different sets of data depending on the
outcome of a preset condition. The component header displays the text if-else. Please see
Condition, in the Reference section for an example.

The first input parameter is a bool, which contains the data you are checking against.
The value-true input parameter supplies the data to be passed on, as a result, if the
condition is true.
The value-false supplies the data to be passed on if the condition is false.
The result parameter outputs the data supplied by the value-true/false input parameters.

The IF-Else function is now extendable. This means that you can check for multiple IF values
and use the otherwise parameter to output the Else condition/value. Please see Insert | If-Else
 for more information.

Chapter 4

RaptorXML Server

18 RaptorXML Server

© 2014 Altova GmbHAltova MapForce 2015

4 RaptorXML Server

Altova RaptorXML Server (hereafter also called RaptorXML for short) is Altova's third-generation,
super-fast XML and XBRL processor. It has been built to be optimized for the latest standards and
parallel computing environments. Designed to be highly cross-platform capable, the engine takes
advantage of today's ubiquitous multi-core computers to deliver lightning fast processing of XML
and XBRL data.

RaptorXML is available in several editions which can be downloaded and installed from the Altova
download page:

RaptorXML Server is a very fast XML processing engine with support for XML, XML
Schema, XSLT, XPath, XQuery, and more. This edition is part of the FlowForce Server
installation package.
RaptorXML+XBRL Server supports all the features of RaptorXML Server with the additional
capability of processing and validating the XBRL family of standards.

RaptorXML Limitations:

XML Signatures are not supported
Global resources are not supported via the COM interface
ODBC and ADO database connections are only supported by Windows. Other operating
systems automatically connect via JDBC

Downloading
Download and install the RaptorXML Server from the Altova download page.

Licensing
The Windows, Linux, and Mac OS X editions of RaptorXML Server also include Altova
LicenseServer, which is needed to manage Altova server product licensing.

Executing mappings using RaptorXML Server
When generating code in XSLT 1.0 or 2.0, MapForce generates a batch file called
DoTransform.bat which is placed in the output folder that you choose upon generation.
Executing the batch file calls RaptorXML Server and executes the XSLT/XQuery transformation on
the server.

If you intend to execute or automate MapForce mappings for other outputs on a server, refer to
Altova MapForce Server and FlowForce Server.

Note: You can also preview the XSLT code using the built-in engine.

http://www.altova.com/download-trial-server.html
http://www.altova.com/download-trial-server.html
http://www.altova.com/download-trial-server.html
http://manual.altova.com/MapForceServer/mapforceserver/
http://manual.altova.com/FlowForceServer/

Chapter 5

MapForce tutorial

20 MapForce tutorial

© 2014 Altova GmbHAltova MapForce 2015

5 MapForce tutorial

This tutorial takes you through several tasks which provide an overview of how to use MapForce
2015 to its fullest.

The goal of this tutorial is to map a simple employee travel expense report to a more complex
company report. In our tutorial example, each employee fills in the fields of the personal report.
This report is mapped to the company report and routed to the Administration department. Extra
data now has to be entered in conjunction with the employee, the result being a standardized
company expense report.

In this tutorial, you will learn how to:

Set up the mapping environment
Map the source XML file (the personal expense report) to the output target (the company
expense travel report)
Apply filters to the source data
Generate an XSLT transformation file
Transform the source data to the output target using the generated XSLT file

Installation and configuration
This tutorial assumes that you have successfully installed MapForce on your computer and
received a free evaluation key-code, or are a registered user of the product. The evaluation version
of MapForce is fully functional but limited to a 30-day period. You can request a regular license
from our secure web server or through any one of our resellers.

Tutorial example files
The tutorial makes use of the following components:

Source and (multiple) target schemas
Several functions including: concat, filter, equal and constants

All the files used in this tutorial are initially available in the C:\Documents and Settings\All Users
\Application Data\Altova folder. When any single user starts the application for the first time, the
example files for that user are copied to the ...\MapForceExamples\Tutorial\ folder. Therefore do
not move, edit, or delete the example files in the initial ...\All Users\.... folder.

The XSLT and transformed XML files are also supplied. The following files are used in the tutorial:

Personal expense report:

Tut-ExpReport.mfd The expense report mapping (single target)

Tut-ExpReport-
multi.mfd

The multi-schema target expense report
mapping

mf-ExpReport.xml Personal expense report XML instance
document

mf-ExpReport.xsd Associated schema file

Company expense report:

ExpReport-Target.xml

ExpReport-Target.xsd

Company expense report XML instance document

Associated schema file

© 2014 Altova GmbH

 21MapForce tutorial

Altova MapForce 2015

File paths in Windows XP, Windows Vista, Windows 7, and Windows 8
File paths given in this documentation will not be the same for all operating systems. You should
note the following correspondences:

(My) Documents folder: The My Documents folder of Windows XP is the Documents
folder of Windows Vista, Windows 7, and Windows 8. It is located by default at the
following respective locations. Example files are usually located in a sub-folder of the (My)
Documents folder.

Windows XP C:/Documents and Settings/<username>/My
Documents

Windows Vista, Windows 7,
Windows 8

C:/Users/<username>/Documents

Application folder: The Application folder is the folder where your Altova application is
located. The path to the Application folder is, by default, the following.

Windows XP C:/Program Files/Altova

Windows Vista, Windows 7, Windows 8 C:/Program Files/Altova

32-bit package on 64-bit Windows OS (XP,
Vista, 7, 8)

C:/Program Files (x86)/Altova

Note: MapForce is also supported on Windows Server 2003, Windows 2008, and Windows
Server 2012.

22 MapForce tutorial Setting up the mapping environment

© 2014 Altova GmbHAltova MapForce 2015

5.1 Setting up the mapping environment

This section deals with defining the source and target schemas we want to use for the mapping.

Objective
In this section of the tutorial, you will learn how to set up the mapping environment in MapForce.
Specifically, you will learn how to:

Create the source and target schema components
Define the source XML file
Select the root element of the target schema

Commands used in this section

Insert XML Schema/File: Click this icon to open the standard Windows Open dialog
box and select the file from your file system.

Please note:
The XSLT selected text shown below the Libraries window of every screenshot, shows the
currently selected target/output language that is used when you click the Output button to preview
the mapping. The selection of the target/output language also determines the functions available
in the Libraries window.

XSLT Selected

© 2014 Altova GmbH

Setting up the mapping environment 23MapForce tutorial

Altova MapForce 2015

5.1.1 Adding components to the Mapping pane

After you have started MapForce, you must add the source and target files to a Mapping pane;
this can also be done by dragging files from Windows Explorer and dropping them into a Mapping
pane.

MapForce can automatically generate an XML schema based on an existing XML file if the XML
Schema is not available. A dialog box automatically appears, prompting you if an accompanying
XML Schema file cannot be found when inserting an XML file using the Insert XML Schema / File
menu item.

When generating a schema from an XML file, data types for elements/attributes must be inferred
from the XML instance document and may not be exactly what you expect. Please check whether
the generated schema is an accurate representation of the instance data.

To create the source schema component:

1. Click the Insert XML Schema/File icon or select the menu option Insert | XML
Schema/File....

2. In the Open dialog box, browse to the Tutorial subfolder of the ...\MapForce2015
\MapForceExamples folder and select the mf-ExpReport.xsd file.
You are now prompted for a sample XML file to provide the data for the preview tab.

3. Click the Browse... button, and select the mf-ExpReport.xml file.
The source schema component now appears in the Mapping pane.

24 MapForce tutorial Setting up the mapping environment

© 2014 Altova GmbHAltova MapForce 2015

XSLT selected

4. Click the expense-report item/element (of the component) and hit the * key, on the
numeric keypad, to view all the items.

5. Click the resize corner at the lower right of the component, and drag to resize it.
Note: double clicking the resize corner, resizes the component to a "best fit",
encompassing all items.

XSLT Selected

To create the target schema component:
1. Click the Insert XML Schema/File icon or select the menu option Insert | XML

Schema/File....
2. Select the ExpReport-Target.xsd file from the Open dialog box.

You are now prompted for a sample XML file for this schema.
3. Click the Skip button, and select Company as the root element of the target document.

© 2014 Altova GmbH

Setting up the mapping environment 25MapForce tutorial

Altova MapForce 2015

The target schema component now appears in the mapping tab.
4. Click the Company entry and hit the * key on the numeric keypad to view all the items.
5. Double click the resize corner icon to resize the component.

We are now ready to start mapping schema items from the source to the target schema.

Note: when dragging components, autoalignment guide lines appear allowing easy
placement.

26 MapForce tutorial Creating a mapping

© 2014 Altova GmbHAltova MapForce 2015

5.2 Creating a mapping

In the previous section, you defined the source and target schema components of your mapping.
We will now start mapping the actual data.

Objective
To learn how to map the source and target components and fine-tune your mapping result using
functions and filters.

Using connectors to map schema items
Use a concat function to combine elements of the source data
Filter source data to pass on only specific expenses to the target report

Commands used in this section

Auto Connect Matching Children: Click this icon to toggle the automatic connection of
matching child nodes, on and off.

Insert Constant: Click this icon to add a constant component to the currently active
Mapping pane.

Filter: Nodes/Rows: Click this icon to add a filter component to the currently active
Mapping pane.

Altova web site: Mapping data - data integration and XML mapping

http://www.altova.com/mapforce/data-integration.html
http://www.altova.com/mapforce/xml-mapping.html

© 2014 Altova GmbH

Creating a mapping 27MapForce tutorial

Altova MapForce 2015

5.2.1 Mapping schema items

This section deals with defining the mappings between the source and target schema items.

To map the mf-ExpReport and ExpReport-Target schemas:
1. Click the expense-report item in the mf-ExpReport source schema and drag.

A connector line is automatically created from the output icon and is linked to the mouse
pointer which has now changed shape.

2. Move the mouse pointer near to the Company item in the ExpReport-Target schema, and
"drop" the connector the moment the mouse pointer changes back to the arrow shape. A
small link icon appears below the mouse pointer, and the input icon and item name in the
target component, are highlighted when the drop action is possible.

A connector has now been placed between the source and target schemas. A mapping
has now been created from the schema source to the target document.

3. Use the above method to create a mapping between the Person and Employee items.

If the Auto Connect Matching Children icon is active, then the Title and Email
items will also be connected automatically, if not:

4. Right-click the "Person" connector and select Connect Matching Children... from the
pop-up menu.

28 MapForce tutorial Creating a mapping

© 2014 Altova GmbHAltova MapForce 2015

This opens the Connect Matching Children dialog box.

5. Activate the check boxes as shown above and click OK to confirm. For more information
please see the section on Connector properties.

Mappings have been automatically created for the Title and Email items of both
schemas.

6. Click the Output button to see the result in the Output pane.

© 2014 Altova GmbH

Creating a mapping 29MapForce tutorial

Altova MapForce 2015

You will notice that the Title and Email fields contain data originating from the XML
Instance document.

7. Click the Mapping button to return to the Mapping pane and continue mapping.

Please note: The settings you select in the Connect Matching Children dialog box, are
retained until you change them. These settings can be applied to a connection by either: using
the context menu, or by clicking the Auto connect child items icon to activate, or deactivate this
option.

30 MapForce tutorial Creating a mapping

© 2014 Altova GmbHAltova MapForce 2015

5.2.2 Using functions to map data

The aim of this section is to combine two sets of data from the source schema, and place the
result in a single item in the target document. This will be done by:

Using the Concat string function to combine the First and Last elements of the source
schema
Using a Constant function to supply the space character needed to separate both items
Placing the result of this process into the Name item of the target schema.

Please note that some of the previously defined mappings are not shown in the following screen
shots for the sake of clarity.

To combine items by using functions:
1. In the Libraries tab, expand the string functions group in the core library, click the

concat entry, and drag it into the Mapping pane.

XSLT Selected

2. In the mf-ExpReport component, select item First and, keeping the mouse button
pressed, create a connection by dragging the mouse cursor to the value1 input of the
concat component.

3. Right-click on the background near value2 and select Insert Constant from the context
menu, to insert a constant component.

© 2014 Altova GmbH

Creating a mapping 31MapForce tutorial

Altova MapForce 2015

4. Enter a space character in the text box and click OK.
The constant component is now in the working area. Its contents are displayed next to
the output icon.

5. Create a connection between the constant component and value2 of the concat
component.

6. In the mf-ExpReport component, click the item Last and drop the connector on the "+"
icon of the concat function, just below value2. The mouse cursor changes to show when
you can drop the connector.

This automatically enlarges the concat function by one more item (value), to which the
Last item is connected.

32 MapForce tutorial Creating a mapping

© 2014 Altova GmbHAltova MapForce 2015

7. Connect the result icon of the concat component, to the Name item in the target
schema.

8. Click the Output button to see the result of the current mapping in the Output pane.

You will see that the Person name "Fred Landis" is now contained between the Name tags. The
first and last name have been separated by a space character as well.

Mapping the rest of the personal data

Create mappings between the following items:
currency to Currency
Phone to Tel.
expto to Bill-to
Date to Date

© 2014 Altova GmbH

Creating a mapping 33MapForce tutorial

Altova MapForce 2015

Click the Output button to see the result.

There are currently five items originating from the assigned XML instance file.

Please note: Functions can be grouped into user-defined functions/components to optimize
screen usage. Please see the section on User-defined functions/components for an example on
how to combine the concat and constant functions into a single user-defined function/component.

34 MapForce tutorial Creating a mapping

© 2014 Altova GmbHAltova MapForce 2015

5.2.3 Filtering data

The aim of this section is to filter out the Lodging and Meal expenses, and only pass on the Travel
expenses to the target schema/document. This will be done by:

Using the Equal function to test the value of a source item
Using a Constant function to supply the comparison string that is to be tested
Using the Filter component which passes on the Travel data, if the bool input value is
true
Placing the on-true result of this process, into the expense-item element of the target
schema/document.

To filter data:

1. Click the Insert Constant button to insert a constant component and enter the
string "Travel" into the input field.

2. In the Libraries tab, expand the logical functions group in the core library and drag the
logical function equal into the Mapping pane.

3. Connect the (expense-item) type item in the source schema to the a parameter of the
equal function.

4. Connect the result icon of the "Travel" constant component, to the b parameter of the
equal function.

© 2014 Altova GmbH

Creating a mapping 35MapForce tutorial

Altova MapForce 2015

5. Select the menu option Insert | Filter: Nodes/Rows.

6. Connect the result icon of the equal component, to the bool parameter of the filter
component.

7. Connect the expense-item icon of the source schema with the node/row parameter of
the filter component.

Note that the filter component name, now changes to "expense-item".

36 MapForce tutorial Creating a mapping

© 2014 Altova GmbHAltova MapForce 2015

8. Connect the on-true icon of the filter component with the expense-item element of the
target document.

9. Connect the Travel item in the source schema, with the Travel item in the target
schema/document.

10. Connect the Trav-cost item with the Travel-Cost item in the target schema/document.

11. Click the Output button to see the result in the Output pane.

© 2014 Altova GmbH

Creating a mapping 37MapForce tutorial

Altova MapForce 2015

Please note: The on-false parameter of the filter component, outputs the complement node set
that is mapped by the on-true parameter. In this example it would mean all non-travel expense
items.

The number of expense-items have been reduced to three. Checking against the supplied mf-
ExpReport.xml file, reveals that only the Travel records remain, the Lodging and Meal records
have been filtered out.

38 MapForce tutorial Generating XSLT 1.0, or 2.0 code

© 2014 Altova GmbHAltova MapForce 2015

5.3 Generating XSLT 1.0, or 2.0 code

Now that you have created the mapping, you can do the actual transformation of the source data.
MapForce can generate several flavors of XSLT code: XSLT 1.0 and XSLT 2.0.

Objective
In this section of the tutorial, you will learn how to preview, generate and save the XSLT code, and
how to execute the generated XSLT. Specifically, you will learn how to do the following:

Generate and save XSLT code in the desired flavor
Execute the transformation batch file

Commands used in this section

 File | Generate code in: Select this option to choose the output language (i.e. XSLT
1.0 and XSLT 2.0). The command opens the Browse For Folder dialog box where you
define folder where the generated XSLT should be saved.

To generate XSLT code:
1. Select the menu item File | Generate code in | XSLT 1.0 (XSLT 2.0).
2. Select the folder you want to place the generated XSLT file in, and click OK.

A message appears showing that the generation was successful.
3. Navigate to the designated folder and you will find the XSLT with the file name

MappingMapToExpReport-Target.xslt (i.e. in the form:
MappingMapTo<TargetSchemaName>).

You can also preview the generated XSLT code in MapForce (see Previewing the XSLT code).

Transforming the XML file
The folder in which the XSLT file is placed also contains a batch file called DoTransform.bat
which uses RaptorXML Server to transform the XML file.

To transform the personal expense report to the company expense report:
1. Download and install RaptorXML from the download page.
2. Start the DoTransform.bat batch file located in the previously designated output folder.

This generates the output file ExpReport-Target.xml in the ...\Tutorial folder.

Note that you might need to add the RaptorXML installation location to the path variable of the
Environment Variables. You can find the RaptorXML documentation on the website
documentation page.

http://www.altova.com/download-trial-server.html
http://www.altova.com/download-trial-server.html
http://www.altova.com/documentation.html
http://www.altova.com/documentation.html

© 2014 Altova GmbH

Handling multiple target schemas / documents 39MapForce tutorial

Altova MapForce 2015

5.4 Handling multiple target schemas / documents

This section deals with creating a second target schema / document, into which non-travel
expense records will be placed, and follows on from the current tutorial example Tut-
ExpReport.mfd.

Objective
In this section of the tutorial, you will learn how to add a second target and how to generate
multiple target schema output. Specifically, you will learn how to:

Create a second target schema component
Filter out all non-travel output in your example report
View specific output
Generate XSLT for multiple target schemas

Commands used in this section

Insert XML Schema/File: Click this icon to open the standard Windows Open dialog
box and select the file from your file system.

Preview: Appears in the title bar of components when multiple target files have been
defined. Click this icon to select a specific component for the output preview.

Save generated output: Located in the Output menu/pane. Click this icon to open the
Standard Windows Save As dialog box and select the location where you want to save
the generated output data.

Validate Output: Located in the Output menu/pane. Click this icon to check whether
the generated output is valid. The result of the validation appears in the Messages
window.

 File | Generate code in: Select this option to choose the output language (i.e. XSLT
1.0 and XSLT 2.0). The command opens the Browse For Folder dialog box where you
define folder where the generated XSLT should be saved.

40 MapForce tutorial Handling multiple target schemas / documents

© 2014 Altova GmbHAltova MapForce 2015

5.4.1 Creating a second target component

In this section of the tutorial you will learn how to create a second target schema component
which filters out all the non-travel data.

To create the second target schema component:
1. Click the Insert XML Schema/File icon.
2. Select the ExpReport-Target.xsd file from the Open dialog box.

You are now prompted for a sample XML file for this schema.
3. Click Skip, and select Company as the root element of the target document.

The target schema component now appears in the Mapping pane.
4. Click the Company entry and hit the * key on the numeric keypad to view all the items.
5. Click the expand window icon and resize the component. Place the schema components

so that you can view and work on them easily.
There is now one source schema, mf-expReport, and two target schemas, both
ExpReport-Target, visible in the Mapping pane.

To filter out the non-travel data:
1. Connect the on-false icon of the filter component with the expense-item element of

the second target schema / document.

A message appears stating that you are now working with multiple target schemas /
documents.

2. Click OK to confirm.

© 2014 Altova GmbH

Handling multiple target schemas / documents 41MapForce tutorial

Altova MapForce 2015

A Preview icon is now visible in the title bar of each target schema component.

Clicking the Preview icon defines which of the target schema data is to be displayed, when you
subsequently click the XSLT, XSLT2, or Output buttons.
Creating mappings for the rest of the expense report data

Create the following mappings between the source schema and second target schema. You
created the same connectors for the first target schema, so there is nothing new here:

Person to Employee

Tittle to Title

Phone to Tel.

Email to Email

currency to Currency

expto to Bill-to

Date to Date

Create the following mapping between the existing concat function and second target
schema:

result to Name

To create the remaining non-travel mappings:
Making sure that the "Autoconnect matching children" option is inactive,

1. Connect the Lodging item in the source schema to Accommodation in the second
target schema.

2. Connect the Lodging item to DomesticAcc
3. Connect the Lodge-Cost item to DomesicAcc-Cost

42 MapForce tutorial Handling multiple target schemas / documents

© 2014 Altova GmbHAltova MapForce 2015

© 2014 Altova GmbH

Handling multiple target schemas / documents 43MapForce tutorial

Altova MapForce 2015

5.4.2 Viewing and generating multiple target schema output

Clicking the Preview icon lets you select which of the schema targets you want to preview.

To view specific XSLT output:

1. Click the Preview icon in the title bar of the second schema component, to make it
active (if not already active).

2. Click the Output button of the Mapping tab group.

The XML output contains two records both billed to Sales: the Domestic Accommodation
cost of $121.2 and an Expense-item record which only contains a date. This record
originates from the expense-item Meal. There is currently no mapping between meal
costs and domestic accommodation costs, and even if there were, no cost would appear
as the XML instance does not supply one.

Please note: You can save this XML data by clicking the Save generated output icon, while

viewing the XML output in the preview window .

The resulting XML instance file can also be validated against the target schema, by clicking the

validate button .

To generate XSLT 1.0 / XSLT 2.0 code for multiple target schemas:
1. Select the menu item File | Generate code in | XSLT 1.0 (or XSLT 2.0).
2. Select the folder you want to place the generated XSLT files, and click OK.

A message appears showing that the generation was successful.

44 MapForce tutorial Handling multiple target schemas / documents

© 2014 Altova GmbHAltova MapForce 2015

3. Navigate to the designated folder and you will find two XSLT files with the file names:
MappingExpReport-Target.xslt and MappingExpReport-Target2.xslt

To transform the personal expense report to the company expense report:
1. Download and install RaptorXML Server engine from the RaptorXML download page.
2. Start the DoTransform.bat batch file located in the previously designated output folder.

This generates the output file ExpReport-Target.xml in the ...\Tutorial folder.

Note: you might need to add the RaptorXML installation location to the path variable of the
Environment Variables.

To generate program code for multiple target schemas:

1. Select the menu item File | Generate code in | XQuery, Java, C#, or C++.
2. Select the folder you want to place the generated files in, and click OK.

A message appears showing that the generation was successful.
3. Navigate to the designated folder and compile your project.
4. Compile and execute the program code using your specific compiler.

Two XML files are generated by the application.

for more information.

http://www.altova.com/download-trial-server.html

© 2014 Altova GmbH

Mapping multiple source items to single target items 45MapForce tutorial

Altova MapForce 2015

5.5 Mapping multiple source items to single target items

In this section two simple employee travel expense reports will be mapped to a single company
report. This example is a simplified version of the mapping you have already worked through in
the Multiple target schemas / documents section of this tutorial.

Please note: There is an alternative method to doing this using the dynamic input/output
functionality of components, please see "Dynamic file names - input / output" for a specific
example.

Objective

In this section of the tutorial, you will learn how to merge two personal travel expense reports
into a company expense travel report. Specifically, you will learn how to:

Map schema components (recapitulation)
Duplicate input items
Remove duplicated items

Commands used in this section

New...: Click this icon to access the New File dialog box where you can create a new
Mapping.

Insert XML Schema/File: Click this icon to open the standard Windows Open dialog
box and select the file from your file system.

Auto Connect Matching Children: Click this icon to toggle the automatic connection of
matching child nodes, on and off.

Duplicate Input: Located in the context menu that appears when you right-click an item
in a component. Click this command to duplicate the selected item.

Remove Duplicate: Located in the context menu that appears when you right-click a
duplicated item in a component. Click this command to remove the selected duplicate
from the component.

Example files used in this section
Please note that the files used in this example, have been optimized to show how to map data
from two input XML files into a single item in the target schema, this is not meant to be a real-life
example.

mf-ExpReport.xml Input XML file used in previous section

mf-ExpReport2.xml The second input XML file

mf-ExpReport-combined.xml The resulting file when the mapping has
been successful

ExpReport-combined.xsd The target schema file into which the
two XML source data will be merged.

Tut-ExpReport-msource.mfd The mapping file for this example

Please note: The files used in this section are also available in the ...\MapForceExamples
\Tutorial\ folder.

46 MapForce tutorial Mapping multiple source items to single target items

© 2014 Altova GmbHAltova MapForce 2015

5.5.1 Creating the mappings

The method described below, is a recapitulation of how to set up the mapping environment. This
mapping is available as Tut-ExpReport-msource.mfd in the ...\MapForceExamples\Tutorial\.

To create the mapping environment:

1. Click the New icon in the Standard toolbar to open the New File dialog box.
2. Click the Mapping icon and click OK to create a new Mapping tab.

3. Click the Insert XML Schema/File icon.
4. From the Tutorial sub-folder of the MapForceExamples directory, select the mf-

ExpReport.xsd file from the Open dialog box, click Browse... in the message box that
pops up, and select the mf-ExpReport.xml file as the XML instance file.

5. Click the expense-report entry, hit the * key on the numeric keypad to view all the
items; resize the component if necessary.

6. Click the Insert XML Schema/File icon.
7. Select the ExpReport-combined.xsd file from the Open dialog box.

You are now prompted for a sample XML file for this schema.
8. Click Skip, and select Company as the root element of the target document.

The target schema component now appears in the mapping pane.
9. Click the Company entry, hit the * key on the numeric keypad to view all the items, and

resize the window if necessary.

Mapping the components

Make sure that the Auto connect child items icon is deactivated, before you create the
following mappings between the two components:

© 2014 Altova GmbH

Mapping multiple source items to single target items 47MapForce tutorial

Altova MapForce 2015

Expense-report to Company
Person to Employee
Last to Name
Title to Title
Phone to Tel.
Email to Email
expense-item to expense-item
Travel to Travel
Trav-cost to Travel-Cost

The mapping is shown below.

Click the Output button to see the result of the current mapping.

48 MapForce tutorial Mapping multiple source items to single target items

© 2014 Altova GmbHAltova MapForce 2015

Please note: Empty <expense-item/> elements/tags are generated when child items of a
mapped parent item, exist in the source file, which have not been mapped to the target
schema. In this case, only the Travel items of the expense-item parent have been mapped. There
are however, two other expense items in the list: one lodging and one meal expense item. Each
one of these items generates an empty parent expense-item tag.

To avoid generating empty tags, create a filter such as the one described previously in the tutorial,
under Filtering data, or connect the Travel item to the expense-item.

© 2014 Altova GmbH

Mapping multiple source items to single target items 49MapForce tutorial

Altova MapForce 2015

5.5.2 Duplicating input items

In order to map multiple source items to one and the same target item, we need to duplicate the
input items of the target component to be able to create mappings from a different source XML
file. To achieve this, we will add the second XML source file, and create mappings from it, to the
"same" inputs of the duplicated element/item in the target XML file.

Duplicating input items:
1. Right-click the Employee item in the target XML file.
2. Select the option Add Duplicate Input After from the context menu.

A second Employee item has now been added to the component, as Employee(2).

3. Click the expand icon to see the items below it.
The structure of the new Employee item, is an exact copy of the original, except for the
fact that there are no output icons for the duplicated items.

50 MapForce tutorial Mapping multiple source items to single target items

© 2014 Altova GmbHAltova MapForce 2015

You can now use these new duplicate items as the target for the second source XML
data file.

Inserting the second XML instance file
To insert the second XML instance file, the same method as well as the same XML Schema file is
used as before.

To insert a second source component:

1. Click the Insert XML Schema/File icon.
2. Select the mf-ExpReport.xsd file from the Open dialog box, click Browse..., and select

the mf-ExpReport2.xml file as the XML instance file.
3. Click the expense-report entry, hit the * key on the numeric keypad to view all items,

and resize the component if necessary.

For the sake of clarity, the new component has been placed between the two existing
ones in the following graphics.

4. Create the same mappings that were defined for the first XML source file:

© 2014 Altova GmbH

Mapping multiple source items to single target items 51MapForce tutorial

Altova MapForce 2015

Person to Employee(2)
Last to Name
Title to Title
Phone to Tel.
Email to Email
expense-item to expense-item

Scroll down, and map

Travel to Travel, and
Trav-cost to Travel-Cost.

5. Click the Output button to see the result of the mapping in the Output pane.

52 MapForce tutorial Mapping multiple source items to single target items

© 2014 Altova GmbHAltova MapForce 2015

The data of the second expense report has been added to the output file. Johnson and his
travel costs have been added to the expense items of Fred Landis in the company
expense report.

To save the generated output to a file:

Click the Save generated output icon which appears in the title bar when the
Output pane is active.

The file, mf-ExpReport-combined.xml, is available in the ...\MapForceExamples\Tutorial\
folder.

To remove duplicated items:
Right click the duplicate item and select the Remove Duplicate entry from the menu.

Example

To see a further example involving duplicate items, please see the PersonList.mfd sample file
available in the ...\MapForceExamples folder.

© 2014 Altova GmbH

Mapping multiple source items to single target items 53MapForce tutorial

Altova MapForce 2015

In the PersonList.mfd example different elements of the source document are mapped to the
"same" element in the target Schema/XML document, and specific elements (Manager etc.) are
mapped to a generic one using a "role" attribute.

54 MapForce tutorial Multi-file input / output

© 2014 Altova GmbHAltova MapForce 2015

5.6 Multi-file input / output

In this section the new multi-file input/output capabilities of MapForce will be demonstrated.
Please note that this functionality is not available for XSLT 1.0.

A single input component will process two source documents, while a single output component
will generate two output files. The example used here has been set up in Filtering data, and also
been used as the basis in the Mapping multiple source items, to single target items section.

Objective

In this section of the tutorial, you will learn how to create a mapping where the source component
processes two XML input files and the target component outputs two XML target files.

Commands used in this section

Save All Output Files...: Located in the Output menu. Click this command to save all
the mapped files from the Preview pane.

Example files used in this section

mf-ExpReport.xml Input XML file used in previous section

mf-ExpReport2.xml The second input XML file

Tut-ExpReport-multi.mfd The mapping file for this example

Please note: The files used in this section are also available in the ...\MapForceExamples
\Tutorial\ folder.

© 2014 Altova GmbH

Multi-file input / output 55MapForce tutorial

Altova MapForce 2015

5.6.1 Processing multiple files per input/output component

The Tut-ExpReport.mfd file available in the ...\MapForceExamples folder will be modified and
saved under a different name in this example.

Please take note of the following items at the top of each component:

The File:mf-ExpReport.xml item of mf-ExpReport, displays the Input/Output-XML file
entry. One entry is shown if Input and Output files are the same; if not then Input file
name;Output file name is displayed.

This is automatically filled when you assign an XML instance file to an XML schema file.

The File: (default) item of ExpReport-Target shows that an instance file was not
assigned to the XML schema component when it was inserted, i.e. the Output-XML file
field is empty. A default value will therefore be used when the mapping executes.

Processing multiple files
To be able to process multiple files, MapForce uses the wildcard character "?" in the filename of
the input XML file. The "?" can be replaced by none, or one character.

To process multiple files:
Having opened the Tut-ExpReport file available in the ...\Tutorial folder and clicked the XSLT2 icon

 in the icon bar,

1. Double click the mf-ExpReport component on the left.
2. Enter mf-expReport?.xml in the Input XML File field.

56 MapForce tutorial Multi-file input / output

© 2014 Altova GmbHAltova MapForce 2015

The wildcard characters ? and * are supported in file names. Note that a relative path was
entered here, as the Tut-ExpReport.mfd file is available in the ...\Tutorial folder (you can
enter an absolute path if you want).

3. Insert the replace-fileext function from the file path functions library, then insert a
constant component.

4. Enter ".out" into the constant component, and connect it to the extension parameter of
the function.

5. Connect the File:mf-ExpReport?.xml item of the component to the filepath parameter of
the function.

6. Connect the result-filepath parameter of the function, to the File "default" item of the
target component.

The File: item of the target component has also changed to File: <dynamic>.
7. Click the Output button to see the results.

The Output window now shows the results for each input XML file in the preview window,
e.g. Preview 1 of 2 as shown below.

© 2014 Altova GmbH

Multi-file input / output 57MapForce tutorial

Altova MapForce 2015

8. Click the scroll arrow to show the result of the second input XML file.
Note that the combo box shows the name of each of the source XML files; with the *.xml
extension replaced by the *.out extension.

58 MapForce tutorial Multi-file input / output

© 2014 Altova GmbHAltova MapForce 2015

Clicking the Save All icon lets you save all the mapped files from the Preview
window without having to generate code. A prompt appears if output files at the same
location will be overwritten.

9. Save the mapping file under a new name.

Note: please see Dynamic input/output for more information on multiple input / output files.

Chapter 6

MapForce user interface

60 MapForce user interface

© 2014 Altova GmbHAltova MapForce 2015

6 MapForce user interface

MapForce has four main areas: the Libraries pane at left, the Mapping window (with Mapping,
XSLT, XSLT2, and Output panes) at right, as well as the Overview and Messages windows below.

Title Bar

The Title Bar displays the application name (i.e., MapForce) followed by the name of the active
Mapping Design window. Buttons to control the MapForce application window are at right.

Menu Bar and Toolbars

The Menu Bar displays the menu items. Each toolbar displays a group of icons representing
MapForce commands. You can reposition the menu bar and toolbars by dragging their handles to
the desired locations.

© 2014 Altova GmbH

 61MapForce user interface

Altova MapForce 2015

Libraries Tab

The Libraries tab provides functions that vary according to the selected output language. You can
drag a function directly into the mapping window.

Mapping Window

The Mapping window displays the graphical elements used to create the mapping
(transformation) between the various components. The source schema displays the source
schema tree and the target schema displays the target schema tree. Connectors connect the
input and output icons of each schema item. Schema items can be either elements or attributes.

The following panes can be viewed by clicking the corresponding button at the bottom of the
Mapping window:

The XSLT and XSLT2 panes display a preview of the transformation code depending on
the

The Output pane displays a preview of the transformed, or mapped data, in a text view.

 with the target component.

Overview and Messages Windows

The Overview pane displays the mapping area as a red rectangle, which you can drag to
navigate your Mapping.

The Messages pane displays any validation warnings or error messages that might occur during
the mapping process. Clicking a message in this pane, highlights it in the Mapping tab for you to
correct.

Application Status Bar

The application status bar appears at the bottom of the application window, and shows
application-level information. The most useful of this information are the tooltips that are displayed
here when you mouseover a toolbar icon. If you are using the 64-bit version of MapForce, this is
indicated in the status bar with the suffix (x64) after the application name. There is no suffix for the
32-bit version.

62 MapForce user interface Libraries tab

© 2014 Altova GmbHAltova MapForce 2015

6.1 Libraries tab

The Libraries tab displays the available libraries for the currently selected programming language,
as well as the individual functions of each library. A brief description of the function is also
provided. Functions can be directly dragged into the Mapping tab. Once you do this, they
become function components.

XSLT Selected

The standard core and xslt libraries are always loaded when you start MapForce, and do not
need to be added by the user. The Core library is a collection of functions that can be used to
produce all types of output: XSLT. The other libraries (xslt, xslt2, xpath2, lang etc.) contain
functions associated with each separate type of output.

Selecting enables

XSLT core and XSLT functions (XPath 1.0 and XSLT 1.0 functions)

XSLT2 core, XPath 2.0, and XSLT 2.0 functions

XPath 2.0 restrictions: Several XPath 2.0 functions dealing with sequences are currently not
available.

Finding functions in the Library window

A Find field is located at the bottom of the Libraries tab which allows you to search for function
names.

© 2014 Altova GmbH

Libraries tab 63MapForce user interface

Altova MapForce 2015

XSLT Selected

Pressing the Esc key cancels the filtering function in the window. Clicking the "x" icon has the
same effect.

To find a function in the Library window:
1. Click into the Libraries window to make it active and enter the characters you are looking

for, e.g. "lo".
All functions containing these characters are now shown in the Library window, each
within its respective group.

2. Click the down-arrow and select "Include function descriptions", if you want to include the
text of the function descriptions in the function search.

Adding new function libraries
MapForce allows you to create and integrate your own function libraries, please see the sections:
Adding custom XSLT 1.0 functions, Adding custom XSLT 2.0 functions and User-defined functions
for more information.

Please note: Custom functions/libraries can be defined for XSLT and XSLT 2.

64 MapForce user interface Mapping pane

© 2014 Altova GmbHAltova MapForce 2015

6.2 Mapping pane

The Mapping pane is the working area in MapForce where you create your mappings.

The Mapping pane displays the graphical elements used to create the mapping (transformation)
between the two components. Connectors connect the input and output icons of each schema
item. Schema items can be either elements or attributes.

Align components - snap lines
When moving components in the mapping window, auto-alignment guide lines appear allowing you
to align the component to any other component in the mapping window. This option can be
enabled/disabled using the menu option Tools | Options | General.

In the screen shot below, the lower value-map component is being moved. The guide lines show
that it can be aligned to the "contains" function and to the "ExpReport-item" component.

© 2014 Altova GmbH

Mapping pane 65MapForce user interface

Altova MapForce 2015

66 MapForce user interface XSLT/XSLT2 pane

© 2014 Altova GmbHAltova MapForce 2015

6.3 XSLT/XSLT2 pane

The XSLT and XSLT2 panes display a preview of the transformation depending on the specific
language selected.

Note: If you want to change the output language, you have to change back to the Mapping pane
to do so. When a certain language tab is active, you cannot change the output language
in the Output menu or the Language Selection toolbar, respectively.

© 2014 Altova GmbH

Output pane 67MapForce user interface

Altova MapForce 2015

6.4 Output pane

The Output pane allows you to preview the execution result of the mapping. The displayed output
depends on the selected transformation language (see Selecting a transformation language).

Depending on the target component of your mapping, the Output pane may show different things:

XML Schema/document as target
The screenshot below shows the output of the DB_CompletePO.mfd mapping available
in the ...\MapForceExamples folder. An XML Schema/document, as well as a database
are used as source components in this mapping.

68 MapForce user interface Output pane

© 2014 Altova GmbHAltova MapForce 2015

The resultant XML file can be saved by clicking the Save generated output icon,

and validated against the referenced schema by clicking the Validate Output icon in
the icon bar.

Hotkeys

You can use the following hotkeys in the Output pane:

CTRL and "+" zoom in on the text
CTRL and "-" zoom out of the text
CTRL and "0" resets the zoom factor to standard
CTRL and mouse wheel forward / backward achieve the same zoom in/out effect.

© 2014 Altova GmbH

Overview window 69MapForce user interface

Altova MapForce 2015

6.5 Overview window

The Overview window serves as a navigator pane for large mappings. A red rectangle shows the
currently visible area in the Mapping pane. You can drag the rectangle in the Overview window
with your mouse to adjust the visible part of the mapping in the Mapping window.

Clicking into the Overview window will define the center of the display in the Mapping pane.

70 MapForce user interface Messages window

© 2014 Altova GmbHAltova MapForce 2015

6.6 Messages window

The Messages tab shows messages, errors, and warnings when you click the Output button or
perform a mapping validation.

Chapter 7

Working with MapForce

72 Working with MapForce

© 2014 Altova GmbHAltova MapForce 2015

7 Working with MapForce

This section describes the various aspects of working with MapForce:

Moving and restoring connectors
Dealing with missing items
Selecting a transformation language
Previewing the transformation output
Validating Mapping and mapping output
Command line parameters
Using catalog files

© 2014 Altova GmbH

Connectors moving / keeping 73Working with MapForce

Altova MapForce 2015

7.1 Connectors moving / keeping

Moving connectors and the effect on child connectors

When moving a parent connector to a different parent connector item, MapForce automatically
matches identical child connections under the new location of the connector. This is not the same
as the auto-connect child option, as it uses different rules to achieve this.

A common use of this feature is if you have an existing mapping and then change the root
element of the target schema. This would normally force you to remap all descending connectors
manually.

This example uses the Tut-ExpReport.mfd file available in the ...\MapForceExamples\Tutorial
folder.

If the Company root element of the target schema, is changed to Company-EU then a "Changed
files" prompt appears in MapForce.

1. Click the Reload button to reload the updated Schema.
You are now presented with multiple missing nodes as the root element has changed.

2. Click on the "Select new root element" link at the top of the component.

74 Working with MapForce Connectors moving / keeping

© 2014 Altova GmbHAltova MapForce 2015

3. Select the updated root element, Company-EU and click OK to confirm.

The Company-EU root element is now visible at the top of the component.
4. Click the connector on the Company item and use drag-and-drop to drop it on the new

Company-EU root element.

A prompt appears asking which connectors you want to move.

5. Click the "Include descendent connections" button if you want to map the child
connectors.
The "missing" item nodes have been removed and all connectors have been mapped to
the correct child items under the new root element.

© 2014 Altova GmbH

Connectors moving / keeping 75Working with MapForce

Altova MapForce 2015

Please note:
If the item/node you are mapping to has the same name (as the source node) but is in a
different namespace, then the prompt will contain an additional button "Include
descendants and map namespace".

Clicking this button moves the child connectors of the same namespace as the source
parent node, to the same child nodes under the different namespace node. I.e. If the
parent nodes only differ in their namespace, then the child nodes may only differ in the
same way, if they are to be mapped automatically.

You can also change the root element by right clicking the component header and
selecting "Change Root Element" from the context menu.

Keeping connectors after deleting components
A new option in MapForce lets you decide what happens when you delete a component that has
multiple (child) connections to another component, e.g. a filter or sort component. This is very
useful if you want to keep all the child connectors and not have to restore each one individually.

You can now opt to keep/restore the child connections after the component is deleted, or have all
child connectors be deleted immediately.

Select Tools | Options | Editing (tab) to see the current setting. The default setting for the check
box is inactive, i.e. "Smart component deletion (keep useful connections)" is disabled.

76 Working with MapForce Connectors moving / keeping

© 2014 Altova GmbHAltova MapForce 2015

E.g. using the CompletePO.mfd mapping in the ...\MapForceExamples folder, and the check box
is active, the Customer filter is a copy-all connection with many connected child items, as shown
below.

Deleting the Customer filter opens a prompt asking if you really want to delete it. If you select
Yes, then the filter is deleted but all the child connectors remain.

Note that the remaining connectors are still selected (i.e. shown in red). If you want to delete
them as well, hit the Del. key.

© 2014 Altova GmbH

Connectors moving / keeping 77Working with MapForce

Altova MapForce 2015

Clicking anywhere in the mapping area deselects the connectors.

If the "Smart component deletion..." check box is inactive, then deleting the filter will delete all
child connectors immediately.

Note:
If a filter component has both "on-true" and "on-false" outputs connected, then the connectors for
both outputs will be retained.

78 Working with MapForce Missing items

© 2014 Altova GmbHAltova MapForce 2015

7.2 Missing items

Over time, it is likely that the structure of one of the components in a mapping may change e.g.
elements or attributes are added/deleted to an XML schema. MapForce uses placeholder items to
retain all the connectors, and any relevant connection data between components, when items
have been deleted.

Example:
Using the MFCompany.xsd schema file as an example. The schema is renamed to
MyCompany.xsd and a connector is created between the Company item in both schemas. This
creates connectors for all child items between the components, if the Autoconnect Matching
Children is active.

While editing MyCompany.xsd, in XMLSpy, the First and Last items in the schema are deleted.
Returning to MapForce opens a Changed Files notification dialog box, prompting you to reload the
schema. Clicking Reload updates the components in MapForce.

The deleted items and their connectors are now marked in the MyCompany component. You
could now reconnect the connectors to other items if necessary, or delete the connectors.

Note that you can still preview the mapping (or generate code), but warnings will appear in the
Messages window if you do so at this point. All connections to, and from, missing items are
ignored during preview or code-generation.

© 2014 Altova GmbH

Missing items 79Working with MapForce

Altova MapForce 2015

Clicking one of the highlighted connectors and deleting it, removes the "missing" item from the
component, e.g. Last, in MyCompany.

Renamed items
If a parent item is renamed e.g. Person to ZPerson, then the original parent item connector is
retained and the child items and their connectors are deleted.

"Copy all" connectors and missing items
Copy all connections are treated in the same way as normal connections, with the only difference
being that the connectors to the missing child items are not retained or displayed.

Renamed or deleted component sources
If the data source of a component i.e. schema has been renamed or deleted, then all items it
contained are highlighted. The red frame around the component denotes that there is no valid

80 Working with MapForce Missing items

© 2014 Altova GmbHAltova MapForce 2015

connection to a schema and prevents preview and code generation.

Placing the mouse cursor over the highlighted component, opens a popup containing pertinent
information.

Double-clicking the title bar of the highlighted component opens the Component Settings dialog
box.Clicking the Browse button in the Schema file group allows you to select a different, or
backed-up version of the schema. Please see "Component" in the Reference section for more
information.

© 2014 Altova GmbH

Missing items 81Working with MapForce

Altova MapForce 2015

All valid/correct connections will be retained if you select a schema of the same structure.

82 Working with MapForce Selecting a transformation language

© 2014 Altova GmbHAltova MapForce 2015

7.3 Selecting a transformation language

You can choose one of the following as data transformation language:

XSLT 1.0
XSLT 2.0

To select a transformation language, do one of the following:

On the Output menu, click the name of the language you wish to use for transformation.
Click the name of the language in the Language Selection toolbar.

See also:

Previewing the transformation output

© 2014 Altova GmbH

Previewing the transformation output 83Working with MapForce

Altova MapForce 2015

7.4 Previewing the transformation output

When working with MapForce mappings, you can preview the resulting output without having to
run and compile the generated code with an external processor or compiler. In general, it is a
good idea to preview the transformation output within MapForce before attempting to process the
generated code externally.

When you choose to preview the mapping results, MapForce executes the mapping and
populates the Output pane with the resulting output. Once data is available in the Output pane,
you can validate and save it if necessary. You can also use the Find command (Ctrl + F key
combination) to quickly locate a particular text pattern within the output file.

To preview the transformation output:

Click the Output tab under the Mapping window. MapForce executes the mapping using
the transformation language selected in the Language toolbar and populates the Output
pane with the resulting output.

To save the transformation output, do one of the following:

On the Output menu, click Save Output File.
Click the Save Generated Output toolbar button.

Partial output preview
When you are previewing large output files, MapForce limits the amount of data displayed in the
Output pane. More specifically, MapForce displays only a part of the file in the Output pane, and
a Load more... button appears in the lower area of the pane. Clicking the Load more... button
appends the next file part to the currently visible data, and so on.

Note: The Pretty-print button becomes active when the complete file has been loaded into the
Output pane.

You can configure the preview settings from the General tab of the Options dialog box.

See also:

Selecting a transformation language

84 Working with MapForce Previewing the XSLT code

© 2014 Altova GmbHAltova MapForce 2015

7.5 Previewing the XSLT code

You can preview the XSLT code generated by MapForce if you selected XSLT 1.0 or XSLT 2.0 as
data transformation language (see Selecting a transformation language).

To preview the generated XSLT 1.0 (or XSLT 2.0) code, do one of the following:

To preview the XSLT 1.0 code, click the XSLT tab under the Mapping window.
To preview the XSLT 2.0 code, click the XSLT2 tab under the Mapping window.

Note: The XSLT (or XSLT2) tab becomes available if you have selected XSLT (or XSLT2,
respectively) as transformation language.

© 2014 Altova GmbH

Validating mappings and mapping output 85Working with MapForce

Altova MapForce 2015

7.6 Validating mappings and mapping output

It is not mandatory for functions or components to be mapped. The Mapping tab is a work area
where you can place any available components. XSLT 1.0, XSLT 2 is only generated for those
components for which valid connections exist.

Free standing components do not generate any type of error or warning message.

Partially connected components can generate two types of warning:

If a function component input icon is unconnected, an error message is generated and
the transformation is halted.
If the function output icon is unconnected, then a warning is generated and the
transformation process continues. The offending component and its data are ignored, and
are not mapped to the target document.

You can use multiple message tabs if your project contains many separate mapping files. Click
one of the numbered tabs in the Messages window, and click the preview tab for a different
mapping in your project. The validation message now appears in the tab that you selected. The
original message in tab 1, is retained however.

Use the different icons of the Messages tab to:
Filter the message types, errors or warnings
Scroll through the entries
Copy message text to the clipboard
Find a specific string in a message
Clear the message window.

To validate a mapping:

Click the Validate Mapping icon in the application toolbar, or select the menu item
File | Validate Mapping.
A validation message appears in the Messages window.

Validation messages
Validation messages are displayed in the Messages window and indicate whether or not the
validation was successful. In addition, error messages, warnings, and information on the mapping
is displayed. Two types of validation messages can appear:

Validation successful - 0 error(s), n warning(s)

Warnings alert you to something, while still enabling the mapping process and preview of
the transformation result to continue. It is therefore possible for a mapping to have 0
errors and n warnings.

86 Working with MapForce Validating mappings and mapping output

© 2014 Altova GmbHAltova MapForce 2015

Validation failed - x error(s), y warning(s)

Errors, halt the transformation process and deliver an error message. An XSLT, XQuery,
or Output preview is not possible when an error of this type exists. Clicking a validation
message in the Messages window, highlights the offending component icon in the
Mapping window.

Validating the mapping output
Clicking the Output tab uses the MapForce, XSLT 1.0/2.0 or XQuery engine, to transform the data
and produce a result in a Text view.

If the data is mapped to an XML Schema, then the resulting XML document can be validated
against the underlying schema.

The result of the validation is displayed in the Messages window. If the validation was not
successful, the message contains detailed information on the errors that occurred (see
screenshot below).

The validation message contains an number of hyperlinks you can click for more detailed
information:

Clicking the file path opens the output of the transformation in the Output tab of
MapForce.
Clicking <ElementName> link highlights the element in the Output tab.
Clicking the icon opens the definition of the element in XMLSpy (if installed).
Clicking the hyperlinks in the Details subsection (e.g., cvc-model-group) opens a

http://www.altova.com/xmlspy.html

© 2014 Altova GmbH

Validating mappings and mapping output 87Working with MapForce

Altova MapForce 2015

description of the corresponding validation rule on the http://www.w3.org/ website.

To validate the mapping OUTPUT:

Click the Validate button to validate the document against the schema. An "Output
file validation successful. 0 error(s), 0 warning(s)" message, or a message detailing any
errors appears.

Please note:
The entry in the Add Schema/DTD reference field of the component settings dialog box allows
you to add the path of the referenced XML Schema file to the root element of the XML output.

The path allows you to define where the schema file, referenced by the XML instance file, is to be
located. This ensures that the output instance can be validated at the mapping destination when
the mapping is executed. You can enter an http:// address as well as an absolute, or relative path
in this field.

http://www.w3.org/

88 Working with MapForce Command line parameters

© 2014 Altova GmbHAltova MapForce 2015

7.7 Command line parameters

General command line syntax:

MapForce.exe filename [/target [outputdir] options

Square brackets [...] denote optional parameters.
Curly brackets {...} denote a parameter group containing several choices.
The pipe symbol | denotes OR, e.g. /XSLT or /JAVA

MapForce.exe returns an exit code of 0, if the command line execution was successful.
Any other value indicates a failure. You can check for this code using the IF
ERRORLEVEL command in batch files.

filename
The MFD or MFP file to load. If the path, or file name contains a space, please use quotes
around the path/file name i.e. "c:\Program Files\...\Filename"

target

/XSLT generates XSLT 1.0
code

/XSLT2 generates XSLT 2.0
code

/GLOBALRESOURCEFILE
globalresourcefilename

uses the global resources defined in
the specified global resource file

/GLOBALRESOURCECONFIG
configurationname

uses the specified global resource
configuration

outputdir
The directory the generated mapping code is to be placed in outputdir is optional. If an output path
is not supplied, the working/current directory will be used. If not specified, relative file names are
relative to the working/current directory. Relative means only the file name is supplied, not a
complete path starting with a drive letter).

options
Specifies various options:

/LOG logfilename Generates a log file called logfilename. Logfilename
can be a full path name, i.e. directory and file name
of the log file, but the directory must exist for the
logfile to be generated if a full path is supplied.

If you only specify the file name, then the file will be
placed in the /outputdir directory.

Examples:

MapForce.exe filename starts MapForce and opens the file defined by filename.

I) generate all XSLT files and output a log file.
MapForce.exe filename /XSLT outputdir /LOG logfilename

© 2014 Altova GmbH

Command line parameters 89Working with MapForce

Altova MapForce 2015

II) generate all XSLT files and use all global resources of the global resource file for the specified
configuration

Mapforce.exe filename /XSLT outputdir /GLOBALRESOURCEFILE
globalresourcefilename /GLOBALRESOURCECONFIG configurationname

Having executed the command line, several files are produced:

The generated XSLT file
A batch file called DoTransform.bat which uses RaptorXML Server to transform the XML
file.
A log file, if one was specified in the command line.

To transform the XML file using the generated XSLT:
1. Download and install the RaptorXML Server engine from the RaptorXML download page.
2. Start the DoTransform.bat batch file located in the previously designated output folder.

This generates the output file in the current folder.

Note:
You might need to add the RaptorXML insallation location to the path variable of the
Environment Variables.

http://www.altova.com/development_edition.html

90 Working with MapForce Catalog files in MapForce

© 2014 Altova GmbHAltova MapForce 2015

7.8 Catalog files in MapForce

MapForce supports a subset of the OASIS XML catalogs mechanism. The catalog mechanism
enables MapForce to retrieve commonly used schemas (as well as stylesheets and other files)
from local user folders. This increases the overall processing speed, enables users to work offline
(that is, not connected to a network), and improves the portability of documents (because URIs
would then need to be changed only in the catalog files.)

The catalog mechanism in MapForce works as outlined below.

RootCatalog.xml
When MapForce starts, it loads a file called RootCatalog.xml (structure shown in listing below),
which contains a list of catalog files that will be looked up. You can modify this file and enter as
many catalog files to look up as you like, each in a nextCatalog element. Each of these catalog
files is looked up and the URIs in them are resolved according to the mappings specified in them.

<?xml version="1.0" encoding="UTF-8"?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog"

 xmlns:spy="http://www.altova.com/catalog_ext"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oasis:names:tc:entity:xmlns:xml:catalog
Catalog.xsd">
 <nextCatalog catalog="%PersonalFolder%/Altova/%AppAndVersionName%/
CustomCatalog.xml"/>

 <nextCatalog catalog="CoreCatalog.xml"/>

 <!-- Include all catalogs under common schemas folder on the first directory
level -->
 <nextCatalog spy:recurseFrom="%AltovaCommonFolder%/Schemas"
catalog="catalog.xml" spy:depth="1"/>

 <!-- Include all catalogs under common XBRL folder on the first directory
level -->
 <nextCatalog spy:recurseFrom="%AltovaCommonFolder%/XBRL" catalog="catalog.xml"

spy:depth="1"/>
</catalog>

In the listing above, notice that in the Schemas and XBRL folders of the folder identified by the
variable %AltovaCommonFolder% are catalog files named catalog.xml. (The value of the %
AltovaCommonFolder% variable is given in the table below.)

The catalog files in the Altova Common Folder map the pre-defined public and system identifiers
of commonly used schemas (such as SVG and WSDL) and XBRL taxonomies to URIs that point
to locally saved copies of the respective schemas. These schemas are installed in the Altova
Common Folder when MapForce is installed.You should take care not to duplicate mappings in
these files, as this could lead to errors.

CoreCatalog.xml, CustomCatalog.xml, and Catalog.xml
In the RootCatalog.xml listing above, notice that CoreCatalog.xml and CustomCatalog.xml are
listed for lookup:

CoreCatalog.xml contains certain Altova-specific mappings for locating schemas in the
Altova Common Folder.
CustomCatalog.xml is a skeleton file in which you can create your own mappings. You
can add mappings to CustomCatalog.xml for any schema you require but that is not

© 2014 Altova GmbH

Catalog files in MapForce 91Working with MapForce

Altova MapForce 2015

addressed by the catalog files in the Altova Common Folder. Do this using the supported
elements of the OASIS catalog mechanism (see below).
There are a number of Catalog.xml files in the Altova Common Folder. Each is inside the
folder of a specific schema or XBRL taxonomy in the Altova Common Folder, and each
maps public and/or system identifiers to URIs that point to locally saved copies of the
respective schemas.

Location of catalog files and schemas
The files RootCatalog.xml and CoreCatalog.xml are installed in the MapForce application
folder. The file CustomCatalog.xml is located in your MyDocuments/Altova/MapForce folder.
The catalog.xml files are each in a specific schema folder, these schema folders being inside
the folders: %AltovaCommonFolder%\Schemas and %AltovaCommonFolder%\XBRL.

Shell environment variables and Altova variables
Shell environment variables can be used in the nextCatalog element to specify the path to
various system locations (see RootCatalog.xml listing above). The following shell environment
variables are supported:

%
AltovaCommonFolder
% C:\Program Files\Altova\CommonMapForce

%DesktopFolder% Full path to the Desktop folder for the current user.

%ProgramMenuFolder
% Full path to the Program Menu folder for the current user.

%StartMenuFolder% Full path to Start Menu folder for the current user.

%StartUpFolder% Full path to Start Up folder for the current user.

%TemplateFolder% Full path to the Template folder for the current user.

%AdminToolsFolder%

Full path to the file system directory that stores administrative tools for
the current user.

%AppDataFolder% Full path to the Application Data folder for the current user.

%
CommonAppDataFolde
r% Full path to the file directory containing application data for all users.

%FavoritesFolder% Full path of the Favorites folder for the current user.

%PersonalFolder% Full path to the Personal folder for the current user.

%SendToFolder% Full path to the SendTo folder for the current user.

%FontsFolder% Full path to the System Fonts folder.

%
ProgramFilesFolder
% Full path to the Program Files folder for the current user.

%CommonFilesFolder
% Full path to the Common Files folder for the current user.

92 Working with MapForce Catalog files in MapForce

© 2014 Altova GmbHAltova MapForce 2015

%WindowsFolder% Full path to the Windows folder for the current user.

%SystemFolder% Full path to the System folder for the current user.

%
CommonAppDataFolde
r% Full path to the file directory containing application data for all users.

%
LocalAppDataFolder
%

Full path to the file system directory that serves as the data repository
for local (nonroaming) applications.

%MyPicturesFolder% Full path to the MyPictures folder.

How catalogs work
Catalogs are commonly used to redirect a call to a DTD to a local URI. This is achieved by
mapping, in the catalog file, public or system identifiers to the required local URI. So when the
DOCTYPE declaration in an XML file is read, the public or system identifier locates the required
local resource via the catalog file mapping.

For popular schemas, the PUBLIC identifier is usually pre-defined, thus requiring only that the URI

in the catalog file point to the correct local copy. When the XML document is parsed, the PUBLIC

identifier in it is read. If this identifier is found in a catalog file, the corresponding URL in the
catalog file will be looked up and the schema will be read from this location. So, for example, if
the following SVG file is opened in MapForce:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg width="20" height="20" xml:space="preserve">
 <g style="fill:red; stroke:#000000">
 <rect x="0" y="0" width="15" height="15"/>
 <rect x="5" y="5" width="15" height="15"/>
 </g>
</svg>

This document is read and the catalog is searched for the PUBLIC identifier. Let's say the catalog

file contains the following entry:

<catalog>
 ...
 <public publicId="-//W3C//DTD SVG 1.1//EN" uri="schemas/svg/svg11.dtd"/>

 ...
</catalog>

In this case, there is a match for the PUBLIC identifier, so the lookup for the SVG DTD is

redirected to the URI schemas/svg/svg11.dtd (this path is relative to the catalog file), and this
local file will be used as the DTD. If there is no mapping for the Public ID in the catalog, then the
URL in the XML document will be used (in the example above: http://www.w3.org/Graphics/
SVG/1.1/DTD/svg11.dtd).

The catalog subset supported by MapForce

© 2014 Altova GmbH

Catalog files in MapForce 93Working with MapForce

Altova MapForce 2015

When creating entries in CustomCatalog.xml (or any other catalog file that is to be read by
MapForce), use only the following elements of the OASIS catalog specification. Each of the
elements below is listed with an explanation of their attribute values. For a more detailed
explanation, see the XML Catalogs specification. Note that each element can take the xml:base
attribute, which is used to specify the base URI of that element.

<public publicId="PublicID of Resource" uri="URL of local file"/>
<system systemId="SystemID of Resource" uri="URL of local file"/>
<uri name="filename" uri="URL of file identified by filename"/>
<rewriteURI uriStartString="StartString of URI to rewrite"
rewritePrefix="String to replace StartString"/>
<rewriteSystem systemIdStartString="StartString of SystemID"
rewritePrefix="Replacement string to locate resource locally"/>

In cases where there is no public identifier, as with most stylesheets, the system identifier can be
directly mapped to a URL via the system element. Also, a URI can be mapped to another URI
using the uri element. The rewriteURI and rewritsSystem elements enable the rewriting of the
starting part of a URI or system identifier, respectively. This allows the start of a filepath to be
replaced and consequently enables the targeting of another directory. For more information on
these elements, see the XML Catalogs specification.

File extensions and intelligent editing according to a schema
Via catalog files you can also specify that documents with a particular file extension should have
MapForce's intelligent editing features applied in conformance with the rules in a schema you
specify. For example, if you create a custom file extension .myhtml for (HTML) files that are to be
valid according to the HTML DTD, then you can enable intelligent editing for files with these
extensions by adding the following element of text to CustomCatalog.xml as a child of the

<catalog> element.

 <spy:fileExtHelper ext="myhtml" uri="schemas/xhtml/xhtml1-transitional.dtd"/>

This would enable intelligent editing (auto-completion, entry helpers, etc) of .myhtml files in
MapForce according to the XHTML 1.0 Transitional DTD. Refer to the catalog.xml file in the %
AltovaCommonFolder%\Schemas\xhtml folder, which contains similar entries.

XML Schema and catalogs
XML Schema information is built into MapForce and the validity of XML Schema documents is
checked against this internal information. In an XML Schema document, therefore, no references
should be made to any schema for XML Schema.

The catalog.xml file in the %AltovaCommonFolder%\Schemas\schema folder contains references
to DTDs that implement older XML Schema specifications. You should not validate your XML
Schema documents against either of these schemas. The referenced files are included solely to
provide MapForce with entry helper info for editing purposes should you wish to create documents
according to these older recommendations.

More information
For more information on catalogs, see the XML Catalogs specification.

http://www.oasis-open.org/committees/entity/spec-2001-08-06.html
http://www.oasis-open.org/committees/entity/spec-2001-08-06.html
http://www.oasis-open.org/committees/entity/spec-2001-08-06.html

Chapter 8

Mapping between components

96 Mapping between components

© 2014 Altova GmbHAltova MapForce 2015

8 Mapping between components

A connector visualizes the mapping between the two sets of data and allows the source data
(value) to appear, or be transformed, into the target component e.g. schema/document etc.

Components and functions have small "connection" triangles called: input or output icons.
These icons are positioned to the left and/or right of all "mappable" items. Clicking an icon and
dragging, creates the mapping connector. You can now drop it on another icon, or item name.
A link icon appears next to the text cursor when the drop action is allowed.

Clicking an item name (element/attribute) automatically selects the associated source icon
during the dragging action. Dropping the connector on the target item name also automatically
selects the target icon.

An input icon can only have one connector. If you try and connect a second connector to it, a
prompt appears asking if you want to replace or duplicate the input icon.

An output icon can have several connectors, each to a different input icon.

Positioning the mouse pointer over the straight section of a connector (close to the input/output
icon) highlights it, and causes a popup to appear. The popup displays the name(s) of the item(s)
at the other end of the connector. If multiple connnectors have been defined from the same output
icon, then a maximum of ten item names will be displayed. The screenshot shows that the two
target items are SinglePrice and value2 of the multiply function.

To move a connector to a different item, point to the straight section of the connector and drag it
elsewhere.

© 2014 Altova GmbH

 97Mapping between components

Altova MapForce 2015

To create a duplicate connector from the same source to another target, point to the straight
section of the connector near the original target, and drag it to another target while holding down
the CTRL key.

To search for a specific node/item in a component:
1. Click the component you want to search in, and press the CTRL+F keys.
2. Enter the search term and click Find Next.

The Advanced options visible in the screenshot above, allow you to define which items/
nodes are to be searched, as well as restrict the search options based on the specific
connections.

Auto-connecting items

Activating the Auto Connect child items icon , and creating a connector between two items,
automatically connects all child items of the same name under the parent item.

Number of connectors
Input and output icons appear on most components, there is not, however, a one to one
relationship between their numbers.

Each schema item (element/attribute) has an input and output icon.

Schema components within user-defined functions only have output icons.
Duplicated items only have input icons. This allows you to map multiple inputs to them.
Please see Duplicating Input items for more information.
Functions can have any number of input and output icons, one for each parameter.
E.g. the Add Function has two (or more) input icons, and one output icon.
Special components, can have any number of icons, e.g. the Constant component only
has an output icon.

Mandatory items/nodes/icons (target components)
As an aid to the mapping process, MapForce highlights mandatory items/nodes in orange, in
target components:

98 Mapping between components

© 2014 Altova GmbHAltova MapForce 2015

In XML and EDI components these are items where the minOccurs parameter is equal/
greater than 1.
In databases these are fields that have been defined as "not null"
WSDL calls and WSDL response (all nodes)
XBRL nodes that have been defined as mandatory
In functions these are the specific mandatory parameters such that once one parameter
has been mapped, then the other mandatory ones will be highlighted to show that a
connection is needed. E.g. once one of the filter input parameters is mapped, then the
other one is automatically highlighted.
Worksheet names in MS Excel sheets

Example:
When creating a mapping like CompletePO.mfd, available in the ...\MapForceExamples folder, the
inserted XML Schema files exist as shown below.

The Number element of the Customers component is then connected to the Number element of
the CompletePO component. As soon as the connection has been made, the mandatory items/
nodes of the CompletePO component are highlighted. Note that the collapsed "Article" node/icon
is also highlighted.

© 2014 Altova GmbH

 99Mapping between components

Altova MapForce 2015

Moving and restoring connectors
Please see the section Connectors moving / keeping for more information on how to move
connectors en-masse and what happens when components (such as filters) that have many child
connectors are deleted.

100 Mapping between componentsMethods of mapping data (Standard / Mixed Content / Copy Child Items)

© 2014 Altova GmbHAltova MapForce 2015

8.1 Methods of mapping data (Standard / Mixed Content / Copy
Child Items)

MapForce supports various methods of mapping data: Target-driven (Standard), Source-driven
(Mixed Content), and Copy All (Copy Child Items).

Connectors and their properties
The following actions can be performed on a connector and produce the results described below:

Clicking a connector highlights it in red.
Hitting the Del key, while a connector is highlighted, deletes it immediately.
Right-clicking a connector, opens the connector context menu.
Double-clicking a connector, opens the Connection Settings dialog box.

Viewing connectors
MapForce allows you to selectively view the connectors in the mapping window.

Show selected component connectors switches between showing:
all mapping connectors in black, or
those connectors relating to the currently selected component in black. Other
connectors appear dimmed.

Show connectors from source to target switches between showing:
connectors that are directly connected to the currently selected component, or
connectors linked to the currently selected component, originating from source and
terminating at the target components.

© 2014 Altova GmbH

Methods of mapping data (Standard / Mixed Content / Copy Child Items) 101Mapping between components

Altova MapForce 2015

8.1.1 Target-driven / Standard mapping

Target-driven (Standard) mapping means the normal method of mapping used in MapForce, i.e.
the output depends on the sequence of the target nodes.

Mixed content text node content is not supported/mapped.
The sequence of child nodes is dependent on the target schema file.

Standard mappings are shown with a solid line.

102 Mapping between componentsMethods of mapping data (Standard / Mixed Content / Copy Child Items)

© 2014 Altova GmbHAltova MapForce 2015

8.1.2 Source-driven / mixed content mapping

Source-driven (Mixed Content) mapping enables you to automatically map text and child nodes in
the same sequence that they appear in the XML source file.

Mixed content text node content is supported/mapped.
The sequence of child nodes is dependent on the source XML instance file.

Mixed content mappings are shown with a dotted line.

Source-driven / mixed content mapping can, of course, also be applied to XML schema
complexType items if you wish. Child nodes will then be mapped according to their sequence in
the XML source file.

Source-driven / mixed content mapping supports:

Mappings from

As source components:
– XML schema complexTypes (including mixed content, i.e. mixed=true)

As target components:
– XML schema complexTypes (including mixed content),Note: CDATA sections are

treated as text.

Mapping mixed content

The files used in the following example (Tut-OrgChart.mfd) are available in the ...
\MapForceExamples\Tutorial\ folder.

Source XML instance
A portion of the Tut-OrgChart.XML file used in this section is shown below. Our area of concern
is the mixed content element "para", along with it's child nodes "bold" and "italic".

Please note that the para element also contains a Processing Instruction (sort alpha-ascending)
as well as Comment text (Company details...) which can also be mapped.

© 2014 Altova GmbH

Methods of mapping data (Standard / Mixed Content / Copy Child Items) 103Mapping between components

Altova MapForce 2015

Please note the sequence of the text and bold/italic nodes of Nanonull., Inc in the XML instance
file, they are:

<para> The company...
<bold>Vereno</bold>in 1995 ...
<italic>multi-core...</italic>February 1999

<bold>Nano-grid.</bold>The company ...
<italic>offshore...</italic>to drive...

</para>

Initial mapping
The initial state of the mapping when you open Tut-Orgchart.mfd is shown below.

Output of above mapping
The result of the initial mapping is shown below: Organization Chart as well as the individual office
names have been output.

104 Mapping between componentsMethods of mapping data (Standard / Mixed Content / Copy Child Items)

© 2014 Altova GmbHAltova MapForce 2015

Mapping the para element
The image below shows an example of mixed content mapping. The para element is of mixed
content, and the connector is shown as a dotted line to highlight this. The text() node contains
the textual data and needs to be mapped for the text to appear in the target component.

Right clicking a connector and selecting Properties, allows you to annotate, or label the
connector. Please see section "Connection" in the Reference section for more information.

The image below shows the content model of the Description element (Desc) of the Tut-
OrgChart.xsd schema file. This definition is identical in both the source and target schemas used
in this example.

Note the following properties of the para element in the Content model:

para is a complexType with mixed="true", of type "TextType"
bold and italic elements are both of type "xs:string", they have not been defined as
recursive in this example, i.e. neither bold, nor italic are of type "TextType"
bold and italic elements can appear any number of times in any sequence within para
any number of text nodes can appear within the para element, interspersed by any
number of bold and italic elements.

To create mixed content connections between items:
1. Select the menu option Connection | Auto Connect Matching Children to activate this

option, if it is not currently activated.
2. Connect the para item in the source schema, with the para item in the target schema.

© 2014 Altova GmbH

Methods of mapping data (Standard / Mixed Content / Copy Child Items) 105Mapping between components

Altova MapForce 2015

A message appears, asking if you would like MapForce to define the connectors as
source driven.

 3. Click Yes to create a mixed content connection.

Please note:
Para is of mixed content, and makes the message appear at this point. The mixed-
content message also appears if you only map the para items directly, without having the
autoconnect option activated.

All child items of para have been connected. The connector joining the para items is
displayed as a dotted line, to show that it is of type mixed content.

4. Click the Output tab to see the result of the mapping.

 5. Click the word Wrap icon in the Output tab icon bar, to view the complete text in the
Output window.

106 Mapping between componentsMethods of mapping data (Standard / Mixed Content / Copy Child Items)

© 2014 Altova GmbHAltova MapForce 2015

The mixed content text of each office description has been mapped correctly; the text, as
well as the bold and italic tag content, have been mapped as they appear in the XML
source file.

6. Switch back to the Mapping view.

To remove text nodes from mixed content items:
1. Click the text() node connector and press Del. to delete it.

2. Click the Output tab to see the result of the mapping.

© 2014 Altova GmbH

Methods of mapping data (Standard / Mixed Content / Copy Child Items) 107Mapping between components

Altova MapForce 2015

Result:
all text nodes of the para element have been removed.
mapped bold and italic text content remain
the bold and italic item sequence still follows that of the source XML file!

Mixed content example

The following example is available as "ShortApplicationInfo.mfd" in the ...\MapForceExamples
folder.

A snippet of the XML source file for this example is shown below.

The mapping is shown below. Please note that:

The "SubSection" item connector is of mixed content, and is mapped to the Description
item in the target XML/schema.
The text() nodes are mapped to each other
Trademark text is mapped to the Bold item in the target
Keyword text is mapped to the Italic item in the target

108 Mapping between componentsMethods of mapping data (Standard / Mixed Content / Copy Child Items)

© 2014 Altova GmbHAltova MapForce 2015

Mapping result
The mixed content text of each description has been mapped correctly; the text, as well as the
bold and italic tag content, have been mapped as they appear in the XML source file.

Using standard mapping on mixed content items

This section describes the results when defining standard mappings (or using standard
connectors) on mixed content nodes. The files used in the following example (Tut-
OrgChart.mfd) are available in the ...\MapForceExamples\Tutorial\ folder.

To create standard connections between mixed content items:
1. Create a connector between the two para items.

A message appears, asking if you would like MapForce to define the connectors as
source driven.

2. Click No to create a standard mapping.

3. Click the Output tab to see the result of the mapping.

© 2014 Altova GmbH

Methods of mapping data (Standard / Mixed Content / Copy Child Items) 109Mapping between components

Altova MapForce 2015

Result
Mapping mixed content items using standard mapping produces the following result:

Text() content is supported/mapped.
The start/end tags of the child nodes, bold and italic, are removed from the text node.
The child nodes appear after the mixed content node text.
The sequence of child nodes depends on the sequence in the target XML/schema file.

That is:
For each para element, map the text() node, then all bold items, finally all italic items. This
results in the child item sequence shown above: bold, bold - italic, italic. The content of each item
is mapped if a connector exists.

110 Mapping between componentsMethods of mapping data (Standard / Mixed Content / Copy Child Items)

© 2014 Altova GmbHAltova MapForce 2015

8.1.3 Copy-all connections

This type of connection allows you to simplify your workspace and automatically connect all
identical items in source and target components, meaning that, depending on the source and
target type, all source child items are copied to the target component, if either the source and
target types are identical, or if the target type is xs:anyType.

If the source and target types are not identical, and if the target type is not xs:anyType, the
source data is transferred/mapped to the respective target items of the same name and the same
hierarchy level. If the names of the target items differ, then the mapping to the target item is not
created.

Connectors of type Copy All are shown with a single bold line that connects the various identical
items of source and target components.

Note that only the names of the child items, but not their individual types, are compared/matched.

Currently Copy-all connections are supported (i) between XML schema complex types, and (ii)
between complex components (XML schema) and complex user-defined functions/components
containing the same corresponding complex parameters.

The example below shows these connectors using the MarketingAndDailyExpenses.mfd file in
the ...\MapForceExamples folder.

To define a Copy-all connection:
1. Right-click an existing connector, e.g. the Person connector, and select "Copy-all" from

the context menu.
A prompt appears reminding you that all connections to the target child items will be
replaced by the copy-all connection.

© 2014 Altova GmbH

Methods of mapping data (Standard / Mixed Content / Copy Child Items) 111Mapping between components

Altova MapForce 2015

2. Click OK to create Copy-all connectors.

All connectors to the target component, and all source and target items with identical
names are created.

Please note:

When the existing target connections are deleted, connectors from other source
components, or other functions are also deleted.

This type of connection cannot be created between an item and the root element of a
schema component.

Individual connectors cannot be deleted, or reconnected from the Copy-all group, once
you have used this method.

To resolve/delete copy-all connectors:

112 Mapping between componentsMethods of mapping data (Standard / Mixed Content / Copy Child Items)

© 2014 Altova GmbHAltova MapForce 2015

1. Connect any item to a child item of the copy-all connection at the target component.
You are notified that only one connector can exist at the target item. Click Replace to
replace the connector.

2. Click the Resolve copy-all connection button in the next message box that opens.
The copy-all connection is replaced by individual connectors to the target component.

Copy-all connections and user-defined functions
When creating Copy-all connections between a schema and a user-defined function parameter,
the two components must be based on the same schema! It is not necessary that they both have
the same root elements however. Please see "Complex output components - defining" for an
example.

Copy-all connections and filters

Copy-all connections can also be created through filter components if the source component:

consists of structured data, meaning a schema component,
receives data through a complex output parameter of a user-defined function, or Web
service,
receives data through another filter component.

Only the filtered data is passed on to the target component.

To define a copy-all connection through a filter component:
1. Create a connector from the on-true/on-false item to the target item, e.g. Customer.
2. Right click the connector and select "Copy-all (Copy child items)" from the context menu.

The copy-all connector between items of the same name are created.

Please see Connectors moving / restoring on how to influence what happens when filter
components are deleted.

© 2014 Altova GmbH

Connection settings 113Mapping between components

Altova MapForce 2015

8.2 Connection settings

Right-clicking a connector and selecting Properties from the context menu, or double-clicking a
connector, opens the Connection Settings dialog box in which you can define the specific (mixed
content) settings of the current connector. Note that unavailable options are greyed out.

Connection type
For items of complexType, you can choose one of the following connection types for mapping
(please note that these settings also apply to complexType items which do not have any text
nodes!):

Target Driven (Standard): Changes the connector type to Standard mapping, please
see Target-driven / Standard mapping for more information.

Copy-all (Copy child items): Changes the connector type to Copy-all and automatically
connects all identical items in the source and target components. Please see Copy-all
connections for more information.

Source Driven (mixed content): Changes the connector type to source driven / mixed
content, and enables the selection of additional elements to be mapped. The additional
elements have to be child items of the mapped item in the XML source file, to be able to
be mapped.

Activating the Map Processing Instructions and/or Map Comments check boxes

114 Mapping between components Connection settings

© 2014 Altova GmbHAltova MapForce 2015

enables you to include those data in the output file.

Please note: CDATA sections are treated as text.

Annotation Settings
Individual connectors can be labeled allowing you to comment your mapping in great detail. When
you enter a character in the Description field, the Starting Location, Alignment, and Position group
boxes are activated and can be edited. This option is available for all connection types.

To add an annotation to a connector:
1. Enter the name of the currently selected connector in the Description field.

This enables all the options in the Annotation Settings group.
2. Use the remaining groups to define the starting location, alignment and position of the

label.

3. Activate the Show annotations icon in the View Options toolbar to see the
annotation text.

Note: If the Show annotations icon is inactive, you can still see the annotation text if you place
the mouse cursor over the connector. The annotation text will appear in a popup if the Show tips

 icon is active in the View Options toolbar.

© 2014 Altova GmbH

Connections and mapping results 115Mapping between components

Altova MapForce 2015

8.3 Connections and mapping results

When you are creating connections between source and target items manually, MapForce
automatically analyzes the possible mapping outcomes. If you are mapping two child items, a
prompt can appear suggesting that you also connect the parent of the source item with the parent
in the target item.

This avoids having only a single child item appear in the Output window when you preview the
mapping. This will generally be the case if the source node supplies a sequence instead of a
single value.

The Tut-OrgChart.mfd mapping shown below is available in the ...\MapForceExamples\Tutorial
folder.

When connecting the source text() item to the target text() item, a message box appears, stating
that the parent item "para" is not connected and will only be generated once in the output. To
generate multiple para items in the target, connect the source and target "para" items to each
other.

116 Mapping between components Sequence of processing mapping components

© 2014 Altova GmbHAltova MapForce 2015

8.4 Sequence of processing mapping components

MapForce supports mappings that have several target components. Each of the target
components has a preview button allowing you to preview the mapping result for that specific
component.

If the mapping is executed from the command line, or from generated code, then regardless of the
currently active preview, the full mapping is executed and the output for each target component is
generated.

The order in which the target components are processed can be directly influenced by changing
the position of target components in the mapping window. The position of a component is defined
as its top left corner.

Target components are processed according to their Y-X position on screen, from top to bottom
and left to right.

If two components have the same vertical position, then the leftmost takes precedence.

If two component have the same horizontal position, then the highest takes precedence.

In the unlikely event that components have the exact same position, then an unique
internal component ID is automatically used, which guarantees a well-defined order but
which cannot be changed.

The screenshot below shows the tutorial sample Tut-ExpReport-multi.mfd available in the ...
\MapForceExamples\Tutorial folder.

Both target components (ExpReport-Target) have the same vertical position, and the preview
button is active on the right hand target component.

Having selected XSLT2 and generated the code:

© 2014 Altova GmbH

Sequence of processing mapping components 117Mapping between components

Altova MapForce 2015

The leftmost target component is processed first and generates the ExpReport.xml file.

The component to the right of it is processed next and generates the SecondXML.xml file.

You can check that this is the case by opening the DoTransform.bat file (in the output folder you
specified) and see the sequence the output files are generated. ExpReport-Target.xml is the first
output to be generated by the batch file, and SecondXML.xml the second.

Changing the mapping processing sequence:
1. Click the left target component and move it below the one at right.

2. Regenerate your code and take a look at the DoTransform.bat file.

SecondXML.xml is now the first output to be generated by the batchfile, and ExpReport-
Target.xml the second.

Chained mappings
The same processing sequence as described above, is followed for chained mappings. The

118 Mapping between components Sequence of processing mapping components

© 2014 Altova GmbHAltova MapForce 2015

chained mapping group is taken as one unit however. Repositioning the intermediate, or final,
target component of a single chained mapping has no effect on the processing sequence.

Only if multiple "chains", or multiple target components, exist in a mapping, does the position of
the final target components of each group determine which is processed first.

If two final target components have the same vertical position, then the leftmost takes
precedence.

If two final target component have the same horizontal position, then the highest takes
precedence.

In the unlikely event that components have the exact same position, then an unique
internal component ID is automatically used, which guarantees a well-defined order but
which cannot be changed

© 2014 Altova GmbH

Chained mappings / pass-through components 119Mapping between components

Altova MapForce 2015

8.5 Chained mappings / pass-through components

MapForce supports mappings that consist of multiple components in a mapping chain. Chained
mappings are mappings where at least one component acts as both a source and a target. Such
a component creates output which is later used as input for a following mapping step in the chain.
Such a component is called an "intermediate" component.

Chained mappings introduce a feature called "pass-through", which allows you to create
intermediate file outputs of "intermediate" components for preview, command line execution and in
code generation. "Pass-through" is a preview capability allowing you to view the various stages of
a chained mapping in the Output window. The Built-in execution engine is used to preview the
mappings and uses temp files to generate the results.

If the mapping is executed from the command line, or generated code, then regardless of the
entries in the Input/Output XML File fields of the "intermediate" component, the full mapping chain
is executed, and the output of a previous step of a mapping chain is forwarded as input to the
following mapping step.

Note:
Only "intermediate" components which are file based, i.e. XML, CSV, TXT file, etc., provide the
feature "pass-through". Database components can be intermediate but the pass-through button is
not shown. The intermediate component is always regenerated from scratch when previewing or
generating code. This would not be feasible with a database as it would have to be deleted prior to
each regeneration.

The screenshot below, for example, shows three components A, B, and C, where C is the target
component. Component B (ExpRep-Target) is the "intermediate" component, as it has both input
and output connections.

Note that when executing a chained mapping using the command line, or executing the generated
code, the mapping executes all steps in the correct order and generates the necessary output
files.

 Preview button
Component B, as well as C, both have preview buttons. This allows you to preview the
intermediate mapping result of B, as well as the final result of the chained mapping of component
C in the Built-in execution engine. Click the preview button of the respective component, then
click Output to see the mapping result.

"Intermediate" components with the pass-through button active, cannot be previewed since the

120 Mapping between components Chained mappings / pass-through components

© 2014 Altova GmbHAltova MapForce 2015

preview button is automatically disabled. To see the output of such a component, click the "pass-
through" button, to deactivate it, then click the preview button of the intermediate component.

 Pass-through button
The intermediate component B, has an extra button in the component title bar called "pass-
through".

If the pass-through button is active MapForce maps all data into the preview window in one
go; from component A to component B, then on to component C. Two result files will be created:

the result of mapping component A to intermediate component B

the result of the mapping from the intermediate component B, to target component C.

If the pass-through button is inactive MapForce will execute only parts of the full mapping
chain. It depends on which Preview buttons are active on the components B or C, as to which
data is generated:

if the Preview button of component B is active then the result of mapping component A to
component B is generated. The mapping chain actually stops at component B.
Component C is not involved in the preview at all.

if the Preview button of component C is active, then the result of mapping intermediate
component B to the component C is generated. When pass-through is inactive, automatic
chaining has been interrupted for component B. Only the right part of the mapping chain
is executed. Component A is not used.

Note, if the mapping is executed from the command line, or generated code, then
regardless of the settings of the pass-through button of component B, as well as the
currently selected preview component, the output of all components is generated.

In our sample two result files will be generated! This is the case because MapForce
automatically analyzes the dependency of all components and generates all outputs of
intermediate and final target components in the correct order.

Since the "pass-through" setting is currently inactive, it is vital that the intermediate
component B has identical file names in the "Input XML file" and "Output XML file" fields.

Please see the following sections for more on this example, and how the source data is
transferred differently when the pass-through button is active or inactive. Please see Chained
mapping example for a more plausible example.

© 2014 Altova GmbH

Chained mappings / pass-through components 121Mapping between components

Altova MapForce 2015

8.5.1 Chained mappings - Pass-through active

The files used in the following example (Tut-ExpReport-chain.mfd) are available in the ...
\MapForceExamples\Tutorial\ folder.

The Tut-ExpReport-chain.mfd example (screenshot above) is set up as follows:

Component A supplies all the mapping data, using a sample XML file. The XML file (mf-
ExpReport.xml) appears in the Input XML File field of the Component Settings dialog
box. The Output XML File, of the same name, is automatically inserted when you define
an Input XML file.

Intermediate component B "pass-through" active:
When pass-through is active, the Input XML File field of the intermediate component, is
automatically deactivated. A file name need not exist for the mapping to execute, as
intermediate data is stored in temp files.

If no Output XML File is defined, a default file name will be automatically used. If an
Output XML File entry exists, then it is used for the file name of the intermediate output
file.

Note that it is also possible for intermediate components to have dynamic file names i.e.
connectors to the "File:" item of a component (or even file name wildcards). Please see
Dynamic input/output files per component.

122 Mapping between components Chained mappings / pass-through components

© 2014 Altova GmbHAltova MapForce 2015

Final component C does not have an Output XML File assigned to it. The preview button
of component C is active.

Click the Output button to preview the results in the Built-in execution engine.

Preview 1:
The final result of the mapping from component A via intermediate component B, to target
component C. These are the Travel expenses below 1500.

Preview 2:
The result of the mapping from component A to the intermediate component B, i.e. all Travel
expense items. ExpRep-Target.xml is a default file name which is automatically generated
because a file name was not entered in the Output XML file field.

© 2014 Altova GmbH

Chained mappings / pass-through components 123Mapping between components

Altova MapForce 2015

Please note:
Each mapping result is displayed in its own Preview window. Click the scroll button(s) to see the
next/previous result.

Clicking the File name combo box displays the result files(s) in a hierarchy. The final target result
is shown at the top, with the intermediate result file(s) shown below. Click a file name to select it,
or use the keyboard keys to navigate through the file list and press Enter.

124 Mapping between components Chained mappings / pass-through components

© 2014 Altova GmbHAltova MapForce 2015

Setting an Output XML File in the intermediate component B, e.g. to "ExpRep-out.xml", causes
the intermediate data of component B to be saved in a file of that name, e.g. ExpRep-out.xml.

When "pass-through" is active, files created by an intermediate component are automatically
saved as a temp files and used for further processing of that components output.

The setting "Write directly to final output file" (Tools | Options | General) determines whether the
intermediate files are saved as temporary files or as physical files. For intermediate components a
default file name is used to save the intermediate result, unless a dynamic file name is supplied/
mapped.

The Preview XX of 1 means the number of final targets from the selected target component, one in
this case. The Preview ... (2) refers to the total number of results including all intermediate
components.

Displaying the result with StyleVision
If an SPS file has been assigned to a target component, then clicking the HTML, RTF tab, will
show the resulting data in the respective StyleVision tab in MapForce.

© 2014 Altova GmbH

Chained mappings / pass-through components 125Mapping between components

Altova MapForce 2015

Note that only outputs of final target components of a mapping chain are shown in the StyleVision
tab in MapForce. StyleVision outputs of intermediate components can not be shown.

126 Mapping between components Chained mappings / pass-through components

© 2014 Altova GmbHAltova MapForce 2015

8.5.2 Chained mappings - Pass-through inactive

The Tut-ExpReport-chain.mfd example works differently if the pass-through button is inactive on
component B.

The automatic transfer of data from component A via component B and further to component C,
has been interrupted by disabling the pass-through button. The Preview buttons of components B
and C determine which part of the mapping chain is generated.

MapForce generates the output for the component where the Preview button is active.

If the Preview button of component B is active, then the result of mapping component A to
component B is generated. Component C is ignored.

Clicking the Output button previews the results in the Built-in execution engine.

Preview:
The result of the mapping from component A to the intermediate component B, i.e. all Travel
expense items.

© 2014 Altova GmbH

Chained mappings / pass-through components 127Mapping between components

Altova MapForce 2015

If the Preview button of component C is active, MapForce maps the data from the
intermediate component B to component C. Component A is ignored. Component B has
an Input XML File, mf-ExpReport-co.xml, assigned to it, see Saving an intermediate
mapping result in the text below.

128 Mapping between components Chained mappings / pass-through components

© 2014 Altova GmbHAltova MapForce 2015

MapForce opens the intermediate file and maps its data to component C. If the input file
of component B exists, this mapping will produce output. This file entry must exist here
for the mapping to execute. MapForce displays an error message if the input file is
missing.

When "pass-through" is inactive, the Input XML File field of the intermediate component
is enabled, as shown above.

Note the difference to the case where component B had the "pass-through" button active,
in that case the Input XML file field is automatically disabled.

Preview:
The result of the mapping from intermediate component B to the target component C, i.e. Travel
expenses below 1500.

Note:
If this mapping is executed from the command line, or generated code, then regardless of the
state of the pass-through button in component B and the selected preview component, MapForce
attempts to generate the output of component B and component C. The setting of the preview
button has no effect.

Since the Input XML file entry is different from the Output XML file entry (which is empty) the
mapping chain is broken and the output for component C cannot be generated. Both the Input
XML File field and Output XML File field have to be identical for code generation to succeed.

Saving the intermediate mapping result
To make the input file of the intermediate component accessible, when "pass-through" is inactive,
the result of the mapping of component A to B must be saved. This file name is then placed in

© 2014 Altova GmbH

Chained mappings / pass-through components 129Mapping between components

Altova MapForce 2015

the Input XML File of component B. Only then can data be displayed in the final component C.

To save the mapping result of component B to a file:
1. Click the Preview button of component B to make it active, then click the Output button.

2. Click the Save generated output button in the Output Preview tool bar and give the
XML file a name, e.g. mf-ExpReport-co.xml.

3. Double click the header of component B to open the Component Settings dialog box,
and copy the file name into the Input XML File field and click OK.

Please note: Both the Input and Output file names must be identical (and present) for
code generation and execution from the command line to occur.

Displaying the result with StyleVision
If an SPS file has been assigned to a target component, then clicking the HTML, RTF tab, will
show the resulting data in the respective StyleVision tab in MapForce.

130 Mapping between components Chained mappings / pass-through components

© 2014 Altova GmbHAltova MapForce 2015

© 2014 Altova GmbH

Chained mappings / pass-through components 131Mapping between components

Altova MapForce 2015

8.5.3 Chained mapping example

The example shown below is available as ChainedPersonList.mfd in the ...\MapForceExamples
folder.

Aim:
To create two sets of employee documents, one for human resources and the other for
bookkeeping.

The document for the bookkeeping department assigns an unique ID to the employee.

The document for the HR department has the person details, and additionally the
telephone extension.

Components:

Employees:
The Employees.xml instance file contains four people with the roles in the sequence: manager,
programmer and support.

PersonList: (output will be the HR document) - Intermediate component
A role attribute is added to the person data, and the position hierarchy that exists in the
Employees component is removed.
The "pass-through" button is active.

Contacts: (output will be the bookkeeping document)
An ID element is added to the Contact data to make sure that person data is unique.

How it works:

PersonList:

132 Mapping between components Chained mappings / pass-through components

© 2014 Altova GmbHAltova MapForce 2015

The person element is duplicated twice to allow for the three types of roles that exist
within the company.

The role names are added as strings, using constant components, in the same
sequence as in the Employees component.

Contacts:
The substring function splits off the first character of the role attribute and forwards it to
the concat function.

The position function iterates over all the Person nodes, assigns a sequential number
(starting at 1) and forwards it to the concat function.

The concat function combines the substring character, a hypen (from a constant
component) and the position number and forwards it to the ID element of the Contacts
component.

Result:

PersonList component: (output: HR document) Contacts component: (output: bookkeeping
document)

© 2014 Altova GmbH

Using Functions 133Mapping between components

Altova MapForce 2015

8.6 Using Functions

The functions available in the selected language are displayed in the Libraries window. The
expand and contract icons show, or hide the functions of that library.

XSLT selected

Function tooltips
Explanatory text (visible in the libraries pane) on individual functions can be toggled on/off by

clicking the Show tips icon in the tool bar. Placing the mouse pointer over a function header,
displays the information on that function.

To use a function in Mapping window:
1. Select the programming language you intend to generate code for, by clicking one of

the output icons in the title bar.
2. Click the function name and drag it into the Mapping window.
3. Use drag and drop to connect the input and output parameters to the various icons.

Note that placing the mouse pointer over the "result = xxx" expression in the library pane,
displays a ToolTip describing the function in greater detail.

Function context menu

Right clicking a function in the Mapping window, opens the context window.

134 Mapping between components Using Functions

© 2014 Altova GmbHAltova MapForce 2015

Priority Context When applying a function to different items in a schema, MapForce
needs to know what the context node will be. All other items are then
processed relative to this one. This is achieved by designating the
item (or node) as the priority context. A circle appears around the icon
so designated. Please see Priority Context in the Reference section,
for an example.

Show Library in
Function Header

Displays the library name in the function component.

Replace Component
with Internal Function
Structure

Replaces the user-defined component/function with its constituent
parts, not available for functions.

Cut/Copy/Paste/Delete The standard MS Windows Edit commands, allow you to cut, copy
etc., any components or functions visible in the mapping window. All
connectors will be retained except for those which would have to be
replaced.

Properties Not available for functions.

Extendable functions
Several functions available in the function libraries are extendable: e.g. the concat, "logical-and",
"logical-or", and IF-ELSE functions. The parameters of these types of function can be inserted/
appended and deleted at will.

Clicking the "plus" icon inserts or appends the same type of parameter, while clicking the check
mark deletes the parameter.

Please note: "dropping" a connector on the "plus" symbol, automatically inserts/appends the
parameter and connects it.

© 2014 Altova GmbH

Using Functions 135Mapping between components

Altova MapForce 2015

The IF test parameters, of the IF-Else function can be extended in the same way.

136 Mapping between components Loops, groups and hierarchies

© 2014 Altova GmbHAltova MapForce 2015

8.7 Loops, groups and hierarchies

There are several ways of looping through source and target hierarchies which allow you to define
how you want to loop, or group, sets of data.

The following links show you how this can be achieved. Please note that these examples are not
sequential, they appear in various locations within the documentation.

Value-Map

Priority Context

© 2014 Altova GmbH

Mapping rules and strategies 137Mapping between components

Altova MapForce 2015

8.8 Mapping rules and strategies

MapForce generally maps data in an intuitive way, but there are some scenarios where the
resulting output seems to have too many, or too few items. This is what this section will cover.

General rule:
Generally, every connection between a source and target item means: for each source item,
create one target item.

If the source node contains simple content (e.g. string, integer etc.) and the target node accepts
simple content, then the content is copied, and the data type is converted if necessary.

There are some exceptions to this rule, but it generally holds for all connections.

The "context" and “current” items
MapForce displays the structure of a schema file as a hierarchy of mappable items in the
component. Each of these nodes may have many instances (or none) in the instance file or
database.

Example: If you look at the source component in PersonListByBranchOffice.mfd, there is only a
single node first (under Contact). In the BranchOffices.xml instance file, there are multiple first
nodes and Contact nodes having different content, under different Office parent nodes.

It depends on the current context (of the target node) which source nodes are actually selected
and have their data copied, via the connector, to the target component/item.

This context is defined by the current target node and the connections to its ancestors:

Initially the context contains only the source components, but no specific nodes. When
evaluating the mapping, MapForce processes the target root node first (PersonList),
then works down the hierarchy.

138 Mapping between components Mapping rules and strategies

© 2014 Altova GmbHAltova MapForce 2015

The connector to the target node is traced back to all source items directly or indirectly
connected to it, even via functions that might exist between the two components. The
source items and functions results are added to the context for this node.

For each new target node a new context is established, that initially contains all items of
the parent node's context. Target sibling nodes are thus independent of each other, but
have access to all source data of their parent nodes.

Applied to the example mapping above (PersonListByBranchOffice.mfd):

The connection from Office through the filter (Office) to PersonList defines a single office
as the context for the whole target document (because PersonList is the root element of
the target component). The office name is supplied by the input component, which has a
default containing "Nanonull, Inc."

All connections/data to the descendants of the root element PersonList, are
automatically affected by the filter condition, because the selected single office is in the
context.

The connection from Contact to Person creates one target Person per Contact item of
the source XML (general rule). For each Person one specific Contact is added to the
context, from which the children of Person will be created.

The connector from first to First selects the first name of the current Contact and writes it
to the target item First.

Leaving out the connector from Contact to Person would create only one Person with
multiple First, Last, and Detail nodes, which is not what we want here. In such situations,
MapForce issues a warning and a suggestion to fix the problem: "You can try to connect
Contact with Person to resolve":

© 2014 Altova GmbH

Mapping rules and strategies 139Mapping between components

Altova MapForce 2015

Sequences

MapForce displays the structure of a schema file as a hierarchy of mappable items in the
component.

Depending on the (target) context, each mappable item of a source component can represent:

a single instance node of the assigned input file

a sequence of 0 to multiple instance nodes of the input file

If a sequence is connected to a target node, a loop is created to create as many target nodes as
there are source nodes.

If a filter is placed between the sequence and target node, the bool condition is checked for each
input node i.e. each item in the sequence. More exactly, a check is made to see if there is at
least one bool in each sequence that evaluates to true. The priority context setting can influence
the order of evaluation, see below.

As noted above, filter conditions automatically apply to all descendant nodes.

Note: If the source schema specifies that a specific node occurs exactly once, MapForce may
remove the loop and take the first item only, which it knows must exist. This optimization can be
disabled in the source Component Settings dialog box (check box "Enable input processing
optimizations based on min/maxOccurs").

Function inputs (of normal, non-sequence functions) work similar to target nodes: If a sequence
is connected to such an input, a loop is created around the function call, so it will produce as
many results as there are items in the sequence.

If a sequence is connected to more than one such function input, MapForce creates nested
loops which will process the Cartesian product of all inputs. Usually this is not desired, so only
one single sequence with multiple items should be connected to a function (and all other
parameters bound to singular current items from parents or other components).

Note: If an empty sequence is connected to such a function (e.g. concat), you will get an empty
sequence as result, which will produce no output nodes at all. If there is no result in your target
output because there is no input data, you can use the “substitute-missing” function to insert a
substitute value.

Functions with sequence inputs are the only functions that can produce a result if the input
sequence is empty:

"exists", "not-exists" and "substitute-missing" (also "is-not-null, "is-null" and "substitute-
null", which are aliases for the first three)
aggregate functions ("sum", "count" etc.)
regular user-defined functions that accept sequences (i.e. non-inlined functions)

The sequence input to such functions is always evaluated independently of the current target node
in the context of its ancestors. This also means that any filter components connected to such
functions, do not affect any other connections.

140 Mapping between components Mapping rules and strategies

© 2014 Altova GmbHAltova MapForce 2015

Priority context
Usually, function parameters are evaluated from top to bottom, but its is possible to define one
parameter to be evaluated before all others, using the priority context setting.

In functions connected to the bool input of filter conditions, the priority context affects not only
the comparison function itself but also the evaluation of the filter, so it is possible to join together
two source sequences (see CompletePO.mfd, CustomerNo and Number).

In this example, the priority context forces ShortPO/CustomerNr to be evaluated before iterating
and filtering the Customer nodes from the Customers component. See example Priority Context
node/item

Overriding the context
Some aggregate functions have an optional “parent-context” input.

If this input is not connected, it has no effect and the function is evaluated in the normal context
for sequence inputs (that is, in the context of the target node's parent).

© 2014 Altova GmbH

Mapping rules and strategies 141Mapping between components

Altova MapForce 2015

If the parent-context input is connected to a source node, the function is evaluated for each
“parent-context” node and will produce a separate result for each occurrence.

Exceptions to the general rule (for each source item, create one target item)

A target XML root element is always created once and only once. If a sequence is
connected to it, only the contents of the element will be repeated, but not the root
element itself. The result may, however, not be schema-valid. If attributes of the root
element are also connected, the XML serialization will fail at runtime, so you should avoid
connecting a sequence the root element. To create multiple output files, connect the
sequence to the "File" node instead, via some function that generates file names.

Some other nodes, like XML attributes, or the output component inside a user-defined
function, accept only a single value.

Bringing multiple nodes of the same source component into the context:
This is required in some special cases and can be done with Intermediate variables.

Chapter 9

Data Sources and Targets

144 Data Sources and Targets

© 2014 Altova GmbHAltova MapForce 2015

9 Data Sources and Targets

This section describes the various source and target component types that MapForce can map
from/to.

XML and XML schema

© 2014 Altova GmbH

XML and XML schema 145Data Sources and Targets

Altova MapForce 2015

9.1 XML and XML schema

This section deals with slightly more advanced concepts than the mapping of XML to XML/
Schema files. Simple XML to XML/Schema mapping and how to achieve this, has been discussed
in the Tutorial section.

The following concepts are discussed:

Using DTDs as "schema" components

Derived XML Schema types - mapping to

QName support

Nil Values / Nillable

Comments and Processing Instructions

CData sections

Wildcards - xs:any

146 Data Sources and Targets XML and XML schema

© 2014 Altova GmbHAltova MapForce 2015

9.1.1 Using DTDs as "schema" components

MapForce 2006 SP2 and above, support namespace-aware DTDs for source and target
components. The namespace-URIs are extracted from the DTD "xmlns"-attribute declarations, to
make mappings possible.

Adding DTD namespace URIs
There are however some DTDs, e.g. DTDs used by StyleVision, which contain xmlns*-attribute
declarations, without namespace-URIs. These DTDs have to be extended to make them useable
in MapForce.

The DTD has to be altered by defining the xmlns-attribute with the namespace-URI as
shown below:

<!ATTLIST fo:root
xmlns:fo CDATA #FIXED 'http://www.w3.org/1999/XSL/Format'
...

>

© 2014 Altova GmbH

XML and XML schema 147Data Sources and Targets

Altova MapForce 2015

9.1.2 Derived XML Schema types - mapping to

MapForce supports the mapping to/from derived types of a complex type. Derived types are
complex types of an XML Schema that use the xsi:type attribute to identify the specific derived
types.

The screenshot below shows the definition of the derived type "US-Address", in XMLSpy. The
base type (or originating complex type) is, in this case, AddressType. Two extra elements were
added to create the derived type US-Address.

Mapping to derived types in MapForce:
1. Insert the XML schema MFCompany.xsd that is available in the ...\Tutorial folder, click

Skip, then select Company as the root element.

2. Click the TYPE button to the right of the Address element which shows that derived types
exist in the Schema component.

3. Click the check box next to the derived type you want to use, e.g. US-Address, and
confirm with OK.

148 Data Sources and Targets XML and XML schema

© 2014 Altova GmbHAltova MapForce 2015

A new element Address xsi:type="US-Address" has been added to the component.
4. Click the expand button to see the mappable items of the element.

5. You can now map directly to/from these items.

Please note:
You can include/insert multiple derived types by selecting them in the Derived Types
dialog box, each will have its own xsi:type element in the component.

© 2014 Altova GmbH

XML and XML schema 149Data Sources and Targets

Altova MapForce 2015

9.1.3 QName support

QNames (Qualified Names) allow you reference and abbreviate namespace URIs used in XML and
XBRL instance documents. There are two types of QNames; Prefixed or Unprefixed QNames.

PrefixedName Prefix ':'

LocalPart

UnPrefixedName LocalPart

where LocalPart is an Element or Attribute name.

<Doc xmlns:x="http://myCompany.com">

<x:part>

</Doc>

x is the namespace reference to "http://myCompany.com" and <x:part> is therefore a valid
QName, as:

x is the namespace prefix
part is the LocalPart, i.e. the element name.

When mapping from source to target components QName prefixes will be resolved.

MapForce supports the following QName functions in the Lang section of the Libraries pane:

QName
Constructs a QName from a namespace URI and a local part. Use this function to create a
QName in a target component. The uri and localname parameters can be supplied by a constant
function.

QName-as-string
Converts a QName to a string in the form {http://myCompany.com}local.

local-name-from-QName
Extracts the local name from a QName.

This function is extremely useful when mapping XBRL instance documents containing
hypercubes.

150 Data Sources and Targets XML and XML schema

© 2014 Altova GmbHAltova MapForce 2015

What the mapping does is filter those facts where the local name of the content of the explicit
member (d-g:Vancouver) is equal to "Vancouver". Note that the content of the member is itself a
QName.

All the facts that belong to the dimension GeographicalBreakdown are filtered and passed to the
target component.

© 2014 Altova GmbH

XML and XML schema 151Data Sources and Targets

Altova MapForce 2015

namespace-uri-from-QName
Extracts the namespace URI from a QName.

152 Data Sources and Targets XML and XML schema

© 2014 Altova GmbHAltova MapForce 2015

9.1.4 Nil Values / Nillable

The XML Schema specification allows for an element to be valid without content if the
nillable="true" attribute has been defined for that specific element in the schema. In the
instance XML document, you can then indicate that the value of an element is nil by adding the
xsi:nil="true" attribute to it. This section describes how MapForce handles nil elements in
source and target components.

'xsi:nil' versus 'nillable'

The xsi:nil="true" attribute is defined in the XML instance document.

The xsi:nil="true" attribute indicates that, although the element exists, it has no content. Note
that the xsi:nil="true" attribute applies to element values, and not to attribute values. An
element with xsi:nil="true" may still have other attributes, even if it does not have content.

The xsi:nil attribute is not displayed explicitly in the MapForce graphical mapping, because it is
handled automatically in most cases. Specifically, a "nilled" node (one that has the
xsi:nil="true" attribute) exists, but its content does not exist.

The nillable="true" attribute is defined in the XML schema. In MapForce, it can be present in
both the source and target components.

© 2014 Altova GmbH

XML and XML schema 153Data Sources and Targets

Altova MapForce 2015

Nillable elements as mapping source

MapForce checks the xsi:nil attribute automatically, whenever a mapping reads data from nilled
XML elements. If the value of xsi:nil is true, the content will be treated as non-existent.

When you create a Target-driven mapping from a nillable source element to a nillable target
element with simple content (a single value with optional attributes, but without child elements),
where xsi:nil is set on a source element, MapForce adds the xsi:nil attribute to the target
element (for example, <OrderID xsi:nil="true"/>).

When you create a Copy-All mapping from a nillable source element to a nillable target element,
where xsi:nil is set on a source element, MapForce adds the xsi:nil attribute to the target
element (for example, <OrderID xsi:nil="true"/>).

To check explicitly whether a source element has the xsi:nil attribute set to true, use the is-

xsi-nil function. It returns TRUE for nilled elements and FALSE for other nodes.

To substitute a nilled (non-existing) source element value with something specific, use the
substitute-missing function.

Notes:
Connecting the exists function to a nilled source element returns TRUE, since the

element node actually exists, even if it has no content.
Using functions that expect simple values (such as multiply and concat) on

elements where xsi:nil has been set does not yield a result, as no element content
is present and no value can be extracted. These functions behave as if the source
node did not exist.

Nillable elements as mapping target

When you create a Target-driven mapping from a nillable source element to a nillable target
element with simple content (a single value with optional additional attributes, but without child
elements), where xsi:nil is set on a source element, MapForce inserts the xsi:nil attribute
into the target element (for example, <OrderID xsi:nil="true"/>). If the xsi:nil="true"
attribute has not been set in the XML source element, then the element content is mapped to the
target element in the usual fashion.

When mapping to a nillable target element with complex type (with child elements), the xsi:nil
attribute will not be written automatically, because MapForce cannot know at the time of writing
the element's attributes if any child elements will follow. For such cases, define a Copy-All
connection to copy the xsi:nil attribute from the source element.

When mapping an empty sequence to a target element, the element will not be created at all,
independent of its nillable designation.

To force the creation of an empty target element with xsi:nil set to true, connect the set-xsi-

nil function directly to the target element. This works for target elements with simple and

complex types.

154 Data Sources and Targets XML and XML schema

© 2014 Altova GmbHAltova MapForce 2015

If the node has simple type, use the substitute-missing-with-xsi-nil function to insert

xsi:nil in the target if no value from your mapping source is available. This can happen if the
source node does not exist at all, or if a calculation (for example, multiply) involved a nilled source
node and therefore yielded no result.

Note:
Functions which generate xsi:nil cannot be passed through functions or
components which only operate on values (such as the if-else function).

© 2014 Altova GmbH

XML and XML schema 155Data Sources and Targets

Altova MapForce 2015

9.1.5 Comments and Processing Instructions

Comments and Processing Instructions can now be inserted into target XML components.
Processing instructions are used to pass information to applications that further process XML
documents.

Note: Comments and Processing instructions cannot be defined for nodes that are part of a copy-
all mapped group.

To insert a Processing Instruction:
1. Right click an element in the target component and select Comment/Processing

Instruction, then one of the Processing Instruction options from the menu (Before, After)
2. Enter the Processing Instruction (target) name in the dialog and press OK to confirm, e.g.

xml-stylesheet.
This adds a node of this name to the component tree.

3. You can now use for example, a constant component to supply the value of the
Processing Instruction attribute, e.g. href="book.css" type="text/css".

Note:
Multiple Processing Instructions can be added before or after, any element in the target
component.

To insert a comment:
1. Right click an element in the target component and select Comment/Processing

Instruction, then one of the Comment options from the menu (Before, After).

This adds the comment node (<!--comment()) to the component tree.
2. Use a constant component to supply the comment text, or connect a source node to the

comment node.

Note:
Only one comment can be added before and after, a single target node. To create

156 Data Sources and Targets XML and XML schema

© 2014 Altova GmbHAltova MapForce 2015

multiple comments, use the duplicate input function.

To delete a Comment/Processing Instruction:
Right click the respective node, select Comment/Processing Instruction, then select
Delete Comment/Processing Instruction from the flyout menu.

© 2014 Altova GmbH

XML and XML schema 157Data Sources and Targets

Altova MapForce 2015

9.1.6 CDATA Sections

CDATA sections are used to escape blocks of text containing characters which would normally
be interpreted as markup. CDATA sections start with "<![CDATA[" and end with the "]]>".

Target nodes can now write the input data that they receive as CDATA sections. The target node
components can be:

XML data
XML data embedded in database fields
XML child elements of typed dimensions in an XBRL target

To create a CDATA section:
1. Right click the target node that you want to define as the CDATA section and select

"Write Content as CDATA section".

A prompt appears warning you that the input data should not contain the CDATA section
close delimiter ']]>', click OK to close the prompt.
The [C.. icon shown below the element tag shows that this node is now defined as a
CDATA section.

Note:
CDATA sections can also be defined on duplicate nodes, and xsi:type nodes.

Example:
The HTMLinCDATA.mfd mapping file available in the ...\MapForceExamples folder shows an
example of where CDATA sections can be very useful.

In this example:
Bold start () and end () tags are added to the content of the Trademark source
element.
Italic start (<i>) and end (</i>) tags are added to the content of the Keyword source
element.
The resulting data is passed on to duplicate text() nodes in the order that they appear in

158 Data Sources and Targets XML and XML schema

© 2014 Altova GmbHAltova MapForce 2015

the source document, due to the fact the the Subsection element connector, has been
defined as a Source Driven (Mixed content) node.
The output of the MixedContent node is then passed on to the Description node in the
ShortInfo target component, which has been defined as a CDATA section.

Clicking the Output button shows the CDATA section containing the marked-up text.

© 2014 Altova GmbH

XML and XML schema 159Data Sources and Targets

Altova MapForce 2015

9.1.7 Wildcards - xs:any / xs:anyAttribute

The wildcards xs:any (and xs:anyAttribute) allow you to use any elements/attributes from
schemas . The screenshot shows the "any" element in the Schema view of XMLSpy.

In MapForce the schema structure is shown as below with a "selection" button to the right of
the xs:any element (and xs:anyAttribute).

Clicking the xs:any selection button opens the "Wildcard selections" dialog box. The entries
in this listbox show the global elements/attributes declared in the current schema.

160 Data Sources and Targets XML and XML schema

© 2014 Altova GmbHAltova MapForce 2015

Clicking one, or more of the check boxes and confirming with OK, inserts that element/attribute
(and any other child nodes) into the component at that position.

You can now map to/from these nodes as with any other element.

To remove a wildcard element:
Click the selection button, then deselect the global elements.

To use elements from a different schema:
1. Click the "Import a different schema" button in the "Wildcard selections" dialog box.
2. Select the schema you want to import the elements from.

You can now define if you want to import the other schema into the currently open one, or
generate a new "wrapper" schema which contains references to both schemas.

© 2014 Altova GmbH

XML and XML schema 161Data Sources and Targets

Altova MapForce 2015

3. Click the button to select which of the two options you want.

Import into current schema
The screenshot shows the global elements available if the imported schema is the
HasExpenses.xsd file available in the ...\MapForceExamples folder. Three expense related
elements have been selected.

162 Data Sources and Targets XML and XML schema

© 2014 Altova GmbHAltova MapForce 2015

Having clicked OK, each of the elements (and any child elements they may have) are added to
the component below the xs:any wildcard node.

Each of the imported nodes has a (xs:any) annotation to show that it has been imported.

Note:
Importing into the current schema, overwrites the schema at that location. You must
therefore have the user rights to do so. A remote schema that you might have opened
using the "Switch to URL" button cannot be overwritten, and cannot be imported in this
way.

© 2014 Altova GmbH

XML and XML schema 163Data Sources and Targets

Altova MapForce 2015

Generate wrapper schema
1. Click the "Generate wrapper schema" button in the "Wildcard selections" dialog box,

enter the name of the new wrapper schema and click Save.
A default name is supplied in the form XXXX-wrapper.xsd. This new wrapper schema will
include the current schema and import the other one.

A prompt appears asking if you want the Component Setting schema location to
reference the wrapper schema, or if you want to change it to reference the previous main
schema.

2. Click No to keep the reference to the wrapper schema, or click Yes to change the
schema location to the previous main schema.
The imported nodes are shown as before in the component.

Note:
Using the generate wrapper option allows you to use remote schemas, with a URL, and
add elements from another schema to the current component.

164 Data Sources and Targets HL7 v3.x to/from XML schema mapping

© 2014 Altova GmbHAltova MapForce 2015

9.2 HL7 v3.x to/from XML schema mapping

Support for HL7 version 3.x is automatically included in MapForce 2015 as it is XML based.

A separate installer for the HL7 V2.2 - V2.5.1 XML Schemas and configuration files, is available
on the MapForce Libraries page of the altova website. Select the Custom Setup in the installer, to
only install the HL7 V3 components and XML Schemas.

Location of HL7 XML Schemas after installation:

Windows XP machine: “C:\Program Files\Altova\Common2015\Schemas\ hl7v3“

Windows Vista machine:
“C:\Program Files\Altova\Common2015\Schemas\ hl7v3“

Windows7 machine:
“C:\Program Files\Altova\Common2015\Schemas\ hl7v3“

If a 32-bit MapForce application is used on a 64-bit operating system, then the location is
“C:\Program Files(x86)\Altova\Common2011\Schemas\ hl7v3“.

HL7 documents can be used as source and target components in MapForce. This data can also
be mapped to any number of XML schema components.

http://www.altova.com/components_mapforce.html

Chapter 10

How To... Filter, Transform, Aggregate

166 How To... Filter, Transform, Aggregate

© 2014 Altova GmbHAltova MapForce 2015

10 How To... Filter, Transform, Aggregate

This section deals with common tasks that will be encountered when creating your own
mappings.

General:

I want to: Read this section

Filter data based on specific criteria Filtering data

Sort input data based on a specific key Sort component - sort input sequences

Use dynamic/multiple input and output
files when mapping

Dynamic and multiple input/output files
per component

Map/use a derived complex type
(xsi:type)

Derived XML Schema types - mapping to

Create a recursive user-defined mapping Recursive user-defined mapping

Use min, max, sum, avg, and count
aggregate functions

Aggregate functions

Use an input component as a
parameter during command line
execution

Input values /overrides

Specify an alternative value for an input
component

Input values / overrides

Define and execute a mapping with
different input and output files as those
defined at design time

Command line - Component Names

Transform an input value to an output
value

Value-Map - Transforming input data

Run MapForce from the command line Command line parameters

Create my own catalog files Catalog files in MapForce

Merge multiple source files into a single
target file

Merging multiple files into one target

Nodes

I want to: Read this section

Test nodes; existing / not existing nodes Node testing, exists / not exist

Group nodes by their content Grouping nodes / node content

Map data based on the position of a
node in a sequence

Position of context items in a sequence

© 2014 Altova GmbH

 167How To... Filter, Transform, Aggregate

Altova MapForce 2015

Comment a mapping / specific
connectors or nodes

Annotations / Commenting

Define the node which is to act as the
context node in a source file.

Priority context node/item

Add Comments and Processing
Instructions

168 How To... Filter, Transform, Aggregate Filter components - Tips

© 2014 Altova GmbHAltova MapForce 2015

10.1 Filter components - Tips

For information on filtering XML data, please see Filtering data.

This section will deal with methods enabling you to optimize data access and generally speed up
the mapping process.

In general, use as few filter components as possible, and:

1. Avoid concatenating filter-components
2. Connect the "on-true/on-false" parameters, to parent items if possible, instead of child

items directly
3. Connect the "on-false" parameter to map the complement node set, delivered by the on-

true parameter
4. Don't use filters to map to child data, if the parent item is mapped
5. Use the "Priority context" to prioritize execution of unrelated items

Avoid concatenating filter components
Every filter-component leads to a loop through the source data, thus accessing the source n
times. When you concatenate two filters, it loops n*n times.

Solution:
Use "logical-and" components to combine the boolean expressions of two filter-components.
The result is a single filter component looping only n-times.

Connect the "on-true/on-false" parameter of the filter component, to target parent items
Filter components work best when they are connected to parent items containing child items,
instead of individual items directly.

The filter boolean expression is therefore evaluated against the parent, before looping through
the child elements. Using filters mapped from a database table will generate:

"SELECT * FROM table WHERE <expression>" if the parent item is mapped, or
"SELECT * FROM table", and then evaluate for each row, if child items are mapped

Please note:
when connecting a filter from a source parent item, it is also necessary to connect the
on-true/on-false parameter to the parent target element. If this cannot be done, then do
not apply this rule.

Connect the "on-false" parameter to map the complement node set
Connecting this parameter allows you quick access to the complement node set defined by the
current mapping. The same tips apply when using this parameter, connect to parent items etc.

Don't use filters to map to child data, if the parent item is mapped
Using a filter to map data from a source parent to a target parent, automatically applies the same
filter to every child item of the particular parent.

Filter components do not have to be used to supply filtered data to child items, if the parent item
can be mapped! You can therefore map child data directly.

Use priority-context to prioritize execution when mapping unrelated items
Mappings are always executed top-down; if you loop/search through two tables then each loop is

© 2014 Altova GmbH

Filter components - Tips 169How To... Filter, Transform, Aggregate

Altova MapForce 2015

processed consecutively. When mapping unrelated elements, without setting the priority context,
MapForce does not know which loop needs to be executed first, it therefore automatically selects
the first table, or data source.

Solution:
Decide which table, or source data is to be looped/searched first, and then set the priority context
on the connector to that table. Please see Priority Context node/item for a more concrete
example.

To define a priority context:
Right click an input icon and select "Priority Context" from the pop-up menu.
If the option is not available, mapping the remaining input icons of that component will
make it accessible.

Filters and source-driven / mixed content mapping
Source-driven mappings only work with direct connections between source and target
components. Connections that exist below a source-driven connection, are not taken as source-
driven and the items will be handled in target component item/node order.

A single filter where both outputs are connected to same/separate targets, acts as if there were
two separate filter components, one having a negated condition.

If an exception component is connected to one of the filter outputs, the exception condition is
checked when the mappings to the the other filter output are executed.

170 How To... Filter, Transform, Aggregate Sort component - sorting input sequences

© 2014 Altova GmbHAltova MapForce 2015

10.2 Sort component - sorting input sequences

To sort input data based on a specific sort key, please use the Sort component. The sort
component currently supports the targets: XSLT2, XQuery, and the Built-in execution engine.

To insert a Sort component:
1. Right click a connector that exists between the nodes that you want to sort.

2. Click the Insert Sort: Nodes/Rows item from the context menu.

This inserts, and automatically connects, the sort component to the source and target
components.

To define which item you want to sort by:
Connect the item you want to sort by, e.g. Last, to the key parameter of the sort
component, now named "Person".

© 2014 Altova GmbH

Sort component - sorting input sequences 171How To... Filter, Transform, Aggregate

Altova MapForce 2015

The Persons wil now be sorted by Last in the output tab.

Example: Altova_Hierarchical_Sort.mfd in the MapForceExamples folder.

The aim is to have the persons of each of the branch offices alphabetically sorted, and also
include detailed information on the office and department names. This example makes use of the
Variable component which allows access to otherwise unavailable parent items. In this case
parent items of the Person node.

How this mapping was created:

172 How To... Filter, Transform, Aggregate Sort component - sorting input sequences

© 2014 Altova GmbHAltova MapForce 2015

The initial stage of the mapping is shown below.

As we want to sort a Person item, the Person items in both components are connected, which
also connects the identically named child items.

1. Right click the input icon (exactly on the triangle) next to the Person item of the target
component.

2. Select the "Create Variable for Target Node" item in the context menu.

This inserts a complex Intermediate variable between the components and connects the
identical items. See Intermediate variables for more specific information.

As we want the persons to be sorted by their last names, we now need to insert the sort
component.

© 2014 Altova GmbH

Sort component - sorting input sequences 173How To... Filter, Transform, Aggregate

Altova MapForce 2015

3. Right click the Copy-All connector and select Insert Sort: Nodes/Rows.

This inserts the sort component and automatically connects all the relevant items.

The only thing left to do is to define the key that we want to sort by.
4. Connect the Last item of the intermediate variable to the key parameter of the sort

component.

5. Click the Output button to see a preview of the result.
The persons are now sorted by last name. Click the Mapping button to return to the
design window.

6. Using the concat function, and the constant components (to supply the parenthesis)

174 How To... Filter, Transform, Aggregate Sort component - sorting input sequences

© 2014 Altova GmbHAltova MapForce 2015

connect up the other items as shown below.
7. Connect the result parameter of the concat function, to the Details item of the

intermediate variable.

8. Click the Ouput button to see the result.

The persons are still sorted by last name but additional info, supplied by the details field,
has been added to each person. The correct office and department names are now
available to each person, because the intermediate variable makes it possible to access
parent data from a child node. This is only possible by using the intermediate variable.

To reverse the sort sequence:

Click the icon in the Sort component. It changes to to show that the
sequence has been reversed.

© 2014 Altova GmbH

Sort component - sorting input sequences 175How To... Filter, Transform, Aggregate

Altova MapForce 2015

To sort input data consisting of simple type items:
Connect the simple content item, e.g. first, to both the nodes/row and key parameters of
the sort component.

To sort strings using language-specifc rules:
Double click the title bar/header of the inserted Sort component to open the Sort Properties dialog
box.

Unicode code point collation: This (default) option compares/orders strings based on code
point values. Code point values are integers that have been assigned to abstract characters in the
Universal Character Set adopted by the Unicode Consortium. This option allows sorting across

176 How To... Filter, Transform, Aggregate Sort component - sorting input sequences

© 2014 Altova GmbHAltova MapForce 2015

many languages and scripts.

Language-specific collation: This option allows you to define the specific language and country
variant you want to sort by. This option is supported when using the BUILTIN execution engine,
and for XSLT support depends on the specific engine used to execute the code.

To sort by multiple keys:
The sort component allows you to define multiple keys.

Clicking the "+" icon adds a new key to the sort component, i.e. key2
Clicking the "x" icon deletes a that specific key.
Dropping a connector onto a + icon automatically inserts/adds the parameter and
connects to it.

Note that key1 has a higher sort priority than key2, and key2 higher than key3.

To insert a Sort component conventionally:

Click the Sort icon in the icon bar to insert the component
This inserts the sort component in its "unconnected" form where "sort" is visible in the
title bar of the component.

As soon as a connection is made to the source component, the title bar name changes
to that of the item connected to the nodes/rows item.

© 2014 Altova GmbH

Value-Map - transforming input data 177How To... Filter, Transform, Aggregate

Altova MapForce 2015

10.3 Value-Map - transforming input data

The Value-Map component allows you to transform an input value to a different output value using
a lookup table. This is useful for converting different enumeration types. The component only has
one input and output item.

Note: if you want to retrieve/filter data based on specific criteria, please use the Filter component,
see Filtering XML data: Filtering data.

To use a Value-Map component:

1. Select the menu option Insert | Value-Map, or click the Value-Map icon in the icon
bar.

2. Double click the Value-Map component to open the value map table.

3. Click into the column headers and enter Weekday input in the first, and Day of the
Week in the second.

4. Enter the input value that you want to transform, in the Weekday input column.
5. Enter the output value you want to transform that value to, in the Day of the week

column.
6. Simply type in the (new entry) input field to enter a new value pair.

178 How To... Filter, Transform, Aggregate Value-Map - transforming input data

© 2014 Altova GmbHAltova MapForce 2015

7. Click the datatype combo box, below the column header to select the input and output
datatypes, e.g. integer and string.

Note: activate the Otherwise check box, and enter the value, to define an alternative
output value if the supplied values are not available on input. To pass through source data
without changing it please see Passing data through a Value-Map unchanged.

8. You can click the edit icons in the header rows to change the column names, which are
also displayed in the mapping. This will make it easier to identify the purpose of the
component in the mapping.

The Expense-valmap.mfd file in the ...\MapForceExamples\Tutorial\ folder is a sample mapping
that shows how the Value-Map can be used.

© 2014 Altova GmbH

Value-Map - transforming input data 179How To... Filter, Transform, Aggregate

Altova MapForce 2015

What this mapping does:
Extracts the day of the week from the Date item in the data source, converts the numerical value
into text, and places it in the Weekday item of the target component i.e. Sunday, Monday etc.

The weekday function extracts the weekday number from the Date item in the
ExpReport source file. The result of this function are integers ranging from 1 to 7.
The Value-Map component transforms the integers into weekdays, i.e. Sunday, Monday,
etc. as shown in the graphic at the top of this section.
If the output contains "Tuesday", then the corresponding output "Prepare Financial
Reports" is mapped to the Notes item in the target component.

Clicking the Output tab displays the target XML file with the transformed data.

Note:
Placing the mouse cursor over the value map component opens a popup containing the
currently defined values.

The output from various types of logical, or string functions, can only be a boolean "true"
or "false" value. The value you want to test for, must thus be entered into the input field
of the value map table e.g. "true".

180 How To... Filter, Transform, Aggregate Value-Map - transforming input data

© 2014 Altova GmbHAltova MapForce 2015

10.3.1 Passing data through a Value-Map unchanged

This section describes a mapping situation where some specific node data have to be
transformed, while the rest of the node data have to be passed on to the target node unchanged.

An example of this would be a company that changes some of the titles in a subsidiary. In this
case it might change two title designations and want to keep the rest as they currently are.

The obvious mapping would be the one shown above, which uses the value-map component to
transform the specific titles.
Clicking the Output tab shows us the result of the mapping:

For those persons who are neither of the two types shown in the value-map component, the Title
element is deleted in the output file.

© 2014 Altova GmbH

Value-Map - transforming input data 181How To... Filter, Transform, Aggregate

Altova MapForce 2015

Possible alternative:
Clicking the Otherwise check box and entering a substitute term, does make the Title node
reappear in the output file, but it now contains the same New Title for all other persons of the
company.

Solution:
Create a user-defined function containing the value-map component, and use the substitute-
missing function to supply the original data for the empty nodes.

1. Click the value-map component and select Function | Create user-defined function
from Selection.

2. Enter a name for the function e.g. Pass-Through and click OK.

3. Insert a substitute-missing function from the core | node function section of the
Libraries pane, and create the connections as shown in the screen shot below.

182 How To... Filter, Transform, Aggregate Value-Map - transforming input data

© 2014 Altova GmbHAltova MapForce 2015

4. Click the Ouput tab to see the result:

Result of the mapping:

The two Title designations in the value-map component are transformed to New Title.
All other Title nodes of the source file, retain their original Title data in the target file.

Why is this happening:
The value-map component evaluates the input data.

If the incoming data matches one of the entries in the first column, the data is
transformed and passed on to the node parameter of substitute-missing, and then on to
Title2.

If the incoming data does not match any entry in the left column, then nothing is passed
on from value-map to the node parameter i.e. this is an empty node.

When this occurs the substitute-missing function retrieves the orignal node and data from
the Title node, and passes it on through the replace-with parameter, and then on to
Title2.

© 2014 Altova GmbH

Value-Map - transforming input data 183How To... Filter, Transform, Aggregate

Altova MapForce 2015

10.3.2 Value-Map component properties

Actions:

Click the insert icon to insert a new row before the currently active one.

Click the delete icon to delete the currently active row.

Click the edit icon to edit the column header.

You can also reorder lines by dragging them.

Changing the column header:
Double clicking the column header, or clicking the pencil icon, allows you to edit the column
name and change it to something more meaningful. This will make it easier to identify the purpose
of the component, as the column names are also displayed in the mapping.

Using unique Input values:
The values entered into the input column must be unique. If you enter two identical values, both
are automatically highlighted for you to enable you to correct one of them.

Having corrected one of the values, the OK button is again enabled.

Input and output datatypes
The input and result datatypes are automatically checked when a selection is made using the
combo box. If a mismatch occurs, then the respective fields are highlighted and the OK button is
disabled. Change the datatype to one that is supported.

In the screenshot below a boolean and string have been selected.

184 How To... Filter, Transform, Aggregate Value-Map - transforming input data

© 2014 Altova GmbHAltova MapForce 2015

© 2014 Altova GmbH

Aggregate functions: min, max, sum, count, avg 185How To... Filter, Transform, Aggregate

Altova MapForce 2015

10.4 Aggregate functions: min, max, sum, count, avg

Aggregate functions perform operations on a set of input values (or a sequence of values) as
opposed to a single value. The aggregate functions can all be found in the core library. The
mapping shown below is available as Aggregates.mfd in the ...\Tutorial folder.

Please also see Aggregate functions - summing nodes in XSLT1 and 2 on how to create
aggregate functions using Named Templates.

Java Selected

Aggregate functions have two input items.
values (nodes/rows) is connected to the source item that provides the data, in this case
Number.
parent-context is connected to the item you want to iterate over, i.e. the context, in this
case over all Customers. The parameter is, howerver, optional.

The input instance in this case is an XML file containing the following data:

186 How To... Filter, Transform, Aggregate Aggregate functions: min, max, sum, count, avg

© 2014 Altova GmbHAltova MapForce 2015

The source data supplied to the values item is the number sequence 2,4,6,8.
The output component in this case is a simple text file.
Clicking the Output tab for the above mapping delivers the following result:

min=2, max=8, count=4, sum=20 and avg=5.

© 2014 Altova GmbH

Mappings and root element of target documents 187How To... Filter, Transform, Aggregate

Altova MapForce 2015

10.5 Mappings and root element of target documents

Root element of target XML files
When creating a mapping to the root element of the target Schema/XML file, please make sure
that only one element is passed on to the target XML, as an XML document may only have one
root element.

Use the filter component to limit the mapped data to a single element or record.

Root element not limited:
If you do not limit the target schema root element, then all source elements/records are inserted
between the first root element. This will still create well-formed, but not valid, XML files.

188 How To... Filter, Transform, Aggregate Boolean comparison of input nodes

© 2014 Altova GmbHAltova MapForce 2015

10.6 Boolean comparison of input nodes

Data type handling in boolean functions (first introduced with MapForce 2006 SP2)
During the evaluation of the core functions, less-than, greater-than, equal, not-equal, less equal,
and greater equal, the evaluation result of two input nodes depends on the input values as well as
the data types used for the comparison.

Example:
The 'less than' comparison of the integer values 4 and 12, yields the boolean value "true", since 4
is less than 12. If the two input strings contain '4' and '12', the lexical analysis results in the
output value false", since '4' is alphabetically greater than the first character '1' of the second
operand (12).

If all "input" data types are of the same type, e.g. all input nodes are numerical types, or strings,
then the comparison is done for the common type.

Differing input node types
If the input nodes are of differing types, e.g. integer and string, or string and date, then the
following rule is applied:

The data type used for the comparison is always the most general, i. e. least restrictive,
input data type of the two input types.

Before comparing two values, all input values are converted to a common datatype. Using the
previous example; the datatype "string" is less restrictive than "integer". Comparing integer value
4 with the string '12', converts integer value 4 to the string '4', which is then compared with the
string '12'.

The type handling for comparing mixed types follows the XSLT2 guidelines and prevents any
content-sensitive type conversion strategies. The advantage is that the logic is fixed by the
mapping and does not change dynamically.

Additional checks:
Version 2006SP2 additionally checks mappings for incompatible combinations and raises
validation errors and warnings if necessary. Examples are the comparison of dates with booleans,
or "datetimes" with numerical values.

In order to support explicit data type conversion, the following type conversion functions are
available in the core library: "boolean", "number" and "string". In the previously mentioned context,
these three functions are suitable to govern the interpretation of comparisons.

Java selected

Adding these conversion functions to input nodes of related functions might change the common
data type and the result of the evaluation in the desired manner. E. g. if string nodes store only
numeric values, a numerical comparison is achieved by adding the "number" conversion function
(in the conversion section of the core library) to each input node.

© 2014 Altova GmbH

Boolean comparison of input nodes 189How To... Filter, Transform, Aggregate

Altova MapForce 2015

190 How To... Filter, Transform, Aggregate Priority Context node/item

© 2014 Altova GmbHAltova MapForce 2015

10.7 Priority Context node/item

When applying a function to different items in a schema, MapForce needs to know what the
context node will be. All other items are then processed relative to this one. This is achieved by
designating the item (or node) as the priority context.

Priority-context is used to prioritize execution when mapping unrelated items.

Mappings are always executed top-down; if you loop/search through two tables then each loop is
processed consecutively. When mapping unrelated elements, without setting the priority context,
MapForce does not know which loop needs to be executed first, it therefore automatically selects
the first table, or data source.

Solution:
Decide which source data is to be looped/searched first, and then set the priority context on the
connector to that source data.

The CompletePO.mfd file available in the ...\MapForceExamples folder, is shown below.

Please note that there are multiple source components in this example. ShortPO, Customers,
and Articles are all schemas with associated XML instance files. The data from each, are then
mapped to the CompletePO schema / XML file. The priority context icon, is enclosed in a circle
as a visual indication.

The CustomerNr in ShortPO is compared with the item Number in the Customers file.
CustomerNr has been designated as the priority context, and is placed in the a
parameter of the equal function.
The Customers file is then searched (once) for the same number. The b parameter
contains the Number item from the Customers file.
If the number is found, then the result is passed to the bool parameter of the filter
function.
The node/row parameter passes on the Customers data to "on-true" when the bool
parameter is true, i.e. when the same number has been found.
The rest of the customer data is then passed on as: Number, FirstName, LastName
items, are all connected to the corresponding items in the target schema.

Designating the b parameter of the equal function (i.e. item Number), as the priority context
would cause:

MapForce to load the first Number into the b parameter
Check against the CustomerNr in a, if not equal,
Load the next Number into b, check against a, and
Iterate through every Number in the file while trying to find that number in ShortPO.

© 2014 Altova GmbH

Priority Context node/item 191How To... Filter, Transform, Aggregate

Altova MapForce 2015

192 How To... Filter, Transform, Aggregate Merging multiple files into one target

© 2014 Altova GmbHAltova MapForce 2015

10.8 Merging multiple files into one target

MapForce allows you to merge multiple files into a single target file.

This example merges multiple source components, with different schemas to a target schema. To
merge an arbitrary number of files using the same schema, see "Dynamic file names - input /
output".

The CompletePO.mfd file available in the ...\MapForceExamples folder, shows how three XML
files are merged into one purchasing order XML file.

Note that multiple source component data are combined into one target XML file - CompletePO

ShortPO is a schema with an associated XML instance file and contains only customer
number and article data, i.e. Line item, number and amount.

Customers is a schema with an associated XML instance file and contains customer
number and customer information details, i.e. Name and Address info. (There is only one
customer in this file with the Customer number of 3)

Articles is a schema with an associated XML instance and contains article data, i.e.
article name number and price.

CompletePO is a schema file without an instance file as all the data is supplied by the
three XML instance files. The hierarchical structure of this file makes it possible to merge
and output all XML data.

© 2014 Altova GmbH

Merging multiple files into one target 193How To... Filter, Transform, Aggregate

Altova MapForce 2015

This schema file has to be created in an XML editor such as XMLSpy, it is not generated
by MapForce (although it would be possible to create if you had an CompletePO.xml
instance file).

The stucture of CompletePO is a combination of the source XML file structures.

The filter component (Customer) is used to find/filter the data where the customer numbers are
identical in both the ShortPO and Customers XML files, and pass on the associated data to the
target CompletePO component.

The CustomerNr in ShortPO is compared with the Number in Customers using the
"equal" function.

As ShortPO only contains one customer (number 3), only customer and article data for
customer number 3, can be passed on to the filter component.

The node/row parameter, of the filter component, passes on the Customer data to "on-
true" when the bool parameter is true, i.e. when the same number has been found, in this
case customer number 3.

The rest of the customer and article data are passed on to the target schema through the
two other filter components.

194 How To... Filter, Transform, Aggregate Command line - defining input parameters

© 2014 Altova GmbHAltova MapForce 2015

10.9 Command line - defining input parameters

MapForce allows you to create input components that can act as parameters in the command
line execution of a mapping. These input components allow you to define the content of the
parameter when executing the mapping from the command line, as well as the values when
previewing the output in MapForce. The content of a parameter can be a file name, or any specific
value you need to pass into the mapping.

This specific type of "input" component cannot be used inside a user-defined function, it is only
available in the main mapping window.

In addition to the input components, also all source or target components that have a unique
name can be used as a parameter on the command line, see Command line - Component names.
Input components can be used to pass file names into the mapping by connecting them to the
"File" input node of components (as seen in the FileNamesAsParameters.mfd example), but in
many cases it is easier to use the component names directly.

To define an input component / command line parameter:
1. Use the menu option Function | Insert Input to insert the component.

This opens the Create Input dialog box.
2. Enter a name for the function e.g. InputFileName and select the datatype you want to

use, e.g. string.

3. Click OK to complete the definition.

The other fields in this dialog box are used to specify the values to use when executing
the mapping in the output tab. They are not used when executing from the command line.
See Input parameters - default and preview settings.

© 2014 Altova GmbH

Input parameters - default and preview settings 195How To... Filter, Transform, Aggregate

Altova MapForce 2015

10.10 Input parameters - default and preview settings

The mapping below (available as FileNamesAsParameters.mfd in ...\MapForceExamples folder)
uses two input components, one to supply the input file name and the other, the output file name,
to the File: <dynamic> item of each component.

The InputFileName and OutputFileName components are input components in the mapping,
that allow you to use them as parameters in the command line execution.

To define an input component:
1. Use the menu option Function | Insert Input to insert the component.

This opens the Create Input dialog box.
2. Enter a name for the function e.g. InputFileName and select the datatype you want to

use, e.g. string.

196 How To... Filter, Transform, Aggregate Input parameters - default and preview settings

© 2014 Altova GmbHAltova MapForce 2015

3. Click the "Specify value" check box, and enter a value/string in the textbox, that you want
to use when previewing the output, e.g. altova-cmpy.xml.

4. Click the OK button then the Output button to see the result.
The altova-cmpy.xml is used as the source file for the mapping and the mapped data
appears in the output window.

The value entered in the Design-time Execution value field is only applicable when
previewing results in the Output tab. It is not used for code generation, or command
line execution of mappings.

To define a default value:
Having defined the input component and clicked the OK button, the component appears in the
mapping area as shown below. Note that a default item appears on the left, while the component
name is the name of the other mappable item.

1. You can use a Constant component to supply the default value as shown in the example
below, e.g. Altova_Hierarchical.xml.

2. Create the constant component and connect it to the default item of the input component.

To use the default value of an Input component:
1. Double click the input component and deselect the "Input is required" and "Specify

value" check boxes.

© 2014 Altova GmbH

Input parameters - default and preview settings 197How To... Filter, Transform, Aggregate

Altova MapForce 2015

2. Click the Output tab to see the result of the mapping. The data from the
Altova_Hierarchical.xml file is now used for the preview.

Generating XSLT code:
The value in the "Value" text box is written into the DoTransform.bat batch file. This batch file is
automatically generated for execution by the RaptorXML Server engine. If you want to use a
different input (or output) file you can change the name in the batch file.

If no value has been entered in the "Value" text box, then the default value, present in the
generated XSLT code, will be used.

Using default parameters/values in command line execution:
The "Input is required" check box must be set to inactive (before generating the code) to use the
default parameter from the command line. Enter mapping.exe to have the generated code use
the default parameter from the command line.

198 How To... Filter, Transform, Aggregate Component Names

© 2014 Altova GmbHAltova MapForce 2015

10.11 Component Names

All file-based components in MapForce can have a user-defined component name. The
component name is shown in the top field in the Component Settings dialog box.

The component name is used in the following situations:

The name of generated XSLT scripts is derived from the component name.

The mapping shown below is a simplified version of the FileNamesAsParameters.mfd mapping
available in the ...\MapForceExamples folder.

The simplified example does not use separate input components to define the instance files.

The source component is called Altova_Hierarchical

The target component is called Altova_Hierarchical_targ

© 2014 Altova GmbH

Node testing, position and grouping 199How To... Filter, Transform, Aggregate

Altova MapForce 2015

10.12 Node testing, position and grouping

The node testing functions allow you to test for the existence of nodes in the XML instance files.
Elements or attributes defined as optional in the XML Schema, may, or may not, appear in the
XML instance file. Use these functions to perform the specific node test and base further
processing on the result.

Exists
Returns true if the node exists, else returns false.
The "HasMarketingExpenses.mfd" file in the ...\MapForceExamples folder contains the small
example shown below.

If an expense-item exists in the source XML, then the "hasExpenses" attribute is set to "true" in
the target XML/Schema file.

Not-exists
Returns false if the node exists, else returns true. Please see Mapping missing nodes - using
Not-exists for an example on how to map missing nodes.

substitute-missing
This function is a convenient combination of exists and a suitable if-else condition. It is used to
map the current field content if the node exists in the XML source file, otherwise use the item
mapped to the "replace-with" parameter.

200 How To... Filter, Transform, Aggregate Node testing, position and grouping

© 2014 Altova GmbHAltova MapForce 2015

In the image above, the existence of the node "Phone" is checked in the XML instance file. If the
node is not present, then the value supplied by the constant is mapped.

© 2014 Altova GmbH

Node testing, position and grouping 201How To... Filter, Transform, Aggregate

Altova MapForce 2015

10.12.1 Mapping missing nodes - using Not-exists

The example below shows how you can use the not-exists function to map nodes that do not
exist in one of a pair of source files.

What this mapping does is to:

Compare the nodes of two source XML files
Filter out the nodes of the first source XML file, that do not exist in the second source
XML file
Map only the missing nodes, and their content, to the target file.

202 How To... Filter, Transform, Aggregate Node testing, position and grouping

© 2014 Altova GmbHAltova MapForce 2015

The two XML instance files are shown below, the differences between them are:
a.xml at left, contains the node <b kind="3">, which is missing from b.xml.
b.xml at right, contains the node <b kind="4"> which is missing from a.xml.

a.xml b.xml

The equal function compares the kind attribute of both XML files and passes the result
to the filter.
A not-exists function is placed after the initial filter, to select the missing nodes of each
of the source files.
The second filter is used to pass on the missing node and other data only from the a.xml
file to the target.

The mapping result is that the node missing from b.xml, <b kind="3">, is passed on to
the target component.

© 2014 Altova GmbH

Node testing, position and grouping 203How To... Filter, Transform, Aggregate

Altova MapForce 2015

10.12.2 Position of context items in a sequence

The position function allows you to determine the position of a specific node in a sequence, or use
a specific position to filter out items based on that position.

The context item is defined by the item connected to the "node" parameter of the position
function, Person, in the example below.

The simple mapping below adds a position number to each Person of each Department.

The position number is reset for each Department in the Office.

Using the position function to filter out specific nodes
Using the position function in conjunction with a filter allows you to map only those specific nodes
that have a certain position in the source component.

The filter "node/row" parameter and the position "node" must be connected to the same item of

204 How To... Filter, Transform, Aggregate Node testing, position and grouping

© 2014 Altova GmbHAltova MapForce 2015

the source component, to filter out a specific position of that sequence.

What this mapping does is to output:
The second Person in each Department
of each Office in Altova.

Finding the position of items in a filtered sequence:
As the filter component is not a sequence function, it cannot be used directly in conjunction with
the position function to find the position of filtered items. To do this you have to use the "Variable"
component.

The results of a Variable component are always sequences, i.e. a delimited list of values, which
can also be used to create sequences.

The variable component is used to collect the filtered contacts where the last name starts
with a letter higher than "M".

© 2014 Altova GmbH

Node testing, position and grouping 205How To... Filter, Transform, Aggregate

Altova MapForce 2015

The contacts are then passed on (from the variable) to the target component
The position function then numbers these contacts sequentially

206 How To... Filter, Transform, Aggregate Node testing, position and grouping

© 2014 Altova GmbHAltova MapForce 2015

10.12.3 Grouping nodes / node content

MapForce now supports the grouping of nodes and their content. These functions can be found in
the "Sequence functions" section in the Libraries window.

distinct-values
Allows you to remove duplicate values from a result set and map the unique items to the target
component.

In the example below, the content of the source component "Title" items, are scanned and each
unique title is mapped to the Department / Name item in the target component.

Note that the sequence of the individual Title items in the source component are retained when
mapped to the target component.

group-adjacent

© 2014 Altova GmbH

Node testing, position and grouping 207How To... Filter, Transform, Aggregate

Altova MapForce 2015

Groups the input sequence into a series of groups where each set of identically adjacent items/
nodes are placed into a new separate group.

Given the CSV file shown below, what we want to happen is to have all the Header and Detail
records in their own groups.

A new group is started with the first element, in this case H.
As the next element (or key) in the sequence is different, i.e. D, this starts a second
group called D.
The next two D elements are now added to the same group D, as they are of the same
type.
A new H group is started with a single H element.
Followed by a new D group containing two D elements.

208 How To... Filter, Transform, Aggregate Node testing, position and grouping

© 2014 Altova GmbHAltova MapForce 2015

Note that group-adjacent uses the content of the node/item as the grouping key! The
content of the Head_Detail field is used to group the records by record type in the target.

group-by
Groups the input sequence by distinct keys and outputs the series of groups along with their
keys. The example below shows how this works:

The key that defines the specific groups of the source component is the Title item. This
is used to group the persons of the company.
The group name is placed in the Department/Name item of the target component, while
the concatenated person's first and last names are placed in the Person/First child item.

© 2014 Altova GmbH

Node testing, position and grouping 209How To... Filter, Transform, Aggregate

Altova MapForce 2015

Note that group-by uses the content of the node/item as the grouping key! The content of the
Title field is used to group the persons and is mapped to the Department/Name item in the target.

Note also: there is an implied filter of the rows from the source document to the target
document, which can be seen in the included example. In the target document, each Department
item only has those Person items that match the grouping key, as the group-by component
creates the necessary hierarchy on the fly.

If you have a flat hierarchy (CSV, FLF, etc) with a dynamic output file name, built in part from the
key value, the implied filter still exists. This means that you may not need to connect the 'groups'
output to any item in the target component.

Clicking the Ouput button shows the result of the grouping process.

group-starting-with

210 How To... Filter, Transform, Aggregate Node testing, position and grouping

© 2014 Altova GmbHAltova MapForce 2015

This function groups the input sequence by the supplied item, if it exists in the source data. A
boolean function is needed to test the input data.

The function creates groups based on the first item of a group, in this example HDR.

The value of the item/nodes do not need to be identical or even exist. The node "pattern" i.e. the
node/item names need to be identical for the grouping to occur.

The result above shows that a new group was started for every HDR element.

© 2014 Altova GmbH

Node testing, position and grouping 211How To... Filter, Transform, Aggregate

Altova MapForce 2015

group-ending-with
This complements the group-starting-with function, and ends each group of the input sequence by
the supplied item, if it exists in the source data. A boolean function is needed to test the input
data.

Using the same source component as the group-starting-with example above, this example shows
the result when using DTL as the group-ending-with item.

In this case the value of the item/nodes do not need to be identical or even exist. The node
"pattern" i.e. the node/item names need to be identical for the grouping to occur.

The result above shows that a new group was started wherever DTL can be the last element.

set-empty
Allows you to generate an empty sequence for a specific node. When connected to a parent
node, then all child nodes are also set to empty. Acutally removes the node from the target
component.

212 How To... Filter, Transform, Aggregate Recursive user-defined mapping

© 2014 Altova GmbHAltova MapForce 2015

10.13 Recursive user-defined mapping

This section will describe how the mapping RecursiveDirectoryFilter.mfd, available in the ...
\MapForceExamples folder, was created and how recursive mappings are designed. The
MapForceExamples project folder contains further examples of recursive mappings.

The screenshot below shows the finished mapping containing the recursive user-defined function
FilterDirectory, the aim being to filter a list of the .xml files in the source file.

The source file that contains the file and directory data for this mapping is Directory.xml. This
XML file supplies the directory and file data in the hierarchical form you see below.

The XML schema file referenced by Directory.xml has a recursive element called "directory"
which allows for any number of subdirectories and files below the directory element.

© 2014 Altova GmbH

Recursive user-defined mapping 213How To... Filter, Transform, Aggregate

Altova MapForce 2015

214 How To... Filter, Transform, Aggregate Recursive user-defined mapping

© 2014 Altova GmbHAltova MapForce 2015

10.13.1 Defining a recursive user-defined function

From the main mapping window:
1. Select Function | Create User defined Function to start designing the function and

enter a name e.g. FilterDirectory.
2. Make sure that you deselect the Inlined Use check box in the Implementation group, to

make the function recursive, then click OK.

You are now in the FilterDirectory window where you create the user-defined function.
3. Select Function | Insert Input to insert an input component.
4. Give the component a name e.g. "directory" and click on the Complex Type (tree

structure) radio button.

5. Click the Choose button, click the "XML Schema Structure" entry in the lower pane, then
click OK.

© 2014 Altova GmbH

Recursive user-defined mapping 215How To... Filter, Transform, Aggregate

Altova MapForce 2015

6. Select the Directory.xsd file in the ...\MapForceExamples folder and click the Open
button.

8. Click OK again when asked to select the root item, which should be "directory" as shown
below.

9. Click OK again to insert the complex input parameter.
The user-defined function is shown below.

10. Delete the simple result output component, as we need to insert a complex output
component here.

216 How To... Filter, Transform, Aggregate Recursive user-defined mapping

© 2014 Altova GmbHAltova MapForce 2015

11. Select Function | Insert Output... to insert an output component and use the same
method as outlined above, to make the output component, "directory", a complex type.
You now have two complex components, one input and the other output.

12. Select Function | Insert Input... and insert a component of type Simple type, and enter
a name e.g. SearchFor. Deselect the "Input is required" checkbox.

Inserting the recursive user-defined function
At this point, all the necessary input and output components have been defined for the user-
defined function. What we need to do now is insert the "unfinished" function into the current user-
defined function window. (You could do this at almost any point however.)

1. Find the FilterDirectory function in the user section of the Libraries window.
2. Click FilterDirectory then drag and drop it into the FilterDirectory window you have just

been working in.

Java Selected

The user-defined function now appears in the user-defined function window as a recursive
component.

© 2014 Altova GmbH

Recursive user-defined mapping 217How To... Filter, Transform, Aggregate

Altova MapForce 2015

3. Connect the directory, name and file items of the input component to the same items
in the output component.

4. Right click the connector between the file items and select "Insert Filter" to insert a filter
component.

5. Right click the on-true connector and select Copy-All from the context menu.
The connectors change appearance to Copy-All connectors.

6. Insert a Contains function from the Core | String functions library.
7. Connect name to value and the SearchFor parameter to substring, then result to the

bool item of the filter.

218 How To... Filter, Transform, Aggregate Recursive user-defined mapping

© 2014 Altova GmbHAltova MapForce 2015

8. Connect the SearchFor item of the input component to the SearchFor item of the user-
defined function.

Defining the recursion
At this point, the mapping of a single directory recursion level is complete. Now we just need to
define how to process a subdirectory.

Making sure that the Toggle Autoconnect icon is active in the icon bar:
1. Connect the lower directory item of the input component to the top directory item of the

recursive user-defined function.

2. Connect the top output directory item of the user-defined function to the lower directory
item of the output component.

3. Right click the top connector, select Copy-All from the context menu and click OK when
prompted if you want to create Copy-All connection.

© 2014 Altova GmbH

Recursive user-defined mapping 219How To... Filter, Transform, Aggregate

Altova MapForce 2015

This completes the definition of the user-defined function in this window.

Click the Return to main mapping window icon, to continue defining the mapping
there.

Main Mapping window
1. Drag the FilterDirectory function from the user section of the Libraries window, into the

main mapping area.
2. Use Insert | XML Schema file to insert Directory.xsd and select Directory.xml as the

instance file.
3. Use the same method to insert Directory.xsd and select Skip, to create the output

component.
4. Insert a constant component, then a Input component e.g. SearchFor.
5. Create the connections as shown in the screenshot below.
6. When connecting the top-level connectors, directory to directory, on both sides of the

user-defined component, right click the connector and select Copy-All from the context
menu.

7. Click the Output tab to see the result of the mapping.

Notes:

220 How To... Filter, Transform, Aggregate Recursive user-defined mapping

© 2014 Altova GmbHAltova MapForce 2015

Double clicking the lowest "directory" item in the Directory component, opens a new level of
recursion, i.e. you will see a new directory | file | directory sublevel. Using the Copy-all
connector automatically uses all existing levels of recursion in the XML instance, you do not need
expand the recursion levels manually.

Chapter 11

Global Resources

222 Global Resources

© 2014 Altova GmbHAltova MapForce 2015

11 Global Resources

Global resources are a major enhancement in the interoperability between products of the Altova
product line, and are currently available in the following Altova products: XMLSpy, MapForce,
StyleVision and DatabaseSpy. Users of the Altova MissionKits have access to the same
functionality in the respective products.

General uses:
Workflows can be defined that use various Altova applications to process data.
An application can invoke a target application, initiate data processing there, and route
the data back to the originating application.
Defining input and output data, file locations , as global resources.
Switching between global resources during runtime to switch between development or
deployment resources.
What-if scenarios for QA purposes.

The default location of the global resource definitions file, GlobalResources.xml, is c:
\Documents and Settings\UserName\My Documents\Altova\. This is the default location for all
Altova applications that can use global resources. Changes made to global resources are thus
automatically available in all applications. The file name and location can be changed. Please
see Global Resources - Properties for more information.

General mechanism:
Global resources are defined in an application and automatically saved.
Global resources are assigned to components whose data you intend to be variable.
The global resource is invoked / activated in an application, allowing you to switch
resources at runtime.

This section will describe how to define and use, global resources using existing mappings
available in the ...\MapForceExamples\Tutorial\ folder.

To activate the Global Resources toolbar:
Select the menu option Tools | Customize | click the Toolbar tab and activate the Global
Resources check box. This displays the global resources tool bar.

The combo box allows you to switch between the various resources, a "Default" entry is always
available.

Clicking the Global Resources icon opens the Global Resources dialog box (alternatively Tools
| Global Resources).

© 2014 Altova GmbH

Global Resources - Files 223Global Resources

Altova MapForce 2015

11.1 Global Resources - Files

Global Resources in MapForce:
Any input/output components files can be defined as global resources, e.g. XML, XML
Schema, files.

Aim of this section:
To make the source component input file, mf-ExpReport, a global resource.
To switch between the two XML files that supply its input data at runtime, and check
the resulting XML output in the Output preview tab.

This section uses the Tut-ExpReport.mfd file available in the ...\MapForceExamples
\Tutorial\ folder.

224 Global Resources Global Resources - Files

© 2014 Altova GmbHAltova MapForce 2015

11.1.1 Defining / Adding global resources

Defining / Adding a global resource file:

1. Click the Global Resource icon to open the dialog box.

This is the state of an empty global resources file.
2. Click the Add button and select File from the popup.
3. Enter the name of the Resource alias e.g. MultiInput.
4. Click the Open folder icon and select the XML file that is to act as the "Default" input file

e.g. mf-ExpReport.xml.

5. Click the Add button of the Configurations group, to add a new configuration to the

current Alias. Note that the Copy configuration icon , allows you to copy a selected
configuration and save it under a new name.

© 2014 Altova GmbH

Global Resources - Files 225Global Resources

Altova MapForce 2015

6. Enter a name for the configuration, Multi2nd, and click OK to confirm.
Multi2nd has now been added to the Configurations list.

7. Click the Open folder icon again and select the XML file that is to act as the input file for
the multi2nd configuration e.g. mf-ExpReport2.xml.

8. Click OK to complete the definition of the resource.
The MultiInput alias has now been added to the Files section of the global resources.
Placing the mouse cursor over an alias entry, opens a tooltip showing its defintion.

226 Global Resources Global Resources - Files

© 2014 Altova GmbHAltova MapForce 2015

9. Click OK to confirm.
This concludes the definition part of defining global resources. The next step is Assigning
a global resource to a component.

© 2014 Altova GmbH

Global Resources - Files 227Global Resources

Altova MapForce 2015

11.1.2 Assigning a global resource

Assigning global resources to a component
We now have to assign the global resource to the component that is to make use of it, i.e. the mf-
ExpReport.xml file that is being used as a source file for the mapping.

1. Double click the mf-ExpReport component and click the Browse button next to the Input
XML File field.

This opens the "Choose XML Instance file" dialog box.
2. Click the Switch to Global Resources button at the base of the dialog box.

3. Click the resource you want to assign, MultiInput in this case, and click Open.

Note: the Input XML File field of the component, now contains a reference to a resource
i.e. altova://file_resource/MultiInput.

228 Global Resources Global Resources - Files

© 2014 Altova GmbHAltova MapForce 2015

4. Click OK to complete the assignment of a resource to a component.
The next step is Using / activating a global resource.

© 2014 Altova GmbH

Global Resources - Files 229Global Resources

Altova MapForce 2015

11.1.3 Using / activating a global resource

Using / activating a global resource
At this point the previously defined Default configuration for the MultiInput Alias is active. You
can check this by noting that the entry in the Global Resources icon bar is "Default".

1. Click the Output tab to see the result of the mapping.

2. Click the Mapping tab to return to the mapping view.
3. Click the global resources combo box select multi2nd from the combo box.

4. Click the Output tab to see the new result.
The mf-ExpReport2.xml file is now used as the source component for the mapping, and
produces different output.

230 Global Resources Global Resources - Files

© 2014 Altova GmbHAltova MapForce 2015

Note:
The currently active global resource (multi2nd in the global resources toolbar)
determines the result of the mapping. This is also the case when you generate code.

© 2014 Altova GmbH

Global Resources - Folders 231Global Resources

Altova MapForce 2015

11.2 Global Resources - Folders

Folders can also be defined as a global resource, which means that input components can
contain files that refer to different folders, for development and release cycles for example.

Defining folders for output components is not really useful in MapForce, as you are always
prompted for the target folders when generating XSLT or code for other programming languages.

The mapping file used in this section is available as "global-folder.mfd" in the ...
\MapForceExamples\Tutorial\ folder.

Defining / Adding global resource folders

1. Click the Global Resource icon to open the dialog box.
2. Click the Add button and select Folder from the popup.
3. Enter the name of the Resource alias e.g. Dev_Release.
4. Click the Open folder icon and select the "Default" input folder, ...\MapForceExamples.

5. Click the Add button of the Configurations group, to add a new configuration to the
current Alias, and enter a name for it e.g. Release. Note that the Copy configuration icon

, allows you to copy a selected configuration and save it under a new name.
6. Click the Open folder icon and select the Release input folder, ...\MapForceExamples

\Tutorial.

7. Click OK to finish the global folder definition.

Assigning the global resource folders:
1. Double click the ExpReport component and click the Browse button next to the Input

XML File field.

232 Global Resources Global Resources - Folders

© 2014 Altova GmbHAltova MapForce 2015

This opens the "Choose XML Instance file" dialog box.
2. Click the Switch to Global Resources button at the base of the dialog box.

3. Click the resource you want to assign, Dev_Release in this case, and click OK.

© 2014 Altova GmbH

Global Resources - Folders 233Global Resources

Altova MapForce 2015

The "Open..." dialog appears.
4. Select the file name that is to act as both the Development and Release resource file in

each of the folders, e.g. ExpReport.xml and click OK to finish assigning the resource
folder.

Note that this file is available in both folders but has different content.

Changing the resource folder at runtime:
1. Click the Output tab to see the result of the transformation.

Note that this is the Default configuration/folder .../MapforceExamples.

2. Click the Mapping tab to return to the mapping window.
3. Click the Global Resource combo box and select the "Release" entry.
3. Click the Output button to see the result using the Release global resource.

The output from the "Release" folder .../MapforceExamples/Tutorial is now displayed.

234 Global Resources Global Resources - Application workflow

© 2014 Altova GmbHAltova MapForce 2015

11.3 Global Resources - Application workflow

The aim of this section is to create a workflow situation between two Altova applications.
Workflow is initiated in XMLSpy which starts MapForce and passes the generated XML file output
back to XMLSpy for further processing.

This mapping uses two output components to produce two types of filtered output; Travel and
Non-travel expenses of the expense report input file. This section uses the Tut-ExpReport-
multi.mfd mapping file available in the ...\MapForceExamples\Tutorial\ folder.

1. Click the Global Resource icon to open the dialog box.
2. Click the Add button and select File from the popup.
3. Enter the name of the Resource alias e.g. MultiOutput2Spy
4. Click the "Result of MapForce Transformation" radio button, then click the Open file

icon.
5. Select the Tut-ExpReport-multi.mfd mapping.

© 2014 Altova GmbH

Global Resources - Application workflow 235Global Resources

Altova MapForce 2015

MapForce analyzes the mapping and displays the input and output files in separate list
boxes.

236 Global Resources Global Resources - Application workflow

© 2014 Altova GmbHAltova MapForce 2015

6. Click the top radio button entry in the Outputs section, if not already selected.
Note that the output file name is ExpReport-Target.xml and that we are currently
defining the Default configuration.

7. Click the icon and select Browse from the popup menu, to define the new location of
the output file e.g. C:\Temp.

8. Enter the new output location e.g. C:\Temp and click the Save button. This location can
differ from the location defined in the component settings.

© 2014 Altova GmbH

Global Resources - Application workflow 237Global Resources

Altova MapForce 2015

9. Click the Add button of the Configurations group (of this dialog box), to add a new
configuration to the resource alias.

10. Enter the name of the configuration, e.g. Output2, click the Open file icon, select the Tut-
ExpReport-multi.mfd.

11. Click the lower radio button of the Outputs listbox. Note that the output file name is
SecondXML.xml.

12. Click the icon and select Browse from the popup menu, to define the new location of
the output file e.g. C:\Temp.

Note: clicking the "Choose another Global Resource... in the popup, allows you to
save the MapForce output as a global resource. I.e. the output is stored to a file that the
global resource physically points to/references.

238 Global Resources Global Resources - Application workflow

© 2014 Altova GmbHAltova MapForce 2015

13. Click OK to save the new global resources.
The new resource alias MultiOutput2Spy has been added to the Global Resources
definition file.

14. Click OK to complete the definition phase.

© 2014 Altova GmbH

Global Resources - Application workflow 239Global Resources

Altova MapForce 2015

11.3.1 Start application workflow

This section shows how the Global Resource is activated in XMLSpy and how the resulting
MapForce transformation is routed back to it.

1. Start XMLSpy and shut down MapForce, if open, to get a better view of how the two
applications interact.

2. Select the menu option Tools | Global Resources in XMLSpy.
3. Select the MultiOutput2Spy entry, and click the View button.

A message box stating that MapForce is transforming appears, with the result of the
transformation appearing in the Text view window.

240 Global Resources Global Resources - Application workflow

© 2014 Altova GmbHAltova MapForce 2015

Note:
The currently selected configuration is "Default".
The name of the resource alias is in the application title bar altova://file_resource/
MultiOutput2Spy.
The output file has been opened as "MultiOutput2Spy.xml" for further processing.
The ExpReport-Target.xml file has been copied to the C:\Temp folder.

To retrieve the non-travel expenses output:
1. Click the Global Resources combo box and select "Output2".

A notification message box opens.

© 2014 Altova GmbH

Global Resources - Application workflow 241Global Resources

Altova MapForce 2015

2. Click Reload to retrieve the second output file defined by the resource.

The result of the transformation appears in the Text view window and overwrites the
previous MultiOutput2Spy.xml file.

Note:
The currently selected configuration is "Output2"
The output file has been opened as "Untitled1.xml" for further processing.
The SecondXML.xml file has been copied to the C:\Temp folder.

242 Global Resources Global Resources - Properties

© 2014 Altova GmbHAltova MapForce 2015

11.4 Global Resources - Properties

The Global Resources XML File
Global resources definitions are stored in an XML file. By default, this XML file is called
GlobalResources.xml, and it is stored in the folder C:\Documents and Settings\<username>
\My Documents\Altova\. This file is set as the default Global Resources XML File for all Altova
applications. As a result, a global resource defined in any application will be available to all Altova
applications—assuming that all applications use this file.

You can also re-name the file and save it to any location. You can therefore have multiple Global
Resources XML files. However, only one of these Global Resources XML File can be active, per
application, at one time, and only the definitions contained in this file will be available to the
application.

To make the Global Resources XML file active, click the Browse button of the "Definitions file"
field and select the one you want to use from the "Open..." dialog box.

Managing global resources: adding, editing, deleting
In the Global Resources dialog, you can add a global resource to the selected Global Resources
XML File, or edit or delete a selected global resource. The Global Resources XML File organizes
the aliases you add into the following sections: files, folders.

To add a global resource:
Click the Add button and define the global resource in the Global Resource dialog that pops up.
After you define a global resource and save it, the global resource (or alias) is added to the list of
global definitions in the selected Global Resources XML File.

To edit a global resource:
Select it and click Edit. This pops up the Global Resource dialog, in which you can make the
necessary changes.

To delete a global resource:
Select it and click Delete.

© 2014 Altova GmbH

Global Resources - Properties 243Global Resources

Altova MapForce 2015

To view the result of an application workflow:
If the calling application e.g. XMLSpy, calls another application e.g. MapForce, then a View button
is available in the Manage Global Resources dialog box.

Clicking the View button shows the affect of the currently selected global resource in the callling
application. Please see Global Resources - Application workflow for an example.

To save modifications made in the Managing Global Resources dialog box:
Having finished adding, editing, or deleting, make sure to click OK in the Global Resources dialog
to save your modifications to the Global Resources XML File.

Note: Alias resource names must be unique within each of the Files, Folders. You can however
define an identical alias name in two different sections, e.g. a multiInput alias can exist in the
Files section as well as in the Folders section.

Selecting Results of MapForce transformations as a global resource
In a MapForce transformation that has multiple outputs, you can select which one of the output
files should be used for the global resource by clicking its radio button.

The output file that is generated by the mapping can be saved as:

a global resource via the Choose another Global Resource entry in the popup, visible
as altova://file_resource/MF_output. The output is stored to a file that the global
resource physically points to/references.

a file via the icon, shown as C:\TEMP\Second.xml.

If neither of these options is selected, a temporary XML file is created when the global
resource is used.

Determining which resource is used at runtime
There are two application-wide selections that determine what global resources can be used and
which global resources are actually used at any given time:

The active Global Resources XML File is selected in the Global Resource dialog. The
active Global Resources XML File can be changed at any time, and the global-resource
definitions in the new active file will immediately replace those of the previously active
file.

244 Global Resources Global Resources - Properties

© 2014 Altova GmbHAltova MapForce 2015

The active Global Resources XML File therefore determines: (i) what global resources can
be assigned, and (ii) what global resources are available for look-up (for example, if a
global resource in one Global Resource XML File is assigned but there is no global
resource of that name in the currently active Global Resources XML File, then the
assigned global resource (alias) cannot be looked up).

The active configuration is selected via the menu item Tools | Active Configuration or
via the Global Resources toolbar. Clicking this command (or dropdown list in the toolbar)
pops up a list of configurations across all aliases.

Selecting a configuration makes that configuration active application-wide. This means
that wherever a global resource (or alias) is used, the resource corresponding to the
active configuration of each used alias will be loaded.

The active configuration is applied to all used aliases. If an alias does not have a
configuration with the name of the active configuration, then the default configuration of
that alias will be used. The active configuration is not relevant when assigning resources;
it is significant only when the resources are actually used.

Changing resources / configurations
Resources can be switched by selecting a different configuration name. This can be done in two
ways:

When you hover over the menu command Tools | Active Configuration, a submenu with
a list of all configurations in the Global Resources XML File appears. Select the required
configuration from the submenu.

In the combo box of the Global Resources toolbar, select the required configuration. The
Global Resources toolbar can be toggled on and off with the menu command Tools |
Customize, then click the Toolbar tab and enable/disable the Global resources check
box.

Chapter 12

Dynamic input/output files per component

246 Dynamic input/output files per component

© 2014 Altova GmbHAltova MapForce 2015

12 Dynamic input/output files per component

MapForce is able to process multiple input / output files per component, and can thus process all
the files in a directory, or a subset of them, by using wildcard characters in the input component.

The example in the tutorial shows how a source component processes two XML input files, and
how the target component outputs two XML documents.

Multiple input / output files can be defined for the following components:
XML files

Please take note of the File: item at the top of the abovementioned components:

The File:mf-ExpReport.xml item of mf-ExpReport, displays the Input XML file entry. This
is automatically filled when you assign an XML instance file to an XML schema file. (If an
output file has been defined then the output file name will be also be displayed.)

The File: (default) item of ExpReport-Target shows that an output instance file was not
assigned to the XML schema component when it was inserted. I.e. the Output XML file
field is empty. A default value will therefore be used when the mapping executes.

Dynamic file name support is activated by mapping a string containing a file name to the
File item. If the component is used as an input component, the file name may contain
wildcards. See also: relative path handling.

The File: <dynamic> item is shown when there is a connection to the File item, i.e.
multiple files are now supported.

The replace-fileext function converts the .xml extention to .out for the dynamic target
files.

Dynamic/multi-file and wildcard support for MapForce supported languages:

Target
language

Dynamic input file
name

Wildcard support for
input file name

Dynamic output file
name

XSLT 1.0 * not supported by XSLT 1.0 not supported by XSLT 1.0

XSLT 2.0 * *(1) *
* supported

(1) Uses the fn:collection function. The implementation in the Altova XSLT 2.0 and XQuery

© 2014 Altova GmbH

 247Dynamic input/output files per component

Altova MapForce 2015

engines resolves wildcards. Other engines may behave differently.

Wildcards * and ? are resolved when entered in the Component Settings dialog box and
also when mapping a string to the File: name node.

To transform XSLT 1.0/2.0 as well as XQuery code using the RaptorXML Server engine, please
see Generating XSLT 1.0, or 2.0 code

248 Dynamic input/output files per component Dynamic file names - input / output

© 2014 Altova GmbHAltova MapForce 2015

12.1 Dynamic file names - input / output

By mapping file names dynamically inside the mapping, you can:

generate a mapping application where the input and output file names can be defined at
runtime
convert a set of files to another format (many-to-many)
split a large file (or database) into smaller sections/parts
merge multiple files into one large file (or load them into a database)

To process multiple input files, you can do one of the following:
Enter a file path with wildcards (* or ?) as input file in the Component Settings dialog
box. All matching files will be processed. The example below uses the ? wildcard
character in the Input XML file field to map all files starting with mf-ExpReport with one
following character, of which there are two in the ...\Tutorial folder.

Map a sequence of strings to the File node of the source component. Each string in the
sequence represents one file name. The strings may also contain wildcards, which are
automatically resolved.

A sequence of file names can be supplied by:

An XML file

Preview of dynamic input / output mappings
Clicking the Output tab displays the mapping result in a preview window. If the mapping produces
multiple output files, as shown below, Preview 1 of 2, each file has its own numbered pane in the
Output tab. Click the arrow buttons to see the individual output files.

© 2014 Altova GmbH

Dynamic file names - input / output 249Dynamic input/output files per component

Altova MapForce 2015

Click the Save all generated outputs icon , to save the generated output files you see here.

Multi input / single output - merging input files
Multiple input files can be merged into a single output file if the connector between the two File:
items is removed, while the source component still accesses multiple files e.g. per wildcard "?".
While the source component can take multiple files, the output component cannot. The multiple
source files are thus appended in the target document.

Multi input / multi output
To map multiple files n:n to multiple target files, you need to generate unique output file names. In
some cases, the output file names can be derived from strings in the input data, and in other
cases it is useful to derive the output file name from the input file name, e.g. by changing the file
extension.

The full path name of the currently processed file is available by connecting the output icon of the
File node, e.g. to concat for adding a new file extension.

Please note:
Avoid simply connecting the File: nodes directly without using any processing functions,
as this will overwrite your input files when you run the mapping. You can change the
output file names using various functions e.g. the replace function as shown below.

250 Dynamic input/output files per component Dynamic file names - input / output

© 2014 Altova GmbHAltova MapForce 2015

The output file names in the above case will be mf-expenses1.xml and mf-
expenses2.xml.

The menu option File | Mapping Settings allows you to globally define the file path settings used
for the mapping project.

The "Ensure Windows path convention...." check box makes sure that Windows path conventions
are followed. When outputting XSLT2 (and XQuery), the currently processed file name is internally
retrieved using the document-uri function, which returns a path in the form file:// URI for local
files.

When this check box is active, a file:// URI path specification is automatically converted to a
complete Windows file path (e.g. "C:\...") to simplify further processing.

© 2014 Altova GmbH

Dynamic file names as Input parameters 251Dynamic input/output files per component

Altova MapForce 2015

12.2 Dynamic file names as Input parameters

MapForce allows you to create special input components that can act as a parameter in the
command line execution of the compiled mapping. This specific type of input component cannot
be used inside a user-defined function, it is only available in the main mapping window.

To process a file using an Input parameter at runtime:
To define the path and file name at runtime, connect an input parameter component to the input
icon of the File node in the source component. Depending on the connections to other items, this
will define the input and/or the output file name.

The mf-ExpReport.xml entry in the Value field is only used for preview purposes in the Output
window. It has no effect on the parameter values used when running the code from the command
line. Please see Input parameters, overrides and command line parameters for more information.

When you have generated and compiled your code you can supply the file name for the mapping
using the command line:
mapping.exe /InputFileName Filename.xml.

Where:
/InputFileName is the name of the first parameter

Filename.xml is the second parameter i.e. the dynamic file name you want to be used
when running the application from the command line.

252 Dynamic input/output files per component Multiple XML files from single XML source file

© 2014 Altova GmbHAltova MapForce 2015

12.3 Multiple XML files from single XML source file

The content of the XML source file mf-ExpReport.xml, available in the ...\MapForceTutorial
folder, is shown below. It consists of the expense report for Fred Landis and contains five expense
items of different types. This example is available as Tut-ExpReport-dyn.mfd in the ...\Tutorial
folder.

Aim:
To generate a separate XML file for each of the expense items listed below.

As the "type" attribute defines the specific expense item type, this is the item we will use to split
up the source file.

1. Insert a concat function from the libraries pane and a constant component from the icon
bar.

2. Enter *.xml as the string value in the constant component when the dialog box opens.
3. Insert the auto-number function from the core | generator functions library of the

libraries pane.

© 2014 Altova GmbH

Multiple XML files from single XML source file 253Dynamic input/output files per component

Altova MapForce 2015

4. Create the connections as shown above: type to value1, auto-number to value2 and the
constant to value3.

5. Connect the result parameter/output of the concat function to the File: item of the target
component. Note that File: <dynamic> is now displayed.

6. Define the remaining connections as needed.
7. Click the Output tab to see the result of the mapping.

Each record is now visible in its own Preview tab, the first one is shown above.
8. Click the drop-down list arrow to see all the files that have been generated.

254 Dynamic input/output files per component Multiple XML files from single XML source file

© 2014 Altova GmbHAltova MapForce 2015

Clicking the Next/Previous arrows allows you to see each of the files in the Output
tab.

Note:
The type attribute supplies the first part of the file name e.g. Travel.

The auto-number function supplies the file number increments (default settings are
start at=1 and increase=1) thus Travel1.

The constant component supplies the file extension i.e. .xml, thus Travel1.xml is the
file name of the first file.

Clicking the Save All icon allows you to save the individual files directly from the
Output tab, without having to generate code.

© 2014 Altova GmbH

Relative and absolute file paths 255Dynamic input/output files per component

Altova MapForce 2015

12.4 Relative and absolute file paths

A relative path is a path that does not start with a drive letter, i.e. it can be a file name without
path. The specific context in which the relative file name is used, defines the base path. The
handling of relative file names has changed in MapForce version 2010 due to the support for
mapping file names as data inside a mapping.

Previous versions of MapForce (prior to 2010) saved file paths relative to the *.MFD file for files in
the same, or a descendent folder, and changed them to absolute paths when they were opened/
loaded.

Since MapForce 2010, all references to external files, such as schemas or XML instance files, are
stored the way they are entered in the dialog box – in this way, relative paths can be used where
required.

Save all paths relative to MFD file
This new option, common to all component settings dialog boxes, saves all file paths (of the
component) relative to the location of the current MFD file. This allows you to move a mapping
together with all related files to a different location, while keeping all file references intact.

This means that:
Absolute file paths will be changed to relative paths
The parent directory "..\" will be also be inserted/written
Using Save as... will adjust the file paths (relative to the MFD file) to the new location you
are saving the MFD file to

Please note:
Paths that reference a non-local drive, or use a URL, will not be made relative.

256 Dynamic input/output files per component Relative and absolute file paths

© 2014 Altova GmbHAltova MapForce 2015

There are two separate types of files that are referenced from an MFD file:
Schema-type files (XML Schemas, WSDL, FlexText configuration files, …) entered in the
schema file field.
Instance files entered in the Input xxx File, or Output xxx File fields.

Schema-type files

© 2014 Altova GmbH

Relative and absolute file paths 257Dynamic input/output files per component

Altova MapForce 2015

Schema-type files are used when designing a mapping. They define the structure of the mapped
input and output instance files. This information is used to display the item trees/hierarchy in the
various components. MapForce supports entering and storing a relative path to schema-type files.

Relative paths to schema-type files will be always resolved relative to the MFD file.
Selecting a schema via the "Open" dialog, e.g. after inserting a new component, or
clicking the “Browse” button in the Component Settings dialog box, always inserts the
absolute path into the field.
To set a relative path, which will also be stored in the MFD file, delete the path from the
text box, or type a relative path or file name. This will happen automatically on saving the
MFD file if the "Save all paths relative to MFD file" checkbox is activated. You may also
use "..\" to specify the parent folder of the MFD file.
Saving a MFD file that references files from the same directory, then moving the complete
directory to another location, does not update any absolute paths stored in the mfd file.
Users who use source control systems and different working directories should therefore
use relative paths, in this case.

Instance files and the execution environment
The processing of instance files is done in the generated XSLT, XQuery or in the generated
application, as well as MapForce preview.

In most cases it does not make sense to interpret relative paths to instance files as being relative
to the MFD file, because that path may not exist at execution time - the generated code may be
deployed to a different machine. Relative file names for instance files are therefore resolved
relative to the execution environment:

Target language Base path for relative instance file name

XSLT/XSLT2 Path of the XSLT file

A new check box that ensures compatibility of generated code with mapping files (*.mfd) from
versions prior to Version 2010, has been added in the File | Mapping Settings dialog box, i.e.
"Make paths absolute in generated code".

The state of the check box is automatically set depending on what is opened, the check box is:

inactive if a new mapping file, i.e. version 2010, is created or opened
Relative paths for input and output instance files are written as is, into the generated
code.

This allows deployment of the generated code to a different directory or even machine.
You must ensure that files addressed using relative paths are available in the runtime
environment at the correct location.

active if an older mapping file from version 2009, 2008 etc. is opened
Relative paths for input and output instance files are made absolute (relative to the *.MFD
file) before generating code. This has the same effect as generating code with an older
version of MapForce.

Note that the source instance file name is also used for the following purposes:
Detection of the XML root element and the referenced schema
Validation against the selected schema
Reading Excel worksheet names and columns

258 Dynamic input/output files per component Relative and absolute file paths

© 2014 Altova GmbHAltova MapForce 2015

To read column names and preview contents of text files (CSV or FLF)

New "schemaLocation" field for target XML files
Since schema references may be stored relative to the MFD file, and the generated XML file from
a target component is often in a different directory, there is a way to enter a separate
schemaLocation path for the target XML instance, so that the XML file can be validated there.

This is the field below the “Add schema/DTD reference” check box, of the Component Settings
dialog box (Double click a component to open it). A similar field exists for the taxonomy reference
in XBRL components.

The path of the referenced/associated schema, entered in this field, is written into the generated
target instance files in the xsi:schemaLocation attribute, or into the DOCTYPE declaration if a
DTD is used.
Note: A URL e.g. http://mylocation.com/mf-expreport.xsd can also be entered here.

Chapter 13

Intermediate variables

260 Intermediate variables

© 2014 Altova GmbHAltova MapForce 2015

13 Intermediate variables

Intermediate variables are a special type of component used to solve various advanced mapping
problems. They store an intermediate mapping result for further processing.

Variables work in all languages except XSLT1.0.

Variable results are always sequences, i.e. a delimited list of values, and can also be
used to create sequences.

Variables are structural components, with a root node, and do not have instances (XML
files etc.) associated to them.

Variables make it possible to compare items of one sequence, to other items within the
same sequence.

Variables can be used to build intermediate sequences. Records can be filtered before
passing them on to a target, or filtered after the variable by using the position function for
example.

Difference between variables and chained mappings

Chained mappings Variables

Involve two totally independent steps. Evaluated depending on context /
scope. Controlled by "compute-when"
connection

Intermediate results are stored
externally in XML files when mapping is
executed.

Intermediate results are stored
internally, not in any physical files,
when mapping is executed.

Intermediate result can be previewed
using preview button.

Variable result cannot be previewed.

To insert intermediate variables:
There are several ways of inserting intermediate variables: Using the menu option, by clicking the
Var. icon, or by right clicking input/output icons and creating variables based on the input/output
components.

1. Select Insert | Variable or click the Variable icon in the icon bar. You can now
select if you want to insert a simple or complex variable.

© 2014 Altova GmbH

 261Intermediate variables

Altova MapForce 2015

2. Click the radio button for the type of variable you want to insert, i.e. Simple type, or
Complex type.

If you clicked the "Complex type" radio button:
3. Click the "Choose" button to select XML Schema for example, and select the Root item

from the next dialog box.
4. Click OK to insert the variable.

Complex variable:

Simple variable:

Have a single mappable item/value e.g. string, integer. Note that the "value" item can be
duplicated.

Alternate methods of inserting variables:

Right click an output icon of a component (e.g. BranchOffices) and select "Create
Variable from Source node".

262 Intermediate variables

© 2014 Altova GmbHAltova MapForce 2015

This creates a complex variable using the same source schema and automatically
connects all items with a copy-all connection.

Right click an input icon of a target component (e.g. Contact) and select "Create
Variable for Target Node".

This creates a complex variable using the same schema as the target, with the Contact
item as the root node, and automatically connects all items with a copy-all connection.

Right click an output icon of a filter component (on-true/on-false) and select "Create
Variable from Source node".

© 2014 Altova GmbH

 263Intermediate variables

Altova MapForce 2015

This creates a complex component using the source schema, and automatically uses the
item linked to the filter input node/row, i.e. Contact, as the root element of the
intermediate component.

Compute-when
The compute-when input item allows you to control the scope of the variable; in other words when
and how often the variable value is computed when the mapping is executed. You do not have to
connect this input in many cases, but it can be essential to override the default context, or to
optimize mapping performance.

A subtree in the following text means the set of an item/node in a target component and all of its
descendants, e.g. a <Person> element with its <FirstName> and <LastName> child elements.

Variable value means the data that is available at the output side of the variable component.

For simple variables, it is a sequence of atomic values that have the datatype specified in
the component properties.

For complex variables, it is a sequence of root nodes (of the type specified in the
component properties), each one including all its descendant nodes.

The sequence of atomic values (or nodes) may of course also contain only one, or even
zero elements. This depends on what is connected to the input side of the variable
component, and to any parent items in the source and target components.

Compute-when not connected (default)
If the compute-when input item is not connected (to an output node of a source component), the
variable value is computed whenever it is first used in a target subtree (via a connector from the
variable component directly to a node in the target component, or indirectly via functions). The
same variable value is also used for all target child nodes inside the subtree.

The actual variable value depends on any connections between parent items of the source and
target components (see "Loops, groups and hierarchies - The context").

This default behavior is the same as that of complex outputs of regular user-defined functions and
Web service function calls.

If the variable output is connected to multiple unrelated target nodes, the variable value is
computed separately for each of them. This can produce different results in each case, because
different parent connections influence the context in which the variable's value is evaluated.

264 Intermediate variables

© 2014 Altova GmbHAltova MapForce 2015

Compute-when - connected
By connecting compute-when to an output node of a source component, the variable is
computed whenever that source item is first used in a target subtree.

The variable actually acts as if it were a child item of the item connected to compute-when.

This makes it possible to bind the variable to a specific source item, i.e. at runtime the variable is
re-evaluated whenever a new item is read from the sequence in the source component.

This relates to the general rule governing connections in MapForce - "for each source item, create
one target item". With compute-when, it means "for each source item, compute the variable
value".

Compute-once
Right clicking the "compute-when" icon and selecting "Compute Once" from the context menu,
changes the icon to "compute-when=once" and also removes the input icon.

This setting causes the variable value to be computed once before any of the target components,
making the variable essentially a global constant for the rest of the mapping.

In a user-defined function, the variable is evaluated each time the function is called, before the
actual function result is evaluated.

Parent-context
The main use of adding a parent-context, is when using multiple filters and you need an additional
parent node to iterate over.

To add a parent-context to a variable:
Right click the root node, e.g. PersonList and select "Add Parent Context" from the
context menu.
This adds a new node, "parent-context", to the existing hierarchy.

The parent context adds a virtual "parent" node to the hierarchy within the component.
This allows you to iterate over an additional node in the same, or different source
component.

© 2014 Altova GmbH

Variables - use cases 265Intermediate variables

Altova MapForce 2015

13.1 Variables - use cases

Filtering out multiple instances of the same record from a source instance
Source data can often contain multiple instances of the same record. In most cases you would
only want one of these records to be mapped to the target component. The example below is
available as DistinctArticles.mfd in the ...\MapForceExamples folder.

The ArticlesWithDuplicates.xml file contains two articles both having the same article number
(two with article no. 1 and two with article no 3).

The article Number is used as the key in the group-by function, so it creates one group per unique
article number. Each group thus contains one article and all the unwanted duplicates of that
article. The next step is to extract the first item of each group and discard the rest.

The connection of the group output to "compute-when" causes the variable to be evaluated once
for each group, in the context of that group. This establishes an additional context level, as if we
had connected a parent element of the target Article element.

To select the first article of each group, we use the position function and a filter component, which
are connected to the variable input.

Applying filters to intermediate sequences:
Nodes in variable components can be duplicated as in any other type of component. This allows
you to build sequences from multiple different sources and then further process the sequence.

The screenshot below shows how PersonList.mfd could be modified using an intermediate
variable, and how constant components can also act as source items.

266 Intermediate variables Variables - use cases

© 2014 Altova GmbHAltova MapForce 2015

The Person node of the variable has been duplicated twice, and a filter has been added to filter
those persons whose Last name starts with a letter higher than "G".

Numbering nodes of a filtered sequence
This example is available as PositionInFilteredSequence.mfd in ...\MapForceExamples folder
and uses the variable to collect the filtered contacts where the last name starts with a letter higher
than M.

The contacts are then passed on (from the variable) to the target component, with the position
function numbering these contacts sequentially.

The variable acts like another source component allowing the position function to process the

© 2014 Altova GmbH

Variables - use cases 267Intermediate variables

Altova MapForce 2015

filtered sequence.

Extract specific data from a source components' anyType node
This example consists of a source component containing anyType elements from which we want
to filter specific data.

The intermediate variable is based on a schema that has nodes of the specific type of data that
we want to map, i.e. ArticleNr and Amount are both of type integer. That specific data is filtered
by ArticleNr. and passed on to the target component.

Chapter 14

Libraries and Functions

270 Libraries and Functions

© 2014 Altova GmbHAltova MapForce 2015

14 Libraries and Functions

The following sections describe how to define your own user-defined functions as well as libraries
for the various programming languages.

Defining User-defined functions

Adding custom XSLT and XQuery functions

Library Functions Reference

© 2014 Altova GmbH

Defining User-defined functions 271Libraries and Functions

Altova MapForce 2015

14.1 Defining User-defined functions

MapForce allows you to create user-defined functions visually, in the same way as in the main
mapping window.

These functions are then available as function entries in the Libraries window (e.g First_Last), and
are used in the same way as the currently existing functions. This allows you to organize your
mapping into separate building blocks, and reuse them in the same, or different mappings.

XSLT Selected

User-defined functions are stored in the *.mfd file, along with the main mapping.

A user-defined function uses input and output components to pass information from the main
mapping (or another user-defined function) to the user-defined function and back.

User-defined functions can contain "local" source components (i.e that are within the user-defined
function itself) such as XML schemas, which are useful when implementing lookup functions.

User-defined functions can contain any number of input and outputs where any of these can be in
the form of: simple values, or XML nodes.

User-defined functions are useful when:
combining multiple processing functions into a single component, e.g. for formatting a
specific field or looking up a value
reusing these components any number of times
importing user-defined functions into other mappings (by loading the mapping file as a
library)
using inline functions to break down a complex mapping into smaller parts that can be
edited individually
mapping recursive schemas by creating recursive user-defined functions

User-defined functions can be either built from scratch, or from functions already available in the
mapping tab.

272 Libraries and Functions Defining User-defined functions

© 2014 Altova GmbHAltova MapForce 2015

This example uses the Tut-ExpReport.mfd file available in the ...\MapForceExamples\Tutorial\
folder.

To create a user-defined function from existing components:
1. Drag to mark both the concat and the constant components (you can also hold down the

CTRL key and click the functions individually).

2. Select the menu option Function | Create User-Defined Function from Selection.
3. Enter the name of the new user-defined function (First_Last).

Note: valid characters are: alphanumeric, a-z, A-Z, 0-9 as well as underscore "_", hyphen/
dash "-" and colon ":".

4. Use the Syntax and Detail fields to add extra information on the new function, and click
OK to confirm. The text you enter will appear as a tooltip when the cursor is placed over
the function.
The library name "user" is supplied as a default, you can of course define your own library
name in this field.

© 2014 Altova GmbH

Defining User-defined functions 273Libraries and Functions

Altova MapForce 2015

The individual elements that make up the function group appear in a tab with the function
name. The new library "user" appears in the Libraries pane with the function name
"First_Last" below it.

XSLT Selected

Click the Home button to return to the main mapping window. The components have
now been combined into a single function component called First_Last. The input and
output parameters have been automatically connected.

Note that inline user-defined functions are displayed with a dashed outline. See Inline
user-defined functions for more information.

Dragging the function name from the Libraries pane and dropping it in the mapping
window, allows you to use it anywhere in the current mapping. To use it in a different
mapping, please see Reusing user-defined functions

To open a user-defined function:
Do one of the following:

Double-click the title bar of a user-defined function component
or
Double-click the specific user-defined function in the Libraries window.

274 Libraries and Functions Defining User-defined functions

© 2014 Altova GmbHAltova MapForce 2015

This displays the individual components inside the function in a tab of that name. Click

the Home button to return to the main mapping.

Double clicking a user-defined function of a different *.mfd file (in the main mapping
window) opens that MFD file in a new tab.

Navigating user-defined functions:
When navigating the various tabs (or user-defined function tabs) in MapForce, a history is
automatically generated which allows you to travel forward or backward through the various tabs,
by clicking the back/forward icons. The history is session-wide, allowing you to traverse mutliple
MFD files.

The Home button returns you to the main mapping tab from within the user-defined
function.

The Back button takes you back through your history

The Forward button moves you forward through your history

To delete a user-defined function from a library:
1. Double click the specific user-defined function in the Libraries window.

The user-defined function is visible in its tab.
2. Click the Erase button in the top right of the title bar to delete the function.

Reusing - exporting and importing User-defined functions:
User-defined functions, defined in one mapping, can be imported into any other mapping:

1. Click the Add/Remove Libraries button, at the base of the Libraries pane, click the Add
button and select a *.mfd file that contains the user-defined function(s) you want to
import.

The user-defined function now appear in the Libraries window (under "user" if that is the
default library you selected). You can of course enter anything in the "Library name" field
when defining the user-defined function.

2. Drag the imported function into the mapping to make use of it.

Library Names

© 2014 Altova GmbH

Defining User-defined functions 275Libraries and Functions

Altova MapForce 2015

Note: It is possible to use the same library name for user-defined functions in multiple
*.mfd files and/or custom libraries .

Functions from all available sources will appear under the same library name/header in
the Libraries pane. However, only the functions in the currently active document can be
edited by double-clicking.

In the following example:

the function "hello" in the "helloworld" library is imported from a custom,
the function "Join" in the "helloworld" library is a user-defined function defined in the
current *.mfd file and
the function "MyUDF" in the "user" library is also a user-defined function defined in the
current *.mfd file

Java Selected

Note that possible changes in imported functions are applied to importing mappings when
saving the library *.mfd file.

Parameter order in user-defined functions

The parameter order within user-defined functions can be directly influenced:
Input and output parameters are sorted by their position from top to bottom (from the top
left corner of the parameter component).
If two parameters have the same vertical position, the leftmost takes precedence.
In the unusual case that two parameters have exactly the same position, the internal
component ID is automatically used.

276 Libraries and Functions Defining User-defined functions

© 2014 Altova GmbHAltova MapForce 2015

Notes:
Component positioning and resizing actions are "undoable".

Newly added input or output components, are created below the last input or output
component.

Complex and simple parameters can be mixed. The parameter order is derived from the
component positions.

© 2014 Altova GmbH

Defining User-defined functions 277Libraries and Functions

Altova MapForce 2015

14.1.1 Function parameters

Function parameters are represented inside a user-defined function by input and output
components.

Input components/parameters: a, b, and

Output component/parameter: result

Input parameters are used to pass data from the main mapping into the user-defined function,
while output parameters are used to return data back to the main mapping. Note that user-defined
functions can also be called from other user-defined functions.

Simple and complex parameters
The input and output parameters of user-defined functions can be of various types:

Simple values, e.g. string or integer
Complex node trees, e.g. an XML element with attributes and child nodes

Input parameter POArtNr is a simple value of datatype "string"

Input parameter Articles is a complex XML document node tree

Output parameter Name is a simple value of type string

Note:
The user-defined functions shown above are all available in the
PersonListByBranchOffice.mfd file available in the ...\MapForceExamples folder.

Sequences
Sequences are data consisting of a range, or sequence, of values. Simple and complex user-
defined parameters (input/output) can be defined as sequences in the component properties
dialog box.

278 Libraries and Functions Defining User-defined functions

© 2014 Altova GmbHAltova MapForce 2015

Aggregate functions, e.g. min, max, avg, etc., can use this type of input to supply a single
specific value from the input sequence. Please see Aggregate functions for more information.

When the "Input is a Sequence" check box is active, the component handles the input as a
sequence. When inactive, input is handled as a single value.

This type of input data, sequence or non-sequence, determines how often the function is called.

When connected to a sequence parameter the user-defined function is called only once
and the complete sequence is passed into the user-defined function.

The screenshot shows the user-defined function "Calculate" of the
"InputIsSequence.mfd" mapping in the ...\MapForceExamples folder. The
Temperatures input component (shown below) is defined as a sequence.

© 2014 Altova GmbH

Defining User-defined functions 279Libraries and Functions

Altova MapForce 2015

When connected to a non-sequence parameter, the user-defined function is called once
for each single item in the sequence.

Please note:
The sequence setting of input/output parameters are ignored when the user-defined
function is of type inline.

Connecting an empty sequence to a non-sequence parameter has the result that the function
is not called at all!

This can happen if the source structure has optional items, or when a filter condition returns no
matching items. To avoid this, either use the substitute-missing function before the function input
to ensure that the sequence is never empty, or set the parameter to sequence, and add handling
for the empty sequence inside the function.

When a function passes a sequence of multiple values to its output component, and the output
component is not set to sequence, only the first result is used when the function is called.

280 Libraries and Functions Defining User-defined functions

© 2014 Altova GmbHAltova MapForce 2015

14.1.2 Inline and regular user-defined functions

Inline functions differ fundamentally from regular functions, in the way that they are implemented
when code is generated.

The code for inline type functions is inserted at all locations where the user-defined
functions are called/used

The code of a regular function is implemented as a function call.

Inline functions thus behave as if they had been replaced by their implementation. That
makes them ideal for breaking down a complex mapping into smaller encapsulated
parts.

Please note:
using inline functions can significantly increase the amount of generated program code!
The user-defined function code is actually inserted at all locations where the function is
called/used, and thus increases the code size substantially - as opposed to using a
regular function.

INLINE user-defined functions are shown with a dashed outline:

Inline user-defined functions support:
Multiple output components within a function

do not support:
The setting of a priority context on a parameter
Recursive calls to an inline user-defined function

REGULAR user-defined functions i.e. non-inline functions are shown with a solid outline:

Regular (non-inline) user-defined functions support:
Only a single output component within a function
Recursive calls (where the exit condition must be supplied, e.g. use an If-Else condition
where one branch, or value, exits the recursion)
Setting a priority context on a parameter

Please note:

© 2014 Altova GmbH

Defining User-defined functions 281Libraries and Functions

Altova MapForce 2015

Although regular functions do not support multiple output components, they can be
created in this type of function. However, an error message appears when you try to
generate code, or preview the result of the mapping.

If you are not using recursion in your function, you can change the type of the function to
"inline".

do not support:
Direct connection of filters to simple non-sequence input components
Sequence or aggregate functions on simple input components (like exists, substitute-
missing, sum, group-by, ...)

Code generation
The implementation of a regular user-defined function is generated only once as a callable
XSLT template or function. Each user-defined function component generates code for a
function call, where inputs are passed as parameters, and the output is the function
(component) return value.

At runtime, all the input parameter values are evaluated first, then the function is called for
each occurrence of the input data. See Function parameters for details about this
process.

To change the user-defined function "type":
1. Double click the user-defined function to see its constituent components.
2. Select the menu option Function | Function settings and click the "Inlined use"

checkbox.

User-defined functions and Copy-all connections
When creating Copy-all connections between a schema and a complex user-defined function
parameter, the two components must be based on the same schema! It is not necessary that
they both have the same root elements however. Please see "Complex output components -
defining" for an example.

282 Libraries and Functions Defining User-defined functions

© 2014 Altova GmbHAltova MapForce 2015

14.1.3 Creating a simple look-up function

This example is provided as the lookup-standard.mfd file available in the ...
\MapForceExamples folder.

Aim:
To create a generic look-up function that:

supplies Articles/Number data from the Articles XML file, to be compared to Article
numbers of a different XML file, ShortPO in this case.

Insert the ShortPO.xsd and assign ShortPO.xml as the source XML file.
Insert the CompletePO.xsd schema file, and select CompletePO as the root element.
Insert a new user-defined function using the method described below.

To create a user-defined function from scratch:
1. Select the menu option Function | Create User-defined function.
2. Enter the name of the function e.g. LookupArticle.

3. Uncheck the "Inlined use" checkbox and click OK to confirm

© 2014 Altova GmbH

Defining User-defined functions 283Libraries and Functions

Altova MapForce 2015

A tab only containing only one item, an output function currently called "result", is
displayed.

Java Selected

This is the working area used to define the user-defined function.

A new library has been created in the Libraries pane with the name "user" and the
function name "LookupArticle".

3. Click the Insert Schema/XML file icon to insert the Articles schema and select the
XML file of the same name to act as the data source.

4. Click the Insert input component icon to insert an input component.
5. Enter the name of the input parameter, ArticleNr in this case, and click OK.

284 Libraries and Functions Defining User-defined functions

© 2014 Altova GmbHAltova MapForce 2015

This component acts as a data input to the user-defined function and supplies the input
icon of the user-defined function.

6. Insert an "equal" component by dragging it from the core library/logical functions group.

7. Insert a filter component by clicking the Insert Filter icon in the toolbar.

Use the diagram below as an aid to creating the mappings in the user-defined function,
please take note of the following:

8 Right click the a parameter and select Priority context from the pop up menu.
9. Double click the output function and enter the name of the output parameter, in this

case "Name".

© 2014 Altova GmbH

Defining User-defined functions 285Libraries and Functions

Altova MapForce 2015

This ends the definition of the user-defined function.

Please note:
Double clicking the input and output functions opens a dialog box in which you can
change the name and datatype of the input parameter, as well as define if the function is
to have an input icon (Input is required) and additionally if it should be defined as a
sequence.

This user-defined function:
has one input function, ArticleNr, which will receive data from the ShortPO XML file.
compares the ShortPO ArticleNr, with the Article/Number from the Articles XML
instance file, inserted into the user-defined function for this purpose.
uses a filter component to forward the Article/Name records to the output component, if
the comparison returns true.
has one output function, Name, which will forward the Article Name records to the
CompletePO XML file.

10. Click the Home icon to return to the main mapping.
The LookupArticle user-defined function, is now available under the user library.

Java Selected

11. Drag the LookupArticle function into the Mapping window.

The user-defined function is displayed:
with its name "LookupArticle" in the title/function bar,
with named input and output icons.

286 Libraries and Functions Defining User-defined functions

© 2014 Altova GmbHAltova MapForce 2015

10. Create the connections displayed in the graphic below and click the Output tab to see the
result of the mapping.

© 2014 Altova GmbH

Defining User-defined functions 287Libraries and Functions

Altova MapForce 2015

14.1.4 Complex user-defined function - XML node as input

This example is provided as the lookup-udf-in.mfd file available in the ...\MapForceExamples
folder. What this section will show, is how to define an inline user-defined function that contains a
complex input component.

Note that the user-defined function "FindArticle" consists of two halves.

A left half which contains the input parameters:
a simple input parameter POArtNr
a complex input component Articles, with mappings directly to its XML child nodes

A right half which contains:
a simple output parameter called "Name".

The screenshot below shows the constituent components of the user-defined function, the two
input components at left and the output component at right.

288 Libraries and Functions Defining User-defined functions

© 2014 Altova GmbHAltova MapForce 2015

Complex input components - defining

Defining complex input components:
1. Create a user-defined function in the usual manner, i.e. Function | Create User-Defined

function and click OK to confirm. Note that the Inlined use check box is automatically
selected.

2. Click the Insert input component icon in the icon bar.
3. Enter the name of the input component into the Name field.

4. Click the Complex type (tree structure) radio button, then click the "Choose" button
next to the Structure field.
This opens another dialog box.

© 2014 Altova GmbH

Defining User-defined functions 289Libraries and Functions

Altova MapForce 2015

The top list box displays the existing components in the mapping (three schemas if you
opened the example mapping). Note that this list contains all of the components that
have been inserted into the active mapping: e.g. XML schema file.

The lower list box allows you to select a new complex data structure i.e. XML Schema
file.

5. Click "Insert a new structure... " radio button, select the XML Schema Structure entry,
and click OK to continue.

6. Select Articles.xsd from the "Open" dialog box.
7. Click the element that you would like to become the root element in the component, e.g.

Articles, and click OK, then OK again to close both dialog boxes.

290 Libraries and Functions Defining User-defined functions

© 2014 Altova GmbHAltova MapForce 2015

The Articles component is inserted into the user-defined function. Please note the input
icon to the left of the component name. This shows that the component is used as a
complex input component.

8. Insert the rest of the components as shown in the screenshot below, namely: a second
"simple" input component (called POArtNr), filter, equal and output component (called
Name), and connect them as shown.

Please note:
The Articles input component receives its data from outside of the user-defined function.
Input icons that allow mapping to this component, are available there.
An XML instance file to provide data from within the user-defined function, cannot be
assigned to a complex input component.
The other input component POArtNr, supplies the ShortPO article number data to which
the Article | Number is compared.
The filter component filters the records where both numbers are identical, and passes
them on to the output component.

10. Click the Home icon to return to the mapping.
11. Drag the newly created user-defined component from the Libraries pane into the mapping.

© 2014 Altova GmbH

Defining User-defined functions 291Libraries and Functions

Altova MapForce 2015

Java Selected

12. Create the connections as shown in the screenshot below.

The left half contains the input parameters to which items from two schema/xml files are mapped:
ShortPO supplies the data for the input component POArtNr.
Articles supplies the data for the complex input component. The Articles.xml instance
file was assigned to the Articles schema file when the component was inserted.
The complex input component Articles with its XML child nodes, to which data has been
mapped from the Articles component.

The right half contains:
a simple output parameter called "Name", which passes on the filtered line items which
have the same Article number, to the Name item of Complete PO.

292 Libraries and Functions Defining User-defined functions

© 2014 Altova GmbHAltova MapForce 2015

Please note:
When creating Copy-all connections between a schema and a user-defined function parameter,
the two components must be based on the same schema! It is not necessary that they both have
the same root elements however.

© 2014 Altova GmbH

Defining User-defined functions 293Libraries and Functions

Altova MapForce 2015

14.1.5 Complex user-defined function - XML node as output

This example is provided as the lookup-udf-out.mfd file available in the ...\MapForceExamples
 folder. What this section will show is how to define an inline user-defined function that allows a
complex output component.

Note that the user-defined function FindArticle consists of two halves.

A left half which contains the input parameter:
a simple input parameter POArtNr

A right half which contains:
a complex output component Article (CompletePO) with its XML child nodes mapped to
CompletePO.

The screenshot below shows the constituent components of the user-defined function, the input
components at left and the complex output component at right.

Complex output components - defining

Defining complex output components:
1. Create a user-defined function in the usual manner, i.e. Function | Create User-Defined

function name it FindArticle, and click OK to confirm. Note that the Inline... option is
automatically selected.

294 Libraries and Functions Defining User-defined functions

© 2014 Altova GmbHAltova MapForce 2015

2. Click the Insert Output icon in the icon bar, and enter a name e.g. CompletePO.

3. Click the Complex type... radio button, then click the "Choose" button.
This opens another dialog box.

The top list box displays the existing components in the mapping, (three schemas if you
opened the example file). Note that this list contains all of the components that have been
inserted into the active mapping: e.g. XML Schema file.

The lower list box allows you to select a new complex data structure i.e. XML Schema
file.

© 2014 Altova GmbH

Defining User-defined functions 295Libraries and Functions

Altova MapForce 2015

4. Click "Insert new structure... " radio button, select the XML Schema Structure entry,
and click OK to continue.

5. Select the CompletePO.xsd from the "Open" dialog box.
6. Click the element that you would like to become the root element in the component, e.g.

Article, and click OK, then OK again to close the dialog boxes.

The CompletePO component is inserted into the user-defined function. Please note the
output icon to the left of the component name. This shows that the component is used
as a complex output component.

296 Libraries and Functions Defining User-defined functions

© 2014 Altova GmbHAltova MapForce 2015

7. Insert the Articles schema/XML file into the user-defined function and assign the
Articles.xml as the XML instance.

8. Insert the rest of the components as shown in the screenshot below, namely: the
"simple" input components (POArtNr), filter, equal and multiply components, and connect
them as shown.

Please note:
The Articles component receives its data from the Articles.xml instance file, within the
user-defined function.
The input components supply the POArtNr (article number) and Amount data to which the
Articles | Number & Price are compared.
The filter component filters the records where both numbers are identical, and passes
them on to the CompletePO output component.

9. Click the Home icon to return to the mapping.
10. Drag the newly created user-defined component from the Libraries pane into the mapping.

Java Selected

11. Create the connections as shown in the screenshot below.
Having created the Article (CompletePO) connector to the target, right click it and select
"Copy-all" from the context menu. The rest of the connectors are automatically

© 2014 Altova GmbH

Defining User-defined functions 297Libraries and Functions

Altova MapForce 2015

generated, and are highlighted in the screenshot below.

Please note:
When creating Copy-all connections between a schema and a user-defined function of type
"Inline", the two components must be based on the same schema! It is not necessary that they
both have the same root elements however.

The left half contains the input parameter to which a single item is mapped:
ShortPO supplies the article number to the POArtNr input component.

The right half contains:
a complex output component called "Article (CompletePO)" with its XML child nodes,
which maps the filtered items, of the same Article number, to CompletePO.

298 Libraries and Functions Defining User-defined functions

© 2014 Altova GmbHAltova MapForce 2015

14.1.6 User-defined function - example

The PersonListByBranchOffice.mfd file available in the ...\MapForceExamples folder,
describes the following features in greater detail:

Nested User-defined functions e.g. LookupPerson
Look-up functions that generate a string output e.g. LookupPerson
Optional input-parameters which can also supply a default value e.g. the EqualAnd
component (contained in the LookupPerson component)
Configurable input parameters, which can also double as a command line parameter(s)
when executing the generated mapping code!

© 2014 Altova GmbH

Defining User-defined functions 299Libraries and Functions

Altova MapForce 2015

Configurable input parameters
The input component (OfficeName) receives data supplied when a mapping is executed. This is
possible in two ways:

as a command line parameter when executing the generated code, e.g. Mapping.exe /
OfficeName "Nanonull Partners, Inc."
as a preview value when using the Built-in execution engine to preview the data in the
Output window.

To define the Input value:
1. Double click the input component and enter a different value in the "Value" text box of the

Preview Mode group e.g. "Nanonull Partners, Inc.", and click OK to confirm.
2. Click the Output tab to see the effect.

A different set of persons are now displayed.

Please note that the data entered in this dialog box is only used in "preview" mode i.e.
when clicking the Output tab. If a value is not entered, or the check box is deactivated,
then the data mapped to the input icon "default" is used.

Please see Input values, overrides and command line parameters for more information.

300 Libraries and Functions Defining User-defined functions

© 2014 Altova GmbHAltova MapForce 2015

LookupPerson component

Double clicking this user-defined component displays its constituent components shown below.
What this component does is:

Compares the Office, First, and Last names of BranchOffices.xml, with the same fields
of the Altova_Hierarchical.xml file, using the input components and the EqualAnd user-
defined components.

Combines the Email, PhoneExt and Title items using the Person2Details user-defined
function

Passes on the combined person data to the output component if the previous EqualAnd
comparisons are all true (i.e. supplied "true" to the filter component).

A user-defined function always outputs a value, which may even be an empty string! This would be
the case if the filter component bool value is false. Only an empty string would be output instead
of data supplied by the Person2Details component.

The three input components, Office_Name, First_Name, Last_Name, receive their data
from the BranchOffices.xml file.
The EqualAnd component compares two values and provides an optional comparison
value, as well as a default value.
Person2Details combines three person fields and passes on the result to the filter
component.

© 2014 Altova GmbH

Defining User-defined functions 301Libraries and Functions

Altova MapForce 2015

EqualAnd component

Double clicking this user-defined component displays its constituent components shown below.
What this component does is:

Compare two input parameters a and b, and pass the result on to the logical-and
component. Note that the b parameter has been defined as the priority context (right
click the icon to do so). This ensures that the person data of the specific office, supplied
by the input parameter a, is processed first.
Logical-and the result of the first comparison, with an optional input parameter, "and".
Pass on the boolean value of this comparison to the output parameter.

Optional parameters
Double clicking the "and" parameter, of the EqualAnd user-defined function shown above, allows
you to make parameters optional, by unchecking the "Input is required" check box.

If "Input is required" is unchecked, then:

A mapping connector is not required for the input icon of this user-defined function, e.g.
the and parameter of the first EqualAnd function, does not have an input connector. The
input icon has a dashed outline to show this visually.
A default value can be supplied by connecting a component, within the user-defined
function e.g. using a constant component containing the value "true".

A mapping from another item, mapped to the optional Input, takes precedence over the
default value. E.g. the "and" parameter of second EqualAnd function, receives input data
from the "result" parameter of the first EqualAnd user-defined function.

302 Libraries and Functions Defining User-defined functions

© 2014 Altova GmbHAltova MapForce 2015

© 2014 Altova GmbH

Defining User-defined functions 303Libraries and Functions

Altova MapForce 2015

Person2Details component

Double clicking this user-defined component displays its constituent components shown below.
What this component does is:

Concatenate three inputs and pass on the result string to the output parameter.
Double clicking an output parameter allows you to change the parameter name (Details),
and select the datatype (String).

304 Libraries and Functions Adding custom XSLT and XQuery functions

© 2014 Altova GmbHAltova MapForce 2015

14.2 Adding custom XSLT and XQuery functions

MapForce allows you to extend the installed XSLT function libraries with your own custom
functions. This option is made available when you select XSLT as transformation language.

XSLT files appear as libraries, and display all named templates as functions below the library
name.

Functions must be declared as Named Templates conforming to the XSLT specification in
the XSLT file.
If the imported XSLT file imports or includes other XSLT files, then these XSLT files and
functions will be imported as well.
Each named template appears as a function below each library name.
The amount of mappable input icons depends on the number of parameters used in the
template call; optional parameters are also supported.
Updates to imported XSLT files occur at program start or whenever the files change.
Namespaces are supported

Note: When writing named templates, make sure that the XPath statements used in the
template are bound to the correct namespace(s). To see the namespace bindings of the
mapping, preview the generated XSLT code.

See also:

XSLT 1.0 engine implementation
XSLT 2.0 engine implementation

© 2014 Altova GmbH

Adding custom XSLT and XQuery functions 305Libraries and Functions

Altova MapForce 2015

14.2.1 Adding custom XSLT 1.0 functions

The files needed for the simple example shown below, are available in the ...
\MapForceExamples directory.

Name-splitter.xslt
Name-splitter.xml (the XML instance file for Customers.xsd)
Customers.xsd
CompletePO.xsd

For an additional example of using named templates to sum nodes, see Aggregate functions.

To add a custom XSLT function:
1. Create an XSLT file that achieves the transformation/result you want.

The example below, Name-splitter.xslt, shows a named template called "tokenize" with
a single parameter "string". What the template does, is work through an input string and
separate capitalized characters with a space for each occurrence.

2. Click the Add/Remove Libraries button, and then click the Add button in the following
dialog box.

306 Libraries and Functions Adding custom XSLT and XQuery functions

© 2014 Altova GmbHAltova MapForce 2015

XSLT Selected

3. Select the XSL, or XSLT file, that contains the named template you want to act as a
function, in this case Name-splitter.xslt. The XSLT file appears in the Libraries tab.

4. Click OK to insert the new function.

© 2014 Altova GmbH

Adding custom XSLT and XQuery functions 307Libraries and Functions

Altova MapForce 2015

XSLT Selected

The XSLT file name appears in the library window, along with the function(s) defined as
named templates, below it. In this example Name-splitter with the tokenize function.

5. Drag the function into the Mapping window, to use it in you current mapping, and map the
necessary items, as show in the screenshot below.

XSLT Selected

6. Click the XSLT tab to see the generated XSLT code.

308 Libraries and Functions Adding custom XSLT and XQuery functions

© 2014 Altova GmbHAltova MapForce 2015

Please note:
As soon as a named template is used in a mapping, the XSLT file containing the named
template is included in the generated XSLT code (xsl:include href...), and is called
using the command xsl:call-template.

7. Click the Output tab to see the result of the mapping.

To delete custom XSLT functions:
1. Click the Add/Remove Libraries button.
2. Click to the specific XSLT library name in the Libraries tab
3. Click the Delete button, then click OK to confirm.

© 2014 Altova GmbH

Adding custom XSLT and XQuery functions 309Libraries and Functions

Altova MapForce 2015

14.2.2 Adding custom XSLT 2.0 functions

MapForce also allows you to import XSLT 2.0 functions that occur in an XSLT 2.0 document in the
form:

<xsl:function name="MyFunction">

For an additional example of using named templates to sum nodes, see Aggregate functions.

Datatypes in XPath 2.0
If your XML document references an XML Schema and is valid according to it, you must explicitly
construct or cast datatypes that are not implicitly converted to the required datatype by an
operation.

In the XPath 2.0 Data Model used by the Altova XSLT 2.0 Engine, all atomized node values from
the XML document are assigned the xs:untypedAtomic datatype. The xs:untypedAtomic

type works well with implicit type conversions.

For example,

the expression xs:untypedAtomic("1") + 1 results in a value of 2 because the

xdt:untypedAtomic value is implicitly promoted to xs:double by the addition

operator.
Arithmetic operators implicitly promote operands to xs:double.

Value comparison operators promote operands to xs:string before comparing.

See also:

XSLT 2.0 engine implementation

310 Libraries and Functions Adding custom XSLT and XQuery functions

© 2014 Altova GmbHAltova MapForce 2015

14.2.3 Aggregate functions - summing nodes in XSLT1 and 2

This section describes the method you can use to process multiple nodes of an XML instance
document and have the result mapped as a single value to a target item. The files used in this
example are available in the ...\MapForceExamples\Tutorial\ folder and consists of:

Summing-nodes.mfd mapping file
input.xml input XML file
input.xsd and output.xsd source and target schema files
Summing-nodes.xslt xslt file containing a named template to sum the

individual nodes

There are two separate methods of creating and using aggregate functions:

Using the aggregate functions available in the core library of the Library pane
Using a Named Template.

Aggregate functions - library
Depending on the XSLT library you select, XSLT 1 or XSLT 2, different aggregate functions are
available in the core library. XSLT 1 supports count and sum, while XSLT 2 supports avg, count,
max, min, string-join and sum.

Drag the aggregate function that you use from the library into the mapping area and connect the
source and target components as shown in the screenshot below.

For more information on this type of aggregate function, please also see Aggregate functions.

Aggregate function - Named template
The screenshot below shows the XML input file. The aim of the example is to sum the Price
fields of any number of products, in this case products A and B.

© 2014 Altova GmbH

Adding custom XSLT and XQuery functions 311Libraries and Functions

Altova MapForce 2015

The screenshot below shows the XSLT stylesheet which uses the named template "Total" and a
single parameter "string". What the template does, is work through the XML input file and sum all
the values obtained by the XPath expression /Product/Price, in the document.

1. Click the Add/Remove Libraries button, and select the Libraries tab of the Options
dialog box.

2. Click the Add button and select the Summing-nodes.xslt file from the ...
\MapForceExamples\Tutorial\ folder.

3. Drag in the Total function from the newly created Summing-nodes library and create the
mappings as shown below.

4. Click the Output tab to preview the mapping result.

312 Libraries and Functions Adding custom XSLT and XQuery functions

© 2014 Altova GmbHAltova MapForce 2015

The two Price fields of both products have been added and placed into the Total field.

To sum the nodes in XSLT 2.0:
Change the stylesheet declaration in the template to ... version="2.0".

© 2014 Altova GmbH

Functions Reference 313Libraries and Functions

Altova MapForce 2015

14.3 Functions Reference

This reference section describes all the functions that are available in the Libraries pane for each
of the supported languages: XSLT1, XSLT2.

The following libraries are currently available:
core
xpath2
xslt

Extendable functions
Several functions available in the function libraries are extendable: e.g. the concat, "logical-and",
"logical-or", and IF-ELSE functions. The parameters of these types of function can be inserted/
appended and deleted at will.

Clicking the "plus" icon inserts or appends the same type of parameter, while clicking the check
mark deletes the parameter.

Please note: "dropping" a connector on the "plus" symbol, automatically inserts/appends the
parameter and connects it.

The IF test parameters, of the IF-Else function can be extended in the same way.

Placing the mouse cursor over the function title bar, pops up a tooltip describing the function.

Placing it over a parameter (any input or result parameter) displays the datatype of the argument
in a tooltip.

314 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

14.3.1 core

The core library supplies the most useful functions for all languages. The sequence functions are
not available if XSLT (XSLT 1.0) has been selected.

Core library
aggregates
conversion functions
file path functions
generator functions
logical functions
math functions
node functions
sequence functions
string functions

aggregates

Aggregate functions perform operations on a set, or sequence, of input values. The input data for
min, max, sum and avg is converted to the decimal datatype for processing.

The input values must be connected to the values parameter of the function.
A context node (item) can be connected to the parent-context parameter to override the
default context from which the input sequence is taken. This also means that the parent-
context parameter is optional!
The result of the function is connected to the specific target item.

The mapping shown below is available as Aggregates.mfd in the ...\Tutorial folder and shows
how these functions are used.

Aggregate functions have two input items.
values (nodes/rows) is connected to the source item that provides the data, in this case
Number.
parent-context is connected to the item you want to iterate over, i.e. the context, in this
case over all Customers. The parameter is, howerver, optional.

© 2014 Altova GmbH

Functions Reference 315Libraries and Functions

Altova MapForce 2015

The input instance in this case is an XML file containing the following data:

The source data supplied to the values item is the number sequence 2,4,6,8.
The output component in this case is a simple text file.
Clicking the Output tab for the above mapping delivers the following result:

min=2, max=8, count=4, sum=20 and avg=5.

 avg
Returns the average value of all values within the input sequence. The average of an empty set is
an empty set. Not available in XSLT1.

316 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

count
Returns the number of individual items making up the input sequence. The count of an empty set
is zero. Limited functionality in XSLT1.

max
Returns the maximum value of all values in the input sequence. The maximum of an empty set is
an empty set. Not available in XSLT1.

min
Returns the minumum value of all values in the input sequence. The minimum of an empty set is
an empty set. Not available in XSLT1.

string-join
Concatenates all the values of the input sequence into one string delimited by whatever string you
choose to use as the delimiter. The string-join of an empty set is the empty string. Not available in
XSLT1.

The example below contains four separate customer numbers 2 4 6 and 8. The constant character
supplies a hash character "#" as the delimiter.

Result = 2#4#6#8

If you do not supply a delimiter, then the default is an empty string, i.e. no delimiter of any sort.
Result = 2468.

© 2014 Altova GmbH

Functions Reference 317Libraries and Functions

Altova MapForce 2015

sum
Returns the arithmetic sum of all values in the input sequence. The sum of an empty set is zero.
Not available in XSLT1.

conversion functions

To support explicit data type conversion, several type conversion functions are available in the
conversion function library. Note that, in most cases, MapForce creates necessary conversions
automatically and these functions need to be used only in special cases.

boolean
Converts an input numeric value into a boolean (as well as a string to numeric - true to 1). E.g. 0
to "false", or 1 to "true", for further use with logical functions (equal, greater etc.) filters, or if-else
functions.

 format-date
Converts an xs:date input value into a string and formats it according to specified options.

Argument Description

value The date to be formatted.

format A format string identifying the way in which the date is to be formatted. This
argument is used in the same way as the format argument in format-

dateTime function.

language Optional argument. When supplied, the name of the month and the day of the
week are returned in a specific language. Valid values:

en (default) English

es Spanish

de German

ja Japanese

In the following example, the output result is: "21 August 2014, Thursday". To translate this value
to Spanish, set the value of the language argument to es.

318 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

 format-dateTime
Converts a dateTime into a string.

Argument Description

value The dateTime to be formatted

format A format string identifying the way in which the dateTime is to be formatted

language Optional argument. When supplied, the name of the month and the day of the
week are returned in a specific language. Valid values:

en (default) English

es Spanish

de German

ja Japanese

Note:
If the function’s output (i.e. result) is connected to a node of type other than string, the formatting
may be lost as the value is cast to the target type. This automatic cast can be disabled by
unchecking the "Cast target values to target types" check box in the component settings of the
target component.

Format String
The format argument consists of a string containing so-called variable markers enclosed in square
brackets. Characters outside the square brackets are literal characters to be copied into the
result. If square brackets are needed as literal characters in the result, then they should be
doubled.

Each variable marker consists of a component specifier identifying which component of the date
or time is to be displayed, an optional formatting modifier, another optional presentation modifier
and an optional width modifier, preceded by a comma if it is present.

format := (literal | argument)*
argument := [component(format)?(presentation)?(width)?]
width := , min-width ("-" max-width)?

© 2014 Altova GmbH

Functions Reference 319Libraries and Functions

Altova MapForce 2015

The components are:

Specifier Description Default Presentation

Y year (absolute value) four digits (2010)

M month of the year 1-12

D day of month 1-31

d day of year 1-366

F day of week name of the day (language
dependent)

W week of the year 1-53

w week of month 1-5

H hour (24 hours) 0-23

h hour (12 hour) 1-12

P A.M. or P.M. alphabetic (language dependent)

m minutes in hour 00-59

s seconds in minute 00-59

f fractional seconds numeric, one decimal place

Z timezone as a time offset from
UTC

+08:00 or PST with alphabetic
modifier

z timezone as a time offset using
GMT

GMT+n

The formatting modifier:

Character Description Example

1 decimal numeric format with no leading zeros: 1, 2,
3, ...

1, 2, 3

01 decimal format, two digits: 01, 02, 03, ... 01, 02, 03

N name of component, upper case MONDAY, TUESDAY
1)

n name of component, lower case monday, tuesday 1)

Nn name of component, title case Monday, Tuesday 1)

Note: N, n, and Nn modifiers only support the following components: M, d, D.

The width modifier, if present, is introduced by a comma. It takes the form:

320 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

, min-width ("-" max-width)?

Supported examples

DateTime format String Result

2003-11-
03T00:00:00

[D]/[M]/[Y] 3/11/2003

2003-11-
03T00:00:00

[Y]-[M,2]-[D,2] 2003-11-03

2003-11-
03T00:00:00

[Y]-[M,2]-[D,2] 2003-11-03

2003-11-
03T00:00:00

[Y]-[M,2]-[D,2] [H,2]:[m]:[s] 2003-11-03 00:00:00

2010-06-
02T08:02

[Y] [MNn] [D01] [F,3-3] [d] [H]:
[m]:[s].[f]

2010 June 02 Wed 153
8:02:12.054

2010-06-
02T08:02

[Y] [MNn] [D01] [F,3-3] [d] [H]:
[m]:[s].[f] [z]

2010 June 02 Wed 153
8:02:12.054 GMT+02:00

2010-06-
02T08:02

[Y] [MNn] [D1] [F] [H]:[m]:[s].[f]
[Z]

2010 June 2 Wednesday
8:02:12.054 +02:00

2010-06-
02T08:02

[Y] [MNn] [D] [F,3-3] [H01]:[m]:
[s] 2010 June 2 Wed 08:02:12

 format-number

Available for XSLT 1.0, XSLT 2.0, Java, C#, C++ and Built-in execution engine.

Argument Description

value The number to be formatted

format A format string that identifies the way in which the
number is to be formatted

decimal-point-format The character to be used as the decimal point character.
Default is the '.' character (optional)

grouping-separator The separator/delimiter used to separate groups of
numbers. Default is the "," character (optional)

Note:
If the function’s output (i.e. result) is connected to a node of type other than string, the formatting
may be lost as the value is cast to the target type. This automatic cast can be disabled by

© 2014 Altova GmbH

Functions Reference 321Libraries and Functions

Altova MapForce 2015

unchecking the "Cast target values to target types" check box in the component settings of the
target component.

format
A format string identifies the way in which the number is to be formatted.

Format:

format := subformat (;subformat)?
 subformat := (prefix)? integer (.fraction)? (suffix)?
 prefix := any characters except special characters
 suffix := any characters except special characters
 integer := (#)* (0)* (allowing ',' to appear)
 fraction := (0)* (#)* (allowing ',' to appear)

The first subformat is used for formatting positive numbers, and the second subformat for negative
numbers. If only one subformat is specified, then the same subformat will be used for negative
numbers, but with a minus sign added before the prefix.

Special Character default Description

zero-digit 0 A digit will always appear at this point in
the result

digit # A digit will appear at this point in the
result string unless it is a redundant
leading or trailing zero

decimal-point . Separates the integer and the fraction
part of the number.

grouping-seperator , Seperates groups of digits.

percent-sign % Multiplies the number by 100 and shows
it as a percentage

per-mille ‰ Multiplies the number by 1000 and shows
it as per-mille

The characters used for decimal-point-character and grouping-separator are always "." and ","
respectively. They can however, be changed in the formatted output, by mapping constants to
these nodes.

The result of the format number function shown above.
The decimal-point character was changed to a "+".
The grouping separator was changed to a "-"

322 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

Rounding
The rounding method used for this function is half up, e.g. rounds up if the fraction is > or equal to
0.5. Rounds down if fraction is <0.5. This method of rounding only applies to generated code and
for the built-in execution engine.

In XSLT 1.0 the rounding mode is undefined.

In XSLT 2.0 the rounding mode is round-half-to-even.

Number format String Result

1234.5 #,##0.00 1,234.50

123.456 #,##0.00 123.46

1000000 #,##0.00 1,000,000.00

-59 #,##0.00 -59.00

1234 ###0.0### 1234.0

1234.5 ###0.0### 1234.5

.00025 ###0.0### 0.0003

.00035 ###0.0### 0.0004

0.25 #00% 25%

0.736 #00% 74%

1 #00% 100%

-42 #00% -4200%

-3.12 #.00;(#.00) (3.12)

-3.12 #.00;#.00CR 3.12CR

 format-time
Converts an xs:time input value into a string.

E.g

© 2014 Altova GmbH

Functions Reference 323Libraries and Functions

Altova MapForce 2015

Result: 33-15-12

number
Converts an input string into a number. Also converts a boolean input to a number.

string
Converts an input value into a string. The function can also be used to retrieve the text content of
a node.

If the input node is a XML complex type, then all descendents are also output as a single string.

Comparing differing input node types
If the input nodes are of differing types, e. g. integer and string, you can use the conversion
functions to force a string or numeric comparison.

In the example above the first constant is of type string and contains the string "4".
The second constant contains the numeric constant 12. To be able to compare the two values
explicitly the types must agree.

Adding a number function to the first constant converts the string constant to the numeric value
of 4. The result of the comparisons is then "true".

Note that if the number function were not be used, i.e 4 would be connected directly to the a
parameter, a string compare would occur, with the result being false.

file path functions

The file path functions allow you to directly access and manipulate file path data, i.e. folders, file
names, and extensions for further processing in your mappings. They can be used in all
languages supported by MapForce.

324 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

 get-fileext
Returns the extension of the file path including the dot "." character.
E.g. 'c:\data\Sample.mfd' returns '.mfd'

 get-folder
Returns the folder name of the file path including the trailing slash, or backslash character.
E.g. 'c:/data/Sample.mfd' returns 'c:/data/'

 main-mfd-filepath
Returns the full path of the mfd file containing the main mapping. An empty string is returned if the
mfd is currently unsaved.

 mfd-filepath
If the function is called in the main mapping, it returns the same as main-mfd-filepath function, i.e.
the full path of the mfd file containing the main mapping. An empty string is returned if the mfd is
currently unsaved.

If called within an user-defined function which is imported by a mfd-file, it returns the full path
of the imported mfd file which contains the definition of the user-defined function.

 remove-fileext
Removes the extension of the file path including the dot-character.
E.g. 'c:/data/Sample.mfd' returns 'c:/data/Sample'.

 remove-folder
Removes the directory of the file path including the trailing slash, or backslash character.
E.g. 'c:/data/Sample.mfd' returns 'Sample.mfd'.

 replace-fileext
Replaces the extension of the file path supplied by the filepath parameter, with the one supplied
by the connection to the extension parameter.

E.g. c:/data/Sample.mfd' as the input filepath, and '.mfp' as the extension, returns 'c:/data/
Sample.mfp'

© 2014 Altova GmbH

Functions Reference 325Libraries and Functions

Altova MapForce 2015

 resolve-filepath
Resolves a relative file path to a relative, or absolute, base folder. The function supports '.' (current
directory) and '..' (parent directory).

Please see the mapping MergeMultipleFiles_List.mfd available in the ...\MapForceExamples
folder, for an example.

generator functions

The auto-number function generates integers in target nodes of a component, depending on the
various parameters you define.

Make sure that the result connector (of the auto-number function) is directly connnected to a
target node. The exact order in which functions are called by the generated mapping code is
undefined. MapForce may choose to cache calculated results for reuse, or evaluate expressions
in any order. It is therefore strongly recommended to take care when using the auto-number
function.

326 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

 auto-number
Result is a value starting at start_with and increased by increment. Default values are: start-
with=1 and increase=1. Both parameters can be negative.

global-id
This parameter allows you to synchronize the number sequence output of two separate auto-
number functions connected to a single target component.

If the two auto-number functions do not have the same global-id, then each increments the target
items separately. In the example below, each function has a different global-id i.e. a and b.

The output of the mapping is 1,1,2,2. The top function supplies the first 1 and the lower one the
second 1.

If both functions have identical global-ids, a in this case, then each function "knows" about the
current auto-number state (or actual value) of the other, and both numbers are then synchronised/
in sequence.

The output of the mapping is therefore 1, 2, 3, 4.The top function supplies the first 1 and the lower
one now supplies a 2.

© 2014 Altova GmbH

Functions Reference 327Libraries and Functions

Altova MapForce 2015

start-with
The inital value used to start the auto numbering sequence. Default is 1.

increment
The increment you want auto-number sequence to increase by. Default is 1.

restart on change
Resets the auto-number counter to "start-with", when the content of the connected item
changes.

In the example below, start-with and increment are both using the default 1. As soon as the
content of Department changes, i.e. the department name changes, the counter is reset and
starts at 1 for each new department.

logical functions

Logical functions are (generally) used to compare input data with the result being a boolean "true"
or " false". They are generally used to test data before passing on a subset to the target
component using a filter.

When comparing input parameters, MapForce selects the most specific common type for each
parameter and then compares them. If the common type is anySimpleType, then both input
parameters are compared as strings.

input parameters = a | b, or value1 | value2
output parameter = result

328 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

equal
Result is true if a=b, else false.

equal-or-greater
Result is true if a is equal/greater than b, else false.

equal-or-less
Result is true if a is equal/less than b, else false.

greater
Result is true if a is greater than b, else false.

less
Result is true if a is less than b, else false.

logical-and
If both value1 and value2 of the logical-and function are true, then result is true; if different then
false.

© 2014 Altova GmbH

Functions Reference 329Libraries and Functions

Altova MapForce 2015

logical-not
Inverts or flips the logical state/result; if input is true, result of logical-not function is false. If input
is false then result is true.

The logical-not function shown below, inverts the result of the equal function. The logical-and
function now only returns true if boolean values of value1 and value2 are different, i.e. true-false, or
false-true.

logical-or
Requires both input values to be boolean. If either value1 or value2 of the logical-or function are
true, then the result is true. If both values are false, then result is false.

not equal
Result is true if a is not equal to b.

math functions

Math functions are used to perform basic mathematical functions on data. Note that they cannot
be used to perform computations on durations, or datetimes.

input parameters = value1 | value2
output parameter = result

input values are automatically converted to decimal for further processing.

330 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

The example shown above, adds 20% sales tax to each of the articles mapped to the target
component.

add
Result is the decimal value of adding value1 to value2.

ceiling
Result is the smallest integer that is greater than or equal to value, i.e. the next highest integer
value of the decimal input value.

E.g. if the result of a division function is 11.2, then applying the ceiling function to it makes the
result 12, i.e. the next highest whole number.

divide
Result is the decimal value of dividing value1 by value2. The result precision depends on the
target language. Use the round-precision function to define the precision of result.

floor
Result is the largest integer that is less than or equal to value, i.e. the next lowest integer value
of the decimal input value.

E.g. if the result of a division function is 11.2, then applying the floor function to it makes the
result 11, i.e. the next lowest whole number.

modulus
Result is the remainder of dividing value1 by value2.

© 2014 Altova GmbH

Functions Reference 331Libraries and Functions

Altova MapForce 2015

In the mapping below, the numbers have been multiplied by 3 and passed on to value1 of the
modulus function. Input values are now 3, 6, 9, and 12.

When applying/using modulus 8 as value2, the remainders are 3, 6, 1, and 4.

multiply
Result is the decimal value of multiplying value1 by value2.

round
Returns the value rounded to the nearest integer. When the value is exactly in between two
integers, the "Round Half Towards Positive Infinity" algorithm is used. For example, the value
"10.5" gets rounded to "11", and the value "-10.5" gets rounded to "-10".

round-precision
Result is the decimal value of the number rounded to the decimal places defined by "decimals".

In the mapping above, the result is 0.429. For the result to appear correctly in an XML file, make
sure to map it to an element of xs:decimal type.

332 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

subtract
Result is the decimal value of subtracting value2 from value1.

node functions

The node testing functions allow you to test for the existence/non-existence of nodes in many
types of input files, XML schema, text, database, EDI and even function results. Exists actually
checks for a non-empty sequence i.e. if any node exists.

exists
Returns true if the node exists, else returns false.

Please see exists for an example.

 is-xsi-nil
Returns true (<OrderID>true</OrderID>) if the element node, of the source componenent, has the
xsi:nil attribute set to "true".

 node-name
Returns the QName of the connected node unless it is an XML text() node; if this is the case, an
empty QName is returned. This function only works on those nodes that have a name. If XSLT is
the target language (which calls fn:node-name), it returns an empty sequence for nodes which
have no names.

Getting a name from database tables/fields is not supported.
XBRL and Excel are not supported.
Getting a name of File input node is not supported.

WebService nodes behave like XML nodes except that:
node-name from "part" is not supported.
node-name from root node ("Output" or "Input") is not supported.

© 2014 Altova GmbH

Functions Reference 333Libraries and Functions

Altova MapForce 2015

The MapPerson user-defined function uses node-name to return the name of the input node, and
place it in the role attribute. The root node of the Employees.xsd, in the user-defined function, has
been defined as "Manager".

Manager gets its data from outside the user-defined function, where it can be either: Manager,
Programmer, or Support. This is the data that is then passed on to the role attribute in
PersonList.

 static-node-name
Returns the string with the name of the connected node. The input must be: (i) a source
component node, or (ii) an inline function that is directly connected to a parameter, which in turn
is directly connected to a node in the calling mapping.

The connection must be direct. It cannot pass through a filter or a non-inlined user-defined
function. This is a pseudo-function, which is replaced at generation time with the text acquired
from the connected node, and is therefore available for all languages.

 static-node-annotation
Returns the string with annotation of the connected node. The input must be: (i) a source

334 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

component node, or (ii) an inline function that is directly connected to a parameter, which in turn
is directly connected to a node in the calling mapping.

The connection must be direct. It cannot pass through a filter or a non-inlined user-defined
function. This is a pseudo-function, which is replaced at generation time with the text acquired
from the connected node, and is therefore available for all languages.

not-exists
Returns false if the node exists, else returns true.

Please see not-exists for an example.

position
Returns the position of a node inside its containing sequence.

Please see position for an example.

 set-xsi-nil
Sets the target node to xsi:nil.

subsitute-missing
This function is a convenient combination of exists and a suitable if-else condition. Used to map
the current field content if the node exists in the XML source file, otherwise use the item mapped
to the "replace-with" parameter.

Please see substitute-missing for an example.

 substitute-missing-with-xsi-nil
For nodes with simple content, this function substitutes any missing (or null values) of the source
component, with the xsi:nil attribute in the target node.

sequence functions

Sequence functions are not available if XSLT (XSLT 1.0) has been selected.

MapForce supports sequence functions which allow the processing of input sequences and the
grouping of their content. The value/content of the key input parameter, mapped to nodes/rows, is
used to group the sequence.

Input parameter key is of an arbitrary data type that can be converted to string for group-

© 2014 Altova GmbH

Functions Reference 335Libraries and Functions

Altova MapForce 2015

adjacent and group-by
Input parameter bool is of type Boolean for group-starting-with and group-ending-with
The output key is the key of the current group.

distinct-values
Allows you to remove duplicate values from a sequence and map the unique items to the target
component.

Please see distinct-values for an example.

exists
Returns true if the node exists, else returns false.

Please see exists for an example.

first-items
Returns the first "X" items of the input sequence, where X is the number supplied by the "count"
parameter. E.g. if the value 3 is mapped to the count parameter and a parent node to the nodes/
row parameter, then the first three items will be listed in the output.

generate-sequence
Creates a sequence of integers using the "from" and "to" parameters as the boundaries.

group-adjacent
Groups the input sequence nodes/rows into groups of adjacent items sharing the same key.

Note that group-adjacent uses the content of the node/item as the grouping key!

Please see group-adjacent for an example.

group-by
Groups the input sequence nodes/rows into groups of not necessarily adjacent items sharing the
same key. Groups are output in the order the key occurs in the input sequence.

336 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

Please see group-by for an example.

group-ending-with
This function groups the input sequence nodes/rows into groups, ending a new group whenever
bool is true.

Please see group-ending-with for an example.

group-into-blocks
Groups the input sequence nodes/rows into blocks of the same size defined by the number
supplied by the block-size parameter.

group-starting-with
This function groups the input sequence nodes/rows into groups, starting a new group when bool
is true. The following example illustrates a sequence of nodes where bool returns true whenever
the node "header" is encountered. Applying the group-starting-with function on this sequence

of nodes results in two groups, as shown below.

Note that the first node in the sequence starts a new group regardless of the value of bool. In
other words, a sequence such as the one below would create three groups.

© 2014 Altova GmbH

Functions Reference 337Libraries and Functions

Altova MapForce 2015

For another example, see group-starting-with.

ignore-first-items
Ignores the first "X" items of the input sequence, where X is the number supplied by the "count"
parameter. E.g. if the value 3 is mapped to the count parameter and a parent node to the nodes/
row parameter, then the first three items will be ignored in the output.

item-at
Returns the nodes/rows at the position supplied by the position parameter. The first item is at
position "1".

items-from-till
Returns a sequence of nodes/rows using the "from" and "till" parameters as the boundaries. The
first item is at position "1".

last-items
Returns the last "X" nodes/rows of the sequence where X is the number supplied by the "count"
parameter. The first item is at position "1".

not-exists

338 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

Returns false if the node exists, else returns true.

Please see not-exists for an example.

position
Returns the position of a node inside its containing sequence.

Please see position for an example.

replicate-item
Repeats every item in the input sequence the number of times specified in the "count" parameter.
Note that the "count" parameter is evaluated for each item.

replicate-sequence
Replicates/copies "X" items/nodes of the input sequence to the ouput sequence, where X is the
number supplied by the "count" parameter.

set-empty
Returns an empty sequence.

subsitute-missing
This function is a convenient combination of exists and a suitable if-else condition. Used to map
the current field content if the node exists in the XML source file, otherwise use the item mapped
to the "replace-with" parameter.

Please see substitute-missing for an example.

 skip-first-items
Skips the first "X" items/nodes of the input sequence, where X is the number supplied by the
"count" parameter, and returns the rest of the sequence.

© 2014 Altova GmbH

Functions Reference 339Libraries and Functions

Altova MapForce 2015

string functions

The string functions allow you to use the most common string functions to manipulate many
types of source data to: extract portions, test for substrings, or retrieve information on strings.

 char-from-code
Result is the character representation of the decimal Unicode value of value.

 code-from-char
Result is the decimal Unicode value of the first character of value.

concat
Concatenates (appends) two or more values into a single result string. All input values are auto
matically converted to type string.

contains
Result is true if data supplied to the value parameter contains the string supplied by the substring
parameter.

normalize-space
Result is the normalized input string, i.e. leading and trailing spaces are removed, then each
sequence of multiple consecutive whitespace characters are replaced by a single whitespace
character. The Unicode character for "space" is (U+0020).

340 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

starts-with
Result is true if the input string "string" starts with substr, else false.

string-length
Result is the number of characters supplied by the string parameter.

substring
Result is the substring (string fragment) of the "string" parameter where "start" defines the
position of the start character, and "length" the length of the substring.

If the length parameter is not specified, the result is a fragment starting at the start position and
ending at the end position of the string. Indices start counting at 1.

E.g. substring("56789",2,3) results in 678.

substring-after
Result is the remainder of the "string" parameter, where the first occurrence of the substr
parameter defines the start characters; the remainder of the string is the result of the function. An
empty string is the result, if substr does not occur in string.

E.g. substring-after("2009/01/04","/") results in the substring 01/04. substr in this case is the first
"/"character.

substring-before
Result is the string fragment of the "string" parameter, up to the first occurrence of the substr
characters. An empty string is the result, if substr does not occur in string.

E.g. substring-before ("2009/01/04","/") results in the substring 2009. substr in this case is the
first "/" character.

tokenize
Result is the input string split into a sequence of chunks/sections defined by the delimiter

© 2014 Altova GmbH

Functions Reference 341Libraries and Functions

Altova MapForce 2015

parameter. The result can then be passed on for further processing.

E.g. Input string is A,B,C and delimiter is "," - then result is A B C.

Please see Tokenize examples for a specific example supplied with MapForce.

tokenize-by-length
Result is the input string split into a sequence of chunks/sections defined by the length
parameter. The result can then be passed on for further processing.

E.g. Input string is ABCDEF and length is "2" - then result is AB CD EF.

Please see Tokenize examples for a specific example supplied with MapForce.

tokenize-regexp
Result is the input string split into a sequence of strings, where the supplied regular expression
pattern match defines the separator. The separator strings are not output by the result
parameter. Optional flags may also be used.

In the example shown above:
input string is a succession of characters separated by spaces and/or commas, i.e. a , b c,d

The regex pattern defines a character class ["space""comma"] - of which one and only one
character will be matched in a character class, i.e. either space or comma.

The + quantifier specifies "one or more" occurrences of the character class/string.

result string is:

Please note that there are slight differences in regular expression syntax between the various

342 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

languages. Tokenize-regexp in C++ is only available in Visual Studio 2008 SP1 and later.

For more information on regular expressions please see: Regular expressions.

translate
The characters of string1 (search string) are replaced by the characters at the same position in
string2 (replace string), in the input string "value".

When there are no corresponding characters in string2, the character is removed.

E.g.
input string is 123145

(search) string1 is 15
(replace) string2 is xy

So:
each 1 is replaced by x in the input string value
each 5 is replaced by y in the input sting value

Result string is x23x4y

If string2 is empty (fewer characters than string1) then the character is removed.

E.g.2
input string aabaacbca

string1 is "a"
string2 is "" (empty string)

result string is "bcbc"

E.g.3
input string aabaacbca

string1 is "ac"
string2 is "ca"

result string is "ccbccabac"

Tokenize examples

Example tokenize

The tokenizeString1.mfd file available in the ...\MapForceExamples folder shows how the
tokenize function is used.

© 2014 Altova GmbH

Functions Reference 343Libraries and Functions

Altova MapForce 2015

The XML source file is shown below. The Tool element has two attributes: Name and Code, with
the Tool element data consisting of comma delimited text.

What the mapping does:
The tokenize function receives data from the Tool element/item and uses the comma ","
delimiter to split that data into separate chunks. I.e. the first chunk "XML editor".
As the result parameter is mapped to the Rows item in the target component, one row is
generated for each chunk.
The result parameter is also mapped to the left-trim function which removes the leading
white space of each chunk.
The result of the left-trim parameter (each chunk) is mapped to the Feature item of the
target component.
The target component output file has been defined as a CSV file (AltovaToolFeatures.csv)
with the field delimiter being a semicolon (double click component to see settings).

Result of the mapping:
For each Tool element of the source file
The (Tool) Name is mapped to the Tool item in the target component
Each chunk of the tokenized Tool content is appended to the (Tool Name) Feature item
E.g. The first tool, XMLSpy, gets the first Feature chunk "XML editor"
This is repeated for all chunks of the current Tool and then for all Tools.
Clicking the Output tab delivers the result shown below.

344 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

© 2014 Altova GmbH

Functions Reference 345Libraries and Functions

Altova MapForce 2015

Example tokenize-by-length

The tokenizeString2.mfd file available in the ...\MapForceExamples folder shows how the
tokenize-by-length function is used.

The XML source file is shown below, and is the same as the one used in the previous example.
The MissionKit element also has two attributes: Edition and ToolCodes, but no MissionKit
element content.

Aim of the mapping:
To generate a list showing which Altova tools are part of the respective MissionKit editions.

How the mapping works:
The SelectMissionKit Input component receives its default input from a constant
component, in this case "Enterprise XML Developers".
The equal function compares the input value with the "Edition" value and passes on the

346 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

result to the bool parameter of the ToolCodes filter.
The node/row input of the ToolCodes filter is supplied by the ToolCodes item of the
source file. The value for the Enterprise XML Developers edition is: XSMFSVDDSASW.
The XSMFSVDDSASW value is passed to the on-true parameter, and futher to the input
parameter of the tokenize-by-length function.

What the tokenize-by-length function does:
The ToolCodes input value XSMFSVDDSASW, is split into multiple chunks of two
characters each, defined by length parameter, which is 2, thus giving 6 chunks.
Each chunk (placed in the b parameter) of the equal function, is compared to the 2
character Code value of the source file (of which there are 9 entries/items in total).
The result of the comparison (true/false) is passed on to the bool parameter of the filter.
Note that all chunks, of the tokenize-by-length function, are passed on to the node/row
parameter of the filter.

The exists functions now checks for existing/non-existing nodes passed on to it by the
on-true parameter of the filter component.

Existing nodes are those where there is a match between the ToolCodes chunk and the
Code value.

Non-existing nodes are where there was no ToolCodes chunk to match a Code value.

The bool results of the exists function are passed on to the if-else function which passes
on a Y to the target if the node exists, or a N, if the node does not exist.

Result of the mapping:

Regular expressions

MapForce can use regular expressions in the pattern parameter of the the and tokenize-
regexp functions, to find specific strings of the input parameter.

The regular expression syntax and semantics for XSLT and XQuery are identical to those defined
in http://www.w3.org/TR/xmlschema-2/. Please note that there are slight differences in regular
expression syntax between the various programming languages.

Terminology:

input the string that the regex works on
pattern the regular expression
flags optional parameter to define how the regular expression is to be

http://www.w3.org/TR/xmlschema-2/

© 2014 Altova GmbH

Functions Reference 347Libraries and Functions

Altova MapForce 2015

interpreted
result the result of the function

Tokenize-regexp returns a sequence of strings. The connection to the Rows item creates one row
per item in the sequence.

regex syntax

Literals e.g. a single character:
e.g. The letter "a" is the most basic regex. It matches the first occurrence of the character "a" in
the string.

Character classes []
This is a set of characters enclosed in square brackets.

One, and only one, of the characters in the square brackets are matched.

pattern [aeiou]
Matches a lowercase vowel.

pattern [mj]ust
Matches must or just

Please note that "pattern" is case sensitive, a lower case a does not match the uppercase A.

Character ranges [a-z]
Creates a range between the two characters. Only one of the characters will be matched at one
time.

pattern [a-z]
Matches any lowercase characters between a and z.

negated classes [^]
using the caret as the first character after the opening bracket, negates the character class.

pattern [^a-z]
Matches any character not in the character class, including newlines.

Meta characters "."
Dot meta character
matches any single character (except for newline)

pattern .

348 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

Matches any single character.

Quantifiers ? + * {}
Quantifiers define how often a regex component must repeat within the input string, for a match to
occur.

?
zero or one preceding string/chunk is optional

+
one or more preceding string/chunks may match one or more times

*
zero or more preceding string/chunks may match zero or more times

{}
min / max
repetitions

no. of repetitions a string/chunks has to match

e.g. mo{1,3} matches mo, moo, mooo.

()
subpatterns
parentheses are used to group parts of a regex together.

|
Alternation/or allows the testing of subexpressions form left to right.
(horse|make) sense - will match "horse sense" or "make sense"

flags
These are optional parameters that define how the regular expression is to be interpreted.
Individual letters are used to set the options, i.e. the character is present. Letters may be in any
order and can be repeated.

s
If present, the matching process will operate in the "dot-all" mode.

The meta character "." matches any character whatsoever. If the input string contains "hello" and
"world" on two different lines, the regular expression "hello*world" will only match if the s flag/
character is set.

m
If present, the matching process operates in multi-line mode.

In multi-line mode the caret ^ matches the start of any line, i.e. the start of the entire string and
the first character after a newline character.

The dollar character $ matches the end of any line, i.e. the end of the entire string and the
character immediately before a newline character.

Newline is the character #x0A.

i
If present, the matching process operates in case-insensitve mode.

© 2014 Altova GmbH

Functions Reference 349Libraries and Functions

Altova MapForce 2015

The regular expression [a-z] plus the i flag would then match all letters a-z and A-Z.

x
If present, whitespace characters are removed from the regular expression prior to the matching
process. Whitespace chars. are #x09, #x0A, #x0D and #x20.

Exception:
Whitespace characters within character class expressions are not removed e.g. [#x20].

Please note:
When generating code, the advanced features of the regex syntax might differ slightly between the
various languages, please see the specific regex documentation for your language.

350 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

14.3.2 xpath2

XPath2 functions are available when either XSLT2 or XQuery langauges are selected.

accessor functions
anyURIfunctions
boolean functions
constructors
context functions
durations, date and time functions
node functions
numeric functions
QName functions
string functions

accessors

The following accessor functions are available:

base-uri
The base-uri function takes a node argument as input, and returns the URI of the XML resource
containing the node. The output is of type xs:string. MapForce returns an error if no input node
is supplied.

document-uri
Not implemented.

node-name
The node-name function takes a node as its input argument and returns its QName. When the
QName is represented as a string, it takes the form of prefix:localname if the node has a
prefix, or localname if the node has no prefix. To obtain the namespace URI of a node, use the
namespace-URI-from-QName function (in the library of QName-related functions).

string
The string function works like the xs:string constructor: it converts its argument to xs:string.

When the input argument is a value of an atomic type (for example xs:decimal), this atomic
value is converted to a value of xs:string type. If the input argument is a node, the string value of
the node is extracted. (The string value of a node is a concatenation of the values of the node's
descendant nodes.)

anyURI functions

The resolve-uri function takes a URI as its first argument (datatype xs:string) and resolves it
against the URI in the second argument (datatype xs:string).

The result (datatype xs:string) is a combined URI. In this way a relative URI (the first argument)
can be converted to an absolute URI by resolving it against a base URI.

© 2014 Altova GmbH

Functions Reference 351Libraries and Functions

Altova MapForce 2015

In the screenshot above, the first argument provides the relative URI, the second argument the
base URI. The resolved URI will be a concatenation of base URI and relative URI, so C:
\PathtoMyFile\MyFile.xml.

Note: Both arguments are of datatype xs:string and the process of combining is done by
treating both inputs as strings. So there is no way of checking whether the resources
identified by these URIs actually exist. MapForce returns an error if teh second argument
is not supplied.

boolean functions

The Boolean functions true and false take no argument and return the boolean constant values,
true and false, respectively. They can be used where a constant boolean value is required.

true
Inserts the boolean value "true".

false
Inserts the boolean value "false".

constructors

The functions in the Constructors part of the XPath 2.0 functions library construct specific
datatypes from the input text. Typically, the lexical format of the input text must be that expected
of the datatype to be constructed. Otherwise, the transformation will not be successful.

For example, if you wish to construct an xs:date datatype, use the xs:date constructor function.
The input text must have the lexical format of the xs:date datatype, which is: YYYY-MM-DD
(screenshot below).

In the screenshot above, a string constant (2009-08-22) has been used to provide the input

352 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

argument of the function. The input could also have been obtained from a node in the source
document.

The xs:date function returns the input text (2009-08-22), which is of xs:string datatype
(specified in the Constant component), as output of xs:date datatype.

When you mouseover the input argument in a function box, the expected datatype of the
argument is displayed in a popup.

context functions

The Context functions library contains functions that provide the current date and time, the default
collation used by the processor, and the size of the current sequence and the position of the
current node.

Date-time functions
The current-date, current-time, and current-dateTime functions take no argument and
return the current date and/or time from the system clock.

The datatype of the result depends on the particular function: current-date returns xs:date,
current-time returns xs:time, and current-dateTime returns xs:dateTime.

default-collation
The default-collation function takes no argument and returns the default collation, that is, the
collation that is used when no collation is specified for a function where one can be specified.

The Altova XSLT 2.0 Engine supports the Unicode codepoint collation only. Comparisons,
including for the fn:max and fn:min functions, are based on this collation.

last, position
The last and position functions take no argument. The last function returns the position of the
last node in the context nodeset. The position function returns the position of the current node in
the nodeset being processed.

The context nodeset at the nodes where the functions are directed, is the nodeset to which the
functions will apply. In the screenshot below, the nodeset of Language elements is the context
nodeset for the last and position functions.

© 2014 Altova GmbH

Functions Reference 353Libraries and Functions

Altova MapForce 2015

In the example above, the last function returns the position of the last node of the context
nodeset (the nodeset of Language elements) as the value of the number attribute. This value is
also the size of the nodeset since it indicates the number of nodes in the nodeset.

The position function returns the position of the Language node being currently processed. For
each Language element node, its position within the nodeset of Langauge elements is output to
the language/@position attribute node.

We would advise you to use the position and count functions from the core library.

durations, date and time functions

The duration and date and time functions enable you to adjust dates and times for the timezone,
extract particular components from date-time data, and subtract one date-time unit from another.

The 'Adjust-to-Timezone' functions
Each of these related functions takes a date, time, or dateTime as the first argument and adjusts
the input by adding, removing, or modifying the timezone component depending on the value of
the second argument.

The following situations are possible when the first argument contains no timezone (for example,
the date 2009-01 or the time 14:00:00).

Timezone argument (the second argument of the function) is present: The result will
contain the timezone specified in the second argument. The timezone in the second
argument is added.
Timezone argument (the second argument of the function) is absent: The result will
contain the implicit timezone, which is the system's timezone. The system's timezone is
added.
Timezone argument (the second argument of the function) is empty: The result will
contain no timezone.

The following situations are possible when the first argument contains a timezone (for example,
the date 2009-01-01+01:00 or the time 14:00:00+01:00).

Timezone argument (the second argument of the function) is present: The result will
contain the timezone specified in the second argument. The original timezone is replaced
by the timezone in the second argument.
Timezone argument (the second argument of the function) is absent: The result will
contain the implicit timezone, which is the system's timezone. The original timezone is
replaced by the system's timezone.
Timezone argument (the second argument of the function) is empty: The result will
contain no timezone.

The 'From' functions
Each of the 'From' functions extracts a particular component from: (i) date or time data, and (ii)
duration data. The results are of the xs:decimal datatype.

As an example of extracting a component from date or time data, consider the day-from-date
function (screenshot below).

354 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

The input argument is a date (2009-01-01) of type xs:date. The day-from-date function
extracts the day component of the date (1) as an xs:decimal datatype.

Extraction of time components from durations requires that the duration be specified either as
xs:yearMonthDuration (for extracting years and months) or xs:dayTimeDuration (for extracting
days, hours, minutes, and seconds). The result will be of type xs:decimal. The screenshot below
shows a dayTimeDuration of P2DT0H being input to the days-from-duration function. The result
is the xs:decimal 2.

The 'Subtract' functions
Each of the three subtraction functions enables you to subtract one time value from another and
return a duration value. The three subtraction funstions are: subtract-dates, subtract-times,
subtract-dateTimes.

The screenshot below shows how the subtract-dates function is used to subtract two dates
(2009-10-22 minus 2009-09-22). The result is the dayTimeDuration P30D.

© 2014 Altova GmbH

Functions Reference 355Libraries and Functions

Altova MapForce 2015

Note: When you mouseover the input argument in a function box, the expected datatype of the
argument is displayed in a popup.

node functions

The following Node functions are available:

lang
The lang function takes a string argument that identifies a language code (such as en). The
function returns true or false depending on whether the context node has an xml:lang attribute
with a value that matches the argument of the function.

In the screenshot above notice the following:

1. In the source schema, the Language element has an xml:lang attribute.
2. Language nodes are filtered so that only those Language nodes having an xml:lang value

of en are processed (the filter test is specified in the equal function).
3. The Language node is the context node at the point where the en element is created in

the output document.
4. The output of the lang function (true or false) is sent to the en/@exists attribute node

of the output. The argument of the function is provided by the string constant en. The
lang function then checks whether the context node at this point (the Language element)
has an xml:lang attribute with a value of en (the argument of the function). If yes, then
true is returned, otherwise false.

local-name, name, namespace-uri
The local-name, name, and namespace-uri functions, return, respectively, the local-name, name,
and namespace URI of the input node. For example, for the node altova:Products, the local-
name is Products, the name is altova:Products, and the namespace URI is the URI of the
namespace to which the altova: prefix is bound (say, http://www.altova.com/examples).

Each of these three functions has two variants:

With no argument: the function is then applied to the context node (for an example of a
context node, see the example given for the lang function above).
An argument that must be a node: the function is applied to the submitted node.

356 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

The output of each of these six variants is a string.

number
Converts an input string into a number. Also converts a boolean input to a number.

The number function takes a node as input, atomizes the node (that is, extracts its contents), and
converts the value to a decimal and returns the converted value. The only types that can be
converted to numbers are booleans, strings, and other numeric types. Non-numeric input values
(such as a non-numeric string) result in NaN (Not a Number).

There are two variants of the number function:

With no argument: the function is then applied to the context node (for an example of a
context node, see the example given for the lang function above).
An argument that must be a node: the function is applied to the submitted node.

numeric functions

The following numeric functions are available:

abs
The abs function takes a numeric value as input and returns its absolute value as a decimal. For
example, if the input argument is -2 or +2, the function returns 2.

round-half-to-even
The round-half-to-even function rounds the supplied number (first argument) to the degree of
precision (number of decimal places) supplied in the optional second argument. For example, if
the first argument is 2.141567 and the second argument is 3, then the first argument (the
number) is rounded to three decimal places, so the result will be 2.141. If no precision (second
argument) is supplied, the number is rounded to zero decimal places, that is, to an integer.

The 'even' in the name of the function refers to the rounding to an even number when a digit in the
supplied number is midway between two values. For example, round-half-to-even(3.475, 2)
would return 3.48.

qname-related functions

There are two QName-related functions that work similarly: local-name-from-QName and
namespace-uri-from-QName.

Both functions take an expanded QName (in the form of a string) as their input arguments and
output, respectively, the local-name and namespace-uri part of the expanded QName.

The important point to note is that since the input of both functions are strings, a node cannot be
connected directly to the input argument boxes of these functions.

The node should first be supplied to the node-name function, which outputs the expanded QName.
This expanded QName can then be provided as the input to the two functions (see screenshot
below).

© 2014 Altova GmbH

Functions Reference 357Libraries and Functions

Altova MapForce 2015

The output of both functions is a string.

string functions

The following string functions are available:

compare
The compare function takes two strings as arguments and compares them for equality and
alphabetically. If String-1 is alphabetically less than String-2 (for example the two string are: A
and B), then the function returns -1. If the two strings are equal (for example, A and A), the
function returns 0. If String-1 is greater than String-2 (for example, B and A), then the function
returns +1.

A variant of this function allows you to choose what collation is to be used to compare the strings.
When no collation is used, the default collation, which is the Unicode codepoint collation, is used.
The Altova Engines support the Unicode codepoint collation only.

ends-with
The ends-with function tests whether String-1 ends with String-2. If yes, the function returns
true, otherwise false.

A variant of this function allows you to choose what collation is to be used to compare the strings.
When no collation is used, the default collation, which is the Unicode codepoint collation, is used.
The Altova Engines support the Unicode codepoint collation only.

escape-uri
The escape-uri function takes a URI as input for the first string argument and applies the URI
escaping conventions of RFC 2396 to the string. The second boolean argument (escape-
reserved) should be set to true() if characters with a reserved meaning in URIs are to be
escaped (for example "+" or "/").

For example:

escape-uri("My A+B.doc", true()) would give My%20A%2B.doc
escape-uri("My A+B.doc", false()) would give My%20A+B.doc

lower-case
The lower-case function takes a string as its argument and converts every upper-case character

358 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

in the string to its corresponding lower-case character.

matches
The matches function tests whether a supplied string (the first argument) matches a regular
expression (the second argument). The syntax of regular expressions must be that defined for
the pattern facet of XML Schema. The function returns true if the string matches the regular
expression, false otherwise.

The function takes an optional flags argument. Four flags are defined (i, m, s, x). Multiple flags
can be used: for example, imx. If no flag is used, the default values of all four flags are used.

The meaning of the four flags are as follows:

i Use case-insensitive mode. The default is case-sensitive.

m Use multiline mode, in which the input string is considered to have multiple lines, each
separated by a newline character (x0a). The meta characters ^ and $ indicate the
beginning and end of each line. The default is string mode, in which the string starts and
ends with the meta characters ^ and $.

s Use dot-all mode. The default is not-dot-all mode, in which the meta character "."
matches all characters except the newline character (x0a). In dot-all mode, the dot also
matches the newline character.

x Ignore whitespace. By default whitespace characters are not ignored.

normalize-unicode
The normalize-unicode function normalizes the input string (the first argument) according to the
rules of the normalization form specified (the second argument). The normalization forms NFC,
NFD, NFKC, and NFKD are supported.

replace
The replace function takes the string supplied in the first argument as input, looks for matches
as specified in a regular expression (the second argument), and replaces the matches with the
string in the third argument.

The rules for matching are as specified for the matches attribute above. The function also takes an
optional flags argument. The flags are as described in the matches function above.

starts-with
The starts-with function tests whether String-1 starts with String-2. If yes, the function returns
true, otherwise false.

A variant of this function allows you to choose what collation is to be used to compare the strings.
When no collation is used, the default collation, which is the Unicode codepoint collation, is used.
The Altova Engines support the Unicode codepoint collation only.

substring-after
The substring-after function returns that part of String-1 (the first argument) that occurs after the

© 2014 Altova GmbH

Functions Reference 359Libraries and Functions

Altova MapForce 2015

test string, String-2 (the second argument). An optional third argument specifies the collation to
use for the string comparison. When no collation is used, the default collation, which is the
Unicode codepoint collation, is used. The Altova Engines support the Unicode codepoint collation
only.

substring-before
The substring-before function returns that part of String-1 (the first argument) that occurs before
the test string, String-2 (the second argument). An optional third argument specifies the collation
to use for the string comparison. When no collation is used, the default collation, which is the
Unicode codepoint collation, is used. The Altova Engines support the Unicode codepoint collation
only.

upper-case
The upper-case function takes a string as its argument and converts every lower-case character
in the string to its corresponding upper-case character.

360 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

14.3.3 xslt

xpath functions
The functions in the XPath Functions library are XPath 1.0 nodeset functions.

xslt functions
The functions in the XSLT Functions library are XSLT 1.0 functions.

xpath functions

The functions in the XPath Functions library are XPath 1.0 nodeset functions. Each of these
functions takes a node or nodeset as its context and returns information about that node or
nodeset. These function typically have:

a context node (in the screenshot below, the context node for the lang function is the
Language element of the source schema).
an input argument (in the screenshot below, the input argument for the lang function is
the string constant en). The last and position functions take no argument.

lang
The lang function takes a string argument that identifies a language code (such as en). The
function returns true or false depending on whether the context node has an xml:lang attribute
with a value that matches the argument of the function. In the screenshot above notice the
following:

1. In the source schema, the Language element has an xml:lang attribute.
2. Language nodes are filtered so that only those Language nodes having an xml:lang value

of en are processed (the filter test is specified in the equal function).
3. The Language node is the context node at the point where the en element is created in

the output document.
4. The output of the lang function (true or false) is sent to the en/@exists attribute node

of the output. The argument of the function is provided by the string constant en. The
lang function then checks whether the context node at this point (the Language element)
has an xml:lang attribute with a value of en (the argument of the function). If yes, then
true is returned, otherwise false.

last, position
The last and position functions take no argument. The last function returns the position of the

© 2014 Altova GmbH

Functions Reference 361Libraries and Functions

Altova MapForce 2015

last node in the context nodeset. The position function returns the position of the current node in
the nodeset being processed.

The context nodeset at the nodes where the functions are directed is the nodeset to which the
functions will apply. In the screenshot below, the nodeset of Language elements is the context
nodeset for the last and position functions.

In the example above, the last function returns the position of the last node of the context
nodeset (the nodeset of Language elements) as the value of the number attribute. This value is
also the size of the nodeset since it indicates the number of nodes in the nodeset.

The position function returns the position of the Language node being currently processed. For
each Language element node, its position within the nodeset of Langauge elements is output to
the language/@position attribute node.

name, local-name, namespace-uri
These functions are all used the same way and return, respectively, the name, local-name, and
namespace URI of the input node. The screenshot below shows how these functions are used.
Notice that no context node is specified.

The name function returns the name of the Language node and outputs it to the language/
@elementname attribute. If the argument of any of these functions is a nodeset instead of a single
node, the name (or local-name or namespace URI) of the first node in the nodeset is returned.

The name function returns the QName of the node; the local-name function returns the local-
name part of the node's QName. For example, if a node's QName is altova:MyNode, then MyNode

362 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

is the local name.

The namespace URI is the URI of the namespace to which the node belongs. For example, the
altova: prefix can be declared to map to a namespace URI in this way:
xmlns:altova="http://www.altova.com/namespaces".

Note: Additional XPath 1.0 functions can be found in the Core function library.

xslt functions

The functions in the XSLT Functions library are XSLT 1.0 functions, and are described below. Drag
a function into the mapping to use it. When you mouseover the input argument part of a function
box, the expected datatype of the argument is displayed in a popup.

current
The current function takes no argument and returns the current node.

document
The document function addresses an external XML document (with the uri argument; see
screenshot below). The optional nodeset argument specifies a node, the base URI of which is
used to resolve the URI supplied as the first argument if this URI is relative. The result is output to
a node in the output document.

Note that the uri argument is a string that must be an absolute file path.

element-available
The element-available function tests whether an element, entered as the only string argument
of the function, is supported by the XSLT processor.

The argument string is evaluated as a QName. Therefore, XSLT elements must have an xsl:
prefix and XML Schema elements must have an xs: prefix—since these are the prefixes declared
for these namespaces in the underlying XSLT that will be generated for the mapping.

© 2014 Altova GmbH

Functions Reference 363Libraries and Functions

Altova MapForce 2015

The function returns a boolean.

function-available
The function-available function is similar to the element-available function and tests
whether the function name supplied as the function's argument is supported by the XSLT
processor.

The input string is evaluated as a QName. The function returns a boolean.

format-number
The format-number takes an integer as its first argument (value) and a format string as its
second argument (format). The third optional argument is a string that names the decimal format
to use. If this argument is not used, then the default decimal format is used.

Decimal formats are defined by the XSLT 1.0 decimal-format element: each decimal format so
defined can be named and the name can be used as the third argument of the format-number
function. If a decimal format is defined without a name, it is the default decimal format for the
transformation.

The function returns the number formatted as a string.

generate-id
The generate-id function generates a unique string that identifies the first node in the nodeset
identified by the optional input argument.

If no argument is supplied, the ID is generated on the context node. The result can be directed to
any node in the output document.

364 Libraries and Functions Functions Reference

© 2014 Altova GmbHAltova MapForce 2015

system-property
The system-property function returns properties of the XSLT processor (the system). Three
sytsem properties, all in the XSLT namespace, are mandatory for XSLT processors. These are
xsl:version, xsl:vendor, and xsl:vendor-url.

The input string is evaluated as a QName and so must have the xsl:prefix, since this is the
prefix associated with the XSLT namespace in the underlying XSLT stylesheet.

unparsed-entity-uri
If you are using a DTD, you can declare an unparsed entity in it. This unparsed entity (for example
an image) will have a URI that locates the unparsed entity.

The input string of the function must match the name of the unparsed entity that has been
declared in the DTD. The function then returns the URI of the unparsed entity, which can then be
directed to a node in the output document, for example, to an href node.

Chapter 15

Menu Reference

366 Menu Reference

© 2014 Altova GmbHAltova MapForce 2015

15 Menu Reference

The following section lists all the menus and menu options in MapForce, and supplies a short
description of each.

© 2014 Altova GmbH

File 367Menu Reference

Altova MapForce 2015

15.1 File

New
Creates a new mapping document

Open
Opens previously saved mapping (*.mfd) files.

Please note:
Opening a mapping that contains features available in a higher-level MapForce edition is
not possible.

E.g. A mapping containing Web service features in the Professional version, or database
mappings the Basic editions is not possible.

Save
Saves the currently active mapping using the currently active file name.

Save As
Saves the currently active mapping with a different name, or allows you to supply a new name if
this is the first time you save it.

Save All
Saves all currently open mapping files.

Reload
Reloads the currently active mapping file. You are asked if you want to lose your last changes.

Close
Closes the currently active mapping file. You are asked if you want to save the file before it
closes.

Close All
Closes all currently open mapping files. You are asked if you want to save any of the unsaved
mapping files.

Print
Opens the Print dialog box, from where you can printout your mapping as hardcopy.

368 Menu Reference File

© 2014 Altova GmbHAltova MapForce 2015

"Use current", retains the currently defined zoom factor of the mapping. "Use optimal" scales the
mapping to fit the page size. You can also specify the zoom factor numerically. Component
scrollbars are not printed. You can also specify if you want to allow the graphics to be split over
several pages or not.

Print Preview
Opens the same Print dialog box with the same settings as described above.

Print Setup
Open the Print Setup dialog box in which you can define the printer you want to use and the paper
settings.

Validate Mapping
Validating a Mapping validates that all mappings (connectors) are valid and displays any warnings
or errors.
Please see "Validating mappings" for more information.

Mapping settings

© 2014 Altova GmbH

File 369Menu Reference

Altova MapForce 2015

The document-specific settings are defined here. They are stored in the *.mfd file.

Mapping Output

Application Name: defines the XSLT1.0/2.0 file name prefix for the generated transformation files.

File Path Settings

Make paths absolute in generated code
Ensures compatibility of generated code with mapping files (*.mfd) from versions prior to Version
2010, please see Relative and absolute file paths for more information.

Ensure Windows path convention for file path...
The "Ensure Windows path convention...." check box makes sure that Windows path conventions
are followed. When outputting XSLT2 (and XQuery), the currently processed file name is internally
retrieved using the document-uri function, which returns a path in the form file:// URI for local files.

When this check box is active, a file:// URI path specification is automatically converted to a
complete Windows file path (e.g. "C:\...") to simplify further processing.

XML Schema Version
Lets you define the XML Schema Version used in the mapping file. You can define if you always
want to load the Schemas conforming to version 1.0 or 1.1. Note that not all version 1.1 specific
features are currently supported.

370 Menu Reference File

© 2014 Altova GmbHAltova MapForce 2015

If the xs:schema vc:minVersion="1.1" declaration is present, then version 1.1 will be
used; if not, version 1.0 will be used.

Note:
If the XSD document has no vc:minVersion attribute or the value of the vc:minVersion
attribute is other than 1.0 or 1.1, then XSD 1.0 will be the default mode.

Note: Do not confuse the vc:minVersion attribute with the xsd:version attribute. The former
holds the XSD version number, while the latter holds the document version number.

Changing this setting in an existing mapping, causes a reloading of all schemas of the
selected XML schema version, and might also change its validity.

Generate code in selected language
Generates code in the currently selected language of your mapping. The currently selected
language is visible as a highlighted programming language icon in the toolbar: XSLT, XSLT 2.

Generate code in | XSLT (XSLT2)
This command generates the XSLT file(s) needed for the transformation from the source file(s).
Selecting this option opens the Browse for Folder dialog box where you select the location of the
XSLT file.

Note: the name of the generated XSLT file(s) is defined in the Application Name field of the
Mapping Output dialog box. This dialog is opened by selecting File | Mapping Settings menu
option.

Recent files - 1. 2. etc.
Displays a list of the most recently opened files.

Exit
Exits the application. You are asked if you want to save any unsaved files.

© 2014 Altova GmbH

Edit 371Menu Reference

Altova MapForce 2015

15.2 Edit

Most of the commands in this menu, become active when you view the result of a mapping in the
Output tab, or preview XSLT code in the XSLT tab.

Undo
MapForce has an unlimited number of "Undo" steps that you can use to retrace you mapping
steps.

Redo
The redo command allows you to redo previously undone commands. You can step backward and
forward through the undo history using both these commands.

Find
Allows you to search for specific text in either the XSLT, XSLT2 or Output tab.

Find Next F3
Searches for the next occurrence of the same search string.

Find Prevous Shift F3
Serches for the previous occurrence of the same search string.

Cut/Copy/Paste/Delete
The standard windows Edit commands, allow you to cut, copy etc., any components or functions
visible in the mapping window.

Select all
Selects all components in the Mapping tab, or the text/code in the XSLT, XSLT2, or Output tab.

372 Menu Reference Insert

© 2014 Altova GmbHAltova MapForce 2015

15.3 Insert

XML Schema / File
Inserts an XML schema file into the mapping tab as data source or target component. You can
select XML files with a schema reference, in this case the referenced schema is automatically
inserted. If you select an XML schema file, you are prompted if you want to include an XML
instance file which supplies the data for the XSLT, XSLT2, , and Output previews. If you select an
XML file without a schema reference, you are prompted if you want to generate a matching XML
schema automatically.

Constant
Inserts a constant which is a function component that supplies fixed data to an input icon. The
data is entered into a dialog box when creating the component. There is only one output icon on a
constant function. You can select the following types of data: String, Number and All other.

Variable
Inserts an Intermediate Variable which is equivalent to a regular (non-inline) user-defined function.
Variables are structural components, without instance files, and are used to simplify the mapping
process. Please see Intermediate variables for more information.

Filter: Nodes/Rows
Inserts a component that uses two input and output parameters: node/row and bool, and on-
true, on-false. If the Boolean is true, then the value of the node/row parameter is forwarded to the
on-true parameter. If the Boolean is false, then the complement value is passed on to the on-false
parameter. Please see the tutorial example on how to use a filter.

Value-Map
Inserts a component that transforms an input value to an output value using a lookup table. The
component only has one input and output item. Please see Value-Map - transforming input data
for more information.

IF-Else Condition
A condition is a component which allows you to pass on different sets of data depending on the
outcome of a preset condition. The component header displays the text if-else.

The first input parameter is a bool, which contains the data you are checking against.
The value-true input parameter supplies the data to be passed on, as a result, if the
condition is true.
The value-false supplies the data to be passed on if the condition is false.
The result parameter outputs the data supplied by the value-true/false input parameters.

© 2014 Altova GmbH

Insert 373Menu Reference

Altova MapForce 2015

The IF-Else function is extendable. This means that you can check for multiple conditions and
use the otherwise parameter to output the Else condition/value.

Clicking the "plus" icon inserts or appends a new if-else pair, i.e. boolX and value-trueX, while
clicking the "x" deletes the parameter pair.

In the example above, the temperature data is analyzed:

If temp is greater than 20, then true is passed on to bool1 and the result is "high" from
value-true1.

Else, If temp is less than 5, then true is passed on to bool2 and the result is "low" from
value-true2.

Otherwise, nothing (an empty sequence) is the result of the component, since there is no
connection to the "otherwise" input.

Result of the mapping:

374 Menu Reference Component

© 2014 Altova GmbHAltova MapForce 2015

15.4 Component

Change Root Element
Allows you to change the root element of the XML instance document.

Edit Schema Definition in XMLSpy
Selecting this option, having previously clicked an XML-Schema/document, opens the XML
Schema file in the Schema view of XMLSpy where you can edit it.

Add Duplicate Input Before
Inserts a copy/clone of the selected item before the currently selected item. Duplicate items do
not have output icons, you cannot use them as data sources. Please see the Duplicating input
items section in the tutorial for an example of this.

Right clicking a duplicate item also allows you to reposition it using the menu items Move Up/
Move Down, depending on where the item is.

Add Duplicate Input After
Inserts a copy/clone of the selected item after the currently selected item. Duplicate items do not
have output icons, you cannot use them as data sources. Please see the Duplicating input items
section in the tutorial for an example of this.

Right clicking a duplicate item also allows you to reposition it using the menu items Move Up/
Move Down, depending on where the item is.

Remove Duplicate
Removes a previously defined duplicate item. Please see the Duplicating input items section in
the tutorial for more information.

Align Tree Left
Aligns all the items along the left hand window border.

Align Tree Right
Aligns all the items along the right hand window border. This display is useful when creating
mappings to the target schema.

Properties
Opens a dialog box which displays the currently selected component settings. If the component
is an XML-Schema file then the Component Settings dialog box is opened.

Component name:
All file based (i.e. non-database) components of a mapping have a component name, which is
automatically filled in when you create the component. You can however change the name at any
time.

The component name can be used to access specific components via FlowForce. The component
name needs to be unique if you intend to access when using FlowForce.

The default name is generated in various ways depending on the type of component that you
insert. It can be based on the:

Input/Output XML file entry
Taxonomy name
EDI message name
FlexText configuration file name

© 2014 Altova GmbH

Component 375Menu Reference

Altova MapForce 2015

Type of component that you insert, e.g. "Text file" or "Excel file"

If the component name was automatically generated and you then select an instance file, you will
be if you want to update the component name as well.

The component name can contain:
- Spaces, e.g. "Text file", or "Excel file". Leading or trailing spaces are not allowed.
- Dots/full stop characters, e.g. Orders.EDI

Note that some characters may be hard or impossible to enter at the command line, and that
national characters may have different encodings in Windows and on the command line.

The component name may not contain:
- Slashes, backslashes, or colons
- Double or single quotes
- Only space characters are allowed as whitespace, i.e. no tabs or CR/LF

376 Menu Reference Component

© 2014 Altova GmbHAltova MapForce 2015

 Schema file: Shows the file name and path of the target schema.

Input XML-File: Allows you to select, or change the XML-Instance for the currently selected
schema component. This field is filled when you first insert the schema component and
assign an XML-instance file.

© 2014 Altova GmbH

Component 377Menu Reference

Altova MapForce 2015

Output XML-File: This is file name and path where the XML target instance is placed, when
generating and executing program code. The file name is also visible as the first item in
the component.

The entry from the Input XML-Instance field, is automatically copied to this field when you
assign the XML-instance file. If you do not assign an XML-Instance file to the component,
then this field contains the entry schemafilenameandpath.xml.

Prefix for target namespace: Allows you to enter a prefix for the Target Namespace if this
is a schema / XML document. A Target namespace has to be defined in the target
schema, for the prefix to be assigned here.

Add Schema/DTD reference: Adds the path of the referenced XML Schema file to the root
element of the XML output.

Entering a path in this field allows you to define where the schema file, referenced by the
XML instance file, is to be located. This ensures that the output instance can be validated
at the mapping destination when the mapping is executed. You can enter an http://
address as well as an absolute or relative path in this field.

Deactivating this option allows you to decouple the XML instance from the referenced
XML Schema or DTD. E.g. if you want to send the resulting XML output to someone who
does not have access to the underlying XML Schema.

Cast target values to target types: Allows you to define if the target XML schema types
should be used when mapping (default - active), or if all data mapped to the target
component should be treated as string values.

Deactivating this option allows you to retain the precise formatting of values. E.g., this is
useful to "satisfy" a pattern facet in a schema, that requires a specific number of decimal
digits in a numeric value.

You can use mapping functions to format the number as a string in the required format,
and then map this string to the target.

Note that disabling this option will also disable the detection of invalid values, e.g. writing
letters into numeric fields.

Pretty-print output: Reformats your XML document in the Output pane to give a structured
display of the document. (Each child node is offset from its parent by a single tab
character.)

Encoding settings

From MapForce version 2008 each component, source, as well as target, has its own
encoding settings. This means that the *.mfd mapping files do not have a default
encoding, each component that makes up the mapping file has its own. Components in
this general sense are all XML, and Text components.

378 Menu Reference Component

© 2014 Altova GmbHAltova MapForce 2015

There is however a default encoding setting defined in the Tools | Options General tab,
called "Default encoding for new components" which is applied whenever new
components are created/inserted. When mappings from previous versions are opened, the
default encoding setting will be used.

The encoding control group consists of 3 controls:

Encoding name selection combobox.
Byte order selection combobox (little endian, big endian).
Include Byte Order Mark checkbox.

Default settings are:
UTF-8
little endian (disabled for UTF-8)
no Byte Order Mark.

Please note:
Activating the Byte Order Mark check box in the Component Settings dialog box, does
not have any effect when outputting XSLT 1.0/2.0, as these languages do not support
BOMs (Byte Order Marks).

Enable input processing optimizations based on min/maxOccurs
MapForce version 2009 introduces special handling for sequences that are known to contain
exactly one item, e.g. required attributes, or child elements with minOccurs and maxOccurs = 1.
In this case the first item of the sequence is extracted, then the item is directly processed as an
atomic value (and not as a sequence).

If the input data is not valid against the schema, an empty sequence might be encountered in a
mapping, which stops the mapping with an error message. To allow the processing of
such invalid input, this optimization can be disabled in the component settings of XML and EDI
components.

© 2014 Altova GmbH

Connection 379Menu Reference

Altova MapForce 2015

15.5 Connection

Auto Connect Matching Children
Activates or de-activates the "Auto connect child items" function, as well as the icon in the icon
bar.

Settings for Connect Matching Children
Opens the Connect Matching Children dialog box in which you define the connection settings.

Connect Matching Children
This command allows you to create multiple connectors for items of the same name, in both the
source and target schemas. The settings you define in this dialog box are retained, and are

applied when connecting two items, if the "Auto connect child items" icon in the title bar is
active. Clicking the icon, switches between an active and inactive state. Please see the section
on Connector properties for further information.

Target Driven (Standard)
Changes the connector type to Standard mapping, please see: "Source-driven / mixed content vs.
standard mapping" for more information.

Copy-all (Copy Child Items)
Creates connectors for all matching child items, where each of the child connectors are displayed
as a subtree of the parent connector, please see "Copy-all connections" for more information.

Source Driven (Mixed Content)
Changes the connector type to source driven / mixed content, and enables the selection of
additional elements to be mapped. The additional elements have to be child items of the mapped
item in the XML source file, to be able to be mapped. Please see Default settings: mapping mixed
content for more information.

Properties:
Opens a dialog box in which you can define the specific (mixed content) settings of the current
connector. Note that unavailable options are greyed out.

Please note that these settings also apply to complexType items which do not have any text
nodes!

380 Menu Reference Connection

© 2014 Altova GmbHAltova MapForce 2015

Annotation settings:
Individual connectors can be labeled for clarity.

1. Double click a connector and enter the name of the connector in the Description field.
This enables all the options in the Annotation Settings group.

2. Use the remaining groups to define the position and alignment of the label.

Connector context menu:

© 2014 Altova GmbH

Connection 381Menu Reference

Altova MapForce 2015

Connect matching children
Opens the "Connect Matching Children" dialog box, allowing you to change the connection
settings and connect the items when confirming with OK.

Delete
Deletes the selected connector.

Target Driven (Standard)
Changes the connector type to Standard mapping, please see: "Source-driven / mixed content vs.
standard mapping" for more information.

Copy-all (Copy Child Items)
Changes the connector type to "Copy-all" and connects all child items of the same name in a
graphically optimized fashion, please see "Copy-all connections" for more information.

Source Driven (Mixed Content)
Changes the connector type to source-driven / mixed content, please see: "Source driven and
mixed content mapping" for more information.

Insert Filter: Nodes/Rows
Inserts a Filter component into the connector. The source connector is connected to the nodes/
row parameter, and the target connector is connected to the on-true parameter.

Properties:
Opens the Connections Settings dialog, in which you can define the specific mixed content
settings as well as the connector annotation settings, please see the Connection section in the
Reference section.

Connect Matching Children dialog box
This command allows you to create multiple connectors between items of the same name in
both the source and target components. Note that a copy-all connection is created by default.

1. Connect two (parent) items that share identically named child items in both
components.

2. Right click the connector and select the Connect matching child elements option.

382 Menu Reference Connection

© 2014 Altova GmbHAltova MapForce 2015

3. Select the required options discussed in the text below, and click OK to create the
connectors.

Connectors are created for all the child items that have identical names and adhere to the
settings defined in the dialog box.

Please note:
The settings you define here are retained, and are applied when connecting two items, if

the "Auto connect child items" icon in the title bar is active. Clicking the icon
switches between an active and inactive state.

Ignore Case:
Ignores the case of the child item names.

Ignore Namespaces:
Ignores the namespaces of the child items.

Recursive:
Having created the first set of connectors, the grandchild items are then checked for identical
names. If some exist, then connectors are also created for them. The child elements of these
items are now checked, and so on.

Mix Attributes and Elements:
Allows the creation of connectors between items of the same name, even if they are of different
types e.g. two "Name" items exist, but one is an element, the other an attribute. If set active, a
connector is created between these items.

Create copy-all connections:
Default setting is active. Creates copy-all connection between source and target items if
possible.

Existing connections:

Ignore existing output connections:
Creates additional connectors to other components, even if the currently existing output icons
already have connectors.

Retain

© 2014 Altova GmbH

Connection 383Menu Reference

Altova MapForce 2015

Retains existing connectors.

Overwrite:
Recreates connectors, according to the settings defined. Existing connectors are scrapped.

Delete all existing:
Deletes all existing connectors, before creating new ones.

Deleting connections
Connectors that have been created using the Connect Matching Children dialog, or during the
mapping process can be removed as a group.

Right click the item name in the component, not the connector itself, Person in this example.
Select Delete Connections | Delete all ... connections.

Delete all direct connections:
Deletes all connectors directly mapped to, or from, the current component to any other source or
target components.

Delete all incoming child connections:
Only active if you have right clicked an item in a target component. Deletes all incoming child
connectors.

Delete all outgoing child connections:
Only active if you have right clicked an item in a source component. Deletes all outgoing child
connectors.

384 Menu Reference Function

© 2014 Altova GmbHAltova MapForce 2015

15.6 Function

Create User-Defined Function...:
Creates a new user-defined function. Selecting this option creates and empty user-defined
function, into which you insert the components you need. A single output component is
automatically inserted when you define such a function, and only one output component can be
present in a user-defined function unless it is defined as inlined. Please see "Creating a user-
defined function from scratch" for more information.

Create User-Defined Function from Selection:
Creates a new user-defined function based on the currently selected elements in the mapping
window. Please see "Adding user-defined functions" for more information.

Function Settings:
Opens the settings dialog box of the currently active user-defined function allowing you to change
the current settings. Use this method to change the user-defined function type, i.e. double click
the title bar of a user-defined function to see its contents, then select this menu option to change
its type.

Remove Function
Deletes the currently active user-defined function while working on an existing user-defined
function, in the tab of that name. I.e this only works on existing user-defined functions while
viewing their contents.

A prompt appears reminding you that instances may become invalid and in what libraries the
user-defined function exists.

Insert Input:
Inserts an "input" component into the mapping, or into a user-defined function.

If you are working in the main Mapping tab, the dialog box shown below is displayed. This type of
input component allows you to define a parameter in the command line execution of the
compiled mapping.
Please see "Input values, overrides and command line parameters" for more information.

© 2014 Altova GmbH

Function 385Menu Reference

Altova MapForce 2015

If you are working in a user-defined function tab, the dialog box shown below is displayed. This
type of input component allows you to define:

simple inputs
complex inputs, e.g. schema structures

Insert Output
Inserts an "Output" component into a user-defined function. In a user-defined function tab, the
dialog box shown below is displayed. This type of input component allows you to define:

simple outputs
complex outputs, e.g. schema structures

386 Menu Reference Function

© 2014 Altova GmbHAltova MapForce 2015

© 2014 Altova GmbH

Output 387Menu Reference

Altova MapForce 2015

15.7 Output

The first group of options (XSLT 1.0, XSLT 2.0, etc.) allow you to define the target language you
want your code to be in.

Validate Output
Validates the output XML file against the referenced schema.

Save generated Output
Saves the currently visible data in the Output tab.

Save all generated outputs
Saves all the generated output files of dynamic mappings. Please see: Dynamic Input/Output file
name for more information.

Regenerate output
Regenerates the current mapping from the Output windown.

Insert/Remove Bookmark
Inserts a bookmark at the cursor position in the Output window.

Next Bookmark
Navigates to the next bookmark in the Output window.

Previous Bookmark
Navigates to the previous bookmark in the Output window.

Remove All Bookmarks
Removes all currently defined bookmarks in the Output window.

Pretty-Print XML Text
Reformats your XML document in the Output pane to give a structured display of the document.
Each child node is offset from its parent by a single tab character. This is where the Tab size
settings (i.e. inserting as tabs or spaces) defined in the Tabs group, take effect.

Text View Settings
Allows you to customize the text settings in the Output window and also shows the currently
defined hotkeys that apply in the window.

388 Menu Reference Output

© 2014 Altova GmbHAltova MapForce 2015

Please note:
The "Insert tabs" and "Insert spaces" options do not affect the currently visible text in the Output
window; they only take effect when you use the Output | Pretty-Print XML text option.

© 2014 Altova GmbH

View 389Menu Reference

Altova MapForce 2015

15.8 View

Show Annotations
Displays XML schema annotations in the component window.
If the Show Types icon is also active, then both sets of info are show in grid form.

Show Types
Displays the schema datatypes for each element or attribute.
If the Show Annotations icon is also active, then both sets of info are show in grid form.

Show library in Function Header
Displays the library name in parenthesis in the function title.

Show Tips
Displays a tooltip containing explanatory text when the mouse pointer is placed over a function.

Show Selected Component Connectors
Switches between showing:

all mapping connectors, or
those connectors relating to the currently selected components.

Show Connectors from Source to Target
Switches between showing:

connectors that are directly connected to the currently selected component, or
connectors linked to the currently selected component, originating from source and
terminating at the target components.

Zoom
Opens the Zoom dialog box. You can enter the zoom factor numerically, or drag the slider to
change the zoom factor interactively.

Back
Steps back through the currently open mappings of the mapping tab.

Forward
Steps forward through the currently open mappings of the mapping tab.

Status Bar
Switches the Status Bar, visible below the Messages window, on or off.

Library Window
Switches the Library window, containing all library functions, on or off.

390 Menu Reference View

© 2014 Altova GmbHAltova MapForce 2015

Messages
Switches the Validation output window on, or off. When generating code the Messages output
window is automatically activated to show the validation result.

Overview
Switches the Overview window on, or off. Drag the rectangle to navigate your Mapping view.

© 2014 Altova GmbH

Tools 391Menu Reference

Altova MapForce 2015

15.9 Tools

Global Resources
Opens the Manage Global Resources dialog box allowing you to Add, Edit and Delete global
resources to the Global Resources XML file, please see Global Resources - Properties for more
information.

Active Configuration
Allows you to select/change the currently active global resource from a list of all resources/
configurations in the Global Resources. Select the required configuration from the submenu.

Create Reversed Mapping
Creates a "reversed" mapping from the currently active mapping in MapForce, which is to be the
basis of a new mapping. Note that the result is not intended to be a complete mapping, only the
direct connections between components are retained in the reversed mapping. It is very likely that
the resulting mapping will not be valid, or be able to be executed when clicking the Output tab,
without manual editing.

E.g. Tut-ExpReport.mfd in the ...\MapForceExamples\Tutorial folder:

392 Menu Reference Tools

© 2014 Altova GmbHAltova MapForce 2015

Result of a reversed mapping:

General:
The source component becomes the target component, and target component becomes
the source.
If an Input, and Output XML, instance file have been assigned to a component, then they
will both be swapped.

© 2014 Altova GmbH

Tools 393Menu Reference

Altova MapForce 2015

Retained connections
Direct connections between components
Direct connections between components in a chained mapping
The type of connection: Standard, Mixed content, Copy-All

Pass-through component settings
Database components are unchanged.

Deleted connections
Connections via functions, filters etc. are deleted, along with the functions etc.
User-defined functions
Webservice components

Restore Toolbars and Windows
Resets the toolbars, entry helper windows, docked windows etc. to their defaults. MapForce
needs to be restarted for the changes to take effect.

Customize...
The customize command lets you customize MapForce to suit your personal needs.

The Keyboard tab allows you to define (or change) keyboard shortcuts for any MapForce
command.

To assign a new Shortcut to a command:

1. Select the Tools | Customize command and click the Keyboard tab.
2. Click the Category combo box to select the menu name.
3. Select the command you want to assign a new shortcut to, in the Commands list box
4. Click in the Press New Shortcut Key: text box, and press the shortcut keys that are to

activate the command.

394 Menu Reference Tools

© 2014 Altova GmbHAltova MapForce 2015

The shortcuts appear immediately in the text box. If the shortcut was assigned
previously, then that function is displayed below the text box.

5. Click the Assign button to assign the shortcut.
The shortcut now appears in the Current Keys list box.
(To clear the entry in the Press New Shrotcut Key text box, press any of the control
keys, CTRL, ALT or SHIFT).

To de-assign or delete a shortcut:
1. Click the shortcut you want to delete in the Current Keys list box.
2. Click the Remove button.
3. Click the Close button to confirm.

Set accelerator for:
Currently no function.

Currently assigned keyboard shortcuts:

Hotkeys by key
F1 Help Menu
F2 Next bookmark (in output window)
F3 Find Next
F10 Activate menu bar
Num + Expand current item node
Num - Collapse item node
Num * Expand all from current item node

CTRL + TAB Switches between open mappings
CTRL + F6 Cycle through open windows
CTRL + F4 Closes the active mapping document

Alt + F4 Closes MapForce
Alt + F, F, 1 Opens the last file
Alt + F, T, 1 Opens the last project

© 2014 Altova GmbH

Tools 395Menu Reference

Altova MapForce 2015

CTRL + N File New
CTRL + O File Open
CTRL + S File Save
CTRL + P File Print

CTRL + A Select All
CTRL + X Cut
CTRL + C Copy
CTRL + V Paste
CTRL + Z Undo
CTRL + Y Redo

Del Delete component (with prompt)
Shift + Del Delete component (no prompt)
CTRL + F Find
F3 Find Next
Shift + F3 Find Previous

Arrow keys
(up / down) Select next item of component
Esc Abandon edits/close dialog box
Return Confirms a selection

Output window hotkeys
CTRL + F2 Insert Remove/Bookmark
F2 Next Bookmark
SHIFT + F2 Previous Bookmark
CTRL + SHIFT + F2 Remove All Bookmarks

Zooming hotkeys
CTRL + mouse wheel forward Zoom In
CTRL + mouse wheel back Zoom Out
CTRL + 0 (Zero) Reset Zoom

Options
Opens the Options dialog box through which you can:

Add or delete user defined XSLT functions.
Define general settings, such as the default character encoding for new components, in
the General tab.
Define which message notifications you want to re-enable

Libraries tab:
Add or delete user-defined XSLT, or programming language Libraries/functions to
MapForce.

396 Menu Reference Tools

© 2014 Altova GmbHAltova MapForce 2015

General tab:
Specify if you want to show the logo, copyright etc., on start and/or when printing.
Align components or functions with other components, while dragging them with the
mouse.
Enable/disable the MapForce gradient background.
Limit the annotation text in components to X lines. Also applies to SELECT statements
visible in a component.
Define the default character encoding for new components.
Define an execution timeout for the Output tab when previewing the mapping result.
Specify if you want to output to temporary files (default), or write output files directly to
disk when clicking the Output button/tab.

Warning: Enabling "Write directly to final output files" will overwrite output files without
requesting further confirmation.

Limit the output to X million characters, when outputting to the built-in execution engine.
The Built-in execution engine is the only target that supports XML, CSV, and FLF
streaming

© 2014 Altova GmbH

Tools 397Menu Reference

Altova MapForce 2015

Messages tab:
Allows you to re-enable message boxes that you previously disabled using the "Don't ask me
again" check box.

398 Menu Reference Window

© 2014 Altova GmbHAltova MapForce 2015

15.10 Window

Cascade
This command rearranges all open document windows so that they are all cascaded (i.e.
staggered) on top of each other.

Tile Horizontal
This command rearranges all open document windows as horizontal tiles, making them all
visible at the same time.

Tile Vertical
This command rearranges all open document windows as vertical tiles, making them all visible
at the same time.

1
2
This list shows all currently open windows, and lets you quickly switch between them.
You can also use the Ctrl-TAB or CTRL F6 keyboard shortcuts to cycle through the open
windows.

© 2014 Altova GmbH

Help Menu 399Menu Reference

Altova MapForce 2015

15.11 Help Menu

The Help menu contains commands to access the onscreen help manual for MapForce,
commands to provide information about MapForce, and links to support pages on the Altova web
site. The Help menu also contains the Registration dialog, which lets you enter your license key-
code once you have purchased the product.

The description of the Help menu commands is organized into the following sub-sections:

Table of Contents, Index, Search
Registration, Order Form
Other Commands

400 Menu Reference Help Menu

© 2014 Altova GmbHAltova MapForce 2015

15.11.1 Table of Contents, Index, Search

The Table of Contents command opens the onscreen help manual for MapForce with the Table
of Contents displayed in the left-hand-side pane of the Help window. The Table of Contents
provides a good overview of the entire Help document. Clicking an entry in the Table of Contents
takes you to that topic.

The Index command opens the onscreen help manual for MapForce with the Keyword Index
displayed in the left-hand-side pane of the Help window. The index lists keywords and lets you
navigate to a topic by double-clicking the keyword. If a keyword is linked to more than one topic,
you are presented with a list of the topics to choose from.

The Search command opens the onscreen help manual for MapForce with the Search dialog
displayed in the left-hand-side pane of the Help window. To search for a term, enter the term in the
input field, and press Return. The Help system performs a full-text search on the entire Help
documentation and returns a list of hits. Double-click any item to display that item.

© 2014 Altova GmbH

Help Menu 401Menu Reference

Altova MapForce 2015

15.11.2 Activation, Order Form, Registration, Updates

Software Activation
After you download your Altova product software, you can activate it using either a free evaluation
key or a purchased permanent license key.

Free evaluation key. When you first start the software after downloading and installing it,
the Software Activation dialog will pop up. In it is a button to request a free evaluation key-
code. Enter your name, company, and e-mail address in the dialog that appears, and
click Request Now! The evaluation key is sent to the e-mail address you entered and
should reach you in a few minutes. Now enter the key in the key-code field of the
Software Activation dialog box and click OK to start working with your Altova product. The
software will be unlocked for a period of 30 days.
Permanent license key. The Software Activation dialog contains a button to purchase a
permanent license key. Clicking this button takes you to Altova's online shop, where you
can purchase a permanent license key for your product. There are two types of
permanent license: single-user and multi-user. Both will be sent to you by e-mail. A
single-user license contains your license-data and includes your name, company, e-mail,
and key-code.A multi-user license contains your license-data and includes your company
name and key-code. Note that your license agreement does not allow you to install more
than the licensed number of copies of your Altova software on the computers in your
organization (per-seat license). Please make sure that you enter the data required in the
registration dialog exactly as given in your license e-mail.

Note: When you enter your license information in the Software Activation dialog, ensure that
you enter the data exactly as given in your license e-mail. For multi-user licenses, each
user should enter his or her own name in the Name field.

The Software Activation dialog can be accessed at any time by clicking the Help | Software
Activation command.

Order Form
When you are ready to order a licensed version of MapForce, you can use either the Order
license key button in the Software Activation dialog (see previous section) or the Help | Order
Form command to proceed to the secure Altova Online Shop.

Registration
The first time you start your Altova software after having activated it, a dialog appears asking
whether you would like to register your product. There are three buttons in this dialog:

OK: Takes you to the Registration Form
Remind Me Later: Pops up a dialog in which you can select when you wish to be next
reminded.
Cancel: Closes the dialog and suppresses it in future. If you wish to register at a later
time, you can use the Help | Registration command.

Check for Updates
Checks with the Altova server whether a newer version than yours is currently available and
displays a message accordingly

402 Menu Reference Help Menu

© 2014 Altova GmbHAltova MapForce 2015

15.11.3 Other Commands

The Support Center command is a link to the Altova Support Center on the Internet. The Support
Center provides FAQs, discussion forums where problems are discussed, and access to Altova's
technical support staff.

The FAQ on the Web command is a link to Altova's FAQ database on the Internet. The FAQ
database is constantly updated as Altova support staff encounter new issues raised by
customers.

The Components Download command is a link to Altova's Component Download Center on the
Internet. From here you will be able to download a variety of companion software to use with
Altova products. Such software ranges from XSLT and XSL-FO processors to Application Server
Platforms. The software available at the Component Download Center is typically free of charge.

The MapForce on the Internet command is a link to the Altova website on the Internet. You can
learn more about MapForce and related technologies and products at the Altova website.

The MapForce Training command is a link to the Online Training page at the Altova website.
Here you can select from online courses conducted by Altova's expert trainers.

The About MapForce command displays the splash window and version number of your product.

http://www.altova.com/
http://www.altova.com/
http://www.altova.com/

Chapter 16

Appendices

404 Appendices

© 2014 Altova GmbHAltova MapForce 2015

16 Appendices

These appendices contain technical information about MapForce and important licensing
information. Each appendix contains sub-sections as given below:

Technical Data

OS and memory requirements
Altova XML Parser
Altova XSLT and XQuery Engines
Unicode support
Internet usage
License metering

License Information

Electronic software distribution
Copyrights
End User License Agreement

© 2014 Altova GmbH

Engine information 405Appendices

Altova MapForce 2015

16.1 Engine information

This section contains information about implementation-specific features of the Altova XML
Validator, Altova XSLT 1.0 Engine, Altova XSLT 2.0 Engine, and Altova XQuery Engine.

406 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

16.1.1 XSLT and XQuery Engine Information

The XSLT and XQuery engines of MapForce follow the W3C specifications closely and are
therefore stricter than previous Altova engines—such as those in previous versions of XMLSpy. As
a result, minor errors that were ignored by previous engines are now flagged as errors by
MapForce.

For example:

It is a type error (err:XPTY0018) if the result of a path operator contains both nodes and
non-nodes.
It is a type error (err:XPTY0019) if E1 in a path expression E1/E2 does not evaluate to a
sequence of nodes.

If you encounter this kind of error, modify either the XSLT/XQuery document or the instance
document as appropriate.

This section describes implementation-specific features of the engines, organized by
specification:

XSLT 1.0
XSLT 2.0
XQuery 1.0

XSLT 1.0

The XSLT 1.0 Engine of MapForce conforms to the World Wide Web Consortium's (W3C's) XSLT
1.0 Recommendation of 16 November 1999 and XPath 1.0 Recommendation of 16 November
1999. Note the following information about the implementation.

Notes about the implementation
When the method attribute of xsl:output is set to HTML, or if HTML output is selected by
default, then special characters in the XML or XSLT file are inserted in the HTML document as
HTML character references in the output. For instance, the character (the decimal
character reference for a non-breaking space) is inserted as in the HTML code.

XSLT 2.0

This section:

Engine conformance
Backward compatibility
Namespaces
Schema awareness
Implementation-specific behavior

Conformance
The XSLT 2.0 engine of MapForce conforms to the World Wide Web Consortium's (W3C's) XSLT
2.0 Recommendation of 23 January 2007 and XPath 2.0 Recommendation of 14 December 2010.

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/xpath20/

© 2014 Altova GmbH

Engine information 407Appendices

Altova MapForce 2015

Backwards Compatibility
The XSLT 2.0 engine is backwards compatible. The only time the backwards compatibility of the
XSLT 2.0 engine comes into effect is when using the XSLT 2.0 engine to process an XSLT 1.0
stylesheet. Note that there could be differences in the outputs produced by the XSLT 1.0 Engine
and the backwards-compatible XSLT 2.0 engine.

Namespaces
Your XSLT 2.0 stylesheet should declare the following namespaces in order for you to be able to
use the type constructors and functions available in XSLT 2.0. The prefixes given below are
conventionally used; you could use alternative prefixes if you wish.

Namespace Name Prefix Namespace URI

XML Schema types xs: http://www.w3.org/2001/XMLSchema

XPath 2.0 functions fn: http://www.w3.org/2005/xpath-functions

Typically, these namespaces will be declared on the xsl:stylesheet or xsl:transform
element, as shown in the following listing:

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fn="http://www.w3.org/2005/xpath-functions"
...

</xsl:stylesheet>

The following points should be noted:

The XSLT 2.0 engine uses the XPath 2.0 and XQuery 1.0 Functions namespace (listed in
the table above) as its default functions namespace. So you can use XPath 2.0 and
XSLT 2.0 functions in your stylesheet without any prefix. If you declare the XPath 2.0
Functions namespace in your stylesheet with a prefix, then you can additionally use the
prefix assigned in the declaration.
When using type constructors and types from the XML Schema namespace, the prefix
used in the namespace declaration must be used when calling the type constructor (for
example, xs:date).
Some XPath 2.0 functions have the same name as XML Schema datatypes. For
example, for the XPath functions fn:string and fn:boolean there exist XML Schema
datatypes with the same local names: xs:string and xs:boolean. So if you were to use
the XPath expression string('Hello'), the expression evaluates as
fn:string('Hello')—not as xs:string('Hello').

408 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

Schema-awareness
The XSLT 2.0 engine is schema-aware. So you can use user-defined schema types and the
xsl:validate instruction.

Implementation-specific behavior
Given below is a description of how the XSLT 2.0 engine handles implementation-specific aspects
of the behavior of certain XSLT 2.0 functions.

xsl:result-document

Additionally supported encodings are (the Altova-specific): x-base16tobinary and x-
base64tobinary.

function-available

The function tests for the availability of in-scope functions (XSLT 2.0, XPath 2.0, and extension
functions).

unparsed-text

The href attribute accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths
with or without the file:// protocol. Additionally supported encodings are (the Altova-specific):
x-binarytobase16 and x-binarytobase64.

unparsed-text-available

The href attribute accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths
with or without the file:// protocol. Additionally supported encodings are (the Altova-specific):
x-binarytobase16 and x-binarytobase64.

Note: The following encoding values, which were implemented in earlier versions of RaptorXML's
predecessor product, AltovaXML, are now deprecated: base16tobinary,
base64tobinary, binarytobase16 and binarytobase64.

XQuery 1.0

This section:

Engine conformance
Schema awareness
Encoding
Namespaces
XML source and validation
Static and dynamic type checking
Library modules
External modules
Collations
Precision of numeric data
XQuery instructions support

© 2014 Altova GmbH

Engine information 409Appendices

Altova MapForce 2015

Conformance
The XQuery 1.0 Engine of MapForce conforms to the World Wide Web Consortium's (W3C's)
XQuery 1.0 Recommendation of 14 December 2010. The XQuery standard gives implementations
discretion about how to implement many features. Given below is a list explaining how the XQuery
1.0 Engine implements these features.

Schema awareness
The XQuery 1.0 Engine is schema-aware.

Encoding
The UTF-8 and UTF-16 character encodings are supported.

Namespaces
The following namespace URIs and their associated bindings are pre-defined.

Namespace Name Prefix Namespace URI

XML Schema types xs: http://www.w3.org/2001/XMLSchema

Schema instance xsi: http://www.w3.org/2001/XMLSchema-instance

Built-in functions fn: http://www.w3.org/2005/xpath-functions

Local functions local: http://www.w3.org/2005/xquery-local-functions

The following points should be noted:

The XQuery 1.0 Engine recognizes the prefixes listed above as being bound to the
corresponding namespaces.
Since the built-in functions namespace listed above is the default functions namespace in
XQuery, the fn: prefix does not need to be used when built-in functions are invoked (for

example, string("Hello") will call the fn:string function). However, the prefix fn: can
be used to call a built-in function without having to declare the namespace in the query
prolog (for example: fn:string("Hello")).
You can change the default functions namespace by declaring the default function
namespace expression in the query prolog.
When using types from the XML Schema namespace, the prefix xs: may be used
without having to explicitly declare the namespaces and bind these prefixes to them in
the query prolog. (Example: xs:date and xs:yearMonthDuration.) If you wish to use
some other prefix for the XML Schema namespace, this must be explicitly declared in the
query prolog. (Example: declare namespace alt = "http://www.w3.org/2001/
XMLSchema"; alt:date("2004-10-04").)

http://www.w3.org/TR/xquery/

410 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

Note that the untypedAtomic, dayTimeDuration, and yearMonthDuration datatypes
have been moved, with the CRs of 23 January 2007, from the XPath Datatypes
namespace to the XML Schema namespace, so: xs:yearMonthDuration.

If namespaces for functions, type constructors, node tests, etc are wrongly assigned, an error is
reported. Note, however, that some functions have the same name as schema datatypes, e.g.
fn:string and fn:boolean. (Both xs:string and xs:boolean are defined.) The namespace
prefix determines whether the function or type constructor is used.

XML source document and validation
XML documents used in executing an XQuery document with the XQuery 1.0 Engine must be
well-formed. However, they do not need to be valid according to an XML Schema. If the file is not
valid, the invalid file is loaded without schema information. If the XML file is associated with an
external schema and is valid according to it, then post-schema validation information is generated
for the XML data and will be used for query evaluation.

Static and dynamic type checking
The static analysis phase checks aspects of the query such as syntax, whether external
references (e.g. for modules) exist, whether invoked functions and variables are defined, and so
on. If an error is detected in the static analysis phase, it is reported and the execution is
stopped.

Dynamic type checking is carried out at run-time, when the query is actually executed. If a type is
incompatible with the requirement of an operation, an error is reported. For example, the
expression xs:string("1") + 1 returns an error because the addition operation cannot be
carried out on an operand of type xs:string.

Library Modules
Library modules store functions and variables so they can be reused. The XQuery 1.0 Engine
supports modules that are stored in a single external XQuery file. Such a module file must
contain a module declaration in its prolog, which associates a target namespace. Here is an
example module:

module namespace libns="urn:module-library";
declare variable $libns:company := "Altova";
declare function libns:webaddress() { "http://www.altova.com" };

All functions and variables declared in the module belong to the namespace associated with the
module. The module is used by importing it into an XQuery file with the import module statement
in the query prolog. The import module statement only imports functions and variables declared
directly in the library module file. As follows:

import module namespace modlib = "urn:module-library" at "modulefilename.xq";

© 2014 Altova GmbH

Engine information 411Appendices

Altova MapForce 2015

if ($modlib:company = "Altova")
then modlib:webaddress()
else error("No match found.")

External functions
External functions are not supported, i.e. in those expressions using the external keyword, as
in:

declare function hoo($param as xs:integer) as xs:string external;

Collations
The default collation is the Unicode-codepoint collation, which compares strings on the basis of
their Unicode codepoint. Other supported collations are the ICU collations listed here. To use a
specific collation, supply its URI as given in the list of supported collations. Any string
comparisons, including for the fn:max and fn:min functions, will be made according to the
specified collation. If the collation option is not specified, the default Unicode-codepoint collation
is used.

Precision of numeric types
The xs:integer datatype is arbitrary-precision, i.e. it can represent any number of digits.
The xs:decimal datatype has a limit of 20 digits after the decimal point.
The xs:float and xs:double datatypes have limited-precision of 15 digits.

XQuery Instructions Support
The Pragma instruction is not supported. If encountered, it is ignored and the fallback expression
is evaluated.

http://site.icu-project.org/

412 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

16.1.2 XSLT and XPath/XQuery Functions

This section lists Altova extension functions and other extension functions that can be used in
XPath and/or XQuery expressions. Altova extension functions can be used with Altova's XSLT and
XQuery engines, and provide functionality additional to that available in the function libraries
defined in the W3C standards.

General points
The following general points should be noted:

Functions from the core function libraries defined in the W3C specifications can be called
without a prefix. That's because the XSLT and XQuery engines read non-prefixed functions
as belonging to a default functions namespace which is that specified in the XPath/
XQuery functions specificationshttp://www.w3.org/2005/xpath-functions. If this
namespace is explicitly declared in an XSLT or XQuery document, the prefix used in the
namespace declaration can also optionally be used on function names.
In general, if a function expects a sequence of one item as an argument, and a sequence
of more than one item is submitted, then an error is returned.
All string comparisons are done using the Unicode codepoint collation.
Results that are QNames are serialized in the form [prefix:]localname.

Precision of xs:decimal
The precision refers to the number of digits in the number, and a minimum of 18 digits is required
by the specification. For division operations that produce a result of type xs:decimal, the
precision is 19 digits after the decimal point with no rounding.

Implicit timezone
When two date, time, or dateTime values need to be compared, the timezone of the values being
compared need to be known. When the timezone is not explicitly given in such a value, the
implicit timezone is used. The implicit timezone is taken from the system clock, and its value can
be checked with the implicit-timezone() function.

Collations
The default collation is the Unicode codepoint collation, which compares strings on the basis of
their Unicode codepoint. Other supported collations are the ICU collations listed below. To use a
specific collation, supply its URI as given in the list of supported collations (table below). Any
string comparisons, including for the max and min functions, will be made according to the
specified collation. If the collation option is not specified, the default Unicode-codepoint collation
is used.

Language URIs

da: Danish da_DK

de: German de_AT, de_BE, de_CH, de_DE, de_LI, de_LU

http://site.icu-project.org/

© 2014 Altova GmbH

Engine information 413Appendices

Altova MapForce 2015

en: English en_AS, en_AU, en_BB, en_BE, en_BM, en_BW, en_BZ, en_CA,
en_GB, en_GU, en_HK, en_IE, en_IN, en_JM, en_MH, en_MP,
en_MT, en_MU, en_NA, en_NZ, en_PH, en_PK, en_SG, en_TT,
en_UM, en_US, en_VI, en_ZA, en_ZW

es: Spanish es_419, es_AR, es_BO, es_CL, es_CO, es_CR, es_DO, es_EC,
es_ES, es_GQ, es_GT, es_HN, es_MX, es_NI, es_PA, es_PE,
es_PR, es_PY, es_SV, es_US, es_UY, es_VE

fr: French fr_BE, fr_BF, fr_BI, fr_BJ, fr_BL, fr_CA, fr_CD, fr_CF,
fr_CG, fr_CH, fr_CI, fr_CM, fr_DJ, fr_FR, fr_GA, fr_GN,
fr_GP, fr_GQ, fr_KM, fr_LU, fr_MC, fr_MF, fr_MG, fr_ML,
fr_MQ, fr_NE, fr_RE, fr_RW, fr_SN, fr_TD, fr_TG

it: Italian it_CH, it_IT

ja: Japanese ja_JP

nb: Norwegian
Bokmal

nb_NO

nl: Dutch nl_AW, nl_BE, nl_NL

nn: Nynorsk nn_NO

pt: Portuguese pt_AO, pt_BR, pt_GW, pt_MZ, pt_PT, pt_ST

ru: Russian ru_MD, ru_RU, ru_UA

sv: Swedish sv_FI, sv_SE

Namespace axis
The namespace axis is deprecated in XPath 2.0. Use of the namespace axis is, however,
supported. To access namespace information with XPath 2.0 mechanisms, use the in-scope-
prefixes(), namespace-uri() and namespace-uri-for-prefix() functions.

Altova Extension Functions

Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions namespace,
http://www.altova.com/xslt-extensions, and are indicated in this section with the prefix

altova:, which is assumed to be bound to this namespace. Note that, in future versions of your

product, support for a function might be discontinued or the behavior of individual functions might
change. Consult the documentation of future releases for information about support for Altova
extension functions in that release.

Functions defined in the W3C's XPath/XQuery Functions specifications can be used in: (i) XPath
expressions in an XSLT context, and (ii) in XQuery expressions in an XQuery document. In this
documentation we indicate the functions that can be used in the former context (XPath in XSLT)
with an XP symbol and call them XPath functions; those functions that can be used in the latter
(XQuery) context are indicated with an XQ symbol; they work as XQuery functions. The W3C's
XSLT specifications—not XPath/XQuery Functions specifications—also define functions that can
be used in XPath expressions in XSLT documents. These functions are marked with an XSLT

414 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

symbol and are called XSLT functions. The XPath/XQuery and XSLT versions in which a function
can be used are indicated in the description of the function (see symbols below). Functions from
the XPath/XQuery and XSLT function libraries are listed without a prefix. Extension functions from
other libraries, such as Altova extension functions, are listed with a prefix.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3

XSLT functions
XSLT functions can only be used in XPath expressions in an XSLT context (similarly to XSLT
2.0's current-group() or key() functions). These functions are not intended for, and will not
work in, a non-XSLT context (for instance, in an XQuery context). Note that XSLT functions for
XBRL can be used only with editions of Altova products that have XBRL support.

XPath/XQuery functions
XPath/XQuery functions (general, date/time, and string) can be used both in XPath expressions in
XSLT contexts as well as in XQuery expressions.

XSLT Functions

XSLT extension functions can be used in XPath expressions in an XSLT context. They will not
work in a non-XSLT context (for instance, in an XQuery context).

Note about naming of functions and language applicability
Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions namespace,
http://www.altova.com/xslt-extensions, and are indicated in this section with the prefix

altova:, which is assumed to be bound to this namespace. Note that, in future versions of your

product, support for a function might be discontinued or the behavior of individual functions might
change. Consult the documentation of future releases for information about support for Altova
extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3

Standard functions
distinct-nodes [altova:]

© 2014 Altova GmbH

Engine information 415Appendices

Altova MapForce 2015

altova:distinct-nodes(node()*) as node()* XSLT1 XSLT2 XSLT3

Takes a set of one or more nodes as its input and returns the same set minus nodes with
duplicate values. The comparison is done using the XPath/XQuery function fn:deep-equal.

Examples
altova:distinct-nodes(country) returns all child country nodes less those having

duplicate values.

evaluate [altova:]

altova:evaluate(XPathExpression as xs:string[, ValueOf$p1, ... ValueOf$pN])

XSLT1 XSLT2 XSLT3

Takes an XPath expression, passed as a string, as its mandatory argument. It returns the
output of the evaluated expression. For example: altova:evaluate('//Name[1]') returns

the contents of the first Name element in the document. Note that the expression //Name[1]
is passed as a string by enclosing it in single quotes.

The altova:evaluate function can optionally take additional arguments. These arguments
are the values of in-scope variables that have the names p1, p2, p3... pN. Note the following
points about usage: (i) The variables must be defined with names of the form pX, where X is
an integer; (ii) the altova:evaluate function's arguments (see signature above), from the
second argument onwards, provide the values of the variables, with the sequence of the
arguments corresponding to the numerically ordered sequence of variables: p1 to pN: The
second argument will be the value of the variable p1, the third argument that of the variable
p2, and so on; (iii) The variable values must be of type item*.

Example
<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />

<xsl:value-of select="altova:evaluate($xpath, 10, 20, 'hi')" />
outputs "hi 20 10"

In the listing above, notice the following:

The second argument of the altova:evaluate expression is the value assigned
to the variable $p1, the third argument that assigned to the variable $p2, and so
on.
Notice that the fourth argument of the function is a string value, indicated by its
being enclosed in quotes.
The select attribute of the xs:variable element supplies the XPath expression.
Since this expression must be of type xs:string, it is enclosed in single quotes.

Examples to further illustrate the use of variables
<xsl:variable name="xpath" select="'$p1'" />
<xsl:value-of select="altova:evaluate($xpath, //Name[1])" />
Outputs value of the first Name element.

<xsl:variable name="xpath" select="'$p1'" />
<xsl:value-of select="altova:evaluate($xpath, '//Name[1]')" />

Outputs "//Name[1]"

The altova:evaluate() extension function is useful in situations where an XPath
expression in the XSLT stylesheet contains one or more parts that must be evaluated
dynamically. For example, consider a situation in which a user enters his request for the

416 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

sorting criterion and this criterion is stored in the attribute UserReq/@sortkey. In the
stylesheet, you could then have the expression: <xsl:sort
select="altova:evaluate(../UserReq/@sortkey)" order="ascending"/>. The

altova:evaluate() function reads the sortkey attribute of the UserReq child element of the
parent of the context node. Say the value of the sortkey attribute is Price, then Price is
returned by the altova:evaluate() function and becomes the value of the select attribute:
<xsl:sort select="Price" order="ascending"/>. If this sort instruction occurs within

the context of an element called Order, then the Order elements will be sorted according to
the values of their Price children. Alternatively, if the value of @sortkey were, say, Date,
then the Order elements would be sorted according to the values of their Date children. So
the sort criterion for Order is selected from the sortkey attribute at runtime. This could not
have been achieved with an expression like: <xsl:sort select="../UserReq/@sortkey"

order="ascending"/>. In the case shown above, the sort criterion would be the sortkey
attribute itself, not Price or Date (or any other current content of sortkey).

Note: The static context includes namespaces, types, and functions—but not variables—
from the calling environment. The base URI and default namespace are inherited.

More examples
Static variables: <xsl:value-of select="$i3, $i2, $i1" />
Outputs the values of three variables.

Dynamic XPath expression with dynamic variables:
<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />
<xsl:value-of select="altova:evaluate($xpath, 10, 20, 30)" />
Outputs "30 20 10"

Dynamic XPath expression with no dynamic variable:
<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />
<xsl:value-of select="altova:evaluate($xpath)" />
Outputs error: No variable defined for $p3.

encode-for-rtf [altova:]

altova:encode-for-rtf(input as xs:string, preserveallwhitespace as

xs:boolean, preservenewlines as xs:boolean) as xs:string XSLT2 XSLT3

Converts the input string into code for RTF. Whitespace and new lines will be preserved
according to the boolean value specified for their respective arguments.

[Top]

XBRL functions
Altova XBRL functions can be used only with editions of Altova products that have XBRL support.

xbrl-footnotes [altova:]

altova:xbrl-footnotes(node()) as node()* XSLT2 XSLT3

Takes a node as its input argument and returns the set of XBRL footnote nodes referenced

mailto:.

© 2014 Altova GmbH

Engine information 417Appendices

Altova MapForce 2015

by the input node.

xbrl-labels [altova:]

altova:xbrl-labels(xs:QName, xs:string) as node()* XSLT2 XSLT3

Takes two input arguments: a node name and the taxonomy file location containing the node.
The function returns the XBRL label nodes associated with the input node.

[Top]

XPath/XQuery Functions: Date and Time

Altova's date/time extension functions can be used in XPath and XQuery expressions and provide
additional functionality for the processing of data held as XML Schema's various date and time
datatypes. The functions in this section can be used with Altova's XPath 3.0 and XQuery 3.0
engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability
Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions namespace,
http://www.altova.com/xslt-extensions, and are indicated in this section with the prefix

altova:, which is assumed to be bound to this namespace. Note that, in future versions of your

product, support for a function might be discontinued or the behavior of individual functions might
change. Consult the documentation of future releases for information about support for Altova
extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3

Grouped by functionality
Add duration to xs:dateTime and return xs:dateTime
Add a duration to xs:date and return xs:date
Add a duration to xs:time and return xs:time
Remove timezone from functions that generate current date/time
Return weekday as integer from date
Return week number as integer from date
Build date, time, or duration type from lexical components of each type
Construct date, dateTime, or time type from string input
Age-related functions

Grouped alphabetically
altova:add-days-to-date
altova:add-days-to-dateTime
altova:add-hours-to-dateTime
altova:add-hours-to-time
altova:add-minutes-to-dateTime
altova:add-minutes-to-time
altova:add-months-to-date

418 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

altova:add-months-to-dateTime
altova:add-seconds-to-dateTime
altova:add-seconds-to-time
altova:add-years-to-date
altova:add-years-to-dateTime
altova:age
altova:age-details
altova:build-date
altova:build-duration
altova:build-time
altova:current-dateTime-no-TZ
altova:current-date-no-TZ
altova:current-time-no-TZ
altova:parse-date
altova:parse-dateTime
altova:parse-time
altova:weekday-from-date
altova:weekday-from-dateTime
altova:weeknumber-from-date
altova:weeknumber-from-dateTime

[Top]

Add a duration to xs:dateTime XP3 XQ3

These functions add a duration to xs:dateTime and return xs:dateTime. The xs:dateTime type

has a format of CCYY-MM-DDThh:mm:ss.sss. This is a concatenation of the xs:date and xs:time
formats separated by the letter T. A timezone suffix+01:00 (for example) is optional.

add-years-to-dateTime [altova:]

altova:add-years-to-dateTime(DateTime as xs:dateTime, Years as xs:integer) as
xs:dateTime XP3 XQ3

Adds a duration in years to an xs:dateTime (see examples below). The second argument is
the number of years to be added to the xs:dateTime supplied as the first argument. The
result is of type xs:dateTime.

Examples
altova:add-years-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10)

returns 2024-01-15T14:00:00
altova:add-years-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -4)

returns 2010-01-15T14:00:00

add-months-to-dateTime [altova:]

altova:add-months-to-dateTime(DateTime as xs:dateTime, Months as xs:integer)

as xs:dateTime XP3 XQ3

Adds a duration in months to an xs:dateTime (see examples below). The second argument
is the number of months to be added to the xs:dateTime supplied as the first argument. The
result is of type xs:dateTime.

Examples
altova:add-months-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10)

returns 2014-11-15T14:00:00
altova:add-months-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -2)

© 2014 Altova GmbH

Engine information 419Appendices

Altova MapForce 2015

returns 2013-11-15T14:00:00

add-days-to-dateTime [altova:]

altova:add-days-to-dateTime(DateTime as xs:dateTime, Days as xs:integer) as
xs:dateTime XP3 XQ3

Adds a duration in days to an xs:dateTime (see examples below). The second argument is
the number of days to be added to the xs:dateTime supplied as the first argument. The
result is of type xs:dateTime.

Examples
altova:add-days-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10)

returns 2014-01-25T14:00:00
altova:add-days-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -8)

returns 2014-01-07T14:00:00

add-hours-to-dateTime [altova:]

altova:add-hours-to-dateTime(DateTime as xs:dateTime, Hours as xs:integer) as
xs:dateTime XP3 XQ3

Adds a duration in hours to an xs:dateTime (see examples below). The second argument is
the number of hours to be added to the xs:dateTime supplied as the first argument. The
result is of type xs:dateTime.

Examples
altova:add-hours-to-dateTime(xs:dateTime("2014-01-15T13:00:00"), 10)

returns 2014-01-15T23:00:00
altova:add-hours-to-dateTime(xs:dateTime("2014-01-15T13:00:00"), -8)

returns 2014-01-15T05:00:00

add-minutes-to-dateTime [altova:]

altova:add-minutes-to-dateTime(DateTime as xs:dateTime, Minutes as

xs:integer) as xs:dateTime XP3 XQ3

Adds a duration in minutes to an xs:dateTime (see examples below). The second argument
is the number of minutes to be added to the xs:dateTime supplied as the first argument. The
result is of type xs:dateTime.

Examples
altova:add-minutes-to-dateTime(xs:dateTime("2014-01-15T14:10:00"), 45)

returns 2014-01-15T14:55:00
altova:add-minutes-to-dateTime(xs:dateTime("2014-01-15T14:10:00"), -5)

returns 2014-01-15T14:05:00

add-seconds-to-dateTime [altova:]

altova:add-seconds-to-dateTime(DateTime as xs:dateTime, Seconds as

xs:integer) as xs:dateTime XP3 XQ3

Adds a duration in seconds to an xs:dateTime (see examples below). The second argument
is the number of seconds to be added to the xs:dateTime supplied as the first argument.
The result is of type xs:dateTime.

Examples

420 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

altova:add-seconds-to-dateTime(xs:dateTime("2014-01-15T14:00:10"), 20)

returns 2014-01-15T14:00:30
altova:add-seconds-to-dateTime(xs:dateTime("2014-01-15T14:00:10"), -5)

returns 2014-01-15T14:00:05

[Top]

Add a duration to xs:date XP3 XQ3

These functions add a duration to xs:date and return xs:date. The xs:date type has a format of

CCYY-MM-DD.

add-years-to-date [altova:]

altova:add-years-to-date(Date as xs:date, Years as xs:integer) as xs:date

XP3 XQ3

 Adds a duration in years to a date. The second argument is the number of years to be
added to the xs:date supplied as the first argument. The result is of type xs:date.

Examples
altova:add-years-to-date(xs:date("2014-01-15"), 10) returns 2024-01-15

altova:add-years-to-date(xs:date("2014-01-15"), -4) returns 2010-01-15

add-months-to-date [altova:]

altova:add-months-to-date(Date as xs:date, Months as xs:integer) as xs:date

XP3 XQ3

Adds a duration in months to a date. The second argument is the number of months to be
added to the xs:date supplied as the first argument. The result is of type xs:date.

Examples
altova:add-months-to-date(xs:date("2014-01-15"), 10) returns 2014-11-15

altova:add-months-to-date(xs:date("2014-01-15"), -2) returns 2013-11-15

add-days-to-date [altova:]

altova:add-days-to-date(Date as xs:date, Days as xs:integer) as xs:date XP3

XQ3

Adds a duration in days to a date. The second argument is the number of days to be added
to the xs:date supplied as the first argument. The result is of type xs:date.

Examples
altova:add-days-to-date(xs:date("2014-01-15"), 10) returns 2014-01-25

altova:add-days-to-date(xs:date("2014-01-15"), -8) returns 2014-01-07

[Top]

Add a duration to xs:time XP3 XQ3

These functions add a duration to xs:time and return xs:time. The xs:time type has a lexical

form of hh:mm:ss.sss. An optional time zone may be suffixed. The letter Z indicates Coordinated

© 2014 Altova GmbH

Engine information 421Appendices

Altova MapForce 2015

Universal Time (UTC). All other time zones are represented by their difference from UTC in the
format +hh:mm, or -hh:mm. If no time zone value is present, it is considered unknown; it is not
assumed to be UTC.

add-hours-to-time [altova:]

altova:add-hours-to-time(Time as xs:time, Hours as xs:integer) as xs:time

XP3 XQ3

Adds a duration in hours to a time. The second argument is the number of hours to be added
to the xs:time supplied as the first argument. The result is of type xs:time.

Examples
altova:add-hours-to-time(xs:time("11:00:00"), 10) returns 21:00:00

altova:add-hours-to-time(xs:time("11:00:00"), -7) returns 04:00:00

add-minutes-to-time [altova:]

altova:add-minutes-to-time(Time as xs:time, Minutes as xs:integer) as xs:time

 XP3 XQ3

Adds a duration in minutes to a time. The second argument is the number of minutes to be
added to the xs:time supplied as the first argument. The result is of type xs:time.

Examples
altova:add-minutes-to-time(xs:time("14:10:00"), 45) returns 14:55:00

altova:add-minutes-to-time(xs:time("14:10:00"), -5) returns 14:05:00

add-seconds-to-time [altova:]

altova:add-seconds-to-time(Time as xs:time, Minutes as xs:integer) as xs:time

 XP3 XQ3

Adds a duration in seconds to a time. The second argument is the number of seconds to be
added to the xs:time supplied as the first argument. The result is of type xs:time. The
Seconds component can be in the range of 0 to 59.999.

Examples
altova:add-seconds-to-time(xs:time("14:00:00"), 20) returns 14:00:20

altova:add-seconds-to-time(xs:time("14:00:00"), 20.895) returns
14:00:20.895

[Top]

Remove the timezone part from date/time datatypes XP3 XQ3

These functions remove the timezone from the current xs:dateTime, xs:date, or xs:time values,

respectively. Note that the difference between xs:dateTime and xs:dateTimeStamp is that in the
case of the latter the timezone part is required (while it is optional in the case of the former). So
the format of an xs:dateTimeStamp value is: CCYY-MM-DDThh:mm:ss.sss±hh:mm. or CCYY-MM-
DDThh:mm:ss.sssZ. If the date and time is read from the system clock as xs:dateTimeStamp,
the current-dateTime-no-TZ() function can be used to remove the timezone if so required.

current-dateTime-no-TZ [altova:]

altova:current-dateTime-no-TZ() as xs:dateTime XP3 XQ3

This function takes no argument. It removes the timezone part of current-dateTime()

422 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

(which is the current date-and-time according to the system clock) and returns an
xs:dateTime value.

Examples
If the current dateTime is 2014-01-15T14:00:00+01:00:

altova:current-dateTime-no-TZ() returns 2014-01-15T14:00:00

current-date-no-TZ [altova:]

altova:current-date-no-TZ() as xs:date XP3 XQ3

This function takes no argument. It removes the timezone part of current-date() (which is
the current date according to the system clock) and returns an xs:date value.

Examples
If the current date is 2014-01-15+01:00:

altova:current-date-no-TZ() returns 2014-01-15

current-time-no-TZ [altova:]

altova:current-time-no-TZ() as xs:time XP3 XQ3

This function takes no argument. It removes the timezone part of current-time() (which is
the current time according to the system clock) and returns an xs:time value.

Examples
If the current time is 14:00:00+01:00:

altova:current-time-no-TZ() returns 14:00:00

[Top]

Return the weekday from xs:dateTime or xs:date XP3 XQ3

These functions return the weekday (as an integer) from xs:dateTime or xs:date. The days of
the week are numbered (using the American format) from 1 to 7, with Sunday=1. In the European
format, the week starts with Monday (=1). The American format, where Sunday=1, can be set by
using the integer 0 where an integer is accepted to indicate the format.

weekday-from-dateTime [altova:]

altova:weekday-from-dateTime(DateTime as xs:dateTime) as xs:integer XP3 XQ3

Takes a date-with-time as its single argument and returns the day of the week of this date as
an integer. The weekdays are numbered starting with Sunday=1. If the European format is
required (where Monday=1), use the other signature of this function (see next signature
below).

Examples
altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00")) returns

2, which would indicate a Monday.

altova:weekday-from-dateTime(DateTime as xs:dateTime, Format as xs:integer)

as xs:integer XP3 XQ3

Takes a date-with-time as its first argument and returns the day of the week of this date as
an integer. The weekdays are numbered starting with Monday=1. If the second (integer)
argument is 0, then the weekdays are numbered 1 to 7 starting with Sunday=1. If the second

© 2014 Altova GmbH

Engine information 423Appendices

Altova MapForce 2015

argument is an integer other than 0, then Monday=1. If there is no second argument, the
function is read as having the other signature of this function (see previous signature).

Examples
altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 1)

returns 1, which would indicate a Monday
altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 4)

returns 1, which would indicate a Monday
altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 0)

returns 2, which would indicate a Monday.

weekday-from-date [altova:]

altova:weekday-from-date(Date as xs:date) as xs:integer XP3 XQ3

Takes a date as its single argument and returns the day of the week of this date as an
integer. The weekdays are numbered starting with Sunday=1. If the European format is
required (where Monday=1), use the other signature of this function (see next signature
below).

Examples
altova:weekday-from-date(xs:date("2014-02-03+01:00")) returns 2, which would

indicate a Monday.

altova:weekday-from-date(Date as xs:date, Format as xs:integer) as xs:integer

 XP3 XQ3

Takes a date as its first argument and returns the day of the week of this date as an integer.
The weekdays are numbered starting with Monday=1. If the second (Format) argument is 0,
then the weekdays are numbered 1 to 7 starting with Sunday=1. If the second argument is an
integer other than 0, then Monday=1. If there is no second argument, the function is read as
having the other signature of this function (see previous signature).

Examples
altova:weekday-from-date(xs:date("2014-02-03"), 1) returns 1, which would

indicate a Monday
altova:weekday-from-date(xs:date("2014-02-03"), 4) returns 1, which would

indicate a Monday
altova:weekday-from-date(xs:date("2014-02-03"), 0) returns 2, which would

indicate a Monday.

[Top]

Return the week number from xs:dateTime or xs:date XP2 XQ1 XP3 XQ3

These functions return the week number (as an integer) from xs:dateTime or xs:date. Week-
numbering is available in the US, ISO/European, and Islamic calendar formats. Week-numbering
is different in these calendar formats because the week is considered to start on different days (on
Sunday in the US format, Monday in the ISO/European format, and Saturday in the Islamic
format).

weeknumber-from-date [altova:]

altova:weeknumber-from-date(Date as xs:date, Calendar as xs:integer) as
xs:integer XP2 XQ1 XP3 XQ3

424 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

Returns the week number of the submitted Date argument as an integer. The second

argument (Calendar) specifies the calendar system to follow.

Supported Calendar values are:

 0 = US calendar (week starts Sunday)

 1 = ISO standard, European calendar (week starts Monday)

 2 = Islamic calendar (week starts Saturday)

Default is 0.

Examples
altova:weeknumber-from-date(xs:date("2014-03-23"), 0) returns 13

altova:weeknumber-from-date(xs:date("2014-03-23"), 1) returns 12

altova:weeknumber-from-date(xs:date("2014-03-23"), 2) returns 13

altova:weeknumber-from-date(xs:date("2014-03-23")) returns 13

The day of the date in the examples above (2014-03-23) is Sunday. So the US and
Islamic calendars are one week ahead of the European calendar on this day.

weeknumber-from-dateTime [altova:]

altova:weeknumber-from-dateTime(DateTime as xs:dateTime, Calendar as

xs:integer) as xs:integer XP2 XQ1 XP3 XQ3

Returns the week number of the submitted DateTime argument as an integer. The second

argument (Calendar) specifies the calendar system to follow.

Supported Calendar values are:

 0 = US calendar (week starts Sunday)

 1 = ISO standard, European calendar (week starts Monday)

 2 = Islamic calendar (week starts Saturday)

Default is 0.

Examples
altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 0)

returns 13
altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 1)

returns 12
altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 2)

returns 13
altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"))

returns 13

The day of the dateTime in the examples above (2014-03-23T00:00:00) is Sunday. So
the US and Islamic calendars are one week ahead of the European calendar on this day.

[Top]

Build date, time, and duration datatypes from their lexical components XP3 XQ3

The functions take the lexical components of the xs:date, xs:time, or xs:duration datatype as
input arguments and combine them to build the respective datatype.

© 2014 Altova GmbH

Engine information 425Appendices

Altova MapForce 2015

build-date [altova:]

altova:build-date(Year as xs:integer, Month as xs:integer, Date as

xs:integer) as xs:date XP3 XQ3

The first, second, and third arguments are, respectively, the year, month, and date. They are
combined to build a value of xs:date type. The values of the integers must be within the
correct range of that particular date part. For example, the second argument (for the month
part) should not be greater than 12.

Examples
altova:build-date(2014, 2, 03) returns 2014-02-03

build-time [altova:]

altova:build-time(Hours as xs:integer, Minutes as xs:integer, Seconds as

xs:integer) as xs:time XP3 XQ3

The first, second, and third arguments are, respectively, the hour (0 to 23), minutes (0 to 59),
and seconds (0 to 59) values. They are combined to build a value of xs:time type. The
values of the integers must be within the correct range of that particular time part. For
example, the second (Minutes) argument should not be greater than 59. To add a timezone
part to the value, use the other signature of this function (see next signature).

Examples
altova:build-time(23, 4, 57) returns 23:04:57

altova:build-time(Hours as xs:integer, Minutes as xs:integer, Seconds as

xs:integer, TimeZone as xs:string) as xs:time XP3 XQ3

The first, second, and third arguments are, respectively, the hour (0 to 23), minutes (0 to 59),
and seconds (0 to 59) values. The fourth argument is a string that provides the timezone part
of the value. The four arguments are combined to build a value of xs:time type. The values of
the integers must be within the correct range of that particular time part. For example, the
second (Minutes) argument should not be greater than 59.

Examples
altova:build-time(23, 4, 57, '+1') returns 23:04:57+01:00

build-duration [altova:]

altova:build-duration(Years as xs:integer, Months as xs:integer) as
xs:yearMonthDuration XP3 XQ3

Takes two arguments to build a value of type xs:yearMonthDuration. The first arguments
provides the Years part of the duration value, while the second argument provides the Months
part. If the second (Months) argument is greater than or equal to 12, then the integer is
divided by 12; the quotient is added to the first argument to provide the Years part of the
duration value while the remainder (of the division) provides the Months part. To build a
duration of type xs:dayTimeDuration., see the next signature.

Examples
altova:build-duration(2, 10) returns P2Y10M

altova:build-duration(14, 27) returns P16Y3M

altova:build-duration(2, 24) returns P4Y

altova:build-duration(Days as xs:integer, Hours as xs:integer, Minutes as

xs:integer, Seconds as xs:integer) as xs:dayTimeDuration XP3 XQ3

426 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

Takes four arguments and combines them to build a value of type xs:dayTimeDuration. The
first argument provides the Days part of the duration value, the second, third, and fourth
arguments provide, respectively, the Hours, Minutes, and Seconds parts of the duration
value. Each of the three Time arguments is converted to an equivalent value in terms of the
next higher unit and the result is used for calculation of the total duration value. For example,
72 seconds is converted to 1M+12S (1 minute and 12 seconds), and this value is used for
calculation of the total duration value. To build a duration of type xs:yearMonthDuration.,
see the previous signature.

Examples
altova:build-duration(2, 10, 3, 56) returns P2DT10H3M56S

altova:build-duration(1, 0, 100, 0) returns P1DT1H40M

altova:build-duration(1, 0, 0, 3600) returns P1DT1H

[Top]

Construct date, dateTime, and time datatypes from string input XP2 XQ1 XP3 XQ3

These functions take strings as arguments and construct xs:date, xs:dateTime, or xs:time
datatypes. The string is analyzed for components of the datatype based on a submitted pattern
argument.

parse-date [altova:]

altova:parse-date(Date as xs:string, DatePattern as xs:string) as xs:date

XP2 XQ1 XP3 XQ3

Returns the input string Date as an xs:date value. The second argument DatePattern

specifies the pattern (sequence of components) of the input string. DatePattern is described

with the component specifiers listed below and with component separators that can be any
character. See the examples below.

D Date

M Month

Y Year

The pattern in DatePattern must match the pattern in Date. Since the output is of type

xs:date, the output will always have the lexical format YYYY-MM-DD.

Examples
altova:parse-date(xs:string("06-03-2014"), "[D]-[M]-[Y]") returns 2014-03-

06
altova:parse-date(xs:string("06-03-2014"), "[M]-[D]-[Y]") returns 2014-06-
03

altova:parse-date("06/03/2014", "[M]/[D]/[Y]") returns 2014-06-03

altova:parse-date("06 03 2014", "[M] [D] [Y]") returns 2014-06-03

altova:parse-date("6 3 2014", "[M] [D] [Y]") returns 2014-06-03

parse-dateTime [altova:]

altova:parse-dateTime(DateTime as xs:string, DateTimePattern as xs:string) as
xs:dateTime XP2 XQ1 XP3 XQ3

© 2014 Altova GmbH

Engine information 427Appendices

Altova MapForce 2015

Returns the input string DateTime as an xs:dateTime value.The second argument

DateTimePattern specifies the pattern (sequence of components) of the input string.

DateTimePattern is described with the component specifiers listed below and with

component separators that can be any character. See the examples below.

D Date

M Month

Y Year

H Hour

m minutes

s seconds

The pattern in DateTimePattern must match the pattern in DateTime. Since the output is of

type xs:dateTime, the output will always have the lexical format YYYY-MM-DDTHH:mm:ss.

Examples
altova:parse-dateTime(xs:string("06-03-2014 13:56:24"), "[D]-[M]-[Y]

[H]:[m]:[s]") returns 2014-03-06T13:56:24
altova:parse-dateTime("time=13:56:24; date=06-03-2014", "time=[H]:[m]:

[s]; date=[D]-[M]-[Y]") returns 2014-03-06T13:56:24

parse-time [altova:]

altova:parse-time(Time as xs:string, TimePattern as xs:string) as xs:time

XP2 XQ1 XP3 XQ3

Returns the input string Time as an xs:time value.The second argument TimePattern

specifies the pattern (sequence of components) of the input string. TimePattern is described

with the component specifiers listed below and with component separators that can be any
character. See the examples below.

H Hour

m minutes

s seconds

The pattern in TimePattern must match the pattern in Time. Since the output is of type

xs:time, the output will always have the lexical format HH:mm:ss.

Examples
altova:parse-time(xs:string("13:56:24"), "[H]:[m]:[s]") returns 13:56:24

altova:parse-time("13-56-24", "[H]-[m]") returns 13:56:00

altova:parse-time("time=13h56m24s", "time=[H]h[m]m[s]s") returns 13:56:24

altova:parse-time("time=24s56m13h", "time=[s]s[m]m[H]h") returns 13:56:24

[Top]

Age-related functions XP3 XQ3

These functions return the age as calculated (i) between one input argument date and the current

428 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

date, or (ii) between two input argument dates. The altova:age function returns the age in terms

of years, the altova:age-details function returns the age as a sequence of three integers giving

the years, months, and days of the age.

age [altova:]

altova:age(StartDate as xs:date) as xs:integer XP3 XQ3

Returns an integer that is the age in years of some object, counting from a start-date
submitted as the argument and ending with the current date (taken from the system clock). If
the input argument is a date anything greater than or equal to one year in the future, the
return value will be negative.

Examples
If the current date is 2014-01-15:

altova:age(xs:date("2013-01-15")) returns 1

altova:age(xs:date("2013-01-16")) returns 0

altova:age(xs:date("2015-01-15")) returns -1

altova:age(xs:date("2015-01-14")) returns 0

altova:age(StartDate as xs:date, EndDate as xs:date) as xs:integer XP3 XQ3

Returns an integer that is the age in years of some object, counting from a start-date that is
submitted as the first argument up to an end-date that is the second argument. The return
value will be negative if the first argument is one year or more later than the second
argument.

Examples
If the current date is 2014-01-15:

altova:age(xs:date("2000-01-15"), xs:date("2010-01-15")) returns 10

altova:age(xs:date("2000-01-15"), current-date()) returns 14 if the current

date is 2014-01-15
altova:age(xs:date("2014-01-15"), xs:date("2010-01-15")) returns -4

age-details [altova:]

altova:age-details(InputDate as xs:date) as (xs:integer)* XP3 XQ3

Returns three integers that are, respectively, the years, months, and days between the date
that is submitted as the argument and the current date (taken from the system clock). The
sum of the returned years+months+days together gives the total time difference between the
two dates (the input date and the current date). The input date may have a value earlier or
later than the current date, but whether the input date is earlier or later is not indicated by the
sign of the return values; the return values are always positive.

Examples
If the current date is 2014-01-15:

altova:age-details(xs:date("2014-01-16")) returns (0 0 1)

altova:age-details(xs:date("2014-01-14")) returns (0 0 1)

altova:age-details(xs:date("2013-01-16")) returns (1 0 1)

altova:age-details(current-date()) returns (0 0 0)

altova:age-details(Date-1 as xs:date, Date-2 as xs:date) as (xs:integer)* XP3

 XQ3

Returns three integers that are, respectively, the years, months, and days between the two
argument dates. The sum of the returned years+months+days together gives the total time
difference between the two input dates; it does not matter whether the earlier or later of the
two dates is submitted as the first argument. The return values do not indicate whether the

© 2014 Altova GmbH

Engine information 429Appendices

Altova MapForce 2015

input date occurs earlier or later than the current date. Return values are always positive.
Examples
altova:age-details(xs:date("2014-01-16"), xs:date("2014-01-15")) returns

(0 0 1)
altova:age-details(xs:date("2014-01-15"), xs:date("2014-01-16")) returns

(0 0 1)

[Top]

XPath/XQuery Functions: String

The following general-purpose XPath/XQuery extension functions are supported in the current
version of your Altova product and can be used in (i) XPath expressions in an XSLT context, or (ii)
XQuery expressions in an XQuery document.

Note about naming of functions and language applicability
Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions namespace,
http://www.altova.com/xslt-extensions, and are indicated in this section with the prefix

altova:, which is assumed to be bound to this namespace. Note that, in future versions of your

product, support for a function might be discontinued or the behavior of individual functions might
change. Consult the documentation of future releases for information about support for Altova
extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3

camel-case [altova:]

altova:camel-case(InputString as xs:string) as xs:string XP3 XQ3

Returns the input string InputString in CamelCase. The string is analyzed using the regular

expression '\s' (which is a shortcut for the whitespace character). The first non-whitespace

character after a whitespace or sequence of consecutive whitespaces is capitalized. The first
character in the output string is capitalized.

Examples
altova:camel-case("max") returns Max

altova:camel-case("max max") returns Max Max

altova:camel-case("file01.xml") returns File01.xml

altova:camel-case("file01.xml file02.xml") returns File01.xml File02.xml

altova:camel-case("file01.xml file02.xml") returns File01.xml

File02.xml
altova:camel-case("file01.xml -file02.xml") returns File01.xml -file02.xml

altova:camel-case(InputString as xs:string, SplitChars as xs:string, IsRegex

 as xs:boolean) as xs:string XP3 XQ3

Converts the input string InputString to camel case by using SplitChars to determine the

character/s that trigger the next capitalization. SplitChars is used as a regular expression

430 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

when IsRegex = true(), or as plain characters when IsRegex = false(). The first

character in the output string is capitalized.
Examples
altova:camel-case("setname getname", "set|get", true()) returns setName

getName
altova:camel-case("altova\documents\testcases", "\", false()) returns
Altova\Documents\Testcases

char [altova:]

altova:char(Position as xs:integer) as xs:string XP3 XQ3

Returns a string containing the character at the position specified by the Position
argument, in the string obtained by converting the value of the context item to xs:string.
The result string will be empty if no character exists at the index submitted by the Position
argument.

Examples
If the context item is 1234ABCD:

altova:char(2) returns 2

altova:char(5) returns A

altova:char(9) returns the empty string.

altova:char(-2) returns the empty string.

altova:char(InputString as xs:string, Position as xs:integer) as xs:string

XP3 XQ3

Returns a string containing the character at the position specified by the Position
argument, in the string submitted as the InputString argument. The result string will be
empty if no character exists at the index submitted by the Position argument.

Examples
altova:char("2014-01-15", 5) returns -

altova:char("USA", 1) returns U

altova:char("USA", 10) returns the empty string.

altova:char("USA", -2) returns the empty string.

first-chars [altova:]

altova:first-chars(X-Number as xs:integer) as xs:string XP3 XQ3

Returns a string containing the first X-Number of characters of the string obtained by
converting the value of the context item to xs:string.

Examples
If the context item is 1234ABCD:

altova:first-chars(2) returns 12

altova:first-chars(5) returns 1234A

altova:first-chars(9) returns 1234ABCD

altova:first-chars(InputString as xs:string, X-Number as xs:integer) as
xs:string XP3 XQ3

Returns a string containing the first X-Number of characters of the string submitted as the
InputString argument.

Examples
altova:first-chars("2014-01-15", 5) returns 2014-

© 2014 Altova GmbH

Engine information 431Appendices

Altova MapForce 2015

altova:first-chars("USA", 1) returns U

last-chars [altova:]

altova:last-chars(X-Number as xs:integer) as xs:string XP3 XQ3

Returns a string containing the last X-Number of characters of the string obtained by
converting the value of the context item to xs:string.

Examples
If the context item is 1234ABCD:

altova:last-chars(2) returns CD

altova:last-chars(5) returns 4ABCD

altova:last-chars(9) returns 1234ABCD

altova:last-chars(InputString as xs:string, X-Number as xs:integer) as
xs:string XP3 XQ3

Returns a string containing the last X-Number of characters of the string submitted as the
InputString argument.

Examples
altova:last-chars("2014-01-15", 5) returns 01-15

altova:last-chars("USA", 10) returns USA

pad-string-left [altova:]

altova:pad-string-left(StringToPad as xs:string, Repeats as xs:integer,

PadCharacter as xs:string) as xs:string XP3 XQ3

The PadCharacter argument is a single character that is padded to the left of the string
submitted as the StringToPad argument. The Repeats argument gives the number of times
the pad-character is to be repeated at the left of StringToPad.

Examples
altova:pad-string-left('AP', 1, 'Z') returns 'ZAP'

altova:pad-string-left('AP', 3, 'Z') returns 'ZZZAP'

altova:pad-string-left('AP', 0, 'Z') returns 'AP'

altova:pad-string-left('AP', 3, 'YZ') returns a pad-character-too-long error

pad-string-right [altova:]

altova:pad-string-right(StringToPad as xs:string, Repeats as xs:integer,

PadCharacter as xs:string) as xs:string XP3 XQ3

The PadCharacter argument is a single character that is padded to the right of the string
submitted as the StringToPad argument. The Repeats argument gives the number of times
the pad-character is to be repeated at the right of StringToPad.

Examples
altova:pad-string-right('AP', 1, 'Z') returns 'APZ'

altova:pad-string-right('AP', 3, 'Z') returns 'APZZZ'

altova:pad-string-right('AP', 0, 'Z') returns 'AP'

altova:pad-string-right('AP', 3, 'YZ') returns a pad-character-too-long error

repeat-string [altova:]

432 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

altova:repeat-string(InputString as xs:string, Repeats as xs:integer) as
xs:string XP2 XQ1 XP3 XQ3

Generates a string that is composed of the first InputString argument repeated Repeats
number of times.

Examples
altova:repeat-string("Altova #", 3) returns "Altova #Altova #Altova #"

substring-after-last [altova:]

altova:substring-after-last(MainString as xs:string, CheckString as

xs:string) as xs:string XP3 XQ3

If CheckString is found in MainString, then the substring that occurs after CheckString in
MainString is returned. If CheckString is not found in MainString, then the empty string is
returned. If CheckString is an empty string, then MainString is returned in its entirety. If
there is more than one occurrence of CheckString in MainString, then the substring after
the last occurrence of CheckString is returned.

Examples
altova:substring-after-last('ABCDEFGH', 'B') returns 'CDEFGH'

altova:substring-after-last('ABCDEFGH', 'BC') returns 'DEFGH'

altova:substring-after-last('ABCDEFGH', 'BD') returns ''

altova:substring-after-last('ABCDEFGH', 'Z') returns ''

altova:substring-after-last('ABCDEFGH', '') returns 'ABCDEFGH'

altova:substring-after-last('ABCD-ABCD', 'B') returns 'CD'

altova:substring-after-last('ABCD-ABCD-ABCD', 'BCD') returns ''

substring-before-last [altova:]

altova:substring-before-last(MainString as xs:string, CheckString as

xs:string) as xs:string XP3 XQ3

If CheckString is found in MainString, then the substring that occurs before CheckString
in MainString is returned. If CheckString is not found in MainString, or if CheckString is
an empty string, then the empty string is returned. If there is more than one occurrence of
CheckString in MainString, then the substring before the last occurrence of CheckString
is returned.

Examples
altova:substring-before-last('ABCDEFGH', 'B') returns 'A'

altova:substring-before-last('ABCDEFGH', 'BC') returns 'A'

altova:substring-before-last('ABCDEFGH', 'BD') returns ''

altova:substring-before-last('ABCDEFGH', 'Z') returns ''

altova:substring-before-last('ABCDEFGH', '') returns ''

altova:substring-before-last('ABCD-ABCD', 'B') returns 'ABCD-A'

altova:substring-before-last('ABCD-ABCD-ABCD', 'ABCD') returns 'ABCD-

ABCD-'

substring-pos [altova:]

altova:substring-pos(StringToCheck as xs:string, StringToFind as xs:string)

as xs:integer XP3 XQ3

Returns the character position of the first occurrence of StringToFind in the string

© 2014 Altova GmbH

Engine information 433Appendices

Altova MapForce 2015

StringToCheck. The character position is returned as an integer. The first character of
StringToCheck has the position 1. If StringToFind does not occur within StringToCheck,
the integer 0 is returned. To check for the second or a later occurrence of StringToCheck,
use the next signature of this function.

Examples
altova:substring-pos('Altova', 'to') returns 3

altova:substring-pos('Altova', 'tov') returns 3

altova:substring-pos('Altova', 'tv') returns 0

altova:substring-pos('AltovaAltova', 'to') returns 3

altova:substring-pos(StringToCheck as xs:string, StringToFind as xs:string,

Integer as xs:integer) as xs:integer XP3 XQ3

Returns the character position of StringToFind in the string, StringToCheck. The search
for StringToFind starts from the character position given by the Integer argument; the
character substring before this position is not searched. The returned integer, however, is the
position of the found string within the entire string, StringToCheck. This signature is useful
for finding the second or a later position of a string that occurs multiple times with the
StringToCheck. If StringToFind does not occur within StringToCheck, the integer 0 is
returned.

Examples
altova:substring-pos('Altova', 'to', 1) returns 3

altova:substring-pos('Altova', 'to', 3) returns 3

altova:substring-pos('Altova', 'to', 4) returns 0

altova:substring-pos('Altova-Altova', 'to', 0) returns 3

altova:substring-pos('Altova-Altova', 'to', 4) returns 10

trim-string [altova:]

altova:trim-string(InputString as xs:string) as xs:string XP3 XQ3

This function takes an xs:string argument, removes any leading and trailing whitespace,
and returns a "trimmed" xs:string.

Examples
altova:trim-string(" Hello World ")) returns "Hello World"

altova:trim-string("Hello World ")) returns "Hello World"

altova:trim-string(" Hello World")) returns "Hello World"

altova:trim-string("Hello World")) returns "Hello World"

altova:trim-string("Hello World")) returns "Hello World"

trim-string-left [altova:]

altova:trim-string-left(InputString as xs:string) as xs:string XP3 XQ3

This function takes an xs:string argument, removes any leading whitespace, and returns a
left-trimmed xs:string.

Examples
altova:trim-string-left(" Hello World ")) returns "Hello World "

altova:trim-string-left("Hello World ")) returns "Hello World "

altova:trim-string-left(" Hello World")) returns "Hello World"

altova:trim-string-left("Hello World")) returns "Hello World"

altova:trim-string-left("Hello World")) returns "Hello World"

434 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

trim-string-right [altova:]

altova:trim-string-right(InputString as xs:string) as xs:string XP3 XQ3

This function takes an xs:string argument, removes any trailing whitespace, and returns a
right-trimmed xs:string.

Examples
altova:trim-string-right(" Hello World ")) returns " Hello World"

altova:trim-string-right("Hello World ")) returns "Hello World"

altova:trim-string-right(" Hello World")) returns " Hello World"

altova:trim-string-right("Hello World")) returns "Hello World"

altova:trim-string-right("Hello World")) returns "Hello World"

XPath/XQuery Functions: Miscellaneous

The following general-purpose XPath/XQuery extension functions are supported in the current
version of your Altova product and can be used in (i) XPath expressions in an XSLT context, or (ii)
XQuery expressions in an XQuery document.

Note about naming of functions and language applicability
Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions namespace,
http://www.altova.com/xslt-extensions, and are indicated in this section with the prefix

altova:, which is assumed to be bound to this namespace. Note that, in future versions of your

product, support for a function might be discontinued or the behavior of individual functions might
change. Consult the documentation of future releases for information about support for Altova
extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3

Auto-numbering functions
generate-auto-number [altova:]

altova:generate-auto-number(ID as xs:string, StartsWith as xs:double,

Increment as xs:double, ResetOnChange as xs:string) as xs:integer XP1 XP2 XQ1

 XP3 XQ3

Generates a number each time the function is called. The first number, which is generated
the first time the function is called, is specified by the StartsWith argument. Each
subsequent call to the function generates a new number, this number being incremented over
the previously generated number by the value specified in the Increment argument. In effect,
the altova:generate-auto-number function creates a counter having a name specified by
the ID argument, with this counter being incremented each time the function is called. If the
value of the ResetOnChange argument changes from that of the previous function call, then

© 2014 Altova GmbH

Engine information 435Appendices

Altova MapForce 2015

the value of the number to be generated is reset to the StartsWith value. Auto-numbering
can also be reset by using the altova:reset-auto-number function.

Examples
altova:generate-auto-number("ChapterNumber", 1, 1, "SomeString") will

return one number each time the function is called, starting with 1, and incrementing
by 1 with each call to the function. As long as the fourth argument remains
"SomeString" in each subsequent call, the incrementing will continue. When the value
of the fourth argument changes, the counter (called ChapterNumber) will reset to 1. The
value of ChapterNumber can also be reset by a call to the altova:reset-auto-
number function, like this: altova:reset-auto-number("ChapterNumber").

reset-auto-number [altova:]

altova:reset-auto-number(ID as xs:string) XP1 XP2 XQ1 XP3 XQ3

This function resets the number of the auto-numbering counter named in the ID argument.
The number is reset to the number specified by the StartsWith argument of the
altova:generate-auto-number function that created the counter named in the ID
argument.

Examples
altova:reset-auto-number("ChapterNumber") resets the number of the auto-

numbering counter named ChapterNumber that was created by the altova:generate-
auto-number function. The number is reset to the value of the StartsWith argument of
the altova:generate-auto-number function that created ChapterNumber.

[Top]

Numeric functions
hex-string-to-integer [altova:]

altova:hex-string-to-integer(HexString as xs:string) as xs:integer XP3 XQ3

Takes a string argument that is the Base-16 equivalent of an integer in the decimal system
(Base-10), and returns the decimal integer.

Examples
altova:hex-string-to-integer('1') returns 1

altova:hex-string-to-integer('9') returns 9

altova:hex-string-to-integer('A') returns 10

altova:hex-string-to-integer('B') returns 11

altova:hex-string-to-integer('F') returns 15

altova:hex-string-to-integer('G') returns an error

altova:hex-string-to-integer('10') returns 16

altova:hex-string-to-integer('01') returns 1

altova:hex-string-to-integer('20') returns 32

altova:hex-string-to-integer('21') returns 33

altova:hex-string-to-integer('5A') returns 90

altova:hex-string-to-integer('USA') returns an error

integer-to-hex-string [altova:]

436 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

altova:integer-to-hex-string(Integer as xs:integer) as xs:string XP3 XQ3

Takes an integer argument and returns its Base-16 equivalent as a string.
Examples
altova:integer-to-hex-string(1) returns '1'

altova:integer-to-hex-string(9) returns '9'

altova:integer-to-hex-string(10) returns 'A'

altova:integer-to-hex-string(11) returns 'B'

altova:integer-to-hex-string(15) returns 'F'

altova:integer-to-hex-string(16) returns '10'

altova:integer-to-hex-string(32) returns '20'

altova:integer-to-hex-string(33) returns '21'

altova:integer-to-hex-string(90) returns '5A'

[Top]

Sequence functions
attributes [altova:]

altova:attributes(AttributeName as xs:string) as attribute()* XP3 XQ3

Returns all attributes that have a local name which is the same as the name supplied in the
input argument, AttributeName. The search is case-sensitive and conducted along the
attribute:: axis.

Examples
altova:attributes("MyAttribute") returns MyAttribute()*

altova:attributes(AttributeName as xs:string, SearchOptions as xs:string) as
attribute()* XP3 XQ3

Returns all attributes that have a local name which is the same as the name supplied in the
input argument, AttributeName. The search is case-sensitive and conducted along the
attribute:: axis. The second argument is a string containing option flags. Available flags
are:
r = switches to a regular-expression search; AttributeName must then be a regular-

expression search string;
i = switches to a case-insensitive search;

p = includes the namespace prefix in the search; AttributeName should then contain the

namespace prefix, for example: altova:MyAttribute.
The flags can be written in any order. Invalid flags will generate errors. One or more flags can
be omitted. The empty string is allowed, and will produce the same effect as the function
having only one argument (previous signature). However, an empty sequence is not allowed.

Examples
altova:attributes("MyAttribute", "rip") returns MyAttribute()*

altova:attributes("MyAttribute", "pri") returns MyAttribute()*

altova:attributes("MyAttribute", "") returns MyAttribute()*

altova:attributes("MyAttribute", "Rip") returns an unrecognized-flag error.

altova:attributes("MyAttribute",) returns a missing-second-argument error.

elements [altova:]

© 2014 Altova GmbH

Engine information 437Appendices

Altova MapForce 2015

altova:elements(ElementName as xs:string) as element()* XP3 XQ3

Returns all elements that have a local name which is the same as the name supplied in the
input argument, ElementName. The search is case-sensitive and conducted along the
child:: axis.

Examples
altova:elements("MyElement") returns MyElement()*

altova:elements(ElementName as xs:string, SearchOptions as xs:string) as
element()* XP3 XQ3

Returns all elements that have a local name which is the same as the name supplied in the
input argument, ElementName. The search is case-sensitive and conducted along the
child:: axis. The second argument is a string containing option flags. Available flags are:
r = switches to a regular-expression search; ElementName must then be a regular-

expression search string;
i = switches to a case-insensitive search;

p = includes the namespace prefix in the search; ElementName should then contain the

namespace prefix, for example: altova:MyElement.
The flags can be written in any order. Invalid flags will generate errors. One or more flags can
be omitted. The empty string is allowed, and will produce the same effect as the function
having only one argument (previous signature). However, an empty sequence is not allowed.

Examples
altova:elements("MyElement", "rip") returns MyElement()*

altova:elements("MyElement", "pri") returns MyElement()*

altova:elements("MyElement", "") returns MyElement()*

altova:elements("MyElement", "Rip") returns an unrecognized-flag error.

altova:elements("MyElement",) returns a missing-second-argument error.

find-first [altova:]

altova:find-first((Sequence as item()*), (Condition(Sequence-Item as

xs:boolean)) as item()? XP3 XQ3

This function takes two arguments. The first argument is a sequence of one or more items of
any datatype. The second argument, Condition, is a reference to an XPath function that
takes one argument (has an arity of 1) and returns a boolean. Each item of Sequence is

submitted, in turn, to the function referenced in Condition. (Remember: This function takes
a single argument.) The first Sequence item that causes the function in Condition to

evaluate to true() is returned as the result of altova:find-first, and the iteration stops.

Examples
altova:find-first(5 to 10, function($a) {$a mod 2 = 0}) returns xs:integer

6
The Condition argument references the XPath 3.0 inline function, function(), which

declares an inline function named $a and then defines it. Each item in the Sequence

argument of altova:find-first is passed, in turn, to $a as its input value. The input

value is tested on the condition in the function definition ($a mod 2 = 0). The first input
value to satisfy this condition is returned as the result of altova:find-first (in this

case 6).

altova:find-first((1 to 10), (function($a) {$a+3=7})) returns xs:integer 4

438 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

Further examples
If the file C:\Temp\Customers.xml exists:

altova:find-first(("C:\Temp\Customers.xml", "http://www.altova.com/

index.html"), (doc-available#1)) returns xs:string C:\Temp\Customers.xml

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/

index.html exists:

altova:find-first(("C:\Temp\Customers.xml", "http://www.altova.com/

index.html"), (doc-available#1)) returns xs:string http://www.altova.com/
index.html

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/

index.html also does not exist:

altova:find-first(("C:\Temp\Customers.xml", "http://www.altova.com/

index.html"), (doc-available#1)) returns no result

Notes about the examples given above
The XPath 3.0 function, doc-available, takes a single string argument, which is used
as a URI, and returns true if a document node is found at the submitted URI. (The
document at the submitted URI must therefore be an XML document.)
The doc-available function can be used for Condition, the second argument of

altova:find-first, because it takes only one argument (arity=1), because it takes
an item() as input (a string which is used as a URI), and returns a boolean value.
Notice that the doc-available function is only referenced, not called. The #1 suffix that
is attached to it indicates a function with an arity of 1. In its entirety doc-available#1
simply means: Use the doc-availabe() function that has arity=1, passing to it as its
single argument, in turn, each of the items in the first sequence. As a result, each of
the two strings will be passed to doc-available(), which uses the string as a URI and

 tests whether a document node exists at the URI. If one does, the doc-available()

evaluates to true() and that string is returned as the result of the altova:find-first

function. Note about the doc-available() function: Relative paths are resolved relative to
the the current base URI, which is by default the URI of the XML document from which
the function is loaded.

find-first-combination [altova:]

altova:find-first-combination((Seq-01 as item()*), (Seq-02 as item()*),

(Condition(Seq-01-Item, Seq-02-Item as xs:boolean)) as item()* XP3 XQ3

This function takes three arguments:
The first two arguments, Seq-01 and Seq-02, are sequences of one or more items of

any datatype.
The third argument, Condition, is a reference to an XPath function that takes two

arguments (has an arity of 2) and returns a boolean.

The items of Seq-01 and Seq-02 are passed in ordered pairs (one item from each sequence

making up a pair) as the arguments of the function in Condition. The pairs are ordered as

follows.
If Seq-01 = X1, X2, X3 ... Xn

And Seq-02 = Y1, Y2, Y3 ... Yn

© 2014 Altova GmbH

Engine information 439Appendices

Altova MapForce 2015

Then (X1 Y1), (X1 Y2), (X1 Y3) ... (X1 Yn), (X2 Y1), (X2 Y2) ... (Xn Yn)

The first ordered pair that causes the Condition function to evaluate to true() is returned

as the result of altova:find-first-combination. Note that: (i) If the Condition function

iterates through the submitted argument pairs and does not once evaluate to true(), then

altova:find-first-combination returns No results; (ii) The result of altova:find-first-

combination will always be a pair of items (of any datatype) or no item at all.

Examples
altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b =

32}) returns the sequence of xs:integers (11, 21)
altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b =

33}) returns the sequence of xs:integers (11, 22)
altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b =

34}) returns the sequence of xs:integers (11, 23)

find-first-pair [altova:]

altova:find-first-pair((Seq-01 as item()*), (Seq-02 as item()*),

(Condition(Seq-01-Item, Seq-02-Item as xs:boolean)) as item()* XP3 XQ3

This function takes three arguments:
The first two arguments, Seq-01 and Seq-02, are sequences of one or more items of

any datatype.
The third argument, Condition, is a reference to an XPath function that takes two

arguments (has an arity of 2) and returns a boolean.

The items of Seq-01 and Seq-02 are passed in ordered pairs as the arguments of the

function in Condition. The pairs are ordered as follows.
If Seq-01 = X1, X2, X3 ... Xn

And Seq-02 = Y1, Y2, Y3 ... Yn

Then (X1 Y1), (X2 Y2), (X3 Y3) ... (Xn Yn)

The first ordered pair that causes the Condition function to evaluate to true() is returned

as the result of altova:find-first-pair. Note that: (i) If the Condition function iterates

through the submitted argument pairs and does not once evaluate to true(), then

altova:find-first-pair returns No results; (ii) The result of altova:find-first-pair

will always be a pair of items (of any datatype) or no item at all.

Examples
altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b =

32}) returns the sequence of xs:integers (11, 21)
altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b =

33}) returns No results

Notice from the two examples above that the ordering of the pairs is: (11, 21) (12, 22)
(13, 23)...(20, 30). This is why the second example returns No results (because no
ordered pair gives a sum of 33).

find-first-pair-pos [altova:]

440 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

altova:find-first-pair-pos((Seq-01 as item()*), (Seq-02 as item()*),

(Condition(Seq-01-Item, Seq-02-Item as xs:boolean)) as xs:integer XP3 XQ3

This function takes three arguments:
The first two arguments, Seq-01 and Seq-02, are sequences of one or more items of

any datatype.
The third argument, Condition, is a reference to an XPath function that takes two

arguments (has an arity of 2) and returns a boolean.

The items of Seq-01 and Seq-02 are passed in ordered pairs as the arguments of the

function in Condition. The pairs are ordered as follows.
If Seq-01 = X1, X2, X3 ... Xn

And Seq-02 = Y1, Y2, Y3 ... Yn

Then (X1 Y1), (X2 Y2), (X3 Y3) ... (Xn Yn)

The index position of the first ordered pair that causes the Condition function to evaluate to

true() is returned as the result of altova:find-first-pair-pos. Note that if the

Condition function iterates through the submitted argument pairs and does not once

evaluate to true(), then altova:find-first-pair-pos returns No results.

Examples
altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b =

32}) returns 1
altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b =

33}) returns No results

Notice from the two examples above that the ordering of the pairs is: (11, 21) (12, 22)
(13, 23)...(20, 30). In the first example, the first pair causes the Condition function

to evaluate to true(), and so its index position in the sequence, 1, is returned. The

second example returns No results because no pair gives a sum of 33.

find-first-pos [altova:]

altova:find-first-pos((Sequence as item()*), (Condition(Sequence-Item as

xs:boolean)) as xs:integer XP3 XQ3

This function takes two arguments. The first argument is a sequence of one or more items of
any datatype. The second argument, Condition, is a reference to an XPath function that
takes one argument (has an arity of 1) and returns a boolean. Each item of Sequence is

submitted, in turn, to the function referenced in Condition. (Remember: This function takes
a single argument.) The first Sequence item that causes the function in Condition to

evaluate to true() has its index position in Sequence returned as the result of

altova:find-first-pos, and the iteration stops.

Examples
altova:find-first-pos(5 to 10, function($a) {$a mod 2 = 0}) returns

xs:integer 2
The Condition argument references the XPath 3.0 inline function, function(), which

declares an inline function named $a and then defines it. Each item in the Sequence

argument of altova:find-first-pos is passed, in turn, to $a as its input value. The

input value is tested on the condition in the function definition ($a mod 2 = 0). The index
position in the sequence of the first input value to satisfy this condition is returned as the

© 2014 Altova GmbH

Engine information 441Appendices

Altova MapForce 2015

result of altova:find-first-pos (in this case 2, since 6, the first value (in the

sequence) to satisfy the condition, is at index position 2 in the sequence).

altova:find-first-pos((2 to 10), (function($a) {$a+3=7})) returns

xs:integer 3

Further examples
If the file C:\Temp\Customers.xml exists:

altova:find-first-pos(("C:\Temp\Customers.xml", "http://www.altova.com/

index.html"), (doc-available#1)) returns 1

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/

index.html exists:

altova:find-first-pos(("C:\Temp\Customers.xml", "http://www.altova.com/

index.html"), (doc-available#1)) returns 2

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/

index.html also does not exist:

altova:find-first-pos(("C:\Temp\Customers.xml", "http://www.altova.com/

index.html"), (doc-available#1)) returns no result

Notes about the examples given above
The XPath 3.0 function, doc-available, takes a single string argument, which is used
as a URI, and returns true if a document node is found at the submitted URI. (The
document at the submitted URI must therefore be an XML document.)
The doc-available function can be used for Condition, the second argument of

altova:find-first-pos, because it takes only one argument (arity=1), because it
takes an item() as input (a string which is used as a URI), and returns a boolean
value.
Notice that the doc-available function is only referenced, not called. The #1 suffix that
is attached to it indicates a function with an arity of 1. In its entirety doc-available#1
simply means: Use the doc-availabe() function that has arity=1, passing to it as its
single argument, in turn, each of the items in the first sequence. As a result, each of
the two strings will be passed to doc-available(), which uses the string as a URI and

tests whether a document node exists at the URI. If one does, the doc-available()

function evaluates to true() and the index position of that string in the sequence is
returned as the result of the altova:find-first-pos function. Note about the doc-

available() function: Relative paths are resolved relative to the the current base URI,
which is by default the URI of the XML document from which the function is loaded.

substitute-empty [altova:]

altova:substitute-empty(FirstSequence as item()*, SecondSequence as item())

as item()* XP3 XQ3

If FirstSequence is empty, returns SecondSequence. If FirstSequence is not empty,
returns FirstSequence.

Examples
altova:substitute-empty((1,2,3), (4,5,6)) returns (1,2,3)

altova:substitute-empty((), (4,5,6)) returns (4,5,6)

442 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

[Top]

URI functions
get-temp-folder [altova:]

altova:get-temp-folder() as xs:string XP2 XQ1 XP3 XQ3

This function takes no argument. It returns the path to the temporary folder of the current
user.

Examples
altova:get-temp-folder() would return, on a Windows machine, something like C:

\Users\<UserName>\AppData\Local\Temp\ as an xs:string.

[Top]

Miscellaneous Extension Functions

There are several ready-made functions in programming languages such as Java and C# that are
not available as XQuery/XPath functions or as XSLT functions. A good example would be the math
functions available in Java, such as sin() and cos(). If these functions were available to the
designers of XSLT stylesheets and XQuery queries, it would increase the application area of
stylesheets and queries and greatly simplify the tasks of stylesheet creators. The XSLT and
XQuery engines used in a number of Altova products support the use of extension functions in
Java and .NET, as well as MSXSL scripts for XSLT. This section describes how to use extension
functions and MSXSL scripts in your XSLT stylesheets and XQuery documents. The available
extension functions are organized into the following sections:

Java Extension Functions
.NET Extension Functions
MSXSL Scripts for XSLT

The two main issues considered in the descriptions are: (i) how functions in the respective
libraries are called; and (ii) what rules are followed for converting arguments in a function call to
the required input format of the function, and what rules are followed for the return conversion
(function result to XSLT/XQuery data object).

Requirements
For extension functions support, a Java Runtime Environment (for access to Java functions) and
.NET Framework 2.0 (minimum, for access to .NET functions) must be installed on the machine
running the XSLT transformation or XQuery execution, or must be accessible for the
transformations.

Java Extension Functions

A Java extension function can be used within an XPath or XQuery expression to invoke a Java
constructor or call a Java method (static or instance).

© 2014 Altova GmbH

Engine information 443Appendices

Altova MapForce 2015

A field in a Java class is considered to be a method without any argument. A field can be static or
instance. How to access fields is described in the respective sub-sections, static and instance.

This section is organized into the following sub-sections:

Java: Constructors
Java: Static Methods and Static Fields
Java: Instance Methods and Instance Fields
Datatypes: XPath/XQuery to Java
Datatypes: Java to XPath/XQuery

Form of the extension function
The extension function in the XPath/XQuery expression must have the form prefix:fname().

The prefix: part identifies the extension function as a Java function. It does so by
associating the extension function with an in-scope namespace declaration, the URI of
which must begin with java: (see below for examples). The namespace declaration
should identify a Java class, for example: xmlns:myns="java:java.lang.Math".
However, it could also simply be: xmlns:myns="java" (without a colon), with the
identification of the Java class being left to the fname() part of the extension function.
The fname() part identifies the Java method being called, and supplies the arguments for
the method (see below for examples). However, if the namespace URI identified by the
prefix: part does not identify a Java class (see preceding point), then the Java class
should be identified in the fname() part, before the class and separated from the class by
a period (see the second XSLT example below).

Note: The class being called must be on the classpath of the machine.

XSLT example
Here are two examples of how a static method can be called. In the first example, the class name
(java.lang.Math) is included in the namespace URI and, therefore, must not be in the fname()
part. In the second example, the prefix: part supplies the prefix java: while the fname() part
identifies the class as well as the method.

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(3.14)" />

<xsl:value-of xmlns:jmath="java"
select="jmath:java.lang.Math.cos(3.14)" />

The method named in the extension function (cos() in the example above) must match the name
of a public static method in the named Java class (java.lang.Math in the example above).

444 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

XQuery example
Here is an XQuery example similar to the XSLT example above:

<cosine xmlns:jMath="java:java.lang.Math">

 {jMath:cos(3.14)}

</cosine>

User-defined Java classes
If you have created your own Java classes, methods in these classes are called differently
according to: (i) whether the classes are accessed via a JAR file or a class file, and (ii) whether
these files (JAR or class) are located in the current directory (the same directory as the XSLT or
XQuery document) or not. How to locate these files is described in the sections User-Defined
Class Files and User-Defined Jar Files. Note that paths to class files not in the current directory
and to all JAR files must be specified.

User-Defined Class Files

If access is via a class file, then there are two possibilities:

The class file is in a package. The XSLT or XQuery file is in the same folder as the Java
package. (See example below.)
The class file is not packaged. The XSLT or XQuery file is in the same folder as the class
file. (See example below.)
The class file is in a package. The XSLT or XQuery file is at some random location. (See
example below.)
The class file is not packaged. The XSLT or XQuery file is at some random location. (See
example below.)

Consider the case where the class file is not packaged and is in the same folder as the XSLT or
XQuery document. In this case, since all classes in the folder are found, the file location does not
need to be specified. The syntax to identify a class is:

java:classname

where

java: indicates that a user-defined Java function is being called; (Java classes in the
current directory will be loaded by default)
classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a
method call.

Class file packaged, XSLT/XQuery file in same folder as Java package
The example below calls the getVehicleType()method of the Car class of the
com.altova.extfunc package. The com.altova.extfunc package is in the folder JavaProject.
The XSLT file is also in the folder JavaProject.

© 2014 Altova GmbH

Engine information 445Appendices

Altova MapForce 2015

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:com.altova.extfunc.Car" >

<xsl:output exclude-result-prefixes="fn car xsl fo xs"/>

<xsl:template match="/">
 <a>

 <xsl:value-of select="car:getVehicleType()"/>

</xsl:template>

</xsl:stylesheet>

Class file not packaged, XSLT/XQuery file in same folder as class file
The example below calls the getVehicleType()method of the Car class of the
com.altova.extfunc package. The Car class file is in the following folder location:
JavaProject/com/altova/extfunc. The XSLT file is also in the folder JavaProject/com/
altova/extfunc.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:Car" >

<xsl:output exclude-result-prefixes="fn car xsl fo xs"/>

<xsl:template match="/">
 <a>

 <xsl:value-of select="car:getVehicleType()"/>

</xsl:template>

</xsl:stylesheet>

Class file packaged, XSLT/XQuery file at any location
The example below calls the getCarColor()method of the Car class of the com.altova.extfunc
package. The com.altova.extfunc package is in the folder JavaProject. The XSLT file is at any
location. In this case, the location of the package must be specified within the URI as a query
string. The syntax is:

java:classname[?path=uri-of-package]

where

446 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

java: indicates that a user-defined Java function is being called
uri-of-package is the URI of the Java package
classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a
method call. The example below shows how to access a class file that is located in
another directory than the current directory.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:com.altova.extfunc.Car?path=file:///C:/

JavaProject/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:new('red')" />

 <a><xsl:value-of select="car:getCarColor($myCar)"/>

</xsl:template>

</xsl:stylesheet>

Class file not packaged, XSLT/XQuery file at any location
The example below calls the getCarColor()method of the Car class of the com.altova.extfunc
package. The com.altova.extfunc package is in the folder JavaProject. The XSLT file is at any
location. The location of the class file is specified within the namespace URI as a query string.
The syntax is:

java:classname[?path=uri-of-classfile]

where

java: indicates that a user-defined Java function is being called
uri-of-classfile is the URI of the folder containing the class file
classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a
method call. The example below shows how to access a class file that is located in
another directory than the current directory.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:Car?path=file:///C:/JavaProject/com/altova/

extfunc/" >

© 2014 Altova GmbH

Engine information 447Appendices

Altova MapForce 2015

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:new('red')" />

 <a><xsl:value-of select="car:getCarColor($myCar)"/>

</xsl:template>

</xsl:stylesheet>

Note: When a path is supplied via the extension function, the path is added to the ClassLoader.

User-Defined Jar Files

If access is via a JAR file, the URI of the JAR file must be specified using the following syntax:

xmlns:classNS="java:classname?path=jar:uri-of-jarfile!/"

The method is then called by using the prefix of the namespace URI that identifies the
class: classNS:method()

In the above:

java: indicates that a Java function is being called
classname is the name of the user-defined class
? is the separator between the classname and the path
path=jar: indicates that a path to a JAR file is being given
uri-of-jarfile is the URI of the jar file
!/ is the end delimiter of the path
classNS:method() is the call to the method

Alternatively, the classname can be given with the method call. Here are two examples of the
syntax:

xmlns:ns1="java:docx.layout.pages?path=jar:file:///c:/projects/docs/
docx.jar!/"

ns1:main()

xmlns:ns2="java?path=jar:file:///c:/projects/docs/docx.jar!/"
ns2:docx.layout.pages.main()

Here is a complete XSLT example that uses a JAR file to call a Java extension function:

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java?path=jar:file:///C:/test/Car1.jar!/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:Car1.new('red')" />

 <a><xsl:value-of select="car:Car1.getCarColor($myCar)"/>

448 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

</xsl:template>

<xsl:template match="car"/>

</xsl:stylesheet>

Note: When a path is supplied via the extension function, the path is added to the ClassLoader.

Java: Constructors

An extension function can be used to call a Java constructor. All constructors are called with the
pseudo-function new().

If the result of a Java constructor call can be implicitly converted to XPath/XQuery datatypes, then
the Java extension function will return a sequence that is an XPath/XQuery datatype. If the result
of a Java constructor call cannot be converted to a suitable XPath/XQuery datatype, then the
constructor creates a wrapped Java object with a type that is the name of the class returning that
Java object. For example, if a constructor for the class java.util.Date is called
(java.util.Date.new()), then an object having a type java.util.Date is returned. The lexical
format of the returned object may not match the lexical format of an XPath datatype and the value
would therefore need to be converted to the lexical format of the required XPath datatype and then
to the required XPath datatype.

There are two things that can be done with a Java object created by a constructor:

It can be assigned to a variable:
<xsl:variable name="currentdate" select="date:new()"
xmlns:date="java:java.util.Date" />

It can be passed to an extension function (see Instance Method and Instance Fields):
<xsl:value-of select="date:toString(date:new())"

xmlns:date="java:java.util.Date" />

Java: Static Methods and Static Fields

A static method is called directly by its Java name and by supplying the arguments for the
method. Static fields (methods that take no arguments), such as the constant-value fields E and
PI, are accessed without specifying any argument.

XSLT examples
Here are some examples of how static methods and fields can be called:

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(3.14)" />

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(jMath:PI())" />

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:E() * jMath:cos(3.14)" />

© 2014 Altova GmbH

Engine information 449Appendices

Altova MapForce 2015

Notice that the extension functions above have the form prefix:fname(). The prefix in all three
cases is jMath:, which is associated with the namespace URI java:java.lang.Math. (The
namespace URI must begin with java:. In the examples above it is extended to contain the class
name (java.lang.Math).) The fname() part of the extension functions must match the name of a
public class (e.g. java.lang.Math) followed by the name of a public static method with its
argument/s (such as cos(3.14)) or a public static field (such as PI()).

In the examples above, the class name has been included in the namespace URI. If it were not
contained in the namespace URI, then it would have to be included in the fname() part of the
extension function. For example:

<xsl:value-of xmlns:java="java:"
select="java:java.lang.Math.cos(3.14)" />

XQuery example
A similar example in XQuery would be:

<cosine xmlns:jMath="java:java.lang.Math">

 {jMath:cos(3.14)}

</cosine>

Java: Instance Methods and Instance Fields

An instance method has a Java object passed to it as the first argument of the method call. Such
a Java object typically would be created by using an extension function (for example a constructor
call) or a stylesheet parameter/variable. An XSLT example of this kind would be:

<xsl:stylesheet version="1.0" exclude-result-prefixes="date"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:date="java:java.util.Date"
 xmlns:jlang="java:java.lang">
 <xsl:param name="CurrentDate" select="date:new()"/>

 <xsl:template match="/">
 <enrollment institution-id="Altova School"
 date="{date:toString($CurrentDate)}"

 type="
{jlang:Object.toString(jlang:Object.getClass(date:new()))}">

 </enrollment>
 </xsl:template>
</xsl:stylesheet>

In the example above, the value of the node enrollment/@type is created as follows:

1. An object is created with a constructor for the class java.util.Date (with the
date:new() constructor).

2. This Java object is passed as the argument of the jlang.Object.getClass method.
3. The object obtained by the getClass method is passed as the argument to the

jlang.Object.toString method.

The result (the value of @type) will be a string having the value: java.util.Date.

An instance field is theoretically different from an instance method in that it is not a Java object

450 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

per se that is passed as an argument to the instance field. Instead, a parameter or variable is
passed as the argument. However, the parameter/variable may itself contain the value returned by
a Java object. For example, the parameter CurrentDate takes the value returned by a constructor
for the class java.util.Date. This value is then passed as an argument to the instance method
date:toString in order to supply the value of /enrollment/@date.

Datatypes: XPath/XQuery to Java

When a Java function is called from within an XPath/XQuery expression, the datatype of the
function's arguments is important in determining which of multiple Java classes having the same
name is called.

In Java, the following rules are followed:

If there is more than one Java method with the same name, but each has a different
number of arguments than the other/s, then the Java method that best matches the
number of arguments in the function call is selected.
The XPath/XQuery string, number, and boolean datatypes (see list below) are implicitly
converted to a corresponding Java datatype. If the supplied XPath/XQuery type can be
converted to more than one Java type (for example, xs:integer), then that Java type is
selected which is declared for the selected method. For example, if the Java method
being called is fx(decimal) and the supplied XPath/XQuery datatype is xs:integer,
then xs:integer will be converted to Java's decimal datatype.

The table below lists the implicit conversions of XPath/XQuery string, number, and boolean types
to Java datatypes.

xs:string java.lang.String

xs:boolean boolean (primitive), java.lang.Boolean

xs:integer int, long, short, byte, float, double, and the
wrapper classes of these, such as
java.lang.Integer

xs:float float (primitive), java.lang.Float, double
(primitive)

xs:double double (primitive), java.lang.Double

xs:decimal float (primitive), java.lang.Float,
double(primitive), java.lang.Double

Subtypes of the XML Schema datatypes listed above (and which are used in XPath and XQuery)
will also be converted to the Java type/s corresponding to that subtype's ancestor type.

In some cases, it might not be possible to select the correct Java method based on the supplied
information. For example, consider the following case.

The supplied argument is an xs:untypedAtomic value of 10 and it is intended for the
method mymethod(float).
However, there is another method in the class which takes an argument of another
datatype: mymethod(double).
Since the method names are the same and the supplied type (xs:untypedAtomic) could
be converted correctly to either float or double, it is possible that xs:untypedAtomic is

© 2014 Altova GmbH

Engine information 451Appendices

Altova MapForce 2015

converted to double instead of float.
Consequently the method selected will not be the required method and might not produce
the expected result. To work around this, you can create a user-defined method with a
different name and use this method.

Types that are not covered in the list above (for example xs:date) will not be converted and will
generate an error. However, note that in some cases, it might be possible to create the required
Java type by using a Java constructor.

Datatypes: Java to XPath/XQuery

When a Java method returns a value, the datatype of the value is a string, numeric or boolean
type, then it is converted to the corresponding XPath/XQuery type. For example, Java's
java.lang.Boolean and boolean datatypes are converted to xsd:boolean.

One-dimensional arrays returned by functions are expanded to a sequence. Multi-dimensional
arrays will not be converted, and should therefore be wrapped.

When a wrapped Java object or a datatype other than string, numeric or boolean is returned, you
can ensure conversion to the required XPath/XQuery type by first using a Java method (e.g
toString) to convert the Java object to a string. In XPath/XQuery, the string can be modified to fit
the lexical representation of the required type and then converted to the required type (for
example, by using the cast as expression).

.NET Extension Functions

If you are working on the .NET platform on a Windows machine, you can use extension functions
written in any of the .NET languages (for example, C#). A .NET extension function can be used
within an XPath or XQuery expression to invoke a constructor, property, or method (static or
instance) within a .NET class.

A property of a .NET class is called using the syntax get_PropertyName().

This section is organized into the following sub-sections:

.NET: Constructors

.NET: Static Methods and Static Fields

.NET: Instance Methods and Instance Fields
Datatypes: XPath/XQuery to .NET
Datatypes: .NET to XPath/XQuery

Form of the extension function
The extension function in the XPath/XQuery expression must have the form prefix:fname().

The prefix: part is associated with a URI that identifies the .NET class being
addressed.
The fname() part identifies the constructor, property, or method (static or instance) within
the .NET class, and supplies any argument/s, if required.
The URI must begin with clitype: (which identifies the function as being a .NET
extension function).
The prefix:fname() form of the extension function can be used with system classes

452 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

and with classes in a loaded assembly. However, if a class needs to be loaded, additional
parameters containing the required information will have to be supplied.

Parameters
To load an assembly, the following parameters are used:

asm The name of the assembly to be loaded.

ver The version number (maximum of four integers separated by periods).

sn The key token of the assembly's strong name (16 hex digits).

from A URI that gives the location of the assembly (DLL) to be loaded. If the
URI is relative, it is relative to the XSLT or XQuery document. If this
parameter is present, any other parameter is ignored.

partialname The partial name of the assembly. It is supplied to
Assembly.LoadWith.PartialName(), which will attempt to load the
assembly. If partialname is present, any other parameter is ignored.

loc The locale, for example, en-US. The default is neutral.

If the assembly is to be loaded from a DLL, use the from parameter and omit the sn parameter. If
the assembly is to be loaded from the Global Assembly Cache (GAC), use the sn parameter and
omit the from parameter.

A question mark must be inserted before the first parameter, and parameters must be separated
by a semi-colon. The parameter name gives its value with an equals sign (see example below).

Examples of namespace declarations
An example of a namespace declaration in XSLT that identifies the system class
System.Environment:

xmlns:myns="clitype:System.Environment"

An example of a namespace declaration in XSLT that identifies the class to be loaded as
Trade.Forward.Scrip:

xmlns:myns="clitype:Trade.Forward.Scrip?asm=forward;version=10.6.2.1"

An example of a namespace declaration in XQuery that identifies the system class
MyManagedDLL.testClass:. Two cases are distinguished:

1. When the assembly is loaded from the GAC:
declare namespace cs="clitype:MyManagedDLL.testClass?asm=MyManagedDLL;
ver=1.2.3.4;loc=neutral;sn=b9f091b72dccfba8";

2. When the assembly is loaded from the DLL (complete and partial references below):

© 2014 Altova GmbH

Engine information 453Appendices

Altova MapForce 2015

declare namespace cs="clitype:MyManagedDLL.testClass?from=file:///C:/
Altova

Projects/extFunctions/MyManagedDLL.dll;

declare namespace cs="clitype:MyManagedDLL.testClass?
from=MyManagedDLL.dll;

XSLT example
Here is a complete XSLT example that calls functions in system class System.Math:

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions">
 <xsl:output method="xml" omit-xml-declaration="yes" />
 <xsl:template match="/">
 <math xmlns:math="clitype:System.Math">

 <sqrt><xsl:value-of select="math:Sqrt(9)"/></sqrt>

 <pi><xsl:value-of select="math:PI()"/></pi>

 <e><xsl:value-of select="math:E()"/></e>

 <pow><xsl:value-of select="math:Pow(math:PI(), math:E())"/></pow>

 </math>
 </xsl:template>
</xsl:stylesheet>

The namespace declaration on the element math associates the prefix math: with the URI
clitype:System.Math. The clitype: beginning of the URI indicates that what follows identifies
either a system class or a loaded class. The math: prefix in the XPath expressions associates
the extension functions with the URI (and, by extension, the class) System.Math. The extension
functions identify methods in the class System.Math and supply arguments where required.

XQuery example
Here is an XQuery example fragment similar to the XSLT example above:

<math xmlns:math="clitype:System.Math">

 {math:Sqrt(9)}

</math>

As with the XSLT example above, the namespace declaration identifies the .NET class, in this
case a system class. The XQuery expression identifies the method to be called and supplies the
argument.

.NET: Constructors

An extension function can be used to call a .NET constructor. All constructors are called with the
pseudo-function new(). If there is more than one constructor for a class, then the constructor that
most closely matches the number of arguments supplied is selected. If no constructor is deemed
to match the supplied argument/s, then a 'No constructor found' error is returned.

454 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

Constructors that return XPath/XQuery datatypes
If the result of a .NET constructor call can be implicitly converted to XPath/XQuery datatypes, then
the .NET extension function will return a sequence that is an XPath/XQuery datatype.

Constructors that return .NET objects
If the result of a .NET constructor call cannot be converted to a suitable XPath/XQuery datatype,
then the constructor creates a wrapped .NET object with a type that is the name of the class
returning that object. For example, if a constructor for the class System.DateTime is called (with
System.DateTime.new()), then an object having a type System.DateTime is returned.

The lexical format of the returned object may not match the lexical format of a required XPath
datatype. In such cases, the returned value would need to be: (i) converted to the lexical format of
the required XPath datatype; and (ii) cast to the required XPath datatype.

There are three things that can be done with a .NET object created by a constructor:

It can be used within a variable:
<xsl:variable name="currentdate" select="date:new(2008, 4, 29)"

xmlns:date="clitype:System.DateTime" />

It can be passed to an extension function (see Instance Method and Instance Fields):
<xsl:value-of select="date:ToString(date:new(2008, 4, 29))"

xmlns:date="clitype:System.DateTime" />
It can be converted to a string, number, or boolean:
<xsl:value-of select="xs:integer(data:get_Month(date:new(2008, 4, 29)))"

xmlns:date="clitype:System.DateTime" />

.NET: Static Methods and Static Fields

A static method is called directly by its name and by supplying the arguments for the method.
The name used in the call must exactly match a public static method in the class specified. If the
method name and the number of arguments that were given in the function call matches more
than one method in a class, then the types of the supplied arguments are evaluated for the best
match. If a match cannot be found unambiguously, an error is reported.

Note: A field in a .NET class is considered to be a method without any argument. A property is
called using the syntax get_PropertyName().

Examples
An XSLT example showing a call to a method with one argument (System.Math.Sin(arg)):

<xsl:value-of select="math:Sin(30)" xmlns:math="clitype:System.Math"/>

© 2014 Altova GmbH

Engine information 455Appendices

Altova MapForce 2015

An XSLT example showing a call to a field (considered a method with no argument)
(System.Double.MaxValue()):

<xsl:value-of select="double:MaxValue()" xmlns:double="clitype:System.Double"/>

An XSLT example showing a call to a property (syntax is get_PropertyName())
(System.String()):

<xsl:value-of select="string:get_Length('my string')"
xmlns:string="clitype:System.String"/>

An XQuery example showing a call to a method with one argument (System.Math.Sin(arg)):

<sin xmlns:math="clitype:System.Math">
 { math:Sin(30) }
</sin>

.NET: Instance Methods and Instance Fields

An instance method has a .NET object passed to it as the first argument of the method call. This
.NET object typically would be created by using an extension function (for example a constructor
call) or a stylesheet parameter/variable. An XSLT example of this kind would be:

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions">
 <xsl:output method="xml" omit-xml-declaration="yes"/>
 <xsl:template match="/">
 <xsl:variable name="releasedate"

 select="date:new(2008, 4, 29)"

 xmlns:date="clitype:System.DateTime"/>

 <doc>
 <date>
 <xsl:value-of select="date:ToString(date:new(2008, 4, 29))"

 xmlns:date="clitype:System.DateTime"/>

 </date>
 <date>
 <xsl:value-of select="date:ToString($releasedate)"

 xmlns:date="clitype:System.DateTime"/>

 </date>
 </doc>
 </xsl:template>
</xsl:stylesheet>

In the example above, a System.DateTime constructor (new(2008, 4, 29)) is used to create a
.NET object of type System.DateTime. This object is created twice, once as the value of the
variable releasedate, a second time as the first and only argument of the
System.DateTime.ToString() method. The instance method System.DateTime.ToString() is
called twice, both times with the System.DateTime constructor (new(2008, 4, 29)) as its first
and only argument. In one of these instances, the variable releasedate is used to get the .NET

456 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

object.

Instance methods and instance fields
The difference between an instance method and an instance field is theoretical. In an instance
method, a .NET object is directly passed as an argument; in an instance field, a parameter or
variable is passed instead—though the parameter or variable may itself contain a .NET object. For
example, in the example above, the variable releasedate contains a .NET object, and it is this
variable that is passed as the argument of ToString() in the second date element constructor.
Therefore, the ToString() instance in the first date element is an instance method while the
second is considered to be an instance field. The result produced in both instances, however, is
the same.

Datatypes: XPath/XQuery to .NET

When a .NET extension function is used within an XPath/XQuery expression, the datatypes of the
function's arguments are important for determining which one of multiple .NET methods having the
same name is called.

In .NET, the following rules are followed:

If there is more than one method with the same name in a class, then the methods
available for selection are reduced to those that have the same number of arguments as
the function call.
The XPath/XQuery string, number, and boolean datatypes (see list below) are implicitly
converted to a corresponding .NET datatype. If the supplied XPath/XQuery type can be
converted to more than one .NET type (for example, xs:integer), then that .NET type is
selected which is declared for the selected method. For example, if the .NET method
being called is fx(double) and the supplied XPath/XQuery datatype is xs:integer,
then xs:integer will be converted to .NET's double datatype.

The table below lists the implicit conversions of XPath/XQuery string, number, and boolean types
to .NET datatypes.

xs:string StringValue, string

xs:boolean BooleanValue, bool

xs:integer IntegerValue, decimal, long, integer,
short, byte, double, float

xs:float FloatValue, float, double

xs:double DoubleValue, double

xs:decimal DecimalValue, decimal, double, float

Subtypes of the XML Schema datatypes listed above (and which are used in XPath and XQuery)
will also be converted to the .NET type/s corresponding to that subtype's ancestor type.

© 2014 Altova GmbH

Engine information 457Appendices

Altova MapForce 2015

In some cases, it might not be possible to select the correct .NET method based on the supplied
information. For example, consider the following case.

The supplied argument is an xs:untypedAtomic value of 10 and it is intended for the
method mymethod(float).
However, there is another method in the class which takes an argument of another
datatype: mymethod(double).
Since the method names are the same and the supplied type (xs:untypedAtomic) could
be converted correctly to either float or double, it is possible that xs:untypedAtomic is
converted to double instead of float.
Consequently the method selected will not be the required method and might not produce
the expected result. To work around this, you can create a user-defined method with a
different name and use this method.

Types that are not covered in the list above (for example xs:date) will not be converted and will
generate an error.

Datatypes: .NET to XPath/XQuery

When a .NET method returns a value and the datatype of the value is a string, numeric or boolean
type, then it is converted to the corresponding XPath/XQuery type. For example, .NET's decimal
datatype is converted to xsd:decimal.

When a .NET object or a datatype other than string, numeric or boolean is returned, you can
ensure conversion to the required XPath/XQuery type by first using a .NET method (for example
System.DateTime.ToString()) to convert the .NET object to a string. In XPath/XQuery, the
string can be modified to fit the lexical representation of the required type and then converted to
the required type (for example, by using the cast as expression).

MSXSL Scripts for XSLT

The <msxsl:script> element contains user-defined functions and variables that can be called
from within XPath expressions in the XSLT stylesheet. The <msxsl:script> is a top-level
element, that is, it must be a child element of <xsl:stylesheet> or <xsl:transform>.

The <msxsl:script> element must be in the namespace urn:schemas-microsoft-com:xslt
(see example below).

Scripting language and namespace
The scripting language used within the block is specified in the <msxsl:script> element's
language attribute and the namespace to be used for function calls from XPath expressions is
identified with the implements-prefix attribute (see below).

<msxsl:script language="scripting-language" implements-prefix="user-namespace-
prefix">

 function-1 or variable-1
 ...
 function-n or variable-n

458 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

</msxsl:script>

The <msxsl:script> element interacts with the Windows Scripting Runtime, so only languages
that are installed on your machine may be used within the <msxsl:script> element. The .NET
Framework 2.0 platform or higher must be installed for MSXSL scripts to be used.
Consequently, the .NET scripting languages can be used within the <msxsl:script> element.

The language attribute accepts the same values as the language attribute on the HTML
<script> element. If the language attribute is not specified, then Microsoft JScript is assumed
as the default.

The implements-prefix attribute takes a value that is a prefix of a declared in-scope namespace.
This namespace typically will be a user namespace that has been reserved for a function library.
All functions and variables defined within the <msxsl:script> element will be in the namespace
identified by the prefix specified in the implements-prefix attribute. When a function is called
from within an XPath expression, the fully qualified function name must be in the same
namespace as the function definition.

Example
Here is an example of a complete XSLT stylesheet that uses a function defined within a
<msxsl:script> element.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt"

 xmlns:user="http://mycompany.com/mynamespace">

 <msxsl:script language="VBScript" implements-prefix="user">

 <![CDATA[
 ' Input: A currency value: the wholesale price
 ' Returns: The retail price: the input value plus 20% margin,
 ' rounded to the nearest cent
 dim a as integer = 13
 Function AddMargin(WholesalePrice) as integer

 AddMargin = WholesalePrice * 1.2 + a
 End Function
]]>
 </msxsl:script>

 <xsl:template match="/">
 <html>
 <body>
 <p>
 Total Retail Price =
 $<xsl:value-of select="user:AddMargin(50)"/>

 Total Wholesale Price =

© 2014 Altova GmbH

Engine information 459Appendices

Altova MapForce 2015

 $<xsl:value-of select="50"/>

 </p>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

Datatypes
The values of parameters passed into and out of the script block are limited to XPath datatypes.
This restriction does not apply to data passed among functions and variables within the script
block.

Assemblies
An assembly can be imported into the script by using the msxsl:assembly element. The

assembly is identified via a name or a URI. The assembly is imported when the stylesheet is
compiled. Here is a simple representation of how the msxsl:assembly element is to be used.

<msxsl:script>
<msxsl:assembly name="myAssembly.assemblyName" />
<msxsl:assembly href="pathToAssembly" />

...

</msxsl:script>

The assembly name can be a full name, such as:

"system.Math, Version=3.1.4500.1 Culture=neutral
PublicKeyToken=a46b3f648229c514"

or a short name, such as "myAssembly.Draw".

Namespaces
Namespaces can be declared with the msxsl:using element. This enables assembly classes to

be written in the script without their namespaces, thus saving you some tedious typing. Here is
how the msxsl:using element is used so as to declare namespaces.

<msxsl:script>
<msxsl:using namespace="myAssemblyNS.NamespaceName" />

...

</msxsl:script>

460 Appendices Engine information

© 2014 Altova GmbHAltova MapForce 2015

The value of the namespace attribute is the name of the namespace.

© 2014 Altova GmbH

Technical Data 461Appendices

Altova MapForce 2015

16.2 Technical Data

This section contains useful background information on the technical aspects of your software. It
is organized into the following sections:

OS and Memory Requirements
Altova XML Validator
Altova XSLT and XQuery Engines
Unicode Support
Internet Usage

462 Appendices Technical Data

© 2014 Altova GmbHAltova MapForce 2015

16.2.1 OS and Memory Requirements

Operating System
Altova software applications are available for the following platforms:

32-bit Windows applications for Windows XP, Windows Vista, Windows 7, Windows 8,
Windows Server 2003 and 2008
64-bit Windows applications for Windows Vista, Windows 7, Windows 8, Windows Server
2012

Memory
Since the software is written in C++ it does not require the overhead of a Java Runtime
Environment and typically requires less memory than comparable Java-based applications.
However, each document is loaded fully into memory so as to parse it completely and to improve
viewing and editing speed. The memory requirement increases with the size of the document.

Memory requirements are also influenced by the unlimited Undo history. When repeatedly cutting
and pasting large selections in large documents, available memory can rapidly be depleted.

© 2014 Altova GmbH

Technical Data 463Appendices

Altova MapForce 2015

16.2.2 Altova XML Validator

When opening any XML document, the application uses its built-in XML validator to check for well-
formedness, validate the document against a schema (if specified), and build trees and infosets.
The XML validator is also used to provide intelligent editing help while you edit documents and to
dynamically display any validation error that may occur.

The built-in XML validator implements the Final Recommendation of the W3C's XML Schema 1.0
and 1.1 specification. New developments recommended by the W3C's XML Schema Working
Group are continuously being incorporated in the XML validator, so that Altova products give you a
state-of-the-art development environment.

464 Appendices Technical Data

© 2014 Altova GmbHAltova MapForce 2015

16.2.3 Altova XSLT and XQuery Engines

Altova products use the Altova XSLT 1.0, 2.0, and 3.0 Engines and the Altova XQuery 1.0 and 3.0
Engines. Documentation about implementation-specific behavior for each engine is in the
appendices of the documentation (Engine Information), should that engine be used in the product.

© 2014 Altova GmbH

Technical Data 465Appendices

Altova MapForce 2015

16.2.4 Unicode Support

Altova's XML products provide full Unicode support. To edit an XML document, you will also need
a font that supports the Unicode characters being used by that document.

Please note that most fonts only contain a very specific subset of the entire Unicode range and
are therefore typically targeted at the corresponding writing system. If some text appears garbled,
the reason could be that the font you have selected does not contain the required glyphs. So it is
useful to have a font that covers the entire Unicode range, especially when editing XML
documents in different languages or writing systems. A typical Unicode font found on Windows
PCs is Arial Unicode MS.

In the /Examples folder of your application folder you will find an XHTML file called UnicodeUTF-
8.html that contains the following sentence in a number of different languages and writing
systems:

When the world wants to talk , it speaks Unicode
Wenn die Welt miteinander spricht, spricht sie Unicode

)

Opening this XHTML file will give you a quick impression of Unicode's possibilities and also
indicate what writing systems are supported by the fonts available on your PC.

466 Appendices Technical Data

© 2014 Altova GmbHAltova MapForce 2015

16.2.5 Internet Usage

Altova applications will initiate Internet connections on your behalf in the following situations:

If you click the "Request evaluation key-code" in the Registration dialog (Help | Software
Activation), the three fields in the registration dialog box are transferred to our web server
by means of a regular http (port 80) connection and the free evaluation key-code is sent
back to the customer via regular SMTP e-mail.
In some Altova products, you can open a file over the Internet (File | Open | Switch to
URL). In this case, the document is retrieved using one of the following protocol methods
and connections: HTTP (normally port 80), FTP (normally port 20/21), HTTPS (normally
port 443). You could also run an HTTP server on port 8080. (In the URL dialog, specify the
port after the server name and a colon.)
If you open an XML document that refers to an XML Schema or DTD and the document is
specified through a URL, the referenced schema document is also retrieved through a
HTTP connection (port 80) or another protocol specified in the URL (see Point 2 above). A
schema document will also be retrieved when an XML file is validated. Note that validation
might happen automatically upon opening a document if you have instructed the
application to do this (in the File tab of the Options dialog (Tools | Options)).
In Altova applications using WSDL and SOAP, web service connections are defined by
the WSDL documents.
If you are using the Send by Mail command (File | Send by Mail) in XMLSpy, the
current selection or file is sent by means of any MAPI-compliant mail program installed
on the user's PC.
As part of Software Activation and LiveUpdate as further described in the Altova Software
License Agreement.

© 2014 Altova GmbH

License Information 467Appendices

Altova MapForce 2015

16.3 License Information

This section contains:

Information about the distribution of this software product
Information about software activation and license metering
Information about the intellectual property rights related to this software product
The End-User License Agreement governing the use of this software product

Please read this information carefully. It is binding upon you since you agreed to these terms
when you installed this software product.

468 Appendices License Information

© 2014 Altova GmbHAltova MapForce 2015

16.3.1 Electronic Software Distribution

This product is available through electronic software distribution, a distribution method that
provides the following unique benefits:

You can evaluate the software free-of-charge before making a purchasing decision.
Once you decide to buy the software, you can place your order online at the Altova
website and immediately get a fully licensed product within minutes.
When you place an online order, you always get the latest version of our software.
The product package includes a comprehensive integrated onscreen help system. The
latest version of the user manual is available at www.altova.com (i) in HTML format for
online browsing, and (ii) in PDF format for download (and to print if you prefer to have the
documentation on paper).

30-day evaluation period
After downloading this product, you can evaluate it for a period of up to 30 days free of charge.
About 20 days into this evaluation period, the software will start to remind you that it has not yet
been licensed. The reminder message will be displayed once each time you start the application.
If you would like to continue using the program after the 30-day evaluation period, you have to
purchase an Altova Software License Agreement, which is delivered in the form of a key-code that
you enter into the Software Activation dialog to unlock the product. You can purchase your
license at the online shop at the Altova website.

Helping Others within Your Organization to Evaluate the Software
If you wish to distribute the evaluation version within your company network, or if you plan to use it
on a PC that is not connected to the Internet, you may only distribute the Setup programs,
provided that they are not modified in any way. Any person that accesses the software installer
that you have provided, must request their own 30-day evaluation license key code and after
expiration of their evaluation period, must also purchase a license in order to be able to continue
using the product.

For further details, please refer to the Altova Software License Agreement at the end of this
section.

http://www.altova.com/
http://www.altova.com/
http://www.altova.com/documentation.html
http://www.altova.com/

© 2014 Altova GmbH

License Information 469Appendices

Altova MapForce 2015

16.3.2 Software Activation and License Metering

As part of Altova’s Software Activation, the software may use your internal network and Internet
connection for the purpose of transmitting license-related data at the time of installation,
registration, use, or update to an Altova-operated license server and validating the authenticity of
the license-related data in order to protect Altova against unlicensed or illegal use of the software
and to improve customer service. Activation is based on the exchange of license related data
such as operating system, IP address, date/time, software version, and computer name, along
with other information between your computer and an Altova license server.

Your Altova product has a built-in license metering module that further helps you avoid any
unintentional violation of the End User License Agreement. Your product is licensed either as a
single-user or multi-user installation, and the license-metering module makes sure that no more
than the licensed number of users use the application concurrently.

This license-metering technology uses your local area network (LAN) to communicate between
instances of the application running on different computers.

Single license
When the application starts up, as part of the license metering process, the software sends a
short broadcast datagram to find any other instance of the product running on another computer in
the same network segment. If it doesn't get any response, it will open a port for listening to other
instances of the application.

Multi license
If more than one instance of the application is used within the same LAN, these instances will
briefly communicate with each other on startup. These instances exchange key-codes in order to
help you to better determine that the number of concurrent licenses purchased is not accidentally
violated. This is the same kind of license metering technology that is common in the Unix world
and with a number of database development tools. It allows Altova customers to purchase
reasonably-priced concurrent-use multi-user licenses.

We have also designed the applications so that they send few and small network packets so as
to not put a burden on your network. The TCP/IP ports (2799) used by your Altova product are
officially registered with the IANA (see the IANA website (http://www.iana.org/) for details) and our
license-metering module is tested and proven technology.

If you are using a firewall, you may notice communications on port 2799 between the computers
that are running Altova products. You are, of course, free to block such traffic between different
groups in your organization, as long as you can ensure by other means, that your license
agreement is not violated.

You will also notice that, if you are online, your Altova product contains many useful functions;
these are unrelated to the license-metering technology.

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml

470 Appendices License Information

© 2014 Altova GmbHAltova MapForce 2015

16.3.3 Intellectual Property Rights

The Altova Software and any copies that you are authorized by Altova to make are the intellectual
property of and are owned by Altova and its suppliers. The structure, organization and code of the
Software are the valuable trade secrets and confidential information of Altova and its suppliers.
The Software is protected by copyright, including without limitation by United States Copyright
Law, international treaty provisions and applicable laws in the country in which it is being used.
Altova retains the ownership of all patents, copyrights, trade secrets, trademarks and other
intellectual property rights pertaining to the Software, and that Altova’s ownership rights extend to
any images, photographs, animations, videos, audio, music, text and "applets" incorporated into
the Software and all accompanying printed materials. Notifications of claimed copyright
infringement should be sent to Altova’s copyright agent as further provided on the Altova Web
Site.

Altova software contains certain Third Party Software that is also protected by intellectual property
laws, including without limitation applicable copyright laws as described in detail at http://
www.altova.com/legal_3rdparty.html.

All other names or trademarks are the property of their respective owners.

http://www.altova.com/legal_3rdparty.html
http://www.altova.com/legal_3rdparty.html

© 2014 Altova GmbH

License Information 471Appendices

Altova MapForce 2015

16.3.4 Altova End User License Agreement

THIS IS A LEGAL DOCUMENT -- RETAIN FOR YOUR RECORDS

ALTOVA® END USER LICENSE AGREEMENT

Licensor:
Altova GmbH
Rudolfsplatz 13a/9
A-1010 Wien
Austria

Important - Read Carefully. Notice to User:

This End User License Agreement (“Agreement”) is a legal document between you and
Altova GmbH (“Altova”). It is important that you read this document before using the
Altova-provided software (“Software”) and any accompanying documentation, including,
without limitation printed materials, ‘online’ files, or electronic documentation
(“Documentation”). By clicking the “I accept” and “Next” buttons below, or by installing,
or otherwise using the Software, you agree to be bound by the terms of this Agreement
as well as the Altova Privacy Policy (“Privacy Policy”) including, without limitation, the
warranty disclaimers, limitation of liability, data use and termination provisions below,
whether or not you decide to purchase the Software. You agree that this agreement is
enforceable like any written agreement negotiated and signed by you. If you do not agree,
you are not licensed to use the Software, and you must destroy any downloaded copies of the
Software in your possession or control. You may print a copy of this Agreement as part of the
installation process at the time of acceptance. Alternatively, a copy of this Agreement may be
found at http://www.altova.com/eula and a copy of the Privacy Policy may be found at http://
www.altova.com/privacy.

1. SOFTWARE LICENSE

(a) License Grant.
(i) Upon your acceptance of this Agreement Altova grants you a non-exclusive, non-

transferable (except as provided below), limited license, without the right to grant sublicenses, to
install and use a copy of the Software on one compatible personal computer or workstation up to
the Permitted Number of computers. Subject to the limitations set forth in Section 1(c), you may
install and use a copy of the Software on more than one of your compatible personal computers or
workstations if you have purchased a Named-User license. Subject to the limitations set forth in
Sections 1(d) and 1(e), users may use the software concurrently on a network. The Permitted
Number of computers and/or users and the type of license, e.g. Installed, Named-Users, and
Concurrent-User, shall be determined and specified at such time as you elect to purchase the
Software. Installed user licenses are intended to be fixed and not concurrent. In other words, you
cannot uninstall the Software on one machine in order to reinstall that license to a different
machine and then uninstall and reinstall back to the original machine. Installations should be
static. Notwithstanding the foregoing, permanent uninstallations and redeployments are
acceptable in limited circumstances such as if an employee leaves the company or the machine
is permanently decommissioned. During the evaluation period, hereinafter defined, only a single
user may install and use the software on one (1) personal computer or workstation. If you have
licensed the Software as part of a suite of Altova software products (collectively, the “Suite”) and
have not installed each product individually, then the Agreement governs your use of all of the
software included in the Suite.

http://www.altova.com/eula
http://www.altova.com/privacy
http://www.altova.com/privacy

472 Appendices License Information

© 2014 Altova GmbHAltova MapForce 2015

(ii) If you have licensed SchemaAgent, then the terms and conditions of this
Agreement apply to your use of the SchemaAgent server software (“SchemaAgent Server”)
included therein, as applicable, and you are licensed to use SchemaAgent Server solely in
connection with your use of Altova Software and solely for the purposes described in the
accompanying documentation.

(iii) If you have licensed Software that enables users to generate source code, your
license to install and use a copy of the Software as provided herein permits you to generate
source code based on (i) Altova Library modules that are included in the Software (such generated
code hereinafter referred to as the “Restricted Source Code”) and (ii) schemas or mappings that
you create or provide (such code as may be generated from your schema or mapping source
materials hereinafter referred to as the “Unrestricted Source Code”). In addition to the rights
granted herein, Altova grants you a non-exclusive, non-transferable, limited license to compile the
complete generated code (comprised of the combination of the Restricted Source Code and the
Unrestricted Source Code) into executable object code form, and to use, copy, distribute or
license that executable. You may not distribute or redistribute, sublicense, sell, or transfer the
Restricted Source Code to a third-party in the un-compiled form unless said third-party already
has a license to the Restricted Source Code through their separate agreement with Altova.
Notwithstanding anything to the contrary herein, you may not distribute, incorporate or combine
with other software, or otherwise use the Altova Library modules or Restricted Source Code, or
any Altova intellectual property embodied in or associated with the Altova Library modules or
Restricted Source Code, in any manner that would subject the Restricted Source Code to the
terms of a copyleft, free software or open source license that would require the Restricted Source
Code or Altova Library modules source code to be disclosed in source code form. Notwithstanding
anything to the contrary herein, you may not use the Software to develop and distribute other
software programs that directly compete with any Altova software or service without prior written
permission. Altova reserves all other rights in and to the Software. With respect to the feature(s) of
UModel that permit reverse-engineering of your own source code or other source code that you
have lawfully obtained, such use by you does not constitute a violation of this Agreement. Except
as otherwise expressly permitted in Section 1(j) reverse engineering of the Software is strictly
prohibited as further detailed therein.

(iv) In the event Restricted Source Code is incorporated into executable object code
form, you will include the following statement in (1) introductory splash screens, or if none, within
one or more screens readily accessible by the end-user, and (2) in the electronic and/or hard
copy documentation: “Portions of this program were developed using Altova® [name of Altova
Software, e.g. MapForce® 2011] and includes libraries owned by Altova GmbH, Copyright ©
2007-2011 Altova GmbH (www.altova.com).”

(b) Server Use for Installation and Use of SchemaAgent. You may install one (1) copy
of the Software on a computer file server within your internal network solely for the purpose of
downloading and installing the Software onto other computers within your internal network up to
the Permitted Number of computers in a commercial environment only. If you have licensed
SchemaAgent, then you may install SchemaAgent Server on any server computer or workstation
and use it in connection with your Software. No other network use is permitted, including without
limitation using the Software either directly or through commands, data or instructions from or to a
computer not part of your internal network, for Internet or Web-hosting services or by any user not
licensed to use this copy of the Software through a valid license from Altova.

(c) Named-Use. If you have licensed the “Named-User” version of the software, you may
install the Software on up to five (5) compatible personal computers or workstations of which you
are the primary user thereby allowing you to switch from one computer to the other as necessary
provided that only one (1) instance of the Software will be used by you as the Named-User at any

© 2014 Altova GmbH

License Information 473Appendices

Altova MapForce 2015

given time. If you have purchased multiple Named-User licenses, each individual Named-User will
receive a separate license key code.

(d) Concurrent Use in Same Physical Network or Office Location. If you have licensed
a “Concurrent-User” version of the Software, you may install the Software on any compatible
computers in a commercial environment only, up to ten (10) times the Permitted Number of
users, provided that only the Permitted Number of users actually use the Software at the same
time and further provided that the computers on which the Software is installed are on the same
physical computer network. The Permitted Number of concurrent users shall be delineated at
such time as you elect to purchase the Software licenses. Each separate physical network or
office location requires its own set of separate Concurrent User Licenses for those wishing to use
the Concurrent User versions of the Software in more than one location or on more than one
network, all subject to the above Permitted Number limitations and based on the number of users
using the Software. If a computer is not on the same physical network, then a locally installed
user license or a license dedicated to concurrent use in a virtual environment is required. Home
User restrictions and limitations with respect to the Concurrent User licenses used on home
computers are set forth in Section 1(g).

(e) Concurrent Use in Virtual Environment. If you have purchased Concurrent-User
Licenses, you may install a copy of the Software on a terminal server (Microsoft Terminal Server
or Citrix Metaframe), application virtualization server (Microsoft App-V, Citrix XenApp, or VMWare
ThinApp) or virtual machine environment within your internal network for the sole and exclusive
purpose of permitting individual users within your organization to access and use the Software
through a terminal server, application virtualization session, or virtual machine environment from
another computer provided that the total number of users that access or use the Software
concurrently at any given point in time on such network, virtual machine or terminal server does
not exceed the Permitted Number; and provided that the total number of users authorized to use
the Software through the terminal server, application virtualization session, or virtual machine
environment does not exceed ten (10) times the Permitted Number of users. In a virtual
environment, you must deploy a reliable and accurate means of preventing users from exceeding
the Permitted Number of concurrent users. Altova makes no warranties or representations about
the performance of Altova software in a terminal server, application virtualization session, or virtual
machine environment and the foregoing are expressly excluded from the limited warranty in
Section 5 hereof. Technical support is not available with respect to issues arising from use in
such environments.

(f) Backup and Archival Copies. You may make one (1) backup and one (1) archival copy
of the Software, provided your backup and archival copies are not installed or used on any
computer and further provided that all such copies shall bear the original and unmodified
copyright, patent and other intellectual property markings that appear on or in the Software. You
may not transfer the rights to a backup or archival copy unless you transfer all rights in the
Software as provided under Section 3.

(g) Home Use (Personal and Non-Commercial). In order to further familiarize yourself
with the Software and allow you to explore its features and functions, you, as the primary user of
the computer on which the Software is installed for commercial purposes, may also install one
copy of the Software on only one (1) home personal computer (such as your laptop or desktop)
solely for your personal and non-commercial (“HPNC”) use. This HPNC copy may not be used in
any commercial or revenue-generating business activities, including without limitation, work-from-
home, teleworking, telecommuting, or other work-related use of the Software. The HPNC copy of
the Software may not be used at the same time on a home personal computer as the Software is
being used on the primary computer.

474 Appendices License Information

© 2014 Altova GmbHAltova MapForce 2015

(h) Key Codes, Upgrades and Updates. Prior to your purchase and as part of the
registration for the thirty (30) day evaluation period, as applicable, you will receive an evaluation
key code. You will receive a purchase key code when you elect to purchase the Software from
either Altova GmbH or an authorized reseller. The purchase key code will enable you to activate
the Software beyond the initial evaluation period. You may not re-license, reproduce or distribute
any key code except with the express written permission of Altova. If the Software that you have
licensed is an upgrade or an update, then the latest update or upgrade that you download and
install replaces all or part of the Software previously licensed. The update or upgrade and the
associated license keys does not constitute the granting of a second license to the Software in
that you may not use the upgrade or updated copy in addition to the copy of the Software that it is
replacing and whose license has terminated.

(i) Title. Title to the Software is not transferred to you. Ownership of all copies of the
Software and of copies made by you is vested in Altova, subject to the rights of use granted to
you in this Agreement. As between you and Altova, documents, files, stylesheets, generated
program code (including the Unrestricted Source Code) and schemas that are authored or created
by you via your utilization of the Software, in accordance with its Documentation and the terms of
this Agreement, are your property unless they are created using Evaluation Software, as defined
in Section 4 of this Agreement, in which case you have only a limited license to use any output

that contains generated program code (including Unrestricted Source Code) such as Java, C++,

C#, VB.NET or XSLT and associated project files and build scripts, as well as generated XML,
XML Schemas, documentation, UML diagrams, and database structures only for the thirty (30)
day evaluation period.

(j) Reverse Engineering. Except and to the limited extent as may be otherwise
specifically provided by applicable law in the European Union, you may not reverse engineer,
decompile, disassemble or otherwise attempt to discover the source code, underlying ideas,
underlying user interface techniques or algorithms of the Software by any means whatsoever,
directly or indirectly, or disclose any of the foregoing, except to the extent you may be expressly
permitted to decompile under applicable law in the European Union, if it is essential to do so in
order to achieve operability of the Software with another software program, and you have first
requested Altova to provide the information necessary to achieve such operability and Altova has
not made such information available. Altova has the right to impose reasonable conditions and to
request a reasonable fee before providing such information. Any information supplied by Altova or
obtained by you, as permitted hereunder, may only be used by you for the purpose described
herein and may not be disclosed to any third party or used to create any software which is
substantially similar to the expression of the Software. Requests for information from users in the
European Union with respect to the above should be directed to the Altova Customer Support
Department.

(k) Other Restrictions. You may not loan, rent, lease, sublicense, distribute or otherwise
transfer all or any portion of the Software to third parties except to the limited extent set forth in
Section 3 or as otherwise expressly provided. You may not copy the Software except as
expressly set forth above, and any copies that you are permitted to make pursuant to this
Agreement must contain the same copyright, patent and other intellectual property markings that
appear on or in the Software. You may not modify, adapt or translate the Software. You may not,
directly or indirectly, encumber or suffer to exist any lien or security interest on the Software;
knowingly take any action that would cause the Software to be placed in the public domain; or
use the Software in any computer environment not specified in this Agreement. You may not
permit any use of or access to the Software by any third party in connection with a commercial
service offering, such as for a cloud-based or web-based SaaS offering.

You will comply with applicable law and Altova’s instructions regarding the use of the

© 2014 Altova GmbH

License Information 475Appendices

Altova MapForce 2015

Software. You agree to notify your employees and agents who may have access to the Software
of the restrictions contained in this Agreement and to ensure their compliance with these
restrictions.

(l) NO GUARANTEE. THE SOFTWARE IS NEITHER GUARANTEED NOR WARRANTED
TO BE ERROR-FREE NOR SHALL ANY LIABILITY BE ASSUMED BY ALTOVA IN THIS
RESPECT. NOTWITHSTANDING ANY SUPPORT FOR ANY TECHNICAL STANDARD, THE
SOFTWARE IS NOT INTENDED FOR USE IN OR IN CONNECTION WITH, WITHOUT
LIMITATION, THE OPERATION OF NUCLEAR FACILITIES, AIRCRAFT NAVIGATION,
COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL EQUIPMENT, MEDICAL DEVICES OR
LIFE SUPPORT SYSTEMS, MEDICAL OR HEALTH CARE APPLICATIONS, OR OTHER
APPLICATIONS WHERE THE FAILURE OF THE SOFTWARE OR ERRORS IN DATA
PROCESSING COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE PHYSICAL OR
ENVIRONMENTAL DAMAGE. YOU AGREE THAT YOU ARE SOLELY RESPONSIBLE FOR THE
ACCURACY AND ADEQUACY OF THE SOFTWARE AND ANY DATA GENERATED OR
PROCESSED BY THE SOFTWARE FOR YOUR INTENDED USE AND YOU WILL DEFEND,
INDEMNIFY AND HOLD ALTOVA, ITS OFFICERS AND EMPLOYEES HARMLESS FROM ANY
THIRD PARTY CLAIMS, DEMANDS, OR SUITS THAT ARE BASED UPON THE ACCURACY
AND ADEQUACY OF THE SOFTWARE IN YOUR USE OR ANY DATA GENERATED BY THE
SOFTWARE IN YOUR USE.

2. INTELLECTUAL PROPERTY RIGHTS

You acknowledge that the Software and any copies that you are authorized by Altova to make are
the intellectual property of and are owned by Altova and its suppliers. The structure, organization
and code of the Software are the valuable trade secrets and confidential information of Altova and
its suppliers. The Software is protected by copyright, including without limitation by United States
Copyright Law, international treaty provisions and applicable laws in the country in which it is
being used. You acknowledge that Altova retains the ownership of all patents, copyrights, trade
secrets, trademarks and other intellectual property rights pertaining to the Software, and that
Altova’s ownership rights extend to any images, photographs, animations, videos, audio, music,
text and “applets” incorporated into the Software and all accompanying printed materials. You will
take no actions which adversely affect Altova’s intellectual property rights in the Software.
Trademarks shall be used in accordance with accepted trademark practice, including identification
of trademark owners’ names. Trademarks may only be used to identify printed output produced by
the Software, and such use of any trademark does not give you any right of ownership in that
trademark. Altova®, XMLSpy®, Authentic®, StyleVision®, MapForce®, UModel®,
DatabaseSpy®, DiffDog®, SchemaAgent®, SemanticWorks®, MissionKit®, Markup Your Mind®,
Nanonull™, RaptorXML™, RaptorXML Server™, RaptorXML +XBRL Server™, Powered By
RaptorXML™, FlowForce Server™, StyleVision Server™, and MapForce Server™ are trademarks
of Altova GmbH. (pending or registered in numerous countries). Unicode and the Unicode Logo
are trademarks of Unicode, Inc. Windows, Windows XP, Windows Vista, Windows 7, and
Windows 8 are trademarks of Microsoft. W3C, CSS, DOM, MathML, RDF, XHTML, XML and XSL
are trademarks (registered in numerous countries) of the World Wide Web Consortium (W3C);
marks of the W3C are registered and held by its host institutions, MIT, INRIA and Keio. Except as
expressly stated above, this Agreement does not grant you any intellectual property rights in the
Software. Notifications of claimed copyright infringement should be sent to Altova’s copyright
agent as further provided on the Altova Web Site.

3. LIMITED TRANSFER RIGHTS

Notwithstanding the foregoing, you may transfer all your rights to use the Software to another
person or legal entity provided that: (a) you also transfer this Agreement, the Software and all

476 Appendices License Information

© 2014 Altova GmbHAltova MapForce 2015

other software or hardware bundled or pre-installed with the Software, including all copies, updates
and prior versions, and all copies of font software converted into other formats, to such person or
entity; (b) you retain no copies, including backups and copies stored on a computer; (c) the
receiving party secures a personalized key code from Altova; and (d) the receiving party accepts
the terms and conditions of this Agreement and any other terms and conditions upon which you
legally purchased a license to the Software. Notwithstanding the foregoing, you may not transfer
education, pre-release, or not-for-resale copies of the Software.

4. PRE-RELEASE AND EVALUATION PRODUCT ADDITIONAL TERMS

If the product you have received with this license is pre-commercial release or beta Software (“Pre-
release Software”), then this Section applies. In addition, this section applies to all evaluation and/
or demonstration copies of Altova software (“Evaluation Software”) and continues in effect until you
purchase a license. To the extent that any provision in this section is in conflict with any other
term or condition in this Agreement, this section shall supersede such other term(s) and
condition(s) with respect to the Pre-release and/or Evaluation Software, but only to the extent
necessary to resolve the conflict. You acknowledge that the Pre-release Software is a pre-release
version, does not represent final product from Altova, and may contain bugs, errors and other
problems that could cause system or other failures and data loss. CONSEQUENTLY, THE PRE-
RELEASE AND/OR EVALUATION SOFTWARE IS PROVIDED TO YOU “AS-IS” WITH NO
WARRANTIES FOR USE OR PERFORMANCE, AND ALTOVA DISCLAIMS ANY WARRANTY
OR LIABILITY OBLIGATIONS TO YOU OF ANY KIND, WHETHER EXPRESS OR IMPLIED.
WHERE LEGALLY LIABILITY CANNOT BE EXCLUDED FOR PRE-RELEASE AND/OR
EVALUATION SOFTWARE, BUT IT MAY BE LIMITED, ALTOVA’S LIABILITY AND THAT OF ITS
SUPPLIERS SHALL BE LIMITED TO THE SUM OF FIFTY DOLLARS (USD $50) IN TOTAL. If the
Evaluation Software has a time-out feature, then the software will cease operation after the
conclusion of the designated evaluation period. Upon such expiration date, your license will expire
unless otherwise extended. Your license to use any output created with the Evaluation Software
that contains generated program code (including Unrestricted Source Code) such as Java, C++,
C, VB.NET or XSLT and associated project files and build scripts as well as generated XML, XML
Schemas, documentation, UML diagrams, and database structures terminates automatically
upon the expiration of the designated evaluation period but the license to use such output is
revived upon your purchase of a license for the Software that you evaluated and used to create
such output. Access to any files created with the Evaluation Software is entirely at your risk. You
acknowledge that Altova has not promised or guaranteed to you that Pre-release Software will be
announced or made available to anyone in the future, that Altova has no express or implied
obligation to you to announce or introduce the Pre-release Software, and that Altova may not
introduce a product similar to or compatible with the Pre-release Software. Accordingly, you
acknowledge that any research or development that you perform regarding the Pre-release
Software or any product associated with the Pre-release Software is done entirely at your own
risk. During the term of this Agreement, if requested by Altova, you will provide feedback to Altova
regarding testing and use of the Pre-release Software, including error or bug reports. If you have
been provided the Pre-release Software pursuant to a separate written agreement, your use of the
Software is governed by such agreement. You may not sublicense, lease, loan, rent, distribute or
otherwise transfer the Pre-release Software. Upon receipt of a later unreleased version of the Pre-
release Software or release by Altova of a publicly released commercial version of the Software,
whether as a stand-alone product or as part of a larger product, you agree to return or destroy all
earlier Pre-release Software received from Altova and to abide by the terms of the license
agreement for any such later versions of the Pre-release Software.

5. LIMITED WARRANTY AND LIMITATION OF LIABILITY

(a) Limited Warranty and Customer Remedies. Altova warrants to the person or entity

© 2014 Altova GmbH

License Information 477Appendices

Altova MapForce 2015

that first purchases a license for use of the Software pursuant to the terms of this Agreement that
(i) the Software will perform substantially in accordance with any accompanying Documentation
for a period of ninety (90) days from the date of receipt, and (ii) any support services provided by
Altova shall be substantially as described in Section 6 of this agreement. Some states and
jurisdictions do not allow limitations on duration of an implied warranty, so the above limitation
may not apply to you. To the extent allowed by applicable law, implied warranties on the
Software, if any, are limited to ninety (90) days. Altova’s and its suppliers’ entire liability and your
exclusive remedy shall be, at Altova’s option, either (i) return of the price paid, if any, or (ii) repair
or replacement of the Software that does not meet Altova’s Limited Warranty and which is
returned to Altova with a copy of your receipt. This Limited Warranty is void if failure of the
Software has resulted from accident, abuse, misapplication, abnormal use, Trojan horse, virus, or
any other malicious external code. Any replacement Software will be warranted for the remainder
of the original warranty period or thirty (30) days, whichever is longer. This limited warranty does
not apply to Evaluation and/or Pre-release Software.

(b) No Other Warranties and Disclaimer. THE FOREGOING LIMITED WARRANTY AND
REMEDIES STATE THE SOLE AND EXCLUSIVE REMEDIES FOR ALTOVA OR ITS
SUPPLIER’S BREACH OF WARRANTY. ALTOVA AND ITS SUPPLIERS DO NOT AND CANNOT
WARRANT THE PERFORMANCE OR RESULTS YOU MAY OBTAIN BY USING THE
SOFTWARE. EXCEPT FOR THE FOREGOING LIMITED WARRANTY, AND FOR ANY
WARRANTY, CONDITION, REPRESENTATION OR TERM TO THE EXTENT WHICH THE SAME
CANNOT OR MAY NOT BE EXCLUDED OR LIMITED BY LAW APPLICABLE TO YOU IN YOUR
JURISDICTION, ALTOVA AND ITS SUPPLIERS MAKE NO WARRANTIES, CONDITIONS,
REPRESENTATIONS OR TERMS, EXPRESS OR IMPLIED, WHETHER BY STATUTE,
COMMON LAW, CUSTOM, USAGE OR OTHERWISE AS TO ANY OTHER MATTERS. TO THE
MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, ALTOVA AND ITS SUPPLIERS
DISCLAIM ALL OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, SATISFACTORY QUALITY, INFORMATIONAL CONTENT OR
ACCURACY, QUIET ENJOYMENT, TITLE AND NON-INFRINGEMENT, WITH REGARD TO THE
SOFTWARE, AND THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES.
THIS LIMITED WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS. YOU MAY HAVE OTHERS,
WHICH VARY FROM STATE/JURISDICTION TO STATE/JURISDICTION.

(c) Limitation of Liability. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW EVEN IF A REMEDY FAILS ITS ESSENTIAL PURPOSE, IN NO EVENT SHALL ALTOVA
OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL, INCIDENTAL, DIRECT, INDIRECT OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS
INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF OR
INABILITY TO USE THE SOFTWARE OR THE PROVISION OF OR FAILURE TO PROVIDE
SUPPORT SERVICES, EVEN IF ALTOVA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. IN ANY CASE, ALTOVA’S ENTIRE LIABILITY UNDER ANY PROVISION OF
THIS AGREEMENT SHALL BE LIMITED TO THE AMOUNT ACTUALLY PAID BY YOU FOR THE
SOFTWARE PRODUCT. Because some states and jurisdictions do not allow the exclusion or
limitation of liability, the above limitation may not apply to you. In such states and jurisdictions,
Altova’s liability shall be limited to the greatest extent permitted by law and the limitations or
exclusions of warranties and liability contained herein do not prejudice applicable statutory
consumer rights of person acquiring goods otherwise than in the course of business. The
disclaimer and limited liability above are fundamental to this Agreement between Altova and you.

(d) Infringement Claims. Altova will indemnify and hold you harmless and will defend or
settle any claim, suit or proceeding brought against you by a third party that is based upon a

478 Appendices License Information

© 2014 Altova GmbHAltova MapForce 2015

claim that the content contained in the Software infringes a copyright or violates an intellectual or
proprietary right protected by United States or European Union law (“Claim”), but only to the
extent the Claim arises directly out of the use of the Software and subject to the limitations set
forth in Section 5 of this Agreement except as otherwise expressly provided. You must notify
Altova in writing of any Claim within ten (10) business days after you first receive notice of the
Claim, and you shall provide to Altova at no cost such assistance and cooperation as Altova may
reasonably request from time to time in connection with the defense of the Claim. Altova shall
have sole control over any Claim (including, without limitation, the selection of counsel and the
right to settle on your behalf on any terms Altova deems desirable in the sole exercise of its
discretion). You may, at your sole cost, retain separate counsel and participate in the defense or
settlement negotiations. Altova shall pay actual damages, costs, and attorney fees awarded
against you (or payable by you pursuant to a settlement agreement) in connection with a Claim to
the extent such direct damages and costs are not reimbursed to you by insurance or a third
party, to an aggregate maximum equal to the purchase price of the Software. If the Software or its
use becomes the subject of a Claim or its use is enjoined, or if in the opinion of Altova’s legal
counsel the Software is likely to become the subject of a Claim, Altova shall attempt to resolve
the Claim by using commercially reasonable efforts to modify the Software or obtain a license to
continue using the Software. If in the opinion of Altova’s legal counsel the Claim, the injunction or
potential Claim cannot be resolved through reasonable modification or licensing, Altova, at its own
election, may terminate this Agreement without penalty, and will refund to you on a pro rata basis
any fees paid in advance by you to Altova. THE FOREGOING CONSTITUTES ALTOVA’S SOLE
AND EXCLUSIVE LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT. This indemnity
does not apply to situations where the alleged infringement, whether patent or otherwise, is the
result of a combination of the Altova software and additional elements supplied by you.

6. SUPPORT AND MAINTENANCE

Altova offers multiple optional “Support & Maintenance Package(s)” (“SMP”) for the version of
Software product edition that you have licensed, which you may elect to purchase in addition to
your Software license. The Support Period, hereinafter defined, covered by such SMP shall be
delineated at such time as you elect to purchase a SMP. Your rights with respect to support and
maintenance as well as your upgrade eligibility depend on your decision to purchase SMP and
the level of SMP that you have purchased:

(a) If you have not purchased SMP, you will receive the Software AS IS and will not receive
any maintenance releases or updates. However, Altova, at its option and in its sole discretion on
a case by case basis, may decide to offer maintenance releases to you as a courtesy, but these
maintenance releases will not include any new features in excess of the feature set at the time of
your purchase of the Software. In addition, Altova will provide free technical support to you for
thirty (30) days after the date of your purchase (the “Support Period” for the purposes of this
paragraph 6(a), and Altova, in its sole discretion on a case by case basis, may also provide free
courtesy technical support during your thirty (30) day evaluation period. Technical support is
provided via a Web-based support form only, and there is no guaranteed response time.

(b) If you have purchased SMP, then solely for the duration of its delineated Support Period,
you are eligible to receive the version of the Software edition that you have licensed and all
maintenance releases and updates for that edition that are released during your Support Period.
For the duration of your SMP’s Support Period, you will also be eligible to receive upgrades to the
comparable edition of the next version of the Software that succeeds the Software edition that you
have licensed for applicable upgrades released during your Support Period. The specific upgrade
edition that you are eligible to receive based on your Support Period is further detailed in the SMP
that you have purchased. Software that is introduced as separate product is not included in SMP.
Maintenance releases, updates and upgrades may or may not include additional features. In

© 2014 Altova GmbH

License Information 479Appendices

Altova MapForce 2015

addition, Altova will provide Priority Technical Support to you for the duration of the Support
Period. Priority Technical Support is provided via a Web-based support form only and Altova will
make commercially reasonable efforts to respond via e-mail to all requests within forty-eight (48)
hours during Altova’s business hours (MO-FR, 8am UTC – 10pm UTC, Austrian and US holidays
excluded) and to make reasonable efforts to provide work-arounds to errors reported in the
Software.

During the Support Period you may also report any Software problem or error to Altova. If Altova
determines that a reported reproducible material error in the Software exists and significantly
impairs the usability and utility of the Software, Altova agrees to use reasonable commercial
efforts to correct or provide a usable work-around solution in an upcoming maintenance release or
update, which is made available at certain times at Altova’s sole discretion.

If Altova, in its discretion, requests written verification of an error or malfunction discovered by you
or requests supporting example files that exhibit the Software problem, you shall promptly provide
such verification or files, by email, telecopy, or overnight mail, setting forth in reasonable detail the
respects in which the Software fails to perform. You shall use reasonable efforts to cooperate in
diagnosis or study of errors. Altova may include error corrections in maintenance releases,
updates, or new major releases of the Software. Altova is not obligated to fix errors that are
immaterial. Immaterial errors are those that do not significantly impact use of the Software as
determined by Altova in its sole discretion. Whether or not you have purchased the Support &
Maintenance Package, technical support only covers issues or questions resulting directly out of
the operation of the Software and Altova will not provide you with generic consultation, assistance,
or advice under any circumstances.

Updating Software may require the updating of software not covered by this Agreement before
installation. Updates of the operating system and application software not specifically covered by
this Agreement are your responsibility and will not be provided by Altova under this Agreement.
Altova’s obligations under this Section 6 are contingent upon your proper use of the Software and
your compliance with the terms and conditions of this Agreement at all times. Altova shall be
under no obligation to provide the above technical support if, in Altova’s opinion, the Software has
failed due to the following conditions: (i) damage caused by the relocation of the Software to
another location or CPU; (ii) alterations, modifications or attempts to change the Software without
Altova’s written approval; (iii) causes external to the Software, such as natural disasters, the
failure or fluctuation of electrical power, or computer equipment failure; (iv) your failure to maintain
the Software at Altova’s specified release level; or (v) use of the Software with other software
without Altova’s prior written approval. It will be your sole responsibility to: (i) comply with all
Altova-specified operating and troubleshooting procedures and then notify Altova immediately of
Software malfunction and provide Altova with complete information thereof; (ii) provide for the
security of your confidential information; (iii) establish and maintain backup systems and
procedures necessary to reconstruct lost or altered files, data or programs.

7. SOFTWARE ACTIVATION, UPDATES AND LICENSE METERING

(a) License Metering. The Software includes a built-in license metering module that is
designed to assist you with monitoring license compliance in small local networks. The metering
module attempts to communicate with other machines on your local area network. You permit
Altova to use your internal network for license monitoring for this purpose. This license metering
module may be used to assist with your license compliance but should not be the sole method.
Should your firewall settings block said communications, you must deploy an accurate means of
monitoring usage by the end user and preventing users from using the Software more than the
Permitted Number.

480 Appendices License Information

© 2014 Altova GmbHAltova MapForce 2015

(b) License Compliance Monitoring. You are required to utilize a process or tool to
ensure that the Permitted Number is not exceeded. Without prejudice or waiver of any potential
violations of the Agreement, Altova may provide you with additional compliance tools should you
be unable to accurately account for license usage within your organization. If provided with such a
tool by Altova, you (a) are required to use it in order to comply with the terms of this Agreement
and (b) permit Altova to use your internal network for license monitoring and metering and to
generate compliance reports that are communicated to Altova from time to time.

(c) Software Activation. The Software may use your internal network and Internet
connection for the purpose of transmitting license-related data at the time of installation,
registration, use, or update to an Altova Master License Server and validating the
authenticity of the license-related data in order to protect Altova against unlicensed or
illegal use of the Software and to improve customer service. Activation is based on the
exchange of license related data between your computer and the Altova Master License
Server. You agree that Altova may use these measures and you agree to follow any
applicable requirements. You further agree that use of license key codes that are not or
were not generated by Altova and lawfully obtained from Altova, or an authorized
reseller as part of an effort to activate or use the Software violates Altova’s intellectual
property rights as well as the terms of this Agreement. You agree that efforts to
circumvent or disable Altova’s copyright protection mechanisms, the license
management mechanism, or the Altova Master License Server violate Altova’s
intellectual property rights as well as the terms of this Agreement. Altova expressly
reserves the rights to seek all available legal and equitable remedies to prevent such
actions and to recover lost profits, damages and costs.

(d) LiveUpdate. Altova provides a new LiveUpdate notification service to you, which is free
of charge. Altova may use your internal network and Internet connection for the purpose of
transmitting license-related data to an Altova-operated LiveUpdate server to validate your license
at appropriate intervals and determine if there is any update available for you.

(e) Use of Data. The terms and conditions of the Privacy Policy are set out in full at http://
www.altova.com/privacy and are incorporated by reference into this Agreement. By your
acceptance of the terms of this Agreement and/or use of the Software, you authorize the
collection, use and disclosure of information collected by Altova for the purposes provided for in
this Agreement and/or the Privacy Policy. Altova has the right in its sole discretion to amend this
provision of the Agreement and/or Privacy Policy at any time. You are encouraged to review the
terms of the Privacy Policy as posted on the Altova Web site from time to time.

(f) Audit Rights. You agree that Altova may audit your use of the Software for compliance
with the terms of this Agreement at any time, upon reasonable notice. In the event that such audit
reveals any use of the Software by you other than in full compliance with the terms of this
Agreement, you shall reimburse Altova for all reasonable expenses related to such audit in
addition to any other liabilities you may incur as a result of such non-compliance.

(g) Notice to European Users. Please note that the information as described in paragraph
7(d) above may be transferred outside of the European Economic Area, for purposes of
processing, analysis, and review, by Altova, Inc., a company located in Beverly, Massachusetts,
U.S.A., or its subsidiaries or Altova’s subsidiaries or divisions, or authorized partners, located
worldwide. You are advised that the United States uses a sectoral model of privacy protection that
relies on a mix of legislation, governmental regulation, and self-regulation. You are further advised
that the Council of the European Union has found that this model does not provide "adequate"
privacy protections as contemplated by Article 25 of the European Union's Data Directive.
(Directive 95/46/EC, 1995 O.J. (L 281) 31). Article 26 of the European Union's Data Directive

http://www.altova.com/privacy
http://www.altova.com/privacy

© 2014 Altova GmbH

License Information 481Appendices

Altova MapForce 2015

allows for transfer of personal data from the European Union to a third country if the individual has
unambiguously given his consent to the transfer of personal information, regardless of the third
country's level of protection. By agreeing to this Agreement, you consent to the transfer of all
such information to the United States and the processing of that information as described in this
Agreement and the Privacy Policy.

8. TERM AND TERMINATION

This Agreement may be terminated (a) by your giving Altova written notice of termination; (b) by
Altova, at its option, giving you written notice of termination if you commit a breach of this
Agreement and fail to cure such breach within ten (10) days after notice from Altova; or (c) at the
request of an authorized Altova reseller in the event that you fail to make your license payment or
other monies due and payable. In addition the Agreement governing your use of a previous version
of the Software that you have upgraded or updated is terminated upon your acceptance of the
terms and conditions of the Agreement accompanying such upgrade or update. Upon any
termination of the Agreement, you must cease all use of the Software that this Agreement
governs, destroy all copies then in your possession or control and take such other actions as
Altova may reasonably request to ensure that no copies of the Software remain in your
possession or control. The terms and conditions set forth in Sections 1(h), 1(i), 1(j), 1(k), 1(l), 2,
5, 7, 9, 10, 11, and 11 survive termination as applicable.

9. RESTRICTED RIGHTS NOTICE AND EXPORT RESTRICTIONS

The Software was developed entirely at private expense and is commercial computer software
provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the U.S. Government or a
U.S. Government contractor or subcontractor is subject to the restrictions set forth in this
Agreement and as provided in FAR 12.211 and 12.212 (48 C.F.R. §12.211 and 12.212) or DFARS
227. 7202 (48 C.F.R. §227-7202) as applicable. Consistent with the above as applicable,
Commercial Computer Software and Commercial Computer Documentation licensed to U.S.
government end users only as commercial items and only with those rights as are granted to all
other end users under the terms and conditions set forth in this Agreement. Manufacturer is
Altova GmbH, Rudolfsplatz 13a/9, A-1010 Vienna, Austria/EU. You may not use or otherwise
export or re-export the Software or Documentation except as authorized by United States law and
the laws of the jurisdiction in which the Software was obtained. In particular, but without limitation,
the Software or Documentation may not be exported or re-exported (i) into (or to a national or
resident of) any U.S. embargoed country or (ii) to anyone on the U.S. Treasury Department's list
of Specially Designated Nationals or the U.S. Department of Commerce's Table of Denial Orders.
By using the Software, you represent and warrant that you are not located in, under control of, or
a national or resident of any such country or on any such list.

10. U.S. GOVERNMENT ENTITIES

Notwithstanding the foregoing, if you are an agency, instrumentality or department of the federal
government of the United States, then this Agreement shall be governed in accordance with the
laws of the United States of America, and in the absence of applicable federal law, the laws of the
Commonwealth of Massachusetts will apply. Further, and notwithstanding anything to the
contrary in this Agreement (including but not limited to Section 5 (Indemnification)), all claims,
demands, complaints and disputes will be subject to the Contract Disputes Act (41 U.S.C.
§§7101 et seq.), the Tucker Act (28 U.S.C. §1346(a) and §1491), or the Federal Tort Claims Act
(28 U.S.C. §§1346(b), 2401-2402, 2671-2672, 2674-2680), FAR 1.601(a) and 43.102 (Contract
Modifications); FAR 12.302(b), as applicable, or other applicable governing authority. For the
avoidance of doubt, if you are an agency, instrumentality, or department of the federal, state or
local government of the U.S. or a U.S. public and accredited educational institution, then your

482 Appendices License Information

© 2014 Altova GmbHAltova MapForce 2015

indemnification obligations are only applicable to the extent they would not cause you to violate
any applicable law (e.g., the Anti-Deficiency Act), and you have any legally required authorization
or authorizing statute.

11. THIRD PARTY SOFTWARE

The Software may contain third party software which requires notices and/or additional terms and
conditions. Such required third party software notices and/or additional terms and conditions are
located at our Website at http://www.altova.com/legal_3rdparty.html and are made a part of and
incorporated by reference into this Agreement. By accepting this Agreement, you are also
accepting the additional terms and conditions, if any, set forth therein.

12. JURISDICTION, CHOICE OF LAW, AND VENUE

If you are located in the European Union and are using the Software in the European Union and
not in the United States, then this Agreement will be governed by and construed in accordance
with the laws of the Republic of Austria (excluding its conflict of laws principles and the U.N.
Convention on Contracts for the International Sale of Goods) and you expressly agree that
exclusive jurisdiction for any claim or dispute with Altova or relating in any way to your use of the
Software resides in the Handelsgericht, Wien (Commercial Court, Vienna) and you further agree
and expressly consent to the exercise of personal jurisdiction in the Handelsgericht, Wien
(Commercial Court, Vienna) in connection with any such dispute or claim.

If you are located in the United States or are using the Software in the United States then this
Agreement will be governed by and construed in accordance with the laws of the Commonwealth
of Massachusetts, USA (excluding its conflict of laws principles and the U.N. Convention on
Contracts for the International Sale of Goods) and you expressly agree that exclusive jurisdiction
for any claim or dispute with Altova or relating in any way to your use of the Software resides in
the federal or state courts of the Commonwealth of Massachusetts and you further agree and
expressly consent to the exercise of personal jurisdiction in the federal or state courts of the
Commonwealth of Massachusetts in connection with any such dispute or claim.

If you are located outside of the European Union or the United States and are not using the
Software in the United States, then this Agreement will be governed by and construed in
accordance with the laws of the Republic of Austria (excluding its conflict of laws principles and
the U.N. Convention on Contracts for the International Sale of Goods) and you expressly agree
that exclusive jurisdiction for any claim or dispute with Altova or relating in any way to your use of
the Software resides in the Handelsgericht, Wien (Commercial Court, Vienna) and you further
agree and expressly consent to the exercise of personal jurisdiction in the Handelsgericht Wien
(Commercial Court, Vienna) in connection with any such dispute or claim. This Agreement will not
be governed by the conflict of law rules of any jurisdiction or the United Nations Convention on
Contracts for the International Sale of Goods, the application of which is expressly excluded.

13. TRANSLATIONS

Where Altova has provided you with a foreign translation of the English language version, you
agree that the translation is provided for your convenience only and that the English language
version will control. If there is any contradiction between the English language version and a
translation, then the English language version shall take precedence.

14. GENERAL PROVISIONS

This Agreement contains the entire agreement and understanding of the parties with respect to

http://www.altova.com/legal_3rdparty.html

© 2014 Altova GmbH

License Information 483Appendices

Altova MapForce 2015

the subject matter hereof, and supersedes all prior written and oral understandings of the parties
with respect to the subject matter hereof. Any notice or other communication given under this
Agreement shall be in writing and shall have been properly given by either of us to the other if sent
by certified or registered mail, return receipt requested, or by overnight courier to the address
shown on Altova’s Web site for Altova and the address shown in Altova’s records for you, or such
other address as the parties may designate by notice given in the manner set forth above. This
Agreement will bind and inure to the benefit of the parties and our respective heirs, personal and
legal representatives, affiliates, successors and permitted assigns. The failure of either of us at
any time to require performance of any provision hereof shall in no manner affect such party’s right
at a later time to enforce the same or any other term of this Agreement. This Agreement may be
amended only by a document in writing signed by both of us. In the event of a breach or
threatened breach of this Agreement by either party, the other shall have all applicable equitable
as well as legal remedies. Each party is duly authorized and empowered to enter into and perform
this Agreement. If, for any reason, any provision of this Agreement is held invalid or otherwise
unenforceable, such invalidity or unenforceability shall not affect the remainder of this Agreement,
and this Agreement shall continue in full force and effect to the fullest extent allowed by law. The
parties knowingly and expressly consent to the foregoing terms and conditions.

Last updated: 2013-10-17

© 2014 Altova GmbH

Index 485

Index

(
(default),

multi input / output components, 55

.

.NET extension functions,

constructors, 453

datatype conversions, .NET to XPath/XQuery, 457

datatype conversions, XPath/XQuery to .NET, 456

for XSLT and XQuery, 451

instance methods, instance fields, 455

overview, 451

static methods, static fields, 454

/
/-,

runtime paramters - command line, 198

<
<dynamic>,

file input / output, 55

A
A to Z,

sort component, 170

About MapForce, 402

abs, 356

Absolute,

paths - advantages / disadvantages, 255

Accelerator,

shortcut keys, 391

Activating the software, 401

Add, 329, 374

duplicate before / after, 374

global resource file, 224

schema location, 374

user-def. functions, 271

Adjust-to-Timezone, 353

Aggregate,

function - using named templates, 310

functions, 185

Align,

components in mapping window, 23

Altova Engines,

in Altova products, 464

Altova extensions,

chart functions (see chart functions), 413

Altova website, 402

Altova XML,

DoTransform.bat, 38

Altova XML Parser,

about, 463

Annotation,

connector, 379

Any,

xs:any, 159

anyURI,

functions, 350

Application workflow,

using global resources, 234

Assign,

global resource to component, 227

ATTLIST,

DTD namespace URIs, 146

Autoalign,

components in mapping, 64

Autoalignment,

guide lines, 23

Autoconnect,

child items, 73, 96

Auto-mapping,

child elements, 73

auto-number, 325

avg, 314

Index

© 2014 Altova GmbH

486

B
Background Information, 461

Base,

type - derived types, 147

base-uri, 350

Best fit,

double click resize icon, 22

BOM,

Byte Order Mark, 374

Bool,

output if false, 298

boolean, 317

comparing input nodes, 188

Builder,

user-defined function, 271

BUILTIN,

component name, 198

Built-in engine,

definition, 82

using, 82

Byte Order Mark,

in component settings, 374

C
Call,

template, 305

Casting,

to target schema, 374

Catalog,

file, 90

CDATA, 157

ceiling, 329

Chained,

mapping - code generation, 126

Chained mapping,

display final component using Stylevision, 121, 126

Change,

configuration - global resource, 229

char-from-code, 339

Child items, 73

autoconnect, 73, 96

Deleting, 73

Children,

standard with children, 108

Code,

exit code - command line, 88

inline functions & code size, 280

strip schema names from, 374

Code generation, 194

and absolute path, 39

and input parameters, 194

default file output name, 38

input parameters, 194

make paths absolute, 255

of chained mappings, 126

wrapper class version, 391

Code point,

collation, 170

code-from-char, 339

Collation,

locale collation, 170

sort component, 170

unicode code point, 170

Command line, 88, 194

component name, 198

default and preview settings, 195

dynamic input file names, 248

exit code, 88

input parameter, 194

Input parameters, 251

parameters, 88

parameters and input values, 194

Command line parameters,

wildcards in quotes, 194

Comments,

Adding to target files, 155

Companion software,

for download, 402

compare, 357

compl.,

complement node set, 34

Complex,

function - inline, 280

User-defined complex input, 288

User-defined complex output, 293

User-defined function, 287, 293

Complex type,

sorting, 170

Component, 374

© 2014 Altova GmbH

Index 487

Component, 374

assign global resource, 227

change database, 374

changing settings, 374

deleted items, 78

enable input processing, 374

encoding settings, 374

input - default value, 195

keep connectios after deleting, 73

multi input / Output, 246

multi-file input / output, 54

mutli input / Output, 248

name - Component settings, 374

pretty pring in output, 374

resize to best fit, 22

sort data, 170

Component download center,

at Altova web site, 402

Component name,

command line execution, 198

Component settings,

component name, 374

Components,

multi file input/output, 55

processing sequence, 116

Compute once,

variable, 265

Compute when,

variable, 265

concat, 339

Concatenate,

filters - don't, 168

Condition,

extendable IF-Else, 372

Configuration,

add to global resource, 224

copy existing, 224

switch - global resource, 229

Connection, 73

Deleting, 73

move parent/child connectors, 73

properties, 73

settings, 379

Connections,

type driven, 110

Connector, 73, 96

copying using CTRL, 96

mapping with, 96

naming, 379

popup, 96

properties, 73

Connector icon,

popup, 96

Connectors,

copy-all, 110

Consolidating data,

merging XML files, 192

Constant,

as default value, 195

Constructor,

XSLT2, 309

constructors,

xs:ENTITY, 351

contains, 339

Context,

override, 203

priority, 133

priority context, 190

Conversion,

functions - boolean, 188

Copy,

existing connector elsewhere - CTRL, 96

Copy all,

mapping method, 100

Copy-all, 110

and filters, 110

connectors, 110

resolve / delete connectors, 110

Copyright information, 467

Core,

library functions, 314

count, 314

count, sum, avg,

aggregate function, 185

Create,

function, 30

user-defined function, 271

current, 362

current-date, 352

current-dateTime, 352

current-time, 352

Custom, 133

function, 133

lilbrary, 133

XSLT 2.0 functions, 309

XSLT functions, 305

Index

© 2014 Altova GmbH

488

Cut,

move parent/child connectors, 73

D
Data,

filtering, 34

Database, 374

and multiple sources, 374

change DB, 374

strip schema names from code, 374

Datatype,

explicit - implicit, 309

Date,

XSLT 2.0 constructor, 309

Default,

configuration - global resource, 224

input value, 298

parameter - input component, 195

default-collation, 352

Definition file,

globalresource.xml, 222

Delete,

connections, 73

copy-all connections, 110

deletions - missing items, 78

user-defined function, 271

Deploy,

to FlowForce Server, 367

Derived,

types - using / mapping to, 147

distinct-values, 334

Distribution,

of Altova's software products, 467, 468, 470

divide, 329

document, 362

document-uri, 350

DoTransform,

AltovaXML batch file, 38

DoTransform bat,

transforming XML, 43

DoTransform.bat,

execute with RaptorXML Server, 18

Driver,

JDBC, 374

DTD,

source and target, 146

Duplicate,

add before/after, 374

connector - use CTRL, 96

input item, 49

Dynamic,

and multifile support, 246

file names as Input parameters, 251

input files at runtime, 248

E
EDI,

validating, 85

Edit, 371

Element,

cast to target, 374

recursive element in XML Schema, 212

element-available, 362

Enable input processing,

optimization, 374

Encoding, 374

Byte Order Mark, 374

component settings, 374

End User License Agreement, 467, 471

ends-with, 357

equal, 327

equal-or-greater, 327

equal-or-less, 327

Erase,

delete user-defined func., 271

Error,

validation, 85

Errorlevel,

command line execution, 88

escape-uri, 357

Evaluation key,

for your Altova software, 401

Evaluation period,

of Altova's software products, 467, 468, 470

Example,

recursive user-defined mapping, 212

Examples,

tutorial folder, 20

Exist,

use not-exist to map missing nodes, 201

© 2014 Altova GmbH

Index 489

exists, 332

node test, 199

Exit code, 88

Explicit,

datatype, 309

Export,

user-defined function, 271

Expression,

regular, 346

Extending,

function parameters, 133

Extension functions for XSLT and XQuery, 442

Extension Functions in .NET for XSLT and XQuery,

see under .NET extension functions, 451

Extension Functions in Java for XSLT and XQuery,

see under Java extension functions, 442

Extension Functions in MSXSL scripts, 457

F
false, 351

FAQs on MapForce, 402

File, 367

add resource configuration, 224

catalog, 90

define global resource, 224

multi file input / output, 55

File:,

(default), 55

item in component, 55

Files,

dynamic file names as Input, 251

multiple from database, 252

Filter,

complement, 34

component - tips, 168

concatenate - don't, 168

copy-all connector, 110

data, 34

map parent items, 168

merging XML files, 192

priority context, 168

Find,

function in library, 133

XSLT - Output tab, 371

floor, 329

FlowForce,

deploying to, 367

Folders,

as a global resource, 231

format-dateTime, 317

format-number, 317, 362

From, 353

Function, 133, 325, 384

adding, 133

adding custom XSLT, 305

adding custom XSLT 2.0, 309

aggregate, 185

Changing type of user-defined, 271

complex - inline, 280

conversion - boolean, 188

core library, 314

custom, 133

defining, 270

exporting user-defined, 271

extendable, 133

extendable IF-Else, 372

find in library, 133

inline, 280

input as parameter, 194

library, 133

nested user-defined, 298

Query, 133

restrictions in user-defined, 271

standard user-defined function, 282

sum, 310

user-defined, 271

user-defined - changing type, 271

user-defined function, 214

user-defined look-up function, 282

visual builder, 271

xpath2 library, 350

xslt library, 360

function-available, 362

Functions,

importing user-defined, 271

mapping to, 30

reference section, 313

G
Generate, 43

Index

© 2014 Altova GmbH

490

Generate, 43

code & inline functions, 280

multiple target Java, 43

multiple target XSLT, 43

XML Schema automatically, 22

Generated,

file output name, 38

generate-id, 362

get-fileext, 323

get-folder, 323

Global resource,

activate, 229

assign to component, 227

copy configuration, 224

default configuration, 224

folders as, 231

properties, 242

start workflow, 239

workflow, 234

Global resources,

define resource file, 224

definition file, 222

toolbar, 223

Globalresource.xml,

resource definition, 222

greater, 327

Grid,

snap line alignment, 64

group-adjacent, 334

group-by, 334

group-ending-with, 334

Groups,

loops and hierarchies, 136

group-starting-with, 334

H
Health Level 7,

example, 164

Help,

see Onscreen Help, 400

Help menu, 399

Hierarchies,

loops and groups, 136

HL7 2.6 to 3.x,

example, 164

Hotkeys,

shortcuts, 391

How to..., 166

HTML,

tab, in mapping window, 60

I
Icon,

mandatory - highlighted, 96

IF-Else,

extendable, 372

Implicit,

datatype, 309

Import,

user-def. functions, 271

Include,

XSLT, 305

XSLT 2.0, 309

in-context,

parameter, 314

Inline, 271

functions and code size, 280

Inline / Standard,

user-defined functions, 280

Input,

as command line param, 194

command line parameter, 195

comparing boolean nodes, 188

default value, 298

multi file, 248

optional parameters, 298

XML instance, 374

Input component,

default value, 195

Input icon,

mapping, 96

Input parameter, 194

and code generation, 194

and dynamic file names, 251

command line, 194

dynamic, 248

Insert, 372

Installation,

examples folder, 20

Instance, 374

© 2014 Altova GmbH

Index 491

Instance, 374

and component name, 198

input XML instance, 374

output XML instance, 374

Intermediate variables, 260

Internet usage,

in Altova products, 466

Introduction to MapForce, 3

is-xsi-nil, 332

Item,

duplicating, 49

missing, 78

schema - mapping, 27

Items,

mandatory, 96

Iteration,

priority context, 190

J
Java,

generate multiple target, 43

multiple targets, 39

Java extension functions,

constructors, 448

datatype conversions, Java to Xpath/XQuery, 451

datatype conversions, XPath/XQuery to Java, 450

for XSLT and XQuery, 442

instance methods, instance fields, 449

overview, 442

static methods, static fields, 448

user-defined class files, 444

user-defined JAR files, 447

JDBC,

Convert ADO and ODBC to, 391

K
Keep connections,

after deleting, 73

Keeping data,

when using value-map, 180

Keeping data unchanged,

passing through a value-map, 180

Key,

sort key, 170

Keyboard,

shortcuts, 391

Key-codes,

for your Altova software, 401

L
lang, 355, 360

Languages,

and dynamic/multi file support, 246

last, 352, 360

Legal information, 467

less, 327

Libraries,

and user-defined functions, 271

Library, 133

adding XSLT 2.0 functions, 309

adding XSLT functions, 305

custom, 133

defining, 270

find function in, 133

function, 133

function reference, 313

import user-def. functions, 271

XPath2, 133

License, 471

information about, 467

License metering,

in Altova products, 469

Licenses,

for your Altova software, 401

Local,

schemas - catalog files, 90

Locale collation, 170

local-name, 355, 360

logical-and, 327

logical-not, 327

logical-or, 327

Lookup table,

mapping missing nodes, 201

properties, 183

value map table, 177

Loops,

groups and hierarchies, 136

Index

© 2014 Altova GmbH

492

lower-case, 357

M
main-mfd-filepath, 323

Make paths,

absolute in generated code, 255

Mandatory,

nodes/items, 96

manespace-uri, 355

MapForce,

introduction, 3

Overview, 10

terminology, 12

Mapping, 73, 96

child elements, 73

connnector, 96

no. of connections, 96

processing sequence, 116

properties, 73

schema items, 27

source driven - mixed content, 102

standard mapping, 108

target driven, 108

target schema name, 38

tutorial, 20

type driven, 110

validate structure, 85

validation, 85

window - autoalignment, 23

Mapping methods,

standard, 101

standard / mixed / copy all, 100

target-driven, 101

Mapping window,

autoalignment, 64

Stylevision tabs, 60

MappingMap,

toTargetSchemaName, 38

Marked items,

missing items, 78

matches, 357

max, 314

Memory requirements, 462

Menu,

connection, 379

edit, 371

file, 367

function, 384

insert, 372

output, 387

tools, 391

view, 389

Merge,

multiple input files, 248

Merging,

XML files, 192

mfd-filepath, 323

MFF,

and user-defined functions, 271

min, 314

min, max,

aggregate function, 185

minOccurs/maxOccurs,

input processing optimization, 374

Missing items, 78

Missing nodes,

mapping missing nodes, 201

Mixed,

content mapping, 102

content mapping example, 107

content mapping method, 100

source-driven mapping, 102

standard mapping, 108

modulus, 329

Move,

parent/child connectors, 73

Move down,

item in component, 374

Move up,

item in component, 374

MSXML 6.0,

library, 391

msxsl:script, 457

Multi, 246

file support - languages, 246

input / output, 246

Multi file,

input / output, 248

processing (tutorial), 55

Multi-file,

input / output, 54

Multiple,

source schemas, 374

© 2014 Altova GmbH

Index 493

Multiple,

target schemas, 39

targets and Java, 39

viewing multiple target schemas, 43

multiple input,

items, 49

Multiple source,

to single target, 192

to single target item, 45

Multiple XML files,

from single XML source, 252

multiply, 329

MyDocuments,

example files, 20

N
Name, 355, 360

connector, 379

Named,

template - namespaces, 305

Named template,

summing nodes, 310

Namespace,

named template, 305

Namespace URI,

DTD, 146

Namespace URIs,

and QNames, 149

Namespaces,

and wildcards (xs:any), 159

namespace-uri, 360

Nested,

user-defined functions, 298

nillable,

as attribute in XML schema, 152

node, 355

comparing boolean, 188

mapping missing nodes, 201

position, 203

summing multiple, 310

testing, 199

Node set,

complement, 34

node-name, 350

Nodes,

mandatory, 96

normalize-space, 339

normalize-unicode, 357

Not exist,

mapping missing nodes, 201

not-equal, 327

not-exists, 332

number, 317, 355

O
Onscreen help,

index of, 400

searching, 400

table of contents, 400

Optimization,

enable input processing, 374

Optional,

input parameters, 298

Orange,

mandatory items/nodes, 96

Order,

components are processed, 116

Ordering Altova software, 401

Ordering data,

sort component, 170

OS,

for Altova products, 462

Ouput,

save data from, 43

Output, 374, 387

add schema location to output, 374

multi file, 248

parameter, 298

previewing, 83

user-defined if bool = false, 298

validate, 85

validating, 85

XML instance, 374

Output icon,

mapping, 96

Override,

context, 203

Overview of MapForce, 10

Index

© 2014 Altova GmbH

494

P
Parameter, 194, 195

and code generation, 194

command line, 88, 194

default value, 195

extending in functions, 133

in-context, 314

input - dynamic, 248

Input function as a, 194, 195

optional, 298

output, 298

using wildcards, 194

Parameter-name,

component name, 198

Parameter-value,

file instance, 198

Parent,

mapping and filters, 168

Parent context,

variable, 265

parse-dateTime, 317

parse-number, 317

Parser,

built into Altova products, 463

Passing through data,

unchanged through value-map, 180

Path,

absolute when generating code, 39

Platforms,

for Altova products, 462

position, 332, 352, 360

node / context, 203

of filtered sequence, 203

Pretty print,

in output component, 374

Preview,

input component value, 195

Priority,

and filters, 168

function, 133

Priority context,

defining, 190

Processing Instructions,

Adding to target files, 155

Processing sequence,

of components in a mapping, 116

Processors,

for download, 402

Properties,

value map table, 183

Q
QName support, 149

qname-related,

functions, 356

Question mark,

missing items, 78

Quotes,

and command line params, 194

R
RaptorXML Server,

executing a transformation, 18

Recursive,

calls in functions, 280

user-defined function, 214

user-defined mapping, 212

Reference, 366

functions in MapForce, 313

Regex, 346

Registering your Altova software, 401

Regular expressions, 346

Relative,

paths - advantages, 255

Remove,

Connection, 73

copy-all connections, 110

remove-fileext, 323

remove-folder, 323

replace, 357

replace-fileext, 323

Resize,

component "best fit", 22

resolve-filepath, 323

resolve-uri, 350

Resource,

© 2014 Altova GmbH

Index 495

Resource,

folder, 231

global resource properties, 242

Restore,

child connectors, 73

Result of Transformation,

global resources, 234

Retain connecions,

after deleting, 73

Retaining data,

passing through vlaue-map, 180

Root,

element of target, 187

Root element,

create new, 73

round, 329

round-half-to-even, 356

round-precision, 329

RTF,

tab, in mapping window, 60

S
Save,

data in Output window, 43

Schema, 374

add location to output, 374

and XML mapping, 145

auto-generate from XML file, 22

catalog file, 90

multiple source, 374

multiple target, 39

name, strip from generated code, 374

recursive elements, 212

viewing multiple targets, 43

Schema names,

strip from table names, 374

Scripts in XSLT/XQuery,

see under Extension functions, 442

Search,

XSLT - Output tab, 371

Section,

CDATA, 157

Sequence,

of processing components, 116

position of item, 203

postition, 203

set-empty, 334

Setting,

connector, 379

Settings, 374

changing component, 374

component name, 374

set-xsi-nil, 332

Shortcut,

keyboard, 391

Simple type,

sorting, 170

Single target,

multiple sources, 192

Snap,

lines - auto-align components, 64

Software product license, 471

Sort,

sort component, 170

Sort key,

sort component, 170

Sort order,

changing, 170

Source file,

split into multiple target files, 252

Source-driven,

- mixed content mapping, 102

vs. standard mapping, 108

Specify value,

input component - preview, 195

Standard,

mapping method, 100, 101

mapping with children, 108

mixed content mapping, 108

user-defined function, 282

vs source-driven mapping, 108

XSLT library, 133

starts-with, 339, 357

string, 317, 350

string-join, 314

string-length, 339

Strip,

schema names, 374

Stylevision,

chained mapping - final component, 121, 126

tabs, in mapping window, 60

Substitute,

missing node, 199

Index

© 2014 Altova GmbH

496

substitute-missing, 332

substitute-missing-with-xsi-nil, 332

substring, 339

substring-after, 339, 357

substring-before, 339, 357

Subtract, 329, 353

sum, 314

nodes in XSLT 1.0, 310

Support for MapForce, 402

Switch,

configuration - global resource, 229

system-property, 362

T
Table, 374

lookup - value map, 177

strip schema names, 374

strip schema names from, 374

Table data,

sorting, 170

Target,

multiple schemas, 39

root element, 187

viewing multiple schemas, 43

Target file,

multiple from single source file, 252

Target item,

mapping multi-source, 45

Target-driven,

mapping, 108

Target-driven mapping, 101

Technical Information, 461

Technical support for MapForce, 402

Teminology, 12

Template,

calling, 305

named - summing, 310

Test,

node testing, 199

Tokenize, 339, 342

Tokenize-by-length, 339, 342

tokenize-regexp, 339

Toolbar,

global resource, 223

Tools, 391

Transform,

DoTransform.bat, 43

input data - value map, 177

Transformation language,

selecting, 82

Transformations,

RaptorXML Server, 18

translate, 339

true, 351

Tutorial, 20

examples folder, 20

Type,

cast to target type, 374

Type driven,

connections, 110

Types,

derived types - xsi:type, 147

U
Unicode,

code point collation, 170

Unicode support,

in Altova products, 465

unparsed-entity-uri, 362

upper-case, 357

URI,

in DTDs, 146

URIs,

and QNames, 149

User defined,

changing function type, 271

complex input, 288

complex output, 293

deleting, 271

function - inline / standard, 280

function - standard, 282

functions, 271

functions - complex, 287, 293

functions - restrictions, 271

functions changing type of, 271

importing/exporting, 271

look-up functions, 282

nested functions, 298

output if bool = false, 298

User manual,

© 2014 Altova GmbH

Index 497

User manual,

see also Onscreen Help, 400

User-defined,

functions, 271

functions & mffs, 271

user-defined function,

recursive, 214

Using,

global resources, 229

V
Validate,

data in output window, 43

mapping project, 85

output data, 85

Validator,

in Altova products, 463

Value,

default, 298

input component - preview, 195

Value-Map,

lookup table, 177

lookup table - properties, 183

passing data unchanged, 180

Variable,

inserting, 260

intermediate variable, 260

use cases, 260

Version,

wrapper class compatibility, 391

View, 389

Visual function builder, 271

Visual Studio,

versions supported - code generation, 391

W
Warning,

validation, 85

Wildcards,

use of quotes in command line, 194

xs:any - xs:anyAtrribute, 159

Windows,

support for Altova products, 462

Word2007+,

tab, in mapping window, 60

Workflow,

start - global resource, 239

using global resource, 234

Wrapper,

classes, 391

Wrapper classes,

version compatibility, 391

X
Xerces,

libraries, 391

XML,

generate XML Schema from, 22

XML files,

from single XML source, 252

XML instance, 374

absolute path, 39

input, 374

output, 374

XML Parser,

about, 463

XML schema,

automatically generate, 22

XML to XML, 145

xpath, 360

summing multiple nodes, 310

xpath2,

library, 133

library functions, 350

XQuery,

Extension functions, 442

functions, 133

XQuery processor,

in Altova products, 464

xs:,

constuctors, 351

xs: any (xs:anyAttribute), 159

xs:date, 352

xs:time, 352

xsi:nil,

as attribute in XML instance, 152

xsi:type,

Index

© 2014 Altova GmbH

498

xsi:type,

mapping to derived types, 147

XSLT, 305

adding custom functions, 305

Extension functions, 442

generate multiple target, 43

library functions, 360

previewing generated code, 84

standard library, 133

tab, in mapping window, 60

template namespace, 305

XSLT 1.0/2.0, 38

DoTransfrom batch file, 38

generate (tutorial), 38

XSLT 2.0,

adding custom functions, 309

XSLT processors,

in Altova products, 464

XSLT2.0,

date constructor, 309

Y
Yellow,

mandatory items/nodes, 96

Z
Z to A,

sort component, 170

	MapForce 2015
	What's new...
	MapForce overview
	Terminology

	RaptorXML Server
	MapForce tutorial
	Setting up the mapping environment
	Adding components to the Mapping pane

	Creating a mapping
	Mapping schema items
	Using functions to map data
	Filtering data

	Generating XSLT 1.0, or 2.0 code
	Handling multiple target schemas / documents
	Creating a second target component
	Viewing and generating multiple target schema output

	Mapping multiple source items to single target items
	Creating the mappings
	Duplicating input items

	Multi-file input / output
	Processing multiple files per input/output component

	MapForce user interface
	Libraries tab
	Mapping pane
	XSLT/XSLT2 pane
	Output pane
	Overview window
	Messages window

	Working with MapForce
	Connectors moving / keeping
	Missing items
	Selecting a transformation language
	Previewing the transformation output
	Previewing the XSLT code
	Validating mappings and mapping output
	Command line parameters
	Catalog files in MapForce

	Mapping between components
	Methods of mapping data (Standard / Mixed Content / Copy Child Items)
	Target-driven / Standard mapping
	Source-driven / mixed content mapping
	Mapping mixed content
	Mixed content example
	Using standard mapping on mixed content items

	Copy-all connections

	Connection settings
	Connections and mapping results
	Sequence of processing mapping components
	Chained mappings / pass-through components
	Chained mappings - Pass-through active
	Chained mappings - Pass-through inactive
	Chained mapping example

	Using Functions
	Loops, groups and hierarchies
	Mapping rules and strategies

	Data Sources and Targets
	XML and XML schema
	Using DTDs as "schema" components
	Derived XML Schema types - mapping to
	QName support
	Nil Values / Nillable
	Comments and Processing Instructions
	CDATA Sections
	Wildcards - xs:any / xs:anyAttribute

	HL7 v3.x to/from XML schema mapping

	How To... Filter, Transform, Aggregate
	Filter components - Tips
	Sort component - sorting input sequences
	Value-Map - transforming input data
	Passing data through a Value-Map unchanged
	Value-Map component properties

	Aggregate functions: min, max, sum, count, avg
	Mappings and root element of target documents
	Boolean comparison of input nodes
	Priority Context node/item
	Merging multiple files into one target
	Command line - defining input parameters
	Input parameters - default and preview settings
	Component Names
	Node testing, position and grouping
	Mapping missing nodes - using Not-exists
	Position of context items in a sequence
	Grouping nodes / node content

	Recursive user-defined mapping
	Defining a recursive user-defined function

	Global Resources
	Global Resources - Files
	Defining / Adding global resources
	Assigning a global resource
	Using / activating a global resource

	Global Resources - Folders
	Global Resources - Application workflow
	Start application workflow

	Global Resources - Properties

	Dynamic input/output files per component
	Dynamic file names - input / output
	Dynamic file names as Input parameters
	Multiple XML files from single XML source file
	Relative and absolute file paths

	Intermediate variables
	Variables - use cases

	Libraries and Functions
	Defining User-defined functions
	Function parameters
	Inline and regular user-defined functions
	Creating a simple look-up function
	Complex user-defined function - XML node as input
	Complex input components - defining

	Complex user-defined function - XML node as output
	Complex output components - defining

	User-defined function - example

	Adding custom XSLT and XQuery functions
	Adding custom XSLT 1.0 functions
	Adding custom XSLT 2.0 functions
	Aggregate functions - summing nodes in XSLT1 and 2

	Functions Reference
	core
	aggregates
	conversion functions
	file path functions
	generator functions
	logical functions
	math functions
	node functions
	sequence functions
	string functions
	Tokenize examples
	Regular expressions

	xpath2
	accessors
	anyURI functions
	boolean functions
	constructors
	context functions
	durations, date and time functions
	node functions
	numeric functions
	qname-related functions
	string functions

	xslt
	xpath functions
	xslt functions

	Menu Reference
	File
	Edit
	Insert
	Component
	Connection
	Function
	Output
	View
	Tools
	Window
	Help Menu
	Table of Contents, Index, Search
	Activation, Order Form, Registration, Updates
	Other Commands

	Appendices
	Engine information
	XSLT and XQuery Engine Information
	XSLT 1.0
	XSLT 2.0
	XQuery 1.0

	XSLT and XPath/XQuery Functions
	Altova Extension Functions
	XSLT Functions
	XPath/XQuery Functions: Date and Time
	XPath/XQuery Functions: String
	XPath/XQuery Functions: Miscellaneous

	Miscellaneous Extension Functions
	Java Extension Functions
	User-Defined Class Files
	User-Defined Jar Files
	Java: Constructors
	Java: Static Methods and Static Fields
	Java: Instance Methods and Instance Fields
	Datatypes: XPath/XQuery to Java
	Datatypes: Java to XPath/XQuery

	.NET Extension Functions
	.NET: Constructors
	.NET: Static Methods and Static Fields
	.NET: Instance Methods and Instance Fields
	Datatypes: XPath/XQuery to .NET
	Datatypes: .NET to XPath/XQuery

	MSXSL Scripts for XSLT

	Technical Data
	OS and Memory Requirements
	Altova XML Validator
	Altova XSLT and XQuery Engines
	Unicode Support
	Internet Usage

	License Information
	Electronic Software Distribution
	Software Activation and License Metering
	Intellectual Property Rights
	Altova End User License Agreement

