
AltovaXML 2013

User and Reference Manual

All rights reserved. No parts of this work may be reproduced in any form or by any means
- graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems - without the written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered
trademarks of the respective owners. The publisher and the author make no claim to
these trademarks.

While every precaution has been taken in the preparation of this document, the publisher
and the author assume no responsibility for errors or omissions, or for damages resulting
from the use of information contained in this document or from the use of programs and
source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have
been caused directly or indirectly by this document.

Published: 2012

© 2012 Altova GmbH

AltovaXML 2013 User & Reference Manual

1AltovaXML 2013

Table of Contents

1 Introduction 3

... 41.1 Product Features

... 51.2 Available Functionality

... 61.3 System Requirements and Installation

... 71.4 About this Documentation

2 Usage 10

... 112.1 Command Line

... 13XML Validation and Well-Formedness 2.1.1

... 16XSLT 1.0 Transformations 2.1.2

... 18XSLT 2.0 Transformations 2.1.3

... 20XQuery 1.0 Executions 2.1.4

... 222.2 COM Interface

... 23Registering AltovaXML as a COM Server Object 2.2.1

... 24AltovaXML Object Model 2.2.2

... 25Application 2.2.3

... 26XMLValidator 2.2.4

... 28XSLT1 2.2.5

... 30XSLT2 2.2.6

... 33XQuery 2.2.7

... 36Examples 2.2.8

... 36Visual Basic

... 37JScript

... 38C++

... 402.3 Java Interface

... 41Example Java Project 2.3.1

... 44Classes 2.3.2

... 44AltovaXMLFactory

... 45XMLValidator

... 47XQuery

... 50XSLT1

... 52XSLT2

... 55Old Java API (Obsolete) 2.3.3

AltovaXML 20132

... 56Example

... 58Interfaces
... 58IAltovaXMLEngine
... 59IAltovaXMLFactory
... 60IExecutable
... 60IReleasable
... 61IXMLValidator
... 62IXQuery
... 64IXSLT

... 65Classes
... 65AltovaXMLFactory
... 67XMLValidator
... 69XQuery
... 73XSLT1
... 76XSLT2

... 802.4 .NET Interface

... 82General Usage 2.4.1

... 84Altova.AltovaXML.XMLValidator 2.4.2

... 86Altova.AltovaXML.XSLT1 2.4.3

... 91Altova.AltovaXML.XSLT2 2.4.4

... 96Altova.AltovaXML.XQuery 2.4.5

... 100Example 2.4.6

... 1022.5 Explicitly Releasing AltovaXML COM-Server from C# and VB.NET

... 1032.6 OOXML and ZIP Files

3 Engine Information 106

... 1073.1 Altova XML Validator

... 1083.2 XSLT 1.0 Engine: Implementation Information

... 1103.3 XSLT 2.0 Engine: Implementation Information

... 111General Information 3.3.1

... 113XSLT 2.0 Elements and Functions 3.3.2

... 1143.4 XQuery 1.0 Engine: Implementation Information

... 1173.5 XPath 2.0 and XQuery 1.0 Functions

... 118General Information 3.5.1

... 120Functions Support 3.5.2

... 1233.6 Extensions

... 124Java Extension Functions 3.6.1

... 125User-Defined Class Files

... 127User-Defined Jar Files

... 128Java: Constructors

... 128Java: Static Methods and Static Fields

... 129Java: Instance Methods and Instance Fields

3AltovaXML 2013

... 130Datatypes: XPath/XQuery to Java

... 131Datatypes: Java to XPath/XQuery

... 132.NET Extension Functions 3.6.2

... 134.NET: Constructors

... 134.NET: Static Methods and Static Fields

... 135.NET: Instance Methods and Instance Fields

... 136Datatypes: XPath/XQuery to .NET

... 137Datatypes: .NET to XPath/XQuery

... 138MSXSL Scripts for XSLT 3.6.3

... 141Altova Extension Functions 3.6.4

... 141General Functions

... 145Barcode Functions

... 147Chart Functions

... 150Chart Data XML Structure

... 155Example: Chart Functions

4 License Information 160

... 1614.1 Electronic Software Distribution

... 1624.2 Software Activation and License Metering

... 1634.3 Intellectual Property Rights

... 1644.4 License Agreement

Index

Chapter 1

Introduction

© 2012 Altova GmbH

 3Introduction

AltovaXML 2013

1 Introduction

AltovaXML 2013 Reporting Edition is an XML application package which contains the Altova
XML Validator, Altova XSLT 1.0 Engine, Altova XSLT 2.0 Engine, and Altova XQuery 1.0
Engine. The package is available, free of charge, as a single installer file from the Altova
website. AltovaXML can be used to validate XML documents, transform XML documents using
XSLT stylesheets, and execute XQuery documents.

AltovaXML can be used from the command line, via a COM interface, in Java programs, and in
.NET applications. This documentation describes the usage of AltovaXML in all these
environments, and also lists implementation-specific aspects of the engines in the package.

Last updated: 11/13/2012

http://www.altova.com/download.html
http://www.altova.com/download.html

4 Introduction Product Features

© 2012 Altova GmbHAltovaXML 2013

1.1 Product Features

The main features of AltovaXML are as follows:

Package

· XML Validator, XSLT Engines, and XQuery Engine packaged as a single installer file.
· Installer file available for download from Altova website free-of-charge.
· Easy installation of executable files on Windows systems.

Command line

· Command line usage for validation, XSLT transformation, and XQuery execution.
· Validation of XML documents according to DTD and W3C XML Schema rules.
· Transformation of XML documents with XSLT 1.0 and XSLT 2.0 stylesheets in

conformance with respective W3C specifications.
· Execution of XQuery 1.0 documents in conformance with W3C specifications.

COM interface

· Can be used via COM interface, and therefore with applications and scripting
languages that support COM.

· COM interface support is implemented for Raw and Dispatch interfaces.
· Wide range of XML validation, XSLT transformation, and XQuery execution features

are available through interface properties.
· XML, DTD, XML Schema, XSLT, and XQuery input can be provided as files or as text

strings in scripts and in application data.

Java interface

· AltovaXML functionality is available as Java classes that can be used in Java programs.
· Java classes provide XML validation, XSLT transformation, and XQuery execution

features.

.NET interface

· A DLL file is built as a wrapper around AltovaXML and allows .NET users to connect to
the functionality of AltovaXML.

· Provides primary interop assembly signed by Altova.
· Wide range of XML validation, XSLT transformation, and XQuery execution features

are available.
· XML, DTD, XML Schema, XSLT, and XQuery input can be provided as files or as text

strings in scripts and in application data.

http://www.altova.com/download.html

© 2012 Altova GmbH

Available Functionality 5Introduction

AltovaXML 2013

1.2 Available Functionality

AltovaXML provides the functionality listed below. Most of this functionality is common to
command line usage and COM interface usage. One major difference is that COM interface
usage allows documents to be constructed from text strings via the application or scripting code
(instead of referencing XML, DTD, XML Schema, XSLT, or XQuery files).

XML and XBRL Validation

· Validates the supplied XML document, returning valid or invalid.
· Validation can be done against the DTD or XML Schema referenced within the XML

file, or against an external DTD or XML Schema supplied by a command line parameter
or a COM interface property.

· Checks well-formedness of the supplied XML document, separately from validation.
· Validates XBRL documents. The XBRL document is validated against an XBRL

taxonomy (which is a .xsd file) according to the rules of XBRL.

XSLT Transformations

· Transforms supplied XML document using supplied XSLT 1.0 or XSLT 2.0 document.
· XML document can be provided as a file via the input of a URL. In the case of usage

via the COM interface, the XML document can alternatively be supplied as a text string.
· XSLT document can be provided as a file via the input of a URL. In the case of usage

via the COM interface, the XSLT document can alternatively be supplied as a text
string.

· Returns output documents at the named location. When called via COM interface can
also return output documents as a string.

· XSLT parameters can be supplied via the command line and via the COM interface.
· Altova extension functions (including, in the Reporting Edition, for charts) enable

specialized processing.

XQuery Execution

· Executes the supplied XQuery 1.0 document, optionally against an XML document
named in a command line parameter or a COM interface property.

· XQuery document can be provided as a file via the input of a URL. In the case of usage
via the COM interface, the XQuery document can alternatively be supplied as a text
string.

· XML document can be provided as a file via the input of a URL. In the case of usage
via the COM interface, the XML document can alternatively be supplied as a text string.

· Returns output documents at the named location. When called via COM interface can
also return output documents as a string.

· External XQuery variables can be supplied via the command line and via the COM
interface.

· Serialization options include: output encoding, output method (that is, whether the
output is XML, XHTML, HTML, or Text), omitting the XML declaration, and indentation.

· Altova extension functions (including, in the Reporting Edition, for charts) enable
specialized processing.

6 Introduction System Requirements and Installation

© 2012 Altova GmbHAltovaXML 2013

1.3 System Requirements and Installation

System requirements
AltovaXML is supported on Windows NT, Windows XP, Windows Server 2003, Windows Server
2008, Windows Vista, Windows 7, and Windows 8. To use AltovaXML via a COM interface,
users should have privileges to use the COM interface, that is, to register the application and
execute the relevant applications and/or scripts. AltovaXML Reporting Edition is available for
both 32-bit and 64-bit machines. AltovaXML Community Edition is available for 32-bit machines
only.

Installation
AltovaXML is available on the Altova website as a self-extracting download that will install
AltovaXML with the necessary registrations. After you have downloaded the installer file (
AltovaXML2013.exe) to your machine, double-click it to start the installation. The installer will
install AltovaXML in the Altova/AltovaXML2013 folder in the Program Files folder. All the
necessary registrations to use AltovaXML via a COM interface, as a Java interface, and in the
.NET environment will be done by the installer. This includes registering the AltovaXML
executable as a COM server object, installing AltovaXMLLib.dll (for Java interface usage)
in the WINDIR\system32\ directory, and adding the Altova.AltovaXML.dll file to the
.NET reference library.

You should note the following:

· For command line usage, invoke the installed executable file (AltovaXML.exe). This
file can be copied to another accessible location on your machine or network and
invoked from there.

· You can straightaway use AltovaXML via COM interface since the installed executable
file AltovaXML_COM.exe will have been registered as a COM server object. If you
change the location of the executable file AltovaXML_COM.exe to another location on
your machine or to a mapped network drive, then you must manually register it at its
new location as a COM server object. How to do this described in the section,
Registering AltovaXML as a COM server object.

· In order to use AltovaXML via a Java interface, AltovaXML_COM.exe must be
registered as a COM server object and the Java libraries must reside in the classpath.
The Java libraries are installed in the folder: JavaAPI in the AltovaXML application
folder. Registration as a COM server object is done automatically by the installer
process. Note that, if you change the location of the file AltovaXML_COM.exe after
installation, then you must manually register it at its new location as a COM server
object. See Registering AltovaXML as a COM Server Object and Java Interface for
details.

http://www.altova.com/download.html

© 2012 Altova GmbH

About this Documentation 7Introduction

AltovaXML 2013

1.4 About this Documentation

This documentation is the official product documentation of AltovaXML and provides
comprehensive information about it. Its structure is as follows:

· The Introduction describes the features of the AltovaXML product, the functionality it
provides, the main system requirements to use AltovaXML, and how AltovaXML is to be
installed.

· The Usage section describes how to use AltovaXML from the command line and via a
COM interface. The Command Line section provides details about the syntax used to
invoke the various functionalities of AltovaXML. The COM Interface section describes
how AltovaXML can be used with a COM interface; it provides a detailed description of
the object model, its interfaces, and the properties of interfaces. The Java Interface
section describes how AltovaXML can be used with Java and lists the defined Java
interfaces and classes. The .NET Interface section provides a description of usage and
lists the various methods and properties that can be used.

· The Engine Information section describes implementation-specific aspects of the
various engines that are components of AltovaXML. Each engine is described
separately.

Chapter 2

Usage

10 Usage

© 2012 Altova GmbHAltovaXML 2013

2 Usage

After AltovaXML has been downloaded and installed at the desired location, you can use it in
the following ways:

· By calling the application from the command line,
· By using the application via a COM interface,
· By using the application via a Java interface, and
· By using the application in the .NET environment.

© 2012 Altova GmbH

Command Line 11Usage

AltovaXML 2013

2.1 Command Line

To use AltovaXML from the command line, the executable file (AltovaXML.exe) must be
installed/copied to an accessible location on your machine or network. The general syntax to
call the application is:

AltovaXML functionality arg1 ... argN [options]

where

AltovaXML Calls the application.

functionalit
y

Specifies whether the XML validation, well-formedness check, XSLT 1.0
transformation, XSLT 2.0 transformation, or XQuery 1.0 execution
functionality is called. Respective values are -validate (or -v),
-wellformed (or -w),
-xslt1, -xslt2, -xquery (or -xq).

arg1 ...
argN

The arguments of the called functionality.

options Each functionality has its own set of options. These are described in the
corresponding sub-sections of this section.

General options

-help, -h, or
-?

Displays usage information, i.e. a list of all arguments and options.

-version,
-ver

Displays the program version.

Note: A dash or a slash can be used as the parameter signifier, depending on your operating
system.

The following functionality is available, and the allowed arguments and options for each
functionality are described in detail in the corresponding sections:

· XML Validation and Well-Formedness
· XSLT 1.0 Transformations
· XSLT 2.0 Transformations
· XQuery 1.0 Executions

Usage summary
Given below is a summary of command line usage. For details, refer to the respective sections.

Using Altova XML Validator

· -validate <filename> [-schema <filename> | -dtd <filename>]

· -wellformed <filename>

Using Altova XSLT 1.0 Engine

· -xslt1 <filename> -in <filename> [-param name=value] [-out
<filename>]

12 Usage Command Line

© 2012 Altova GmbHAltovaXML 2013

Using Altova XSLT 2.0 Engine

· -xslt2 <filename> -in <filename> [-param name=value] [-out
<filename>]

Using Altova XQuery 1.0 Engine

· -xquery <filename> [-in <filename>] [-param name=value] [-out
<filename>] [serialization options]

Note: If the filename or the path to it contains a space, then the entire path should be
enclosed in quotes. For example: "c:\My Files\MyXML.xml" or "c:\MyFiles\My
XML.xml".

© 2012 Altova GmbH

Command Line 13Usage

AltovaXML 2013

2.1.1 XML Validation and Well-Formedness

XML Validation syntax
The syntax to invoke XML validation is:

AltovaXML -validate xmlfile [-schema schemafile | -dtd dtdfile]
[options]

or

AltovaXML /validate xmlfile [/schema schemafile | /dtd dtdfile]
[options]

where

AltovaXML Calls the application

-validate (or -v or
/v)

Specifies that the Altova XML Validator is to be used to validate the
file xmlfile.

The following options are available:

-schema (or -s or /s) Specifies the XML Schema file schemafile to be used for
validation.

-dtd (or -d or /d) Specifies the DTD file dtdfile to be used for validation.

-xbrlConsistency
(or -xc or /xc)

Checks the semantics of XBRL documents.

Note: A dash or a slash can be used as the parameter signifier, depending on your operating
system.

Mapping options
The following mapping options are available using the XML Catalogs mechanism and Altova
Global Resources mechanism. (Altova Global Resources can be properly used only if an Altova
product that supports Altova Global Resources is installed, for example, Altova XMLSpy.)

-catalog (or -c or /c)
[<filename>]

Activates catalog mapping using the catalog given. If no file is
specified, a catalog named RootCatalog.xml in the AltovaXML
application folder will be assumed as the default.

-globalresources (or
-gr or /gr)
[<filename>]

Activates Altova global resource mapping using the given Global
Resources XML file or, if no file is specified, GlobalResources.
xml in My Documents/Altova.

-globalresourceconfi
g (or -gc or /gc)
[<name>]

Sets the active global resource configuration.

Note about Global Resources
There are two settings required to select a resource using the Altova Global Resources
mechanism:

· The Global Resources XML File contains definitions of the global resources. This file
can be specified with the -globalresources (or -gr) option. If no file is specified,
then the file GlobalResources.xml in the My Documents/Altova folder will be used.

14 Usage Command Line

© 2012 Altova GmbHAltovaXML 2013

· Each global resource in the Global Resources XML File can have multiple
configurations, with each configuration mapping to a resource. The
-globalresourceconfig (or -gc) option enables you to specify which
configuration to use, by extension specifying which resource to use.

Note:

· When no XML Schema or DTD file is specified as a command line option, an XML
Schema or DTD file must be specified in the XML document itself.

· If an XML Schema or DTD file is specified as a command line option and an XML
Schema or DTD file is referenced in the XML file, then the file specified in the command
line option is used for validation.

· If an XBRL instance document is validated, the XBRL taxonomy, which is a .xsd file, is
looked up. If semantic validation is required in addition to syntactic validity, use the
-xbrlConsistency option.

Well-formedness Check syntax
The syntax to invoke the well-formedness check is:

AltovaXML -wellformed xmlfile

where

AltovaXML Calls the application

-wellformed
(or -w or /w)

Specifies that the Altova XML Validator is to be used to check the
well-formedness of the file xmlfile.

Mapping options
The following mapping options are available using the XML Catalogs mechanism and Altova
Global Resources mechanism. (Altova Global Resources can be properly used only if an Altova
product that supports Altova Global Resources is installed, for example, Altova XMLSpy.)

-catalog (or -c or /c)
[<filename>]

Activates catalog mapping using the catalog given. If no file is
specified, a catalog named RootCatalog.xml in the AltovaXML
application folder will be assumed as the default.

-globalresources (or
-gr or /gr)
[<filename>]

Activates Altova global resource mapping using the given Global
Resources XML file or, if no file is specified, GlobalResources.
xml in My Documents/Altova.

-globalresourceconfi
g (or -gc or /gc)
[<name>]

Sets the active global resource configuration.

Note about Global Resources
There are two settings required to select a resource using the Altova Global Resources
mechanism:

· The Global Resources XML File contains definitions of the global resources. This file
can be specified with the -globalresources (or -gr) option. If no file is specified,
then the file GlobalResources.xml in the My Documents/Altova folder will be used.

© 2012 Altova GmbH

Command Line 15Usage

AltovaXML 2013

· Each global resource in the Global Resources XML File can have multiple
configurations, with each configuration mapping to a resource. The
-globalresourceconfig (or -gc) option enables you to specify which
configuration to use, by extension specifying which resource to use.

Examples

· AltovaXML -validate test.xml -schema testschema.xsd

· AltovaXML -v test.xml -dtd testdtd.dtd

· AltovaXML -wellformed test.xml

· AltovaXML -w test.xml

· AltovaXML -v test.xml -dtd testdtd.dtd -c MyCatalog.xml

· AltovaXML -validate test.xml -schema testschema.xsd -xc

Note: For using Altova XML in batch commands, it is important to know the following:

· The return code of the last executed command is stored in the errorlevel variable,
the value of which can be retrieved with a batch command such as ECHO
%errorlevel%.

· The return codes are 0 = well-formed/valid; 1 = not well-formed/invalid.

16 Usage Command Line

© 2012 Altova GmbHAltovaXML 2013

2.1.2 XSLT 1.0 Transformations

Syntax
The syntax to invoke XSLT 1.0 transformations is:

AltovaXML -xslt1 xsltfile -in xmlfile [-out outputfile] [options]

or

AltovaXML /xslt1 xsltfile /in xmlfile [/out outputfile] [options]

where

AltovaXML Calls the application.

-xslt1 or /xslt1 Specifies that the Altova XSLT 1.0 Engine is to be used for an XSLT
transformation; the engine uses the XSLT 1.0 file xsltfile for the
transformation.

-in or /in Specifies the XML file xmlfile to be transformed and its location.

-out or /out Specifies the output file outputfile and its location. If this option is
omitted, the output is written to standard output.

The following options are available:

-param or /param Takes the instruction paramname=XPath expression. The -param
switch is used before each global parameter. Double quotes must be
used if a space is included in an XPath expression—whether in a path
expression itself or in a string literal in the expression. See examples.

-xslstack or
/xslstack

The stack size is the maximum depth of executed instructions, and can
be changed with the -xslstack value. The minimum allowed value is
100. The default stack size is 1000. If the stack size is exceeded
during a transformation, an error is reported.

-namedTemplate
(or -n or /n)

Sets the initial named template. A space separates the argument from
its value. Example: -namedTemplate MyTemplate

-mode (or -m or /m
)

Sets the initial template mode. A space separates the argument from
its value. Example: -mode MyMode

Note: A dash or a slash can be used as the parameter signifier, depending on your operating
system.

Mapping options
The following mapping options are available using the XML Catalogs mechanism and Altova
Global Resources mechanism. (Altova Global Resources can be properly used only if an Altova
product that supports Altova Global Resources is installed, for example, Altova XMLSpy.)

-catalog (or -c or /c)
[<filename>]

Activates catalog mapping using the catalog given. If no file is
specified, a catalog named RootCatalog.xml in the AltovaXML
application folder will be assumed as the default.

-globalresources (or
-gr or /gr)
[<filename>]

Activates Altova global resource mapping using the given Global
Resources XML file or, if no file is specified, GlobalResources.
xml in My Documents/Altova.

-globalresourceconfi Sets the active global resource configuration.

© 2012 Altova GmbH

Command Line 17Usage

AltovaXML 2013

g (or -gc or /gc)
[<name>]

Note about Global Resources
There are two settings required to select a resource using the Altova Global Resources
mechanism:

· The Global Resources XML File contains definitions of the global resources. This file
can be specified with the -globalresources (or -gr) option. If no file is specified,
then the file GlobalResources.xml in the My Documents/Altova folder will be used.

· Each global resource in the Global Resources XML File can have multiple
configurations, with each configuration mapping to a resource. The
-globalresourceconfig (or -gc) option enables you to specify which
configuration to use, by extension specifying which resource to use.

Note:

· The XSLT file must be specified in the command line instruction; an XSLT file
referenced in an <?xml-stylesheet?> processing instruction in the XML document
is not automatically used.

· If the -out parameter is omitted, output is written to the standard output.

Examples

· AltovaXML -xslt1 test.xslt -in test.xml -out testout.xml

· AltovaXML -xslt1 test.xslt -in test.xml -out testout.xml
-c MyCatalog.xml

· AltovaXML -xslt1 test.xslt -in test.xml -out testout.xml
-param date=//node/@att1

· AltovaXML -xslt1 test.xslt -in test.xml -out testout.xml
-param date="//node/@att1 | //node/@att2"

· AltovaXML -xslt1 test.xslt -in test.xml -out testout.xml
-param date=node/@att1 -param title='stringwithoutspace'

· AltovaXML -xslt1 test.xslt -in test.xml -out testout.xml
-param date=node/@att1 -param title="'string with spaces'"

18 Usage Command Line

© 2012 Altova GmbHAltovaXML 2013

2.1.3 XSLT 2.0 Transformations

Syntax
The syntax to invoke XSLT 2.0 transformations is:

AltovaXML -xslt2 xsltfile -in xmlfile [-out outputfile] [options]

or

AltovaXML /xslt2 xsltfile /in xmlfile [/out outputfile] [options]

where

AltovaXML Calls the application.

-xslt2 or /xslt2 Specifies that the Altova XSLT 2.0 Engine is to be used for an XSLT
transformation; the engine uses the XSLT 2.0 file xsltfile for the
transformation.

-in or /in Specifies the XML file xmlfile to be transformed and its location.

-out or /out Specifies the output file outputfile and its location. If this option is
omitted, the output is written to standard output.

The following options are available:

-param or /param Takes the instruction paramname=XPath expression. The -param
switch is used before each global parameter. Double quotes must be
used if a space is included in an XPath expression—whether in a path
expression itself or in a string literal in the expression. See examples.

-xslstack or
/xslstack

The stack size is the maximum depth of executed instructions, and can
be changed with the -xslstack value. The minimum allowed value is
100. The default stack size is 1000. If the stack size is exceeded
during a transformation, an error is reported.

-namedTemplate
(or -n or /n)

Sets the initial named template. A space separates the argument from
its value. Example: -namedTemplate MyTemplate

-mode (or -m or /m
)

Sets the initial template mode. A space separates the argument from
its value. Example: -mode MyMode

Note: A dash or a slash can be used as the parameter signifier, depending on your operating
system.

Mapping options
The following mapping options are available using the XML Catalogs mechanism and Altova
Global Resources mechanism. (Altova Global Resources can be properly used only if an Altova
product that supports Altova Global Resources is installed, for example, Altova XMLSpy.)

-catalog (or -c or /c)
[<filename>]

Activates catalog mapping using the catalog given. If no file is
specified, a catalog named RootCatalog.xml in the AltovaXML
application folder will be assumed as the default.

-globalresources (or
-gr or /gr)
[<filename>]

Activates Altova global resource mapping using the given Global
Resources XML file or, if no file is specified, GlobalResources.
xml in My Documents/Altova.

-globalresourceconfi Sets the active global resource configuration.

© 2012 Altova GmbH

Command Line 19Usage

AltovaXML 2013

g (or -gc or /gc)
[<name>]

Note about Global Resources
There are two settings required to select a resource using the Altova Global Resources
mechanism:

· The Global Resources XML File contains definitions of the global resources. This file
can be specified with the -globalresources (or -gr) option. If no file is specified,
then the file GlobalResources.xml in the My Documents/Altova folder will be used.

· Each global resource in the Global Resources XML File can have multiple
configurations, with each configuration mapping to a resource. The
-globalresourceconfig (or -gc) option enables you to specify which
configuration to use, by extension specifying which resource to use.

Note:

· The XSLT file must be specified in the command line instruction; an XSLT file
referenced in an <?xml-stylesheet?> processing instruction in the XML document
is not automatically used.

· If the -out parameter is omitted, output is written to the standard output.

· The XSLT 2.0 Engine can be used in its backward compatibility mode to process an
XSLT 1.0 stylesheet. The output, however, could be different than that produced by the
XSLT 1.0 Engine processing the same XSLT 1.0 stylesheet.

Examples

· AltovaXML -xslt2 test.xslt -in test.xml -out testout.xml

· AltovaXML -xslt2 test.xslt -in test.xml -out testout.xml
-c MyCatalog.xml

· AltovaXML -xslt2 test.xslt -in test.xml -out testout.xml
-param date=//node/@att1

· AltovaXML -xslt2 test.xslt -in test.xml -out testout.xml
-param date="//node/@att1 | //node/@att2"

· AltovaXML -xslt2 test.xslt -in test.xml -out testout.xml
-param date=node/@att1 -param title='stringwithoutspace'

· AltovaXML -xslt2 test.xslt -in test.xml -out testout.xml
-param date=node/@att1 -param title="'string with spaces'"

20 Usage Command Line

© 2012 Altova GmbHAltovaXML 2013

2.1.4 XQuery 1.0 Executions

Syntax
The syntax to invoke XQuery 1.0 executions is:

AltovaXML -xquery xqueryfile [-in inputXMLfile -out outputfile]
[options]

or

AltovaXML /xquery xqueryfile [/in inputXMLfile /out outputfile]
[options]

where

AltovaXML Calls the application.

-xquery (or -xq or
/xq)

Specifies that the Altova XQuery 1.0 Engine is to be used for an
XQuery execution of the file xqueryfile.

-in or /in Specifies the input XML file.

-out or /out Specifies the output file and its location. If this option is omitted, output
is written to the standard output.

The following options are available:

-var or /var Specifies an external variable and its value. Takes the form
name=value. Any number of external variables can be submitted, but
each must be preceded by the -var keyword. Variable values must
be strings that conform to the lexical form of the datatype as which the
variable has been declared.

-xparam or
/xparam

Specifies an XQuery parameter name and the parameter's value.
Takes the form name=XPathExpression. Use double quotes to
enclose the XPath expression if the expression contains spaces. Use
single quotes to delimit string literals in the XPath expression. Any
number of parameters can be submitted, but each must be preceded
by the -xparam keyword.

-outputMethod
(or -om or /om)

Serialization option to specify the type of output. Valid values are xml,
html, xhtml, and text. Default is xml.

-omitXMLDeclarati
on
(or -od or /od)

Serialization option to specify whether the XML declaration should be
omitted from the output or not. Valid values are yes and no. Default
is yes.

-outputIndent
(or -oi or /oi)

Serialization option to specify whether the output should be indented
or not. Valid values are yes and no. Default is no.

-outputEncoding
(or -oe or /oe)

Serialization option to specify the character set of the output. Valid
values are names in the IANA character set registry. Default is UTF-8
.

Note: A dash or a slash can be used as the parameter signifier, depending on your operating
system.

Mapping options
The following mapping options are available using the XML Catalogs mechanism and Altova
Global Resources mechanism. (Altova Global Resources can be properly used only if an Altova

© 2012 Altova GmbH

Command Line 21Usage

AltovaXML 2013

product that supports Altova Global Resources is installed, for example, Altova XMLSpy.)

-catalog (or -c or /c)
[<filename>]

Activates catalog mapping using the catalog given. If no file is
specified, a catalog named RootCatalog.xml in the AltovaXML
application folder will be assumed as the default.

-globalresources (or
-gr or /gr)
[<filename>]

Activates Altova global resource mapping using the given Global
Resources XML file or, if no file is specified, GlobalResources.
xml in My Documents/Altova.

-globalresourceconfi
g (or -gc or /gc)
[<name>]

Sets the active global resource configuration.

Note about Global Resources
There are two settings required to select a resource using the Altova Global Resources
mechanism:

· The Global Resources XML File contains definitions of the global resources. This file
can be specified with the -globalresources (or -gr) option. If no file is specified,
then the file GlobalResources.xml in the My Documents/Altova folder will be used.

· Each global resource in the Global Resources XML File can have multiple
configurations, with each configuration mapping to a resource. The
-globalresourceconfig (or -gc) option enables you to specify which
configuration to use, by extension specifying which resource to use.

Note: If the -out parameter is omitted, output is written to the standard output.

Examples

· AltovaXML -xquery testquery.xq -out testout.xml

· AltovaXML -xquery testquery.xq -in products.xml -out
testout.xml
-var company=Altova -var date=2006-01-01

· AltovaXML -xquery testquery.xq -out testout.xml
-xparam source=" doc('c:\test\books.xml')//book "

· AltovaXML -xquery testquery.xq -in products.xml -out
testout.xml
-var company=Altova -omitXMLDeclaration no -oe ASCII

22 Usage COM Interface

© 2012 Altova GmbHAltovaXML 2013

2.2 COM Interface

When registered as a COM server object, AltovaXML can be invoked from within applications
and scripting languages that have programming support for COM calls. This is useful because it
enables XML document validation, XSLT transformations (XSLT 1.0 and XSLT 2.0), and
XQuery 1.0 document executions to be performed, by AltovaXML, from within a wide range of
user applications.

To use AltovaXML with applications and scripting languages that have a COM interface, you
must first register AltovaXML as a COM server object. How to do this is described in
Registering AltovaXML as a COM server object.

The AltovaXML object model and its properties are described in the following sub-sections of
this section. (Note that you can use both the Raw Interface and Dispatch Interface of COM. The
Raw Interface is used for programming languages (such as C++).The Dispatch Interface is
used for scripting languages (such as JavaScript) that do not allow passing parameters by
reference.) You can therefore use AltovaXML with:

· Scripting languages such as JavaScript or any other scripting language that supports
the COM interface.

· Programming languages such as C++ or any other that supports the COM interface.
· Java and .NET, for which interfaces are built as a wrapper, with classes being created

around the COM interface.

This section on COM interface usage ends with a set of examples of how various functionalities
of AltovaXML can be invoked from within a variety of user applications.

Examples
For examples additional to those in this section, see the example files in the Examples folder in
the application folder.

© 2012 Altova GmbH

COM Interface 23Usage

AltovaXML 2013

2.2.1 Registering AltovaXML as a COM Server Object

When you install AltovaXML 2013, AltovaXML_COM.exe will automatically be registered as a
COM server object. If you need to change the location of AltovaXML_COM.exe, it is best to
de-install AltovaXML and then re-install it at the required location. In this way the necessary
unregistration and registration are carried out by the installer process. If you copy AltovaXML
_COM.exe to another machine, you must manually register AltovaXML at its new location as a
COM server object. How to do this is explained below. This description assumes that
AltovaXML has been successfully installed.

Manual registration
To register AltovaXML as a COM server object, do the following:

1. Copy AltovaXML_COM.exe to the required location. If this location is not on the local
machine, map this location to a network folder.

2. Open a Windows Command Prompt window, or, from the Start menu, select Run....
3. Register the application as a COM server object by using the /regserver parameter.

For example, if AltovaXML_COM.exe is in the folder c:\AltovaXML, then key in:

c:\AltovaXML\AltovaXML_COM.exe /regserver

and press Enter.

Checking success of the registration
If the registration was successful, the Registry should contain the classes
AltovaXML.Application and AltovaXML.Application.1. These two classes will typically be
found under HKEY_LOCAL_MACHINE\SOFTWARE\Classes.

Manual unregistration
If the AltovaXML_COM.exe has been manually registered and you now wish to unregister it, then
it should be manually unregistered. To manually unregister AltovaXML, call the application with
the /unregserver parameter. For example, if the AltovaXML executable is in the folder c:\
AltovaXML, then open a Windows Command Prompt window, key in c:\AltovaXML\
AltovaXML_COM.exe /unregserver, and press Enter. You can check the Registry Editor for
confirmation of unregistration.

Note: If AltovaXML was registered by the installer, the unregistration should be done by the
installer—that is, by de-installing AltovaXML from the machine.

24 Usage COM Interface

© 2012 Altova GmbHAltovaXML 2013

2.2.2 AltovaXML Object Model

The starting point for using the functionality of AltovaXML is the Application interface. This
object contains the four objects that provide the AltovaXML functionality: XML validation, XSLT
1.0 transformations, XSLT 2.0 transformations, and XQuery 1.0 document processing. These
objects have dual interfaces: the Dispatch Interface and the Raw Interface, which enables them
to be used in scripting languages as well as in applications.

The object model of the AltovaXML API is depicted in the following diagram.

The hierarchy of the object model is shown below, and the five interfaces are described in detail
in the corresponding sections. The properties and usage of each interface are described in the
section for that interface.

· Application

· XMLValidator

· XSLT1

· XSLT2

· XQuery

Note:
Note the following general points about COM Interface usage:

· The term XML document refers not only to an XML document contained in an XML file
but also to an XML document created with the InputXMLFromText property.

· Properties that take a resource location as its input accept absolute paths, as well as
the HTTP and FTP protocols.

· When relative paths are used by a method to locate a resource, the resolution of the
relative path should be defined in the calling module.

© 2012 Altova GmbH

COM Interface 25Usage

AltovaXML 2013

2.2.3 Application

Description
AltovaXML.Application is the root for all other objects. It is the only object you can create
with the CreateObject function (of VisualBasic) or other similar COM-related functions.

Properties
AltovaXML.Application has the four properties listed below. Each of these functions
returns the interface for the specific component. The details of each interface are given in the
respective sections listed below.

· XMLValidator
· XSLT1
· XSLT2
· XQuery

Methods
The following methods, which are available on the application object, enable the addition of
catalogs used for document lookup. After catalogs are added they are used for lookup till the
COM server terminates. Added catalogs cannot be removed.

app.AddXMLCatalogDefault()

Adds Altova's default RootCatalog.xml to the catalogs

app.AddXMLCatalogFromFile(string catalogfilename)

Adds the catalog identified by catalogfilename to the catalogs

app.AddXMLCatalogFromText(string catalogtext)

Adds the catalog with content catalogtext to the catalogs

Examples
Given below is a Visual Basic script that first creates the AltovaXML object, and then calls
properties of the application interface.

Sub CommandButton1_Click()
Set objAltovaXML = CreateObject("AltovaXML.Application")

 objAltovaXML.XMLValidator.InputXMLFileName =
"c:\AltovaXML\test.xml"
 Sheet1.Cells(5, 2) = objAltovaXML.XMLValidator.IsValid

 objAltovaXML.XSLT1.InputXMLFromText = "<?xml version='1.0'
encoding='UTF-8'?><a>"
 objAltovaXML.XSLT1.XSLFileName = "c:\workarea\altova_xml\1.xslt"
 Sheet1.Cells(6, 2) =
objAltovaXML.XSLT1.ExecuteAndGetResultAsString

End Sub

26 Usage COM Interface

© 2012 Altova GmbHAltovaXML 2013

2.2.4 XMLValidator

Description
The XMLValidator interface provides methods to test:

· The well-formedness of an XML document.
· The validity of an XML document against a DTD or XML Schema referenced from

within the XML document.
· The validity of an XML document against a DTD or XML Schema supplied externally via

the code.
· The validity of an XBRL document against an XBRL taxonomy (a .xsd file).

All these methods return Boolean TRUE or FALSE. See examples below.

Note: Where string inputs are to be interpreted as URLs, absolute paths should be used. If a
relative path is used, a mechanism to resolve the relative path should be defined in the calling
module.

Methods
The following methods are available:

IsWellFormed() as Boolean
IsWellFormed checks the well-formedness of the XML document. Returns TRUE if the XML
document is well-formed, FALSE if it is not well-formed.

IsValid() as Boolean
IsValid validates the XML document against the DTD or XML Schema referenced in the XML
document. Returns TRUE if the XML document is valid, FALSE if invalid. To validate against a
DTD or XML Schema not referenced in the XML document, use the method
IsValidWithExternalSchemaOrDTD.

IsValidWithExternalSchemaOrDTD() as Boolean
IsValidWithExternalSchemaOrDTD validates the XML document against the DTD or XML
Schema supplied by any one of the following properties: SchemaFileName, DTDFileName,
SchemaFromText, or DTDFromText. If more than one of these properties has values set for it,
then the IsValidWithExternalSchemaOrDTD method uses the property that has been set last.
Returns TRUE if the XML document is valid, FALSE if invalid. To validate against a DTD or XML
Schema referenced in the XML document, use the method IsValid.

Note: Validation and well-formedness checks must always occur after assigning the XML
and/or DTD or XML Schema document to the respective properties.

Properties
The following properties are defined:

InputXMLFileName
A string input that is read as a URL to locate the XML file to be validated.

SchemaFileName
A string input that is read as a URL to locate the XML Schema file against which the XML
document is to be validated.

DTDFileName
A string input that is read as a URL to locate the DTD file against which the XML document is to
be validated.

© 2012 Altova GmbH

COM Interface 27Usage

AltovaXML 2013

InputXMLFromText
A string input that constructs an XML document.

SchemaFromText
A string input that constructs an XML Schema document.

DTDFromText
A string input that constructs a DTD document.

LastErrorMessage
Returns the last error message.

TreatXBRLInconsistenciesAsErrors
If set to True, returns XBRL semantic inconsistencies as errors. Default is False.

Examples
Given below is a single Visual Basic procedure that shows how the methods and properties of
the XMLValidator interface can be used. This code is intended for use as a macro in an MS
Excel worksheet, and references to worksheet cells indicate locations of input or output data.
The file c:\AltovaXML\test.xml is assumed to contain a reference to a DTD.

Sub CommandButton1_Click()
Set objAltovaXML = CreateObject("AltovaXML.Application")

 objAltovaXML.XMLValidator.InputXMLFromText = "<?xml version='1.0'
encoding='UTF-8'?><a>"
 Sheet1.Cells(4, 2) = objAltovaXML.XMLValidator.IsWellFormed

 objAltovaXML.XMLValidator.InputXMLFileName = "c:\AltovaXML\test.xml"
 Sheet1.Cells(5, 2) = objAltovaXML.XMLValidator.IsValid

 objAltovaXML.XMLValidator.InputXMLFileName = "c:\AltovaXML\test.xml"
 objAltovaXML.XMLValidator.DTDFileName = "c:\AltovaXML\test.dtd"
 Sheet1.Cells(6, 2) =
objAltovaXML.XMLValidator.IsValidWithExternalSchemaOrDTD

 objAltovaXML.XMLValidator.InputXMLFromText = "<?xml version='1.0'
encoding='UTF-8'?><a>"
 objAltovaXML.XMLValidator.DTDFileName = "c:\AltovaXML\test.dtd"
 Sheet1.Cells(7, 2) =
objAltovaXML.XMLValidator.IsValidWithExternalSchemaOrDTD
End Sub

28 Usage COM Interface

© 2012 Altova GmbHAltovaXML 2013

2.2.5 XSLT1

Description
The XSLT1 interface provides methods and properties to execute an XSLT 1.0 transformation
using the Altova XSLT 1.0 Engine. Results can be saved to a file or returned as a string. The
interface also enables XSLT parameters to be passed to the XSLT stylesheet. The URLs of
XML and XSLT files can be supplied as strings via interface properties. Alternatively, the XML
and XSLT documents can be constructed within the scripting or programming code as text
strings. See examples below.

Note: Where string inputs are to be interpreted as URLs, absolute paths should be used. If a
relative path is used, a mechanism to resolve the relative path should be defined in the calling
module.

Methods
The following methods are available:

Execute(OutputFileName as String)
void execute(String outputFilename)
Execute executes an XSLT 1.0 transformation and saves the result to an output file, the name
and location of which is provided as an input string to the Execute method. For example:
Execute("C:\OutputDoc.xml").

ExecuteAndGetResultAsString() as String
ExecuteAndGetResultAsString executes an XSLT 1.0 transformation and returns the result
as a UTF-16 text string.

AddExternalParameter(ParamName as String, ParamValue as String)
Takes a parameter name and the value of this parameter as input arguments. Each external
parameter and its value is to be specified in a separate call to the method. If multiple calls
specify the same parameter name the value set by the latest will be used. Since parameter
values are XPath expressions, parameter values that are strings must be enclosed in single
quotes. In this example, two parameter values are submitted:

AddExternalParameter("Param1","'http://www.altova.com/'");
AddExternalParameter("Param2","concat('http://www.altova.com/',

MyFile/@url)");

Also see examples below.

ClearExternalParameterList()
No argument should be provided. The ClearExternalParameterList clears the external
parameters list created with AddExternalParameter methods.

Note: Transformation must always occur after assigning the XML and XSLT documents.

Properties
The following properties are defined:

InputXMLFileName
A string input that is read as a URL to locate the XML file to be transformed.

XSLFileName
A string input that is read as a URL to locate the XSLT file to be used for the transformation.

InputXMLFromText

© 2012 Altova GmbH

COM Interface 29Usage

AltovaXML 2013

A string input that constructs an XML document.

XSLFromText
A string input that constructs an XSLT document.

XSLStackSize
The stack size is the maximum depth of executed instructions. The stack size can be changed
with the XSLStackSize property. The minimum allowed stack size is 100. The default stack size
is 1000. If the stack size is exceeded during a transformation, an error is reported.

LastErrorMessage
Returns the last error message.

JavaExtensionsEnabled
Enables Java extensions. You can specify whether Java extensions should be enabled or not
by submitting true or false (case-insensitive) as a Variant_Bool argument.

DotNetExtensionsEnabled
Enables .NET extensions. You can specify whether .NET extensions should be enabled or not
by submitting true or false (case-insensitive) as a Variant_Bool argument.

Examples
Given below is a single Visual Basic procedure that shows how the various methods and
properties of the XSLT1 interface can be used. This code is intended for use as a macro in an
MS Excel worksheet, and references to worksheet cells indicate locations of input or output
data.

Sub CommandButton1_Click()
Set objAltovaXML = CreateObject("AltovaXML.Application")

 objAltovaXML.XSLT1.InputXMLFromText = "<?xml version='1.0'
encoding='UTF-8'?>
 <a>"
 objAltovaXML.XSLT1.XSLFileName = "c:\AltovaXML\test.xslt"
 objAltovaXML.XSLT1.Execute "c:\AltovaXML\test_result.xml

 objAltovaXML.XSLT1.XSLStackSize = "500"
 objAltovaXML.XSLT1.InputXMLFromText = "<?xml version='1.0'
encoding='UTF-8'?>
 <company><name/><year>2005</year></company>"
 objAltovaXML.XSLT1.XSLFileName = "c:\AltovaXML\test.xslt"
 objAltovaXML.XSLT1.AddExternalParameter "web", "'www.altova.com'"
 objAltovaXML.XSLT1.AddExternalParameter "year", "/company/year"
 Sheet1.Cells(6, 2) = objAltovaXML.XSLT1.ExecuteAndGetResultAsString
 objAltovaXML.XSLT1.ClearExternalParameterList
 objAltovaXML.XSLT1.AddExternalParameter "web", "'www.nanonull.com'"
 objAltovaXML.XSLT1.AddExternalParameter "year", "/company/year"
 Sheet1.Cells(7, 2) = objAltovaXML.XSLT1.ExecuteAndGetResultAsString
End Sub

30 Usage COM Interface

© 2012 Altova GmbHAltovaXML 2013

2.2.6 XSLT2

Description
The XSLT2 interface provides methods and properties to execute an XSLT 2.0 transformation
using the Altova XSLT 2.0 Engine. Results can be saved to a file or returned as a string. The
interface also enables XSLT parameters to be passed to the XSLT stylesheet. The URLs of
XML and XSLT files can be supplied as strings via interface properties. Alternatively, the XML
and XSLT documents can be constructed within the scripting or programming code as text
strings. See examples below.

Note:

· Where string inputs are to be interpreted as URLs, absolute paths should be used. If a
relative path is used, a mechanism to resolve the relative path should be defined in the
calling module.

· The XSLT 2.0 Engine can be used in its backward compatibility mode to process an
XSLT 1.0 stylesheet. The output, however, could be different than that produced by the
XSLT 1.0 Engine processing the same XSLT 1.0 stylesheet.

Methods
The following methods are available:

Execute(OutputFileName as String)
void execute(String outputFilename)
Execute executes an XSLT 2.0 transformation and saves the result to an output file, the name
and location of which is provided as an input string to the Execute method. For example:
Execute("C:\OutputDoc.xml").

ExecuteAndGetResultAsString() as String
ExecuteAndGetResultAsString executes an XSLT 2.0 transformation and returns the result
as a UTF-16 text string.

AddExternalParameter(ParamName as String, ParamValue as String)
Takes a parameter name and the value of this parameter as input arguments. Each external
parameter and its value is to be specified in a separate call to the method. If multiple calls
specify the same parameter name the value set by the latest will be used. Since parameter
values are XPath expressions, parameter values that are strings must be enclosed in single
quotes. See examples below. Notice in the examples that the date parameter is given a value
that is an XPath 2.0 function (current-date()). In this example, two parameter values are
submitted:

AddExternalParameter("Param1","'http://www.altova.com/'");
AddExternalParameter("Param2","concat('http://www.altova.com/',
MyFile/@url)");

Also see examples below.

ClearExternalParameterList()
No argument should be provided. The ClearExternalParameterList clears the external
parameters list created with AddExternalParameter methods.

InitialTemplateName
Sets the initial named template. The argument is the name of the template from which
processing is to start. For example: InitialNamedTemplate ="MyNamedTemplate".

InitialTemplateMode
Sets the initial mode for processing. The argument is the name of the required initial mode.

© 2012 Altova GmbH

COM Interface 31Usage

AltovaXML 2013

Templates with this mode value will be processed. For example:
InitialTemplateMode="MyMode".

Note: Transformation must always occur after assigning the XML and XSLT documents.

Properties
The following properties are defined:

InputXMLFileName
A string input that is read as a URL to locate the XML file to be transformed.

XSLFileName
A string input that is read as a URL to locate the XSLT file to be used for the transformation.

InputXMLFromText
A string input that constructs an XML document.

XSLFromText
A string input that constructs an XSLT document.

XSLStackSize
The stack size is the maximum depth of executed instructions. The stack size can be changed
with the XSLStackSize property. The minimum allowed stack size is 100. The default stack size
is 1000. If the stack size is exceeded during a transformation, an error is reported.

LastErrorMessage
Returns the last error message.

JavaExtensionsEnabled
Enables Java extensions. You can specify whether Java extensions should be enabled or not
by submitting true or false (case-insensitive) as a Variant_Bool argument.

DotNetExtensionsEnabled
Enables .NET extensions. You can specify whether .NET extensions should be enabled or not
by submitting true or false (case-insensitive) as a Variant_Bool argument.

Examples
Given below is a single Visual Basic procedure that shows how the various methods and
properties of the XSLT2 interface can be used. This code was intended for use as a macro in an
MS Excel worksheet, and references to worksheet cells indicate locations of input or output
data.

Sub CommandButton1_Click()
Set objAltovaXML = CreateObject("AltovaXML.Application")

 objAltovaXML.XSLT2.InputXMLFromText = "<?xml version='1.0'
encoding='UTF-8'?>
 <a>"
 objAltovaXML.XSLT2.XSLFileName = "c:\AltovaXML\test.xslt"
 Sheet1.Cells(7, 2) = objAltovaXML.XSLT2.ExecuteAndGetResultAsString

 objAltovaXML.XSLT2.XSLStackSize = "500"
 objAltovaXML.XSLT2.InputXMLFromText = "<?xml version='1.0'
encoding='UTF-8'?>
 <company><name/><year>2005</year></company>"
 objAltovaXML.XSLT2.XSLFileName = "c:\workarea\AltovaXML\2.xslt"

32 Usage COM Interface

© 2012 Altova GmbHAltovaXML 2013

 objAltovaXML.XSLT2.AddExternalParameter "date", "current-date()"
 objAltovaXML.XSLT2.AddExternalParameter "hq", "'Vienna, Austria'"
 Sheet1.Cells(8, 2) = objAltovaXML.XSLT2.ExecuteAndGetResultAsString
 objAltovaXML.XSLT2.AddExternalParameter "web", "'www.nanonull.com'"
 objAltovaXML.XSLT2.AddExternalParameter "year", "/company/year"
 objAltovaXML.XSLT2.Execute "c:\workarea\AltovaXML\test_result_xslt2.xml"
 Sheet1.Cells(9, 2) = objAltovaXML.XSLT2.ExecuteAndGetResultAsString
End Sub

© 2012 Altova GmbH

COM Interface 33Usage

AltovaXML 2013

2.2.7 XQuery

Description
The XQuery interface provides methods and properties to execute an XQuery 1.0
transformation using the Altova XQuery 1.0 Engine. Results can be saved to a file or returned
as a string. The interface also enables external XQuery variables to be passed to the XQuery
document. The URLs of XQuery and XML files can be supplied as strings via interface
properties. Alternatively, the XML and XQuery documents can be constructed within the
scripting or programming code as text strings. See examples below.

Note: Where string inputs are to be interpreted as URLs, absolute paths should be used. If a
relative path is used, a mechanism to resolve the relative path should be defined in the calling
module.

Methods
The following methods are available:

Execute(OutputFileName as String)
void execute(String outputFilename)
Execute executes an XQuery 1.0 transformation and saves the result to an output file, the
name and location of which is provided as an input string to the Execute method. For example:
Execute("C:\OutputDoc.xml").

ExecuteAndGetResultAsString() as String
ExecuteAndGetResultAsString executes an XQuery 1.0 transformation and returns the result
as a UTF-16 text string.

AddExternalVariable(VarName as String, VarValue as String)
Takes a variable name and the value of this variable as input arguments. Each external
variableand its value is to be specified in a separate call to the method. Variables must be
declared in the XQuery document, optionally with a type declaration. Whatever the type
declaration for the external variable in the XQuery document, the variable value submitted to
the AddExternalVariable method does not need any special delimiter, such as quotes (see
example below). However, the lexical form must match that of the expected type (for example,
a variable of type xs:date must have a value in the lexical form 2004-01-31; a value in the
lexical form 2004/Jan/01 will cause an error). Note that this also means that you cannot use an
XQuery 1.0 function (for example, current-date()) as the value of an external variable (since
the lexical form of the function as it is written will either not match the required data type (if the
datatype is specified in the declaration of the external variable) or will be read as a string (if the
datatype is not specified).) If multiple calls specify the same variable name the value set by the
latest will be used.

AddExternalVariableAsXPath(VarName as String, VarValue as String)
Takes a variable name and the value of this variable as input arguments. Similar to
AddExternalVariable method, except that AddExternalVariableAsXPath will be evaluated
as an XPath 2.0 expression. This makes it possible to pass in nodes and sequences with more
than one element.

ClearExternalVariableList
No argument should be provided. The ClearExternalVariableList clears the external
variables list created with AddExternalVariable methods.

Note: Setting the optional XML document must always be done before query execution.

Properties

34 Usage COM Interface

© 2012 Altova GmbHAltovaXML 2013

The following properties are defined:

XQueryFileName
A string input that is read as a URL to locate the XQuery file to be executed. If both the
XQueryFileName property and XQueryFromText property are specified, then the property that
has been set later than the other (in the code sequence) is used.

InputXMLFileName
A string input that is read as a URL to locate the XML file that will be loaded into the query.
XQuery navigation expressions are evaluated with reference to the document node of this XML
document. If both the InputXMLFileName property and InputXMLFromText property are
specified, then the property that has been set later than the other (in the code sequence) is
used.

XQueryFromText
A string input that constructs an XQuery document. If both the XQueryFileName property and
XQueryFromText property are specified, then the property that has been set later than the other
(in the code sequence) is used.

InputXMLFromText
A string input that constructs an XML document. XQuery navigation expressions are evaluated
with reference to the document node of this XML document. If both the InputXMLFileName
property and InputXMLFromText property are specified, then the property that has been set
later than the other (in the code sequence) is used.

LastErrorMessage
Returns the last error message.

JavaExtensionsEnabled
Enables Java extensions. You can specify whether Java extensions should be enabled or not
by submitting true or false (case-insensitive) as a Variant_Bool argument.

DotNetExtensionsEnabled
Enables .NET extensions. You can specify whether .NET extensions should be enabled or not
by submitting true or false (case-insensitive) as a Variant_Bool argument.

Note: If an XML document is set and is not needed for a new XQuery execution, then it should
be cleared with an empty string assignment.

The following serialization options are defined:

OutputMethod
The required output method can be specified by submitting the required value as a string
argument. Valid values are: xml, xhtml, html, and text. For example:
objAltovaXML.XQuery.OutputMethod = "xml". If the value is invalid, it is ignored. The default
output method is xml.

OutputOmitXMLDeclaration
You can specify whether the XML declaration should be omitted or included in the output by
submitting true or false (case-insensitive) as a Boolean argument. For example:
objAltovaXML.XQuery.OutputOmitXMLDeclaration = "FALSE". If the value is invalid, an
error is raised. The default option is TRUE.

OutputIndent
You can specify whether the output should be indented or not by submitting true or false
(case-insensitive) as a Boolean argument. For example:

© 2012 Altova GmbH

COM Interface 35Usage

AltovaXML 2013

objAltovaXML.XQuery.OutputIndent = "TRUE". If the value is invalid, an error is raised. The
default option is False.

OutputEncoding
 The required output encoding can be specified by submitting the encoding value as a string
argument. For example: objAltovaXML.XQuery.OutputEncoding = "UTF-8". If the value is
invalid, it is ignored. The default output encoding is UTF-8.

Note: For the serialization options, Raw Interface and Dispatch Interface usage differs. In the
Raw Interface, if no argument is provided with these properties, then the current value of the
property is returned. You would use something like: put_OutputOption(VARIANT_BOOL bVal
) or VARIANT_BOOL bVal = get_OutputOption(), respectively, to set values and get values.
In the Dispatch Interface, you can use b = myXQuery.OutputOption to get values and
myXQuery.OutputOption = b to set values. For example, in the Dispatch Interface,
Sheet1.Cells(10, 2) = objAltovaXML.XQuery.OutputEncoding would get the current
output encoding.

Examples
Given below is a single Visual Basic procedure that shows how the various methods and
properties of the XQuery interface can be used. This code was intended for use as a macro in
an MS Excel worksheet, and references to worksheet cells indicate locations of input or output
data.

Sub CommandButton1_Click()
Set objAltovaXML = CreateObject("AltovaXML.Application")

 objAltovaXML.XQuery.InputXMLFileName = "c:\AltovaXML\test.xml"
 objAltovaXML.XQuery.XQueryFromText = " xquery version '1.0';
 declare variable $string as xs:string external;
 declare variable $num as xs:decimal external;
 declare variable $date as xs:date external;
 $string, ' ', 2*$num, ' ', $date "
 objAltovaXML.XQuery.AddExternalVariable "string", "A string"
 objAltovaXML.XQuery.AddExternalVariable "num", "2.1"
 objAltovaXML.XQuery.AddExternalVariable "date", "2005-04-21"
 Sheet1.Cells(10, 2) = objAltovaXML.XQuery.OutputEncoding
 objAltovaXML.XQuery.OutputMethod = "text"
 Sheet1.Cells(11, 2) = objAltovaXML.XQuery.OutputMethod
 objAltovaXML.XQuery.OutputIndent = "TRUE"
 Sheet1.Cells(12, 2) = objAltovaXML.XQuery.OutputIndent
 objAltovaXML.XQuery.OutputOmitXMLDeclaration = "FALSE"
 Sheet1.Cells(13, 2) = objAltovaXML.XQuery.OutputOmitXMLDeclaration
 Sheet1.Cells(14, 2) = objAltovaXML.XQuery.ExecuteAndGetResultAsString
End Sub

36 Usage COM Interface

© 2012 Altova GmbHAltovaXML 2013

2.2.8 Examples

This section contains example code in (i) Visual Basic for an Excel macro; (ii) JScript; and (iii)
C++. These examples will give you an idea of how you can use AltovaXML with a COM
Interface.

For more detailed examples, see the example files in the Examples folder in the application
folder.

Visual Basic

The following Visual Basic example is the code for a macro in an Excel worksheet (screenshot
below). The macro has been assigned to the button Run Expressions. On clicking the button,
the Visual Basic code is executed.

Code sample
The Visual Basic code below uses the XQuery interface.

Sub CommandButton1_Click()
Set objAltovaXML = CreateObject("AltovaXML.Application")

 objAltovaXML.XQuery.XQueryFromText = Sheet1.Cells(2, 1)
 Sheet1.Cells(2, 2) = objAltovaXML.XQuery.ExecuteAndGetResultAsString

 objAltovaXML.XQuery.InputXMLFromText = Sheet1.Cells(3, 1)
 objAltovaXML.XQuery.XQueryFromText = "translate(node, ';-', '. ')"
 Sheet1.Cells(3, 2) = objAltovaXML.XQuery.ExecuteAndGetResultAsString

 objAltovaXML.XQuery.InputXMLFromText = "<a myAttr='A code-generated
string'/>"
 objAltovaXML.XQuery.XQueryFromText = "string(/a/@*)"
 Sheet1.Cells(4, 2) = objAltovaXML.XQuery.ExecuteAndGetResultAsString
End Sub

On clicking the button Run Expressions in the Excel worksheet, the following three XQuery
instructions are executed:

1. The input for the XQueryFromText property is an XQuery expression taken as text from
the Excel worksheet cell 2A. The ExecuteAndGetResultAsString property executes
the XQuery expression and places the result in the Excel worksheet cell 2B.

2. The input for the InputXMLFromText property is an XML fragment taken from the Excel
worksheet cell 3A. The XQuery expression is given to the XQueryFromText property
directly in the code. The result is placed in the Excel worksheet cell 3B.

3. The InputXMLFromText property creates an XML tree from the XML fragment provided
to it. The XQuery expression is given to the XQueryFromText property directly in the
code, and the result is placed in the Excel worksheet cell 4B.

© 2012 Altova GmbH

COM Interface 37Usage

AltovaXML 2013

JScript

Given below is a JScript code sample that shows how AltovaXML can be used via the COM
interface.

Code sample

// //////////// global variables /////////////////
var objAltovaXML = null;

// /////////////////////// Helpers //////////////////////////////

function Exit(strErrorText)
{
 WScript.Echo(strErrorText);

 if (objAltovaXML != null)
 objAltovaXML.Quit();

 WScript.Quit(-1);
}

function ERROR(strText, objErr)
{
 if (objErr != null)
 Exit ("ERROR: (" + (objErr.number & 0xffff) + ")" + objErr.description +
" - " + strText);
 else
 Exit ("ERROR: " + strText);
}

function CreateGlobalObjects ()
{
 // create the AltovaXML connection
 // if there is a running instance of AltovaXML (that never had a
connection) - use it
 // otherwise, we automatically create a new instance
 try
 {
 objAltovaXML = WScript.GetObject("", "AltovaXML.Application");
 //WScript.Echo("Successfully accessing AltovaXML.Application");
 }
 catch(err)
 {
 WScript.Echo(err)
 { Exit("Can't access or create AltovaXML.Application"); }
 }
}

// /////////////////////// MAIN //////////////////////////////

CreateGlobalObjects();

objAltovaXML.XQuery.InputXMLFromText = " \
 <bib> \
 <book year=\"1994\"> \
 <title>TCP/IP Illustrated</title> \
 <author><last>Stevens</last><first>W.</first></author> \
 <publisher>AW</publisher> \
 <price>65.95</price> \
 </book> \
 <book year=\"1992\"> \
 <title>Advanced Programming in the Unix Environment</title> \
 <author><last>Stevens</last><first>W.</first></author> \

38 Usage COM Interface

© 2012 Altova GmbHAltovaXML 2013

 <publisher>AW</publisher> \
 <price>65.95</price> \
 </book> \
 <book year=\"2000\"> \
 <title>Data on the Web</title> \
 <author><last>Abiteboul</last><first>Serge</first></author> \
 <author><last>Abiteboul</last><first>Serge</first></author> \
 <author><last>Abiteboul</last><first>Serge</first></author> \
 <publisher>John Jameson Publishers</publisher> \
 <price>39.95</price> \
 </book> \
 <book year=\"1999\"> \
 <title>Digital TV</title> \

<editor><last>Gassy</last><first>Viktor</first><affiliation>CITI</affiliation>
</editor> \
 <publisher>Kingston Academic Press</publisher> \
 <price>129.95</price> \
 </book> \
 </bib> ";

objAltovaXML.XQuery.XQueryFromText = "\
 (: Filename: xmpQ1.xq :) \
 (: Source: http://www.w3.org/TR/xquery-use-cases/#xmp-data :) \
 (: Section: 1.1.1.9 Q1 :) \
 (: List books published by AW after 1991, including their year and title.:)
\
 <bib> \
 { \
 for $b in /bib/book where $b/publisher = \"AW\" and $b/@year > 1991 \
 return <book year=\"{ $b/@year }\"> { $b/title } </book>
\
 } \
 </bib> ";

var sResult = objAltovaXML.XQuery.ExecuteAndGetResultAsString();
WScript.Echo(sResult);

C++

Given below is a C++ code sample that shows how AltovaXML can be used via the COM
interface.

Code sample

// TestAltovaXML.cpp : Defines the entry point for the console application.
//
#include "objbase.h"
#include <iostream>
#include "atlbase.h"

#import "AltovaXML_COM.exe" no_namespace raw_interfaces_only
// - or -
//#import "AltovaXML_COM.exe" raw_interfaces_only
//using namespace AltovaXMLLib;

int main(int argc, char* argv[])
{

HRESULT hr = S_OK;
hr = CoInitialize(NULL);
if (hr == S_OK)
{

IApplicationPtr ipApplication;

© 2012 Altova GmbH

COM Interface 39Usage

AltovaXML 2013

hr = CoCreateInstance(
__uuidof(Application

),
NULL,
CLSCTX_ALL,
__uuidof(IApplication),

reinterpret_cast<void**>(&ipApplication)
);

if (hr == S_OK)
{

IXQueryPtr ipXQuery;
hr = ipApplication->get_XQuery(&ipXQuery);

if (hr == S_OK)
{

CComBSTR sXQExpr("(1 to 10)[. mod 2 != 0]");
BSTR bstrResult;

hr = ipXQuery->put_XQueryFromText(sXQExpr);
hr = ipXQuery->ExecuteAndGetResultAsString(

&bstrResult);

std::cout << (char*)_bstr_t(bstrResult) <<
std::endl;

ipXQuery.Release();
}

ipApplication.Release();
}

CoUninitialize();
}
return 0;

}

40 Usage Java Interface

© 2012 Altova GmbHAltovaXML 2013

2.3 Java Interface

The AltovaXML API can be accessed from Java code. To allow accessing the AltovaXML
automation server directly from Java code, the libraries listed below must reside in the
classpath. They are installed in the folder: JavaAPI in the AltovaXML application folder.

· AltovaAutomation.dll: a JNI wrapper for Altova automation servers

· AltovaAutomation.jar: Java classes to access Altova automation servers

· AltovaXMLAPI.jar: Java classes that wrap the AltovaXML automation interface

· AltovaXMLAPI_JavaDoc.zip: a Javadoc file containing help documentation for the
Java API

Note: In order to use the Java API, the DLL and Jar files must be on the Java Classpath, and
AltovaXML_COM.exe must be registered as a COM server object.

Example Java project
An example Java project is supplied with your product installation. You can test the Java project
and modify and use it as you like. Note, however, that the folder might be write-protected, in
which case you must change your user-access settings. For more details of the example Java
project, see the section, Example Java Project.

Previous interface
The previous Java interface for AltovaXML has been replaced since Version 2012.
Documentation for the old interface can be found here: Old Java API (Obsolete).

Differences between old and new interfaces
The differences between the old (pre-v2012) interface and the new (v2012 onwards) interface
are listed below:

· The new AltovaXMLFactory() is used to create an instance of AltovaXMLFactory
instead of AltovaXMLFactory.getInstance()

· The methods of AltovaXMLFactory to access the XML Validator, XQuery, XSLT1, and
XSLT2 engines are called getXMLValidator(), getXQuery() , getXSLT1(),
getXSLT2()

· To free an engine instance or the factory use dispose() instead of
releaseInstance()

· The method enableJavaExtension is now called setJavaExtensioEnabled in the
various engine interfaces

· The method enableDotNetExtension is now called setDotNetExtensioEnabled in
the various engine interfaces

© 2012 Altova GmbH

Java Interface 41Usage

AltovaXML 2013

2.3.1 Example Java Project

The AltovaXML installation package contains an example Java project, located in the Java
folder of the API Examples folder: AltovaXMLExamples/API/Java in the AltovaXML application
folder.

This folder contains Java examples for the AltovaXML API. You can test it directly from the
command line using the batch file BuildAndRun.bat (located in the same folder) or you can
compile and run the example project from within Eclipse. See below for instructions on how to
use these procedures.

File list
The Java examples folder contains all the files required to run the example project. These files
are listed below:

AltovaAutomation.dll Java-COM bridge: DLL part
AltovaAutomation.jar Java-COM bridge: Java library part
AltovaXMLAPI.jar Java classes of the AltovaXML API
UseAltovaXML.java Java example source code
BuildAndRun.bat Batch file to compile and run example code from the command

line prompt. Expects folder where Java Virtual Machine resides as
parameter.

.classpath Eclipse project helper file

.project Eclipse project file

AltovaXMLAPI_JavaDoc.zi

p
Javadoc file containing help documentation for the Java API

Running the example from the command line
To run the example from the command line, open a command prompt window, go to the Java
folder of the API Examples folder (see above for location), and then type:

buildAndRun.bat "<Path-to-the-Java-bin-folder>"

The Java binary folder must be that of a JDK 1.5 or later installation on your computer.

Press the Return key. The Java source in UseAltovaXML.java will be compiled and then
executed.

Loading the example in Eclipse
Open Eclipse and use the Import | Existing Projects into Workspace command to add the
Eclipse project file (.project) located in the Java folder of the API Examples folder (see above
for location). The project UseAltovaXML will then appear in your Package Explorer or Navigator.

Select the project and then the command Run as | Java Application to execute the example.

Note: You can select a class name or method of the Java API and press F1 to get help for
that class or method.

42 Usage Java Interface

© 2012 Altova GmbHAltovaXML 2013

Java source code listing
The Java source code in the example file UseAltovaXML.java is listed below with comments.

01 import com.altova.automation.AltovaXML.*;
02 import com.altova.automation.libs.AutomationException;
03
04
05 public class UseAltovaXML
06 {
07
08 /**
09 * @param args
10 */
11 public static void main(String[] args)
12 {
13 // Locate samples installed with the product.
14 // REMARK: You will need to modify this if you use a different major version, use
the 64-bit
15 // version of the program, or installed AltovaXML in a different
location.
16 String strExamplesFolder = System.getenv("ProgramFiles") +
"/Altova/AltovaXML2012/AltovaXMLExamples/";
17
18 String inFilename = strExamplesFolder + "simple.xml";
19 String xqFilename = strExamplesFolder + "CopyInput.xq";
20 System.out.println("AltovaXML Java JNI XQuery");
21
22 AltovaXMLFactory xmlFactory = null;
23 try
24 {
25 // Get application instance
26 xmlFactory = new AltovaXMLFactory();
27
28 // Get XML validator and XQ method pointers from the application instance
29 XMLValidator validator = xmlFactory.getXMLValidator();
30 XQuery xQuery = xmlFactory.getXQuery();
31
32 // We only want to work with input files that are well-formed.
33 validator.setInputXMLFileName(inFilename);
34 if (validator.isWellFormed())
35 {
36 // If the file is well-formed, copy it using XQuery
37 xQuery.setInputXMLFileName(inFilename);
38 xQuery.setXQueryFileName(xqFilename);
39
40 // Test return value
41 String resultString = xQuery.executeAndGetResultAsString();
42 if (resultString == null)
43 System.out.println("XQuery error: " + xQuery.getLastErrorMessage());
44 else
45 System.out.println("Transform contents: " + resultString);
46 }
47 else
48 System.out.println("Not wellformed error: " + validator.getLastErrorMessage()
);
49
50 }
51 catch (AutomationException e)
52 {
53 // An error occurred when talking to the AltovaXML COM interface.
54 System.out.println("Error accessing AltovaXML: " + e.getMessage());
55 }
56 finally
57 {
58 // Now we can release the factory to immediately shut-down AltovaXML_COM.exe
59 if (xmlFactory != null)
60 xmlFactory.dispose();
61 }
62 }
63 }

© 2012 Altova GmbH

Java Interface 43Usage

AltovaXML 2013

44 Usage Java Interface

© 2012 Altova GmbHAltovaXML 2013

2.3.2 Classes

Given below is a summary of the classes of com.altova.engines. Detailed descriptions are
given in the respective sections.

· AltovaXMLFactory
Creates new AltovaXML COM server object instance via native call, and provides
access to AltovaXML engines.

· XMLValidator
Class holding XMLValidator.

· XQuery
Class holding the XQuery 1.0 Engine.

· XSLT1
Class holding the XSLT 1.0 Engine.

· XSLT2
Class holding the XSLT 2.0 Engine.

AltovaXMLFactory

public class AltovaXMLFactory
extends java.lang.Object

Description
Use AltovaXMLFactory() to create a new AltovaXML COM server object instance. This
provides access to the AltovaXML engines. The relationship between AltovaXMLFactory and
the AltovaXML COM object is one-to-one. This means that subsequent calls to the
getENGINENAME() function will return interfaces for the same engine instance.

Methods
The following methods are defined. The methods for catalogs enable the addition of catalogs
used for document lookup. After catalogs are added they are used for lookup till the COM
server terminates. Added catalogs cannot be removed.

addXMLCatalogDefault()
public void addXMLCatalogDefault()
Adds Altova's default RootCatalog.xml to the catalogs.

addXMLCatalogFromFile(string catalogfilename)
public void addXMLCatalogFromFile(java.lang.String
bstrXMLCatalogFileName)
Adds the catalog identified by catalogfilename to the catalogs.

addXMLCatalogFromText(string catalogtext)
public void addXMLCatalogFromText(java.lang.String bstrXMLCatalogText)
Adds the catalog with content catalogtext to the catalogs.

dispose
public void dispose()
Releases the object's connection to the COM server.

© 2012 Altova GmbH

Java Interface 45Usage

AltovaXML 2013

getXMLValidator
public XMLValidator getXMLValidator()
Retrieves the XMLValidator. The object's connection to the engine must be released after use.
To do this, use the method dispose().
Returns:
a new XMLValidator instance of this AltovaXMLFactory.

getXQuery
public XQuery getXQuery()
Retrieves the XQuery engine. The object's connection to the engine must be released after use.
To do this, use the method dispose().
Returns:
a new XQuery 1.0 engine instance of this AltovaXMLFactory.

getXSLT1
public XSLT1 getXSLT1()
Retrieves the XSLT 1.0 engine. The object's connection to the engine must be released after
use. To do this, use the method dispose().
Returns:
a new XSLT 1.0 engine instance of this AltovaXMLFactory.

getXSLT2
public XSLT2 getXSLT2()
Retrieves the XSLT 2.0 engine. The object's connection to the engine must be released after
use. To do this, use the method dispose().
Returns:
a new XSLT 2.0 engine instance of this AltovaXMLFactory.

XMLValidator

public class XMLValidator
extends java.lang.Object

Description
Class holding XMLValidator. No direct construction/access possible. Access the XML Validator
by calling the function getXMLValidator() on an instance of AltovaXMLFactory.

Methods
The following methods are defined.

getLastErrorMessage
public java.lang.String getLastErrorMessage()
Gets the last error message from the engine.
Returns:
a string containing the last error message.

46 Usage Java Interface

© 2012 Altova GmbHAltovaXML 2013

isValid
public boolean isValid()
Validates the input XML data against the DTD/Schema specified in it.
Returns:
true on success, false on failure. In case of failure, you can use the method
getLastErrorMessage().

isValidWithExternalSchemaOrDTD
public boolean isValidWithExternalSchemaOrDTD()
Validates the input XML data against the external DTD/Schema, which can be specified with the
functions setDTDFileName(), setDTDFromText(), setSchemaFileName(), and
setSchemaFromText(). For a description of these methods, see below.
Returns:
true on success, false on failure. In case of failure, you can use the method
getLastErrorMessage().

isWellFormed
public boolean isWellFormed()
Checks the input XML data for well-formedness.
Returns:
true on success, false on failure. In case of failure, you can use the method
getLastErrorMessage().

dispose
public void dispose()
Releases the object's connection to the COM server.

setDTDFileName
public void setDTDFileName(java.lang.String str)
Set file name of external DTD.
Parameters:
str: an absolute URL giving the base location of the DTD.

setDTDFromText
public void setDTDFromText(java.lang.String str)
Sets text value for external DTD.
Parameters:
str: a string containing DTD as text.

setInputXMLFileName
public void setInputXMLFileName(java.lang.String str)
Sets the file name for the input XML data. Note that you must use absolute URLs.
Parameters:
str: an absolute URL giving the base location of the XML data.

setInputXMLFromText
public void setInputXMLFromText(java.lang.String str)

© 2012 Altova GmbH

Java Interface 47Usage

AltovaXML 2013

Sets the text value for the input XML data. Example: setInputXMLFromText("<doc>
<a>text </doc>")
Parameters:
str: a string containing XML data.

setSchemaFileName
public void setSchemaFileName(java.lang.String str)
Set file name of external Schema.
Parameters:
str: an absolute URL giving the base location of the Schema.

setSchemaFromText
public void setSchemaFromText(java.lang.String str)
Sets text value for external Schema.
Parameters:
str: a string containing Schema as text.

setTreatXBRLInconsistenciesAsErrors
public void setTreatXBRLInconsistenciesAsErrors(boolean param)
Sets a boolean value to treat XBRL inconsistencies as errors or not.
Parameters:
param: a Boolean value.

XQuery

public class XQuery
extends java.lang.Object

Description
Class holding the XQuery 1.0 engine. No direct construction/access possible. Access the

XQuery Engine by calling the function getXQuery() on an instance of AltovaXMLFactory.

Methods
The following methods are defined.

addExternalVariable
public void addExternalVariable(java.lang.String strName,
 java.lang.String strVal)
Adds the name and value of an external variable.
Parameters:
strName: a string containing a valid QName as the variable name.
strVal: a string containing the value of the variable; this value will be used as a string.

addExternalVariableAsXPath
public void addExternalVariableAsXPath(java.lang.String strName,
 java.lang.String strVal)
Add name and value for an external variable, with value being evaluated as an XPath 2.0

48 Usage Java Interface

© 2012 Altova GmbHAltovaXML 2013

expression.
Parameters:
strName: a string containing a valid QName as the variable name.
strVal: a string containing the value of the variable; the value will be evaluated as an XPath
2.0 expression.

clearExternalVariableList
public void clearExternalVariableList()
Clear the list of external variables.

dispose
public void dispose()
Releases the object's connection to the COM server.

execute
public void execute(java.lang.String sOutFile)
Executes and saves the result to file. In case of an error, you can use the method
getLastErrorMessage().
Parameters:
sOutFile: an absolute URL giving the location of the output file.
Returns:
true on

executeAndGetResultAsString
public java.lang.String executeAndGetResultAsString()
Executes and returns the result as a UTF-16 text string. In case of an error, you can use the
method getLastErrorMessage().
Returns:
string containing the serialized result. On error, will return the empty string.

getLastErrorMessage
public java.lang.String getLastErrorMessage()
Gets the last error message from the engine.
Returns:
a string containing the last error message.

getOutputEncoding
public java.lang.String getOutputEncoding()
Retrieves the encoding specified for the result document.
Returns:
a string containing the encoding name.

getOutputIndent
public boolean getOutputIndent()
Retrieves the output indent option specified for the result document.
Returns:
the current value of the indent serialization parameter.

© 2012 Altova GmbH

Java Interface 49Usage

AltovaXML 2013

getOutputMethod
public java.lang.String getOutputMethod()
Retrieves the serialization method for the result document.
Returns:
the current serialization method.

getOutputOmitXMLDeclaration
public boolean getOutputOmitXMLDeclaration()
Retrieves the value of omitXMLDeclaration option specified for the result document.
Returns:
boolean value of the omit-xml-declaration parameter.

setDotNetExtensionsEnabled
public void enableDotNetExtensions(boolean bEnable)
Enable/disable .NET extension functions.

setInputXMLFileName
public void setInputXMLFileName(java.lang.String str)
Sets the file name for the input XML data. Note that you must use absolute URLs.
Parameters:
str: an absolute URL giving the base location of the XML data.

setInputXMLFromText
public void setInputXMLFromText(java.lang.String str)
Sets the text value for the input XML data. Example: setInputXMLFromText("<doc>
<a>text </doc>").
Parameters:
str: a string containing XML data.

setJavaExtensionsEnabled
public void enableJavaExtensions(boolean bEnable)
Enable/disable Java extension functions.

setOutputEncoding
public void setOutputEncoding(java.lang.String str)
Sets the encoding for the result document.
Parameters:
str: a string containing an encoding name (for example: UTF-8, UTF-16, ASCII, 8859-1,
1252)

setOutputIndent
public void setOutputIndent(boolean bVal)
Enables/disables the indentation option for the result document.
Parameters:
bVal: boolean value to enable/disable indentation.

50 Usage Java Interface

© 2012 Altova GmbHAltovaXML 2013

setOutputMethod
public void setOutputMethod(java.lang.String str)
Sets the serialization method for the result document.
Parameters:
str: a string containing the serialization method. Valid values: xml, xhtml, html, text.

setOutputOmitXMLDeclaration
public void setOutputOmitXMLDeclaration(boolean bVal)
Enables/disables the serialization option omitXMLDeclaration for the result document.
Parameters:
bVal: a new boolean value for the omit-xml-declaration parameter.

setXQueryFileName
public void setXQueryFileName(java.lang.String str)
Sets file name of the XQuery document.
Parameters:
str: an absolute URL giving the base location of the XQuery file.

setXQueryFromText
public void setXQueryFromText(java.lang.String str)
Sets the text value for the XQuery statement.
Parameters:
str: a string containing the XQuery statement.

XSLT1

public class XSLT1
extends java.lang.Object

Description
Class holding the XSLT 1.0 engine. No direct construction/access possible. Access the XSLT

1.0 Engine by calling the function getXSLT1() on an instance of AltovaXMLFactory.

Methods
The following methods are defined.

addExternalParameter
public void addExternalParameter(java.lang.String strName,
 java.lang.String strVal)
Adds the name and value of an external parameter.
Parameters:
strName: a string containing a valid QName as the parameter name.
strVal: a string containing the value of the parameter; this value will be evaluated as an XPath
expression.

© 2012 Altova GmbH

Java Interface 51Usage

AltovaXML 2013

clearExternalParameterList
public void clearExternalParameterList()
Clears the list of external parameters.

dispose
public void dispose()
Releases the object's connection to the COM server.

execute
public void execute(java.lang.String sOutFile)
Executes and saves the result to file. In case of an error, you can use the method
getLastErrorMessage().
Parameters:
sOutFile: an absolute URL giving the location of the output file.
Returns:
true on success, false on error.

executeAndGetResultAsString
public java.lang.String executeAndGetResultAsString()
Executes and returns the result as a UTF-16 text string. In case of an error, you can use the
method getLastErrorMessage().
Returns:
string containing the serialized result. On error, will return the empty string.

getLastErrorMessage
public java.lang.String getLastErrorMessage()
Gets the last error message from the engine.
Returns:
a string containing the last error message.

setDotNetExtensionsEnabled
public void enableDotNetExtensions(boolean bEnable)
Enable/disable .NET extension functions.

setInputXMLFileName
public void setInputXMLFileName(java.lang.String str)
Sets the file name for the input XML data. Note that you have to use absolute URLs.
Parameters:
str: an absolute URL giving the base location of the XML data.

setInputXMLFromText
public void setInputXMLFromText(java.lang.String str)
Sets the text value for the input XML data. Example: setInputXMLFromText("<doc>
<a>text </doc>").
Parameters:
str: a string containing XML data.

52 Usage Java Interface

© 2012 Altova GmbHAltovaXML 2013

setJavaExtensionsEnabled
public void enableJavaExtensions(boolean bEnable)
Enable/disable Java extension functions.

setXSLFileName
public void setXSLTFileName(java.lang.String str)
Sets the file name for the XSLT data.
Parameters:
str: an absolute URL giving the base location of the XSLT data

setXSLFromText
public void setXSLTFromText(java.lang.String str)
Sets the text value for the XSLT data.
Parameters:
str: a string containing serialized XSLT data.

setXSLStackSize
public void setXSLTStackSize(long nVal)
The stack size is the maximum depth of executed instructions. If the stack size is exceeded
during a transformation, an error is reported.
Parameters:
nVal: numeric value for new stack size. Must be greater tha 100. The initial value 1000.

XSLT2

public class XSLT2
extends java.lang.Object

Description
Class holding the XSLT 2.0 engine. No direct construction/access possible. Access the XSLT

2.0 Engine by calling the function getXSLT2() on an instance of AltovaXMLFactory. Note that
the XSLT 2.0 Engine can be used in its backward compatibility mode to process an XSLT 1.0
stylesheet. The output, however, could be different than that produced by the XSLT 1.0 Engine
processing the same XSLT 1.0 stylesheet.

Methods
The following methods are defined.

addExternalParameter
public void addExternalParameter(java.lang.String strName,
 java.lang.String strVal)
Adds the name and value of an external parameter.
Parameters:
strName: a string containing a valid QName as the parameter name.
strVal: a string containing the value of the parameter; this value will be evaluated as an XPath
expression.

© 2012 Altova GmbH

Java Interface 53Usage

AltovaXML 2013

clearExternalParameterList
public void clearExternalParameterList()
Clears the list of external parameters.

dispose
public void dispose()
Releases the object's connection to the COM server.

execute
public void execute(java.lang.String sOutFile)
Executes and saves the result to file. In case of an error, you can use the method
getLastErrorMessage().
Parameters:
sOutFile: an absolute URL giving the location of the output file.
Returns:
true on success, false on error.

executeAndGetResultAsString
public java.lang.String executeAndGetResultAsString()
Executes and returns the result as a UTF-16 text string. In case of an error, you can use the
method getLastErrorMessage().
Returns:
string containing the serialized result. On error, will return the empty string.

getLastErrorMessage
public java.lang.String getLastErrorMessage()
Gets the last error message from the engine.
Returns:
a string containing the last error message.

setDotNetExtensionsEnabled
public void enableDotNetExtensions(boolean bEnable)
Enable/disable .NET extension functions.

setInitialTemplateMode
public void setInitialTemplateMode(java.lang.String str)
Sets the initial template mode for the transformation.

setInitialTemplateName
public void setInitialTemplateName(java.lang.String str)
Sets the initial template name for the transformation.

setInputXMLFileName
public void setInputXMLFileName(java.lang.String str)
Sets the file name for the input XML data. Note that you have to use absolute URLs.

54 Usage Java Interface

© 2012 Altova GmbHAltovaXML 2013

Parameters:
str: an absolute URL giving the base location of the XML data.

setInputXMLFromText
public void setInputXMLFromText(java.lang.String str)
Sets the text value for the input XML data. Example: setInputXMLFromText("<doc>
<a>text </doc>").
Parameters:
str: a string containing XML data.

setJavaExtensionsEnabled
public void enableJavaExtensions(boolean bEnable)
Enable/disable Java extension functions.

setXSLFileName
public void setXSLTFileName(java.lang.String str)
Sets the file name for the XSLT data.
Parameters:
str: an absolute URL giving the base location of the XSLT data

setXSLFromText
public void setXSLTFromText(java.lang.String str)
Sets the text value for the XSLT data.
Parameters:
str: a string containing serialized XSLT data.

setXSLStackSize
public void setXSLTStackSize(long nVal)
The stack size is the maximum depth of executed instructions. If the stack size is exceeded
during a transformation, an error is reported.
Parameters:
nVal: numeric value for new stack size. Must be greater than 100. The initial value 1000.

© 2012 Altova GmbH

Java Interface 55Usage

AltovaXML 2013

2.3.3 Old Java API (Obsolete)

The objects described in this section (Old Java API) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code,
see the section: Java Interface.

The AltovaXML Java interface (AltovaXML.jar) connects to the AltovaXML COM interface
using native functions in the AltovaXMLLib.dll. This DLL will have been installed in the
WINDIR\system32\ directory when you install AltovaXML using the AltovaXML installer.
AltovaXML.jar contains the package com.altova.engines, which is the package containing
the Altova engines.

Setup
In order to use the Java interface, add the AltovaXML.jar file to the CLASSPATH. COM
registration is done automatically by the AltovaXML Installer. If you change the location of the
file AltovaXML_COM.exe after installation, you should register AltovaXML as a COM server
object by running the command AltovaXML_COM.exe /regserver. See Registering AltovaXML
as a COM Server Object for more details.

Documentation
This section contains a detailed description of the AltovaXML Java interface. This
documentation is also available in HTML format in the ZIP archive, AltovaXMLJavaDocs.zip,
which is located in the AltovaXML2013 application folder.

Examples
For detailed examples, see the example files in the AltovaXMLExamples folder in the
application folder.

The com.altova.engines package
To use the Java interface, your starting point is the package com.altova.engines. This is the
Java interface for the AltovaXML COM server object; it provides access to XMLValidator and to
the XSLT 1.0, XSLT 2.0 and XQuery 1.0 engines.

The com.altova.engines package provides connection to the AltovaXML COM interface using
the native functions in AltovaXMLLib.dll, which is installed in the WINDIR\system32\
directory.

To connect to a new instance of AltovaXML COM server object, use the static method
getInstance() of the AltovaXMLFactory class. From the returned interface you can choose
the required engine using the getENGINENAMEInstance() function.

Given below is a sample of code that uses the Java interface:

import com.altova.engines.*;

56 Usage Java Interface

© 2012 Altova GmbHAltovaXML 2013

/**
 * Test application for AltovaXML COM components java interface
 */
public class AltovaXMLTest {
 /**
 * public constructor for AltovaXMLTest
 */
 public AltovaXMLTest(){
 }

 /**
 * application main
 */
 public static void main(String[] args) {
 System.out.println("AltovaXML Java Interface Test Application");

 //request a COM server object - fails if AltovaXML is not registered
 IAltovaXMLFactory objXmlApp = AltovaXMLFactory.getInstance();

 if (objXmlApp != null) {
 //get interface for the XQuery engine
 IXQuery xquery = objXmlApp.getXQueryInstance();
 //set XQuery statement
 xquery.setXQueryStatement("<doc><a>{1 to 3}This data is
well-formed.</doc>");
 //execute the statement previously set.
 //There was no input XML specified so the initial context is
empty.
 String sres = xquery.executeAndGetResultAsString();
 //release XQuery engine's connection to the COM server object
 xquery.releaseInstance();
 System.out.println(sres);

 IXMLValidator validator = objXmlApp.getXMLValidatorInstance();
 validator.setInputXMLFromText(sres);
 boolean b = validator.isWellFormed();
 if (b)
 System.out.println("XML data is well-formed.");
 else
 System.out.println("Data is not well-formed.");
 validator.releaseInstance();

 //release Application object connection to the COM server object.
 //After this the COM server object will shut down automatically.
 objXmlApp.releaseInstance();
 } else{
 System.out.println("Creating instance of IAltovaXMLFactory
failed.");
 System.out.println("Please make sure AltovaXML.exe is correctly
registered!");
 }
 }
}

Example

The code listing below checks whether the submitted XML file is well-formed, and then
executes an XQuery document.

To connect to a new instance of AltovaXML COM server object, use the static method
getInstance() of the AltovaXMLFactory class. From the returned interface you can choose
the required engine using the getENGINENAMEInstance() function (for example:

© 2012 Altova GmbH

Java Interface 57Usage

AltovaXML 2013

getXMLValidatorInstance()).

 // Locate samples installed with the product.
 // REMARK: You will need to modify this if you use a different
major version.
 String strExamplesFolder = System.getenv("ProgramFiles") +
"/Altova/AltovaXML2011/AltovaXMLExamples/";

 String inFilename = strExamplesFolder + "simple.xml";
 String xqFilename = strExamplesFolder + "CopyInput.xq";
 System.out.println("AltovaXML Java JNI XQuery");

 try
 {
 // get application instance
 IAltovaXMLFactory objXmlApp = AltovaXMLFactory.getInstance
();

 // get XML Validator and XQ method pointers from the
application instance
 IXMLValidator validator =
objXmlApp.getXMLValidatorInstance();
 IXQuery xQuery = objXmlApp.getXQueryInstance();

 // remove comments on line below to see error being caught*/
 validator.setInputXMLFileName(inFilename);
 if (validator.isWellFormed())
 {
 // if the file is well-formed copy it using XQuery
 xQuery.setInputXMLFileName(inFilename);
 xQuery.setXQueryFileName(xqFilename);

 // test return value
 String resultString =
xQuery.executeAndGetResultAsString();
 if (resultString == null)
 System.out.println("XQuery error: " +
xQuery.getLastErrorMessage());
 else
 System.out.println("Transform contents: " +
resultString);
 }
 else
 System.out.println("Not wellformed error: " +
validator.getLastErrorMessage());

 // release instance pointer
 objXmlApp.releaseInstance();
 }
 catch (Exception e)
 {
 System.out.println("Error: " + e);
 }
 }

Examples
For more examples, see the example files in the AltovaXMLExamples folder of the AltovaXML
application folder.

58 Usage Java Interface

© 2012 Altova GmbHAltovaXML 2013

Interfaces

Given below is a summary of the interfaces of com.altova.engines. Detailed descriptions
are given in the respective sections.

· IAltovaXMLEngine
Basic interface for XMLValidator, and XSLT 1.0, XSLT 2.0, and XQuery 1.0 engines.

· IAltovaXMLFactory
Interface for AltovaXML COM object wrapper.

· IExecutable
Executable interface for engines.

· IReleasable
Interface for Release functionality.

· IXMLValidator
Interface for XMLValidator.

· IXQuery
Interface for the XQuery 1.0 engine.

· IXSLT
Interface for the XSLT engines.

IAltovaXMLEngine

Basic interface for XMLValidator, XSLT 1.0, XSLT 2.0 and XQuery engines. Public interface

that extends IReleasable.

Superinterface: IReleasable
Subinterface: XMLValidator, IXQuery, IXSLT
Implementing classes: XMLValidator, XQuery, XSLT1, XSLT2

Methods
The following methods are defined.

setInputXMLFileName
public void setInputXMLFileName(java.lang.String filename)

Sets the file name for the input XML data. Please note that you have to use absolute URLs.
Parameters:
filename: an absolute URL giving the base location of the XML data.

setInputXMLFromText
public void setInputXMLFromText(java.lang.String text)
Sets the text value for the input XML data. For example: setInputXMLFromText("<doc>

<a>text </doc>")
Parameters:
text: a string containing XML data.

getLastErrorMessage
public java.lang.String getLastErrorMessage()

Gets the last error message from the engine.
Returns:
a string containing the last error message.

© 2012 Altova GmbH

Java Interface 59Usage

AltovaXML 2013

IAltovaXMLFactory

Interface for AltovaXML COM object wrapper. Provides access to the interfaces of
XMLValidator, XSLT 1.0, XSLT 2.0 and Xquery 1.0 engines. Public interface that extends

IReleasable.

Superinterface: IReleasable
Implementing classes: AltovaXMLFactory

Methods
The following methods are defined.

getXQueryInstance
public IXQuery getXQueryInstance()
Creates a new instance of XQuery class for the current XQuery engine instance. The object's
connection to the engine must be released after use. To do this, use the function

releaseInstance() declared in the IReleasable interface.
Returns:
the IXQuery interface of the newly created class.

getXSLT1Instance
public IXSLT getXSLT1Instance()
Creates a new instance of XSLT1 class for the current XSLT 1.0 engine instance. The object's
connection to the engine must be released after use. To do this, use the function

releaseInstance() declared in the IReleasable interface.
Returns:
the IXSLT interface of the newly created class.

getXSLT2Instance
public IXSLT getXSLT2Instance()
Creates a new instance of XSLT2 class for the current XSLT 2.0 engine instance. The object's
connection to the engine must be released after use. To do this, use the function

releaseInstance() declared in the IReleasable interface.
Returns:
the IXSLT interface of the newly created class.

getXMLValidatorInstance
public IXMLValidator getXMLValidatorInstance()
Creates a new instance of XMLValidator class for the current XML Validator instance. The

object's connection to the engine must be released after use. To do this, use the function

releaseInstance() declared in the IReleasable interface.
Returns:
the IXMLValidator interface of the newly created class.

The following methods enable the addition of catalogs used for document lookup. After catalogs
are added they are used for lookup till the COM server terminates. Added catalogs cannot be
removed.

60 Usage Java Interface

© 2012 Altova GmbHAltovaXML 2013

app.AddXMLCatalogDefault()

Adds Altova's default RootCatalog.xml to the catalogs

app.AddXMLCatalogFromFile(string catalogfilename)

Adds the catalog identified by catalogfilename to the catalogs

app.AddXMLCatalogFromText(string catalogtext)

Adds the catalog with content catalogtext to the catalogs

IExecutable

Executable interface for engines. Public interface.

Subinterface: IXQuery, IXSLT
Implementing classes: XQuery, XSLT1, XSLT2

Methods
The following methods are defined.

execute
public boolean execute(java.lang.String outfilename)
Executes and saves the result to file. In case of an error, you can use the function

getLastErrorMessage() declared in IAltovaXMLEngine to get additional information.
Parameters:
outfilename: an absolute URL giving the location of the output file.
Returns:
true on success, false on error.

executeAndGetResultAsString
public java.lang.String executeAndGetResultAsString()

Executes and returns the result as string. In case of an error, you can use the function

getLastErrorMessage() declared in IAltovaXMLEngine to get additional information.
Returns:
string containing the serialized result. On error, will return the empty string.

enableJavaExtensions
public void enableJavaExtensions(boolean bEnable)
Enables/disables .NET extension functions.

enableDotNetExtensions
public void enableDotNetExtensions(boolean bEnable)
Enables/disables Java extension functions.

IReleasable

Public interface for Release functionality. When an object implementing this interface is not
used any more, then the releaseInstance() function must be called in order to release
connection to the COM server. The COM server will shut down automatically when all
connections to it are released.

© 2012 Altova GmbH

Java Interface 61Usage

AltovaXML 2013

Subinterface: IXQuery, IXSLT
Implementing classes: XQuery, XSLT1, XSLT2

Methods
The following methods are defined.

releaseInstance
public void releaseInstance()

Releases the object's connection to the COM server.

IXMLValidator

Interface for the XML Validator. Public interface that extends IAltovaXMLEngine.

Superinterface: IAltovaXMLEngine, IReleasable
Implementing classes: XMLValidator

Methods
The following methods are defined.

isValid
public boolean isValid()
Validates the input XML data against the DTD/Schema specified in it.
Returns:
true on success, false on failure. In case of failure, you can use the function
getLastErrorMessage() declared in IAltovaXMLEngine to get additional information.

isWellFormed
public boolean isWellFormed()
Checks the input XML data for well-formedness.
Returns:
true on success, false on failure. In case of failure, you can use the function
getLastErrorMessage() declared in IAltovaXMLEngine to get additional information.

isValidWithExternalSchemaOrDTD
public boolean isValidWithExternalSchemaOrDTD()
Validates the input XML data against the external DTD/Schema which can be specified with the
functions setDTDFileName(), setDTDFromText(), setSchemaFileName(),
setSchemaFromText().
Returns:
true on success, false on failure. In case of failure, you can use the function
getLastErrorMessage() declared in IAltovaXMLEngine to get additional information.

setSchemaFileName
public void setSchemaFileName(java.lang.String filename)
Sets file name for external Schema.
Parameters:
filename: an absolute URL giving the base location of the Schema

62 Usage Java Interface

© 2012 Altova GmbHAltovaXML 2013

setDTDFileName
public void setDTDFileName(java.lang.String filename)
Sets file name for external DTD.
Parameters:
filename: an absolute URL giving the base location of the DTD.

setSchemaFromText
public void setSchemaFromText(java.lang.String text)
Sets text value for external Schema.
Parameters:
text: string containing Schema as text.

setDTDFromText
public void setDTDFromText(java.lang.String text)
Sets text value for external DTD.
Parameters:
text: string containing DTD as text.

TreatXBRLInconsistenciesAsErrors
public void TreatXBRLInconsistenciesAsErrors(boolean bEnable)
If set to True, returns XBRL semantic inconsistencies as errors. Default is False.
Parameters:
bEnable: boolean

IXQuery

Interface for the XQuery engine. Public interface that extends IAltovaXMLEngine and

IExecutable.

Superinterface: IAltovaXMLEngine, IExecutable, IReleasable
Implementing classes: XQuery

Methods
The following methods are defined.

setXQueryFileName
public void setXQueryFileName(java.lang.String filename)
Sets the file name of the XQuery document.
Parameters:
filename: an absolute URL giving the base location of the XQuery file.

setXQueryStatement
public void setXQueryStatement(java.lang.String text)
Sets the text value of the XQuery statement.
Parameters:
text: a string containing the XQuery statement.

© 2012 Altova GmbH

Java Interface 63Usage

AltovaXML 2013

setOutputEncoding
public void setOutputEncoding(java.lang.String encoding)
Sets the encoding of the result document.
Parameters:
encoding: a string containing the name of the encoding name (for example: UTF-8, UTF-16,
ASCII, 8859-1, 1252).

getOutputEncoding
public java.lang.String getOutputEncoding()
Retrieves the encoding specified for the result document.
Returns:
a string containing an encoding name.

setOutputIndent
public void setOutputIndent(boolean indent)
Enables/disables the indentation option for the result document.
Parameters:
indent: boolean value to enable/disable output indentation.

getOutputIndent
public boolean getOutputIndent()
Retrieves the output indent option specified for the result document.
Returns:
boolean value indicating whether output is indented (true) or not (false).

setOutputMethod
public void setOutputMethod(java.lang.String method)
Sets the serialization method for the result document.
Parameters:
method: a string containing the serialization method. (Valid values are: xml, xhtml, html,
text).

getOutputMethod
public java.lang.String getOutputMethod()
Retrieves the serialization method for the result document.
Returns:
a string containing the serialization method for the output document.

setOutputOmitXMLDeclaration
public void setOutputOmitXMLDeclaration(boolean decl)
Enables/disables the serialization option omitXMLDeclaration for the result document.
Parameters:
decl: new boolean value for the omit-xml-declaration parameter.

getOutputOmitXMLDeclaration
public boolean getOutputOmitXMLDeclaration()
Retrieve the value of omitXMLDeclaration option specified for the result document.
Returns:
boolean value indicating whether output document contains an XML declaration (true) or not (

64 Usage Java Interface

© 2012 Altova GmbHAltovaXML 2013

false).

addExternalVariable
public void addExternalVariable(java.lang.String name,
 java.lang.String val)
Add name and value for an external variable.
Parameters:
name: a string containing a valid QName as the variable name.
val: a string containing the value of the variable; the value will be used as a string.

addExternalVariableAsXPath
public void addExternalVariableAsXPath(java.lang.String name,
 java.lang.String val)
Add name and value for an external variable, with value being evaluated as an XPath 2.0
expression.
Parameters:
name: a string containing a valid QName as the variable name.
val: a string containing the value of the variable; the value will be evaluated as an XPath 2.0
expression.

clearExternalVariableList
public void clearExternalVariableList()
Clears the list of external variables.

IXSLT

Interface for the XSLT engines. Public interface that extends IAltovaXMLEngine and

IExecutable.

Superinterface: IAltovaXMLEngine, IExecutable, IReleasable
Implementing classes: XSLT1 and XSLT2

Note: The XSLT 2.0 Engine can be used in its backward compatibility mode to process an
XSLT 1.0 stylesheet. The output, however, could be different than that produced by the
XSLT 1.0 Engine processing the same XSLT 1.0 stylesheet.

Methods
The following methods are defined.

setXSLTFileName
public void setXSLTFileName(java.lang.String name)
Sets the file name for the XSLT data.
Parameters:
name: an absolute URL giving the base location of the XSLT data file.

setXSLTFromText
public void setXSLTFromText(java.lang.String text)
Sets text value for the XSLT data.
Parameters:
text: a string containing serialized XSLT data.

© 2012 Altova GmbH

Java Interface 65Usage

AltovaXML 2013

addExternalParameter
public void addExternalParameter(java.lang.String name,
 java.lang.String val)
Adds the name and value of an external parameter.
Parameters:
name: a string containing a valid QName as the parameter name.
val: a string containing the value of the parameter; the value will be evaluated as an XPath
expression.

clearExternalParameterList
public void clearExternalParameterList()
Clears the list of external parameters.

setXSLTStackSize
public void setXSLTStackSize(long nVal)
The stack size is the maximum depth of executed instructions. If the stack size is exceeded
during a transformation, an error is reported.
Parameters:
nVal: numeric value for new stack size. Must be greater tha 100. The initial value 1000.

Classes

Given below is a summary of the classes of com.altova.engines. Detailed descriptions are
given in the respective sections.

· AltovaXMLFactory
Creates new AltovaXML COM server object instance via native call, and provides
access to AltovaXML engines.

· XMLValidator
Class holding XMLValidator.

· XQuery
Class holding the XQuery 1.0 Engine.

· XSLT1
Class holding the XSLT 1.0 Engine.

· XSLT2
Class holding the XSLT 2.0 Engine.

AltovaXMLFactory

public class AltovaXMLFactory
extends java.lang.Object
implements IAltovaXMLFactory

Iplemented interfaces: IAltovaXMLFactory, IReleasable

Description
Creates new AltovaXML COM server object instance via native call, and provides access to the
AltovaXML engines. The relationship between AltovaXMLFactory and the AltovaXML COM
object is one-to-one. This means that subsequent calls to the getENGINENAMEInstance()
function will return interfaces for the same engine instance.

66 Usage Java Interface

© 2012 Altova GmbHAltovaXML 2013

Methods
The following methods are defined.

getInstance
public static IAltovaXMLFactory getInstance()
Creates a new AltovaXMLFactory object and connects it to a new AltovaXML COM server
object.
Returns:
the interface IAltovaXMLFactory for the newly created AltovaXMLFactory object or null if
the creation of the COM object failed. In the latter case you should make sure that
AltovaXML.exe is properly registered as a COM server object.

releaseInstance
public void releaseInstance()
Releases the object's connection to the COM server.
Specified by:
releaseInstance in interface IReleasable.

getXQueryInstance
public IXQuery getXQueryInstance()
Creates a new instance of XQuery class for the current XQuery engine instance. The object's
connection to the engine must be released after use. To do this, use the function
releaseInstance() declared in the IReleasable interface.
Specified by:
getXQueryInstance in interface IAltovaXMLFactory.
Returns:
the IXQuery interface of the newly created class.

getXSLT1Instance
public IXSLT getXSLT1Instance()
Creates a new instance of XSLT1 class for the current XSLT 1.0 engine instance. The object's
connection to the engine must be released after use. To do this, use the function
releaseInstance() declared in the IReleasable interface.
Specified by:
getXSLT1Instance in interface IAltovaXMLFactory.
Returns:
the IXSLT interface of the newly created class.

getXSLT2Instance
public IXSLT getXSLT2Instance()
Creates a new instance of XSLT2 class for the current XSLT 2.0 engine instance. The object's
connection to the engine must be released after use. To do this, use the function
releaseInstance() declared in the IReleasable interface.
Specified by:
getXSLT2Instance in interface IAltovaXMLFactory.
Returns:
the IXSLT interface of the newly created class.

© 2012 Altova GmbH

Java Interface 67Usage

AltovaXML 2013

getXMLValidatorInstance
public IXMLValidator getXMLValidator()
Creates a new instance of XMLValidator class for the current XML Validator instance. The
object's connection to the engine must be released after use. To do this, use the function
releaseInstance() declared in the IReleasable interface.
Specified by:
getXMLValidatorInstance in interface IAltovaXMLFactory.
Returns:
the IXMLValidator interface of the newly created class.

The following methods enable the addition of catalogs used for document lookup. After catalogs
are added they are used for lookup till the COM server terminates. Added catalogs cannot be
removed.

app.AddXMLCatalogDefault()

Adds Altova's default RootCatalog.xml to the catalogs

app.AddXMLCatalogFromFile(string catalogfilename)

Adds the catalog identified by catalogfilename to the catalogs

app.AddXMLCatalogFromText(string catalogtext)

Adds the catalog with content catalogtext to the catalogs

XMLValidator

public class XMLValidator
extends java.lang.Object
implements IXMLValidator

Iplemented interfaces: IAltovaXMLEngine, IReleasable, IXMLValidator

Description
Class holding XMLValidator. No direct construction/access possible. Get the IXMLValidator
interface to it by calling the function getXMLValidatorInstance() on an instance of
IAltovaXMLFactory.

Constructors
The following constructor is defined.

XMLValidator
protected XMLValidator(long nValidatorPtr)

Methods
The following methods are defined.

releaseInstance
public void releaseInstance()
Releases the object's connection to the COM server.
Specified by:
releaseInstance in interface IReleasable.

68 Usage Java Interface

© 2012 Altova GmbHAltovaXML 2013

setInputXMLFileName
public void setInputXMLFileName(java.lang.String str)
Sets the file name for the input XML data. Note that you must use absolute URLs.
Specified by:
setInputXMLFileName in interface IAltovaXMLEngine.
Parameters:
str: an absolute URL giving the base location of the XML data.

setInputXMLFromText
public void setInputXMLFromText(java.lang.String str)
Sets the text value for the input XML data. Example: setInputXMLFromText("<doc>
<a>text </doc>")
Specified by:
setInputXMLFromText in interface IAltovaXMLEngine.
Parameters:
str: a string containing XML data.

getLastErrorMessage
public java.lang.String getLastErrorMessage()
Gets the last error message from the engine.
Specified by:
getLastErrorMessage in interface IAltovaXMLEngine.
Returns:
a string containing the last error message.

isValid
public boolean isValid()
Validates the input XML data against the DTD/Schema specified in it.
Specified by:
isValid in interface IXMLValidator.
Returns:
true on success, false on failure. In case of failure, you can use the function
getLastErrorMessage declared in IAltovaXMLEngine to get additional information.

isWellFormed
public boolean isWellFormed()
Checks the input XML data for well-formedness.
Specified by:
isWellFormed in interface IXMLValidator.
Returns:
true on success, false on failure. In case of failure, you can use the function
getLastErrorMessage declared in IAltovaXMLEngine to get additional information.

isValidWithExternalSchemaOrDTD
public boolean isValidWithExternalSchemaOrDTD()
Validates the input XML data against the external DTD/Schema, which can be specified with the
functions setDTDFileName(), setDTDFromText(), setSchemaFileName(), and

© 2012 Altova GmbH

Java Interface 69Usage

AltovaXML 2013

setSchemaFromText(). For a description of these functions, see below.
Specified by:
isValidWithExternalSchemaOrDTD in interface IXMLValidator.
Returns:
true on success, false on failure. In case of failure, you can use the function
getLastErrorMessage declared in IAltovaXMLEngine to get additional information.

setSchemaFileName
public void setSchemaFileName(java.lang.String str)
Set file name of external Schema.
Specified by:
setSchemaFileName in interface IXMLValidator.
Parameters:
str: an absolute URL giving the base location of the Schema.

setDTDFileName
public void setDTDFileName(java.lang.String str)
Set file name of external DTD.
Specified by:
setDTDFileName in interface IXMLValidator.
Parameters:
str: an absolute URL giving the base location of the DTD.

setSchemaFromText
public void setSchemaFromText(java.lang.String str)
Sets text value for external Schema.
Specified by:
setSchemaFromText in interface IXMLValidator.
Parameters:
str: a string containing Schema as text.

setDTDFromText
public void setDTDFromText(java.lang.String str)
Sets text value for external DTD.
Specified by:
setDTDFromText in interface IXMLValidator.
Parameters:
str: a string containing DTD as text.

XQuery

public class XQuery
extends java.lang.Object
implements IXQuery

Iplemented interfaces: IAltovaXMLEngine, IExecutable, IReleasable, IXQuery

Description
Class holding the XQuery 1.0 engine. No direct construction/access possible. Get the IXQuery

70 Usage Java Interface

© 2012 Altova GmbHAltovaXML 2013

interface to it by calling the function getXQueryInstance() on an instance of

IAltovaXMLFactory.

Constructors
The following constructor is defined.

XQuery
protected XQuery(long nXQueryPtr)

Methods
The following methods are defined.

releaseInstance
public void releaseInstance()
Releases the object's connection to the COM server.
Specified by:
releaseInstance in interface IReleasable.

execute
public boolean execute(java.lang.String sOutFile)
Executes and saves the result to file. In case of an error, you can use the function
getLastErrorMessage() declared in IAltovaXMLEngine to get additional information.
Specified by:
execute in interface IExecutable.
Parameters:
sOutFile: an absolute URL giving the location of the output file.
Returns:
true on success, false on error.

executeAndGetResultAsString
public java.lang.String executeAndGetResultAsString()
Executes and returns the result as a UTF-16 text string. In case of an error, you can use the
function getLastErrorMessage() declared in IAltovaXMLEngine to get additional
information.
Specified by:
executeAndGetResultAsString in interface IExecutable.
Returns:
string containing the serialized result. On error, will return the empty string.

setInputXMLFileName
public void setInputXMLFileName(java.lang.String str)
Sets the file name for the input XML data. Note that you must use absolute URLs.
Specified by:
setInputXMLFileName in interface IAltovaXMLEngine.
Parameters:
str: an absolute URL giving the base location of the XML data.

setInputXMLFromText

© 2012 Altova GmbH

Java Interface 71Usage

AltovaXML 2013

public void setInputXMLFromText(java.lang.String str)
Sets the text value for the input XML data. Example: setInputXMLFromText("<doc>
<a>text </doc>").
Specified by:
setInputXMLFromText in interface IAltovaXMLEngine.
Parameters:
str: a string containing XML data.

getLastErrorMessage
public java.lang.String getLastErrorMessage()
Gets the last error message from the engine.
Specified by:
getLastErrorMessage in interface IAltovaXMLEngine.
Returns:
a string containing the last error message.

setXQueryFileName
public void setXQueryFileName(java.lang.String str)
Sets file name of the XQuery document.
Specified by:
setXQueryFileName in interface IXQuery.
Parameters:
str: an absolute URL giving the base location of the XQuery file.

setXQueryStatement
public void setXQueryStatement(java.lang.String str)
Sets the text value for the XQuery statement.
Specified by:
setXQueryStatement in interface IXQuery
Parameters:
str: a string containing the XQuery statement.

setOutputEncoding
public void setOutputEncoding(java.lang.String str)
Sets the encoding for the result document.
Specified by:
setOutputEncoding in interface IXQuery.
Parameters:
str: a string containing an encoding name (for example: UTF-8, UTF-16, ASCII, 8859-1,
1252)

getOutputEncoding
public java.lang.String getOutputEncoding()
Retrieves the encoding specified for the result document.
Specified by:
getOutputEncoding in interface IXQuery.
Returns:
a string containing the encoding name.

72 Usage Java Interface

© 2012 Altova GmbHAltovaXML 2013

setOutputIndent
public void setOutputIndent(boolean bVal)
Enables/disables the indentation option for the result document.
Specified by:
setOutputIndent in interface IXQuery.
Parameters:
bVal: boolean value to enable/disable indentation.

getOutputIndent
public boolean getOutputIndent()
Retrieves the output indent option specified for the result document.
Specified by:
getOutputIndent in interface IXQuery.
Returns:
the current value of the indent serialization parameter.

setOutputMethod
public void setOutputMethod(java.lang.String str)
Sets the serialization method for the result document.
Specified by:
setOutputMethod in interface IXQuery.
Parameters:
str: a string containing the serialization method. Valid values: xml, xhtml, html, text.

getOutputMethod
public java.lang.String getOutputMethod()
Retrieves the serialization method for the result document.
Specified by:
getOutputMethod in interface IXQuery.
Returns:
the current serialization method.

setOutputOmitXMLDeclaration
public void setOutputOmitXMLDeclaration(boolean bVal)
Enables/disables the serialization option omitXMLDeclaration for the result document.
Specified by:
setOutputOmitXMLDeclaration in interface IXQuery.
Parameters:
bVal: a new boolean value for the omit-xml-declaration parameter.

getOutputOmitXMLDeclaration
public boolean getOutputOmitXMLDeclaration()
Retrieves the value of omitXMLDeclaration option specified for the result document.
Specified by:
getOutputOmitXMLDeclaration in interface IXQuery.
Returns:
boolean value of the omit-xml-declaration parameter.

© 2012 Altova GmbH

Java Interface 73Usage

AltovaXML 2013

addExternalVariable
public void addExternalVariable(java.lang.String strName,
 java.lang.String strVal)
Adds the name and value of an external variable.
Specified by:
addExternalVariable in interface IXQuery.
Parameters:
strName: a string containing a valid QName as the variable name.
strVal: a string containing the value of the variable; this value will be used as a string.

addExternalVariableAsXPath
public void addExternalVariableAsXPath(java.lang.String strName,
 java.lang.String strVal)
Add name and value for an external variable, with value being evaluated as an XPath 2.0
expression.
Specified by:
addExternalVariableAsXPath in interface IXQuery.
Parameters:
strName: a string containing a valid QName as the variable name.
strVal: a string containing the value of the variable; the value will be evaluated as an XPath
2.0 expression.

clearExternalVariableList
public void clearExternalVariableList()
Clear the list of external variables.
Specified by:
clearExternalVariableList in interface IXQuery.

enableJavaExtensions
public void enableJavaExtensions(boolean bEnable)
Enable/disable Java extension functions.
Specified by:
enableJavaExtensions in interface IExecutable.

enableDotNetExtensions
public void enableDotNetExtensions(boolean bEnable)
Enable/disable .NET extension functions.
Specified by:
enableJavaExtensions in interface IExecutable.

XSLT1

public class XSLT1
extends java.lang.Object
implements IXSLT

Iplemented interfaces: IAltovaXMLEngine, IExecutable, IReleasable, IXSLT

Description

74 Usage Java Interface

© 2012 Altova GmbHAltovaXML 2013

Class holding the XSLT 1.0 engine. No direct construction/access possible. Get the IXSLT
interface to it by calling the function getXSLT1Instance() on an instance of

IAltovaXMLFactory.

Constructors
The following constructor is defined.

XSLT1
protected XSLT1(long nXSLT1Ptr)

Methods
The following methods are defined.

releaseInstance
public void releaseInstance()
Releases the object's connection to the COM server.
Specified by:
releaseInstance in interface IReleasable.

execute
public boolean execute(java.lang.String sOutFile)
Executes and saves the result to file. In case of an error, you can use the function
getLastErrorMessage() declared in IAltovaXMLEngine to get additional information.
Specified by:
execute in interface IExecutable.
Parameters:
sOutFile: an absolute URL giving the location of the output file.
Returns:
true on success, false on error.

executeAndGetResultAsString
public java.lang.String executeAndGetResultAsString()
Executes and returns the result as a UTF-16 text string. In case of an error, you can use the
function getLastErrorMessage() declared in IAltovaXMLEngine to get additional
information.
Specified by:
executeAndGetResultAsString in interface IExecutable.
Returns:
string containing the serialized result. On error, will return the empty string.

setInputXMLFileName
public void setInputXMLFileName(java.lang.String str)
Sets the file name for the input XML data. Note that you have to use absolute URLs.
Specified by:
setInputXMLFileName in interface IAltovaXMLEngine.
Parameters:
str: an absolute URL giving the base location of the XML data.

setInputXMLFromText

© 2012 Altova GmbH

Java Interface 75Usage

AltovaXML 2013

public void setInputXMLFromText(java.lang.String str)
Sets the text value for the input XML data. Example: setInputXMLFromText("<doc>
<a>text </doc>").
Specified by:
setInputXMLFromText in interface IAltovaXMLEngine.
Parameters:
str: a string containing XML data.

getLastErrorMessage
public java.lang.String getLastErrorMessage()
Gets the last error message from the engine.
Specified by:
getLastErrorMessage in interface IAltovaXMLEngine.
Returns:
a string containing the last error message.

setXSLTFileName
public void setXSLTFileName(java.lang.String str)
Sets the file name for the XSLT data.
Specified by:
setXSLTFileName in interface IXSLT.
Parameters:
str: an absolute URL giving the base location of the XSLT data

setXSLTFromText
public void setXSLTFromText(java.lang.String str)
Sets the text value for the XSLT data.
Specified by:
setXSLTFromText in interface IXSLT.
Parameters:
str: a string containing serialized XSLT data.

addExternalParameter
public void addExternalParameter(java.lang.String strName,
 java.lang.String strVal)
Adds the name and value of an external parameter.
Specified by:
addExternalParameter in interface IXSLT.
Parameters:
strName: a string containing a valid QName as the parameter name.
strVal: a string containing the value of the parameter; this value will be evaluated as an XPath
expression.

clearExternalParameterList
public void clearExternalParameterList()
Clears the list of external parameters.
Specified by:
clearExternalParameterList in interface IXSLT.

76 Usage Java Interface

© 2012 Altova GmbHAltovaXML 2013

setXSLTStackSize
public void setXSLTStackSize(long nVal)
The stack size is the maximum depth of executed instructions. If the stack size is exceeded
during a transformation, an error is reported.
Specified by:
setXSLTStackSize in interface IXSLT.
Parameters:
nVal: numeric value for new stack size. Must be greater tha 100. The initial value 1000.

enableJavaExtensions
public void enableJavaExtensions(boolean bEnable)
Enable/disable Java extension functions.
Specified by:
enableJavaExtensions in interface IExecutable.

enableDotNetExtensions
public void enableDotNetExtensions(boolean bEnable)
Enable/disable .NET extension functions.
Specified by:
enableJavaExtensions in interface IExecutable.

XSLT2

public class XSLT2
extends java.lang.Object
implements IXSLT

Iplemented interfaces: IAltovaXMLEngine, IExecutable, IReleasable, IXSLT

Description
Class holding the XSLT 2.0 engine. No direct construction/access possible. Get the IXSLT
interface to it by calling the function getXSLT2Instance() on an instance of

IAltovaXMLFactory. Note that the XSLT 2.0 Engine can be used in its backward
compatibility mode to process an XSLT 1.0 stylesheet. The output, however, could be different
than that produced by the XSLT 1.0 Engine processing the same XSLT 1.0 stylesheet.

Constructors
The following constructor is defined.

XSLT2
protected XSLT2(long nXSLT2Ptr)

Methods
The following methods are defined.

dispose
releaseInstance
public void releaseInstance()
Releases the object's connection to the COM server.
Specified by:

© 2012 Altova GmbH

Java Interface 77Usage

AltovaXML 2013

releaseInstance in interface IReleasable.

execute
public boolean execute(java.lang.String sOutFile)
Executes and saves the result to file. In case of an error, you can use the function
getLastErrorMessage() declared in IAltovaXMLEngine to get additional information.
Specified by:
execute in interface IExecutable.
Parameters:
sOutFile: an absolute URL giving the location of the output file.
Returns:
true on success, false on error.

executeAndGetResultAsString
public java.lang.String executeAndGetResultAsString()
Executes and returns the result as a UTF-16 text string. In case of an error, you can use the
function getLastErrorMessage() declared in IAltovaXMLEngine to get additional
information.
Specified by:
executeAndGetResultAsString in interface IExecutable.
Returns:
string containing the serialized result. On error, will return the empty string.

setInputXMLFileName
public void setInputXMLFileName(java.lang.String str)
Sets the file name for the input XML data. Note that you have to use absolute URLs.
Specified by:
setInputXMLFileName in interface IAltovaXMLEngine.
Parameters:
str: an absolute URL giving the base location of the XML data.

setInputXMLFromText
public void setInputXMLFromText(java.lang.String str)
Sets the text value for the input XML data. Example: setInputXMLFromText("<doc>
<a>text </doc>").
Specified by:
setInputXMLFromText in interface IAltovaXMLEngine.
Parameters:
str: a string containing XML data.

getLastErrorMessage
public java.lang.String getLastErrorMessage()
Gets the last error message from the engine.
Specified by:
getLastErrorMessage in interface IAltovaXMLEngine.
Returns:
a string containing the last error message.

setXSLTFileName

78 Usage Java Interface

© 2012 Altova GmbHAltovaXML 2013

public void setXSLTFileName(java.lang.String str)
Sets the file name for the XSLT data.
Specified by:
setXSLTFileName in interface IXSLT.
Parameters:
str: an absolute URL giving the base location of the XSLT data

setXSLTFromText
public void setXSLTFromText(java.lang.String str)
Sets the text value for the XSLT data.
Specified by:
setXSLTFromText in interface IXSLT.
Parameters:
str: a string containing serialized XSLT data.

addExternalParameter
public void addExternalParameter(java.lang.String strName,
 java.lang.String strVal)
Adds the name and value of an external parameter.
Specified by:
addExternalParameter in interface IXSLT.
Parameters:
strName: a string containing a valid QName as the parameter name.
strVal: a string containing the value of the parameter; this value will be evaluated as an XPath
expression.

clearExternalParameterList
public void clearExternalParameterList()
Clears the list of external parameters.
Specified by:
clearExternalParameterList in interface IXSLT.

setInitialTemplateName
public void setInitialTemplateName(java.lang.String str)
Sets the initial template name for the transformation.

setInitialTemplateMode
public void setInitialTemplateMode(java.lang.String str)
Sets the initial template mode for the transformation.

setXSLTStackSize
public void setXSLTStackSize(long nVal)
The stack size is the maximum depth of executed instructions. If the stack size is exceeded
during a transformation, an error is reported.
Specified by:
setXSLTStackSize in interface IXSLT.
Parameters:
nVal: numeric value for new stack size. Must be greater than 100. The initial value 1000.

© 2012 Altova GmbH

Java Interface 79Usage

AltovaXML 2013

enableJavaExtensions
public void enableJavaExtensions(boolean bEnable)
Enable/disable Java extension functions.
Specified by:
enableJavaExtensions in interface IExecutable.

enableDotNetExtensions
public void enableDotNetExtensions(boolean bEnable)
Enable/disable .NET extension functions.
Specified by:
enableJavaExtensions in interface IExecutable.

80 Usage .NET Interface

© 2012 Altova GmbHAltovaXML 2013

2.4 .NET Interface

The .NET interface is built as a wrapper around the AltovaXML COM interface. It is provided as
a primary interop assembly signed by Altova and using the namespace Altova.AltovaXML. In
order to use AltovaXML in your .NET project, you need to: (i) add a reference to the AltovaXML
DLL (which is called Altova.AltovaXML.dll) in your project, and (ii) have AltovaXML
registered as a COM server object. Once these requirements (which are described below) have
been met, you can use the AltovaXML functionality in your project.

Adding the AltovaXML DLL as a reference to the project
The AltovaXML package contains a signed DLL file, named Altova.AltovaXML.dll, which will
automatically be added to the global assembly cache (and the .NET reference library) when
AltovaXML is installed using the AltovaXML installer. (It will be located typically in the
C:\WINDOWS\assembly folder.) To add this DLL as a reference in a .NET project, do the
following:

1. With the .NET project open, click Project | Add Reference. The Add Reference dialog
(screenshot below) pops up, displaying a list of installed .NET components. (Note: If the
AltovaXML component is not in the .NET tab list, it can be selected from the COM tab.)

2. Select Altova.AltovaXML from the component list, double-click it or press the Select
button, then click OK.

Registering AltovaXML as a COM server object
COM registration is done automatically by the AltovaXML Installer. If you change the location of
the file AltovaXML_COM.exe after installation, you should register AltovaXML as a COM server
object by running the command AltovaXML_COM.exe /regserver. (Note that the correct path
to the AltovaXML_COM.exe must be entered. See Registering AltovaXML as a COM Server

© 2012 Altova GmbH

.NET Interface 81Usage

AltovaXML 2013

Object for more details.)

Once the Altova.AltovaXML.dll is available to the .NET interface and AltovaXML has been
registered as a COM server object, AltovaXML functionality will be available in your .NET
project.

Note: If you receive an access error, check that permissions are correctly set. Go to
Component Services and give permissions to the same account that runs the
application pool containing AltovaXML.

82 Usage .NET Interface

© 2012 Altova GmbHAltovaXML 2013

2.4.1 General Usage

The classes and methods you can use are as described in the COM Interface section, but are in
the namespace Altova.AltovaXML. They are listed in the following sections. The starting
point is the Altova.AltovaXML.Application object. When you create this object, a
connection to a new AltovaXML COM server object is created. The object model is shown in the
diagram below.

Methods
The following methods, which are available on the application object, enable the addition of
catalogs used for document lookup. After catalogs are added they are used for lookup till the
COM server terminates. Added catalogs cannot be removed.

app.AddXMLCatalogDefault()

Adds Altova's default RootCatalog.xml to the catalogs

app.AddXMLCatalogFromFile(string catalogfilename)

Adds the catalog identified by catalogfilename to the catalogs

app.AddXMLCatalogFromText(string catalogtext)

Adds the catalog with content catalogtext to the catalogs

Example
How to use the AltovaXML classes and methods in the .NET framework is shown in the C#
code for a button event listed below. A fuller example is given at the end of the .NET Interface
section.

private void button1_Click(object sender, System.EventArgs e)
{

Altova.AltovaXML.ApplicationClass appXML = new
Altova.AltovaXML.ApplicationClass();

Altova.AltovaXML.XMLValidator XMLValidator = appXML.XMLValidator;
XMLValidator.InputXMLFromText = "<test>Is this data well-formed?

<a></test>";

© 2012 Altova GmbH

.NET Interface 83Usage

AltovaXML 2013

if (XMLValidator.IsWellFormed())
{
MessageBox.Show(this, "The input data is well-formed") ;
}
else
{
MessageBox.Show(this, "The input data is not well-formed") ;
}

}

The code listing above does the following:

1. The Altova.AltovaXML.ApplicationClass object is created, which creates a
connection to a new AltovaXML COM server object.

2. The XML Validator functionality is called using Altova.AltovaXML.XMLValidator.
3. The InputXMLFromText property of Altova.AltovaXML.XMLValidator submits the

input XML data.
4. The IsWellFormed method of Altova.AltovaXML.XMLValidator checks whether

the submitted XML data is well-formed, returning TRUE or FALSE.

For more detailed examples, see the example files in the AltovaXMLExamples folder in the
application folder.

84 Usage .NET Interface

© 2012 Altova GmbHAltovaXML 2013

2.4.2 Altova.AltovaXML.XMLValidator

Description
The Altova.AltovaXML.XMLValidator object provides methods to test:

· The well-formedness of an XML document.
· The validity of an XML document against a DTD or XML Schema referenced from

within the XML document.
· The validity of an XML document against a DTD or XML Schema supplied externally via

the code.
· The validity of an XBRL document against an XBRL taxonomy (a .xsd file).

All these methods return Boolean TRUE or FALSE.

Note: Where string inputs are to be interpreted as URLs, absolute paths should be used. If a
relative path is used, a mechanism to resolve the relative path should be defined in the calling
module.

Methods
The following methods are available:

IsWellFormed() as Boolean
IsWellFormed() checks the well-formedness of the XML document. Returns TRUE if the XML
document is well-formed, FALSE if it is not well-formed.

IsValid() as Boolean
IsValid validates the XML document against the DTD or XML Schema referenced in the XML
document. Returns TRUE if the XML document is valid, FALSE if invalid. To validate against a
DTD or XML Schema not referenced in the XML document, use the method
IsValidWithExternalSchemaOrDTD.

IsValidWithExternalSchemaOrDTD() as Boolean
IsValidWithExternalSchemaOrDTD validates the XML document against the DTD or XML
Schema supplied by any one of the following properties: SchemaFileName, DTDFileName,
SchemaFromText, or DTDFromText. If more than one of these properties has values set for it,
then the IsValidWithExternalSchemaOrDTD method uses the property that has been set last.
Returns TRUE if the XML document is valid, FALSE if invalid. To validate against a DTD or XML
Schema referenced in the XML document, use the method IsValid.

Note: Validation and well-formedness checks must always occur after assigning the XML
and/or DTD or XML Schema document to the respective properties.

Properties
The following properties are defined:

InputXMLFileName
A string input that is read as a URL to locate the XML file to be validated.

SchemaFileName
A string input that is read as a URL to locate the XML Schema file against which the XML
document is to be validated.

DTDFileName
A string input that is read as a URL to locate the DTD file against which the XML document is to
be validated.

© 2012 Altova GmbH

.NET Interface 85Usage

AltovaXML 2013

InputXMLFromText
A string input that constructs an XML document.

SchemaFromText
A string input that constructs an XML Schema document.

DTDFromText
A string input that constructs a DTD document.

LastErrorMessage
Returns the last error message.

TreatXBRLInconsistenciesAsErrors
If set to True, returns XBRL semantic inconsistencies as errors. Default is False.

Example
The following C# code snippet shows how to validate an XML document. A fuller example is
given at the end of the .NET Interface section.

To create these code snippet in a C# project, do the following:

1. In Microsoft Visual Studio, add a new project using File | New | Project.
2. Add a reference to the AltovaXML DLL by clicking Project | Add Reference. The Add

Reference dialog pops up, displaying a list of installed .NET components. Select the
AltovaXML component from the list to add it. (Note: If the AltovaXML component is not
in the .NET tab list, it can be selected from the COM tab.)

3. Enter the example code snippet below in the project form. The code snippet below
validates an XML file. The XML file used in this code snippet is located in the
AltovaXMLExamples folder of the AltovaXML application folder.

4. Compile the code and test it.

// Locate examples installed with AltovaXML
// REMARK: You might need to adapt this if you have a different major version
of the product (2011 in this example).
 String strExamplesFolder = Environment.GetEnvironmentVariable
("ProgramFiles") + "\\Altova\\AltovaXML2011\\AltovaXMLExamples\\";

// Create a new AltovaXML instance and access its engines
 Altova.AltovaXML.Application AltovaXML = new Altova.AltovaXML.Application
();

// Validate input file simple.xml - it must be well-formed but not necessarily
valid.
// The AltovaXML application will provide us with a validator object.
 Altova.AltovaXML.XMLValidator AltovaXMLValidator = AltovaXML.XMLValidator;
 AltovaXMLValidator.InputXMLFileName = strExamplesFolder + "simple.xml";
 Boolean bIsWellFormed = AltovaXMLValidator.IsWellFormed();
 Boolean bIsValid = AltovaXMLValidator.IsValid();

// Show result
 MessageBox.Show("File " + strExamplesFolder + "simple.xml" + " is " +
 (bIsWellFormed ? "well-formed" : "not Well-formed") +
 " and " + (bIsValid ? "valid" : "invalid") + ".");

86 Usage .NET Interface

© 2012 Altova GmbHAltovaXML 2013

2.4.3 Altova.AltovaXML.XSLT1

Description
The Altova.AltovaXML.XSLT1 object provides methods and properties to execute an XSLT
1.0 transformation using the Altova XSLT 1.0 Engine. Results can be saved to a file or returned
as a string. The object also enables XSLT parameters to be passed to the XSLT stylesheet.
The URLs of XML and XSLT files can be supplied as strings via the object's properties.
Alternatively, the XML and XSLT documents can be constructed within the code as text strings.

Note: Where string inputs are to be interpreted as URLs, absolute paths should be used. If a
relative path is used, a mechanism to resolve the relative path should be defined in the calling
module.

Methods
The following methods are available:

Execute(OutputFileName as String)
void execute(String outputFilename)
Execute executes an XSLT 1.0 transformation and saves the result to an output file, the name
and location of which is provided as an input string to the Execute method. For example:
Execute("C:\OutputDoc.xml").

ExecuteAndGetResultAsString() as String
ExecuteAndGetResultAsString executes an XSLT 1.0 transformation and returns the result
as a UTF-16 text string. See below for examples.

AddExternalParameter(ParamName as String, ParamValue as String)
Takes a parameter name and the value of this parameter as input arguments. Each external
parameter and its value is to be specified in a separate call to the method. If multiple calls
specify the same parameter name the value set by the latest will be used. Since parameter
values are XPath expressions, parameter values that are strings must be enclosed in single
quotes. In this example, two parameter values are submitted:

AddExternalParameter("Param1","'http://www.altova.com/'");
AddExternalParameter("Param2","concat('http://www.altova.com/',
MyFile/@url)");

ClearExternalParameterList()
No argument should be provided. The ClearExternalParameterList clears the external
parameters list created with AddExternalParameter methods.

Note: Transformation must always occur after assigning the XML and XSLT documents.

Properties
The following properties are defined:

InputXMLFileName
A string input that is read as a URL to locate the XML file to be transformed.

XSLFileName
A string input that is read as a URL to locate the XSLT file to be used for the transformation.

InputXMLFromText
A string input that constructs an XML document.

XSLFromText

© 2012 Altova GmbH

.NET Interface 87Usage

AltovaXML 2013

A string input that constructs an XSLT document.

XSLStackSize
The stack size is the maximum depth of executed instructions. The stack size can be changed
with the XSLStackSize property. The minimum allowed stack size is 100. The default stack size
is 1000. If the stack size is exceeded during a transformation, an error is reported.

LastErrorMessage
Returns the last error message.

JavaExtensionsEnabled
Enables Java extensions. You can specify whether Java extensions should be enabled or not
by submitting true or false (case-insensitive) as a Variant_Bool argument.

DotNetExtensionsEnabled
Enables .NET extensions. You can specify whether .NET extensions should be enabled or not
by submitting true or false (case-insensitive) as a Variant_Bool argument.

Examples
The following C# code snippets show how to:

· Validate an XML document and run an XSLT 1.0 transformation (transformation from
XML file to string)

· Transform using XSLT 1.0 (XML file to XML file)
· Transform using XSLT 1.0 (string to XML file)
· Transform using XSLT 1.0 (string to string)

A fuller example is given at the end of the .NET Interface section.

To create these code snippet in a C# project, do the following:

1. In Microsoft Visual Studio, add a new project using File | New | Project.
2. Add a reference to the AltovaXML DLL by clicking Project | Add Reference. The Add

Reference dialog pops up, displaying a list of installed .NET components. Select the
AltovaXML component from the list to add it. (Note: If the AltovaXML component is not
in the .NET tab list, it can be selected from the COM tab.)

3. Enter the example code snippet below in the project form. The code snippet below
validates an XML file and runs an XSLT 1.0 transformation on the XML file. The files
used in this code snippet are located in the AltovaXMLExamples folder of the
AltovaXML application folder.

4. Compile the code and test it.

Validation and XSLT 1.0 transformation (XML to String)

// Specify folder (AltovaXMLExamples folder)
// Check if filepath is correct for you
 String strExamplesFolder = Environment.GetEnvironmentVariable
("ProgramFiles") + "\\Altova\\AltovaXML2011\\AltovaXMLExamples\\";

// Create a new AltovaXML instance and access its engines
 Altova.AltovaXML.Application AltovaXML = new Altova.AltovaXML.Application
();

// Use Validator of AltovaXML to validate input file simple.xml
// File must be well-formed but not necessarily valid
 Altova.AltovaXML.XMLValidator AltovaXMLValidator = AltovaXML.XMLValidator;
 AltovaXMLValidator.InputXMLFileName = strExamplesFolder + "simple.xml";
 Boolean bIsWellFormed = AltovaXMLValidator.IsWellFormed();

88 Usage .NET Interface

© 2012 Altova GmbHAltovaXML 2013

 Boolean bIsValid = AltovaXMLValidator.IsValid();

// Show result
 MessageBox.Show("File " + strExamplesFolder + "simple.xml" + " is " +
 (bIsWellFormed ? "well-formed" : "not Well-formed") +
 " and " + (bIsValid ? "valid" : "invalid") + ".");

 if (bIsWellFormed)
 {
 // Use XSLT1 Engine of AltovaXML to transform simple.xml using
CopyInputXSLT1.xsl
 Altova.AltovaXML.IXSLT1 AltovaXMLXSLT1 = AltovaXML.XSLT1;
 AltovaXMLXSLT1.InputXMLFileName = strExamplesFolder + "simple.xml";
 AltovaXMLXSLT1.XSLFileName = strExamplesFolder + "CopyInputXSLT1.
xsl";
 String strResult = AltovaXMLXSLT1.ExecuteAndGetResultAsString();

 // Show result
 MessageBox.Show("XSLT 1.0 engine answered: " + strResult);
 }

XSLT 1.0 transformation (XML to XML)

// Specify folder (AltovaXMLExamples folder)
// Check if filepath is correct for you
 String strExamplesFolder = Environment.GetEnvironmentVariable
("ProgramFiles") + "\\Altova\\AltovaXML2011\\AltovaXMLExamples\\";

// Create a new AltovaXML instance and access its engines
 Altova.AltovaXML.Application AltovaXML = new Altova.AltovaXML.Application
();

// Use XSLT1 Engine of AltovaXML to transform simple.xml using CopyInputXSLT1.
xsl
 Altova.AltovaXML.IXSLT1 AltovaXMLXSLT1 = AltovaXML.XSLT1;
 AltovaXMLXSLT1.InputXMLFileName = strExamplesFolder + "simple.xml";
 AltovaXMLXSLT1.XSLFileName = strExamplesFolder + "CopyInputXSLT1.xsl";
 AltovaXMLXSLT1.Execute(strExamplesFolder + "simpleOutputFromXML.xml");

XSLT 1.0 transformation (String to XML)

// Specify folder (AltovaXMLExamples folder)
// Check if filepath is correct for you
 String strExamplesFolder = Environment.GetEnvironmentVariable
("ProgramFiles") + "\\Altova\\AltovaXML2011\\AltovaXMLExamples\\";

// Create a new AltovaXML instance and access its engines
 Altova.AltovaXML.Application AltovaXML = new Altova.AltovaXML.Application
();

// Use XSLT1 Engine of AltovaXML to transform input string using
CopyInputXSLT1.xsl
 Altova.AltovaXML.IXSLT1 AltovaXMLXSLT1 = AltovaXML.XSLT1;
 AltovaXMLXSLT1.InputXMLFromText = "<?xml version='1.0'?><doc>Hello
World</doc>";
 AltovaXMLXSLT1.XSLFileName = strExamplesFolder + "CopyInputXSLT1.xsl";
 AltovaXMLXSLT1.Execute(strExamplesFolder + "simpleOutputFromString.xml");

XSLT 1.0 transformation (String to String)

© 2012 Altova GmbH

.NET Interface 89Usage

AltovaXML 2013

// Specify folder (AltovaXMLExamples folder)
// Check if filepath is correct for you
 String strExamplesFolder = Environment.GetEnvironmentVariable
("ProgramFiles") + "\\Altova\\AltovaXML2011\\AltovaXMLExamples\\";

// Create a new AltovaXML instance and access its engines
 Altova.AltovaXML.Application AltovaXML = new Altova.AltovaXML.Application
();

// Use XSLT1 Engine of AltovaXML to transform input string using
CopyInputXSLT1.xsl
 Altova.AltovaXML.IXSLT1 AltovaXMLXSLT1 = AltovaXML.XSLT1;
 AltovaXMLXSLT1.InputXMLFromText = "<?xml version='1.0'?><doc>Hello
World</doc>";
 AltovaXMLXSLT1.XSLFileName = strExamplesFolder + "CopyInputXSLT1.xsl";
 String strResult = AltovaXMLXSLT1.ExecuteAndGetResultAsString();

// Show result
 MessageBox.Show("XSLT 1.0 engine answered: " + strResult);

Using .NET extensions

// Specify folder (AltovaXMLExamples folder)
// Check if filepath is correct for you
 String strExamplesFolder = Environment.GetEnvironmentVariable
("ProgramFiles") + "\\Altova\\AltovaXML2011\\AltovaXMLExamples\\";

// Create a new AltovaXML instance and access its engines
 Altova.AltovaXML.Application AltovaXML = new Altova.AltovaXML.Application
();

// Use XSLT1 Engine from AltovaXML application
 Altova.AltovaXML.IXSLT1 AltovaXMLXSLT1 = AltovaXML.XSLT1;

// Enable .NET extensions
 AltovaXMLXSLT1.DotNetExtensionsEnabled = 1;

// Use XSLT containing .NET math extension for transformation
 AltovaXMLXSLT1.InputXMLFileName = strExamplesFolder + "simple.xml";
 AltovaXMLXSLT1.XSLFromText = "<xsl:stylesheet
xmlns:xsl='http://www.w3.org/1999/XSL/Transform'
 xmlns:math='clitype:System.Math' version='1.0'><xsl:output
omit-xml-declaration='yes'/>
 <xsl:template match='/'><a><sqrtanswer><xsl:value-of select='
math:Sqrt(9)'/></sqrtanswer>
 </xsl:template></xsl:stylesheet>";
 AltovaXMLXSLT1.Execute(strExamplesFolder + "Output.xml");

// Release ALL references to all components that were received.
 System.Runtime.InteropServices.Marshal.ReleaseComObject(AltovaXMLXSLT1);
 AltovaXMLXSLT1 = null;
 System.Runtime.InteropServices.Marshal.ReleaseComObject(AltovaXML);
 AltovaXML = null;

Using the LastErrorMessage property

// Specify folder (AltovaXMLExamples folder)
// Check if filepath is correct for you

90 Usage .NET Interface

© 2012 Altova GmbHAltovaXML 2013

 String strExamplesFolder = Environment.GetEnvironmentVariable
("ProgramFiles") + "\\Altova\\AltovaXML2011\\AltovaXMLExamples\\";

// Create a new AltovaXML instance and access its engines
 Altova.AltovaXML.Application AltovaXML = new Altova.AltovaXML.Application
();

// Use XSLT1 Engine from AltovaXML application
 Altova.AltovaXML.IXSLT1 AltovaXMLXSLT1 = AltovaXML.XSLT1;

// Enable/disable .NET extensions (true/false, 1/0)
 AltovaXMLXSLT1.DotNetExtensionsEnabled = 0;

// Use XSLT containing .NET math extension for transformation
 AltovaXMLXSLT1.InputXMLFileName = strExamplesFolder + "simple.xml";
 AltovaXMLXSLT1.XSLFromText = "<xsl:stylesheet
xmlns:xsl='http://www.w3.org/1999/XSL/Transform'
 xmlns:math='clitype:System.Math' version='1.0'><xsl:output
omit-xml-declaration='yes'/>
 <xsl:template match='/'><a><sqrtanswer><xsl:value-of select='
math:Sqrt(9)'/></sqrtanswer>
 </xsl:template></xsl:stylesheet>";
 try
 {
 AltovaXMLXSLT1.Execute(strExamplesFolder + "Output.xml");
 }
 catch (Exception)
 {
 String strError = AltovaXMLXSLT1.LastErrorMessage;
 // Show result
 MessageBox.Show("XSLT 1.0 engine errors: " + strError);
 }

// Release ALL references to all components that were received.
 System.Runtime.InteropServices.Marshal.ReleaseComObject(AltovaXMLXSLT1);
 AltovaXMLXSLT1 = null;
 System.Runtime.InteropServices.Marshal.ReleaseComObject(AltovaXML);
 AltovaXML = null;

© 2012 Altova GmbH

.NET Interface 91Usage

AltovaXML 2013

2.4.4 Altova.AltovaXML.XSLT2

Description
The Altova.AltovaXML.XSLT2 object provides methods and properties to execute an XSLT
2.0 transformation using the Altova XSLT 2.0 Engine. Results can be saved to a file or returned
as a string. The object also enables XSLT parameters to be passed to the XSLT stylesheet.
The URLs of XML and XSLT files can be supplied as strings via the object's properties.
Alternatively, the XML and XSLT documents can be constructed within the code as text strings.

Note:

· Where string inputs are to be interpreted as URLs, absolute paths should be used. If a
relative path is used, a mechanism to resolve the relative path should be defined in the
calling module.

· The XSLT 2.0 Engine can be used in its backward compatibility mode to process an
XSLT 1.0 stylesheet. The output, however, could be different than that produced by the
XSLT 1.0 Engine processing the same XSLT 1.0 stylesheet.

Methods
The following methods are available:

Execute(OutputFileName as String)
void execute(String outputFilename)
Execute executes an XSLT 2.0 transformation and saves the result to an output file, the name
and location of which is provided as an input string to the Execute method. For example:
Execute("C:\OutputDoc.xml").

ExecuteAndGetResultAsString() as String
ExecuteAndGetResultAsString executes an XSLT 2.0 transformation and returns the result
as a UTF-16 text string. See below for examples.

AddExternalParameter(ParamName as String, ParamValue as String)
Takes a parameter name and the value of this parameter as input arguments. Each external
parameter and its value is to be specified in a separate call to the method. If multiple calls
specify the same parameter name the value set by the latest will be used. Since parameter
values are XPath expressions, parameter values that are strings must be enclosed in single
quotes. In this example, two parameter values are submitted:

AddExternalParameter("Param1","'http://www.altova.com/'");
AddExternalParameter("Param2","concat('http://www.altova.com/', MyFile/@url)"
);

ClearExternalParameterList()
No argument should be provided. The ClearExternalParameterList clears the external
parameters list created with AddExternalParameter methods.

InitialTemplateName
Sets the initial named template. The argument is the name of the template from which
processing is to start. For example: InitialNamedTemplat="MyNamedTemplate".

InitialTemplateMode
Sets the initial mode for processing. The argument is the name of the required initial mode.
Templates with this mode value will be processed. For example:
InitialTemplateMode="MyMode".

Note: Transformation must always occur after assigning the XML and XSLT documents.

92 Usage .NET Interface

© 2012 Altova GmbHAltovaXML 2013

Properties
The following properties are defined:

InputXMLFileName
A string input that is read as a URL to locate the XML file to be transformed.

XSLFileName
A string input that is read as a URL to locate the XSLT file to be used for the transformation.

InputXMLFromText
A string input that constructs an XML document.

XSLFromText
A string input that constructs an XSLT document.

XSLStackSize
The stack size is the maximum depth of executed instructions. The stack size can be changed
with the XSLStackSize property. The minimum allowed stack size is 100. The default stack size
is 1000. If the stack size is exceeded during a transformation, an error is reported.

LastErrorMessage
Returns the last error message.

JavaExtensionsEnabled
Enables Java extensions. You can specify whether Java extensions should be enabled or not
by submitting true or false (case-insensitive) as a Variant_Bool argument.

DotNetExtensionsEnabled
Enables .NET extensions. You can specify whether .NET extensions should be enabled or not
by submitting true or false (case-insensitive) as a Variant_Bool argument.

Examples
The following C# code snippets show how to:

· Validate an XML document and run an XSLT 2.0 transformation (transformation from
XML file to string)

· Transform using XSLT 2.0 (XML file to XML file)
· Transform using XSLT 2.0 (string to XML file)
· Transform using XSLT 2.0 (string to string)

A fuller example is given at the end of the .NET Interface section.

To create these code snippet in a C# project, do the following:

1. In Microsoft Visual Studio, add a new project using File | New | Project.
2. Add a reference to the AltovaXML DLL by clicking Project | Add Reference. The Add

Reference dialog pops up, displaying a list of installed .NET components. Select the
AltovaXML component from the list to add it. (Note: If the AltovaXML component is not
in the .NET tab list, it can be selected from the COM tab.)

3. Enter the example code snippet below in the project form. The code snippet below
validates an XML file and runs an XSLT 2.0 transformation on the XML file. The files
used in this code snippet are located in the AltovaXMLExamples folder of the
AltovaXML application folder.

4. Compile the code and test it.

© 2012 Altova GmbH

.NET Interface 93Usage

AltovaXML 2013

Validation and XSLT 2.0 transformation (XML to string)

// Specify folder (AltovaXMLExamples folder)
// Check if filepath is correct for you
 String strExamplesFolder = Environment.GetEnvironmentVariable
("ProgramFiles") + "\\Altova\\AltovaXML2011\\AltovaXMLExamples\\";

// Create a new AltovaXML instance and access its engines
 Altova.AltovaXML.Application AltovaXML = new Altova.AltovaXML.Application
();

// Use Validator of AltovaXML to validate input file simple.xml
// File must be well-formed but not necessarily valid
 Altova.AltovaXML.XMLValidator AltovaXMLValidator = AltovaXML.XMLValidator;
 AltovaXMLValidator.InputXMLFileName = strExamplesFolder + "simple.xml";
 Boolean bIsWellFormed = AltovaXMLValidator.IsWellFormed();
 Boolean bIsValid = AltovaXMLValidator.IsValid();

// Show result
 MessageBox.Show("File " + strExamplesFolder + "simple.xml" + " is " +
 (bIsWellFormed ? "well-formed" : "not Well-formed") +
 " and " + (bIsValid ? "valid" : "invalid") + ".");

 if (bIsWellFormed)
 {
 // Use XSLT2 Engine of AltovaXML to transform simple.xml using
CopyInputXSLT2.xsl
 Altova.AltovaXML.IXSLT2 AltovaXMLXSLT2 = AltovaXML.XSLT2;
 AltovaXMLXSLT2.InputXMLFileName = strExamplesFolder + "simple.xml";
 AltovaXMLXSLT2.XSLFileName = strExamplesFolder + "CopyInputXSLT2.
xsl";
 String strResult = AltovaXMLXSLT2.ExecuteAndGetResultAsString();

 // Show result
 MessageBox.Show("XSLT 2.0 engine answered: " + strResult);
 }

XSLT 2.0 transformation (XML to XML)

// Specify folder (AltovaXMLExamples folder)
// Check if filepath is correct for you
 String strExamplesFolder = Environment.GetEnvironmentVariable
("ProgramFiles") + "\\Altova\\AltovaXML2011\\AltovaXMLExamples\\";

// Create a new AltovaXML instance and access its engines
 Altova.AltovaXML.Application AltovaXML = new Altova.AltovaXML.Application
();

// Use XSLT2 Engine of AltovaXML to transform simple.xml using CopyInputXSLT2.
xsl
 Altova.AltovaXML.IXSLT2 AltovaXMLXSLT2 = AltovaXML.XSLT2;
 AltovaXMLXSLT2.InputXMLFileName = strExamplesFolder + "simple.xml";
 AltovaXMLXSLT2.XSLFileName = strExamplesFolder + "CopyInputXSLT2.xsl";
 AltovaXMLXSLT2.Execute(strExamplesFolder + "simpleOutputFromXML.xml");

XSLT 2.0 transformation (String to XML)

// Specify folder (AltovaXMLExamples folder)
// Check if filepath is correct for you

94 Usage .NET Interface

© 2012 Altova GmbHAltovaXML 2013

 String strExamplesFolder = Environment.GetEnvironmentVariable
("ProgramFiles") + "\\Altova\\AltovaXML2011\\AltovaXMLExamples\\";

// Create a new AltovaXML instance and access its engines
 Altova.AltovaXML.Application AltovaXML = new Altova.AltovaXML.Application
();

// Use XSLT2 Engine of AltovaXML to transform input string using
CopyInputXSLT2.xsl
 Altova.AltovaXML.IXSLT2 AltovaXMLXSLT2 = AltovaXML.XSLT2;
 AltovaXMLXSLT2.InputXMLFromText = "<?xml version='1.0'?><doc>Hello
World</doc>";
 AltovaXMLXSLT2.XSLFileName = strExamplesFolder + "CopyInputXSLT2.xsl";
 AltovaXMLXSLT2.Execute(strExamplesFolder + "simpleOutputFromString.xml");

XSLT 2.0 transformation (String to String)

// Specify folder (AltovaXMLExamples folder)
// Check if filepath is correct for you
 String strExamplesFolder = Environment.GetEnvironmentVariable
("ProgramFiles") + "\\Altova\\AltovaXML2011\\AltovaXMLExamples\\";

// Create a new AltovaXML instance and access its engines
 Altova.AltovaXML.Application AltovaXML = new Altova.AltovaXML.Application
();

// Use XSLT2 Engine of AltovaXML to transform input string using
CopyInputXSLT2.xsl
 Altova.AltovaXML.IXSLT2 AltovaXMLXSLT2 = AltovaXML.XSLT2;
 AltovaXMLXSLT2.InputXMLFromText = "<?xml version='1.0'?><doc>Hello
World</doc>";
 AltovaXMLXSLT2.XSLFileName = strExamplesFolder + "CopyInputXSLT2.xsl";
 String strResult = AltovaXMLXSLT2.ExecuteAndGetResultAsString();

// Show result
 MessageBox.Show("XSLT 2.0 engine answered: " + strResult);

Using .NET extensions

// Specify folder (AltovaXMLExamples folder)
// Check if filepath is correct for you
 String strExamplesFolder = Environment.GetEnvironmentVariable
("ProgramFiles") + "\\Altova\\AltovaXML2011\\AltovaXMLExamples\\";

// Create a new AltovaXML instance and access its engines
 Altova.AltovaXML.Application AltovaXML = new Altova.AltovaXML.Application
();

// Use XSLT2 Engine from AltovaXML application
 Altova.AltovaXML.IXSLT2 AltovaXMLXSLT2 = AltovaXML.XSLT2;

// Enable .NET extensions
 AltovaXMLXSLT2.DotNetExtensionsEnabled = 1;

// Use XSLT containing .NET math extension for transformation
 AltovaXMLXSLT2.InputXMLFileName = strExamplesFolder + "simple.xml";
 AltovaXMLXSLT2.XSLFromText = "<xsl:stylesheet
xmlns:xsl='http://www.w3.org/1999/XSL/Transform'
 xmlns:math='clitype:System.Math' version='2.0'><xsl:output
omit-xml-declaration='yes'/>
 <xsl:template match='/'><a><sqrtanswer><xsl:value-of select='

© 2012 Altova GmbH

.NET Interface 95Usage

AltovaXML 2013

math:Sqrt(9)'/></sqrtanswer>
 </xsl:template></xsl:stylesheet>";
 AltovaXMLXSLT2.Execute(strExamplesFolder + "Output.xml");

// Release ALL references to all components that were received.
 System.Runtime.InteropServices.Marshal.ReleaseComObject(AltovaXMLXSLT2);
 AltovaXMLXSLT2 = null;
 System.Runtime.InteropServices.Marshal.ReleaseComObject(AltovaXML);
 AltovaXML = null;

Using the LastErrorMessage property

// Specify folder (AltovaXMLExamples folder)
// Check if filepath is correct for you
 String strExamplesFolder = Environment.GetEnvironmentVariable
("ProgramFiles") + "\\Altova\\AltovaXML2011\\AltovaXMLExamples\\";

// Create a new AltovaXML instance and access its engines
 Altova.AltovaXML.Application AltovaXML = new Altova.AltovaXML.Application
();

// Use XSLT2 Engine from AltovaXML application
 Altova.AltovaXML.IXSLT2 AltovaXMLXSLT2 = AltovaXML.XSLT2;

// Enable/disable .NET extensions (true/false, 1/0)
 AltovaXMLXSLT2.DotNetExtensionsEnabled = 0;

// Use XSLT containing .NET math extension for transformation
 AltovaXMLXSLT2.InputXMLFileName = strExamplesFolder + "simple.xml";
 AltovaXMLXSLT2.XSLFromText = "<xsl:stylesheet
xmlns:xsl='http://www.w3.org/1999/XSL/Transform'
 xmlns:math='clitype:System.Math' version='2.0'><xsl:output
omit-xml-declaration='yes'/>
 <xsl:template match='/'><a><sqrtanswer><xsl:value-of select='
math:Sqrt(9)'/></sqrtanswer>
 </xsl:template></xsl:stylesheet>";
 try
 {
 AltovaXMLXSLT2.Execute(strExamplesFolder + "Output.xml");
 }
 catch (Exception)
 {
 String strError = AltovaXMLXSLT2.LastErrorMessage;
 // Show result
 MessageBox.Show("XSLT 2.0 engine errors: " + strError);
 }

// Release ALL references to all components that were received.
 System.Runtime.InteropServices.Marshal.ReleaseComObject(AltovaXMLXSLT2);
 AltovaXMLXSLT2 = null;
 System.Runtime.InteropServices.Marshal.ReleaseComObject(AltovaXML);
 AltovaXML = null;

96 Usage .NET Interface

© 2012 Altova GmbHAltovaXML 2013

2.4.5 Altova.AltovaXML.XQuery

Description
The Altova.AltovaXML.XQuery object provides methods and properties to execute an XQuery
1.0 transformation using the Altova XQuery 1.0 Engine. Results can be saved to a file or
returned as a string. The object also enables external XQuery variables to be passed to the
XQuery document. The URLs of XQuery and XML files can be supplied as strings via the
object's properties. Alternatively, the XML and XQuery documents can be constructed within the
code as text strings.

Note: Where string inputs are to be interpreted as URLs, absolute paths should be used. If a
relative path is used, a mechanism to resolve the relative path should be defined in the calling
module.

Methods
The following methods are available:

Execute(OutputFileName as String)
void execute(String outputFilename)
Execute executes an XQuery 1.0 transformation and saves the result to an output file, the
name and location of which is provided as an input string to the Execute method. For example:
Execute("C:\OutputDoc.xml").

ExecuteAndGetResultAsString() as String
ExecuteAndGetResultAsString executes an XQuery 1.0 transformation and returns the result
as a UTF-16 text string. See below for examples.

AddExternalVariable(VarName as String, VarValue as String)
Takes a variable name and the value of this variable as input arguments. Each external variable
and its value is to be specified in a separate call to the method. Variables must be declared in
the XQuery document, optionally with a type declaration. Whatever the type declaration for the
external variable in the XQuery document, the variable value submitted to the
AddExternalVariable does not need any special delimiter, such as quotes. However, the
lexical form must match that of the expected type (for example, a variable of type xs:date must
have a value in the lexical form 2004-01-31; a value in the lexical form 2004/Jan/01 will cause
an error). Note that this also means that you cannot use an XQuery 1.0 function (for example,
current-date()) as the value of an external variable (since the lexical form of the function as it
is written will either not match the required data type (if the datatype is specified in the
declaration of the external variable) or will be read as a string (if the datatype is not specified).)
If multiple calls specify the same variable name the value set by the latest will be used.

ClearExternalVariableList()
No argument should be provided. The ClearExternalVariableList clears the external
variables list created with AddExternalVariable methods.

Note: Setting the optional XML document must always be done before query execution.

Properties
The following properties are defined:

XQueryFileName
A string input that is read as a URL to locate the XQuery file to be executed. If both the
XQueryFileName property and XQueryFromText property are specified, then the property that
has been set later than the other (in the code sequence) is used.

© 2012 Altova GmbH

.NET Interface 97Usage

AltovaXML 2013

InputXMLFileName
A string input that is read as a URL to locate the XML file that will be loaded into the query.
XQuery navigation expressions are evaluated with reference to the document node of this XML
document. If both the InputXMLFileName property and InputXMLFromText property are
specified, then the property that has been set later than the other (in the code sequence) is
used.

XQueryFromText
A string input that constructs an XQuery document. If both the XQueryFileName property and
XQueryFromText property are specified, then the property that has been set later than the other
(in the code sequence) is used.

InputXMLFromText
A string input that constructs an XML document. XQuery navigation expressions are evaluated
with reference to the document node of this XML document. If both the InputXMLFileName
property and InputXMLFromText property are specified, then the property that has been set
later than the other (in the code sequence) is used.

LastErrorMessage
Returns the last error message.

JavaExtensionsEnabled
Enables Java extensions. You can specify whether Java extensions should be enabled or not
by submitting true or false (case-insensitive) as a Variant_Bool argument.

DotNetExtensionsEnabled
Enables .NET extensions. You can specify whether .NET extensions should be enabled or not
by submitting true or false (case-insensitive) as a Variant_Bool argument.

Note: If an XML document is set and is not needed for a new XQuery execution, then it should
be cleared with an empty string assignment.

The following serialization options are defined:

OutputMethod
The required output method can be specified by submitting the required value as a string
argument. Valid values are: xml, xhtml, html, and text. For example:
objAltovaXML.XQuery.OutputMethod = "xml". If the value is invalid, it is ignored. The default
output method is xml.

OutputOmitXMLDeclaration
You can specify whether the XML declaration should be omitted or included in the output by
submitting true or false (case-insensitive) as a Boolean argument. For example:
objAltovaXML.XQuery.OutputOmitXMLDeclaration = "FALSE". If the value is invalid, an
error is raised. The default option is TRUE.

OutputIndent
You can specify whether the output should be indented or not by submitting true or false
(case-insensitive) as a Boolean argument. For example:
objAltovaXML.XQuery.OutputIndent = "TRUE". If the value is invalid, an error is raised. The
default option is False.

OutputEncoding
 The required output encoding can be specified by submitting the encoding value as a string
argument. For example: objAltovaXML.XQuery.OutputEncoding = "UTF-8". If the value is

98 Usage .NET Interface

© 2012 Altova GmbHAltovaXML 2013

invalid, it is ignored. The default output encoding is UTF-8.

Note: For the serialization options, Raw Interface and Dispatch Interface usage differs. In the
Raw Interface, if no argument is provided with these properties, then the current value of the
property is returned. You would use something like: put_OutputOption(VARIANT_BOOL bVal
) or VARIANT_BOOL bVal = get_OutputOption(), respectively, to set values and get values.
In the Dispatch Interface, you can use b = myXQuery.OutputOption to get values and
myXQuery.OutputOption = b to set values. For example, in the Dispatch Interface,
Sheet1.Cells(10, 2) = objAltovaXML.XQuery.OutputEncoding would get the current
output encoding.

Example
The following C# code snippet shows how to validate an XML document and execute an
XQuery. A fuller example is given at the end of the .NET Interface section.

To create the code snippet in a C# project, do the following:

1. In Microsoft Visual Studio, add a new project using File | New | Project.
2. Add a reference to the AltovaXML DLL by clicking Project | Add Reference. The Add

Reference dialog pops up, displaying a list of installed .NET components. Select the
AltovaXML component from the list to add it. (Note: If the AltovaXML component is not
in the .NET tab list, it can be selected from the COM tab.)

3. Enter the example code snippet below in the project form. The code snippet below
validates an XML file and executes an XQuery on the XML file. The files used in this
code snippet are located in the AltovaXMLExamples folder of the AltovaXML application
folder.

4. Compile the code and test it.

// Locate examples installed with AltovaXML
// REMARK: You might need to adapt this if you have a different major version
of the product (2011 in this example).
 String strExamplesFolder = Environment.GetEnvironmentVariable
("ProgramFiles") + "\\Altova\\AltovaXML2011\\AltovaXMLExamples\\";

// Create a new AltovaXML instance and access its engines
 Altova.AltovaXML.Application AltovaXML = new Altova.AltovaXML.Application
();

// Validate input file simple.xml - it must be well-formed but not necessarily
valid.
// The AltovaXML application will provide us with a validator object.
 Altova.AltovaXML.XMLValidator AltovaXMLValidator = AltovaXML.XMLValidator;
 AltovaXMLValidator.InputXMLFileName = strExamplesFolder + "simple.xml";
 Boolean bIsWellFormed = AltovaXMLValidator.IsWellFormed();
 Boolean bIsValid = AltovaXMLValidator.IsValid();

// Show result
 MessageBox.Show("File " + strExamplesFolder + "simple.xml" + " is " +
 (bIsWellFormed ? "well-formed" : "not Well-formed") +
 " and " + (bIsValid ? "valid" : "invalid") + ".");

 if (bIsWellFormed)
 {
 // use XQuery Engine from AltovaXML application to transform simple.xml
with the help of CopyInput.xq
 Altova.AltovaXML.XQuery AltovaXMLXQuery = AltovaXML.XQuery;
 AltovaXMLXQuery.InputXMLFileName = strExamplesFolder + "simple.xml";
 AltovaXMLXQuery.XQueryFileName = strExamplesFolder + "CopyInput.xq";
 strResult = AltovaXMLXQuery.ExecuteAndGetResultAsString();

© 2012 Altova GmbH

.NET Interface 99Usage

AltovaXML 2013

 // Show result
 MessageBox.Show("XQuery engine answered: " + strResult);
 }

100 Usage .NET Interface

© 2012 Altova GmbHAltovaXML 2013

2.4.6 Example

The following C# code snippet shows how to validate an XML document, how to run XSLT 1.0
and XSLT 2.0 transformations, and how to execute an XQuery document. More code snippets
are available in the preceding sections describing the individual engines: XMLValidator; XSLT1;
XSLT2; XQuery.

To create the code snippet in a C# project, do the following:

1. In Microsoft Visual Studio, add a new project using File | New | Project.
2. Add a reference to the AltovaXML DLL by clicking Project | Add Reference. The Add

Reference dialog pops up, displaying a list of installed .NET components. Select the
AltovaXML component from the list to add it. (Note: If the AltovaXML component is not
in the .NET tab list, it can be selected from the COM tab.)

3. Enter the example code snippet below in the project form. The code snippet below
validates an XML file, runs XSLT transformations on the XML file using XSLT 1.0 and
XSLT 2.0 stylesheets, and executes an XQuery document. The files used in this code
snippet are located in the AltovaXMLExamples folder of the AltovaXML application
folder.

4. Compile the code and test it.

// Locate examples installed with AltovaXML
// REMARK: You might need to adapt this if you have a different major version
of the product (2011 in this example)
 String strExamplesFolder = Environment.GetEnvironmentVariable
("ProgramFiles") + "\\Altova\\AltovaXML2011\\AltovaXMLExamples\\";

// Create a new AltovaXML instance and access its engines
 Altova.AltovaXML.Application AltovaXML = new Altova.AltovaXML.Application
();

// Validate input file simple.xml - it must be well-formed but not necessarily
valid.
// The AltovaXML application will provide us with a validator object.
 Altova.AltovaXML.XMLValidator AltovaXMLValidator = AltovaXML.XMLValidator;
 AltovaXMLValidator.InputXMLFileName = strExamplesFolder + "simple.xml";
 Boolean bIsWellFormed = AltovaXMLValidator.IsWellFormed();
 Boolean bIsValid = AltovaXMLValidator.IsValid();

// Show result
 MessageBox.Show("File " + strExamplesFolder + "simple.xml" + " is " +
 (bIsWellFormed ? "well-formed" : "not Well-formed") +
 " and " + (bIsValid ? "valid" : "invalid") + ".");

// Release reference to XMLValidator component
 System.Runtime.InteropServices.Marshal
.ReleaseComObject(AltovaXMLValidator);
 AltovaXMLValidator = null;

 if (bIsWellFormed)
 {
 // Use XSLT1 Engine from the AltovaXML application to transform simple.
xml with the help of CopyInputXSLT1.xsl
 Altova.AltovaXML.IXSLT1 AltovaXMLXSLT1 = AltovaXML.XSLT1;
 AltovaXMLXSLT1.InputXMLFileName = strExamplesFolder + "simple.xml";
 AltovaXMLXSLT1.XSLFileName = strExamplesFolder + "CopyInputXSLT1.
xsl";
 String strResult = AltovaXMLXSLT1.ExecuteAndGetResultAsString();
 try
 {
 // Show result
 MessageBox.Show("XSLT 1.0 engine answered: " + strResult);

© 2012 Altova GmbH

.NET Interface 101Usage

AltovaXML 2013

 }
 catch (Exception)
 {
 String strError = AltovaXMLXSLT1.LastErrorMessage;
 // Show errors
 MessageBox.Show("XSLT 1.0 engine errors: " + strError);
 }

 // Release reference to XMLXSLT1 component
 System.Runtime.InteropServices.Marshal
.ReleaseComObject(AltovaXMLXSLT1);
 AltovaXMLXSLT1 = null;

 // use XSLT2 Engine from AltovaXML application to transform simple.xml
with the help of CopyInputXSLT2.xsl
 Altova.AltovaXML.IXSLT2 AltovaXMLXSLT2 = AltovaXML.XSLT2;
 AltovaXMLXSLT2.InputXMLFileName = strExamplesFolder + "simple.xml";
 AltovaXMLXSLT2.XSLFileName = strExamplesFolder + "CopyInputXSLT2.
xsl";
 strResult = AltovaXMLXSLT2.ExecuteAndGetResultAsString();
 try
 {
 // Show result
 MessageBox.Show("XSLT 2.0 engine answered: " + strResult);
 }
 catch (Exception)
 {
 String strError = AltovaXMLXSLT2.LastErrorMessage;
 // Show errors
 MessageBox.Show("XSLT 2.0 engine errors: " + strError);
 }

 // Release reference to XMLXSLT2 component
 System.Runtime.InteropServices.Marshal
.ReleaseComObject(AltovaXMLXSLT2);
 AltovaXMLXSLT2 = null;

 // use XQuery Engine from AltovaXML application to transform simple.xml
with the help of CopyInput.xq
 Altova.AltovaXML.XQuery AltovaXMLXQuery = AltovaXML.XQuery;
 AltovaXMLXQuery.InputXMLFileName = strExamplesFolder + "simple.xml";
 AltovaXMLXQuery.XQueryFileName = strExamplesFolder + "CopyInput.xq";
 strResult = AltovaXMLXQuery.ExecuteAndGetResultAsString();
 try
 {
 // Show result
 MessageBox.Show("XQuery engine answered: " + strResult);
 }
 catch (Exception)
 {
 String strError = AltovaXMLXQuery.LastErrorMessage;
 // Show errors
 MessageBox.Show("XQuery engine errors: " + strError);
 }

 // Release reference to XMLXQuery component
 System.Runtime.InteropServices.Marshal
.ReleaseComObject(AltovaXMLXQuery);
 AltovaXMLXQuery = null;
 }

// Release reference to AltovaXML component
 System.Runtime.InteropServices.Marshal.ReleaseComObject(AltovaXML);
 AltovaXML = null;

102 Usage Explicitly Releasing AltovaXML COM-Server from C# and VB.NET

© 2012 Altova GmbHAltovaXML 2013

2.5 Explicitly Releasing AltovaXML COM-Server from C# and VB.NET

If references to the COM Server object are not released when the object gets descoped, it is
possible to explicitly release the AltovaXML COM references from within C# code using the
ReleaseComObject methods as shown below.

Example:

 private void button1_Click(object sender, EventArgs e)
 {
 Altova.AltovaXML.ApplicationClass AltovaXML = new Altova.AltovaXML
.ApplicationClass();
 Altova.AltovaXML.IXSLT2 XSLT2 = AltovaXML.XSLT2;

 XSLT2.InputXMLFileName =
"C:\\Projects\\files\\XMLSpyExeFolder\\Examples\\OrgChart.xml";
 XSLT2.XSLFileName =
"C:\\Projects\\files\\XMLSpyExeFolder\\Examples\\OrgChart.xsl";
 XSLT2.Execute(
"C:\\Projects\\files\\XMLSpyExeFolder\\Examples\\OrgChart_out.html");

 // Release the XSLT2 component and then the AltovaXML component
 System.Runtime.InteropServices.Marshal.ReleaseComObject(XSLT2);
 XSLT2 = null;
 System.Runtime.InteropServices.Marshal.ReleaseComObject(AltovaXML
);
 AltovaXML = null;
 }

· At the end of the method, the AltovaXML.exe server shuts down.

· If you do not call all of the ReleaseComObject methods, the exe servers will only be
shut down with the shutdown of the C# application.

© 2012 Altova GmbH

OOXML and ZIP Files 103Usage

AltovaXML 2013

2.6 OOXML and ZIP Files

In order to enforce output to a ZIP file, including Open Office XML (OOXML) files such as .docx,
one must specify the ZIP protocol in the file path. For example:

filename.zip|zip/filename.xxx

filename.docx|zip/filename.xxx

In AltovaXML, ZIP file output can be specified with the following operations:

COM interface and .NET interface
Output is generated using the Execute method. The argument of the method specifies the
output file's name and location. For ZIP files, the ZIP protocol must be used, as in the following
examples:

xslt2.Execute(c:\Mydocs\orgchart.zip|zip\main.xml)

xslt2.Execute(c:\Mydocs\orgchart.docx|zip\main.out)

xslt2.Execute(c:\Mydocs\orgchart.docx|zip\)

Command line
When using the command line ensure that the output URI is enclosed in quotes. This is
because the pipe character (|) would otherwise be interpreted by the command system. An
example:

AltovaXML -in input.xml -xslt2 transform.xslt -out "c:\results.zipart.zip|
zip\result.xml"

The xsl:result-document element
In the case of the xsl:result-document element of XSLT 2.0, the ZIP protocol must be used
on the output URI. In the case of OOXML documents, the ZIP protocol must be specified on the
output URI of every xsl:result-document element involved in creating files for the OOXML
document.

If the xsl:result-document elements specify relative output URIs, then specify the ZIP
protocol for the main result, the URI of which is then used as the base URI to resolve the
relative output URIs.

Chapter 3

Engine Information

106 Engine Information

© 2012 Altova GmbHAltovaXML 2013

3 Engine Information

This section contains information about implementation-specific features of the Altova XML
Validator, Altova XSLT 1.0 Engine, Altova XSLT 2.0 Engine, and Altova XQuery Engine.

© 2012 Altova GmbH

Altova XML Validator 107Engine Information

AltovaXML 2013

3.1 Altova XML Validator

The Altova XML Validator implements and conforms to the rules of:

· XML 1.0 (Fourth Edition)
· XML Namespaces (1.0)
· XML Schemas (Structures)
· XML Schema (Datatypes)

http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

108 Engine Information XSLT 1.0 Engine: Implementation Information

© 2012 Altova GmbHAltovaXML 2013

3.2 XSLT 1.0 Engine: Implementation Information

The Altova XSLT 1.0 Engine is built into Altova's XMLSpy, StyleVision, Authentic, and
MapForce XML products. It is also available in the free AltovaXML package. The Altova XSLT
1.0 Engine implements and conforms to the World Wide Web Consortium's XSLT 1.0
Recommendation of 16 November 1999 and XPath 1.0 Recommendation of 16 November 1999
. Limitations and implementation-specific behavior are listed below.

Limitations

· The xsl:preserve-space and xsl:strip-space elements are not supported.

· When the method attribute of xsl:output is set to HTML, or if HTML output is
selected by default, then special characters in the XML or XSLT file are inserted in the
HTML document directly as special characters; they are not inserted as HTML
character references in the output. For instance, the character (the decimal
character reference for a non-breaking space) is not inserted as in the HTML
code, but directly as a non-breaking space.

Implementation's handling of whitespace-only nodes in source XML document
The XML data (and, consequently, the XML Infoset) that is passed to the Altova XSLT 1.0
Engine is stripped of boundary-whitespace-only text nodes. (A boundary-whitespace-only text
node is a whitespace-only text node that occurs between two elements within an element of
mixed content.) This stripping may have an effect on the value returned by the
fn:position(), fn:last(), and fn:count() functions.

For any node selection that selects text nodes also, boundary-whitespace-only text nodes would
typically also be included in the selection. However, since the XML Infoset used by the Altova
engines has boundary-whitespace-only text nodes stripped from it, these nodes are not present
in the XML Infoset. As a result, the size of the selection and the numbering of nodes in the
selection will be different than that for a selection which included these text nodes. The
fn:position(), fn:last(), and fn:count() functions, therefore, could produce results
that are different from those produced by some other processors.

A situation in which boundary-whitespace-only text nodes are evaluated as siblings of other
elements arises most commonly when xsl:apply-templates is used to apply templates.
When the fn:position(), fn:last(), and fn:count() functions are used in patterns with
a name test (for example, para[3], which is short for para[position()=3]),
boundary-whitespace-only nodes are irrelevant since only the named elements (para in the
above example) are selected. (Note, however, that boundary-whitespace-only nodes are
relevant in patterns that use the wildcard, for example, *[10].)

Note: If a boundary-whitespace-only text node is required in the output, then insert the required
whitespace within one of the two adjoining child elements. For example, the XML fragment:

<para>This is bold <i>italic</>.</para>

when processed with the XSLT template

<xsl:template match="para">
<xsl:apply-templates/>

</xsl:template>

will produce:

This is bolditalic.

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath

© 2012 Altova GmbH

XSLT 1.0 Engine: Implementation Information 109Engine Information

AltovaXML 2013

To get a space between bold and italic in the output, insert a space character within either
the or <i> elements in the XML source. For example:

<para>This is bold <i> italic</i>.</para> or
<para>This is bold <i>italic</i>.</para> or
<para>This is bold<i> italic</i>.</para>

When any of the para elements above is processed with the same XSLT template given
above, it will produce:

This is bold italic.

110 Engine Information XSLT 2.0 Engine: Implementation Information

© 2012 Altova GmbHAltovaXML 2013

3.3 XSLT 2.0 Engine: Implementation Information

The Altova XSLT 2.0 Engine is built into Altova's XMLSpy, StyleVision, Authentic, and
MapForce XML products. It is also available in the free AltovaXML package. This section
describes the engine's implementation-specific aspects of behavior. It starts with a section
giving general information about the engine, and then goes on to list the implementation-specific
behavior of XSLT 2.0 functions.

For information about implementation-specific behavior of XPath 2.0 functions, see the section,
XPath 2.0 and XQuery 1.0 Functions.

© 2012 Altova GmbH

XSLT 2.0 Engine: Implementation Information 111Engine Information

AltovaXML 2013

3.3.1 General Information

The Altova XSLT 2.0 Engine conforms to the World Wide Web Consortium's (W3C's) XSLT
2.0 Recommendation of 23 January 2007. Note the following general information about the
engine.

Backwards Compatibility
The Altova XSLT 2.0 Engine is backwards compatible. The only time the backwards
compatibility of the XSLT 2.0 Engine comes into play is when using the XSLT 2.0 Engine of
Altova XML to process an XSLT 1.0 stylesheet. Note that there could be differences in the
outputs produced by the XSLT 1.0 Engine and the backwards-compatible XSLT 2.0 Engine.

In all other Altova products, the backwards-compatibility issue never arises. This is because
these products automatically select the appropriate engine for the transformation. For example,
consider that in XMLSpy you specify that a certain XML document be processed with an XSLT
1.0 stylesheet. When the transformation command is invoked, XMLSpy automatically selects
the XSLT 1.0 Engine of XMLSpy to carry out the transformation.

Note: The stylesheet version is specified in the version attribute of the stylesheet or
transform element of the stylesheet.

Namespaces
Your XSLT 2.0 stylesheet should declare the following namespaces in order for you to be able
to use the type constructors and functions available in XSLT 2.0. The prefixes given below are
conventionally used; you could use alternative prefixes if you wish.

Namespace Name Prefix Namespace URI

XML Schema types xs: http://www.w3.org/2001/XMLSchema

XPath 2.0 functions fn: http://www.w3.org/2005/xpath-functions

Typically, these namespaces will be declared on the xsl:stylesheet or xsl:transform
element, as shown in the following listing:

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fn="http://www.w3.org/2005/xpath-functions"
...

</xsl:stylesheet>

The following points should be noted:

· The Altova XSLT 2.0 Engine uses the XPath 2.0 and XQuery 1.0 Functions namespace
(listed in the table above) as its default functions namespace. So you can use XPath
2.0 and XSLT 2.0 functions in your stylesheet without any prefix. If you declare the
XPath 2.0 Functions namespace in your stylesheet with a prefix, then you can
additionally use the prefix assigned in the declaration.

· When using type constructors and types from the XML Schema namespace, the prefix
used in the namespace declaration must be used when calling the type constructor (for
example, xs:date).

· With the CRs of 23 January 2007, the untypedAtomic and duration datatypes (
dayTimeDuration and yearMonthDuration), which were formerly in the XPath
Datatypes namespace (typically prefixed xdt:) have been moved to the XML Schema
namespace.

http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/2007/REC-xslt20-20070123/

112 Engine Information XSLT 2.0 Engine: Implementation Information

© 2012 Altova GmbHAltovaXML 2013

· Some XPath 2.0 functions have the same name as XML Schema datatypes. For
example, for the XPath functions fn:string and fn:boolean there exist XML
Schema datatypes with the same local names: xs:string and xs:boolean. So if
you were to use the XPath expression string('Hello'), the expression evaluates
as fn:string('Hello')—not as xs:string('Hello').

Schema-awareness
The Altova XSLT 2.0 Engine is schema-aware.

Whitespace in XML document
By default, the Altova XSLT 2.0 Engine strips all boundary whitespace from
boundary-whitespace-only nodes in the source XML document. The removal of this whitespace
affects the values that the fn:position(), fn:last(), fn:count(), and
fn:deep-equal() functions return. For more details, see Whitespace-only Nodes in XML
Document in the XPath 2.0 and XQuery 1.0 Functions section.

Note: If a boundary-whitespace-only text node is required in the output, then insert the required
whitespace within one of the two adjoining child elements. For example, the XML fragment:

<para>This is bold <i>italic</>.</para>

when processed with the XSLT template

<xsl:template match="para">
<xsl:apply-templates/>

</xsl:template>

will produce:

This is bolditalic.

To get a space between bold and italic in the output, insert a space character within either
the or <i> elements in the XML source. For example:

<para>This is bold <i> italic</>.</para> or
<para>This is bold <i>italic</>.</para> or
<para>This is bold<i> italic</>.</para>

When such an XML fragment is processed with the same XSLT template given above, it will
produce:

This is bold italic.

XSLT 2.0 elements and functions
Limitations and implementation-specific behavior of XSLT 2.0 elements and functions are listed
in the section XSLT 2.0 Elements and Functions.

XPath 2.0 functions
Implementation-specific behavior of XPath 2.0 functions is listed in the section XPath 2.0 and
XQuery 1.0 Functions.

© 2012 Altova GmbH

XSLT 2.0 Engine: Implementation Information 113Engine Information

AltovaXML 2013

3.3.2 XSLT 2.0 Elements and Functions

Limitations
The xsl:preserve-space and xsl:strip-space elements are not supported.

Implementation-specific behavior
Given below is a description of how the Altova XSLT 2.0 Engine handles
implementation-specific aspects of the behavior of certain XSLT 2.0 functions.

xsl:result-document
Additionally supported encodings are: x-base16tobinary and x-base64tobinary.

function-available
The function tests for the availability of in-scope functions (XSLT 2.0, XPath 2.0, and extension
functions).

unparsed-text
The href attribute accepts (i) relative paths for files in the base-uri folder, and (ii) absolute
paths with or without the file:// protocol. Additionally supported encodings are:
x-binarytobase16 and x-binarytobase64.

unparsed-text-available
The href attribute accepts (i) relative paths for files in the base-uri folder, and (ii) absolute
paths with or without the file:// protocol. Additionally supported encodings are:
x-binarytobase16 and x-binarytobase64.

Note: The following encoding values, which were implemented in earlier versions of
AltovaXML are now deprecated: base16tobinary, base64tobinary, binarytobase16
and binarytobase64.

114 Engine Information XQuery 1.0 Engine: Implementation Information

© 2012 Altova GmbHAltovaXML 2013

3.4 XQuery 1.0 Engine: Implementation Information

The Altova XQuery 1.0 Engine is built into Altova's XMLSpy and MapForce XML products. It is
also available in the free AltovaXML package. This section provides information about
implementation-defined aspects of behavior.

Standards conformance
The Altova XQuery 1.0 Engine conforms to the World Wide Web Consortium's (W3C's) XQuery
1.0 Recommendation of 23 January 2007. The XQuery standard gives implementations
discretion about how to implement many features. Given below is a list explaining how the
Altova XQuery 1.0 Engine implements these features.

Schema awareness
The Altova XQuery 1.0 Engine is schema-aware.

Encoding
The UTF-8 and UTF-16 character encodings are supported.

Namespaces
The following namespace URIs and their associated bindings are pre-defined.

Namespace Name Prefix Namespace URI

XML Schema types xs: http://www.w3.org/2001/XMLSchema

Schema instance xsi: http://www.w3.org/2001/XMLSchema-instance

Built-in functions fn: http://www.w3.org/2005/xpath-functions

Local functions local: http://www.w3.org/2005/xquery-local-functions

The following points should be noted:

· The Altova XQuery 1.0 Engine recognizes the prefixes listed above as being bound to
the corresponding namespaces.

· Since the built-in functions namespace listed above is the default functions namespace
in XQuery, the fn: prefix does not need to be used when built-in functions are invoked
(for example, string("Hello") will call the fn:string function). However, the
prefix fn: can be used to call a built-in function without having to declare the
namespace in the query prolog (for example: fn:string("Hello")).

· You can change the default functions namespace by declaring the default
function namespace expression in the query prolog.

· When using types from the XML Schema namespace, the prefix xs: may be used
without having to explicitly declare the namespaces and bind these prefixes to them in
the query prolog. (Example: xs:date and xs:yearMonthDuration.) If you wish to
use some other prefix for the XML Schema namespace, this must be explicitly declared
in the query prolog. (Example: declare namespace alt =
"http://www.w3.org/2001/XMLSchema"; alt:date("2004-10-04").)

· Note that the untypedAtomic, dayTimeDuration, and yearMonthDuration datatypes
have been moved, with the CRs of 23 January 2007, from the XPath Datatypes
namespace to the XML Schema namespace, so: xs:yearMonthDuration.

If namespaces for functions, type constructors, node tests, etc are wrongly assigned, an error is

http://www.w3.org/TR/2007/REC-xquery-20070123/
http://www.w3.org/TR/2007/REC-xquery-20070123/

© 2012 Altova GmbH

XQuery 1.0 Engine: Implementation Information 115Engine Information

AltovaXML 2013

reported. Note, however, that some functions have the same name as schema datatypes, e.g.
fn:string and fn:boolean. (Both xs:string and xs:boolean are defined.) The
namespace prefix determines whether the function or type constructor is used.

XML source document and validation
XML documents used in executing an XQuery document with the Altova XQuery 1.0 Engine
must be well-formed. However, they do not need to be valid according to an XML Schema. If
the file is not valid, the invalid file is loaded without schema information. If the XML file is
associated with an external schema and is valid according to it, then post-schema validation
information is generated for the XML data and will be used for query evaluation.

Static and dynamic type checking
The static analysis phase checks aspects of the query such as syntax, whether external
references (e.g. for modules) exist, whether invoked functions and variables are defined, and so
on. No type checking is done in the static analysis phase. If an error is detected in the static
analysis phase, it is reported and the execution is stopped.

Dynamic type checking is carried out at run-time, when the query is actually executed. If a type
is incompatible with the requirement of an operation, an error is reported. For example, the
expression xs:string("1") + 1 returns an error because the addition operation cannot be
carried out on an operand of type xs:string.

Library Modules
Library modules store functions and variables so they can be reused. The Altova XQuery 1.0
Engine supports modules that are stored in a single external XQuery file. Such a module file
must contain a module declaration in its prolog, which associates a target namespace. Here is
an example module:

module namespace libns="urn:module-library";
declare variable $libns:company := "Altova";
declare function libns:webaddress() { "http://www.altova.com" };

All functions and variables declared in the module belong to the namespace associated with the
module. The module is used by importing it into an XQuery file with the import module
statement in the query prolog. The import module statement only imports functions and
variables declared directly in the library module file. As follows:

import module namespace modlib = "urn:module-library" at
"modulefilename.xq";

if ($modlib:company = "Altova")
then modlib:webaddress()
else error("No match found.")

External functions
External functions are not supported, i.e. in those expressions using the external keyword, as
in:

declare function hoo($param as xs:integer) as xs:string external;

Collations
The default collation is the Unicode codepoint collation. No other collation is currently
supported. Comparisons, including the fn:max function, are based on this collation.

116 Engine Information XQuery 1.0 Engine: Implementation Information

© 2012 Altova GmbHAltovaXML 2013

Character normalization
No character normalization form is supported.

Precision of numeric types
· The xs:integer datatype is arbitrary-precision, i.e. it can represent any number of

digits.
· The xs:decimal datatype has a limit of 20 digits after the decimal point.

· The xs:float and xs:double datatypes have limited-precision of 15 digits.

XQuery Instructions Support
The Pragma instruction is not supported. If encountered, it is ignored and the fallback
expression is evaluated.

XQuery Functions Support
For information about implementation-specific behavior of XQuery 1.0 functions, see the
section, XPath 2.0 and XQuery 1.0 Functions.

© 2012 Altova GmbH

XPath 2.0 and XQuery 1.0 Functions 117Engine Information

AltovaXML 2013

3.5 XPath 2.0 and XQuery 1.0 Functions

XPath 2.0 and XQuery 1.0 functions are evaluated by:

· the Altova XPath 2.0 Engine, which (i) is a component of the Altova XSLT 2.0 Engine,
and (ii) is used in the XPath Evaluator of Altova's XMLSpy product to evaluate XPath
expressions with respect to the XML document that is active in the XMLSpy interface.

· the Altova XQuery 1.0 Engine.

This section describes how XPath 2.0 and XQuery 1.0 functions are handled by the Altova
XPath 2.0 Engine and Altova XQuery 1.0 Engine. Only those functions are listed, for which the
behavior is implementation-specific, or where the behavior of an individual function is different in
any of the three environments in which these functions are used (that is, in XSLT 2.0, in XQuery
1.0, and in the XPath Evaluator of XMLSpy). Note that this section does not describe how to use
these functions. For more information about the usage of functions, see the World Wide Web
Consortium's (W3C's) XQuery 1.0 and XPath 2.0 Functions and Operators Recommendation of
23 January 2007.

http://www.w3.org/TR/2007/REC-xpath-functions-20070123/

118 Engine Information XPath 2.0 and XQuery 1.0 Functions

© 2012 Altova GmbHAltovaXML 2013

3.5.1 General Information

Standards conformance

· The Altova XPath 2.0 Engine implements the World Wide Web Consortium's (W3C's)
XPath 2.0 Recommendation of 23 January 2007. The Altova XQuery 1.0 Engine
implements the World Wide Web Consortium's (W3C's) XQuery 1.0 Recommendation
of 23 January 2007. The XPath 2.0 and XQuery 1.0 functions support in these two
engines is compliant with the XQuery 1.0 and XPath 2.0 Functions and Operators
Recommendation of 23 January 2007.

· The Altova XPath 2.0 Engine conforms to the rules of XML 1.0 (Fourth Edition) and
XML Namespaces (1.0).

Default functions namespace
The default functions namespace has been set to comply with that specified in the standard.
Functions can therefore be called without a prefix.

Boundary-whitespace-only nodes in source XML document
The XML data (and, consequently, the XML Infoset) that is passed to the Altova XPath 2.0
Engine and Altova XQuery 1.0 Engine is stripped of boundary-whitespace-only text nodes. (A
boundary-whitespace-only text node is a child whitespace-only text node that occurs between
two elements within an element of mixed content.) This stripping has an effect on the value
returned by the fn:position(), fn:last(), fn:count(), and fn:deep-equal()
functions.

For any node selection that selects text nodes also, boundary-whitespace-only text nodes would
typically also be included in the selection. However, since the XML Infoset used by the Altova
engines has boundary-whitespace-only text nodes stripped from it, these nodes are not present
in the XML Infoset. As a result, the size of the selection and the numbering of nodes in the
selection will be different than that for a selection which included these text nodes. The
fn:position(), fn:last(), fn:count(), and fn:deep-equal() functions, therefore,
could produce results that are different from those produced by some other processors.

A situation in which boundary-whitespace-only text nodes are evaluated as siblings of other
elements arises most commonly when xsl:apply-templates is used to apply templates.
When the fn:position(), fn:last(), and fn:count() functions are used in patterns with
a name test (for example, para[3], which is short for para[position()=3]),
boundary-whitespace-only nodes are irrelevant since only the named elements (para in the
above example) are selected. (Note, however, that boundary-whitespace-only nodes are
relevant in patterns that use the wildcard, for example, *[10].)

Numeric notation
On output, when an xs:double is converted to a string, scientific notation (for example,
1.0E12) is used when the absolute value is less than 0.000001 or greater than 1,000,000.
Otherwise decimal or integer notation is used.

Precision of xs:decimal
The precision refers to the number of digits in the number, and a minimum of 18 digits is
required by the specification. For division operations that produce a result of type xs:decimal,
the precision is 19 digits after the decimal point with no rounding.

Implicit timezone

http://www.w3.org/TR/2007/REC-xpath20-20070123/
http://www.w3.org/TR/2007/REC-xquery-20070123/
http://www.w3.org/TR/2007/REC-xpath-functions-20070123/
http://www.w3.org/TR/2007/REC-xpath-functions-20070123/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/REC-xml-names/

© 2012 Altova GmbH

XPath 2.0 and XQuery 1.0 Functions 119Engine Information

AltovaXML 2013

When two date, time, or dateTime values need to be compared, the timezone of the values
being compared need to be known. When the timezone is not explicitly given in such a value,
the implicit timezone is used. The implicit timezone is taken from the system clock, and its value
can be checked with the fn:implicit-timezone() function.

Collations
Only the Unicode codepoint collation is supported. No other collations can be used. String
comparisons, including for the fn:max and fn:min functions, are based on this collation.

Namespace axis
The namespace axis is deprecated in XPath 2.0. Use of the namespace axis is, however,
supported. To access namespace information with XPath 2.0 mechanisms, use the
fn:in-scope-prefixes(), fn:namespace-uri() and
fn:namespace-uri-for-prefix() functions.

Static typing extensions
The optional static type checking feature is not supported.

120 Engine Information XPath 2.0 and XQuery 1.0 Functions

© 2012 Altova GmbHAltovaXML 2013

3.5.2 Functions Support

The table below lists (in alphabetical order) the implementation-specific behavior of certain
functions. The following general points should be noted:

· In general, when a function expects a sequence of one item as an argument, and a
sequence of more than one item is submitted, then an error is returned.

· All string comparisons are done using the Unicode codepoint collation.
· Results that are QNames are serialized in the form [prefix:]localname.

Function Name Notes

base-uri · If external entities are used in the source XML document and if
a node in the external entity is specified as the input node
argument of the base-uri() function, it is still the base URI of
the including XML document that is used—not the base URI of
the external entity.

· The base URI of a node in the XML document can be modified
using the xml:base attribute.

collection · The argument is a relative URI that is resolved against the
current base URI.

· If the resolved URI identifies an XML file, then this XML file is
treated as a catalog which references a collection of files. This
file must have the form:
 <collection>
 <doc href="uri-1" />
 <doc href="uri-2" />
 <doc href="uri-3" />
 </collection>

The files referenced by the href attributes are loaded, and their
document nodes are returned as a sequence.

· If the resolved URI does not identify an XML file with the catalog
structure described above, then the argument string (in which
wildcards such as ? and * are allowed) is used as a search
string. XML files with names that match the search expression
are loaded, and their document nodes are returned as a
sequence. See examples below.

· XSLT example: The expression
collection("c:\MyDocs*.xml")//Title returns a
sequence of all DocTitle elements in the .xml files in the
MyDocs folder.

· XQuery example: The expression {for $i in
collection(c:\MyDocs*.xml) return element

doc{base-uri($i)}} returns the base URIs of all the .xml files
in the MyDocs folder, each URI being within a doc element.

· The default collection is empty.

Function Name Notes

count · See note on whitespace in the General Information section.

© 2012 Altova GmbH

XPath 2.0 and XQuery 1.0 Functions 121Engine Information

AltovaXML 2013

current-date,
current-dateTi
me,
current-time

· The current date and time is taken from the system clock.
· The timezone is taken from the implicit timezone provided by

the evaluation context; the implicit timezone is taken from the
system clock.

· The timezone is always specified in the result.

deep-equal · See note on whitespace in the General Information section.

doc · An error is raised only if no XML file is available at the specified
location or if the file is not well-formed. The file is validated if a
schema is available. If the file is not valid, the invalid file is
loaded without schema information.

id · In a well-formed but invalid document that contains two or more
elements having the same ID value, the first element in
document order is returned.

in-scope-prefi
xes

· Only default namespaces may be undeclared in the XML
document. However, even when a default namespace is
undeclared on an element node, the prefix for the default
namespace, which is the zero-length string, is returned for that
node.

last · See note on whitespace in the General Information section.

lower-case · The Unicode character set is supported.

normalize-unic
ode

· The normalization forms NFC, NFD, NFKC, and NFKD are
supported.

Function Name Notes

position · See note on whitespace in the General Information section.

resolve-uri · If the second, optional argument is omitted, the URI to be
resolved (the first argument) is resolved against the base URI
from the static context, which is the URI of the XSLT stylesheet
or the base URI given in the prolog of the XQuery document.

· The relative URI (the first argument) is appended after the last
"/" in the path notation of the base URI notation.

· If the value of the first argument is the zero-length string, the
base URI from the static context is returned, and this URI
includes the file name of the document from which the base URI
of the static context is derived (e.g. the XSLT or XML file).

static-base-ur
i

· The base URI from the static context is the base URI of the
XSLT stylesheet or the base URI specified in the prolog of the

122 Engine Information XPath 2.0 and XQuery 1.0 Functions

© 2012 Altova GmbHAltovaXML 2013

XQuery document.
· When using XPath Evaluator in the XMLSpy IDE, the base URI

from the static context is the URI of the active XML document.

upper-case · The Unicode character set is supported.

© 2012 Altova GmbH

Extensions 123Engine Information

AltovaXML 2013

3.6 Extensions

There are several ready-made functions in programming languages such as Java and C# that
are not available as XPath 2.0 / XQuery 1.0 functions or as XSLT 2.0 functions. A good
example of such functions are the math functions available in Java, such as sin() and cos().
If these functions were available to the designers of XSLT stylesheets and XQuery queries, it
would increase the application area of stylesheets and queries and greatly simplify the tasks of
stylesheet creators.

Altova Engines (XSLT 1.0, XSLT 2.0, and XQuery 1.0), which are used in a number of Altova
products, support the use of extension functions in Java and .NET. The Altova XSLT Engines
additionally support MSXSL scripts for XSLT 1.0 and 2.0 and Altova's own extension functions.

You should note that extension functions are always called from XPath expressions. This
section describes how to use extension functions and MSXSL scripts in your XSLT stylesheets
and XQuery queries. These descriptions are organized into the following sections:

· Java Extension Functions
· .NET Extension Functions
· MSXSL Scripts for XSLT
· Altova Extension Functions

The two main issues considered in the descriptions are: (i) how functions in the respective
libraries are called; and (ii) what rules are followed for converting arguments in a function call to
the required input format of the function, and what rules are followed for the return conversion
(function result to XSLT/XQuery data object).

Requirements
For extension functions support, a Java Runtime Environment (for access to Java functions)
and .NET Framework 2.0 (minimum, for access to .NET functions) must be installed on the
machine running the XSLT transformation or XQuery execution, or must be accessible for the
transformations.

124 Engine Information Extensions

© 2012 Altova GmbHAltovaXML 2013

3.6.1 Java Extension Functions

A Java extension function can be used within an XPath or XQuery expression to invoke a Java
constructor or call a Java method (static or instance).

A field in a Java class is considered to be a method without any argument. A field can be static
or instance. How to access fields is described in the respective sub-sections, static and
instance.

This section is organized into the following sub-sections:

· Java: Constructors
· Java: Static Methods and Static Fields
· Java: Instance Methods and Instance Fields
· Datatypes: XSLT/XQuery to Java
· Datatypes: Java to XSLT/XQuery

Form of the extension function
The extension function in the XPath/XQuery expression must have the form prefix:fname().

· The prefix: part identifies the extension function as a Java function. It does so by
associating the extension function with an in-scope namespace declaration, the URI of
which must begin with java: (see below for examples). The namespace declaration
should identify a Java class, for example: xmlns:myns="java:java.lang.Math".
However, it could also simply be: xmlns:myns="java" (without a colon), with the
identification of the Java class being left to the fname() part of the extension function.

· The fname() part identifies the Java method being called, and supplies the arguments
for the method (see below for examples). However, if the namespace URI identified by
the prefix: part does not identify a Java class (see preceding point), then the Java
class should be identified in the fname() part, before the class and separated from the
class by a period (see the second XSLT example below).

Note: The class being called must be on the classpath of the machine.

XSLT example
Here are two examples of how a static method can be called. In the first example, the class
name (java.lang.Math) is included in the namespace URI and, therefore, must not be in the
fname() part. In the second example, the prefix: part supplies the prefix java: while the
fname() part identifies the class as well as the method.

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(3.14)" />

<xsl:value-of xmlns:jmath="java"
select="jmath:java.lang.Math.cos(3.14)" />

The method named in the extension function (cos() in the example above) must match the
name of a public static method in the named Java class (java.lang.Math in the example
above).

XQuery example
Here is an XQuery example similar to the XSLT example above:

<cosine xmlns:jMath="java:java.lang.Math">
 {jMath:cos(3.14)}
</cosine>

© 2012 Altova GmbH

Extensions 125Engine Information

AltovaXML 2013

User-defined Java classes
If you have created your own Java classes, methods in these classes are called differently
according to: (i) whether the classes are accessed via a JAR file or a class file, and (ii) whether
these files (JAR or class) are located in the current directory (the same directory as the XSLT or
XQuery document) or not. How to locate these files is described in the sections User-Defined
Class Files and User-Defined Jar Files. Note that paths to class files not in the current directory
and to all JAR files must be specified.

User-Defined Class Files

If access is via a class file, then there are two possibilities:

· The class file is in a package. The XSLT or XQuery file is in the same folder as the
Java package.

· The class file is not packaged. The XSLT or XQuery file is in the same folder as the
class file.

· The class file is in a package. The XSLT or XQuery file is at some random location.
· The class file is not packaged. The XSLT or XQuery file is at some random location.

Consider the case where the class file is not packaged and is in the same folder as the XSLT or
XQuery document. In this case, since all classes in the folder are found, the file location does
not need to be specified. The syntax to identify a class is:

java:classname

where

java: indicates that a user-defined Java function is being called; (Java classes in the
current directory will be loaded by default)
classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a
method call.

Class file packaged, XSLT/XQuery file in same folder as Java package
The example below calls the getVehicleType()method of the Car class of the
com.altova.extfunc package. The com.altova.extfunc package is in the folder
JavaProject. The XSLT file is also in the folder JavaProject.

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fn="http://www.w3.org/2005/xpath-functions"
xmlns:car="java:com.altova.extfunc.Car" >

<xsl:output exclude-result-prefixes="fn car xsl fo xs"/>

<xsl:template match="/">
 <a>

 <xsl:value-of select="car:getVehicleType()"/>

</xsl:template>

</xsl:stylesheet>

126 Engine Information Extensions

© 2012 Altova GmbHAltovaXML 2013

Class file not packaged, XSLT/XQuery file in same folder as class file
The example below calls the getVehicleType()method of the Car class of the
com.altova.extfunc package. The Car class file is in the following folder location:
JavaProject/com/altova/extfunc. The XSLT file is also in the folder
JavaProject/com/altova/extfunc.

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fn="http://www.w3.org/2005/xpath-functions"
xmlns:car="java:Car" >

<xsl:output exclude-result-prefixes="fn car xsl fo xs"/>

<xsl:template match="/">
 <a>

 <xsl:value-of select="car:getVehicleType()"/>

</xsl:template>

</xsl:stylesheet>

Class file packaged, XSLT/XQuery file at any location
The example below calls the getCarColor()method of the Car class of the
com.altova.extfunc package. The com.altova.extfunc package is in the folder
JavaProject. The XSLT file is at any location. In this case, the location of the package must be
specified within the URI as a query string. The syntax is:

java:classname[?path=uri-of-package]

where

java: indicates that a user-defined Java function is being called
uri-of-package is the URI of the Java package
classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a
method call. The example below shows how to access a class file that is located in
another directory than the current directory.

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fn="http://www.w3.org/2005/xpath-functions"
xmlns:car="

java:com.altova.extfunc.Car?path=file:///C:/JavaProject/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:new('red')" />

 <a><xsl:value-of select="car:getCarColor($myCar)"/>
</xsl:template>

</xsl:stylesheet>

Class file not packaged, XSLT/XQuery file at any location
The example below calls the getCarColor()method of the Car class of the

© 2012 Altova GmbH

Extensions 127Engine Information

AltovaXML 2013

com.altova.extfunc package. The com.altova.extfunc package is in the folder
JavaProject. The XSLT file is at any location. The location of the class file is specified within
the namespace URI as a query string. The syntax is:

java:classname[?path=uri-of-classfile]

where

java: indicates that a user-defined Java function is being called
uri-of-classfile is the URI of the folder containing the class file
classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a
method call. The example below shows how to access a class file that is located in
another directory than the current directory.

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fn="http://www.w3.org/2005/xpath-functions"
xmlns:car="

java:Car?path=file:///C:/JavaProject/com/altova/extfunc/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:new('red')" />

 <a><xsl:value-of select="car:getCarColor($myCar)"/>
</xsl:template>

</xsl:stylesheet>

Note: When a path is supplied via the extension function, the path is added to the
ClassLoader.

User-Defined Jar Files

If access is via a JAR file, the URI of the JAR file must be specified using the following syntax:

xmlns:classNS="java:classname?path=jar:uri-of-jarfile!/"

The method is then called by using the prefix of the namespace URI that identifies the
class: classNS:method()

In the above:

java: indicates that a Java function is being called
classname is the name of the user-defined class
? is the separator between the classname and the path
path=jar: indicates that a path to a JAR file is being given
uri-of-jarfile is the URI of the jar file
!/ is the end delimiter of the path
classNS:method() is the call to the method

Alternatively, the classname can be given with the method call. Here are two examples of the
syntax:

128 Engine Information Extensions

© 2012 Altova GmbHAltovaXML 2013

xmlns:ns1="java:docx.layout.pages?path=jar:file:///c:/projects/docs/docx.jar!/
"

ns1:main()

xmlns:ns2="java?path=jar:file:///c:/projects/docs/docx.jar!/"
ns2:docx.layout.pages.main()

Here is a complete XSLT example that uses a JAR file to call a Java extension function:

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fn="http://www.w3.org/2005/xpath-functions"
xmlns:car="java?path=jar:file:///C:/test/Car1.jar!/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:Car1.new('red')" />
 <a><xsl:value-of select="car:Car1.getCarColor($myCar)"/>

</xsl:template>

<xsl:template match="car"/>

</xsl:stylesheet>

Note: When a path is supplied via the extension function, the path is added to the
ClassLoader.

Java: Constructors

An extension function can be used to call a Java constructor. All constructors are called with the
pseudo-function new().

If the result of a Java constructor call can be implicitly converted to XPath/XQuery datatypes,
then the Java extension function will return a sequence that is an XPath/XQuery datatype. If the
result of a Java constructor call cannot be converted to a suitable XPath/XQuery datatype, then
the constructor creates a wrapped Java object with a type that is the name of the class returning
that Java object. For example, if a constructor for the class java.util.Date is called (
java.util.Date.new()), then an object having a type java.util.Date is returned. The lexical
format of the returned object may not match the lexical format of an XPath datatype and the
value would therefore need to be converted to the lexical format of the required XPath datatype
and then to the required XPath datatype.

There are two things that can be done with a Java object created by a constructor:

· It can be assigned to a variable:
<xsl:variable name="currentdate" select="date:new()" xmlns:date="
java:java.util.Date" />

· It can be passed to an extension function (see Instance Method and Instance Fields):
<xsl:value-of select="date:toString(date:new())" xmlns:date="

java:java.util.Date" />

Java: Static Methods and Static Fields

A static method is called directly by its Java name and by supplying the arguments for the
method. Static fields (methods that take no arguments), such as the constant-value fields E
and PI, are accessed without specifying any argument.

© 2012 Altova GmbH

Extensions 129Engine Information

AltovaXML 2013

XSLT examples
Here are some examples of how static methods and fields can be called:

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(3.14)" />

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(jMath:PI())" />

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:E() * jMath:cos(3.14)" />

Notice that the extension functions above have the form prefix:fname(). The prefix in all
three cases is jMath:, which is associated with the namespace URI java:java.lang.Math.
(The namespace URI must begin with java:. In the examples above it is extended to contain
the class name (java.lang.Math).) The fname() part of the extension functions must match
the name of a public class (e.g. java.lang.Math) followed by the name of a public static
method with its argument/s (such as cos(3.14)) or a public static field (such as PI()).

In the examples above, the class name has been included in the namespace URI. If it were not
contained in the namespace URI, then it would have to be included in the fname() part of the
extension function. For example:

<xsl:value-of xmlns:java="java:"
select="java:java.lang.Math.cos(3.14)" />

XQuery example
A similar example in XQuery would be:

<cosine xmlns:jMath="java:java.lang.Math">
 {jMath:cos(3.14)}
</cosine>

Java: Instance Methods and Instance Fields

An instance method has a Java object passed to it as the first argument of the method call.
Such a Java object typically would be created by using an extension function (for example a
constructor call) or a stylesheet parameter/variable. An XSLT example of this kind would be:

<xsl:stylesheet version="1.0" exclude-result-prefixes="date"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:date="java:java.util.Date"
 xmlns:jlang="java:java.lang">
 <xsl:param name="CurrentDate" select="date:new()"/>
 <xsl:template match="/">
 <enrollment institution-id="Altova School"
 date="{date:toString($CurrentDate)}"
 type="{jlang:Object.toString(jlang:Object.getClass(date:new()
))}">
 </enrollment>
 </xsl:template>
</xsl:stylesheet>

In the example above, the value of the node enrollment/@type is created as follows:

1. An object is created with a constructor for the class java.util.Date (with the
date:new() constructor).

2. This Java object is passed as the argument of the jlang.Object.getClass method.
3. The object obtained by the getClass method is passed as the argument to the

jlang.Object.toString method.

130 Engine Information Extensions

© 2012 Altova GmbHAltovaXML 2013

The result (the value of @type) will be a string having the value: java.util.Date.

An instance field is theoretically different from an instance method in that it is not a Java object
per se that is passed as an argument to the instance field. Instead, a parameter or variable is
passed as the argument. However, the parameter/variable may itself contain the value returned
by a Java object. For example, the parameter CurrentDate takes the value returned by a
constructor for the class java.util.Date. This value is then passed as an argument to the
instance method date:toString in order to supply the value of /enrollment/@date.

Datatypes: XPath/XQuery to Java

When a Java function is called from within an XPath/XQuery expression, the datatype of the
function's arguments is important in determining which of multiple Java classes having the
same name is called.

In Java, the following rules are followed:

· If there is more than one Java method with the same name, but each has a different
number of arguments than the other/s, then the Java method that best matches the
number of arguments in the function call is selected.

· The XPath/XQuery string, number, and boolean datatypes (see list below) are implicitly
converted to a corresponding Java datatype. If the supplied XPath/XQuery type can be
converted to more than one Java type (for example, xs:integer), then that Java type
is selected which is declared for the selected method. For example, if the Java method
being called is fx(decimal) and the supplied XPath/XQuery datatype is xs:integer,
then xs:integer will be converted to Java's decimal datatype.

The table below lists the implicit conversions of XPath/XQuery string, number, and boolean
types to Java datatypes.

xs:string java.lang.String

xs:boolean boolean (primitive), java.lang.Boolean

xs:integer int, long, short, byte, float, double, and the
wrapper classes of these, such as java.lang.
Integer

xs:float float (primitive), java.lang.Float, double
(primitive)

xs:double double (primitive), java.lang.Double

xs:decimal float (primitive), java.lang.Float, double
(primitive), java.lang.Double

Subtypes of the XML Schema datatypes listed above (and which are used in XPath and
XQuery) will also be converted to the Java type/s corresponding to that subtype's ancestor type.

In some cases, it might not be possible to select the correct Java method based on the supplied
information. For example, consider the following case.

· The supplied argument is an xs:untypedAtomic value of 10 and it is intended for the
method mymethod(float).

· However, there is another method in the class which takes an argument of another
datatype: mymethod(double).

© 2012 Altova GmbH

Extensions 131Engine Information

AltovaXML 2013

· Since the method names are the same and the supplied type (xs:untypedAtomic)
could be converted correctly to either float or double, it is possible that xs:
untypedAtomic is converted to double instead of float.

· Consequently the method selected will not be the required method and might not
produce the expected result. To work around this, you can create a user-defined
method with a different name and use this method.

Types that are not covered in the list above (for example xs:date) will not be converted and will
generate an error. However, note that in some cases, it might be possible to create the required
Java type by using a Java constructor.

Datatypes: Java to XPath/XQuery

When a Java method returns a value, the datatype of the value is a string, numeric or boolean
type, then it is converted to the corresponding XPath/XQuery type. For example, Java's java.
lang.Boolean and boolean datatypes are converted to xsd:boolean.

One-dimensional arrays returned by functions are expanded to a sequence. Multi-dimensional
arrays will not be converted, and should therefore be wrapped.

When a wrapped Java object or a datatype other than string, numeric or boolean is returned,
you can ensure conversion to the required XPath/XQuery type by first using a Java method (e.g
toString) to convert the Java object to a string. In XPath/XQuery, the string can be modified to
fit the lexical representation of the required type and then converted to the required type (for
example, by using the cast as expression).

132 Engine Information Extensions

© 2012 Altova GmbHAltovaXML 2013

3.6.2 .NET Extension Functions

If you are working on the .NET platform, you can use extension functions written in any of the
.NET languages (for example, C#). A .NET extension function can be used within an XPath or
XQuery expression to invoke a constructor, property, or method (static or instance) within a
.NET class.

A property of a .NET class is called using the syntax get_PropertyName().

This section is organized into the following sub-sections:

· .NET: Constructors
· .NET: Static Methods and Static Fields
· .NET: Instance Methods and Instance Fields
· Datatypes: XSLT/XQuery to .NET
· Datatypes: .NET to XSLT/XQuery

Form of the extension function
The extension function in the XPath/XQuery expression must have the form prefix:fname().

· The prefix: part is associated with a URI that identifies the .NET class being
addressed.

· The fname() part identifies the constructor, property, or method (static or instance)
within the .NET class, and supplies any argument/s, if required.

· The URI must begin with clitype: (which identifies the function as being a .NET
extension function).

· The prefix:fname() form of the extension function can be used with system classes
and with classes in a loaded assembly. However, if a class needs to be loaded,
additional parameters containing the required information will have to be supplied.

Parameters
To load an assembly, the following parameters are used:

asm The name of the assembly to be loaded.

ver The version number (maximum of four integers separated by periods).

sn The key token of the assembly's strong name (16 hex digits).

from A URI that gives the location of the assembly (DLL) to be loaded. If the
URI is relative, it is relative to the XSLT or XQuery document. If this
parameter is present, any other parameter is ignored.

partialname The partial name of the assembly. It is supplied to
Assembly.LoadWith.PartialName(), which will attempt to load the
assembly. If partialname is present, any other parameter is ignored.

loc The locale, for example, en-US. The default is neutral.

If the assembly is to be loaded from a DLL, use the from parameter and omit the sn parameter.
If the assembly is to be loaded from the Global Assembly Cache (GAC), use the sn parameter
and omit the from parameter.

A question mark must be inserted before the first parameter, and parameters must be
separated by a semi-colon. The parameter name gives its value with an equals sign (see
example below).

© 2012 Altova GmbH

Extensions 133Engine Information

AltovaXML 2013

Examples of namespace declarations
An example of a namespace declaration in XSLT that identifies the system class
System.Environment:

xmlns:myns="clitype:System.Environment"

An example of a namespace declaration in XSLT that identifies the class to be loaded as
Trade.Forward.Scrip:

xmlns:myns="clitype:Trade.Forward.Scrip?asm=forward;version=10.6.2.1"

An example of a namespace declaration in XQuery that identifies the system class
MyManagedDLL.testClass:. Two cases are distinguished:

1. When the assembly is loaded from the GAC:
declare namespace cs="clitype:MyManagedDLL.testClass?asm=MyManagedDLL;
ver=1.2.3.4;loc=neutral;sn=b9f091b72dccfba8";

2. When the assembly is loaded from the DLL (complete and partial references below):
declare namespace

cs="clitype:MyManagedDLL.testClass?from=file:///C:/Altova
Projects/extFunctions/MyManagedDLL.dll;

declare namespace
cs="clitype:MyManagedDLL.testClass?from=MyManagedDLL.dll;

XSLT example
Here is a complete XSLT example that calls functions in system class System.Math:

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions">
 <xsl:output method="xml" omit-xml-declaration="yes" />
 <xsl:template match="/">
 <math xmlns:math="clitype:System.Math">
 <sqrt><xsl:value-of select="math:Sqrt(9)"/></sqrt>
 <pi><xsl:value-of select="math:PI()"/></pi>
 <e><xsl:value-of select="math:E()"/></e>
 <pow><xsl:value-of select="math:Pow(math:PI(), math:E())"/></pow>
 </math>
 </xsl:template>
</xsl:stylesheet>

The namespace declaration on the element math associates the prefix math: with the URI
clitype:System.Math. The clitype: beginning of the URI indicates that what follows
identifies either a system class or a loaded class. The math: prefix in the XPath expressions
associates the extension functions with the URI (and, by extension, the class) System.Math.
The extension functions identify methods in the class System.Math and supply arguments
where required.

XQuery example
Here is an XQuery example fragment similar to the XSLT example above:

<math xmlns:math="clitype:System.Math">
 {math:Sqrt(9)}
</math>

As with the XSLT example above, the namespace declaration identifies the .NET class, in this

134 Engine Information Extensions

© 2012 Altova GmbHAltovaXML 2013

case a system class. The XQuery expression identifies the method to be called and supplies
the argument.

.NET: Constructors

An extension function can be used to call a .NET constructor. All constructors are called with
the pseudo-function new(). If there is more than one constructor for a class, then the
constructor that most closely matches the number of arguments supplied is selected. If no
constructor is deemed to match the supplied argument/s, then a 'No constructor found'
error is returned.

Constructors that return XPath/XQuery datatypes
If the result of a .NET constructor call can be implicitly converted to XPath/XQuery datatypes,
then the .NET extension function will return a sequence that is an XPath/XQuery datatype.

Constructors that return .NET objects
If the result of a .NET constructor call cannot be converted to a suitable XPath/XQuery
datatype, then the constructor creates a wrapped .NET object with a type that is the name of the
class returning that object. For example, if a constructor for the class System.DateTime is
called (withSystem.DateTime.new()), then an object having a type System.DateTime is
returned.

The lexical format of the returned object may not match the lexical format of a required XPath
datatype. In such cases, the returned value would need to be: (i) converted to the lexical format
of the required XPath datatype; and (ii) cast to the required XPath datatype.

There are three things that can be done with a .NET object created by a constructor:

· It can be used within a variable:
<xsl:variable name="currentdate" select="date:new(2008, 4, 29)"
xmlns:date="clitype:System.DateTime" />

· It can be passed to an extension function (see Instance Method and Instance Fields):
<xsl:value-of select="date:ToString(date:new(2008, 4, 29))" xmlns:date

="clitype:System.DateTime" />

· It can be converted to a string, number, or boolean:
· <xsl:value-of select="xs:integer(data:get_Month(date:new(2008, 4, 29)))

" xmlns:date="clitype:System.DateTime" />

.NET: Static Methods and Static Fields

A static method is called directly by its name and by supplying the arguments for the method.
The name used in the call must exactly match a public static method in the class specified. If
the method name and the number of arguments that were given in the function call matches
more than one method in a class, then the types of the supplied arguments are evaluated for
the best match. If a match cannot be found unambiguously, an error is reported.

Note: A field in a .NET class is considered to be a method without any argument. A property
is called using the syntax get_PropertyName().

Examples
An XSLT example showing a call to a method with one argument (System.Math.Sin(arg)):

<xsl:value-of select="math:Sin(30)" xmlns:math="clitype:System.Math"/>

© 2012 Altova GmbH

Extensions 135Engine Information

AltovaXML 2013

An XSLT example showing a call to a field (considered a method with no argument) (
System.Double.MaxValue()):

<xsl:value-of select="double:MaxValue()" xmlns:double="
clitype:System.Double"/>

An XSLT example showing a call to a property (syntax is get_PropertyName()) (
System.String()):

<xsl:value-of select="string:get_Length('my string')" xmlns:string="
clitype:System.String"/>

An XQuery example showing a call to a method with one argument (System.Math.Sin(arg)):

<sin xmlns:math="clitype:System.Math">
 { math:Sin(30) }
</sin>

.NET: Instance Methods and Instance Fields

An instance method has a .NET object passed to it as the first argument of the method call.
This .NET object typically would be created by using an extension function (for example a
constructor call) or a stylesheet parameter/variable. An XSLT example of this kind would be:

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions">
 <xsl:output method="xml" omit-xml-declaration="yes"/>
 <xsl:template match="/">
 <xsl:variable name="releasedate"
 select="date:new(2008, 4, 29)"
 xmlns:date="clitype:System.DateTime"/>
 <doc>
 <date>
 <xsl:value-of select="date:ToString(date:new(2008, 4, 29))"
 xmlns:date="clitype:System.DateTime"/>
 </date>
 <date>
 <xsl:value-of select="date:ToString($releasedate)"
 xmlns:date="clitype:System.DateTime"/>
 </date>
 </doc>
 </xsl:template>
</xsl:stylesheet>

In the example above, a System.DateTime constructor (new(2008, 4, 29)) is used to create a
.NET object of type System.DateTime. This object is created twice, once as the value of the
variable releasedate, a second time as the first and only argument of the
System.DateTime.ToString() method. The instance method System.DateTime.ToString()
is called twice, both times with the System.DateTime constructor (new(2008, 4, 29)) as its
first and only argument. In one of these instances, the variable releasedate is used to get the
.NET object.

Instance methods and instance fields

136 Engine Information Extensions

© 2012 Altova GmbHAltovaXML 2013

The difference between an instance method and an instance field is theoretical. In an instance
method, a .NET object is directly passed as an argument; in an instance field, a parameter or
variable is passed instead—though the parameter or variable may itself contain a .NET object.
For example, in the example above, the variable releasedate contains a .NET object, and it is
this variable that is passed as the argument of ToString() in the second date element
constructor. Therefore, the ToString() instance in the first date element is an instance
method while the second is considered to be an instance field. The result produced in both
instances, however, is the same.

Datatypes: XPath/XQuery to .NET

When a .NET extension function is used within an XPath/XQuery expression, the datatypes of
the function's arguments are important for determining which one of multiple .NET methods
having the same name is called.

In .NET, the following rules are followed:

· If there is more than one method with the same name in a class, then the methods
available for selection are reduced to those that have the same number of arguments
as the function call.

· The XPath/XQuery string, number, and boolean datatypes (see list below) are implicitly
converted to a corresponding .NET datatype. If the supplied XPath/XQuery type can be
converted to more than one .NET type (for example, xs:integer), then that .NET type
is selected which is declared for the selected method. For example, if the .NET method
being called is fx(double) and the supplied XPath/XQuery datatype is xs:integer,
then xs:integer will be converted to .NET's double datatype.

The table below lists the implicit conversions of XPath/XQuery string, number, and boolean
types to .NET datatypes.

xs:string StringValue, string

xs:boolean BooleanValue, bool

xs:integer IntegerValue, decimal, long, integer,
short, byte, double, float

xs:float FloatValue, float, double

xs:double DoubleValue, double

xs:decimal DecimalValue, decimal, double, float

Subtypes of the XML Schema datatypes listed above (and which are used in XPath and
XQuery) will also be converted to the .NET type/s corresponding to that subtype's ancestor type.

In some cases, it might not be possible to select the correct .NET method based on the
supplied information. For example, consider the following case.

· The supplied argument is an xs:untypedAtomic value of 10 and it is intended for the
method mymethod(float).

· However, there is another method in the class which takes an argument of another
datatype: mymethod(double).

· Since the method names are the same and the supplied type (xs:untypedAtomic)
could be converted correctly to either float or double, it is possible that xs:
untypedAtomic is converted to double instead of float.

· Consequently the method selected will not be the required method and might not
produce the expected result. To work around this, you can create a user-defined

© 2012 Altova GmbH

Extensions 137Engine Information

AltovaXML 2013

method with a different name and use this method.

Types that are not covered in the list above (for example xs:date) will not be converted and will
generate an error.

Datatypes: .NET to XPath/XQuery

When a .NET method returns a value and the datatype of the value is a string, numeric or
boolean type, then it is converted to the corresponding XPath/XQuery type. For example, .
NET's decimal datatype is converted to xsd:decimal.

When a .NET object or a datatype other than string, numeric or boolean is returned, you can
ensure conversion to the required XPath/XQuery type by first using a .NET method (for
example System.DateTime.ToString()) to convert the .NET object to a string. In XPath/
XQuery, the string can be modified to fit the lexical representation of the required type and then
converted to the required type (for example, by using the cast as expression).

138 Engine Information Extensions

© 2012 Altova GmbHAltovaXML 2013

3.6.3 MSXSL Scripts for XSLT

The <msxsl:script> element contains user-defined functions and variables that can be called
from within XPath expressions in the XSLT stylesheet. The <msxsl:script> is a top-level
element, that is, it must be a child element of <xsl:stylesheet> or <xsl:transform>.

The <msxsl:script> element must be in the namespace urn:schemas-microsoft-com:xslt
(see example below).

Scripting language and namespace
The scripting language used within the block is specified in the <msxsl:script> element's
language attribute and the namespace to be used for function calls from XPath expressions is
identified with the implements-prefix attribute (see below).

<msxsl:script language="scripting-language" implements-prefix="user-namespace-
prefix">

 function-1 or variable-1
 ...
 function-n or variable-n

</msxsl:script>

The <msxsl:script> element interacts with the Windows Scripting Runtime, so only languages
that are installed on your machine may be used within the <msxsl:script> element. The .NET
Framework 2.0 platform or higher must be installed for MSXSL scripts to be used.
Consequently, the .NET scripting languages can be used within the <msxsl:script> element.

The language attribute accepts the same values as the language attribute on the HTML
<script> element. If the language attribute is not specified, then Microsoft JScript is assumed
as the default.

The implements-prefix attribute takes a value that is a prefix of a declared in-scope namespace.
This namespace typically will be a user namespace that has been reserved for a function
library. All functions and variables defined within the <msxsl:script> element will be in the
namespace identified by the prefix specified in the implements-prefix attribute. When a
function is called from within an XPath expression, the fully qualified function name must be in
the same namespace as the function definition.

Example
Here is an example of a complete XSLT stylesheet that uses a function defined within a
<msxsl:script> element.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt"
 xmlns:user="http://mycompany.com/mynamespace">

 <msxsl:script language="VBScript" implements-prefix="user">
 <![CDATA[
 ' Input: A currency value: the wholesale price
 ' Returns: The retail price: the input value plus 20% margin,
 ' rounded to the nearest cent
 dim a as integer = 13
 Function AddMargin(WholesalePrice) as integer

© 2012 Altova GmbH

Extensions 139Engine Information

AltovaXML 2013

 AddMargin = WholesalePrice * 1.2 + a
 End Function
]]>
 </msxsl:script>

 <xsl:template match="/">
 <html>
 <body>
 <p>
 Total Retail Price =
 $<xsl:value-of select="user:AddMargin(50)"/>

 Total Wholesale Price =
 $<xsl:value-of select="50"/>

 </p>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

Datatypes
The values of parameters passed into and out of the script block are limited to XPath datatypes.
This restriction does not apply to data passed among functions and variables within the script
block.

Assemblies
An assembly can be imported into the script by using the msxsl:assembly element. The
assembly is identified via a name or a URI. The assembly is imported when the stylesheet is
compiled. Here is a simple representation of how the msxsl:assembly element is to be used.

<msxsl:script>
<msxsl:assembly name="myAssembly.assemblyName" />
<msxsl:assembly href="pathToAssembly" />

...

</msxsl:script>

The assembly name can be a full name, such as:

"system.Math, Version=3.1.4500.1 Culture=neutral
PublicKeyToken=a46b3f648229c514"

or a short name, such as "myAssembly.Draw".

Namespaces
Namespaces can be declared with the msxsl:using element. This enables assembly classes
to be written in the script without their namespaces, thus saving you some tedious typing. Here
is how the msxsl:using element is used so as to declare namespaces.

<msxsl:script>
<msxsl:using namespace="myAssemblyNS.NamespaceName" />

...

</msxsl:script>

The value of the namespace attribute is the name of the namespace.

140 Engine Information Extensions

© 2012 Altova GmbHAltovaXML 2013

© 2012 Altova GmbH

Extensions 141Engine Information

AltovaXML 2013

3.6.4 Altova Extension Functions

Altova extension functions are in the namespace http://www.altova.com/xslt-extensions
and are indicated in this section with the prefix altova:, which is assumed to be bound to the
namespace given above.

The following extension functions are supported in the current version of your Altova product in
the manner described below.

General functions

XPath functions
These functions can be used in XPath contexts:

· altova:generate-auto-number()

· altova:reset-auto-number()

· altova:get-temp-folder()

XSLT functions
These functions can be used in an XSLT context, just like XSLT 2.0's current-group() or key
() functions:

· altova:evaluate()
· altova:distinct-nodes()

· altova:encode-for-rtf()

· altova:xbrl-labels()

· altova:xbrl-footnotes()

Chart functions (Enterprise and Reporting Editions only)
Altova extension functions for charts are supported only in the Enterprise and Reporting
Editions of Altova products and enable charts to be generated from XML data. The chart
functions have been organized into two groups:

· Functions to generate and save charts
· Functions to create charts

A third section gives a listing of the chart data XML structure, from which charts can be
generated. Finally, an example XSLT document shows how chart functions can be used to
generate charts from XML data.

General Functions

The following extension functions are supported in the current version of your Altova product in
the manner described below. However, note that in future versions of your product, support for
one or more of these functions might be discontinued or the behavior of individual functions
might change. Consult the documentation of future releases for information about support for
Altova extension functions in that release.

XPath and XQuery functions
These functions can be used in XPath contexts:

· altova:generate-auto-number()

142 Engine Information Extensions

© 2012 Altova GmbHAltovaXML 2013

· altova:reset-auto-number()

· altova:get-temp-folder()

XSLT functions
These functions can be used in an XSLT context, just like XSLT 2.0's current-group() or key
() functions:

· altova:evaluate()
· altova:distinct-nodes()

· altova:encode-for-rtf()

· altova:xbrl-labels()

· altova:xbrl-footnotes()

XPath functions
These functions can be used in XPath contexts:

altova:generate-auto-number(id as xs:string, start-with as xs:integer,

increment as xs:integer, reset-on-change as xs:string)
Generates a series of numbers having the specified ID. The start integer and the increment is
specified.

altova:reset-auto-number(id as xs:string)
This function resets the auto-numbering of the auto-numbering series specified with the ID
argument. The series is reset to the start integer of the series (see
altova:generate-auto-number above).

altova:get-temp-folder as xs:string
Gets the temporary folder.

XSLT functions
These functions can be used in an XSLT context, just like XSLT 2.0's current-group() or key
() functions:

altova:evaluate()

The altova:evaluate() function takes an XPath expression, passed as a string, as its
mandatory argument. It returns the output of the evaluated expression.

altova:evaluate(XPathExp as xs:string)

For example:

altova:evaluate('//Name[1]')

© 2012 Altova GmbH

Extensions 143Engine Information

AltovaXML 2013

In the example above, note that the expression //Name[1] is passed as a string by enclosing it
in single quotes. The altova:evaluate function returns the contents of the first Name element
in the document.

The altova:evaluate function can take additional (optional) arguments. These arguments are,
respectively, the values of variables with the names p1, p2, p3... pN that can be used in the
XPath expression.

altova:evaluate(XPathExp as xs:string [, p1value ... pNvalue])

where

· the variable names must be of the form pX, X being an integer

· the sequence of the function's arguments, from the second argument onwards
corresponds to the sequence of variables named p1 to pN. So the second argument
will be the value of the variable p1, the third argument that of the variable p2, and so
on.

· The variable values must be of type item*

For example:

<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />
<xsl:value-of select="altova:evaluate($xpath, 10, 20, 'hi')" />
Outputs "hi 20 10"

In the above listing, notice the following:

· The second argument of the altova:evaluate expression is the value assigned to the
variable $p1, the third argument that assigned to the variable $p2, and so on.

· Notice that the fourth argument of the function is a string value, indicated by its being
enclosed in quotes.

· The select attribute of the xs:variable element supplies the XPath expression. Since
this expression must be of type xs:string, it is enclosed in single quotes.

The following examples further illustrate usage:

<xsl:variable name="xpath" select="'$p1'" />
<xsl:value-of select="altova:evaluate($xpath, //Name[1])" />
Outputs value of the first Name element.

<xsl:variable name="xpath" select="'$p1'" />
<xsl:value-of select="altova:evaluate($xpath, '//Name[1]')" />
Outputs "//Name[1]"

The altova:evaluate() extension function is useful in situations where an XPath expression
in the XSLT stylesheet contains one or more parts that must be evaluated dynamically. For
example, consider a situation in which a user enters his request for the sorting criterion and this
criterion is stored in the attribute UserReq/@sortkey. In the stylesheet, you could then have the
expression :

<xsl:sort select="altova:evaluate(../UserReq/@sortkey)" order="ascending"/
>

The altova:evaluate() function reads the sortkey attribute of the UserReq child element of
the parent of the context node. Say the value of the sortkey attribute is Price, then Price is
returned by the altova:evaluate() function and becomes the value of the select attribute:

<xsl:sort select="Price" order="ascending"/>

If this sort instruction occurs within the context of an element called Order, then the Order

mailto:.

144 Engine Information Extensions

© 2012 Altova GmbHAltovaXML 2013

elements will be sorted according to the values of their Price children. Alternatively, if the value
of @sortkey were, say, Date, then the Order elements would be sorted according to the values
of their Date children. So the sort criterion for Order is selected from the sortkey attribute at
runtime. This could not have been achieved with an expression like:

<xsl:sort select="../UserReq/@sortkey" order="ascending"/>

In the case shown above, the sort criterion would be the sortkey attribute itself, not Price or
Date (or any other current content of sortkey).

Variables can be used in the altova:evaluate() extension function as shown in the examples
below:

· Static variables: <xsl:value-of select="$i3, $i2, $i1" />
Outputs the values of three variables.

· Dynamic XPath expression with dynamic variables:
<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />
<xsl:value-of select="altova:evaluate($xpath, 10, 20, 30)" />
Outputs "30 20 10"

· Dynamic XPath expression with no dynamic variable:
<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />
<xsl:value-of select="altova:evaluate($xpath)" />
Outputs error: No variable defined for $p3.

Note: The static context includes namespaces, types, and functions—but not variables—from
the calling environment. The base URI and default namespace are inherited.

altova:distinct-nodes()

The altova:distinct-nodes() function takes a set of one or more nodes as its input and
returns the same set minus nodes with duplicate values. The comparison is done using the
XPath/XQuery function fn:deep-equal.

altova:distinct-nodes($arg as node()*) as node()*

altova:encode-for-rtf()

The altova:encode-for-rtf() function converts the input string into code for RTF.

altova:encode-for-rtf($inputstr as xs:string?,
$preserveallwhitespace as xs:boolean,
$preservenewlines as xs:boolean) as xs:string

Whitespace and new lines will be preserved according to the boolean value specified for their
respective parameters.

altova:xbrl-labels()

The altova:xbrl-labels() function takes two input arguments: a node name and the
taxonomy file location containing the node. The function returns the XBRL labels associated
with the input node.

altova:xbrl-labels($name as xs:QName, $file as xs:string) as node()*

© 2012 Altova GmbH

Extensions 145Engine Information

AltovaXML 2013

altova:xbrl-footnotes()

The altova:footnotes() function takes a node as its input argument and returns the set of
XBRL footnote nodes referenced by the input node.

altova:footnotes($arg as node()) as node()*

Barcode Functions

The Altova XSLT Engines use third-party Java libraries to create barcodes. Given below are the
classes and the public methods used. The classes are packaged in
AltovaBarcodeExtension.jar, which is located in the folder C:\Program
Files\Altova\CommonYYYY\jar.

The Java libraries used are in sub-folders of the folder C:\Program
Files\Altova\CommonYYYY\jar:

· barcode4j\barcode4j.jar (Website: http://barcode4j.sourceforge.net/)

· zxing\core.jar (Website: http://code.google.com/p/zxing/)

The license files are also located in the respective folders.

The com.altova.extensions.barcode package
The package, com.altova.extensions.barcode, is used to generate most of the barcode
types.

The following classes are used:

public class BarcodeWrapper
static BarcodeWrapper newInstance(String name, String msg, int dpi, int

orientation, BarcodePropertyWrapper[] arrProperties)
double getHeightPlusQuiet()
double getWidthPlusQuiet()
org.w3c.dom.Document generateBarcodeSVG()
byte[] generateBarcodePNG()
String generateBarcodePngAsHexString()

public class BarcodePropertyWrapper Used to store the barcode properties that will be
dynamically set later

BarcodePropertyWrapper(String methodName, String propertyValue)
BarcodePropertyWrapper(String methodName, Integer propertyValue

)
BarcodePropertyWrapper(String methodName, Double propertyValue)
BarcodePropertyWrapper(String methodName, Boolean propertyValue)
BarcodePropertyWrapper(String methodName, Character propertyValue)
String getMethodName()
Object getPropertyValue()

public class AltovaBarcodeClassResolver Registers the class
com.altova.extensions.barcode.proxy.zxing.QRCodeBean for the qrcode bean,
additionally to the classes registered by the
org.krysalis.barcode4j.DefaultBarcodeClassResolver.

http://barcode4j.sourceforge.net/
http://code.google.com/p/zxing/

146 Engine Information Extensions

© 2012 Altova GmbHAltovaXML 2013

The com.altova.extensions.barcode.proxy.zxing package
The package, com.altova.extensions.barcode.proxy.zxing, is used to generate the
QRCode barcode type.

The following classes are used:

class QRCodeBean

· Extends org.krysalis.barcode4j.impl.AbstractBarcodeBean

· Creates an AbstractBarcodeBean interface for com.google.zxing.qrcode.encoder

void generateBarcode(CanvasProvider canvasImp, String msg)
void setQRErrorCorrectionLevel(QRCodeErrorCorrectionLevel level)
BarcodeDimension calcDimensions(String msg)
double getVerticalQuietZone()
double getBarWidth()

class QRCodeErrorCorrectionLevel Error correction level for the QRCode
static QRCodeErrorCorrectionLevel byName(String name)
“L” = ~7% correction
“M” = ~15% correction
“H” = ~25% correction
“Q” = ~30% correction

XSLT example
Given below is an XSLT example showing how barcode functions are used in an XSLT
stylesheet.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions"
 xmlns:altova="http://www.altova.com"
 xmlns:altovaext=”http://www.altova.com/xslt-extensions”
 xmlns:altovaext-barcode="java:com.altova.extensions.barcode.BarcodeWrapper"

 xmlns:altovaext-barcode-property="
java:com.altova.extensions.barcode.BarcodePropertyWrapper">
 <xsl:output method="html" encoding="UTF-8" indent="yes"/>
 <xsl:template match="/">
 <html>
 <head><title/></head>
 <body>
 <img alt="barcode" src="{altovaext:get-temp-folder()}barcode.png
"/>
 </body>
 </html>
 <xsl:result-document
 href="{altovaext:get-temp-folder()}barcode.png"
 method="text" encoding="base64tobinary" >
 <xsl:variable name="barcodeObject"
 select="
altovaext-barcode:newInstance('Code39',string('some
value'),
 96,0, (altovaext-barcode-property:new('setModuleWidth',
25.4 div 96 * 2)))"/>
 <xsl:value-of select="
xs:base64Binary(xs:hexBinary(string(altovaext-barcode:generateBarcodePngAsHexS
tring($barcodeObject))))"/>
 </xsl:result-document>
 </xsl:template>

© 2012 Altova GmbH

Extensions 147Engine Information

AltovaXML 2013

</xsl:stylesheet>

Chart Functions

The chart functions listed below enable you to create, generate, and save charts as images.
They are supported in the current version of your Altova product in the manner described below.
However, note that in future versions of your product, support for one or more of these functions
might be discontinued or the behavior of individual functions might change. Consult the
documentation of future releases for information about support for Altova extension functions in
that release.

The chart functions are organized into two groups:

· Functions for generating and saving charts
· Functions for creating charts

Note: Chart functions are supported only in the Enterprise and Reporting Editions of Altova
products.

Functions for generating and saving charts
These functions take the chart object (obtained with the chart creation functions) and either
generate an image or save an image to file

altova:generate-chart-image ($chart, $width, $height, $encoding) as atomic

where

· $chart is the chart extension item obtained with the altova:create-chart function

· $width and $height must be specified with a length unit

· $encoding may be binarytobase64 or binarytobase16

The function returns the chart image in the specified encoding.

altova:generate-chart-image ($chart, $width, $height, $encoding, $imagetype)
as atomic

where

· $chart is the chart extension item obtained with the altova:create-chart function

· $width and $height must be specified with a length unit

· $encoding may be base64Binary or hexBinary

· $imagetype may be one of the following image formats: png, gif, bmp, jpg, jpeg

The function returns the chart image in the specified encoding and image format.

altova:save-chart-image ($chart, $filename, $width, $height) as empty()

where

· $chart is the chart extension item obtained with the altova:create-chart function

· $filename is the path to and name of the file to which the chart image is to be saved

· $width and $height must be specified with a length unit

148 Engine Information Extensions

© 2012 Altova GmbHAltovaXML 2013

The function saves the chart image to the file specified in $filename.

altova:save-chart-image ($chart, $filename, $width, $height, $imagetype) as
empty()

where

· $chart is the chart extension item obtained with the altova:create-chart function

· $filename is the path to and name of the file to which the chart image is to be saved

· $width and $height must be specified with a length unit

· $imagetype may be one of the following image formats: png, gif, bmp, jpg, jpeg

The function saves the chart image to the file specified in $filename in the image format
specified.

Functions for creating charts
The following functions are used to create charts.

altova:create-chart($chart-config, $chart-data-series*) as chart extension

item

where

· $chart-config is the chart-config extension item obtained with the
altova:create-chart-config function or or via the
altova:create-chart-config-from-xml function

· $chart-data-series is the chart-data-series extension item obtained with the
altova:create-chart-data-series function or
altova:create-chart-data-series-from-rows function

The function returns a chart extension item, which is created from the data supplied via the
arguments.

altova:create-chart-config($type-name, $title) as chart-config extension item

where

· $type-name specifies the type of chart to be created: Pie, Pie3d, BarChart,
BarChart3d, BarChart3dGrouped, LineChart, ValueLineChart, RoundGauge,
BarGauge

· $title is the name of the chart

The function returns a chart-config extension item containing the configuration information
of the chart.

altova:create-chart-config-from-xml($xml-struct) as chart-config extension

item

where

· $xml-struct is the XML structure containing the configuration information of the
chart

© 2012 Altova GmbH

Extensions 149Engine Information

AltovaXML 2013

The function returns a chart-config extension item containing the configuration information
of the chart. This information is supplied in an XML data fragment.

altova:create-chart-data-series($series-name?, $x-values*, $y-values*) as

chart-data-series extension item

where

· $series-name specifies the name of the series

· $x-values gives the list of X-Axis values

· $y-values gives the list of Y-Axis values

The function returns a chart-data-series extension item containing the data for building the
chart: that is, the names of the series and the Axes data.

altova:create-chart-data-row(x, y1, y2, y3, ...) as chart-data-x-Ny-row

extension item

where

· x is the value of the X-Axis column of the chart data row

· yN are the values of the Y-Axis columns

The function returns a chart-data-x-Ny-row extension item, which contains the data for the
X-Axis column and Y-Axis columns of a single series.

altova:create-chart-data-series-from-rows($series-names as xs:string*, $row*)

as chart-data-series extension item

where

· $series-name is the name of the series to be created

· $row is the chart-data-x-Ny-row extension item that is to be created as a series

The function returns a chart-data-series extension item, which contains the data for the
X-Axis and Y-Axes of the series.

altova:create-chart-layer($chart-config, $chart-data-series*) as chart-layer

extension item

where

· $chart-config is the chart-config extension item obtained with the
altova:create-chart-config function or or via the
altova:create-chart-config-from-xml function

· $chart-data-series is the chart-data-series extension item obtained with the
altova:create-chart-data-series function or
altova:create-chart-data-series-from-rows function

The function returns a chart-layer extension item, which contains chart-layer data.

altova:create-multi-layer-chart($chart-config, $chart-data-series*,

$chart-layer*)

150 Engine Information Extensions

© 2012 Altova GmbHAltovaXML 2013

where

· $chart-config is the chart-config extension item obtained with the
altova:create-chart-config function or or via the
altova:create-chart-config-from-xml function

· $chart-data-series is the chart-data-series extension item obtained with the
altova:create-chart-data-series function or
altova:create-chart-data-series-from-rows function

· $chart-layer is the chart-layer extension item obtained with the
altova:create-chart-layer function

The function returns a multi-layer-chart item.

altova:create-multi-layer-chart($chart-config, $chart-data-series*,

$chart-layer*, xs:boolean $mergecategoryvalues)

where

· $chart-config is the chart-config extension item obtained with the
altova:create-chart-config function or or via the
altova:create-chart-config-from-xml function

· $chart-data-series is the chart-data-series extension item obtained with the
altova:create-chart-data-series function or
altova:create-chart-data-series-from-rows function

· $chart-layer is the chart-layer extension item obtained with the
altova:create-chart-layer function

The function returns a multi-layer-chart item.

Chart Data XML Structure

Given below is the XML structure of chart data, how it might appear for the Altova extension
functions for charts. This affects the appearance of the specific chart. Not all elements are used
for all chart kinds, e.g. the <Pie> element is ignored for bar charts.

Note: Chart functions are supported only in the Enterprise and Reporting
Editions of Altova products.

<chart-config>
<General

SettingsVersion="1" must be provided
ChartKind="BarChart" Pie, Pie3d, BarChart, StackedBarChart, BarChart3d,

BarChart3dGrouped, LineChart, ValueLineChart, AreaChart, StackedAreaChart, RoundGauge,
BarGauge, CandleStick

BKColor="#ffffff" Color
BKColorGradientEnd="#ffffff" Color. In case of a gradient, BKColor and

BKColorGradientEnd define the gradient's colors
BKMode="#ffffff" Solid, HorzGradient, VertGradient
BKFile="Path+Filename" String. If file exists, its content is drawn over the

background.
BKFileMode="Stretch" Stretch, ZoomToFit, Center, Tile
ShowBorder="1" Bool
PlotBorderColor="#000000" Color

© 2012 Altova GmbH

Extensions 151Engine Information

AltovaXML 2013

PlotBKColor="#ffffff" Color
Title="" String
ShowLegend="1" Bool
OutsideMargin="3.%" PercentOrPixel
TitleToPlotMargin="3.%" PercentOrPixel
LegendToPlotMargin="3.%" PercentOrPixel
Orientation="vert" Enumeration: possible values are: vert, horz
>
<TitleFont

Color="#000000" Color
Name="Tahoma" String
Bold="1" Bool
Italic="0" Bool
Underline="0" Bool
MinFontHeight="10.pt" FontSize (only pt values)
Size="8.%" FontSize />

<LegendFont
Color="#000000"
Name="Tahoma"
Bold="0"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="3.5%" />

<AxisLabelFont
Color="#000000"
Name="Tahoma"
Bold="1"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="5.%" />

</General>

<Line

ConnectionShapeSize="1.%" PercentOrPixel
DrawFilledConnectionShapes="1" Bool
DrawOutlineConnectionShapes="0" Bool
DrawSlashConnectionShapes="0" Bool
DrawBackslashConnectionShapes="0" Bool

/>

<Bar

ShowShadow="1" Bool
ShadowColor="#a0a0a0" Color
OutlineColor="#000000" Color
ShowOutline="1" Bool

/>

<Area

Transparency="0" UINT (0-255) 255 is fully transparent, 0 is opaque
OutlineColor="#000000" Color
ShowOutline="1" Bool

/>

<CandleStick

FillHighClose="0" Bool. If 0, the body is left empty. If 1, FillColorHighClose is used
for the candle body

FillColorHighClose="#ffffff" Color. For the candle body when close > open

152 Engine Information Extensions

© 2012 Altova GmbHAltovaXML 2013

FillHighOpenWithSeriesColor="1" Bool. If true, the series color is used to fill the
candlebody when open > close

FillColorHighOpen="#000000" Color. For the candle body when open > close and
FillHighOpenWithSeriesColor is false

/>

<Colors User-defined color scheme: By default this element is empty except for the style
and has no Color attributes

UseSubsequentColors ="1" Boolean. If 0, then color in overlay is used. If 1, then
subsequent colors from previous chart layer is used

Style="User" Possible values are: "Default", "Grayscale", "Colorful", "Pastel", "User"
Colors="#52aca0" Color: only added for user defined color set
Colors1="#d3c15d" Color: only added for user defined color set
Colors2="#8971d8" Color: only added for user defined color set
...

ColorsN="" Up to ten colors are allowed in a set: from Colors to Colors9
</Colors>

<Pie

ShowLabels="1" Bool
OutlineColor="#404040" Color
ShowOutline="1" Bool
StartAngle="0." Double
Clockwise="1" Bool
Draw2dHighlights="1" Bool
Transparency="0" Int (0 to 255: 0 is opaque, 255 is fully transparent)
DropShadowColor="#c0c0c0" Color
DropShadowSize="5.%" PercentOrPixel
PieHeight="10.%" PercentOrPixel. Pixel values might be different in the result

because of 3d tilting
Tilt="40.0" Double (10 to 90: The 3d tilt in degrees of a 3d pie)
ShowDropShadow="1" Bool
ChartToLabelMargin="10.%" PercentOrPixel
AddValueToLabel="0" Bool
AddPercentToLabel="0" Bool
AddPercentToLabels_DecimalDigits="0" UINT (0 – 2)
>
<LabelFont

Color="#000000"
Name="Arial"
Bold="0"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="4.%" />

</Pie>

<XY>

<XAxis Axis
AutoRange="1" Bool
AutoRangeIncludesZero="1" Bool
RangeFrom="0." Double: manual range
RangeTill="1." Double : manual range
LabelToAxisMargin="3.%" PercentOrPixel
AxisLabel="" String
AxisColor="#000000" Color
AxisGridColor="#e6e6e6" Color
ShowGrid="1" Bool

© 2012 Altova GmbH

Extensions 153Engine Information

AltovaXML 2013

UseAutoTick="1" Bool
ManualTickInterval="1." Double
AxisToChartMargin="0.px" PercentOrPixel
TickSize="3.px" PercentOrPixel
ShowTicks="1" Bool
ShowValues="1" Bool
AxisPosition="LeftOrBottom" Enums: "LeftOrBottom", "RightOrTop",

"AtValue"
AxisPositionAtValue = "0" Double
>
<ValueFont

Color="#000000"
Name="Tahoma"
Bold="0"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="3.%" />

</XAxis>

<YAxis Axis (same as for XAxis)
AutoRange="1"
AutoRangeIncludesZero="1"
RangeFrom="0."
RangeTill="1."
LabelToAxisMargin="3.%"
AxisLabel=""
AxisColor="#000000"
AxisGridColor="#e6e6e6"
ShowGrid="1"
UseAutoTick="1"
ManualTickInterval="1."
AxisToChartMargin="0.px"
TickSize="3.px"

ShowTicks="1" Bool
ShowValues="1" Bool
AxisPosition="LeftOrBottom" Enums: "LeftOrBottom", "RightOrTop",

"AtValue"
AxisPositionAtValue = "0" Double
>
<ValueFont

Color="#000000"
Name="Tahoma"
Bold="0"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="3.%"/>

</YAxis>
</XY>

<XY3d

AxisAutoSize="1" Bool: If false, XSize and YSize define the aspect ration of x and y
axis. If true, aspect ratio is equal to chart window

XSize="100.%" PercentOrPixel. Pixel values might be different in the result because
of 3d tilting and zooming to fit chart

YSize="100.%" PercentOrPixel. Pixel values might be different in the result because
of 3d tilting and zooming to fit chart

SeriesMargin="30.%" PercentOrPixel. Pixel values might be different in the result
because of 3d tilting and zooming to fit chart

Tilt="20." Double. -90 to +90 degrees
Rot="20." Double. -359 to +359 degrees

154 Engine Information Extensions

© 2012 Altova GmbHAltovaXML 2013

FoV="50."> Double. Field of view: 1-120 degree
>
<ZAxis

AutoRange="1"
AutoRangeIncludesZero="1"
RangeFrom="0."
RangeTill="1."
LabelToAxisMargin="3.%"
AxisLabel=""
AxisColor="#000000"
AxisGridColor="#e6e6e6"
ShowGrid="1"
UseAutoTick="1"
ManualTickInterval="1."
AxisToChartMargin="0.px"
TickSize="3.px" >
<ValueFont

Color="#000000"
Name="Tahoma"
Bold="0"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="3.%"/>

</ZAxis>
</XY3d>

<Gauge

MinVal="0." Double
MaxVal="100." Double
MinAngle="225" UINT: -359-359
SweepAngle="270" UINT: 1-359
BorderToTick="1.%" PercentOrPixel
MajorTickWidth="3.px" PercentOrPixel
MajorTickLength="4.%" PercentOrPixel
MinorTickWidth="1.px" PercentOrPixel
MinorTickLength="3.%" PercentOrPixel
BorderColor="#a0a0a0" Color
FillColor="#303535" Color
MajorTickColor="#a0c0b0" Color
MinorTickColor="#a0c0b0" Color
BorderWidth="2.%" PercentOrPixel
NeedleBaseWidth="1.5%" PercentOrPixel
NeedleBaseRadius="5.%" PercentOrPixel
NeedleColor="#f00000" Color
NeedleBaseColor="#141414" Color
TickToTickValueMargin="5.%" PercentOrPixel
MajorTickStep="10." Double
MinorTickStep="5." Double
RoundGaugeBorderToColorRange="0.%" PercentOrPixel
RoundGaugeColorRangeWidth ="6.%" PercentOrPixel
BarGaugeRadius="5.%" PercentOrPixel
BarGaugeMaxHeight="20.%" PercentOrPixel
RoundGaugeNeedleLength="45.%" PercentOrPixel
BarGaugeNeedleLength="3.%" PercentOrPixel
>
<TicksFont

Color="#a0c0b0"
Name="Tahoma"
Bold="0"
Italic="0"

© 2012 Altova GmbH

Extensions 155Engine Information

AltovaXML 2013

Underline="0"
MinFontHeight="10.pt"
Size="4.%"

/>

<ColorRanges> User-defined color ranges. By default empty with no child element
entries

<Entry

From="50. " Double
FillWithColor="1" Bool
Color="#00ff00" Color

/>
<Entry

From="50.0"
FillWithColor="1"
Color="#ff0000"

/>
...

</ColorRanges>
</Gauge>

</chart-config>

Example: Chart Functions

The example XSLT document below shows how Altova extension functions for charts can be
used. Given further below are an XML document and a screenshot of the output image
generated when the XML document is processed with the XSLT document using the Altova
XSLT 2.0 Engine.

Note: Chart functions are supported only in the Enterprise and Reporting Editions of Altova
products.

Note: For more information about how chart data tables are created, see the documentation
of Altova's XMLSpy and StyleVision products.

.

XSLT document
This XSLT document (listing below) uses Altova chart extension functions to generate a pie
chart. It can be used to process the XML document listed further below.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:altovaext="http://www.altova.com/xslt-extensions"
exclude-result-prefixes="#all">
<xsl:output version="4.0" method="html" indent="yes" encoding="UTF-8"/>
<xsl:template match="/">

<html>
<head>

<title>
<xsl:text>HTML Page with Embedded Chart</xsl:text>

</title>
</head>
<body>

<xsl:for-each select="/Data/Region[1]">
<xsl:variable name="extChartConfig" as="item()*">

<xsl:variable name="ext-chart-settings" as="item()*">
<chart-config>

<General
SettingsVersion="1"
ChartKind="Pie3d"

http://www.altova.com
http://www.altova.com

156 Engine Information Extensions

© 2012 Altova GmbHAltovaXML 2013

BKColor="#ffffff"
ShowBorder="1"
PlotBorderColor="#000000"
PlotBKColor="#ffffff"
Title="{@id}"
ShowLegend="1"
OutsideMargin="3.2%"
TitleToPlotMargin="3.%"
LegendToPlotMargin="6.%"
>
<TitleFont

Color="#023d7d"
Name="Tahoma"
Bold="1"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="8.%" />

</General>
</chart-config>

</xsl:variable>
<xsl:sequence select="

altovaext:create-chart-config-from-xml($ext-chart-settings)"/>
</xsl:variable>
<xsl:variable name="chartDataSeries" as="item()*">

<xsl:variable name="chartDataRows" as="item()*">
<xsl:for-each select="(Year)">

<xsl:sequence select="
altovaext:create-chart-data-row((@id), (.))"/>

</xsl:for-each>
</xsl:variable>
<xsl:variable name="chartDataSeriesNames" as="xs:string*"

select=" (("Series 1"), '')[1]"/>
<xsl:sequence

select="altovaext:create-chart-data-series-from-rows(
$chartDataSeriesNames, $chartDataRows)"/>

</xsl:variable>
<xsl:variable name="ChartObj" select="altovaext:create-chart(

$extChartConfig, ($chartDataSeries), false())"/>
<xsl:variable name="sChartFileName" select="'mychart1.png'"/>
<img src="{$sChartFileName, altovaext:save-chart-image(

$ChartObj, $sChartFileName, 400, 400) }"/>
</xsl:for-each>

</body>
</html>

</xsl:template>
</xsl:stylesheet>

XML document
This XML document can be processed with the XSLT document above. Data in the XML
document is used to generate the pie chart shown in the screenshot below.

<?xml version="1.0" encoding="UTF-8"?>
<Data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="YearlySales.xsd">

<ChartType>Pie Chart 2D</ChartType>
<Region id="Americas">

<Year id="2005">30000</Year>
<Year id="2006">90000</Year>
<Year id="2007">120000</Year>
<Year id="2008">180000</Year>
<Year id="2009">140000</Year>
<Year id="2010">100000</Year>

</Region>

© 2012 Altova GmbH

Extensions 157Engine Information

AltovaXML 2013

<Region id="Europe">
<Year id="2005">50000</Year>
<Year id="2006">60000</Year>
<Year id="2007">80000</Year>
<Year id="2008">100000</Year>
<Year id="2009">95000</Year>
<Year id="2010">80000</Year>

</Region>
<Region id="Asia">

<Year id="2005">10000</Year>
<Year id="2006">25000</Year>
<Year id="2007">70000</Year>
<Year id="2008">110000</Year>
<Year id="2009">125000</Year>
<Year id="2010">150000</Year>

</Region>
</Data>

Output image
The pie chart show below is generated when the XML document listed above is processed with
the XSLT document.

Chapter 4

License Information

160 License Information

© 2012 Altova GmbHAltovaXML 2013

4 License Information

This section contains:

· Information about the distribution of this software product
· Information about the intellectual property rights related to this software product
· The Altova Developer License Agreement governing the use of this software product

Please read this information carefully. It is binding upon you since you agreed to these terms
when you installed this software product.

© 2012 Altova GmbH

Electronic Software Distribution 161License Information

AltovaXML 2013

4.1 Electronic Software Distribution

This product is available through electronic software distribution, a distribution method that
provides the following unique benefits:

· You can evaluate the software free-of-charge before making a purchasing decision.
· Once you decide to buy the software, you can place your order online at the Altova

website and immediately get a fully licensed product within minutes.
· When you place an online order, you always get the latest version of our software.
· The product package includes a comprehensive integrated onscreen help system. The

latest version of the user manual is available at www.altova.com (i) in HTML format for
online browsing, and (ii) in PDF format for download (and to print if you prefer to have
the documentation on paper).

30-day evaluation period
After downloading this product, you can evaluate it for a period of up to 30 days free of charge.
About 20 days into this evaluation period, the software will start to remind you that it has not yet
been licensed. The reminder message will be displayed once each time you start the
application. If you would like to continue using the program after the 30-day evaluation period,
you have to purchase an Altova Developer License Agreement, which is delivered in the form of
a key-code that you enter into the Software Activation dialog to unlock the product. You can
purchase your license at the online shop at the Altova website.

Helping Others within Your Organization to Evaluate the Software
If you wish to distribute the evaluation version within your company network, or if you plan to
use it on a PC that is not connected to the Internet, you may only distribute the Setup programs,
provided that they are not modified in any way. Any person that accesses the software installer
that you have provided, must request their own 30-day evaluation license key code and after
expiration of their evaluation period, must also purchase a license in order to be able to
continue using the product.

For further details, please refer to the Altova Developer License Agreement at the end of this
section.

http://www.altova.com/
http://www.altova.com/
http://www.altova.com/support_help.html
http://www.altova.com/

162 License Information Software Activation and License Metering

© 2012 Altova GmbHAltovaXML 2013

4.2 Software Activation and License Metering

As part of Altova’s Software Activation, the software may use your internal network and Internet
connection for the purpose of transmitting license-related data at the time of installation,
registration, use, or update to an Altova-operated license server and validating the authenticity
of the license-related data in order to protect Altova against unlicensed or illegal use of the
software and to improve customer service. Activation is based on the exchange of license
related data such as operating system, IP address, date/time, software version, and computer
name, along with other information between your computer and an Altova license server.

Your Altova product has a built-in license metering module that further helps you avoid any
unintentional violation of the End User License Agreement. Your product is licensed either as a
single-user or multi-user installation, and the license-metering module makes sure that no more
than the licensed number of users use the application concurrently.

This license-metering technology uses your local area network (LAN) to communicate between
instances of the application running on different computers.

Single license
When the application starts up, as part of the license metering process, the software sends a
short broadcast datagram to find any other instance of the product running on another computer
in the same network segment. If it doesn't get any response, it will open a port for listening to
other instances of the application.

Multi license
If more than one instance of the application is used within the same LAN, these instances will
briefly communicate with each other on startup. These instances exchange key-codes in order
to help you to better determine that the number of concurrent licenses purchased is not
accidentally violated. This is the same kind of license metering technology that is common in
the Unix world and with a number of database development tools. It allows Altova customers to
purchase reasonably-priced concurrent-use multi-user licenses.

We have also designed the applications so that they send few and small network packets so as
to not put a burden on your network. The TCP/IP ports (2799) used by your Altova product are
officially registered with the IANA (see
http://www.isi.edu/in-notes/iana/assignments/port-numbers for details) and our license-metering
module is tested and proven technology.

If you are using a firewall, you may notice communications on port 2799 between the computers
that are running Altova products. You are, of course, free to block such traffic between different
groups in your organization, as long as you can ensure by other means, that your license
agreement is not violated.

You will also notice that, if you are online, your Altova product contains many useful functions;
these are unrelated to the license-metering technology.

http://www.isi.edu/in-notes/iana/assignments/port-numbers

© 2012 Altova GmbH

Intellectual Property Rights 163License Information

AltovaXML 2013

4.3 Intellectual Property Rights

The Altova Software and any copies that you are authorized by Altova to make are the
intellectual property of and are owned by Altova and its suppliers. The structure, organization
and code of the Software are the valuable trade secrets and confidential information of Altova
and its suppliers. The Software is protected by copyright, including without limitation by United
States Copyright Law, international treaty provisions and applicable laws in the country in which
it is being used. Altova retains the ownership of all patents, copyrights, trade secrets,
trademarks and other intellectual property rights pertaining to the Software, and that Altova’s
ownership rights extend to any images, photographs, animations, videos, audio, music, text and
"applets" incorporated into the Software and all accompanying printed materials. Notifications of
claimed copyright infringement should be sent to Altova’s copyright agent as further provided on
the Altova Web Site.

Altova software contains certain Third Party Software that is also protected by intellectual
property laws, including without limitation applicable copyright laws as described in detail at
http://www.altova.com/legal_3rdparty.html.

All other names or trademarks are the property of their respective owners.

http://www.altova.com/legal_3rdparty.html

164 License Information License Agreement

© 2012 Altova GmbHAltovaXML 2013

4.4 License Agreement

THIS IS A LEGAL DOCUMENT -- RETAIN FOR YOUR RECORDS
ALTOVA® DEVELOPER LICENSE AGREEMENT

For AltovaXML® Reporting Edition Software
And AltovaXML® Community Edition Software

Licensor:

Altova GmbH
Rudolfsplatz 13a/9
A-1010 Wien
Austria

Important – Read Carefully. Notice to User

This Altova Developer License Agreement for AltovaXML® (“DLAXML”) governs your
right to use, reproduce, bundle, integrate, and distribute the (i) AltovaXML Reporting
Edition Software (“AXRE”) and (ii) the AltovaXML Community Edition Software (“AXCE”)
(collectively hereinafter referenced as the “the AltovaXML Software”). Your license rights
depend on the specific software edition that you have licensed as the editions have
different rights and restrictions applicable to them as set forth in detail below. This
DLAXML is a legal document between you and Altova GmbH (“Altova”). It is important
that you read this document before using the Altova-provided software and any
accompanying documentation, including, without limitation, printed materials, ‘online’
files, or electronic documentation (“Documentation”). By clicking the “I accept” and
“Next” buttons below, installing the AltovaXML Software, including the AltovaXML
Software, distributing the AltovaXML Software or otherwise using the AltovaXML
Software, you agree to be bound by the terms of this DLAXML as well as the Altova
Privacy Policy (“Privacy Policy”) including, without limitation, the warranty disclaimers,
limitation of liability, data use and termination provisions below. You agree that this
agreement is enforceable like any written agreement negotiated and signed by you. If you do
not agree, you are not licensed to use or distribute the AltovaXML Software, and you must
destroy any downloaded copies of the AltovaXML Software in your possession or control.
Please go to our Web site at http://www.altova.com/ALTOVADLAXML to download and print a
copy of this DLAXML for your files and http://www.altova.com/privacy to review the Privacy
Policy.

1. AltovaXML Reporting Edition (“AXRE”) Software Terms and Conditions

(a) License Grant. Upon your acceptance of this DLAXML, Altova grants you a
non-exclusive, non-transferable (except as provided below), limited license (without the right to
grant sublicenses) to:

(i) Install and use the AXRE Software on compatible personal computer(s),
workstation(s), or server(s) up to the Permitted Number of computers, including the right to
develop your own software applications that include the AXRE Software and Documentation.
The Permitted Number of computers and/or users shall be determined and specified at such
time as you elect to purchase a license for the software. You may install one copy of the AXRE
Software on a computer file server within your internal network for the purpose of downloading
and installing this AXRE Software onto other computers within your internal network up to the
Permitted Number of computers in a commercial environment only;

(ii) You may provide access on your network to a web service or other service that
you have developed that utilizes the AXRE Software features or functions in a custom

http://www.altova.com/ALTOVADLAXML
http://www.altova.com/privacy

© 2012 Altova GmbH

License Agreement 165License Information

AltovaXML 2013

application that you have developed and displays a report or other results data generated by
your service in response to and based on data submitted by a user accessing the service;
and/or

 (iii) Reproduce the AXRE Software and/or Documentation and distribute the AXRE
Software in executable form, subject to the Distribution Restrictions and Requirements below, to
third parties electronically or via download from your website or on physical media in

conjunction with a software application developed by you incorporating the AXRE Software.

(iv) You may make one backup and one archival copy of the AXRE software,
provided your backup and archival copies are not installed or used on any computer and further
provided that all such copies shall bear the original and unmodified copyright, patent and other
intellectual property markings that appear on or in the software. You may not transfer the rights
to a backup or archival copy unless you transfer all rights in the AXRE software as provided in
this DLAXML.

(b) Distribution Restrictions and Requirements. In addition to the restrictions and
obligations provided in other sections of this DLAXML, your license to distribute the AXRE
Software and/or Documentation is further subject to all of the following restrictions: (i) the AXRE
Software and/or Documentation component of your software application shall only be licensed
and not sold and all end users are required to purchase a license from Altova or an authorized
reseller, in order to use the AXRE Software component of your software application; (ii) you
may not make the AXRE Software and/or Documentation available as a stand-alone product
but only as a component of or in conjunction with your software application; (iii) you must use
the Setup Program for AXRE provided by Altova AS IS and may not impair, alter or remove
Altova’s DLAXML (which will appear in the installation process and which an end user must
accept in order to be able to install or operate the AXRE software) or any other files; and (iv)
other Altova products cannot be distributed or used under this DLAXML.

(c) Key Codes, Upgrades and Updates. You will receive a purchase key code when you
elect to purchase AXRE software license(s) from either Altova GmbH or an authorized reseller.
The purchase key code will enable you to activate the software. You may not re-license,
reproduce or distribute any key code except with the express written permission of Altova. If the
AXRE software that you have licensed is an upgrade or an update, then the latest update or
upgrade that you download and install replaces all or part of the Software previously licensed.
The update or upgrade and the associated license keys, as applicable, does not constitute the
granting of a second license to the software in that you may not use the upgrade or updated
copy in addition to the copy of the software that it is replacing and whose license has
terminated.

(d) Support and Maintenance. Altova offers “Support & Maintenance Package(s)”
(“SMP”) for the AXRE Software that you have licensed. The Support Period, hereinafter defined,
covered by such SMP shall be delineated at such time as you elect to purchase a SMP. Your
rights with respect to support and maintenance as well as your upgrade eligibility depend on
your decision to purchase SMP and the level of SMP that you have purchased:

(i) If you have not purchased SMP, you will receive the software AS IS and will not
receive any maintenance releases or updates. However; Altova, at its option and in its sole
discretion on a case by case basis, may decide to offer maintenance releases to you as a
courtesy, but these maintenance releases will not include any new features in excess of the
feature set at the time of your purchase of the AXRE Software. In addition, Altova will provide
free technical support to you for thirty (30) days after the date of your purchase (the “Support
Period” for the purposes of this paragraph 1(d)), and Altova, in its sole discretion on a case by
case basis, may also provide free courtesy technical support during your thirty (30) -day
evaluation period. Technical support is provided via a Web-based support form only, and there
is no guaranteed response time.

166 License Information License Agreement

© 2012 Altova GmbHAltovaXML 2013

(ii) If you have purchased SMP then, solely for the duration of its delineated
Support Period, you are eligible to receive the version of the software edition that you have
licensed and all maintenance releases and updates for that edition that are released during your
Support Period. For the duration of your SMP’s Support Period, you will also be eligible to
receive upgrades to the comparable edition of the next version of the AXRE software that
succeeds the software edition that you have licensed for applicable upgrades released during
your Support Period. The specific upgrade edition that you are eligible to receive based on your
Support Period is further detailed in the SMP that you have purchased. Software that is
introduced as a separate product is not included in SMP. Maintenance releases, updates and
upgrades may or may not include additional features. In addition, Altova will provide Priority
Technical Support to you for the duration of the Support Period. Priority Technical Support is
provided via a Web-based support form only and Altova will make commercially reasonable
efforts to respond via e-mail to all requests within forty-eight (48) hours during Altova’s business
hours (MO-FR, 8am UTC – 10pm UTC, Austrian and US holidays excluded) and to make
reasonable efforts to provide work-arounds to errors reported in the software.

(iii) During the Support Period you may also report any software problem or error to
Altova. If Altova determines that a reported reproducible material error in the software exists
and significantly impairs the usability and utility of the AXRE Software, Altova agrees to use
reasonable commercial efforts to correct or provide a usable work-around solution in an
upcoming maintenance release or update, which is made available at certain times at Altova’s
sole discretion. If Altova, in its discretion, requests written verification of an error or malfunction
discovered by you or requests supporting example files that exhibit the software problem, you
shall promptly provide such verification or files, by email, telecopy, or overnight mail, setting
forth in reasonable detail the respects in which the AXRE Software fails to perform. You shall
use reasonable efforts to cooperate in diagnosis or study of errors. Altova may include error
corrections in maintenance releases, updates, or new major releases of the software. Altova is
not obligated to fix errors that are immaterial. Immaterial errors are those that do not
significantly impact use of the software, as determined by Altova in its sole discretion. Whether
or not you have purchased the Support & Maintenance Package, technical support only covers
issues or questions resulting directly out of the operation of the AXRE software and Altova will
not provide you with generic consultation, assistance, or advice under any circumstances.

(iv) Updating the AXRE Software may require the updating of software not covered
by this DLAXML before installation. Updates of the operating system and application software
not specifically covered by this DLAXML are your responsibility and will not be provided by
Altova under this DLAXML. Altova’s obligations under this Section are contingent upon your
proper use of the AXRE Software and your compliance with the terms and conditions of this
DLAXML at all times. Altova shall be under no obligation to provide the above technical support
if, in Altova’s opinion, the AXRE Software has failed due to the following conditions: (a) damage
caused by the relocation of the software to another location or CPU; (b) alterations,
modifications or attempts to change the software without Altova’s written approval; (c) causes
external to the software, such as natural disasters, the failure or fluctuation of electrical power,
or computer equipment failure; (d) your failure to maintain the software at Altova’s specified
release level; or (e) use of the software with other software without Altova’s prior written
approval. It will be your sole responsibility to: (a) comply with all Altova-specified operating and
troubleshooting procedures and then notify Altova immediately of AXRE Software malfunction
and provide Altova with complete information thereof; (b) provide for the security of your
confidential information; and (c) establish and maintain backup systems and procedures
necessary to reconstruct lost or altered files, data or programs.

(e) Limited Warranty. Altova warrants to the person or entity that first purchases a license
for use of the AXRE software pursuant to the terms of this DLAXML that (i) the software will
perform substantially in accordance with any accompanying documentation for a period of
ninety (90) days from the date of receipt, and (ii) any support services provided by Altova shall
be substantially as described in Section 1(d) of this agreement. Some states and jurisdictions
do not allow limitations on duration of an implied warranty, so the above limitation may not apply

© 2012 Altova GmbH

License Agreement 167License Information

AltovaXML 2013

to you. To the extent allowed by applicable law, implied warranties on the AXRE software, if
any, are limited to ninety (90) days. Altova’s and its suppliers’ entire liability and your exclusive
remedy shall be, at Altova’s option, either (i) return of the price paid, if any, or (ii) repair or
replacement of the AXRE software that does not meet Altova’s Limited Warranty and which is
returned to Altova with a copy of your receipt. This Limited Warranty is void if failure of the
AXRE software has resulted from accident, abuse, misapplication, abnormal use, Trojan horse,
virus, or any other malicious external code. Any replacement software will be warranted for the
remainder of the original warranty period or thirty (30) days, whichever is longer. This limited
warranty does not apply to Evaluation Software. THE FOREGOING LIMITED WARRANTY AND
REMEDIES STATE THE SOLE AND EXCLUSIVE REMEDIES FOR ALTOVA’S OR ITS
SUPPLIERS’ BREACH OF WARRANTY. ALTOVA AND ITS SUPPLIERS DO NOT AND
CANNOT WARRANT THE PERFORMANCE OR RESULTS YOU MAY OBTAIN BY USING
THE SOFTWARE. EXCEPT FOR THE FOREGOING LIMITED WARRANTY, AND FOR ANY
WARRANTY, CONDITION, REPRESENTATION OR TERM TO THE EXTENT WHICH THE
SAME CANNOT OR MAY NOT BE EXCLUDED OR LIMITED BY LAW APPLICABLE TO YOU
IN YOUR JURISDICTION, ALTOVA AND ITS SUPPLIERS MAKE NO WARRANTIES,
CONDITIONS, REPRESENTATIONS OR TERMS, EXPRESS OR IMPLIED, WHETHER BY
STATUTE, COMMON LAW, CUSTOM, USAGE OR OTHERWISE AS TO ANY OTHER
MATTERS. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, ALTOVA AND
ITS SUPPLIERS DISCLAIM ALL OTHER WARRANTIES AND CONDITIONS, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, SATISFACTORY QUALITY,
INFORMATIONAL CONTENT OR ACCURACY, QUIET ENJOYMENT, TITLE AND
NON-INFRINGEMENT, WITH REGARD TO THE SOFTWARE, AND THE PROVISION OF OR
FAILURE TO PROVIDE SUPPORT SERVICES. THIS LIMITED WARRANTY GIVES YOU
SPECIFIC LEGAL RIGHTS. YOU MAY HAVE OTHERS, WHICH VARY FROM
STATE/JURISDICTION TO STATE/JURISDICTION.

(f) Limitation of Liability and Infringement Claims. TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW EVEN IF A REMEDY FAILS ITS ESSENTIAL PURPOSE,
IN NO EVENT SHALL ALTOVA OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WHATSOEVER
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER
PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE AXRE
SOFTWARE OR THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES,
EVEN IF ALTOVA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN ANY
CASE, ALTOVA’S ENTIRE LIABILITY UNDER ANY PROVISION OF THIS DLAXML SHALL BE
LIMITED TO THE AMOUNT ACTUALLY PAID BY YOU FOR THE AXRE SOFTWARE
PRODUCT. Because some states and jurisdictions do not allow the exclusion or limitation of
liability, the above limitation may not apply to you. In such states and jurisdictions, Altova’s
liability shall be limited to the greatest extent permitted by law and the limitations or exclusions
of warranties and liability contained herein do not prejudice applicable statutory consumer rights
of person acquiring goods otherwise than in the course of business. The disclaimer and limited
liability above are fundamental to this DLAXML between Altova and you. Altova will indemnify
and hold you harmless and will defend or settle any claim, suit or proceeding brought against
you by a third party that is based upon a claim that the content contained in the AXRE Software
infringes a copyright or violates an intellectual or proprietary right protected by United States or
European Union law (“Claim”), but only to the extent the Claim arises directly out of the use of
the Software and subject to the limitations set forth in this Section 1(f) of this Agreement except
as otherwise expressly provided. You must notify Altova in writing of any Claim within ten (10)
business days after you first receive notice of the Claim, and you shall provide to Altova at no
cost such assistance and cooperation as Altova may reasonably request from time to time in
connection with the defense of the Claim. Altova shall have sole control over any Claim
(including, without limitation, the selection of counsel and the right to settle on your behalf on
any terms Altova deems desirable in the sole exercise of its discretion). You may, at your sole
cost, retain separate counsel and participate in the defense or settlement negotiations. Altova

168 License Information License Agreement

© 2012 Altova GmbHAltovaXML 2013

shall pay actual damages, costs, and attorney fees awarded against you (or payable by you
pursuant to a settlement agreement) in connection with a Claim to the extent such direct
damages and costs are not reimbursed to you by insurance or a third party, to an aggregate
maximum equal to the purchase price of the AXRE Software. If the AXRE Software or its use
becomes the subject of a Claim or its use is enjoined, or if in the opinion of Altova’s legal
counsel the software is likely to become the subject of a Claim, Altova shall attempt to resolve
the Claim by using commercially reasonable efforts to modify the AXRE Software or obtain a
license to continue using the software. If in the opinion of Altova’s legal counsel the Claim, the
injunction or potential Claim cannot be resolved through reasonable modification or licensing,
Altova, at its own election, may terminate this DLAXML without penalty, and will refund to you
on a pro rata basis any fees paid in advance by you to Altova. THE FOREGOING
CONSTITUTES ALTOVA’S SOLE AND EXCLUSIVE LIABILITY FOR INTELLECTUAL
PROPERTY INFRINGEMENT. This indemnity does not apply to infringements that would not be
such, except for customer-supplied elements.

(g) Applicable DLAXML Terms. The terms and conditions set forth in Sections 1 and
3 apply to the AXRE Software.

2. AltovaXML Community Edition (“AXCE”) Software Terms and Conditions

(a) License Grant. Upon your acceptance of this DLAXML, Altova grants you a
non-exclusive, non-transferable (except as provided below), limited license (without the right to
grant sublicenses) to develop software applications that include the AXCE Software and/or
Documentation, reproduce the AXCE Software and/or Documentation, and distribute the
AXCE Software in executable form, subject to the Distribution Restrictions and
Requirements below, to third parties electronically or via download from your website or
on physical media in conjunction with a software application developed by you
incorporating the AXCE Software. You may install the AXCE Software on a server within
your network for the purpose of downloading and installing the Software (to an unlimited
number of client computers on your internal network).

(b) Distribution Restrictions and Requirements. In addition to the restrictions and
obligations provided in other sections of this DLAXML, your license to distribute the
AXCE Software and/or Documentation is further subject to all of the following
restrictions: (i) the AXCE Software and/or Documentation shall only be licensed and not
sold; (ii) you may not make the AXCE Software and/or Documentation available as a
standalone product and if distributed as part of a product bundle you may charge for the
product bundle provided that you license such product bundle at the same or lower fee
at which you license any reasonably equivalent product bundle which does not include
the AXCE Software; (iii) you must use the Setup Program for AXCE software provided by
Altova AS IS and may not impair, alter or remove Altova’s DLAXML (which will appear in the
installation process and which an end user must accept in order to be able to install or operate
the AXCE software) or any other files; and (iv) other Altova products cannot be distributed
or used under this DLAXML.

(c) Warranty Disclaimer. THE AXCE SOFTWARE IS PROVIDED TO YOU FREE OF
CHARGE, AND ON AN “AS-IS” BASIS. ALTOVA PROVIDES NO WARRANTIES FOR THE
AXCE SOFTWARE. TO THE MAXIMUM EXTENT PERMITTED BY LAW, ALTOVA AND ITS
SUPPLIERS DISCLAIM ALL WARRANTIES AND REPRESENTATIONS, WHETHER
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY IMPLIED
WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
SATISFACTORY QUALITY, INFORMATIONAL CONTENT, OR ACCURACY, QUIET
ENJOYMENT, TITLE, AND NON-INFRINGEMENT. ALTOVA DOES NOT WARRANT THAT
THE AXCE SOFTWARE IS ERROR-FREE OR WILL OPERATE WITHOUT INTERRUPTION.
IF MANDATORILY APPLICABLE LAW REQUIRES ANY WARRANTIES WITH RESPECT TO
THE AXCE SOFTWARE, ALL SUCH WARRANTIES ARE LIMITED IN DURATION TO THIRTY

© 2012 Altova GmbH

License Agreement 169License Information

AltovaXML 2013

(30) -DAYS FROM THE DATE OF INSTALLATION OR BEGIN OF USE, WHATEVER IS THE
EARLIER. SOME STATES OR JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS
WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE OTHER
LEGAL RIGHTS THAT VARY FROM STATE TO STATE OR FROM JURISDICTION TO
JURISDICTION. YOU AGREE THAT YOU ARE SOLELY RESPONSIBLE FOR THE
ACCURACY AND ADEQUACY OF THE ACDE OR ACBE SOFTWARE FOR YOUR
INTENDED USE AND YOU WILL INDEMNIFY AND HOLD HARMLESS ALTOVA FROM ANY
3RD PARTY SUIT TO THE EXTENT BASED UPON THE ACCURACY AND ADEQUACY OF
THE ACDE OR ACBE SOFTWARE IN YOUR USE.

(d) Limitation of Liability. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, IN NO EVENT SHALL ALTOVA OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WHATSOEVER
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER
PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE
AUTHENTIC SOFTWARE, THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT
SERVICES, OR ANY PROVISION OF THIS DLAXML, EVEN IF ALTOVA HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. WHERE LEGALLY, LIABILITY CANNOT BE
EXCLUDED, BUT MAY BE LIMITED, ALTOVA’S LIABILITY AND THAT OF ITS SUPPLIERS
SHALL BE LIMITED TO THE SUM OF FIVE DOLLARS (USD $5.00) IN TOTAL. BECAUSE
SOME STATES AND JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION
OF LIABILITY, THE ABOVE LIMITATION MAY NOT APPLY TO YOU. IN SUCH STATES AND
JURISDICTIONS, ALTOVA’S LIABILITY AND THAT OF ITS SUPPLIERS SHALL BE LIMITED
TO THE GREATEST EXTENT PERMITTED BY LAW. THE FOREGOING LIMITATIONS ON
LIABILITY ARE INTENDED TO APPLY TO THE WARRANTIES AND DISCLAIMERS ABOVE
AND ALL OTHER ASPECTS OF THIS DLAXML

(e) Support. Altova is not obliged to provide technical support with respect to the AXCE
software.

(f) Applicable DLAXML Terms. The terms and conditions set forth in Sections 2 and
3 apply to the AXCE software.

3. AltovaXML Software (AXRE and AXCE) Software Terms and Conditions

The terms set forth in Section 3 are applicable to the AXRE and AXCE software licenses and
are in addition to the specific terms applicable to those software licenses.

(a) Title. This DLAXML gives you a limited license to reproduce and distribute the
AltovaXML Software and/or Documentation as set forth above. Altova and its suppliers
retain all right, title and interest, including all copyright and intellectual property rights,
in and to, the AltovaXML Software and/or Documentation and all copies thereof. Title to
the AltovaXML Software is not transferred to you. Ownership of all copies of the AltovaXML
Software and of copies made by you is vested in Altova, subject to the rights of use or
distribution, as applicable, granted to you in this DLAXML. All rights not specifically granted in
this DLAXML are reserved by Altova.

(b) Acknowledgement of Altova's Rights. You acknowledge that the AltovaXML
Software and any copies that you are authorized by Altova to make are the intellectual property
of and are owned by Altova and its suppliers. The structure, organization and code of the
AltovaXML Software are the valuable trade secrets and confidential information of Altova and its
suppliers. The AltovaXML Software is protected by copyright, including without limitation by
United States Copyright Law, international treaty provisions and applicable laws in the country in
which it is being used. You acknowledge that Altova retains the ownership of all patents,
copyrights, trade secrets, trademarks and other intellectual property rights pertaining to the

170 License Information License Agreement

© 2012 Altova GmbHAltovaXML 2013

AltovaXML Software, and that Altova’s ownership rights extend to any images, photographs,
animations, videos, audio, music, text and “applets” incorporated into the AltovaXML Software
and all accompanying printed materials. You will take no actions which adversely affect Altova’s
intellectual property rights in the AltovaXML Software. Trademarks shall be used in accordance
with accepted trademark practice, including identification of trademark owners’ names.
Trademarks may only be used to identify printed output produced by the AltovaXML Software,
and such use of any trademark does not give you any right of ownership in that trademark.
XMLSpy®, Authentic®, StyleVision®, MapForce®, UModel®, DatabaseSpy®, DiffDog®,
SchemaAgent®, SemanticWorks®, MissionKit®, Markup Your Mind®, , and Altova® are
trademarks of Altova GmbH (registered in numerous countries). Unicode and the Unicode Logo
are trademarks of Unicode, Inc. Windows, Windows XP, Windows Vista, and Windows 7 are
trademarks of Microsoft. W3C, CSS, DOM, MathML, RDF, XHTML, XML and XSL are
trademarks (registered in numerous countries) of the World Wide Web Consortium (W3C);
marks of the W3C are registered and held by its host institutions, MIT, INRIA and Keio. Except
as expressly stated above, this DLAXML does not grant you any intellectual property rights in
the AltovaXML Software. Notifications of claimed copyright infringement should be sent to
Altova’s copyright agent as further provided on the Altova Web Site.

(c) Common Restrictions.

(i) You may not reverse engineer, decompile, disassemble or otherwise attempt to
discover the source code, underlying ideas, underlying user interface techniques or algorithms
of the AltovaXML Software by any means whatsoever, directly or indirectly, or disclose any of
the foregoing, except to the extent you may be expressly permitted to decompile under
applicable law in the European Union, if it is essential to do so in order to achieve operability of
the AltovaXML Software with another software program, and you have first requested Altova to
provide the information necessary to achieve such operability and Altova has not made such
information available. Altova has the right to impose reasonable conditions and to request a
reasonable fee before providing such information. Any information supplied by Altova or
obtained by you, as permitted hereunder, may only be used by you for the purpose described
herein and may not be disclosed to any third party or used to create any software which is
substantially similar to the expression of the AltovaXML Software. Requests for information from
users in the European Union with respect to the above should be directed to the Altova
Customer Support Department. You may not loan, rent, lease, sublicense, distribute or
otherwise transfer all or any portion of the AltovaXML Software to third parties except to the
limited extent expressly provided in this DLAXML.

(ii) You may not copy, distribute, or make derivative works of the AltovaXML
Software except as expressly set forth above, and any copies that you are permitted to make
pursuant to this DLAXML must contain the same copyright, patent and other intellectual
property markings that appear on or in the AltovaXML Software. You may not modify, adapt or
translate the AltovaXML Software. You may not, directly or indirectly, encumber or suffer to exist
any lien or security interest on the AltovaXML Software; knowingly take any action that would
cause the AltovaXML Software to be placed in the public domain; or use the AltovaXML
Software in any computer environment not specified in this DLAXML. You will comply with
applicable law and Altova’s instructions regarding the use of the AltovaXML Software. You
agree to notify your employees and agents who may have access to the AltovaXML Software of
the restrictions contained in this DLAXML and to ensure their compliance with these restrictions.
You may not alter or modify the AltovaXML Software or create a new installer for the AltovaXML
Software. You agree to indemnify, hold harmless, and defend Altova from and against any
claims or lawsuits, including attorney’s fees that arise or result from your use or distribution of
the Software and/or Documentation

(d) AltovaXML Software Activation, Updates, Metering and Data Use.

(i) Altova has a built-in license metering module that helps you to avoid any
unintentional violation of this DLAXML. Altova may use your internal network for license

© 2012 Altova GmbH

License Agreement 171License Information

AltovaXML 2013

metering between installed versions of the AltovaXML Software. Altova’s AltovaXML Software
may use your internal network and Internet connection for the purpose of transmitting
license-related data at the time of installation, registration, use, or update to an
Altova-operated license server and validating the authenticity of the license-related data
in order to protect Altova against unlicensed or illegal use of the AltovaXML Software
and to improve customer service. Activation is based on the exchange of license related
data between your computer and the Altova license server. You agree that Altova may
use these measures and you agree to follow any applicable requirements. You further
agree that use of license key codes that are not or were not generated by Altova and
lawfully obtained from Altova or an authorized reseller as part of an effort to activate or
use the AltovaXML Software violates Altova’s intellectual property rights as well as the
terms of this DLAXML. You agree that efforts to circumvent or disable Altova’s copyright
protection mechanisms or license management mechanism violate Altova’s intellectual
property rights as well as the terms of this DLAXML. Altova expressly reserves the rights
to seek all available legal and equitable remedies to prevent such actions and to recover
lost profits, damages and costs.

(ii) Altova provides a new LiveUpdate notification service to you, which is free of
charge. Altova may use your internal network and Internet connection for the purpose of
transmitting license-related data to an Altova-operated LiveUpdate server to validate your
license at appropriate intervals and determine if there is any update available for you.

(iii) The terms and conditions of the Privacy Policy are set out in full at
http://www.altova.com/privacy and are incorporated by reference into this DLAXML. By your
acceptance of the terms of this DLAXML or use of the AltovaXML Software, you authorize the
collection, use and disclosure of information collected by Altova for the purposes provided for in
this DLAXML and/or the Privacy Policy as revised from time to time.

(iv) Notice to European Users. Please note that the information as described in
paragraph 3(d) above may be transferred outside of the European Economic Area, for purposes
of processing, analysis, and review, by Altova, Inc. a company located in Beverly,
Massachusetts, U.S.A., or its subsidiaries or Altova’s subsidiaries or divisions, or authorized
partners, located worldwide. You are advised that the United States uses a sectoral model of
privacy protection that relies on a mix of legislation, governmental regulation, and
self-regulation. You are further advised that the Council of the European Union has found that
this model does not provide "adequate" privacy protections as contemplated by Article 25 of the
European Union's Data Directive. (Directive 95/46/EC, 1995 O.J. (L 281) 31). Article 26 of the
European Union's Data Directive allows for transfer of personal data from the European Union
to a third country if the individual has unambiguously given his consent to the transfer of
personal information, regardless of the third country's level of protection. By agreeing to this
Software License Agreement, you consent to the transfer of all such information to the United
States and the processing of that information as described in this Software License Agreement
and the Privacy Policy.

(e) Disclaimer. THE ALTOVAXML SOFTWARE IS NEITHER GUARANTEED NOR
WARRANTED TO BE ERROR-FREE NOR SHALL ANY LIABILITY BE ASSUMED BY ALTOVA
IN THIS RESPECT. NOTWITHSTANDING ANY SUPPORT FOR ANY TECHNICAL
STANDARD, THE ALTOVAXML SOFTWARE IS NOT INTENDED FOR USE IN OR IN
CONNECTION WITH, WITHOUT LIMITATION, THE OPERATION OF NUCLEAR FACILITIES,
AIRCRAFT NAVIGATION, COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL
EQUIPMENT, MEDICAL DEVICES OR LIFE SUPPORT SYSTEMS, MEDICAL OR HEALTH
CARE APPLICATIONS, OR OTHER APPLICATIONS WHERE THE FAILURE OF THE
ALTOVAXML SOFTWARE OR ERRORS IN DATA PROCESSING COULD LEAD TO DEATH,
PERSONAL INJURY OR SEVERE PHYSICAL OR ENVIRONMENTAL DAMAGE. YOU AGREE
THAT YOU ARE SOLELY RESPONSIBLE FOR THE ACCURACY AND ADEQUACY OF THE
ALTOVAXML SOFTWARE AND ANY DATA GENERATED OR PROCESSED BY THE
SOFTWARE FOR YOUR INTENDED USE AND YOU WILL DEFEND, INDEMNIFY AND HOLD

http://www.altova.com/privacy

172 License Information License Agreement

© 2012 Altova GmbHAltovaXML 2013

ALTOVA, ITS OFFICERS AND EMPLOYEES HARMLESS FROM ANY 3RD PARTY CLAIMS,
DEMANDS, OR SUITS THAT ARE BASED UPON THE ACCURACY AND ADEQUACY OF
THE ALTOVAXML SOFTWARE IN YOUR USE OR ANY DATA GENERATED BY THE
ALTOVA XML SOFTWARE IN YOUR USE.

(f) Restricted Rights Notice and Export Restrictions. The AltovaXML Software was
developed entirely at private expense and is commercial computer software provided with
RESTRICTED RIGHTS. Use, duplication or disclosure by the U.S. Government or a U.S.
Government contractor or subcontractor is subject to the restrictions set forth in this Agreement
and as provided in FAR 12.211 and 12.212 (48 C.F.R. §12.211 and 12.212) or DFARS 227.
7202 (48 C.F.R. §227-7202) as applicable. Consistent with the above, as applicable,
Commercial Computer Software and Commercial Computer Documentation licensed to U.S.
government end users only as commercial items and only with those rights as are granted to all
other end users under the terms and conditions set forth in this DLAXML. Manufacturer is
Altova GmbH, Rudolfsplatz, 13a/9, A-1010 Vienna, Austria/EU. You may not use or otherwise
export or re-export the AltovaXML Software or documentation except as authorized by United
States law and the laws of the jurisdiction in which the AltovaXML Software was obtained. In
particular, but without limitation, the AltovaXML Software or Documentation may not be
exported or re-exported (i) into (or to a national or resident of) any U.S. embargoed country or
(ii) to anyone on the U.S. Treasury Department's list of Specially Designated Nationals or the
U.S. Department of Commerce's Table of Denial Orders. By using the AltovaXML Software, you
represent and warrant that you are not located in, under control of, or a national or resident of
any such country or on any such list.

(g) Termination. Without prejudice to any other rights or remedies of Altova, this DLAXML
may be terminated (i) by you giving Altova written notice of termination or (ii) by Altova, at its
option, giving you written notice of termination or (iii) Altova giving you written notice of
termination if you fail to comply with the terms and conditions of the DLAXML. Upon any
termination or expiration of this DLAXML, you must cease all use or distribution of the
AltovaXML Software, licensed hereunder, destroy all copies then in your possession or control
and take such other actions as Altova may reasonably request to ensure that no copies of the
AltovaXML Software remain in your possession or control or available for distribution in
conjunction with your software product. The terms and conditions set forth in Sections 1(e)-(f),
2(c)-(d), 3(c)-(i) survive termination of this DLAXML as applicable.

(h) Third Party Software. The AltovaXML Software may contain third party software which
requires notices and/or additional terms and conditions. Such required third party software
notices and/or additional terms and conditions are located at our Website at
http://www.altova.com/legal_3rdparty.html and are made a part of and incorporated by
reference into this DLAXML. By accepting this DLAXML, you are also accepting the additional
terms and conditions, if any, set forth therein.

(i) General Legal Provisions. This DLAXML contains the entire agreement and
understanding of the parties with respect to the subject matter hereof, and supersedes all prior
written and oral understandings of the parties with respect to the subject matter hereof. Any
notice or other communication given under this DLAXML shall be in writing and shall have been
properly given by either of us to the other if sent by certified or registered mail, return receipt
requested, or by overnight courier to the address shown on Altova’s Web site for Altova and the
address shown in Altova’s records for you, or such other address as the parties may designate
by notice given in the manner set forth above. This DLAXML will bind and inure to the benefit of
the parties and our respective heirs, personal and legal representatives, affiliates, successors
and permitted assigns. The failure of either of us at any time to require performance of any
provision hereof shall in no manner affect such party’s right at a later time to enforce the same
or any other term of this DLAXML. This DLAXML may be amended only by a document in
writing signed by both of us. In the event of a breach or threatened breach of this DLAXML by
either party, the other shall have all applicable equitable as well as legal remedies. Each party is
duly authorized and empowered to enter into and perform this DLAXML. If, for any reason, any

http://www.altova.com/legal_3rdparty.html

© 2012 Altova GmbH

License Agreement 173License Information

AltovaXML 2013

provision of this DLAXML is held invalid or otherwise unenforceable, such invalidity or
unenforceability shall not affect the remainder of this DLAXML, and this DLAXML shall continue
in full force and effect to the fullest extent allowed by law. The parties knowingly and expressly
consent to the foregoing terms and conditions.

(i) If you are located in the European Union and are using the AltovaXML Software
in the European Union and not in the United States, then this DLAXML will be governed by and
construed in accordance with the laws of the Republic of Austria (excluding its conflict of laws
principles and the U.N. Convention on Contracts for the International Sale of Goods) and you
expressly agree that exclusive jurisdiction for any claim or dispute with Altova or relating in any
way to your use of the AltovaXML Software resides in the Handelsgericht, Wien (Commercial
Court, Vienna) and you further agree and expressly consent to the exercise of personal
jurisdiction in the Handelsgericht, Wien (Commercial Court, Vienna) in connection with any such
dispute or claim.

(ii) If you are located in the United States or are using the AltovaXML Software in
the United States then this DLAXML will be governed by and construed in accordance with the
laws of the Commonwealth of Massachusetts, USA (excluding its conflict of laws principles and
the U.N. Convention on Contracts for the International Sale of Goods) and you expressly agree
that exclusive jurisdiction for any claim or dispute with Altova or relating in any way to your use
of the AltovaXML Software resides in the federal or state courts of Massachusetts and you
further agree and expressly consent to the exercise of personal jurisdiction in the federal or
state courts of the Commonwealth of Massachusetts in connection with any such dispute or
claim.

(iii) If you are located outside of the European Union or the United States and are
not using the AltovaXML Software in the United States, then this DLAXML will be governed by
and construed in accordance with the laws of the Republic of Austria (excluding its conflict of
laws principles and the U.N. Convention on Contracts for the International Sale of Goods) and
you expressly agree that exclusive jurisdiction for any claim or dispute with Altova or relating in
any way to your use of the AltovaXML Software resides in the Handelsgericht, Wien
(Commercial Court, Vienna) and you further agree and expressly consent to the exercise of
personal jurisdiction in the Handelsgericht Wien (Commercial Court, Vienna) in connection with
any such dispute or claim. This DLAXML will not be governed by the conflict of law rules of any
jurisdiction or the United Nations Convention on Contracts for the International Sale of Goods,
the application of which is expressly excluded.

Last Updated: 2012-04-11

© 2012 Altova GmbH

Index 175

Index

.

.NET extension functions,

constructors, 134

datatype conversions, .NET to XPath/XQuery, 137

datatype conversions, XPath/XQuery to .NET, 136

for XSLT and XQuery, 132

instance methods, instance fields, 135

overview, 132

static methods, static fields, 134

.NET interface,

example code, 82

features, 4

object Altova.AltovaXML.XMLValidator, 84

object Altova.AltovaXML.XQuery, 96

object Altova.AltovaXML.XSLT1, 86

object Altova.AltovaXML.XSLT2, 91

object model, 82

usage, 80, 82

A
Altova Developer License Agreement, 160, 164

Altova extension functions,

chart functions (see chart functions), 141

general functions, 141

Altova extensions,

chart functions (see chart functions), 141

Altova XSLT 1.0 Engine,

limitations and implementation-specific behavior, 108

Altova XSLT 2.0 Engine,

general information about, 111

information about, 110

Altova.AltovaXML.Application object, 82

Altova.AltovaXML.dll, 6, 80

AltovaXML,

available functionality, 5

COM interface features, 4

command line features, 4

documentation, 3

installation, 6

introduction, 3

main features of, 4

package, 4

system requirements for, 6

usage of, 10

user manual, 3

AltovaXML.jar, 40

and CLASSPATH, 6

AltovaXMLLib.dll, 6, 40

atomization of nodes,

in XPath 2.0 and XQuery 1.0 evaluation, 118

B
backwards compatibility,

of XSLT 2.0 Engine, 111

C
C# example code,

for .NET interface, 82

C++ example code,

for COM interface, 38

character entities,

in HTML output of XSLT transformation, 108

character normalization,

in XQuery document, 114

Chart functions,

chart data structure for, 150

example, 155

listing, 147

CLASSPATH,

and AltovaXML.jar, 6

collations,

in XPath 2.0, 118

in XQuery document, 114

COM interface,

Application object, 25

C++ example code, 38

example code, 36

features, 4

JScript example code, 37

object model, 24

Index

© 2012 Altova GmbH

176

COM interface,

usage, 22

Validator interface, 26

Visual Basic example code, 36

XQuery interface, 33

XSLT1 interface, 28

XSLT2 interface, 30

COM Server,

Releasing, 102

COM server object,

registering AltovaXML as, 6, 11, 23

com.altova.engines, 40

Command line,

features, 4

for XQuery 1.0 executions, 20

for XSLT 1.0 transformations, 16

for XSLT 2.0 transformations, 18

help, 11

usage summary, 11

validation and well-formedness check, 13

version information from, 11

Copyright, 163

Copyright information, 160

count() function,

in XPath 1.0, 108

count() function in XPath 2.0,

see fn:count(), 118

D
datatypes,

in XPath 2.0 and XQuery 1.0, 118

deep-equal() function in XPath 2.0,

see fn:deep-equal(), 118

default functions namespace,

for XPath 2.0 and XQueyr 1.0 expressions, 118

in XSLT 2.0 stylesheets, 111

Dispatch Interface,

description of, 22

Documentation,

overview of, 7

Dot NET,

see .NET, 80

E
encoding,

in XQuery document, 114

Engine information, 106

Evaluation period, 160, 161

Examples, 22, 36, 40, 82

Extension functions for XSLT and XQuery, 123

Extension Functions in .NET for XSLT and XQuery,

see under .NET extension functions, 132

Extension Functions in Java for XSLT and XQuery,

see under Java extension functions, 124

Extension Functions in MSXSL scripts, 138

external functions,

in XQuery document, 114

F
fn:base-uri in XPath 2.0,

support in Altova Engines, 120

fn:collection in XPath 2.0,

support in Altova Engines, 120

fn:count() in XPath 2.0,

and whitespace, 118

fn:current-date in XPath 2.0,

support in Altova Engines, 120

fn:current-dateTime in XPath 2.0,

support in Altova Engines, 120

fn:current-time in XPath 2.0,

support in Altova Engines, 120

fn:data in XPath 2.0,

support in Altova Engines, 120

fn:deep-equal() in XPath 2.0,

and whitespace, 118

fn:id in XPath 2.0,

support in Altova Engines, 120

fn:idref in XPath 2.0,

support in Altova Engines, 120

fn:index-of in XPath 2.0,

support in Altova Engines, 120

fn:in-scope-prefixes in XPath 2.0,

support in Altova Engines, 120

fn:last() in XPath 2.0,

© 2012 Altova GmbH

Index 177

fn:last() in XPath 2.0,

and whitespace, 118

fn:lower-case in XPath 2.0,

support in Altova Engines, 120

fn:normalize-unicode in XPath 2.0,

support in Altova Engines, 120

fn:position() in XPath 2.0,

and whitespace, 118

fn:resolve-uri in XPath 2.0,

support in Altova Engines, 120

fn:static-base-uri in XPath 2.0,

support in Altova Engines, 120

fn:upper-case in XPath 2.0,

support in Altova Engines, 120

Functionality,

of AltovaXML, 5

functions,

see under XSLT 2.0 functions, 113

XPath 2.0 and XQuery 1.0, 117

H
Help,

from command line, 11

I
implementation-specific behavior,

of XSLT 2.0 functions, 113

implicit timezone,

and XPath 2.0 functions, 118

Installation,

of AltovaXML, 6

Intellectual property rights, 163

J
Java class AltovaXMLFactory,

description of, 65

Java class XMLValidator,

description of, 67

Java class XQuery,

description of, 69

Java class XSLT1,

description of, 73

Java class XSLT2,

description of, 76

Java extension functions,

constructors, 128

datatype conversions, Java to Xpath/XQuery, 131

datatype conversions, XPath/XQuery to Java, 130

for XSLT and XQuery, 124

instance methods, instance fields, 129

overview, 124

static methods, static fields, 128

user-defined class files, 125

user-defined JAR files, 127

Java interface,

additional documentation, 40

example code, 40

features, 4

setup, 40

summary of classes, 58, 65

usage, 40

Java interface IAltovaXMLEngine,

description of, 58

Java interface IAltovaXMLFactory,

description of, 59

Java interface IExecutable,

description of, 60

Java interface IReleasable,

description of, 60

Java interface IXMLValidator,

description of, 61

Java interface IXQuery,

description of, 62

Java interface IXSLT,

description of, 64

JScript example code,

for COM interface, 37

L
last() function,

in XPath 1.0, 108

last() function in XPath 2.0,

see fn:last(), 118

Legal information, 160

library modules,

Index

© 2012 Altova GmbH

178

library modules,

in XQuery document, 114

License, 164

information about, 160

License metering, 162

M
msxsl:script, 138

N
namespaces,

in XQuery document, 114

in XSLT 2.0 stylesheet, 111

O
OOXML files, 103

P
position() function,

in XPath 1.0, 108

position() function in XPath 2.0,

see fn:position(), 118

Q
QName serialization,

when returned by XPath 2.0 functions, 120

R
Raw Interface,

description of, 22

Registering AltovaXML,

as COM server object, 6, 11, 23

Releasing,

COM server, 102

S
schema validation of XML document,

for XQuery, 114

schema-awareness,

of XPath 2.0 and XQuery Engines, 118

Scripts in XSLT/XQuery,

see under Extension functions, 123

Standards conformance,

of Altova engies, 106

of Altova XML Validator, 107

U
Unregistering AltovaXML as a COM server object, 23

Usage,

of AltovaXML, 10

V
Validation,

available functionality, 5

from command line, 13

using .NET interface, 84

Version information,

from command line, 11

Visual Basic example code,

for COM interface, 36

W
Well-formedness check,

from command line, 13

using .NET interface, 84

whitespace handling,

and XPath 2.0 functions, 118

whitespace in XML document,

handling by Altova XSLT 2.0 Engine, 111

© 2012 Altova GmbH

Index 179

whitespace nodes in XML document,

and handling by XSLT 1.0 Engine, 108

X
XML validation,

see validation, 84

XPath 2.0 functions,

general information about, 118

implementation information, 117

see under fn: for specific functions, 118

XPath functions support,

see under fn: for individual functions, 120

XQuery,

Extension functions, 123

XQuery 1.0 Engine,

information about, 114

XQuery 1.0 functions,

general information about, 118

implementation information, 117

see under fn: for specific functions, 118

XQuery 1.0 transformations,

using .NET interface, 96

XQuery executions,

available functionality, 5

from command line, 20

xs:QName,

also see QName, 120

xsl:preserve-space, 108

xsl:strip-space, 108

XSLT,

Extension functions, 123

XSLT 1.0 Engine,

limitations and implementation-specific behavior, 108

XSLT 1.0 transformations,

from command line, 16

using .NET interface, 86

XSLT 2.0 Engine,

general information about, 111

information about, 110

XSLT 2.0 functions,

implementation-specific behavior of, 113

see under fn: for specific functions, 113

XSLT 2.0 stylesheet,

namespace declarations in, 111

XSLT 2.0 transformations,

from command line, 18

using .NET interface, 91

XSLT transformations,

available functionality, 5

Z
ZIP files, 103

	Introduction
	Product Features
	Available Functionality
	System Requirements and Installation
	About this Documentation

	Usage
	Command Line
	XML Validation and Well-Formedness
	XSLT 1.0 Transformations
	XSLT 2.0 Transformations
	XQuery 1.0 Executions

	COM Interface
	Registering AltovaXML as a COM Server Object
	AltovaXML Object Model
	Application
	XMLValidator
	XSLT1
	XSLT2
	XQuery
	Examples
	Visual Basic
	JScript
	C++

	Java Interface
	Example Java Project
	Classes
	AltovaXMLFactory
	XMLValidator
	XQuery
	XSLT1
	XSLT2

	Old Java API (Obsolete)
	Example
	Interfaces
	IAltovaXMLEngine
	IAltovaXMLFactory
	IExecutable
	IReleasable
	IXMLValidator
	IXQuery
	IXSLT

	Classes
	AltovaXMLFactory
	XMLValidator
	XQuery
	XSLT1
	XSLT2

	.NET Interface
	General Usage
	Altova.AltovaXML.XMLValidator
	Altova.AltovaXML.XSLT1
	Altova.AltovaXML.XSLT2
	Altova.AltovaXML.XQuery
	Example

	Explicitly Releasing AltovaXML COM-Server from C# and VB.NET
	OOXML and ZIP Files

	Engine Information
	Altova XML Validator
	XSLT 1.0 Engine: Implementation Information
	XSLT 2.0 Engine: Implementation Information
	General Information
	XSLT 2.0 Elements and Functions

	XQuery 1.0 Engine: Implementation Information
	XPath 2.0 and XQuery 1.0 Functions
	General Information
	Functions Support

	Extensions
	Java Extension Functions
	User-Defined Class Files
	User-Defined Jar Files
	Java: Constructors
	Java: Static Methods and Static Fields
	Java: Instance Methods and Instance Fields
	Datatypes: XPath/XQuery to Java
	Datatypes: Java to XPath/XQuery

	.NET Extension Functions
	.NET: Constructors
	.NET: Static Methods and Static Fields
	.NET: Instance Methods and Instance Fields
	Datatypes: XPath/XQuery to .NET
	Datatypes: .NET to XPath/XQuery

	MSXSL Scripts for XSLT
	Altova Extension Functions
	General Functions
	Barcode Functions
	Chart Functions
	Chart Data XML Structure
	Example: Chart Functions

	License Information
	Electronic Software Distribution
	Software Activation and License Metering
	Intellectual Property Rights
	License Agreement

