
User Manual and Programmers' Reference

All rights reserved. No parts of this work may be reproduced in any form or by any means
- graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems - without the written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered
trademarks of the respective owners. The publisher and the author make no claim to
these trademarks.

While every precaution has been taken in the preparation of this document, the publisher
and the author assume no responsibility for errors or omissions, or for damages resulting
from the use of information contained in this document or from the use of programs and
source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have
been caused directly or indirectly by this document.

Published: 2007

© 2007 Altova GmbH

Altova XMLSpy 2007 Professional Edition User &
Reference Manual

Altova XMLSpy 2007 Professional Edition 1

Table of Contents

Welcome to XMLSpy Professional Edition 3

User Manual 6

71 Introduction

...8Altova's XML Products 1.1

...9XMLSpy's Main Features 1.2
...12User Interface 1.3

..13Project Window1.3.1

..14Info Window1.3.2

..14Main Window1.3.3

..15Entry Helpers1.3.4

..15Menu Bar and Toolbar1.3.5

..16Output Windows1.3.6

172 Tutorials

...18XMLSpy Tutorial 2.1
..18The XMLSpy interface2.1.1

..19Creating a basic XML Schema2.1.2

.. 20Creating a new XML Schema file–

.. 22Defining namespaces–

.. 23Defining a content model–

.. 27Adding elements with drag-and-drop–

.. 28Configuring the Content Model View–

.. 30Completing the basic schema–

..33Advanced XML Schema definitions2.1.3

.. 33Working with Complex Types and Simple Types–

.. 41Referencing global elements–

.. 43Attributes and attribute enumerations–

..46Schema navigation and documentation2.1.4

.. 46Schema navigation–

.. 48Schema documentation–

2 Altova XMLSpy 2007 Professional Edition

..51Creating an XML document2.1.5

.. 52Creating a new XML file–

.. 54Specifying the type of an element–

.. 56Entering data in Grid View–

.. 56Entering data in Text View–

.. 60Validating the document–

.. 64Appending elements and attributes in Grid View–

.. 66Editing in Database/Table View–

.. 70Modifying the schema–

..72Using XSLT to transform XML2.1.6

.. 73Assigning an XSL file–

.. 73Transforming the XML file–

.. 74Modifying the XSL file–

..75Project management2.1.7

.. 75Benefits of projects–

.. 76Building a project–

..77That's it !2.1.8

...78Authentic View Tutorial 2.2
..79Opening an XML Document in Authentic View2.2.1

..80The Authentic View Interface2.2.2

..82Node Operations2.2.3

..85Entering Data in Authentic View2.2.4

..87Entering Attribute Values2.2.5

..87Adding Entities2.2.6

..88Printing the Document2.2.7

903 Text View

...91Visual Editing Guides in Text View 3.1

...92Entry Helpers in Text View 3.2

...94Output Windows 3.3
..94Validation3.3.1

..95Find in Files3.3.2

..97XPath Evaluation3.3.3

...101Editing XML Documents 3.4

...104Editing XQuery Documents 3.5
..104Opening an XQuery Document3.5.1

..105XQuery Entry Helpers3.5.2

..106XQuery Syntax Coloring3.5.3

..108XQuery Intelligent Editing3.5.4

..109Validation and Execution of XQuery Documents3.5.5

..110XQuery And XML Databases3.5.6

...114Editing CSS Documents 3.6

Altova XMLSpy 2007 Professional Edition 3

1174 Enhanced Grid View

...120Editing in Grid View 4.1

...122Database/Table View 4.2

1265 Schema/WSDL Design View

...127Schema Design View 5.1
..132Schema Overview5.1.1

..135Content Model View5.1.2

..144Smart Restrictions5.1.3

..149Working with SchemaAgent5.1.4

.. 150Connecting to SchemaAgent Server–

.. 152Opening Schemas Found in the Search Path–

.. 153Using Schema Constructs–

.. 157Viewing Schemas in SchemaAgent–

.. 157Extended Validation–

...160WSDL Design View 5.2
..161Entry Helpers5.2.1

1646 Authentic View

...166Interface 6.1
..166Overview of the GUI6.1.1

..167Authentic View Toolbar Icons6.1.2

..169Authentic View Main Window6.1.3

..171Authentic View Entry Helpers6.1.4

..175Authentic View Context Menus6.1.5

...177Editing in Authentic View 6.2
..177Tables in Authentic View6.2.1

.. 177SPS Tables–

.. 178XML Tables–

.. 181XML Table Editing Icons–

..183Editing a DB6.2.2

.. 184Navigating a DB Table–

.. 184DB Queries–

.. 188Modifying a DB Table–

..189Working with Dates6.2.3

.. 190Date Picker–

.. 190Text Entry–

..191Defining Entities6.2.4

..192Images in Authentic View6.2.5

..193Keystrokes in Authentic View6.2.6

4 Altova XMLSpy 2007 Professional Edition

1947 Browser View

1958 XMLSpy in MS Visual Studio .NET

...196How the .NET and Standalone Versions Differ 8.1

...199Visual Studio .NET and XSLT Debugger 8.2

...202Visual Studio .NET and SOAP Debugger 8.3

2049 XMLSpy in Eclipse Platform

...205Starting Eclipse and using the XMLSpy Plug-in 9.1

...207Creating XML files in Eclipse 9.2

...209Importing XML files into folders 9.3

...212Differences between Eclipse and standalone versions 9.4

...213Eclipse Platform and XSLT Debugger 9.5

...215Eclipse views and perspectives 9.6

21710 XSLT and XQuery Debugger

...219Mechanism and Interface 10.1

...221Commands and Toolbar Icons 10.2

...224Settings 10.3

...226Starting a Debugging Session 10.4

...228Information Windows 10.5
..229Context Window10.5.1

..229Variables Window10.5.2

..230XPath-Watch Window10.5.3

..230Call Stack Window10.5.4

..231Messages Window10.5.5

..231Templates Window10.5.6

..231Info Window10.5.7

..232Trace Window10.5.8

..232Arranging the Information Windows10.5.9

...234Breakpoints 10.6

...237Tracepoints 10.7

24211 User Reference

...243File Menu 11.1
..243New...11.1.1

..246Open...11.1.2

Altova XMLSpy 2007 Professional Edition 5

..247Open URL...11.1.3

..248Reload11.1.4

..249Encoding11.1.5

..249Close11.1.6

..249Close All11.1.7

..249Save11.1.8

..250Save As...11.1.9

..250Save to URL...11.1.10

..251Save All11.1.11

..251Send by Mail...11.1.12

..252Print...11.1.13

..253Print Preview11.1.14

..253Print Setup...11.1.15

..254Most Recently Used Files11.1.16

..254Exit11.1.17

...255Edit Menu 11.2
..255Undo11.2.1

..256Redo11.2.2

..256Cut11.2.3

..256Copy11.2.4

..256Paste11.2.5

..256Delete11.2.6

..256Copy as XML-Text11.2.7

..257Copy as Structured Text11.2.8

..259Insert File Path11.2.9

..259Copy XPath11.2.10

..259Pretty-Print XML Text11.2.11

..259Select All11.2.12

..260Find...11.2.13

..262Find Next11.2.14

..263Replace11.2.15

..264Find in Files11.2.16

..266Insert/Remove Bookmark11.2.17

..266Remove All Bookmarks11.2.18

..266Goto Next Bookmark11.2.19

..266Goto Previous Bookmark11.2.20

...267Project Menu 11.3
..268New Project11.3.1

..268Open Project11.3.2

..268Reload Project11.3.3

..269Close Project11.3.4

..269Save Project11.3.5

..269Source control11.3.6

.. 270Open Project–

.. 273Enable Source Code Control–

6 Altova XMLSpy 2007 Professional Edition

.. 273Get Latest Version–

.. 274Check Out–

.. 274Check In–

.. 275Undo Check Out...–

.. 276Add to Source Control–

.. 277Remove from Source Control–

.. 278Show History–

.. 279Show Differences–

.. 280Properties–

.. 281Refresh Status–

.. 281Run Native Interface–

..281Add Files to Project11.3.7

..281Add URL to Project11.3.8

..282Add Active File to Project11.3.9

..282Add Active And Related Files to Project11.3.10

..282Add Project Folder to Project11.3.11

..282Add External Folder to Project11.3.12

..285Add External Web Folder to Project11.3.13

..287Project Properties11.3.14

..289Most Recently Used Projects11.3.15

...290XML Menu 11.4
..290Insert11.4.1

.. 291Insert Attribute–

.. 291Insert Element–

.. 291Insert Text–

.. 292Insert CDATA–

.. 292Insert Comment–

.. 292Insert XML–

.. 292Insert Processing Instruction–

.. 292Insert DOCTYPE–

.. 293Insert ExternalID–

.. 293Insert ELEMENT–

.. 294Insert ATTLIST–

.. 294Insert ENTITY–

.. 294Insert NOTATION–

..294Append11.4.2

.. 295Append Attribute–

.. 295Append Element–

.. 295Append Text–

.. 296Append CDATA–

.. 296Append Comment–

.. 296Append XML–

.. 296Append Processing Instruction–

.. 296Append DOCTYPE–

.. 297Append ExternalID–

Altova XMLSpy 2007 Professional Edition 7

.. 297Append ELEMENT–

.. 298Append ATTLIST–

.. 298Append ENTITY–

.. 298Append NOTATION–

..298Add Child11.4.3

.. 299Add Child Attribute–

.. 299Add Child Element–

.. 299Add Child Text–

.. 299Add Child CDATA–

.. 300Add Child Comment–

.. 300Add Child XML–

.. 300Add Child Processing Instruction–

.. 300Add Child DOCTYPE–

.. 300Add Child ExternalID–

.. 301Add Child ELEMENT–

.. 301Add Child ATTLIST–

.. 301Add Child ENTITY–

.. 301Add Child NOTATION–

..301Convert To11.4.4

.. 302Convert To Attribute–

.. 302Convert To Element–

.. 302Convert To Text–

.. 302Convert To CDATA–

.. 302Convert To Comment–

.. 303Convert To XML–

.. 303Convert To Processing Instruction–

.. 303Convert To DOCTYPE–

.. 303Convert To ExternalID–

.. 303Convert To ELEMENT–

.. 303Convert To ATTLIST–

.. 303Convert To ENTITY–

.. 303Convert To NOTATION–

..304Table11.4.5

.. 304Display as Table–

.. 305Insert Row–

.. 305Append Row–

.. 305Ascending Sort–

.. 305Descending Sort–

..306Move Left11.4.6

..306Move Right11.4.7

..306Enclose in Element11.4.8

..307Evaluate XPath11.4.9

..307Check Well-Formedness11.4.10

..308Validate11.4.11

..311Update Entry-Helpers11.4.12

8 Altova XMLSpy 2007 Professional Edition

..312Namespace Prefix.11.4.13

...313DTD/Schema Menu 11.5
..313Assign DTD11.5.1

..313Assign Schema11.5.2

..314Include another DTD11.5.3

..314Go to DTD11.5.4

..314Go to Schema11.5.5

..314Go to Definition11.5.6

..315Generate DTD/Schema11.5.7

..316Convert DTD/Schema11.5.8

..319Convert to UML11.5.9

..320Map to other DTD/Schema or DB in MapForce...11.5.10

..320Design HTML/PDF Output in StyleVision...11.5.11

..320Generate Sample XML File11.5.12

..322Flush Memory Cache11.5.13

...323Schema Design Menu 11.6
..323Schema Settings11.6.1

..325Save Diagram11.6.2

..325Generate Documentation11.6.3

..327Configure View11.6.4

..331Zoom11.6.5

..331Display All Globals11.6.6

..332Display Diagram11.6.7

..332Enable Oracle Schema Extensions11.6.8

..333Oracle Schema Settings11.6.9

..333Enable Microsoft SQL Server Schema Extensions11.6.10

..334Named Schema Relationships11.6.11

..335Unnamed Element Relationships11.6.12

..335Enable Tamino Schema Extensions11.6.13

..336Tamino Schema Properties11.6.14

..336Connect to SchemaAgent Server11.6.15

..337Disconnect from SchemaAgent Server11.6.16

..337Show in SchemaAgent11.6.17

..338Extended Validation11.6.18

...339XSL/XQuery Menu 11.7
..340XSL Transformation11.7.1

..341XSL:FO Transformation11.7.2

..342XSL Parameters/XQuery Variables11.7.3

..345XQuery Execution11.7.4

..346Assign XSL11.7.5

..346Assign XSL:FO11.7.6

..346Assign Sample XML file11.7.7

..347Go to XSL11.7.8

..347Start Debugger/Go11.7.9

..347Stop Debugger11.7.10

Altova XMLSpy 2007 Professional Edition 9

..347Restart Debugger11.7.11

..347End Debugger Session11.7.12

..348Step Into11.7.13

..348Step Out11.7.14

..348Step Over11.7.15

..348Show Current Execution Node11.7.16

..348Insert/Remove Breakpoint11.7.17

..349Insert/Remove Tracepoint11.7.18

..349Enable/Disable Breakpoint11.7.19

..349Enable/Disable Tracepoint11.7.20

..349Breakpoints/Tracepoints11.7.21

..350Debug Windows11.7.22

..350XSLT/XQuery Settings11.7.23

...351Authentic Menu 11.8
..351New Document11.8.1

..352Edit Database Data11.8.2

..353Assign a StyleVision Stylesheet11.8.3

..353Edit StyleVision Stylesheet11.8.4

..353Define XML Entities11.8.5

..355Hide Markup11.8.6

..355Show Small Markup11.8.7

..355Show Large Markup11.8.8

..355Show Mixed Markup11.8.9

..355Append Row11.8.10

..356Insert Row11.8.11

..356Duplicate Row11.8.12

..356Move Row Up11.8.13

..356Move Row Down11.8.14

..356Delete Row11.8.15

...357DB Menu 11.9
..357Connecting to a Data Source11.9.1

.. 358Connection Wizard–

.. 360Existing Connections–

.. 361ADO Connections–

.. 365ODBC Connections–

..367Query Database11.9.2

.. 368Data Sources–

.. 369Browser Pane: Viewing the DB Objects–

.. 373Query Pane: Description and Features–

.. 375Query Pane: Working with Queries–

.. 376Results and Messages–

..378IBM DB211.9.3

.. 379Assign XML Schema–

..380Tamino11.9.4

.. 381Installing Tamino–

10 Altova XMLSpy 2007 Professional Edition

.. 381Installing WebDAV–

.. 381Tamino Schema Extensions–

.. 382Creating, Saving, and Listing Tamino Schemas–

... 388Adding Legacy Schemas to Tamino

... 389Tamino Schema Definition Limitations

.. 389Editing Tamino Schemas–

.. 390Creating XML Files Based on Tamino Schemas–

.. 392Querying and Retrieving Tamino Data–

..395Oracle XML DB11.9.5

.. 395Search...–

.. 396List schemas–

.. 397Add Schema–

.. 399Browse Oracle XML documents–

.. 399Properties–

.. 400Adding XML document instances–

...401Convert Menu 11.10
..401Import Text File11.10.1

..403Import Database Data11.10.2

..407Import Microsoft Word Document11.10.3

..407Create XML Schema from DB Structure11.10.4

..411DB Import Based on XML Schema11.10.5

..412Create DB Structure from XML Schema11.10.6

..415Export to Text Files11.10.7

..418Export to a Database11.10.8

...421View Menu 11.11
..421Text View11.11.1

..421Enhanced Grid View11.11.2

..421Schema/WSDL Design View11.11.3

..422Authentic View11.11.4

..422Browser View11.11.5

..422Expand11.11.6

..422Collapse11.11.7

..423Expand Fully11.11.8

..423Collapse Unselected11.11.9

..423Optimal Widths11.11.10

..423Word Wrap11.11.11

..423Go to Line/Char11.11.12

..424Go to File11.11.13

..424Line Numbers Margin11.11.14

..424Bookmarks Margin11.11.15

..424Source Folding Margin11.11.16

..425Indentation Guides11.11.17

...426Browser Menu 11.12
..426Back11.12.1

..426Forward11.12.2

Altova XMLSpy 2007 Professional Edition 11

..426Stop11.12.3

..426Refresh11.12.4

..426Fonts11.12.5

..426Separate Window11.12.6

...427Tools Menu 11.13
..427Spelling11.13.1

..429Spelling Options11.13.2

..433Switch to Scripting Environment11.13.3

..433Show Macros11.13.4

..434Project11.13.5

.. 434Assign Script to Project–

.. 434Unassign Scripts from Project–

.. 434Project Scripts Active–

..434Comparisons11.13.6

.. 434Compare Open File With–

.. 436Compare Directories–

.. 438Compare Options–

..441Customize11.13.7

.. 441Commands–

.. 442Toolbars–

.. 443Keyboard–

.. 448Menu–

.. 450Macros–

.. 450Plug-Ins–

.. 452Options–

.. 452Customize Context Menu–

..454Options11.13.8

.. 454File–

.. 456File Types–

.. 458Editing–

.. 459View–

.. 460Grid Fonts–

.. 460Schema Fonts–

.. 461Text Fonts–

.. 462Colors–

.. 464Encoding–

.. 465XSL–

.. 466Scripting–

...468Window Menu 11.14
..468Cascade11.14.1

..468Tile Horizontally11.14.2

..468Tile Vertically11.14.3

..468Project Window11.14.4

..468Info Window11.14.5

..469Entry Helpers11.14.6

12 Altova XMLSpy 2007 Professional Edition

..469Output Windows11.14.7

..469Project and Entry Helpers11.14.8

..469All On/Off11.14.9

..469Currently Open Window List11.14.10

...471Help Menu 11.15
..471Table of Contents11.15.1

..471Index11.15.2

..471Search11.15.3

..472Keyboard Map11.15.4

..472Activation, Order Form, Registration, Updates11.15.5

..473Support Center, FAQ, Downloads11.15.6

..474On the Internet11.15.7

..474About11.15.8

Programmers' Reference 476

4771 Release Notes

4792 Scripting

...480Overview 2.1
..480Scripting projects2.1.1

..481Running Forms, Event Handlers, and Macros2.1.2

..483Scripting Options2.1.3

...484The Scripting Environment GUI 2.2
..484Project Window2.2.1

..486Main Window2.2.2

..487Form Object Bar2.2.3

..488The Form Editor2.2.4

...493Using the Scripting Environment 2.3
..493Creating an Event Handler2.3.1

..495Creating a Form2.3.2

..500Writing a Macro2.3.3

..502Calling macros2.3.4

..504Programming points to note2.3.5

...505Menus 2.4
..505File2.4.1

..505Edit2.4.2

..505View2.4.3

..506Project2.4.4

Altova XMLSpy 2007 Professional Edition 13

..507Layout2.4.5

..510Draw2.4.6

..511Window2.4.7

5123 XMLSpy Plugins

...513Registration of IDE PlugIns 3.1

...514ActiveX Controls 3.2

...515Configuration XML 3.3

...518ATL sample files 3.4
..518Interface description (IDL)3.4.1

..520Class definition3.4.2

..520Implementation3.4.3

...523IXMLSpyPlugIn 3.5
..523OnCommand3.5.1

..524OnUpdateCommand3.5.2

..524OnEvent3.5.3

..526GetUIModifications3.5.4

..527GetDescription3.5.5

5284 The XMLSpy API

...529Overview 4.1
..529Object model4.1.1

..530Simple document access4.1.2

..531Error handling4.1.3

..533Events4.1.4

..536Import and export of data4.1.5

..538Using XMLData to modify document structure4.1.6

..542The DOM and XMLData4.1.7

..544Obsolete Authentic View Row operations4.1.8

..545Obsolete Authentic View Editing operations4.1.9

...547Usage Examples 4.2
..547JScript: Bubble Sort Dynamic Tables4.2.1

..548VBScript: Using object-level events4.2.2

...550Interfaces 4.3
..550Application4.3.1

.. 551Events–

... 551OnBeforeOpenDocument

... 552OnBeforeOpenProject

... 552OnDocumentOpened

... 553OnProjectOpened

.. 553ActiveDocument–

.. 554AddMacroMenuItem–

14 Altova XMLSpy 2007 Professional Edition

.. 554Application–

.. 554ClearMacroMenu–

.. 554CurrentProject–

.. 555Dialogs–

.. 555Documents–

.. 555FindInFiles–

.. 555GetDatabaseImportElementList–

.. 556GetDatabaseSettings–

.. 556GetDatabaseTables–

.. 557GetExportSettings–

.. 557GetTextImportElementList–

.. 558GetTextImportExportSettings–

.. 558ImportFromDatabase–

.. 559ImportFromSchema–

.. 560ImportFromText–

.. 561ImportFromWord–

.. 561NewProject–

.. 561OpenProject–

.. 562Parent–

.. 562Quit–

.. 562ReloadSettings–

.. 563RunMacro–

.. 563ScriptingEnvironment–

.. 563ShowApplication–

.. 564ShowFindInFiles–

.. 564ShowForm–

.. 564URLDelete–

.. 565URLMakeDirectory–

.. 565Visible–

.. 565WarningNumber–

.. 565WarningText–

..566AuthenticDataTransfer4.3.2

.. 566dropEffect–

.. 567getData–

.. 567ownDrag–

.. 567type–

..567AuthenticRange4.3.3

.. 569AppendRow–

.. 569Application–

.. 570CanPerformAction–

.. 570CanPerformActionWith–

.. 571Clone–

.. 571CollapsToBegin–

.. 571CollapsToEnd–

.. 571Copy–

Altova XMLSpy 2007 Professional Edition 15

.. 572Cut–

.. 572Delete–

.. 572DeleteRow–

.. 573DuplicateRow–

.. 573ExpandTo–

.. 573FirstTextPosition–

.. 574FirstXMLData–

.. 575FirstXMLDataOffset–

.. 576GetElementAttributeNames–

.. 576GetElementAttributeValue–

.. 577GetElementHierarchy–

.. 577GetEntityNames–

.. 577Goto–

.. 578GotoNext–

.. 578GotoNextCursorPosition–

.. 579GotoPrevious–

.. 579GotoPreviousCursorPosition–

.. 580HasElementAttribute–

.. 580InsertEntity–

.. 581InsertRow–

.. 581IsCopyEnabled–

.. 581IsCutEnabled–

.. 582IsDeleteEnabled–

.. 582IsEmpty–

.. 582IsEqual–

.. 582IsFirstRow–

.. 583IsInDynamicTable–

.. 583IsLastRow–

.. 583IsPasteEnabled–

.. 583IsTextStateApplied–

.. 584LastTextPosition–

.. 584LastXMLData–

.. 585LastXMLDataOffset–

.. 586MoveBegin–

.. 586MoveEnd–

.. 587MoveRowDown–

.. 587MoveRowUp–

.. 587Parent–

.. 588Paste–

.. 588PerformAction–

.. 589Select–

.. 589SelectNext–

.. 590SelectPrevious–

.. 590SetElementAttributeValue–

.. 591SetFromRange–

16 Altova XMLSpy 2007 Professional Edition

.. 592Text–

..592AuthenticView4.3.4

.. 593Events–

... 593OnBeforeCopy

... 594OnBeforeCut

... 594OnBeforeDelete

... 595OnBeforeDrop

... 596OnBeforePaste

... 596OnDragOver

... 597OnKeyboardEvent

... 599OnMouseEvent

... 600OnSelectionChanged

.. 601Application–

.. 601AsXMLString–

.. 601DocumentBegin–

.. 601DocumentEnd–

.. 602Event–

.. 602Goto–

.. 603IsRedoEnabled–

.. 603IsUndoEnabled–

.. 603MarkupVisibility–

.. 603Parent–

.. 604Print–

.. 604Redo–

.. 604Selection–

.. 605Undo–

.. 605UpdateXMLInstanceEntities–

.. 606WholeDocument–

.. 606XMLDataRoot–

..606CodeGeneratorDlg4.3.5

.. 607Application–

.. 607CompatibilityMode–

.. 607CPPSettings_DOMType–

.. 608CPPSettings_GenerateVC6ProjectFile–

.. 608CPPSettings_GenerateVSProjectFile–

.. 608CPPSettings_LibraryType–

.. 608CPPSettings_UseMFC–

.. 609CSharpSettings_ProjectType–

.. 609OutputPath–

.. 609OutputPathDialogAction–

.. 610OutputResultDialogAction–

.. 610Parent–

.. 610ProgrammingLanguage–

.. 610PropertySheetDialogAction–

.. 611TemplateFileName–

Altova XMLSpy 2007 Professional Edition 17

..611DatabaseConnection4.3.6

.. 612ADOConnection–

.. 612AsAttributes–

.. 612CommentIncluded–

.. 613CreateMissingTables–

.. 613CreateNew–

.. 613DatabaseKind–

.. 613ExcludeKeys–

.. 614File–

.. 614IncludeEmptyElements–

.. 614NullReplacement–

.. 614NumberDateTimeFormat–

.. 615ODBCConnection–

.. 615SQLSelect–

.. 615TextFieldLen–

..615Dialogs4.3.7

.. 616Application–

.. 616CodeGeneratorDlg–

.. 616FileSelectionDlg–

.. 617Parent–

.. 617SchemaDocumentationDlg–

.. 617GenerateSampleXMLDlg–

.. 617DTDSchemaGeneratorDlg–

.. 618FindInFilesDlg–

.. 618WSDLDocumentationDlg–

..618Document4.3.8

.. 620Events–

... 620OnBeforeSaveDocument

... 621OnBeforeCloseDocument

... 621OnBeforeValidate

... 622OnCloseDocument

... 622OnViewActivation

.. 623Application–

.. 623AssignDTD–

.. 623AssignSchema–

.. 623AssignXSL–

.. 624AssignXSLFO–

.. 624AuthenticView–

.. 625Close–

.. 625ConvertDTDOrSchema–

.. 625ConvertDTDOrSchemaEx–

.. 626CreateChild–

.. 626CreateSchemaDiagram–

.. 627CurrentViewMode–

.. 627DataRoot–

18 Altova XMLSpy 2007 Professional Edition

.. 627DocEditView–

.. 627Encoding–

.. 628EndChanges–

.. 628ExecuteXQuery–

.. 628ExportToDatabase–

.. 629ExportToText–

.. 630FullName–

.. 630GenerateDTDOrSchema–

.. 631GenerateDTDOrSchemaEx–

.. 631GenerateProgramCode–

.. 632GenerateSampleXML–

.. 632GenerateSchemaDocumentation–

.. 632GenerateWSDLDocumentation–

.. 633GetExportElementList–

.. 633GetPathName (obsolete)–

.. 633GridView–

.. 634IsModified–

.. 634IsValid–

.. 635IsWellFormed–

.. 636Name–

.. 636Parent–

.. 636Path–

.. 636RootElement–

.. 637Save–

.. 637SaveAs–

.. 637Saved–

.. 637SaveInString–

.. 638SaveToURL–

.. 638SetActiveDocument–

.. 639SetEncoding (obsolete)–

.. 640SetExternalIsValid–

.. 640SetPathName (obsolete)–

.. 640StartChanges–

.. 641Suggestions–

.. 641SwitchViewMode–

.. 641TextView–

.. 641Title–

.. 642TransformXSL–

.. 642TransformXSLFO–

.. 642UpdateViews–

.. 642UpdateXMLData–

..643Documents4.3.9

.. 643Count–

.. 644Item–

.. 644NewFile–

Altova XMLSpy 2007 Professional Edition 19

.. 644NewFileFromText–

.. 645OpenFile–

.. 645OpenURL–

.. 646OpenURLDialog–

..646DTDSchemaGeneratorDlg4.3.10

.. 647Application–

.. 647AttributeTypeDefinition–

.. 647DTDSchemaFormat–

.. 647FrequentElements–

.. 647GlobalAttributes–

.. 648MaxEnumLength–

.. 648MergeAllEqualNamed–

.. 648OnlyStringEnums–

.. 648OutputPath–

.. 649OutputPathDialogAction–

.. 649Parent–

.. 649ResolveEntities–

.. 649TypeDetection–

.. 649ValueList–

..650ElementList4.3.11

.. 650Count–

.. 650Item–

.. 650RemoveElement–

..651ElementListItem4.3.12

.. 651ElementKind–

.. 651FieldCount–

.. 651Name–

.. 651RecordCount–

..652ExportSettings4.3.13

.. 652CreateKeys–

.. 652ElementList–

.. 653EntitiesToText–

.. 653ExportAllElements–

.. 653ExportCompleteXML–

.. 653FromAttributes–

.. 653FromSingleSubElements–

.. 653FromTextValues–

.. 654IndependentPrimaryKey–

.. 654Namespace–

.. 654StartFromElement–

.. 654SubLevelLimit–

..654FileSelectionDlg4.3.14

.. 655Application–

.. 655DialogAction–

.. 655FullName–

20 Altova XMLSpy 2007 Professional Edition

.. 656Parent–

..656FindInFilesDlg4.3.15

.. 656AdvancedXMLSearch–

.. 657Application–

.. 657DoReplace–

.. 657FileExtension–

.. 657Find–

.. 658IncludeSubfolders–

.. 658MatchCase–

.. 658MatchWholeWord–

.. 658Parent–

.. 658RegularExpression–

.. 659Replace–

.. 659ReplaceOnDisk–

.. 659SearchInProjectFilesDoExternal–

.. 659SearchLocation–

.. 659ShowResult–

.. 660StartFolder–

.. 660XMLAttributeContents–

.. 660XMLAttributeNames–

.. 660XMLCData–

.. 660XMLComments–

.. 661XMLElementContents–

.. 661XMLElementNames–

.. 661XMLPI–

.. 661XMLRest–

..661FindInFilesResult4.3.16

.. 662Application–

.. 662Count–

.. 662Document–

.. 662Item–

.. 662Parent–

.. 663Path–

..663FindInFilesResultMatch4.3.17

.. 663Application–

.. 663Length–

.. 664Line–

.. 664LineText–

.. 664Parent–

.. 664Position–

.. 665Replaced–

..665FindInFilesResults4.3.18

.. 665Application–

.. 665Count–

.. 665Item–

Altova XMLSpy 2007 Professional Edition 21

.. 666Parent–

..666GenerateSampleXMLDlg4.3.19

.. 666Application–

.. 667Parent–

.. 667NonMandatoryAttributes–

.. 667NonMandatoryElements - obsolete–

.. 667TakeFirstChoice - obsolete–

.. 667RepeatCount–

.. 668FillWithSampleData - obsolete–

.. 668FillElementsWithSampleData–

.. 668FillAttributesWithSampleData–

.. 668ContentOfNillableElementsIsNonMandatory–

.. 668TryToUseNonAbstractTypes–

.. 669Optimization–

.. 669SchemaOrDTDAssignment–

.. 669LocalNameOfRootElement–

.. 669NamespaceURIOfRootElement–

.. 669OptionsDialogAction–

..670GridView4.3.20

.. 670Events–

... 670OnBeforeDrag

... 670OnBeforeDrop

... 671OnBeforeStartEditing

... 671OnEditingFinished

... 672OnFocusChanged

.. 672CurrentFocus–

.. 672Deselect–

.. 673IsVisible–

.. 673Select–

.. 673SetFocus–

..673SchemaDocumentationDlg4.3.21

.. 674AllDetails–

.. 674Application–

.. 675DiagramFormat–

.. 675EmbedDiagrams–

.. 675IncludeAll–

.. 676IncludeAttributeGroups–

.. 676IncludeComplexTypes–

.. 676IncludeGlobalAttributes–

.. 676IncludeGlobalElements–

.. 677IncludeGroups–

.. 677IncludeIndex–

.. 677IncludeLocalAttributes–

.. 677IncludeLocalElements–

.. 678IncludeRedefines–

22 Altova XMLSpy 2007 Professional Edition

.. 678IncludeReferencedSchemas–

.. 678IncludeSimpleTypes–

.. 679MultipleOutputFiles–

.. 679OptionsDialogAction–

.. 679OutputFile–

.. 679OutputFileDialogAction–

.. 680OutputFormat–

.. 680Parent–

.. 680ShowAnnotations–

.. 681ShowAttributes–

.. 681ShowChildren–

.. 681ShowDiagram–

.. 681ShowEnumerations–

.. 682ShowIdentityConstraints–

.. 682ShowNamespace–

.. 682ShowPatterns–

.. 683ShowProgressBar–

.. 683ShowProperties–

.. 683ShowResult–

.. 683ShowSingleFacets–

.. 684ShowSourceCode–

.. 684ShowType–

.. 684ShowUsedBy–

..685SpyProject4.3.22

.. 685CloseProject–

.. 685ProjectFile–

.. 685RootItems–

.. 686SaveProject–

.. 686SaveProjectAs–

..686SpyProjectItem4.3.23

.. 686ChildItems–

.. 687FileExtensions–

.. 687ItemType–

.. 687Name–

.. 687Open–

.. 687ParentItem–

.. 688Path–

.. 688ValidateWith–

.. 688XMLForXSLTransformation–

.. 688XSLForXMLTransformation–

.. 688XSLTransformationFileExtension–

.. 688XSLTransformationFolder–

..689SpyProjectItems4.3.24

.. 689AddFile–

.. 689AddFolder–

Altova XMLSpy 2007 Professional Edition 23

.. 689AddURL–

.. 690Count–

.. 690Item–

.. 690RemoveItem–

..690TextImportExportSettings4.3.25

.. 691CommentIncluded–

.. 691DestinationFolder–

.. 691EnclosingCharacter–

.. 691Encoding–

.. 692EncodingByteOrder–

.. 692FieldDelimiter–

.. 692FileExtension–

.. 692HeaderRow–

.. 692ImportFile–

.. 693RemoveDelimiter–

.. 693RemoveNewline–

..693TextView4.3.26

.. 693Events–

... 693OnBeforeShowSuggestions

... 694OnChar

.. 695Application–

.. 695GetRangeText–

.. 695GoToLineChar–

.. 695Length–

.. 695LineCount–

.. 696LineFromPosition–

.. 696LineLength–

.. 696MoveCaret–

.. 696Parent–

.. 696PositionFromLine–

.. 697ReplaceText–

.. 697SelectionEnd–

.. 697SelectionStart–

.. 697SelectText–

.. 697SelText–

.. 698Text–

..698WSDLDocumentationDlg4.3.27

.. 699AllDetails–

.. 699Application–

.. 699DiagramFormat–

.. 700EmbedDiagrams–

.. 700IncludeAll–

.. 700IncludeBinding–

.. 700IncludeImportedWSDLFiles–

.. 701IncludeMessages–

24 Altova XMLSpy 2007 Professional Edition

.. 701IncludeOverview–

.. 701IncludePortType–

.. 701IncludeService–

.. 702IncludeTypes–

.. 702MultipleOutputFiles–

.. 702OptionsDialogAction–

.. 703OutputFile–

.. 703OutputFileDialogAction–

.. 703OutputFormat–

.. 704Parent–

.. 704ShowBindingDiagram–

.. 704ShowExtensibility–

.. 704ShowMessageParts–

.. 705ShowPort–

.. 705ShowPortTypeDiagram–

.. 705ShowPortTypeOperations–

.. 706ShowProgressBar–

.. 706ShowResult–

.. 706ShowServiceDiagram–

.. 706ShowSourceCode–

.. 707ShowTypesDiagram–

.. 707ShowUsedBy–

..707XMLData4.3.28

.. 708AppendChild–

.. 709CountChildren–

.. 709CountChildrenKind–

.. 709EraseAllChildren–

.. 710EraseCurrentChild–

.. 710GetChild–

.. 711GetChildKind–

.. 711GetCurrentChild–

.. 711GetFirstChild–

.. 712GetNextChild–

.. 713HasChildrenKind–

.. 713HasChildren–

.. 714InsertChild–

.. 714IsSameNode–

.. 714Kind–

.. 714MayHaveChildren–

.. 715Name–

.. 715Parent–

.. 715TextValue–

...716Interfaces (obsolete) 4.4
..716AuthenticEvent (obsolete)4.4.1

.. 717altKey (obsolete)–

Altova XMLSpy 2007 Professional Edition 25

.. 718altLeft (obsolete)–

.. 719button (obsolete)–

.. 720cancelBubble (obsolete)–

.. 721clientX (obsolete)–

.. 722clientY (obsolete)–

.. 723ctrlKey (obsolete)–

.. 724ctrlLeft (obsolete)–

.. 725dataTransfer (obsolete)–

.. 726fromElement (obsolete)–

.. 726keyCode (obsolete)–

.. 727propertyName (obsolete)–

.. 727repeat (obsolete)–

.. 727returnValue (obsolete)–

.. 728shiftKey (obsolete)–

.. 729shiftLeft (obsolete)–

.. 730srcElement (obsolete)–

.. 731type (obsolete)–

..732AuthenticSelection (obsolete)4.4.2

.. 733End (obsolete)–

.. 733EndTextPosition (obsolete)–

.. 734Start (obsolete)–

.. 734StartTextPosition (obsolete)–

..735OldAuthentictView (obsolete)4.4.3

.. 737ApplyTextState (obsolete)–

.. 738CurrentSelection (obsolete)–

.. 738EditClear (obsolete)–

.. 739EditCopy (obsolete)–

.. 739EditCut (obsolete)–

.. 740EditPaste (obsolete)–

.. 740EditRedo (obsolete)–

.. 741EditSelectAll (obsolete)–

.. 741EditUndo (obsolete)–

.. 742event (obsolete)–

.. 742GetAllowedElements (obsolete)–

.. 745GetNextVisible (obsolete)–

.. 746GetPreviousVisible (obsolete)–

.. 747IsEditClearEnabled (obsolete)–

.. 747IsEditCopyEnabled (obsolete)–

.. 748IsEditCutEnabled (obsolete)–

.. 748IsEditPasteEnabled (obsolete)–

.. 749IsEditRedoEnabled (obsolete)–

.. 749IsEditUndoEnabled (obsolete)–

.. 750IsRowAppendEnabled (obsolete)–

.. 750IsRowDeleteEnabled (obsolete)–

.. 751IsRowDuplicateEnabled (obsolete)–

26 Altova XMLSpy 2007 Professional Edition

.. 751IsRowInsertEnabled (obsolete)–

.. 752IsRowMoveDownEnabled (obsolete)–

.. 752IsRowMoveUpEnabled (obsolete)–

.. 753IsTextStateApplied (obsolete)–

.. 753IsTextStateEnabled (obsolete)–

.. 754LoadXML (obsolete)–

.. 754MarkUpView (obsolete)–

.. 756RowAppend (obsolete)–

.. 756RowDelete (obsolete)–

.. 757RowDuplicate (obsolete)–

.. 757RowInsert (obsolete)–

.. 758RowMoveDown (obsolete)–

.. 758RowMoveUp (obsolete)–

.. 759SaveXML (obsolete)–

.. 760SelectionMoveTabOrder (obsolete)–

.. 761SelectionSet (obsolete)–

.. 762XMLRoot (obsolete)–

...764Enumerations 4.5
..764SPYAttributeTypeDefinition4.5.1

..764SPYAuthenticActions4.5.2

..764SPYAuthenticDocumentPosition4.5.3

..764SPYAuthenticElementActions4.5.4

..765SPYAuthenticElementKind4.5.5

..765SPYAuthenticMarkupVisibility4.5.6

..765SPYDatabaseKind4.5.7

..765SPYDialogAction4.5.8

..766SPYDOMType4.5.9

..766SPYDTDSchemaFormat4.5.10

..766SPYEncodingByteOrder4.5.11

..766SPYExportNamespace4.5.12

..766SPYFindInFilesSearchLocation4.5.13

..766SPYFrequentElements4.5.14

..767SPYImageKind4.5.15

..767SPYKeyEvent4.5.16

..767SPYLibType4.5.17

..767SPYLoading4.5.18

..767SPYMouseEvent4.5.19

..768SPYNumberDateTimeFormat4.5.20

..768SPYProgrammingLanguage4.5.21

..768SPYProjectItemTypes4.5.22

..769SPYProjectType4.5.23

..769SPYSampleXMLGenerationOptimization4.5.24

..769SPYSampleXMLGenerationSchemaOrDTDAssignment4.5.25

..769SPYSchemaDefKind4.5.26

..770SPYSchemaDocumentationFormat4.5.27

Altova XMLSpy 2007 Professional Edition 27

..770SPYTextDelimiters4.5.28

..770SPYTextEnclosing4.5.29

..770SPYTypeDetection4.5.30

..771SPYURLTypes4.5.31

..771SPYViewModes4.5.32

..771SPYVirtualKeyMask4.5.33

..772SPYXMLDataKind4.5.34

7735 Using the XMLSpy API with Java

...775Sample source code 5.1

...777SpyApplication 5.2

...778SpyCodeGeneratorDlg 5.3

...779SpyDatabaseConnection 5.4

...780SpyDialogs 5.5

...781SpyDoc 5.6

...783SpyDocuments 5.7

...784SpyElementList 5.8

...785SpyElementListItem 5.9

...786SpyExportSettings 5.10

...787SpyFileSelectionDlg 5.11

...788SpyGridView 5.12

...789SpyProject 5.13

...790SpyProjectItem 5.14

...791SpyProjectItems 5.15

...792SpySchemaDocumentationDlg 5.16

...794SpyTextImportExportSettings 5.17

...795SpyXMLData 5.18

...796Authentic 5.19
..796SpyAuthenticRange5.19.1

..797SpyAuthenticView5.19.2

..797SpyDocEditSelection5.19.3

..797SpyDocEditView5.19.4

...799Predefined constants 5.20
..799SPYAuthenticActions5.20.1

..799SPYAuthenticDocumentPosition5.20.2

..799SPYAuthenticElementKind5.20.3

..800SPYAuthenticMarkupVisibility5.20.4

..800SPYDatabaseKind5.20.5

..800SPYDialogAction5.20.6

..801SPYDOMType5.20.7

..801SPYDTDSchemaFormat5.20.8

..801SPYEncodingByteOrder5.20.9

..801SPYExportNamespace5.20.10

..801SPYFrequentElements5.20.11

28 Altova XMLSpy 2007 Professional Edition

..802SPYLibType5.20.12

..802SPYLoading5.20.13

..802SPYNameDateTimeFormat5.20.14

..802SPYProgrammingLanguage5.20.15

..802SPYProjectItemTypes5.20.16

..803SPYProjectType5.20.17

..803SPYSchemaDefKind5.20.18

..803SPYSchemaDocumentationFormat5.20.19

..804SPYTextDelimiters5.20.20

..804SPYTextEnclosing5.20.21

..804SPYTypeDetection5.20.22

..804SPYURLTypes5.20.23

..805SpyViewModes5.20.24

..805SPYWhitespaceComparison5.20.25

..805SPYXMLDataKind5.20.26

8076 XMLSpy Integration

...808Integration at the Application Level 6.1
..808Example: HTML6.1.1

.. 808Instantiate the Control–

.. 808Add Button to Open Default Document–

.. 809Add Buttons for Code Generation–

.. 810Connect to Custom Events–

...811Integration at Document Level 6.2
..811Use XMLSpyControl6.2.1

..812Use XMLSpyControlDocument6.2.2

..812Use XMLSpyControlPlaceHolder6.2.3

..812Query XMLSpy Commands6.2.4

..812Examples6.2.5

.. 812C#–

... 813Introduction

... 813Placing the XMLSpyControl

... 813Adding the Document Control

... 813Adding the Placeholder Control

... 814Retrieving Command Information

... 815Testing the Example

.. 815HTML–

... 816Instantiate the XMLSpyControl

... 816Create Editor window

... 816Create Project Window

... 816Create Placeholder for XMLSpy Helper Windows

... 817Create a Custom Toolbar

... 817Create More Buttons

... 819Create Event Handler to Update Button Status

Altova XMLSpy 2007 Professional Edition 29

...820Command Table 6.3
..820File Menu6.3.1

..821Edit Menu6.3.2

..821Project Menu6.3.3

..822XML menu6.3.4

..824DTD/Schema Menu6.3.5

..824Schema Design Menu6.3.6

..825XSL/XQuery Menu6.3.7

..827Authentic Menu6.3.8

..827Convert Menu6.3.9

..828View Menu6.3.10

..828Browser Menu6.3.11

..829WSDL Menu6.3.12

..830SOAPMenu6.3.13

..830Tools Menu6.3.14

..831Window Menu6.3.15

..831Help Menu6.3.16

...833Accessing XMLSpy API 6.4

...834Object Reference 6.5
..834Command6.5.1

.. 834Accelerator–

.. 834ID–

.. 835IsSeparator–

.. 835Label–

.. 835StatusText–

.. 835SubCommands–

.. 835ToolTip–

..835Commands6.5.2

.. 836Count–

.. 836Item–

..836XMLSpyControl6.5.3

.. 837Properties–

... 837Appearance

... 837Application

... 837BorderStyle

... 837CommandsList

... 838CommandsStructure (deprecated)

... 838EnableUserPrompts

... 839IntegrationLevel

... 839MainMenu

... 839Toolbars

.. 839Methods–

... 839Exec

... 840Open

... 840QueryStatus

30 Altova XMLSpy 2007 Professional Edition

.. 840Events–

... 841OnCloseEditingWindow

... 841OnContextChanged

... 841OnDocumentOpened

... 841OnFileChangedAlert

... 841OnLicenseProblem

... 842OnOpenedOrFocused

... 842OnUpdateCmdUI

... 842OnValidationWindowUpdated

..842XMLSpyControlDocument6.5.4

.. 843Properties–

... 843Appearance

... 843BorderStyle

... 844Document

... 844IsModified

... 844Path

... 844ReadOnly

.. 844Methods–

... 845Exec

... 845New

... 845Open

... 845QueryStatus

... 846Reload

... 846Save

... 846SaveAs

.. 846Events–

... 846OnActivate

... 847OnContextChanged

... 847OnDocumentClosed

... 847OnDocumentOpened

... 847OnDocumentSaveAs

... 848OnFileChangedAlert

... 848OnModifiedFlagChanged

... 848OnSetEditorTitle

..848XMLSpyControlPlaceHolder6.5.5

.. 849Properties–

... 849Label

... 849PlaceholderWindowID

... 849Project

.. 849Methods–

... 850OpenProject

... 850CloseProject

.. 850Events–

... 850OnModifiedFlagChanged

..850Enumerations6.5.6

Altova XMLSpy 2007 Professional Edition 31

.. 850ICActiveXIntegrationLevel–

.. 851XMLSpyControlPlaceholderWindow–

Appendices 854

8551 Engine Information

...856XSLT 1.0 Engine: Implementation Information 1.1

...858XSLT 2.0 Engine: Implementation Information 1.2
..858General Information1.2.1

..860XSLT 2.0 Elements and Functions1.2.2

...861XQuery 1.0 Engine: Implementation Information 1.3

...864XPath 2.0 and XQuery 1.0 Functions 1.4
..864General Information1.4.1

..865Functions Support1.4.2

8682 Datatypes in DB-Generated XML Schemas

...869MS Access 2.1

...870MS SQL Server 2.2

...871MySQL 2.3

...872Oracle 2.4

...873ODBC 2.5

...874ADO 2.6

...875Sybase 2.7

8763 Datatypes in DBs Generated from XML Schemas

...877MS Access 3.1

...879MS SQL Server 3.2

...881MySQL 3.3

...883Oracle 3.4

8854 Technical Data

...886OS and Memory Requirements 4.1

...887Altova XML Parser 4.2

...888Altova XSLT and XQuery Engines 4.3

...889Unicode Support 4.4
..889Windows 2000 and Windows XP4.4.1

32 Altova XMLSpy 2007 Professional Edition

..890Right-to-Left Writing Systems4.4.2

...891Internet Usage 4.5

8925 License Information

...893Electronic Software Distribution 5.1

...894License Metering 5.2

...895Copyright 5.3

...896Altova End User License Agreement 5.4

Index 905

Welcome to XMLSpy Professional Edition

Altova XMLSpy 2007 Professional Edition

© 2007 Altova GmbH

 3

Welcome to XMLSpy Professional Edition

Welcome to XMLSpy Professional Edition

Altova® XMLSpy® 2007 Professional Edition is the industry standard XML Development
Environment for designing, editing and debugging enterprise-class applications involving XML,
XML Schema, XSL/XSLT, and XQuery technologies. It is the ultimate productivity enhancer for
J2EE, .NET and database developers.

User Manual

Altova XMLSpy 2007 Professional Edition

6

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

User Manual

This User Manual contains tutorials of the various XMLSpy features to help you get started, and
explanations of important features. It also contains a comprehensive reference section that
describes XMLSpy IDE features. The User Manual consists of the following sections:

 An Introduction, which provides an overview of Altova's XML products.
 A Tutorial that shows you how to use XMLSpy for the major aspects of XML:

 XML editing and validation
 Schema/DTD editing and validation
 XSLT editing and transformation

 Detailed descriptions of the five XMLSpy views: Text View, Enhanced Grid View,
Schema/WSDL View, Authentic View, and Browser View. These five sections describe
the GUI and features of the various views, including descriptions of the various
components, symbols, and icons found in each view. In these sections, you will become
familiar with the views and learn how to use each view's features.

 A description of how XMLSpy can be integrated with Visual Studio .NET.
 A description of Eclipse integration in XMLSpy.
 A description of how to use the XSLT/XQuery Debugger component, which is

delivered with XMLSpy. The XSLT/XQuery Debugger enables you to check and correct
your XSLT 1.0 and XSLT 2.0 stylesheets and XQuery documents. In an XSLT
debugging session, you can go through the transformation of an XML file, step-by-step,
using a selected stylesheet. In an XQuery debugging session, you can step through the
execution of an XQuery document.

 A User Reference that contains a description of all menu commands available in
XMLSpy.

© 2007 Altova GmbH

 7Introduction

User Manual

1 Introduction

This introduction briefly describes:

 Altova's various XML products and how they relate to each other
 The main features of XMLSpy
 The user interface

This section is intended to serve as a general introduction to XMLSpy, and will familiarize you
with the product's capabilities and interface.

8 Introduction Altova's XML Products

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

1.1 Altova's XML Products

Altova's XML products are easy to use and cover all your XML needs. They complement each
other and provide you with a comprehensive XML application development environment. The
Altova family currently comprises the following products.

Altova XMLSpy® 2007 is a comprehensive IDE for developing XML projects, and is available
in three feature configurations. At the top end, the Enterprise Edition provides an efficient and
flexible environment for creating and editing DTDs, XML Schemas, XML files, and XSLT
stylesheets. It has powerful editing features, multiple document views—including Altova's own
Authentic View—validation, and XSLT transformations with an internal processor. It can import,
and export to, text files and databases. Among other features are management of XML
documents in projects, an XSLT and XQuery Debugger, a WSDL Editor, and code generation.
The Professional and Home Editions have different feature configurations.

Altova XML 2007 is a free application which contains Altova's XML Validator, XSLT 1.0, XSLT
2.0, and XQuery 1.0 engines. It can be used from the command line, via a COM interface, in
Java programs, and in .NET applications to validate XML documents, transform XML
documents using XSLT 1.0 and 2.0 stylesheets, and execute XQuery documents.

Altova StyleVision® 2007 is a new approach to writing complex XSLT stylesheets using an
intuitive drag-and-drop user interface. With StyleVision you also create StyleVision Power
Stylesheets that are used to control the display and data entry of XML documents in Authentic
View. StyleVision is available in Enterprise and Professional editions.

Altova Authentic® 2007 (Desktop and Browser editions) are word-processor type editor
programs which support form-based data input of XML documents. You can insert components
such as graphics and tables, and validate in real-time against a schema.

Altova MapForce® 2007 is a product for mapping one schema to another and converting XML
files based on one schema to XML files based on another.

Altova website
You may also want to periodically check the Altova website, www.altova.com, for news,
updates, additional documentation, and support.

Please note that user manuals for all Altova products are available in the following formats:

 Online manuals, accessed via the Support page at the Altova website
 Printable PDFs, which you can download from the Altova website and print locally
 Printed books that you can buy via a link at the Altova website

The documentation on the website is updated periodically and kept up-to-date with the current
versions.

Support and feedback
If you require additional information or have a query about Altova products, please don't hesitate
to visit our Support Center at the Altova website. Here you will find:

 Links to our FAQ pages
 Discussion forums on Altova products and general XML subjects
 Online Support Forms that will be processed by our support team

Also, please feel free to send us your feedback about the documentation at
http://www.altova.com/support_center.html.

http://www.altova.com
http://www.altova.com/support_help.html
http://www.altova.com/download_doc.html
http://www.altova.com/download_doc.html
http://www.altova.com/support_center.html
http://www.altova.com/support_faq_main.html
http://www.altova.com/forum/forums/index.asp
http://www.altova.com/support_center.html
http://www.altova.com/support_center.html

© 2007 Altova GmbH

XMLSpy's Main Features 9Introduction

User Manual

1.2 XMLSpy's Main Features

XMLSpy is an integrated Development Environment (IDE) for the development of XML
projects. XMLSpy can be used, among other things, to edit and process a variety of XML and
other text documents; to import to and export from XML documents (including to and from
databases); to convert between certain types of XML documents and other document types; to
link different types of XML documents in projects; process documents with the built-in XSLT 1.0
processor, XSLT 2.0 processor and XQuery 1.0 processor, and to even generate code from
XML documents.

XMLSpy also provides a graphical editing view of XML documents in Altova's popular Authentic
View, thus enabling users to enter data into an XML document as they would into a
wordprocessor-type application. Authentic View is particularly useful in situations where:

 people not familiar to XML are called upon to enter data into an XML document, or
where

 several users input data into, or view, a single document located on a server or shared
resource.

In this section, we provide a brief overview of the main features of XMLSpy. These features are
described in more detail in the various interface view sections (Text View, Schema/WSDL
View, Authentic View, etc) of this document and in the User Reference. Please note that this is
not a comprehensive list of available features. It is intended to give you a broad idea of what is
possible with XMLSpy.

Note: A few features of XMLSpy are not available in the Visual Studio .NET versions of
XMLSpy. For more details, see the section How Standalone and Visual Studio .NET
Versions Differ.

Edit XML documents in multiple editing formats
You can edit an XML document as plain text (Text View), in a hierarchical table format (
Enhanced Grid View), or in a graphical WYSIWYG view (Authentic View). For XML Schemas,
you can also use Schema/WSDL View, which is a graphical interface that greatly simplifies the
creation of complex schemas. You can also switch among the various views to suit your
convenience. The Browser View enables you to directly view XML documents associated with
an XSLT stylesheet and HTML documents.

Well-formedness checking and built-in validator
All XML documents are checked for well-formedness when you change views or save the file.
XML documents can also be validated if a schema (DTD or XML Schema) is associated with
the XML document. Other types of documents, such as DTDs, are also checked for errors in
syntax and structure.

Structural editing features
In Text View, features such as line-numbering, indentation, bookmarks, and expandable and
collapsible elements help you to navigate your document quickly and efficiently.

Intelligent Editing
If a schema is associated with an XML document, the auto-completion feature of Text View
provides valuable editing help. As you type, pop-up menus containing the elements, attributes,
and enumerated attribute values allowed at the cursor point appear. Additionally, the correct
closing tags are automatically inserted when you complete opening tags, and attributes selected
from the pop-up menu are inserted with opening and closing quotes. You can also enable

10 Introduction XMLSpy's Main Features

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

XMLSpy to automatically insert mandatory elements and/or attributes when an element is
inserted. Further, each view has a set of Entry Helpers that enable you to insert document
components or specify the properties of the component selected in the Main Window.

Schema editing and management
You can create XML Schemas quickly and easily in the graphical Schema/WSDL View. This
takes away much of the difficulty of knowing XML Schema structures, syntax, and design
principles. You can also create DTDs that can be checked for correct syntax, plus convert
between Schemas and DTDs, and generate documentation.

Built-in XSLT 1.0 and XSLT 2.0 processors
The built-in XSLT 1.0 and XSLT 2.0 processors are compliant with the relevant W3C drafts.
They enable you to transform XML documents directly from within the IDE using either XSLT
1.0 or XSLT 2.0 stylesheets, and to debug XSLT stylesheets using the XSLT Debugger.

Built-in XQuery 1.0 processor
The built-in XQuery 1.0 processor is compliant with the XQuery 1.0 W3C Working Draft of 23
July 2004. It enables you to execute and debug XQuery documents directly from within the IDE.

Transformations of XML documents
XML documents can be transformed directly from within the IDE, either with the internal
(built-in) XSLT processor or with any external XSLT processor. To generate PDF from within
the IDE, you can specify an external FO processor, and also transform XML to PDF with a
single-click after specifying the XSLT stylesheet to use. Furthermore, parameter values can be
passed to the XSLT transformation from the IDE itself.

XPath Evaluation
For a given XML document, the Evaluate XPath feature lists the sequence (or nodeset)
returned by an XPath expression. You can use either the Document Node or the selected
element as the context node. The Evaluate XPath feature is useful if you are creating an XSLT
stylesheet and need to evaluate an XPath expression for use in it. You can also navigate to
each node in the sequence using the list of nodes in the returned sequence.

XSLT Debugger for XSLT 1.0 and XSLT 2.0
The XSLT Debugger for XSLT 1.0 and XSLT 2.0 is compliant with the relevant W3C drafts. You
can use the XSLT Debugger to debug an XSLT stylesheet. The Debugger runs the XSLT
stylesheet to be debugged on an XML file. The output is generated step-by-step for each step of
the transformation, and you are able to see the context node, template being executed, and
other details of each step in the transformation.

XQuery 1.0 Debugger
The XQuery 1.0 Debugger is compliant with the XQuery 1.0 W3C Working Draft of 23 July
2004. It is similar to the XSLT Debugger, and can be used to debug XQuery documents.

XML project management
The XMLSpy IDE enables you to organize related files into projects that are displayed as trees.
A project can consist of schema files, XML data files, transformation files, and output files. A
project's files are listed together in the Project window, thus enabling easy access to all the
project's files when you are working on a project. Furthermore, you can set project-wide or

© 2007 Altova GmbH

XMLSpy's Main Features 11Introduction

User Manual

folder-wide specifications, such as the schema file to validate with or the transformation file to
use.

Authentic View
Authentic View is a graphical view of an XML document in XMLSpy. Users can enter data into
the XML document as they would in a word processor. The StyleVision Power Stylesheet that is
used to specify the formatting of the XML document in Authentic View and how the data is input
is created in Altova's StyleVision product. Note that Authentic View is also available in Altova's
Authentic Desktop, which is currently available free of charge.

Database import
You can import database data as an XML file and generate an XML Schema file to correspond
to the database structure. Import of the following databases is supported: MS Access, MS SQL
Server, Oracle, MySQL, Sybase, IBM DB2.

Comparing XML files (differencing)
The Compare feature in XMLSpy enables you to detect differences between two XML files. You
can set a variety of options to configure the comparison, such as ignoring the order of attributes
or child elements, whether entities are resolved or namespaces ignored. The Compare feature
can also be used to compare folders.

Visual Studio .NET integration
XMLSpy can be integrated in your Visual Studio .NET environment if you would like. To do this,
all you need to do is download an executable from the Altova website and run it.

12 Introduction User Interface

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

1.3 User Interface

XMLSpy has a graphical user interface (see screenshot), which is organized into four broad
parts:

 Project Window, which allows you to organize and edit files and groups of files into
projects; and Info Window, which displays meta information about the document item
being currently edited.

 Main Window, where the document you edit appears. The number of document views
available in the Main Window depends on the type of document being edited. You can
switch between views whenever you want.

 Entry Helper Windows, which vary according to the type of document being viewed
and the view selected in the Main Window. The Entry Helpers help you to graphically
edit your document.

 Output Windows below the Main Window show the results of Validation, Find in Files,
and XPath evaluations.

These windows can be docked under a menu bar and toolbar (see screenshot), or they can be
freely arranged under the menu bar and toolbar. Their positions and sizes can be changed by
dragging and re-sizing them, as well as by using the toggle on/off commands in the Window
menu.

This section provides an introduction to these broad parts of the interface. Detailed descriptions
of the various interface parts follow this section.

© 2007 Altova GmbH

User Interface 13Introduction

User Manual

1.3.1 Project Window

XMLSpy uses the familiar tree view to manage multiple files or URLs in XML projects. Files and
URLs can be grouped into folders by common extension or any arbitrary criteria to allow easy
structuring and batch manipulation.

Folders can correspond to physical directories on your file system, or you can define file-type
extensions for each folder to keep common files in one convenient place. Project folders are
"semantic" folders that represent a logical grouping of files. They do not need to correspond to
any hierarchical organization of files on your hard disk.

Assigning XSL transformations to project folders
You can assign different XSL transformation parameters to each folder and even have the
same physical file present in more than one project folder. This is especially useful when you
want to keep your data in one XML file and use different XSL stylesheets to produce different
output (e.g. separate HTML and WML presentations).

Assigning DTDs / Schemas to project folders
You can assign different DTDs or Schemas to different folders. This allows you to validate a file
against both a DTD and an XML Schema without changing the file itself, which is useful when
you are in the process of making the transition from DTDs to Schemas.

To manage projects, use the commands in the Project menu.

Please note: You can turn the display of the Project Window on or off with the menu option
Window | Project window.

14 Introduction User Interface

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

1.3.2 Info Window

XMLSpy provides a handy information window that shows detailed information about the
element or attribute in which the cursor is currently positioned.

This information is available in all editing views and is especially helpful when used in
conjunction with the xsd:annotation feature.

Please note: You can turn the display of the Info Window on or off with the menu option
Window | Info window.

1.3.3 Main Window

The Main Window is where you view and edit all documents in XMLSpy.

Managing multiple open files

 You can open and edit any number of XML documents at one time in XMLSpy.
 Each open file in the Main Window is opened in its own Document Window, and each

has a tab with its name in it at the bottom of the Main Window.
 When open files are cascaded, tiled, or minimized, a title bar with (i) the name of the

file, and (ii) standard minimize, maximize, and close buttons is displayed.
 Open files can be maximized or minimized by clicking the Maximize or Minimize

button, respectively, in the title bar of any open file.
 When you maximize one file, all open files are maximized.
 Open files can be cascaded or tiled using commands in the Window menu.
 To make a file active (in order to edit it), click the file's tab or any part of its window.

Alternatively, in the Window menu, select the required file from the list of currently open
files at the bottom of the menu.

 You can also activate open files in the sequence in which they were opened by using
Ctrl+Tab or Ctrl+F6.

Accessing File commands quickly
To access File commands quickly (such as printing, closing, sending as an e-mail attachment),
right-click the file's tab. This opens a context-menu with a selection of File commands.

Main Window Views
XMLSpy provides multiple views of your XML document. These views are either editing or
browser views:

© 2007 Altova GmbH

User Interface 15Introduction

User Manual

 Text View: An editing view with syntax-coloring for source-level work
 Enhanced Grid View: For structured editing. The document is displayed as a

structured grid, which can be manipulated graphically. This view also contains an
embedded Database/Table view, which shows repeating elements in a tabular format

 Schema/WSDL View: For viewing and editing XML Schemas
 Authentic View: For editing XML documents based on StyleVision Power Stylesheets
 Browser View: An integrated browser view that supports both CSS and XSL

stylesheets.

To switch between document views in the Document Window, click on the appropriate view
button at the bottom of the Document Window. Alternatively, use the commands in the View
menu.

Please note: You can customize the default view (that is, the Main Window view) for individual
file extensions. To do this, go to the Tools | Options dialog, and make the required settings in
the File types and View tabs.

1.3.4 Entry Helpers

XMLSpy has intelligent editing features that help you to create valid XML documents quickly.
These features are organized into three palette-like windows we call Entry Helpers.

When you are editing a document, the Entry Helpers display structural editing options according
to the current location of the cursor. The Entry Helpers get the required information from the
underlying DTD, XML Schema, and/or StyleVision Power Stylesheet. If, for example, you are
editing an XML data document, then elements, attributes, and entities that can be inserted at
the current cursor position are displayed in the relevant Entry Helpers windows, as well as
information about these.

The Entry Helper windows have an XMLSpy prefix in Visual Studio .NET.

Entry Helpers in different views
What Entry Helpers are displayed depend upon the view. The different sets of Entry Helpers are
categorized as follows, according to the views available in your Altova product:

 Text View and Grid View: Elements, Attributes, and Entities Entry Helpers
 Schema Design View: Component Navigator, and Details and Facets Entry Helpers
 Authentic View: Elements, Attributes, and Entities Entry Helpers

The Entry Helpers for each view are described in the section about that view (in the following
sections of this documentation).

Please note: You can turn the display of Entry Helpers on or off with the menu option Window |
Entry Helpers.

1.3.5 Menu Bar and Toolbar

Menu Bar
The menu bar contains the various application menus. The following conventions apply:

 If commands in a menu are not applicable in a view or at a particular location in the
document, they are unavailable.

 Some menu commands pop up a submenu with a list of additional options. Menu
commands with submenus are indicated with a right-pointing arrowhead to the right of
the command name.

16 Introduction User Interface

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

 Some menu commands pop up a dialog that prompts you for further information
required to carry out the selected command. Such commands are indicated with an
ellipsis (...) after the name of the command.

 To access a menu command, click the menu name and then the command. If a
submenu is indicated for a menu item, the submenu opens when you mouseover the
menu item. Click the required sub-menu item.

 A menu can be opened from the keyboard by pressing the appropriate key combination.
The key combination for each menu is Alt+KEY, where KEY is the underlined letter in
the menu name. For example, the key combination for the File menu is Alt+F.

 A menu command (that is, a command in a menu) can be selected by sequentially
selecting (i) the menu with its key combination (see previous point), and then (ii) the key
combination for the specific command (Alt+KEY, where KEY is the underlined letter in
the command name). For example, to create a new file (File | New), press Alt+F and
then Alt+N.

 Some menu commands can be selected directly by pressing a special shortcut key or
key combination (Ctrl+KEY). Commands which have shortcuts associated with them
are indicated with the shortcut key or key combination listed to the right of the
command. For example, you can use the shortcut key combination Ctrl+N to create a
new file; the shortcut key F8 to validate an XML file.

Toolbar
The toolbar contains buttons that are shortcuts for commands found in the menus. The name of
the command appears when you place your mouse pointer over the button. To execute the
command, click the button.

Toolbar buttons are arranged in groups. In the Tools | Customize | Toolbars dialog, you can
specify which toolbar groups are to be displayed. In the GUI, you can also drag toolbar groups
to alternative locations by clicking and dragging a toolbar handle to the desired location.

1.3.6 Output Windows

The Output Windows are located by default below the Main Window. There are three output
windows:

 Validation, in which the detailed results of document validation are displayed.
 Find in Files, in which Find and Replace terms and options for searches in multiple

files can be set. Nine different searches can be conducted, each in a single tab. The
results of searches can be navigated using controls in the toolbar of the Find in Files
window, and items in files can be located by clicking its listing in the Find in Files dialog.

 XPath expression evaluation. Expressions can be entered in the window and the
results of the evaluation are displayed in the window. This window is very useful, since
both the XML document and the the result of an evaluation can be seen in the same
view.

All the output windows are described in detail in the Text View section of this documentation.

© 2007 Altova GmbH

 17Tutorials

User Manual

2 Tutorials

This section contains the following tutorials:

 XMLSPY Tutorial: A tutorial that runs you through the creation of an XML Schema; the
creation, editing, and transformation of an XML file; the use of databases for XML in
XMLSpy; and the organization of related files into XMLSPY Projects.

 Authentic View Tutorial: A tutorial to introduce you to Altova's unique Authentic View
interface and its features. In Authentic View, you can edit XML documents in a
graphical interface without having to know XML or the structure of the schema on which
the document is based.

18 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

2.1 XMLSpy Tutorial

This tutorial gives a short overview of XML and takes you through several tasks which provide
an overview of how to use XMLSpy to its fullest.

You will learn how to:

 Create a simple schema from scratch
 Generalize the schema using simple and complex types
 Create schema documentation

 Create an XML document based on the schema file
 Copy XML data to a third party product (Excel) and reinsert it in XMLSpy
 Validate the XML document against its schema
 Update Schema settings while editing the XML document
 Transform the XML document into HTML using XSLT, and see the result in the

Browser view
 Import and export database data to and from XMLSpy
 Create a schema from an MS Access database
 Create an XMLSpy project to organize all your XML documents

Installation and configuration
This tutorial assumes that you have successfully installed XMLSpy on your computer and
received a free evaluation key-code, or are a registered user. The evaluation version of XMLSpy
is fully functional but limited to a 30-day period. You can request a regular license from our
secure web server or through any one of our resellers.

Tutorial example files
The tutorial files are available in the application folder:

XMLSpy2007\Examples\Tutorial

The Examples folder contains various XML files for you to experiment with, while the
Tutorial folder contains all the files used in this tutorial.

The Template folder contains all the XML template files that are used whenever you select the
menu option File | New. These files supply the necessary data (namespaces and XML
declarations) for you to start working with the respective XML document immediately.

2.1.1 The XMLSpy interface

The XMLSpy interface is structured into three vertical areas. The central area provides you with
multiple views of your XML document. The areas on either side of this central area contain
windows that provide information, editing help, and file management features.

 The left area consists of the Project and Info windows.
 The central area, called the Main window, is where you edit and view all types of XML

documents. You can switch between different views: Text View, Grid View,
Schema/WSDL Design View, Authentic View, and Browser View. These views are
described in detail in the respective sections on them.

 The right area contains the three Entry Helper windows, which enable you to insert or
append elements, attributes, and entities. What entries are displayed in the Entry
Helper windows depends on the current selection or cursor location in the XML file.

© 2007 Altova GmbH

XMLSpy Tutorial 19Tutorials

User Manual

The details of the interface are explained as we go along. Note that the interface changes
dynamically according to the document that is active in the Main Window and according to the
view selected.

2.1.2 Creating a basic XML Schema

An XML Schema describes the structure of an XML document. An XML document can be
validated against an XML Schema to check whether it conforms to the requirements specified in
the schema. If it does, it is said to be valid; otherwise it is invalid. XML Schemas enable
document designers to specify the allowed structure and content of an XML document and to
check whether an XML document is valid.

The structure and syntax of an XML Schema document is complex, and being an XML
document itself, an XML Schema must be valid according to the rules of the XML Schema
specification. In XMLSpy, the Schema/WSDL Design View enables you to easily build valid XML
Schemas by using graphical drag-and-drop techniques. The XML Schema document you
construct is also editable in Text View and Grid View, but is much easier to create and modify in
Schema/WSDL View.

Objective
In this section of the tutorial, you will learn how to edit XML Schemas in Schema/WSDL View.
Specifically, you will learn how to do the following:

 Create a new schema file
 Define namespaces for the schema
 Define a basic content model
 Add elements to the content model using context menus and drag-and-drop
 Configure the Content Model View

20 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

After you have completed creating the basic schema, you can go to the next section of the
tutorial, which teaches you how to work with the more advanced features of XML Schema in
XMLSpy. This advanced section is followed by a section about schema navigation and
documentation in XMLSpy.

Commands used in this section
In this section of the tutorial, you will use the Schema/WSDL View exclusively. The following
commands are used:

Display Diagram (or Display Content Model View). This icon is located to the left of all
global components in Schema Overview. Click this icon to display the content model of
the associated global component.

Creating a new XML Schema file

To create a new XML Schema file in XMLSpy, you must first start XMLSpy and then create a
new XML Schema (.xsd) document.

Starting XMLSpy
To start XMLSpy, double-click the XMLSpy icon on your desktop or use the Start | All
Programs menu to access the XMLSpy program. XMLSpy is started with no documents open
in the interface.

Note the three main parts of the interface: (i) the Project and Info Windows on the left; (ii) the
Main Window in the middle; and (iii) the Entry Helpers on the right.

© 2007 Altova GmbH

XMLSpy Tutorial 21Tutorials

User Manual

Creating a new XML Schema file
To create a new XML Schema file:

1. Select the menu option File | New. The Create new document dialog opens.

2. In the dialog, select the xsd W3C XML Schema entry, and confirm with OK. An empty
schema file appears in the Main Window in Schema/WSDL Design View. You are
prompted to enter the name of the root element.

3. Click in the highlighted field and enter Company. Confirm with Enter. Company is now
the root element of this schema and is created as a global element. The view you see in
the Main Window (screenshot below) is called the Schema Overview. It provides an
overview of the schema by displaying a list of all the global components in the top pane
of the Main Window; the bottom pane displays the attributes and identity constraints of
the selected global component. (You can view and edit the content model of individual
global components by clicking the Display Diagram icon to the left of that global
component.)

22 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

4. In the Annotations field (ann) of the Company element, enter the description of the
element, in this case, Root element.

5. Click the menu option File | Save, and save your XML Schema with any name you like
(AddressFirst.xsd, for example).

Defining namespaces

XML namespaces are an important issue in XML Schemas and XML documents. An XML
Schema document must reference the XML Schema namespace and, optionally, it can define a
target namespace for the XML document instance. As the schema designer, you must decide
how to define both these namespaces (essentially, with what prefixes.)

In the XML Schema you are creating, you will define a target namespace for XML document
instances. (The required reference to the XML Schema namespace is created automatically by
XMLSpy when you create a new XML Schema document.)

To create a target namespace:

1. Select the menu option Schema Design | Schema settings. This opens the Schema
Settings dialog.

© 2007 Altova GmbH

XMLSpy Tutorial 23Tutorials

User Manual

2. Click the Target Namespace radio button, and enter
http://my-company.com/namespace. In XMLSpy, the namespace you enter as
the target namespace is created as the default namespace of the XML Schema
document and displayed in the list of namespaces in the bottom pane of the dialog.

3. Confirm with the OK button.

Please note:

 The XML Schema namespace is automatically created by XMLSpy and given a prefix
of xs:.

 When the XML document instance is created, it must have the target namespace
defined in the XML Schema for the XML document to be valid.

Defining a content model

In the Schema Overview, you have already created a global element called Company. This
element is to contain one Address element and an unlimited number of Person elements—its
content model. Global components that can have content models are elements, complexTypes,
and element groups.

In XMLSpy, the content model of a global component is displayed in the Content Model View of
the Schema/WSDL View. To view and edit the content model of a global component, click the

Display Diagram icon located to the left of the global component.

In this section, you will create the content model of the Company element.

24 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Creating a basic content model
To create the content model of the Company element:

1. In the Schema Overview, click the Display Diagram icon of the Company element.
This displays the content model of the Company element, which is currently empty.
Alternatively, you can double-click the Company entry in the Components entry helper
to display its content model.

2. A content model consists of compositors and components. The compositors specify
the relationship between two components. At this point of the Company content model,
you must add a child compositor to the Company element in order to add a child
element. To add a compositor, right-click the Company element. From the context
menu that appears, select Add Child | Sequence. (Sequence, Choice, and All are the
three compositors that can be used in a content model.)

This inserts the Sequence compositor, which defines that the components that follow
must appear in the specified sequence.

© 2007 Altova GmbH

XMLSpy Tutorial 25Tutorials

User Manual

3. Right-click the Sequence compositor and select Add Child | Element. An unnamed
element component is added.

4. Enter Address as the name of the element, and confirm with Enter.

5. Right-click the Sequence compositor again, select Add Child | Element. Name the
newly created element component Person.

You have so far defined a schema which allows for one address and one person per
company. We need to increase the number of Person elements.

6. Right-click the Person element, and select Unbounded from the context menu. The
Person element in the diagram now shows the number of allowed occurrences: 1 to
infinity.

Alternatively, in the Details Entry Helper, you can edit the minOcc and maxOcc fields to
specify the allowed number of occurrences, in this case 1 and unbounded, respectively.

26 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Adding additional levels to the content model structure
The basic content model you have created so far contains one level: a child level for the
company element which contains the Address and Person elements. Now we will define the
content of the Address element so it contains Name, Street, and City elements. This is a
second level. Again we need to add a child compositor to the Address element, and then the
element components themselves.

Do this as follows:

1. Right-click the Address element to open the context menu, and select Add Child |
Sequence. This adds the Sequence compositor.

2. Right-click the Sequence compositor, and select Add Child | Element. Name the newly
created element component Name.

Complex types, simple types, and XML Schema data types
Till this point, we have not explicitly defined any element type. Click the Text tab to display the
Text View of your schema (listing below). You will notice that whenever a Sequence compositor
was inserted, the xs:sequence element was inserted within the xs:complexType element.
In short, the Company and Address elements, because they contain child elements, are
complex types. A complex type element is one which contains attributes or elements.

 <xs:element name="Company">
 <xs:annotation>
 <xs:documentation>Root element</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Address">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Person"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

Simple type elements, on the other hand, contain only text and have no attributes. Text can be
strings, dates, numbers, etc. We want the Name child of Address to contain only text. It is a
simple type, the text content of which we want to restrict to a string. We can do this using the
XML Schema data type xs:string.

To define the Name element to be of this datatype:

1. Click the Schema/WSDL tab to return to Schema/WSDL view.
2. Click the Name element to select it.

© 2007 Altova GmbH

XMLSpy Tutorial 27Tutorials

User Manual

3. In the Details Entry Helper, from the dropdown menu of the type combo box, select
the xs:string entry.

Note that both minOcc and maxOcc have a value of 1, showing that this element
occurs only once.

The text representation of the Name element is as follows:

<xs:element name="Name" type="xs:string"/>

Please note: A simple type element can have any one of several XML Schema data types. In
all these cases, the icon indicating text-content appears in the element box.

Adding elements with drag-and-drop

You have added elements using the context menu that appears when you right-click an element
or compositor. You can also create elements using drag-and-drop, which is quicker than using
menu commands. In this section, you will add more elements to the definition of the Address
element using drag-and-drop, thus completing this definition.

To complete the definition of the Address element using drag-and-drop:

1. Click the Name element of the Address element, hold down the Ctrl key, and drag the
element box with the mouse. A small "plus" icon appears in the element box, indicating
that you are about to copy the element. A copy of the element together with a connector
line also appears, showing where the element will be created.

2. Release the mouse button to create the new element in the Address sequence. If the
new element appears at an incorrect location, drag it to a location below the Name
element.

28 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

3. Double-click in the element box, and type in Street to change the element name.
4. Use the same method to create a third element called City. The content model should

now look like this:

The Address element has a sequence of a Name, a Street, and a City element, in
that order.

Configuring the Content Model View

This is a good time to configure the Content Model View. We will configure the Content Model
View such that the type of the element is displayed for each element.

To configure the Content Model View:

1. Select the Content Model View (click the Content Model View icon) of a component
in order to enable the Configure view command.

2. Select the menu option Schema Design | Configure view. The Schema Display
Configuration dialog appears.

© 2007 Altova GmbH

XMLSpy Tutorial 29Tutorials

User Manual

3. Click the Append icon (in the Element tab) to add a property descriptor line for
each element box.

4. From the dropdown menu, select type (or double-click in the line and enter "type").
This will cause the data type of each element to be displayed in the Content Model
View.

5. In the Single Line Settings pane, select Hide Line If No Value. This hides the description
of the datatype in the element box if the element does not have a datatype (for
example, if the element is a complex type).

30 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Notice that the type descriptor line appears for the Name, Street, and City elements,
which are simple types of type xs:string, but not for the complex type elements. This
is because the Hide Line If No Value toggle is selected.

6. In the Single Line Settings group, select the Always Show Line radio button.
7. Click OK to confirm the changes.

Notice that the descriptor line for the data type is always shown—even in element
boxes of complex types, where they appear without any value.

Please note:
 The property descriptor lines are editable, so values you enter in them become part of

the element definition.
 The settings you define in the Schema display configuration dialog apply to the schema

documentation output as well as the printer output.

Completing the basic schema

You have defined the content of the Address element. Now you need to define the content of
the Person element. The Person element is to contain the following child elements, all of
which are simple types: First, Last, Title, PhoneExt, and Email. All these elements are
mandatory except Title (which is optional), and they must occur in the order just specified. All
should be of datatype xs:string except PhoneExt, which must be of datatype xs:integer
and limited to 2 digits.

To create the content model for Person:

1. Right-click the Person element to open the context menu, and select Add Child |
Sequence. This inserts the Sequence compositor.

2. Right-click the Sequence compositor, and select Add Child | Element.
3. Enter First as the name of the element, and press the Tab key. This automatically

places the cursor in the type field.

© 2007 Altova GmbH

XMLSpy Tutorial 31Tutorials

User Manual

4. Select the xs:string entry from the dropdown list or enter it into the type value field.
5. Use the drag-and-drop method to create four more elements. Name them Last, Title

, PhoneExt, and Email, respectively.

Please note: You can select multiple elements by holding down the Ctrl key and clicking each
of the required elements. This makes it possible to, e.g., copy several elements at once.

Making an element optional
Right-click the Title element and select Optional from the context menu. The frame of the

32 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

element box changes from solid to dashed; this is a visual indication that an element is
optional.

In the Details Entry Helper, you will see that minOcc=0 and maxOcc=1, indicating that the
element is optional. Alternatively to using the context menu to make an element optional, you
can set minOcc=0 in order to make the element optional.

Limiting the content of an element
To define the PhoneExt element to be of type xs:integer and have a maximum of two
digits:

1. Double-click in the type field of the PhoneExt element, and select (or enter) the
xs:integer entry from the dropdown list.

The items in the Facets Entry Helper change at this point.
2. In the Facets Entry Helper, double-click in the maxIncl field and enter 99. Confirm

with Enter.

© 2007 Altova GmbH

XMLSpy Tutorial 33Tutorials

User Manual

This defines that all phone extensions up to, and including 99, are valid.
3. Select the menu option File | Save to save the changes to the schema.

Please note:

 Selecting an XML Schema datatype that is a simple type (for example, xs:string or
xs:date), automatically changes the content model to simple in the Details Entry
Helper (content = simple).

 Adding a compositor to an element (sequence, choice, or all), automatically
changes the content model to complex in the Details Entry Helper (content =
complex).

 The schema described above is available as AddressFirst.xsd in the XMLSpy2007\
Examples\Tutorial folder of your XMLSpy application folder.

2.1.3 Advanced XML Schema definitions

Now that you have created a basic schema, we can move forward to a few advanced aspects of
schema development.

Objective
In this section, you will learn how to:

 Work with complex types and simple types, which can then be used as the types of
schema elements.

 Create global elements and reference them from other elements.
 Create attributes and their properties, including enumerated values.

You will start this section with the basic AddressFirst.xsd schema you created in the first
part of this tutorial.

Commands used in this section
In this section of the tutorial, you will use the Schema/WSDL View exclusively. The following
commands are used:

Display Diagram (or Display Content Model View). This icon is located to the left of all
global components in Schema Overview. Clicking the icon causes the content model of
the associated global component to be displayed.

Display All Globals. This icon is located at the top left-hand corner of the Content Model
View. Clicking the icon switches the view to Schema Overview, which displays all global
components.

Append. The Append icon is located at the top left-hand corner of the Schema
Overview. Clicking the icon enables you to add a global component.

Working with Complex Types and Simple Types

Having defined the content model of an element, you may decide you want to reuse it
elsewhere in your schema. The way to do this is by creating that element definition as a global
complex type or as a global element. In this section, you will work with global complex types.
You will first create a complex type at the global level and then extend it for use in a content
model. You will learn about global elements later in this tutorial.

Creating a global complex type

34 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

The basic Address element that we defined (containing Name, Street, and City elements)
can be reused in various address formats. So let us create this element definition as a complex
type, which can be reused.

To create a global complex type:

1. In the Content Model View, right-click the Address element.
2. In the context menu that now appears, select Make Global | Complex type. A global

complex type called AddressType is created, and the Address element in the
Company content model is assigned this type. The content of the Address element is
the content model of AddressType, which is displayed in a yellow box. Notice that the
datatype of the Address element is now AddressType.

3. Click the Display All Globals icon. This takes you to the Schema Overview, in which
you can view all the global components of the schema.

4. Click the expand icons for the element and complexType entries in the Components
entry helper, to see the respective schema constructs.
The Schema Overview now displays two global components: the Company element and
the complex type AddressType. The Components Entry Helper also displays the
AddressType complex type.

5. Click on the Content Model View icon of AddressType to see its content model (
screenshot below). Notice the shape of the complex type container.

© 2007 Altova GmbH

XMLSpy Tutorial 35Tutorials

User Manual

6. Click the Display All Globals icon to return to the Schema Overview.

Extending a complex type definition
We now want to use the global AddressType component to create two kinds of
country-specific addresses. For this purpose we will define a new complex type based on the
basic AddressType component, and then extend that definition.

Do this as follows:

1. Switch to Schema Overview. (If you are in Content Model View, click the Display All

Globals icon .)

2. Click the Append icon at the top left of the component window. The following menu
opens:

3. Select ComplexType from the context menu. A new line appears in the component list,
and the cursor is set for you to enter the component name.

4. Enter US-Address and confirm with Enter. (If you forget to enter the hyphen character
"-" and enter a space, the element name will appear in red, signalling an invalid
character.)

36 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

5. Click the Content Model View icon of US-Address to see the content model of the
new complex type. The content model is empty (see screenshot below).

6. In the Details entry helper, click the base combo box and select the AddressType
entry.

The Content Model View now displays the AddressType content model as the content
model of US-Address (screenshot below).

© 2007 Altova GmbH

XMLSpy Tutorial 37Tutorials

User Manual

7. Now we can extend the content model of the US-Address complex type to take a ZIP
Code element. To do this, right-click the US-Address component, and, from the
context menu that appears, select Add Child | Sequence. A new sequence compositor
is displayed outside the AddressType box (screenshot below). This is a visual
indication that this is an extension to the element.

8. Right-click the new sequence compositor and select Add Child | Element.
9. Name the newly created element Zip, and then press the Tab button. This places the

cursor in the value field of the type descriptor line.
10. Select xs:positiveInteger from the dropdown menu that appears, and confirm

with Enter.

38 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

You now have a complex type called US-Address, which is based on the complex type
AddressType and extends it to contain a ZIP code.

Global simple types
Just as the complex type US-Address is based on the complex type AddressType, an
element can also be based on a simple type. The advantage is the same as for global complex
types: the simple type can be reused. In order to reuse a simple type, the simple type must be
defined globally. In this tutorial, you will define a content model for US states as a simple type.
This simple type will be used as the basis for another element.

Creating a global simple type
Creating a global simple type consists of appending a new simple type to the list of global
components, naming it, and defining its datatype.

To create a global simple type:

1. Switch to Schema Overview. (If you are in Content Model View, click the Display All

Globals icon .)
2. Click the Append icon, and in the context menu that appears, select SimpleType.
3. Enter US-State as the name of the newly created simpleType.
4. Press Enter to confirm. The simple type US-State is created and appears in the list of

simple types in the Components Entry Helper (Click the expand icon of the simpleType
entry to see it).

© 2007 Altova GmbH

XMLSpy Tutorial 39Tutorials

User Manual

5. In the Details Entry Helper (screenshot below), place the cursor in the value field of
restr and enter xs:string, or select xs:string from the dropdown menu in the
restr value field.

This creates a simple type called US-State, which is of datatype xs:string. This
global component can now be used in the content model of US-Address.

Using a global simple type in a content model
A global simple type can be used in a content model to define the type of a component. We will
use US-State to define an element called State in the content model of US-Address.

Do the following:

1. In Schema Overview, click the Component Model View icon of US-Address.
2. Right-click the lower sequence compositor and select Add Child | Element.
3. Enter State for the element name.
4. Press the Tab key to place the cursor in the value field of the type descriptor line.
5. From the drop-down menu of this combo box, select US-State.

40 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

The State element is now based on the US-State simple type.

Creating a second complex type based on AddressType
We will now create a global complex type to hold UK addresses. The complex type is based on
AddressType, and is extended to match the UK address format.

Do the following:

1. In Schema Overview, create a global complex type called UK-Address, and base it on
AddressType (base=AddressType).

2. In the Content Model View of UK-Address, add a Postcode element and give it a
type of xs:string.

Your UK-Address content model should look like this:

© 2007 Altova GmbH

XMLSpy Tutorial 41Tutorials

User Manual

Please note: In this section you created global simple and complex types, which you then used
in content model definitions. The advantage of global types is that they can be reused in
multiple definitions.

Referencing global elements

In this section, we will convert the locally defined Person element to a global element and
reference that global element from within the Company element.

1. Click (Display All Globals) to switch to Schema Overview.

2. Click the Display Diagram icon of the Company element.
3. Right-click the Person element, and select Make Global | Element. A small link arrow

icon appears in the Person element, showing that this element now references the
globally declared Person element. In the Details Entry Helper, the isRef check box is
now activated.

42 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

4. Click the Display All Globals icon to return to Schema Overview. The Person
element is now listed as a global element. It is also listed in the Components Entry
Helper.

© 2007 Altova GmbH

XMLSpy Tutorial 43Tutorials

User Manual

5. In the Components Entry Helper, click the Person element to see the content model of
the global Person element.

Notice that the global element box does not have a link arrow icon. This is because it is
the referenced element, not the referencing element. It is the referencing element that
has the link arrow icon.

Please note:

 An element that references a global element must have the same name as the global
element it references.

 A global declaration does not describe where a component is to be used in an XML
document. It only describes a content model. It is only when a global declaration is
referenced from within another component that its location in the XML document is
specified.

A globally declared element can be reused at multiple locations. It differs from a globally
declared complex type in that its content model cannot be modified without also
modifying the global element itself. If you change the content model of an element that
references a global element, then the content model of the global element will also be
changed, and, with it, the content model of all other elements that reference that global
element.

Attributes and attribute enumerations

In this section, you will learn how to create attributes and enumerations for attributes.

Defining element attributes

1. In the Schema Overview, click the Person element to make it active.

2. Click the Append icon , in the top left of the Attributes/Identity Constraints tab group
(in the lower part of the Schema Overview window), and select the Attribute entry.

44 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

3. Enter Manager as the attribute name in the Name field.
4. Use the Type combo box to select xs:boolean.
5. Use the Use combo box to select required.

6. Use the same procedure to create a Programmer attribute with Type=xs:boolean
and Use=optional.

© 2007 Altova GmbH

XMLSpy Tutorial 45Tutorials

User Manual

Defining enumerations for attributes
Enumerations are values allowed for a given attribute. If the value of the attribute in the XML
instance document is not one of the enumerations specified in the XML Schema, then the
document is invalid. We will create enumerations for the Degree attribute of the Person
element.

Do the following:

1. In the Schema Overview, click the Person element to make it active.

2. Click the Append icon in the top left of the Attributes window, and select the
Attribute entry.

3. Enter Degree as the attribute name, and select xs:string as its type.
4. With the Degree attribute selected, in the Facets Entry Helper, click the Enumerations

tab (see screenshot).

5. In the Enumerations tab, click the Append icon .
6. Enter BA, and confirm with Enter.
7. Use the same procedure to add two more enumerations: MA and PhD.

8. Click on the Content Model View icon of Person.

The previously defined attributes are visible in the Content Model View. Clicking the
expand icon displays all the attributes defined for that element. This display mode can
be toggled by selecting the menu option Schema Design | Configure view, and
activating the Attributes and Identity Constraints check boxes in the Show in
diagram pane.

9. Click the Display all Globals icon to return to the Schema Overview.

Saving the completed XML Schema

Please note: Before saving your schema file, rename the AddressLast.xsd file that is
delivered with XMLSpy to something else (such as AddressLast_original.xsd), so as not

46 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

to overwrite it.

Save the completed schema with any name you like (File | Save as). We recommend you save
it with the name AddressLast.xsd since the XML file you create in the next part of the tutorial
will be based on the AddressLast.xsd schema.

2.1.4 Schema navigation and documentation

After having completed the XML Schema, we suggest you become familiar with a few
navigation shortcuts and learn about the schema documentation that you can generate from
within XMLSpy. These are described in the subsections of this section.

Commands used in this section
In this section of the tutorial, you will use the Schema/WSDL View exclusively. The following
commands are used:

Display Diagram (or Display Content Model View). This icon is located to the left of all
global components in Schema Overview. Clicking the icon causes the content model of
the associated global component to be displayed.

Schema navigation

This section shows you how to navigate the Schema/WSDL View efficiently. We suggest that
you try out these navigation mechanisms to become familiar with them.

Displaying the content model of a global component
Global components that can have content models are complex types, elements, and element
groups. The Content Model View of these components can be opened in the following ways:

 In Schema Overview, click the Display Diagram icon to the left of the component
name.

 In either Schema Overview or Content Model View, double-click the element, complex
type, or element group in the Components Entry Helper (screenshot below).

If you double-click any of the other global components (simple type, attribute, attribute
group) in the Components Entry Helper, that component will be highlighted in Schema
Overview (since they do not have a content model).

In the Components Entry Helper, the double-clicking mechanism works from both the By Type
and By Namespace tabs.

© 2007 Altova GmbH

XMLSpy Tutorial 47Tutorials

User Manual

Going to the definition of a global element from a referencing element
If a content model contains an element that references a global element, you can go directly to
the content model of that global element or to any of its contained components by holding down
Ctrl and double-clicking the required element.

For example, while viewing the Company content model, holding down Ctrl while
double-clicking Last opens the Person content model and highlights the Last element in it.

When the Last element is highlighted, all its properties are immediately displayed in the
relevant entry helpers and information window.

Going to the definition of a complex type
Complex types are often used as the type of some element within a content model. To go
directly to the definition of a complex type from within a content model, double-click the name of
the complex type in the yellow box (see mouse pointer in screenshot below).

This takes you to the Content Model View of the complex type.

48 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Please note: Just as with referenced global elements, you can go directly to an element within
the complex type definition by holding down Ctrl and double-clicking the required element in the
content model that contains the complex type.

Schema documentation

XMLSpy provides detailed documentation of XML Schemas in HTML and Microsoft Word (MS
Word) formats. You can select the components and the level of detail you want documented.
Related components are hyperlinked in both HTML and MS Word documents. In order to
generate MS Word documentation, you must have MS Word installed on your computer (or
network).

In this section, we will generate documentation for the AddressLast.xsd XML Schema.

Do the following:

1. Select the menu option Schema design | Generate documentation. This opens the
Schema Documentation dialog.

2. For the Output Format option, select HTML, and click OK.
3. In the Save As dialog, select the location where the file is to be saved and give the file a

suitable name (say AddressLast.html). Then click the Save button.

© 2007 Altova GmbH

XMLSpy Tutorial 49Tutorials

User Manual

The HTML document appears in the Browser View of XMLSpy. Click on a link to go to
the corresponding linked component.

The diagram above shows the first page of the schema documentation in HTML form.
If components from other schemas have been included, then those schemas are also
documented.

50 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

The diagram above shows how complex types are documented.

© 2007 Altova GmbH

XMLSpy Tutorial 51Tutorials

User Manual

The diagram above shows how elements and simple types are documented.

You can now try out the MS Word output option. The Word document will open in MS Word. To
use hyperlinks in the MS Word document, hold down Ctrl while clicking the link.

2.1.5 Creating an XML document

In this section you will learn how to create and work with XML documents in XMLSpy. You will
also learn how to use the various intelligent editing features of XMLSpy.

Objective
In this section of the tutorial you will learn how to do the following:

 Create a new XML document based on the AddressLast.xsd schema.

 Specify the type of an element so as to make an extended content model for that

52 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

element available to the element during validation.
 Insert elements and attributes and enter content for them in Grid View and Text View

using intelligent entry helpers.
 Copy XML data from XMLSpy to Microsoft Excel; add new data in MS Excel; and copy

the modified data from MS Excel back to XMLSpy. This functionality is available in the
Database/Table View of Grid View.

 Sort XML elements using the sort functionality of Database/Table View.
 Validate the XML document.
 Modify the schema to allow for three-digit phone extensions.

Commands used in this section
In this section of the tutorial, you will mostly use the Grid View and Text View, and in one
section the Schema/WSDL View. The following commands are used:

File | New. Creates a new type of XML file.

View | Text View. Switches to Text View.

View | Enhanced Grid View. Switches to Enhanced Grid View.

XML | Table | Display as Table. Displays multiple occurrences of a single element
type at a single hierarchic level as a table. This view of the element is called the
Database/Table View (or simply Table View). The icon is used to switch between the
Table View and regular Enhanced Grid View.

F7. Checks for well-formedness.

F8. Validates the XML document against the associated DTD or Schema.

Opens the associated DTD or XML Schema file.

Creating a new XML file

When you create a new XML file in XMLSpy, you are given the option of basing it on a schema
(DTD or XML Schema) or not. In this section you will create a new file that is based on the
AddressLast.xsd schema you created earlier in the tutorial.

To create the new XML file:

1. Select the menu option File | New. The Create new document dialog opens.

© 2007 Altova GmbH

XMLSpy Tutorial 53Tutorials

User Manual

2. Select the Extensible Markup Language entry from the dialog, and confirm with
OK. A prompt appears, asking if you want to base the XML document on a DTD or
Schema.

3. Click the Schema radio button, and confirm with OK. A further dialog appears, asking
you to select the schema file your XML document is to be based on.

4. Use the Browse or Window buttons to find the schema file. The Window button lists all
files open in XMLSpy and projects. Select AddressLast.xsd, and confirm with OK.
An XML document containing the main elements defined by the schema opens in the
main window.

5. Click the Grid tab to select Enhanced Grid View.

54 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

6. In Grid View, the entire document is selected. Click on any element to reduce selection
to that element. Your document should look something like this:

7. Click on the icon next to Address, to view the child elements of Address. Your
document should look like this:

Specifying the type of an element

The child elements of Address displayed in Grid View are those defined for the global complex
type AddressType (content model of which is shown in screenshot below).

We would, however, like to use a specific US or UK address type rather than the generic
address type. You will recall that, in the AddressLast.xsd schema, we created global
complex types for US-Address and UK-Address by extending the AddressType complex
type. The content model of US-Address is shown below.

© 2007 Altova GmbH

XMLSpy Tutorial 55Tutorials

User Manual

In the XML document, in order to specify that the Address element must conform to one of the
extended Address types (US-Address or UK-Address) rather than the generic
AddressType, we must specify the required extended complex type as an attribute of the
Address element.

Do the following:

1. Right-click the Name element, and select Insert | Attribute from the context menu.

An attribute field is added to the Address element.
2. Enter xsi:type as the name of the attribute.
3. Press Tab to move into the next (value) field. A popup menu appears (shown below)

listing the available complex types appears.

4. Select US-Address from the list, and confirm with Enter.

Please note: The xsi prefix allows you to use special XML Schema related commands in your
XML document instance. In the above case, you have specified a type for the Address
element. See the XML Schema specification for more information.

http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/

56 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Entering data in Grid View

You can now enter data into your XML document.

Do the following:

1. Double-click in the Name value field (or use the arrow keys) and enter US dependency
. Confirm with Enter.

2. Use the same method to enter a Street and City name (for example, Noble Ave
and Dallas).

3. Click the Person element and press Delete to delete the Person element. (We will
add it back in the next section of the tutorial.) After you do this, the entire Address
element is highlighted.

4. Click on any child element of the Address element to deselect all the child elements of
Address except the selected element. Your XML document should look like this:

Entering data in Text View

Text View is ideal for editing the actual data and markup of XML files because of its DTD/XML
Schema-related intelligent editing features.

Structural editing features
In addition, Text View provides a number of structural editing features that make editing large
sections of text easy. Among these latter features are the following, which can be toggled on
and off by clicking the appropriate icon.

Enables/disables line numbering.

© 2007 Altova GmbH

XMLSpy Tutorial 57Tutorials

User Manual

Enables/disables the source folding margin.

Enables/disables the bookmark margin.

Inserts/removes bookmarks.

Enables/disables indentation guides.

The screenshot below shows the current XML file in Text View with all structural editing features
enabled. For the sake of clarity, none of the line numbers, indentation guides, etc, will be shown
in Text View in rest of this tutorial. Please see the User Manual for more information on Text
View.

Comment: The example file below needs a small correction. It says "US depencency" instead
of "US dependency". The screenshot was edited to be correct, but the actual file has to be
changed.

58 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Editing in Text View
In this section, you will enter and edit data in Text View in order to become familiar with the
features of Text View.

Do the following:

1. Select the menu item View | Text view, or click on the Text tab. You now see the XML
document in its text form, with syntax coloring.

2. Place the text cursor after the end tag of the Address element, and press Enter to add
a new line.

3. Enter the less-than angular bracket < at this position. A dropdown list of all elements
allowed at that point (according to the schema) is displayed. Since only the Person
element is allowed at this point, it will be the only element displayed in the list.

4. Select the Person entry. The Person element, as well as its attribute Manager, are
inserted, with the cursor inside the value-field of the Manager attribute.

5. From the dropdown list for the Manager attribute, select true.

Press Enter to insert the value true at the cursor position.
6. Move the cursor to the end of the line (using the End key if you like), and press the

space bar. This opens a dropdown list, this time containing a list of attributes allowed at

© 2007 Altova GmbH

XMLSpy Tutorial 59Tutorials

User Manual

that point. Also, in the Attributes Entry Helper, the available attributes are listed in red.
The Manager attribute is grayed out because it has already been used.

7. Select Degree with the Down arrow key, and press Enter. This opens another list box,
from which you can select one of the predefined enumerations (BA, MA, or PhD).

8. Select BA with the Down arrow key and confirm with Enter. Then move the cursor to
the end of the line (with the End key), and press the space bar. Manager and Degree
are now grayed out in the Attributes Entry Helper.

9. Select Programmer with the Down arrow key and press Enter.

10. Enter the letter "f" and press Enter.
11. Move the cursor to the end of the line (with the End key), and enter the greater-than

angular bracket >. XMLSpy automatically inserts all the required child elements of
Person. (Note that the optional Title element is not inserted.) Each element has start
and end tags but no content.

60 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

You could now enter the Person data in Text View, but let's move to Grid View to see the
flexibility of moving between views when editing a document.

Switching to Grid View
To switch to Grid View, select the menu item View | Enhanced Grid View, or click the Grid
tab. The newly added child elements of Person are highlighted.

Now let us validate the document and correct any errors that the validation finds.

Validating the document

XMLSpy provides two evaluations of the XML document:

 A well-formedness check
 A validation check

If either of these checks fails, we will have to modify the document appropriately.

Checking well-formedness
An XML document is well-formed if starting tags match closing tags, elements are nested

© 2007 Altova GmbH

XMLSpy Tutorial 61Tutorials

User Manual

correctly, there are no misplaced or missing characters (such as an entity without its semi-colon
delimiter), etc.
To do a well-formedness check, select the menu option XML | Check well-formedness, or

press the F7 key, or click . A message appears in the Validation window at the bottom of
the Main Window saying the document is well-formed.

Notice that the output of the Validation window has 9 tabs. The validation output is always
displayed in the active tab. Therefore, you can check well-formedness in tab1 for one schema
file and keep the result by switching to tab 2 before validating the next schema document
(otherwise tab 1 is overwritten with the validation result).

Please note: This check does not check the structure of the XML file for conformance with the
schema. Schema conformance is evaluated in the validity check.

Checking validity
An XML document is valid according to a schema if it conforms to the structure and content
specified in that schema.

To check the validity of your XML document, select the menu option XML | Validate, or press

the F8 key, or click . An error message appears in the Validation window saying the file is
not valid. Mandatory elements are expected after the City element in Address. If you check
your schema, you will see that the US-Address complex type (which you have set this
Address element to be with its xsi:type attribute) has a content model in which the City
element must be followed by a Zip element and a State element.

Fixing the invalid document
The point at which the document becomes invalid is highlighted, in this case the City element.

62 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Now look at the Elements Entry Helper (at top right). Notice that the Zip element is prefixed
with an exclamation mark, which indicates that the element is mandatory in the current context.

To fix the validation error:

1. In the Elements Entry Helper, double-click the Zip element. This inserts the Zip
element after the City element (we were in the Append tab of the Elements Entry
Helper).

2. Press the Tab key, and enter the Zip Code of the State (04812), and confirm with
Enter. The Elements Entry Helper now shows that the State element is mandatory (it
is prefixed with an exclamation mark). See screenshot below.

3. In the Elements Entry Helper, double-click the State element. Then press Tab and
enter the name of the state (Texas). Confirm with Enter. The Elements Entry Helper
now contains only grayed-out elements. This shows that there are no more required
child elements of Address.

© 2007 Altova GmbH

XMLSpy Tutorial 63Tutorials

User Manual

Completing the document and revalidating
Let us now complete the document (enter data for the Person element) before revalidating.

Do the following:

1. Click the value field of the element First, and enter a first name (say Fred). Then
press Enter.

2. In the same way enter data for all the child elements of Person, that is, for Last,
PhoneExt, and Email. Note that the value of PhoneExt must be an integer with a
maximum value of 99 (since this is the range of allowed PhoneExt values you defined
in your schema). Your XML document should then look something like this:

64 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

3. Click again to check if the document is valid. A message appears in the Validation
window stating that the file is valid. The XML document is now valid against its schema.

4. Select the menu option File | Save and give your XML document a suitable name (for
example CompanyFirst.xml). Note that the finished tutorial file CompanyFirst.xml
is in the Tutorial folder, so you may need to rename it.

Please note: An XML document does not have to be valid in order to save it. Saving an invalid
document causes a prompt to appear warning you that you are about to save an invalid
document. You can select Save anyway, if you wish to save the document in its current invalid
state.

Appending elements and attributes in Grid View

At this point, there is only one Person element in the document.

To add a new Person element:

© 2007 Altova GmbH

XMLSpy Tutorial 65Tutorials

User Manual

1. Click the gray sidebar to the left of the Address element to collapse the Address
element. This clears up some space in the view.

2. Select the entire Person element by clicking on or below the Person element text in
Grid View. Notice that the Person element is now available in the Append tab of the
Elements Entry Helper.

3. Double-click the Person element in the Elements Entry Helper. A new Person
element with all mandatory child elements is appended (screenshot below). Notice that
the optional Title child element of Person is not inserted.

4. Press F12 to switch the new Person element to Grid View.
5. Click on the Manager attribute of the new Person element. Take a look at the

Attributes Entry Helper. The Manager entry is grayed out because it has already been
entered. Also look at the Info Window, which now displays information about the
Manager attribute.

6. In the Append tab of the Attributes Entry Helper, double-click the Programmer entry.
This inserts an empty Programmer attribute after the Manager attribute.

66 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

The Programmer attribute is now grayed out in the Attributes Entry Helper.

You could enter content for the Person element in this view, but let's switch to the
Database/Table View of Grid View since it is more suited to editing a structure with multiple
occurrences, such as Person.

Editing in Database/Table View

Grid View contains a special view called Database/Table View (hereafter called Table View),
which is convenient for editing elements with multiple occurrences. Individual element types can
be displayed as a table. When an element type is displayed as a table, its children (attributes
and elements) are displayed as columns, and the occurrences themselves are displayed as
rows.

To display an element type as a table, you select any one of the element type occurrences and

click the Display as Table icon in the toolbar (XML | Table | Display as table). This causes
that element type to be displayed as a table. Descendant element types that have multiple
occurrences are also displayed as tables. Table View is available in Enhanced Grid View, and
can be used to edit any type of XML file (XML, XSD, XSL, etc.).

Advantages of Table View
Table View provides the following advantages:

 You can drag-and-drop column headers to reposition the columns relative to each
other. This means that, in the actual XML document, the relative position of child
elements or attributes is modified for all the element occurrences that correspond to the
rows of the table.

 Tables can be sorted (in ascending or descending order) according to the contents of
any column using XML | Table | Ascending Sort or Descending Sort.

 Additional rows (i.e., element occurrences) can be appended or inserted using XML |
Table | Insert Row.

 You can copy-and-paste structured data to and from third party products
 The familiar intelligent editing feature is active in Table View also.

Displaying an element type as a Table
To display the Person element type as a table:

1. In Grid View, select either of the Person elements by clicking on or near the Person
text.

© 2007 Altova GmbH

XMLSpy Tutorial 67Tutorials

User Manual

68 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

2. Select the menu option XML | Table | Display as table, or click the Display as Table

 icon. Both Person elements are combined into a single table. The element and
attribute names are now the column headers, and the element occurrences are the
rows of the table.

3. Select the menu option View | Optimal widths, or click the Optimal Widths icon,
to optimize the column widths of the table.

Please note: Table View can be toggled off for individual element types in the document by

selecting that table (click the element name in the table) and clicking the Display As Table
icon. Note however that child elements which were displayed as tables will continue to be
displayed as tables.

Entering content in Table View
To enter content for the second Person element, double-click in each of the table cells in the
second row, and enter some data. Note, however, that PhoneExt must be an integer up to 99
in order for the file to be valid. The intelligent editing features are active also within cells of a
table, so you can select options from dropdown lists where options are available (Boolean
content and the enumerations for the Degree attribute).

Please note: The Entry Helpers are active also for the elements and attributes displayed as a
table. Double-clicking the Person entry in the Elements Entry Helper, for example, would add a
new row to the table (i.e., a new occurrence of the Person element).

Copying XML data to and from third party products
You can copy spreadsheet-type data between third party products and XML documents in
XMLSpy. This data can be used as XML data in XMLSpy and as data in the native format of the
application copied to/from. In this section you will learn how to copy data to and from an Excel
data sheet.

Do the following:

1. Click on the row label 1, hold down the Ctrl key, and click on row label 2. This selects
both rows of the table.

© 2007 Altova GmbH

XMLSpy Tutorial 69Tutorials

User Manual

2. Select the menu option Edit | Copy as Structured text. This command copies
elements to the clipboard as they appear on screen.

3. Switch to Excel and paste (Ctrl+V) the XML data in an Excel worksheet.

4. Enter a new row of data in Excel. Make sure that you enter a three digit number for the
PhoneExt element (say, 444).

5. Mark the table data in Excel, and select Edit | Copy to copy the data to the clipboard.
6. Switch back to XMLSpy.
7. Click in the top left data cell of the table in XMLSpy, and select Edit | Paste.

8. The updated table data is now visible in the table.
9. Change the uppercase boolean values TRUE and FALSE to lowercase true and false

, respectively, using the menu option Edit | Replace (Ctrl+H).

Sorting the table by the contents of a column
A table in Table View can be sorted in ascending or descending order by any of its columns. In
this case, we want to sort the Person table by last names.

To sort a table by the contents of a column:

1. Select the Last column by clicking in its header.

70 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

2. Select the menu option XML | Table | Ascending sort or click on the Ascending Sort

icon . The column, and the whole table with it, are now sorted alphabetically. The
column remains highlighted.

The table is sorted not just in the display but also in the underlying XML document. That
is, the order of the Person elements is changed so that they are now ordered
alphabetically on the content of Last. (Click the Text tab if you wish to see the changes
in Text View.)

3. Select the menu option XML | Validate or press F8. An error message appears
indicating that the value '444' is not allowed for a PhoneExt element (see screenshot).
The invalid PhoneExt element is highlighted .

Expand "Details" to see that PhoneExt is not valid because it is not less than or equal
to the maximum value of 99.

Please Note: You can click on the links in the error message to jump to the spot in the
XML file where the error was found.

Since the value range we set for phone extension numbers does not cover this
extension number, we have to modify the XML Schema so that this number is valid.
You will do this in the next section.

Modifying the schema

Since two-digit phone extension numbers do not cover all likely numbers, let's extend the range
of valid values to cover three-digit numbers. We therefore need to modify the XML Schema.
You can open and modify the XML Schema without having to close your XML document.

Do the following:

1. Select the menu option DTD/Schema | Go to definition or click the Go To Definition

© 2007 Altova GmbH

XMLSpy Tutorial 71Tutorials

User Manual

icon . The associated schema, in this case AddressLast.xsd. Switch to
Schema/WSDL View (screenshot below).

2. Click the Display Diagram icon of the global Person element, and then click the
PhoneExt element. The facet data in the Facets tab is displayed.

3. In the Facets tab, double-click the maxIncl value field, change the value 99 to 999,
and confirm with Enter.

4. Save the schema document.

72 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

5. Press Ctrl+Tab to switch back to the XML document.

6. Click to revalidate the XML document.

A message that the file is valid appears in the Validation window. The XML document
now conforms to the modified schema.

7. Select the menu option File | Save As... and save the file as CompanyLast.xml.
(Remember to rename the original CompanyLast.xml file that is delivered with
XMLSpy to something else, like CompanyLast_orig.xml).

Please note: The CompanyLast.xml file delivered with XMLSpy is in the in the Tutorial
folder.

2.1.6 Using XSLT to transform XML

Objective
To generate an HTML file from the XML file using an XSL stylesheet to transform the XML file.
You should note that a "transformation" does not change the XML file into anything else; instead
a new output file is generated. The word "transformation" is a convention.

Method
The method used to carry out the transformation is as follows:

 Assign a predefined XSL file, Company.xsl, to the XML document.

 Execute the transformation within the XMLSpy interface using one of the two built-in
Altova XSLT engines. (See note below.)

Commands used in this section
The following XMLSpy commands are used in this section:

XSL/XQuery | Assign XSL, which assigns an XSL file to the active XML document.

XSL/XQuery | Go to XSL, opens the XSL file referenced by the active XML document.

XSL/XQuery | XSL Transformation (F10), or the toolbar icon , transforms the active
XML document using the XSL stylesheet assigned to the XML file. If an XSL file has not been
assigned then you will be prompted for one when you select this command.

Please note: XMLSpy has two built-in XSLT engines, the Altova XSLT 1.0 Engine and Altova
XSLT 2.0 Engine. The Altova XSLT 1.0 Engine is used to process XSLT 1.0 stylesheets. The
Altova XSLT 2.0 Engine is used to process XSLT 2.0 stylesheets. The correct engine is
automatically selected by XMLSpy on the basis of the version attribute in the xsl:stylesheet
or xsl:transform element. In this tutorial transformation, we use XSLT 1.0 stylesheets. The
Altova XSLT 1.0 Engine will automatically be selected for transformations with these stylesheets
when the XSL Transformation command is invoked.

© 2007 Altova GmbH

XMLSpy Tutorial 73Tutorials

User Manual

Assigning an XSL file

To assign an XSL file to the CompanyLast.xml file:

1. Click the CompanyLast.xml tab in the main window so that CompanyLast.xml
becomes the active document.

2. Select the menu command XSL/XQuery | Assign XSL.
3. Click the Browse button, and select the Company.xsl file from the Tutorial folder. In

the dialog, you can activate the option Make Path Relative to CompanyLast.xml if you
wish to make the path to the XSL file (in the XML document) relative.

4. Click OK to assign the XSL file to the XML document.

An XML-stylesheet processing instruction is inserted in the XML document that
references the XSL file. If you activated the Make Path Relative to CompanyLast.xml
check box, then the path is relative; otherwise absolute (as in the screenshot above).

Transforming the XML file

To transform the XML document using the XSL file you have assigned to it:

1. Ensure that the XML file is the active document.

2. Select the menu option XSL/XQuery | XSL Transformation (F10) or click the icon.
This starts the transformation using the XSL stylesheet referenced in the XML
document. (Since the Company.xsl file is an XSLT 1.0 document, the built-in Altova
XSLT 1.0 Engine is automatically selected for the transformation.) The output document
is displayed in Browser View; it has the name XSL Output.html. (If the HTML output
file is not generated, ensure that, in the XSL tab of the Options dialog (Tools | Options
), the default file extension of the output file has been set to .html.) The HTML
document shows the Company data in one block down the left, and the Person data in
tabular form below.

74 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Please note: Should you only see a table header and no table data in the output file,
make sure that you have defined the target namespace for your schema as detailed in
Defining your own namespace at the beginning of the tutorial. The namespace must be
identical in all three files (Schema, XML, and XSL).

Modifying the XSL file

You can change the output by modifying the XSL document. For example, let's change the
background-color of the table in the HTML output from lime to yellow.

Do the following:

1. Click the CompanyLast.xml tab to make it the active document, and make sure you
are in Grid View.

2. Select the menu option XSL/XQuery | Go to XSL.

© 2007 Altova GmbH

XMLSpy Tutorial 75Tutorials

User Manual

The command opens the Company.xsl file referenced in the XML document.
3. Find the line <table border="1" bgcolor="lime">, and change the entry

bgcolor="lime" to bgcolor="yellow".

4. Select the menu option File | Save to save the changes made to the XSL file.
5. Click the CompanyLast.xml tab to make the XML file active, and select XSL/XQuery |

XSL Transformation, or press F10. A new XSL Output.html file appears in the
XMLSpy GUI in Browser View. The background color of the table is yellow.

6. Select the menu option File | Save, and save the document as Company.html.

2.1.7 Project management

This section introduces you to the project management features of XMLSpy. After learning
about the benefits of organizing your XML files into projects, you will organize the files you have
just created into a simple project.

Benefits of projects

The benefits of organizing your XML files into projects are listed below.

 Files and URLs can be grouped into folders by common extension or any other criteria.
 Batch processing can be applied to specific folders or the project as a whole.
 A DTD or XML Schema can be assigned to specific folders, allowing validation of the

files in that folder.
 XSLT files can be assigned to specific folders, allowing transformations of the XML files

in that folder using the assigned XSLT.
 The destination folders of XSL transformation files can be specified for the folder as a

whole.

All the above project settings can be defined using the menu option Project | Project
Properties.... In the next section, you will create a project using the Project menu.

76 Tutorials XMLSpy Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Additionally, the following advanced project features are available:

 XML files can be placed under source control using the menu option Project | Source
control | Add to source control.... (Please see the Source Control section in the
online help for more information.)

 Personal, network and web folders can be added to projects, allowing batch validation.

Building a project

Having come to this point in the tutorial, you will have a number of tutorial-related files open in
the Main Window. You can group these files into a tutorial project. First you create a new project
and then you add the tutorial files into the appropriate sub-folders of the project.

Creating a basic project
To create a new project:

1. Select the menu option Project | New Project. A new project folder called New
Project is created in the Project Window. The new project contains empty folders for
typical categories of XML files in a project (screenshot below).

2. Click the CompanyLast.xml tab to make the CompanyLast.xml file the active file in
the Main Window.

3. Select the menu option Project | Add active and related files to project. Two files are
added to the project: CompanyLast.xml and AddressLast.xsd. Note that files
referenced with Processing instructions (such as XSLT files) do not qualify as related
files.

4. Select the menu option Project | Save Project and save the project under the name
Tutorial.

Adding files to the project
You can add other files to the project as well. Do this as follows:

1. Click on any open XML file (with the .xml file extension) other than
CompanyLast.xml to make that XML file the active file. (If no other XML file is open,
open one or create a new XML file.)

2. Select the menu option Project | Add active file to project. The XML file is added to
the XML Files folder on the basis of its .xml file type.

3. In the same way, add an HTML file and XSD file (say, the Company.html and
AddressFirst.xsd files) to the project. These files will be added to the HTML Files
folder and DTD/Schemas folder, respectively.

4. Save the project, either by selecting the menu option Project | Save Project or by
selecting any file or folder in the Project Window and clicking the Save icon in the
toolbar (or File | Save).

Please note: Alternatively, you can right-click a project folder and select Add Active File to add

© 2007 Altova GmbH

XMLSpy Tutorial 77Tutorials

User Manual

the active file to that specific folder.

Other useful commands
Here are some other commonly used project commands:

 To add a new folder to a project, select Project | Add Project folder to Project, and
insert the name of the project folder.

 To delete a folder from a project, right-click the folder and select Delete from the
context menu.
To delete a file from a project, select the file and press the Delete key.

2.1.8 That's it !

If you have come this far congratulations, and thank you!

We hope that this tutorial has been helpful in introducing you to the basics of XMLSpy. If you
need more information please use the context-sensitive online help system, or print out the PDF
version of the tutorial, which is available as tutorial.pdf in your XMLSpy application folder.

78 Tutorials Authentic View Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

2.2 Authentic View Tutorial

In Authentic View, you can edit XML documents in a graphical WYSIWYG interface (screenshot
below), just like in word-processor applications such as Microsoft Word. In fact, all you need to
do is enter data. You do not have to concern yourself with the formatting of the document, since
the formatting is already defined in the stylesheet that controls the Authentic View of the XML
document. The stylesheet (StyleVision Power Stylesheet, shortened to SPS in this tutorial) is
created by a stylesheet designer in Altova StyleVision product.

Editing an XML document in Authentic View involves two user actions: (i) editing the structure of
the document (for example, adding or deleting document parts, such as paragraphs and
headlines); and (ii) entering data (the content of document parts).

This tutorial takes you through the following steps:

 Opening an XML document in Authentic View. The key requirement for Authentic View
editing is that the XML document be associated with an SPS file.

 A look at the Authentic View interface and a broad description of the central editing
mechanisms.

 Editing document structure by inserting and deleting nodes.
 Entering data in the XML document.
 Entering (i) attribute values via the Attributes entry helper, and entity values.
 Printing the document.

Remember that this tutorial is intended to get you started, and has intentionally been kept
simple. You will find additional reference material and feature descriptions in the Authentic View
interface sections.

© 2007 Altova GmbH

Authentic View Tutorial 79Tutorials

User Manual

Tutorial requirements
All the files you need for the tutorial are in the XMLSpy2007\Examples folder of your Altova
application folder. These files are:

 NanonullOrg.xml (the XML document you will open)

 NanonullOrg.sps (the StyleVision Power Stylesheet to which the XML document is
linked)

 NanonullOrg.xsd (the XML Schema on which the XML document and StyleVision
Power Stylesheet are based, and to which they are linked)

 nanonull.gif and Altova_right_300.gif (two image files used in the tutorial)

Please note: At some points in the tutorial, we ask you to look at the XML text of the XML
document (as opposed to the Authentic View of the document). If the Altova product edition you
are using does not include a Text View (as in the case of the free Authentic Desktop and
Authentic Browser), then use a plain text editor like Wordpad or Notepad to view the text of the
XML document.

Caution: We recommend that you use a copy of NanonullOrg.xml for the tutorial, so that
you can always retrieve the original should the need arise.

2.2.1 Opening an XML Document in Authentic View

In Authentic View, you can edit an existing XML document or create and edit a new XML
document. In this tutorial, you will open an existing XML document in Authentic View (described
in this section) and learn how you can edit it (subsequent sections). Additionally in this section is
a description of how a new XML document can be created for editing in Authentic View.

Opening an existing XML document
The file you will open is NanonullOrg.xml. It is in the Examples folder of your Altova
application. You can open NanonullOrg.xml in one of two ways:

 Click File | Open in your Altova product, then browse for NanonullOrg.xml in the
dialog that appears, and click Open.

 Use Windows Explorer to locate the file, right-click, and select your Altova product as
the application with which to open the file.

The file NanonullOrg.xml opens directly in Authentic View (screenshot below). This is
because

1. The file already has a StyleVision Power Stylesheet (SPS) assigned to it, and
2. In the Options dialog (Tools | Options), in the View tab, the option to open XML files in

Authentic View if an SPS file is assigned has been checked. (Otherwise the file would
open in Text View.)

80 Tutorials Authentic View Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Remember: It is the SPS that defines and controls how an XML document is displayed in
Authentic View. Without an SPS, there can be no Authentic View of the document.

Creating a new XML document based on an SPS
You can also create a new XML document that is based on an SPS. You can do this in two
ways: via the File | New menu command and via the Authentic | Create New Document menu
command. In both cases an SPS is selected.

Via File | New

1. Select File | New, and, in the Create a New Document dialog, select XML as the new
file type to create.

2. Click Select a STYLEVISION Stylesheet, and browse for the desired SPS.

Via Authentic | Create New Document

1. Select Authentic | New Document.
2. In the Create a New Document dialog, browse for the desired SPS.

If a Template XML File has been assigned to the SPS, then the data in the Template XML File
is used as the starting data of the XML document template that is created in Authentic View.

2.2.2 The Authentic View Interface

The Authentic View editing interface consists of a main window in which you enter and edit the
document data, and three entry helpers. Editing a document is simple. If you wish to see the
markup of the document, switch on the markup tags. Then start typing in the content of your
document. To modify the document structure, you can use either the context menu or the
Elements entry helper.

Displaying XML node tags (document markup)
An XML document is essentially a hierarchy of nodes. For example:

<DocumentRoot>
 <Person id="ABC001">

<Name>Alpha Beta</Name>
<Address>Some Address</Address>
<Tel>1234567</Tel>

 </Person>
</DocumentRoot>

© 2007 Altova GmbH

Authentic View Tutorial 81Tutorials

User Manual

By default, the node tags are not displayed in Authentic View. You can switch on the node tags

by selecting the menu item Authentic | Show Large Markup (or the toolbar icon). Large
markup tags contain the names of the respective nodes. Alternatively, you can select small
markup (no node names in tags) and mixed markup (a mixture of large, small, and no markup
tags, which is defined by the designer of the stylesheet; the default mixed markup for the
document is no markup).

You can view the text of the XML document in the Text View of your Altova product or in a text
editor.

Entry helpers
There are three entry helpers in the interface (screenshot below), located by default along the
right edge of the application window. These are the Elements, Attributes, and Entity entry
helpers.

Elements entry helper: The Elements entry helper displays elements that can be inserted and
removed with reference to the current location of the cursor or selection in the Main Window.

82 Tutorials Authentic View Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Note that the entry helper is context-sensitive; its content changes according to the location of
the cursor or selection. The content of the entry helper can be changed in one other way: when
another node is selected in the XML tree of the Elements entry helper, the elements relevant to
that node are displayed in the entry helper. The Elements entry helper can be expanded to
show the XML tree by checking the Show XML Tree check box at the top of the entry helper (
see screenshot above). The XML tree shows the hierarchy of nodes from the top-level element
node all the way down to the node selected in the Main Window.

Attributes entry helper: The Attributes entry helper displays the attributes of the element
selected in the Main Window, and the values of these attributes. Attribute values can be entered
or edited in the Attributes entry helper. Element nodes from the top-level element down to the
selected element are available for selection in the combo box of the Atributes entry helper.
Selecting an element from the dropdown list oft he combo box causes that element's attributes
to be displayed in the entry helper, where they can then be edited.

Entities entry helper: The Entities entry helper is not context-sensitive, and displays all the
entities declared for the document. Double-clicking an entity inserts it at the cursor location.
How to add entities for a document is described in the section Authentic View Interface.

Context menu
Right-clicking at a location in the Authentic View document pops up a context menu relevant to
that (node) location. The context menu provides commands that enable you to:

 Insert nodes at that location or before or after the selected node. Submenus display
lists of nodes that are allowed at the respective insert locations.

 Remove the selected node (if this allowed by the schema) or any removable ancestor
element. The nodes that may be removed (according to the schema) are listed in a
submenu.

 Insert entities and CDATA sections. The entities declared for the document are listed in
a submenu. CDATA sections can only be inserted withn text.

 Cut, copy, paste, and delete document content.

Note: For more details about the interface, see Authentic View Interface

2.2.3 Node Operations

There are two major types of nodes you will encounter in an Authentic View XML document:
element nodes and attribute nodes. These nodes are marked up with tags, which you can
switch on. There are also other nodes in the document, such as text nodes (which are not
marked up) and CDATA section nodes (which are marked up, in order to delimit them from
surrounding text).

The node operations described in this section refer only to element nodes and attribute nodes.
When trying out the operations described in this section, it is best to have large markup
switched on.

Note: It is important to remember that only same- or higher-level elements can be inserted
before or after the selected element. Same-level elements are siblings. Siblings of a
paragraph element would be other paragraph elements, but could also be lists, a table,
an image, etc. Siblings could occur before or after an element. Higher-level elements
are ancestor elements and siblings of ancestors. For a paragraph element, ancestor
elements could be a section, chapter, article, etc. A paragraph in a valid XML file would
already have ancestors. Therefore, adding a higher-level element in Authentic View,
creates the new element as a sibling of the relevant ancestor. For example, if a section

© 2007 Altova GmbH

Authentic View Tutorial 83Tutorials

User Manual

element is inserted after a paragraph, it is created as a sibling of the section that
contains the current paragraph element, and it is created as the last sibling section.

Carrying out node operations
Node operations can be carried out by selecting a command in the context menu or by clicking
the node operation entry in the Elements entry helper. In some cases, an element or attribute
can be added by clicking the Add Node link in the Authentic View of the document. In the
special cases of elements defined as paragraphs or list items, pressing the Enter key when
within such an element creates a new sibling element of that kind. This section also describes
how nodes can be created and deleted by using the Apply Element, Remove Node, and Clear
Element mechanisms.

Inserting elements
Elements can be inserted at the following locations:

 The cursor location within an element node. The elements available for insertion at that
location are listed in a submenu of the context menu's Insert command. In the
Elements entry helper, elements that can be inserted at a location are indicated with

the icon. In the NanonullOrg.xml document, place the cursor inside the para
element, and create bold and italic elements using both the context menu and
Elements entry helper.

 Before or after the selected element or any of its ancestors, if allowed by the schema. In
the first submenu that rolls out, you select the element (selected element or an
ancestor) before/after which you wish to insert the element. In the (second) submenu,
which now rolls out, you select the element you wish to insert. In the Elements entry
helper, elements that can be inserted before or after the selected element are indicated

with the and icons, respectively. Note that in the Elements entry helper, you can
insert elements before/after the selected element only; you cannot insert before/after an
ancestor element. Try out this command, by first placing the cursor inside the para
element and then inside the table listing the employees.

Add Node link
If an element or attribute is included in the document design, and is not present in the XML
document, an Add Node link is displayed at the location in the document where that node is
specified. To see this link, in the line with the text, Location of logo, select the @href node within
the CompanyLogo element and delete it (by pressing the Delete key). The add @href link
appears within the CompanyLogo element taht was edited (screenshot below). Clicking the link
adds the @href node to the XML document. The text box within the @href tags appears
because the design specifies that the @href node be added like this. You still have to enter the
value (or content) of the @href node. Enter the text nanonull.gif.

84 Tutorials Authentic View Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

If the content model of an element is ambiguous, for example, if it specifies that a sequence of
child elements may appear in any order, then the add... link appears. Note that no node name
is specified. Clicking the link will pop up a list of elements that may validly be inserted.

Note: The Add Node link appears directly in the document template; there is no
corresponding entry in the context menu or Elements entry helper.

Creating new elements with the Enter key
In cases where an element has been formatted as a paragraph or list item (by the stylesheet
designer), pressing the Enter key when inside such a node causes a new node of that kind to
be inserted after the current node. You can try this mechanism in the NanonullOrg.xml
document by going to the end of a para node (just before its end tag) and pressing Enter.

Applying elements
In elements of mixed content (those which contain both text and child elements), some text
content can be selected and an allowed child element be applied to it. The selected text
becomes the content of the applied element. To apply elements, in the context menu, select
Apply and then select from among the applicable elements. (If no elements can be applied to
the selected text, then the Apply command does not appear in the context menu.) In the

Elements entry helper, elements that can be applied for a selection are indicated with the
icon. In the NanonullOrg.xml document, select text inside the mixed content para element and
experiment with applying the bold and italic elements.

The stylesheet designer might also have created a toolbar icon to apply an element. In the
NanonullOrg.xml document, the bold and italic elements can be applied by clicking the
bold and italic icons in the application's Authentic toolbar.

Removing nodes
A node can be removed if its removal does not render the document invalid. Removing a node
causes a node and all its contents to be deleted. A node can be removed using the Remove
command in the context menu. When the Remove command is highlighted, a submenu pops
up which contains all nodes that may be removed, starting from the selected node and going up
to the document's top-level node. To select a node for removal, the cursor can be placed within
the node, or the node (or part of it) can be highlighted. In the Elements entry helper, nodes that

can be removed are indicated with the icon. A removable node can also be removed by
selecting it and pressing the Delete key. In the NanonullOrg.xml document, experiment with
removing a few nodes using the mechanisms described. You can undo your changes with Ctrl
+Z.

Clearing elements
Element nodes that are children of elements with mixed content (both text and element
children) can be cleared. The entire element can be cleared when the node is selected or when
the cursor is placed inside the node as an insertion point. A text fragment within the element
can be cleared of the element markup by highlighting the text fragment. With the selection
made, select Clear in the context menu and then the element to clear. In the Elements entry

helper, elements that can be cleared for a particular selection are indicated with the icon

(insertion point selection) and icon (range selection). In the NanonullOrg.xml document, try
the clearing mechanism with the bold and italic child elements of para (which has mixed
content).

© 2007 Altova GmbH

Authentic View Tutorial 85Tutorials

User Manual

Tables and table structure
There are two types of Authentic View table:

 SPS tables (static and dynamic). The broad structure of SPS table is determined by the
stylesheet designer. Within this broad structure, teh only structural changes you are
allowed are content-driven. For example, you could add new rows to a dynamic SPS
table.

 XML tables, in which you decide to present the contents of a particular node (say, one
for person-specific details) as a table. If the stylesheet designer has enabled the
creation of this node as an XML table, then you can determine the structure of the table
and edit its contents. XML tables are discussed in detail in the Using tables in Authentic
View section.

2.2.4 Entering Data in Authentic View

Data is entered into the XML document directly in the main window of Authentic View.
Additionally for attributes, data (the value of the attribute) can be entered in the Attributes entry
helper. Data is entered (i) directly as text, or (ii) by selecting an option in a data-entry device,
which is then mapped to a predefined text entry.

Adding text content
You can enter element content and attribute values directly as text in the main window of
Authentic View. To insert content, place the cursor at the location where you want to insert the
text, and type. You can also copy text from the clipboard into the document. Content can also
be edited using standard editing mechanisms, such as the Delete and Caps keys, key . by
highlighting the text, and typing in the replacement text or deleting the highlighted text.

For example, to change the name of the company, in the Name field of Office, place the cursor
after Nanonull, and type in USA to change the name from Nanonull, Inc. to Nanonull USA, Inc.

If text is editable, you will be able to place your cursor in it and highlight it, otherwise you will not
be able to. Try changing any of the field names (not the field values), such as "Street", "City", or
"State/Zip," in the address block. You are not able to place the cursor in this text because such
text is not XML content; it is derived from the StyleVision Power Stylesheet.

Inserting special characters and entities
When entering data, the following type of content is handled in a special way:

 Special characters that are used for XML markup (ampersand, apostrophe, greater
than, less than, and quotes). These characters are available as built-in entities and can
be entered in the document by double-clicking the respective entity in the Entities entry
helper. If these characters occur frequently (for example, in program code listings), then
they can be entered within CDATA sections. To insert a CDATA section, right-click at
the location where you wish to enter the CDATA section, and select Insert CDATA
Section from the context menu. The XML processor ignores all markup characters
within CDATA sections. This also means that if you want a special character inside a
CDATA section, you should enter that character and not its entity reference.

 Special characters that cannot be entered via the keyboard should be entered by

86 Tutorials Authentic View Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

copying them from the character map of your system to the required location in the
document.

 A frequently used text string can be defined as an entity, which appears in the Entities
entry helper. The entity is inserted at the required locations by placing the cursor at
each required location and double-clicking the entity in the entry helper. This is useful
for maintenance because the value of the text string is held in one location; if the value
needs to be changed, then all that needs to be done is change the entity definition.

Note: When markup is hidden in Authentic View, an empty element can easily be overlooked.
To make sure that you are not overlooking an empty element, switch large or small
markup on.

Try using each type of text content described above.

Adding content via a data-entry device
In the content editing you have learned above, content is added by directly typing in text as
content. There is one other way that element content (or attribute values) can be entered in
Authentic View: via data-entry devices.

Given below is a list of data-entry devices in Authentic View, together with an explanation of
how data is entered in the XML file for each device.

Data-Entry Device Data in XML File

Input Field (Text Box) Text entered by user

Multiline Input Field Text entered by user

Combo box User selection mapped to value

Check box User selection mapped to value

Radio button User selection mapped to value

Button User selection mapped to value

In the static table containing the address fields (shown below), there are two data-entry devices:
an input field for the Zip field and a combo-box for the State field. The values that you enter in
the text fields are entered directly as the XML content of the respective elements. For other
data-entry devices, your selection is mapped to a value.

For the Authentic View shown above, here is the corresponding XML text:

 <Address>
 <ipo:street>119 Oakstreet, Suite 4876</ipo:street>
 <ipo:city>Vereno</ipo:city>
 <ipo:state>DC</ipo:state>
 <ipo:zip>29213</ipo:zip>

© 2007 Altova GmbH

Authentic View Tutorial 87Tutorials

User Manual

 </Address>

Notice that the combo-box selection DC is mapped to a value of DC. The value of the Zip field is
entered directly as content of the ipo:zip element.

2.2.5 Entering Attribute Values

An attribute is a property of an element, and an element can have any number of attributes.
Attributes have values. You may sometimes be required to enter XML data as an attribute
value. In Authentic View, you enter attribute values in two ways:

 As content in the main window if the attribute has been created to accept its value in
this way

 In the Attributes entry helper

Attribute values in the main window
Attribute values can be entered as free-flowing text or as text in an input field, or as a user
selection that will be mapped to an XML value. They are entered in the same way that element
content is entered: see Entering Data in Authentic View. In such cases, the distinction between
element content and attribute value is made by the StyleVision Power Stylesheet and the data is
handled appropriately.

Attribute values in the Attributes Entry Helper
If you wish to enter or change an attribute value, you can also do this in the Attributes Entry
Helper. First, the attribute node is selected in Authentic View, then the value of the attribute is
entered or edited in the Attributes entry helper. In the NanonullOrg.xml document, the
location of the logo is stored as the value of the href attribute of the CompanyLogo element.
To change the logo to be used:

1. Select the CompanyLogo element by clicking a CompanyLogo tag. The attributes of
the CompanyLogo element are displayed in the Attributes Entry Helper.

2. In the Attributes Entry Helper, change the value of the href attribute from
nanonull.gif to Altova_right_300.gif (an image in the Examples folder).

This causes the Nanonull logo to be replaced by the Altova logo.

Note: Entities cannot be entered in the Attributes entry helper.

2.2.6 Adding Entities

An entity in Authentic View is typically XML data (but not necessarily), such as a single
character; a text string; and even a fragment of an XML document. An entity can also be a
binary file, such as an image file. All the entities available for a particular document are
displayed in the Entities Entry Helper (screenshot below). To insert an entity, place the cursor at
the location in the document where you want to insert it, and then double-click the entity in the
Entities entry helper. Note that you cannot enter entities in the Attributes entry helper.

88 Tutorials Authentic View Tutorial

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

The ampersand character (&) has special significance in XML (as have the apostrophe, less
than and greater than symbols, and the double quote). To insert these characters, entities are
used so that they are not confused with XML-significant characters. These characters are
available as entities in Authentic View.

In NanonullOrg.xml, change the title of Joe Martin (in Marketing) to Marketing Manager
Europe & Asia. Do this as follows:

1. Place the cursor where the ampersand is to be inserted.
2. Double-click the entity listed as "amp". This inserts an ampersand (screenshot below).

Note: The Entities Entry Helper is not context-sensitive. All available entities are displayed no
matter where the cursor is positioned. This does not mean that an entity can be inserted
at all locations in the document. If you are not sure, then validate the document after
inserting the entity: XML | Validate (F8).

Defining your own entities
As a document editor, you can define your own document entities. How to do this is described in
the section Defining Entities in Authentic View.

2.2.7 Printing the Document

A printout from Authentic View of an XML document preserves the formatting seen in Authentic
View.

To print NanonullOrg.xml, do the following:

1. Switch to Hide Markup mode if you are not already in it. You must do this if you do not
want markup to be printed.

2. Select File | Print Preview to see a preview of all pages. Shown below is part of a print
preview page, reduced by 50%.

© 2007 Altova GmbH

Authentic View Tutorial 89Tutorials

User Manual

Notice that the formatting of the page is the same as that in Authentic View.
3. To print the file, click File | Print.

Note that you can also print a version of the document that displays (small) markup. To do this,
switch Authentic View to Show small markup mode or Show large markup mode, and then print.
Both modes produce a printout that displays small markup.

90 Text View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

3 Text View

In Text View, you can type in your document text directly, i.e. markup and content. Text View
provides a number of features to help you quickly and accurately type in your document. Among
the main features are the following:

 Visual features to help you read the document more easily. These include customizable
syntax-coloring (including the ability to highlight server-side VBScript or JScript code in
ASP pages), line-numbering, bookmarking, expandable and collapsible elements,
indentation, customizable fonts, and text-wrapping.

 Intelligent editing features like auto-completion of tags and automatic entry of attributes
and children.

 Context-sensitive entry helpers, which list allowed elements, attributes, and entities at
the cursor insertion point, and allow you to insert these into the document.

 Drag-and-drop and copy-and-paste capabilities.

These features are described in more detail in the rest of this section.

To open the Text View of a document, click the Text button at the bottom of the Document
Window or select View | Text view. Text view can be used to edit any text file, including
non-XML documents.

© 2007 Altova GmbH

Visual Editing Guides in Text View 91Text View

User Manual

3.1 Visual Editing Guides in Text View

Text View provides functions to facilitate the editing of large sections of text: line numbering,
bookmarks, source folding, and indentation guides. Each of these functions can be enabled or
disabled by clicking its respective icon in the toolbar.

Enables/disables line numbering across all open documents

 Enables/disables the source folding margin for all open documents

 Enables/disables the bookmark margin.

Inserts/removes bookmarks.

Enables/disables indentation guides.

The graphic below shows these features:

Note the following features in the graphic above:

 Line numbering has been enabled
 Source folding has been enabled. The plus sign indicates a collapsed element; the

minus sign indicates an expanded element. When an element is collapsed, the
line-numbering is correspondingly collapsed (see the collapsing at Lines 14 and 24).
When source folding is disabled, any collapsed element is automatically expanded.

 The Bookmarks Margin has been enabled. A bookmark has been created for Line 11.
 Indentation guides have been enabled. These guides are vertical dotted lines that are

helpful in determining where an element starts and ends (see Lines 46 and 47).

92 Text View Entry Helpers in Text View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

3.2 Entry Helpers in Text View

Elements Entry Helper
In Text View, elements that can be entered at the cursor point are displayed in the Elements
Entry Helper in dark red. Mandatory elements are listed with an exclamation mark before the
element name. Siblings of allowed elements that are themselves not allowed at the cursor point
are displayed in gray. When the cursor position changes, the list in the Entry Helper changes to
show only those elements that can be inserted at that point (in red) and their siblings (in gray).

To insert an element at the cursor point, double-click the element you want to insert. The start
and end tags of the element are inserted. Mandatory elements are also inserted if this option
has been specified in the Options dialog (Tools | Options | Editing).

Please note: In the Options dialog (Tools | Options | Editing), you can specify that
mandatory child elements can be inserted when an element is inserted.

Attributes Entry Helper
In Text View, when the cursor is placed inside the start tag of an element and after a space, the
attributes declared for that element become visible. Unused attributes are displayed in red, used
attributes in gray. Mandatory attributes are indicated with an exclamation mark "!" before the
name of the attribute.

To insert an attribute, double-click the required attribute. The attribute is inserted at the cursor
point together with an equals-to sign and quotes to delimit the attribute value. The cursor is
placed between the quotes, so you can start typing in the attribute value directly.

Please note: Existing attributes, which cannot legally be added to the current element a second
time, are shown in gray.

Entities Entry Helper
Any parsed or unparsed entity that is declared inline (within the XML document) or in an
external DTD, is displayed in the Entities Entry Helper.

© 2007 Altova GmbH

Entry Helpers in Text View 93Text View

User Manual

To insert an entity at the cursor insertion point, double-click the required entity.

Please note: If you add an internal entity, you will need to save and reopen your document
before the entity appears in the Entities Entry Helper.

94 Text View Output Windows

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

3.3 Output Windows

The Output Windows (screenshot below) are located below the Main Window in the GUI. Their
display is toggled on by default when you open XMLSpy. To toggle the Output Windows display
on and off, click Window | Output Windows.

There are three output windows, each of which is activated by clicking its tab:

 Validation, which displays the results of validating XML, XML Schema, DTD, or XQuery
documents.

 Find in Files, which displays the results of Find and Replace operations across multiple
files.

 XPath Evaluation, which displays the result produced by evaluating an XPath
expression against the active XML document.

Each of the above operations is described in more detail in the sub-sections of this section.

Common features of output windows
Each output window has nine tabs. A tab is made active by clicking it. The result of the current
validation, find-replace, or XPath evaluation action is displayed in the active tab. If a result is
already displayed in an output tab, it is replaced by the new result. The advantage of having
multiple tabs is that a result can be kept for in one tab and (i) be compared with a new result in
another tab, or (ii) referred to at a later stage.

Each output window has a set of icons at the top (screenshot below).

The first two icons from left are for navigating down and up the messages in the output. The
next three icons are for copying messages to the clipboard. A message can be selected by
clicking on it. The next three icons are active in the Find in Files tab, and are useful for
navigating the found items. The icon at extreme right is for clearing the current output tab.

3.3.1 Validation

If an XML, XML Schema, DTD, or XQuery document is valid, a successful validation message (
screenshot below) is displayed in the Validation output window:

© 2007 Altova GmbH

Output Windows 95Text View

User Manual

Otherwise, a message that describes the error (screenshot below) is displayed. Notice that
there are links (black link text) to nodes and node content in the XML document, as well as links
(blue link text) to the sections in the relevant specification that describe the rule in question.
Clicking the purple Def buttons, opens the relevant schema definition in Schema View.

The Validation output window is enabled in all views, but clicking a link to XML document
content highlights that node in the XML document in Text View. However, note that when an
XML Schema is being validated in Schema View, clicking a Def button does not change the
view.

Note: The Validate command (in the XML menu) is normally applied to the active document.
But you can also apply the command to a file, folder, or group of files in the active
project. Select the required file or folder in the Project Window (by clicking on it), and
click XML | Validate or F8. Invalid files in a project will be opened and made active in
the Main Window, and the File Is Invalid error message will be displayed.

3.3.2 Find in Files

The Find in Files output window (screenshot below) enables you to carry out find-and-replace
operations quickly within several documents at a time, and provides mechanisms that help you
to quickly navigate among the found instances. The results of each find-and-replace action are
presented in one of the tabs numbered 1 to 9. Clicking on a found item in the results takes you
to that item in the Text View of that document.

96 Text View Output Windows

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Find criteria
There are two broad find criteria: (i) what to find, and (ii) where to look?

What to find: The string to find is entered in the Find What text box. If that string must match a
whole word, then the Match Whole Word check box must be clicked. For example, for the find
string fit, with Match Whole Word checked, only the word fit will match the find string; the
fit in fitness, for example, would not. You can specify whether casing is significant using the
Match Case check box. If the text entered in the Find What text box is a regular expression,
then the Regular Expression check box must be checked. An entry helper for regular

expressions can be accessed by clicking the button. The use of regular expressions for
searching is explained in the section, Find. The More button opens the Find in Files dialog,
where you can set advanced search conditions and actions. For more information, see Edit |
Find in Files.

Where to look: The search can be conducted in: (i) all the files that are open in the GUI; (ii) the
files of the current project; and (iii) the files of a selected folder. You can set additional
conditions in the Find in Files dialog (accessed by clicking More).

Replace with
The string with which the found string is to be replaced is entered in the Replace With text box.
Note that if the Replace With text box is empty and you click the Replace button, the found text
will be replaced by an empty string.

The results
After you click the Find or Replace buttons, the results of the find or replace are displayed in the
Find in Files output window. The results are divided into four parts:

 A summary of the search parameters, which lists the search string and what files were
searched.

 A listing of the found or replaced strings (according to whether the Find or Replace
button was pressed). The items in this listing are links to the found/replaced text in the

© 2007 Altova GmbH

Output Windows 97Text View

User Manual

Text View of the document. If the document is not open, it will be opened in Text View
and the found/replaced text will be highlighted.

 A list of the files which were searched but in which no matches were found.
 A summary of statics for the search action, including the number of matches and

number of files checked.

Note: Note that the Find in Files feature executes the Find and the Replace commands on
multiple files at once and displays the results in the Find in Files output window. To do a
find so that you go from one found item to the next, use the Find command.

3.3.3 XPath Evaluation

The XPath Evaluation output window enables you to evaluate up to nine XPath expressions,
each in the context of the currently active XML document. This means that you can enter
different XPath expressions in different tabs and then evaluate each expression on the XML
document that is active in the Main Window. Alternatively, you can evaluate one XPath
expression on multiple XML documents; do this by making another XML document active in the
Main Window, and then clicking the Evaluate XPath Expression icon (in the XPath Evaluation
output window).

The XPath Evaluation output window shows, in a single view: (i) the XML document; (ii) the
XPath expression; and (iii) the result of evaluating the XPath expression on the active XML
document. The benefits are that you can: (i) navigate the XML document while keeping the
XPath expression and its results in view; (ii) navigate the XML document by clicking items in the
result; and (iii) modify the XPath expression while keeping the XML document in view.

Steps for evaluating an XPath expression
Given below are the main steps required to use the XPath Evaluation output window.

98 Text View Output Windows

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

1. Select the XPath version you wish to use (1.0 or 2.0) by clicking the appropriate icon in
the toolbar of the output window (see screenshot below).

2. Select the type of XPath expression from the dropdown list in the combo box. Allow
Complete XPath is the usually required option. The XPath Schema Selector and
XPath Schema Field options can be used when unique identity constraints have been
defined in the XML Schema.

3. Toggle the Evaluate XPath Expression On Typing icon on if you want the XPath
expression to be evaluated while you are typing it in. If this icon is toggled off, the
expression will be evaluated only when you click the Evaluate XPath Expression icon

.

4. Toggle the Show Header In Output icon on if, in the output, you wish to show the
location of the XML file and the XPath expression (as in screenshot below).

5. When the XPath expression returns nodes—such as elements or attributes—you can
select whether the entire contents of the selected nodes should be shown. This is done

by switching the Show Complete Results icon on. In the screenshot below, both the
element and its content are displayed (in the right-hand column).

6. To set an XPath expression relative to a selection in the XML document, toggle the Set

Current Selection As Origin icon on.
7. Enter the XPath expression. If you wish to create the expression over multiple lines

press the Return key.
8. To evaluate the expression (if Evaluate on Typing is toggled off or when a new XML

document is made active), click the Evaluate XPath Expression icon.

Features of the Result Pane
The Result Pane has two very useful features:

 When the result contains a node (including a text node)—as opposed to expression-
generated literals—clicking on that node in the Result Pane highlights the
corresponding node in the XML document in the Main Window.

 When a node in the Result Pane is selected, clicking the Copies XPath of Current

Selection to Edit Field icon does the following: (i) generates an XPath expression to
specifically locate the selected node; (ii) overwrites the expression currently in the edit

© 2007 Altova GmbH

Output Windows 99Text View

User Manual

field with the newly generated XPath expression.

XPath expressions in the edit field
The following general points about XPath expressions should be noted. Issues specific to XPath
1.0 and XPath 2.0, respectively, are treated separately below.

 When you enter an expression in the edit field, it is displayed in black if the syntax is
correct and in red if the syntax is incorrect. Note that correct syntax does not ensure
that the expression is error-free. Error messages are displayed in the results pane.

 An error might be caused because of incorrectly set options. So set the options
correctly, especially the XPath Version and the XPath Origin (absolute, or relative to the
current selection in the currently active XML document).

 Only namespaces that are in scope on the element where the XPath expression
originates (i.e. on the context node) are evaluated.

XPath 1.0 expressions

 XPath 1.0 functions must be entered without any namespace prefix.
 The four node tests by type are supported: node(), text(), comment(), and

processing-instruction().

XPath 2.0 expressions

 String (e.g. 'Hello') and numeric literals (e.g. 256) are supported. To create other literals
based on XML Schema types, you use a namespace-prefixed constructor (e.g.
xs:date('2004-09-02')). The namespace prefix that you use for XML Schema
types must be bound to the XML Schema namespace:
http://www.w3.org/2001/XMLSchema, and this namespace must be declared in
your XML file.

 XPath 2.0 functions used by the XPath Evaluator belong to the namespace
http://www.w3.org/2005/xpath-functions. Conventionally, the prefix fn: is
bound to this namespace. However, since this namespace is the default functions
namespace used by the XPath Evaluator, you do not need to specify a prefix on
functions. If you do use a prefix, make sure that the prefix is bound to the XPath 2.0
Functions namespace, which you must declare in the XML document. Examples of
function usage: current-date() (with Functions namespace not declared in XML
document); fn:current-date() (with Functions namespace not declared in XML
document, or declared in XML document and bound to prefix fn:). You can omit the
namespace prefix even if the Functions namespace has been declared in the XML
document with or without a prefix; this is because a function so used in an XPath
expression is in the default namespace—which is the default namespace for functions.

 When using the two duration datatypes (yearMonthDuration and
dayTimeDuration), the XML Schema namespace (
http://www.w3.org/2001/XMLSchema) must be declared in the XML file and the
namespace prefix must be used on these types in the XPath expression. Example:
years-from-yearMonthDuration(xs:yearMonthDuration('P22Y18M')).

Please note: To summarize the namespace issue: If you use constructors or types from the
XML Schema namespace, you must declare the XML Schema namespace in the XML
document and use the correct namespace prefixes in the XPath expression. You do not need to
use a prefix for XPath functions.

Datatypes in XPath 2.0

100 Text View Output Windows

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

If you are evaluating an XPath 2.0 expression for an XML document that references an XML
Schema and is valid according to this schema, you must explicitly construct or cast datatypes
that are not implicitly converted to the required datatype by an operation. In the XPath 2.0 Data
Model used by the built-in XPath engine, all atomized node values from the XML document are
assigned the xs:untypedAtomic datatype. The xs:untypedAtomic type works well with
implicit type conversions. For example, the expression xs:untypedAtomic("1") + 1
results in a value of 2 because the xs:untypedAtomic value is implicitly promoted to
xs:double by the addition operator. Arithmetic operators implicitly promote operands to
xs:double. Comparison operators promote operands to xs:string before comparing.

In some cases, however, it is necessary to explicitly convert to the required datatype. For
example, if you have two elements, startDate and endDate, that are defined as being of
type xs:date in the XML Schema, then using the XPath 2.0 expression endDate -
startDate will show an error. On the other hand, if you use xs:date(endDate) -
xs:date(startDate) or (endDate cast as xs:date) - (startDate cast as
xs:date), the expression will correctly evaluate to a singleton sequence of type
xs:dayTimeDuration.

Please note: The XPath Engines used by the XPath Evaluator are also used by the Altova
XSLT Engine, so XPath 2.0 expressions in XSLT stylesheets that are not implicitly converted to
the required datatype must be explicitly constructed as or cast to the required datatype.

String length of character and entity references
When character and entity references are used as the input string for the string-length()
function, the references cannot be resolved, and the length of the unresolved text string is
returned. Within an XSLT environment, however, these references would have meaning, and
the length of the resolved string is returned.

Troubleshooting
If your XPath expression returns an error, do the following:

1. Check whether the options have been correctly set (XPath version, origin, etc).
2. Check that the spelling of function names, constructor names, node names, etc., are

correct.
3. Check whether prefixes are required and correctly set on functions, constructors, and

arguments in the XPath expression.
4. If namespaces are declared in the XML document check that they are correct. The

correct namespaces are:

XML Schema: http://www.w3.org/2001/XMLSchema
XPath 2.0 Functions: http://www.w3.org/2005/xpath-functions

XPath 2.0 Functions Support
See the appendices.

© 2007 Altova GmbH

Editing XML Documents 101Text View

User Manual

3.4 Editing XML Documents

Syntax coloring
Syntax coloring is applied according to XML node kind, that is, depending on whether the XML
node is an element, attribute, content, CDATA section, comment, or processing instruction. The
text properties of these XML node kinds can be set in the Text Fonts tab of the Options dialog (
Tools | Options).

Start-tag and end-tag matching
When you place the cursor inside a start or end tag of an XML element, clicking Ctrl+E
highlights the other member of the pair. Clicking Ctrl+E repeatedly enables you to switch
between the start and end tags. This is another aid to locating the start and end tags of an XML
element.

Intelligent Editing
If you are working with an XML document based on a DTD or XML Schema, XMLSpy provides
you with various intelligent editing capabilities in Text View. These allow you to quickly insert the
correct element, attribute, or attribute value according to the content model defined for the
element you are currently editing. Intelligent editing typically works as follows:

1. Type < (the less-than character) where you want to insert an XML element. This opens
a popup list containing all elements that may be legitimately inserted at that point.

2. Enter the first few characters of the element you want to insert. An element in the popup
list containing those characters is highlighted.

3. Click on the entry with the mouse pointer or press Enter to accept the selected choice.
Alternatively, use the arrow keys to highlight your selection and then click or press
Enter.

The popup window also appears in the following cases:

 If you press the space bar when the cursor is between an element's tags and if an
attribute is defined for that element. The popup will contain all available attributes.

 When the cursor is within the double-quotes delimiting an attribute value that has
enumerated values. The popup will contain the enumerated values.

 When you type </ (which signifies the start of a closing tag), the name of the element
to be closed appears in the popup.

Auto-completion
Editing in Text View can easily result in XML documents that are not well-formed. For example,
closing tags may be missing, mis-spelled, or structurally mismatched.
XMLSpy automatically completes the start and end tags of elements, as well as inserting all

102 Text View Editing XML Documents

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

required attributes as soon as you finish entering the element name on your keyboard. The
cursor is also automatically positioned between the start and end tags of the element, so that
you can immediately continue to add child elements or contents:

|

Use the Check well-formedness command at any time to ensure that the document is
well-formed. This check is also automatically performed every time you open or save a
document.

Drag-and-Drop and Context Menus
You can also use drag-and-drop to move a text block to a new location, as well as right-click to
directly access frequently used editing commands (such as Cut, Copy, Paste, Delete, Send by
Mail, and Go to line/char) in a context menu.

The other commands in the context menu allow you to manipulate bookmarks and customize
Text View.

Find and Replace
You can use the Find and Replace commands to quickly locate and change text. These
commands also take regular expressions as input, thereby giving you powerful search
capabilities. (See Edit | Find for details.)

Unlimited Undo
XMLSpy offers unlimited levels of Undo and Redo for all editing operations.

Zooming in and out

© 2007 Altova GmbH

Editing XML Documents 103Text View

User Manual

You can zoom in and out of Text View by scrolling (with the scroll-wheel of the mouse) while
keeping the Ctrl key pressed. This enables you to magnify and reduce the size of text in Text
View.

104 Text View Editing XQuery Documents

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

3.5 Editing XQuery Documents

In Text View, you can edit XQuery documents. The Entry Helpers, syntax coloring, and
intelligent editing are different than for XML documents (see screenshot; line numbering and
folding margins in Enterprise and Professional Editions only). We call this mode of Text View its
XQuery Mode. In addition, you can validate your XQuery document in Text View and execute
the code in an XQuery document (with an optional XML file if required) using the built-in Altova
XQuery Engine.

Please note: XQuery files can be edited only in Text View. No other views of XQuery files are
available.

For details about how the Altova XQuery Engine is implemented and will process XQuery files,
see XQuery Engine Implementation.

3.5.1 Opening an XQuery Document

An XQuery document is opened automatically in XQuery Mode of Text View if it is XQuery
conformant. Files that have the file extension .xq, .xql, and .xquery are pre-defined in
XMLSpy as being XQuery conformant.

Setting additional file extensions to be XQuery conformant
To set additional file extensions to be XQuery conformant:

© 2007 Altova GmbH

Editing XQuery Documents 105Text View

User Manual

1. Select Tools | Options. The Options dialog appears (see screenshot).
2. Select the File types tab.
3. Click Add new file extension to add the new file extension to the list of file types.
4. Under Conformance, select XQuery conformant.

You should also make the following Windows Explorer settings in this dialog:

 Description: XML Query Language
 Content type: text/xml
 If you wish to use XMLSpy as the default editor for XQuery files, activate the Use

XMLSpy as default editor check box.

3.5.2 XQuery Entry Helpers

There are three Entry Helpers in the XQuery Mode of Text View: XQuery Keywords (blue),
XQuery Variables (purple), and XQuery Functions (olive).

Note the following points:

 The color of items in the three Entry Helpers are different and correspond to the syntax
coloring used in the text. These colors cannot be changed.

106 Text View Editing XQuery Documents

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

 The listed keywords and functions are those supported by the Altova XQuery Engine.
 The variables are defined in the XQuery document itself. When a $ and a character are

entered in Text View, the character is entered in the Variables Entry Helper (unless a
variable consisting of exactly that character exists). As soon as a variable name that is
being entered matches a variable name that already exists, the newly entered variable
name disappears from the Entry Helper.

 To navigate in any Entry Helper, click an item in the Entry Helper, and then use either
the scrollbar, mouse wheel, or page-down and page-up to move up and down the list.

To insert any of the items listed in the Entry Helpers into the document, place the cursor at the
required insertion point and double-click the item. In XQuery, some character strings represent
both a keyword and a function (empty, unordered, and except). These strings are always
entered as keywords (in blue)—even if you select the function of that name in the Functions
Entry Helper. When a function appears in blue, it can be distinguished by the parentheses that
follow the function name.

3.5.3 XQuery Syntax Coloring

An XQuery document can consist of XQuery code as well as XML code. The default syntax
coloring for the XQuery code is described in this section. The syntax coloring for XML code in
an XQuery document is the same as that used for regular XML documents. All syntax coloring
(for both XQuery code and XML code) is set in the Text Fonts tab of the Options dialog (Tools |
Options). Note that XQuery code can be contained in XML elements by enclosing the XQuery
code in curly braces {} (see screenshot for example; line numbering and folding margins in
Enterprise and Professional Editions only).

© 2007 Altova GmbH

Editing XQuery Documents 107Text View

User Manual

In XQuery code in the XQuery Mode of Text View, the following default syntax coloring is used:

 (: Comments, including 'smiley' delimiters, are in green :)

 XQuery Keywords are in blue: keyword

 XQuery Variables, including the dollar sign, are in purple: $start

 XQuery Functions, but not their parentheses, are in olive: function()

 Strings are in orange: "Procedure"

 All other text, such as path expressions, is black (shown underlined below). So:
for $s in doc("report1.xml")//section[section.title =
"Procedure"]
return ($s//incision)[2]/instrument

You can change these default colors and other font properties in the Text Fonts tab of the
Options dialog (Tools | Options).

Please note: In the above screenshot, one pair of colored parentheses for a comment is
displayed black and bold. This is because of the bracket-matching feature (see XQuery
Intelligent Editing).

108 Text View Editing XQuery Documents

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

3.5.4 XQuery Intelligent Editing

The XQuery Mode of Text View provides the following intelligent editing features.

Bracket-matching
The bracket-matching feature highlights the opening and closing brackets of a pair of brackets,
enabling you to clearly see the contents of a pair of brackets. This is particularly useful when
brackets are nested, as in XQuery comments (see screenshot below).

Bracket-matching is activated when the cursor is placed either immediately before or
immediately after a bracket (either opening or closing). That bracket is highlighted (bold black)
together with its corresponding bracket. Notice the cursor position in the screenshot above.

Bracket-matching is enabled for round parentheses (), square brackets [], and curly braces
{}. The exception is angular brackets <>, which are used for XML tags.

Please note: When you place the cursor inside a start or end tag of an XML element, clicking
Ctrl+E highlights the other member of the pair. Clicking Ctrl+E repeatedly enables you to switch
between the start and end tags. This is another aid to locating the start and end tags of an XML
element.

Keywords
XQuery keywords are instructions used in query expressions, and they are displayed in blue.
You select a keyword by placing the cursor inside a keyword, or immediately before or after it.
With a keyword selected, pressing Ctrl+Space causes a complete list of keywords to be
displayed in a pop-up menu. You can scroll through the list and double-click a keyword you wish
to have replace the selected keyword.

In the screenshot above, the cursor was placed in the let keyword. Double-clicking a keyword
from the list causes it to replace the let keyword.

Variables
Names of variables are prefixed with the $ sign, and they are displayed in purple. This
mechanism of the intelligent editing feature is similar to that for keywords. There are two ways
to access the pop-up list of all variables in a document:

 After typing a $ character, press Ctrl+Space

 Select a variable and press Ctrl+Space. (A variable is selected when you place the
cursor immediately after the $ character, or within the name of a variable, or
immediately after the name of a variable.)

© 2007 Altova GmbH

Editing XQuery Documents 109Text View

User Manual

To insert a variable after the $ character (when typing), or to replace a selected variable,
double-click the variable you want in the pop-up menu.

Functions
Just as with keywords and variables, a pop-up menu of built-in functions is displayed when you
select a function (displayed in olive) and press Ctrl+Space. (A function is selected when you
place the cursor within a function name, or immediately before or after a function name. The
cursor must not be placed between the parentheses that follow the function's name.)
Double-clicking a function name in the pop-up menu replaces the selected function name with
the function from the pop-up menu.

To display a tip containing the signature of a function (screenshot below), place the cursor
immediately after the opening parenthesis and press Ctrl+Space.

Please note: The signature can be displayed only for standard XQuery functions.

The downward-pointing arrowhead indicates that there is more than one function with the same
name but with different arguments or return types. Click on the signature to display the
signature of the next function (if available); click repeatedly to cycle through all the functions
with that name. Alternatively, you can use the Ctrl+Shift+Up or Ctrl+Shift+Down
key-combinations to move through a sequence.

Visual Guides
Text folding is enabled on XQuery curly braces, XQuery comments, XML elements, and XML
comments.

3.5.5 Validation and Execution of XQuery Documents

Validating XQuery documents
To validate an XQuery document:

1. Make the XQuery document the active document.

2. Select XML | Validate, or press the F8 key, or click the toolbar icon.

The document will be validated for correct XQuery syntax.

Executing XQuery documents
XQuery documents are executed within XMLSpy using the built-in XQuery 1.0 engine. The
output is displayed in a window in XMLSpy.

Typically, an XQuery document is not associated with any single XML document. This is
because XQuery expressions can select any number of XML documents with the doc()
function. In XMLSpy, however, before executing individual XQuery documents you can select a

110 Text View Editing XQuery Documents

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

source XML document for the execution. In such cases, the document node of the selected
XML source is the starting context item available at the root level of the XQuery document.
Paths that begin with a leading slash are resolved with this document node as its context item.

To execute an XQuery document:

1. Make the XQuery document the active document.

2. Select XSL/XQuery | XQuery Execution or click the toolbar icon. This opens the
Define an XML Source for the XQuery dialog.

3. Do one of the following:
 To select an XML file, use either the Browse button or the Window button (which

lists files that are open in XMLSpy and that are in XMLSpy projects). Select an XML
source if you wish to assign its document node as the context item for the root level
of the XQuery document. Click Execute.

 To skip this dialog click Skip XML.

The result document is generated as a temporary file that can be saved to any location with the
desired file format and extension.

For details about how the Altova XQuery Engine is implemented and will process XQuery files,
see XQuery Engine Implementation.

3.5.6 XQuery And XML Databases

An XQuery document can be used to query an XML database (XML DB). Currently this XQuery
functionality is supported only for IBM DB2 databases. The mechanism for querying an XML DB
using XQuery essentially involves: (i) indicating to the XQuery engine that XML in a DB is to be
queried—as opposed to XML in an XML document; and (ii) accessing the XML data in the DB.

The steps for implementing this mechanism are as follows and are described in detail below:

1. Set up the XQuery document to query the XML DB by inserting the XQUERY keyword at
the start of the document.

2. For the active XQuery document, enable DB support (via the Info window) and connect
to the DB (using the Quick Connect dialog).

3. In the XQuery document, insert DB-specific XQuery extensions so as to access the DB
data and make it available for XQuery operations.

4. Execute the XQuery document in XMLSpy.

Setting up the XQuery document to query the XML DB
To set up the XQuery document to query an XML DB, open the XQuery document (or create a
new XQuery document) and enter the keyword XQUERY (casing is irrelevant) at the start of the
document (before the prolog); see examples below.

© 2007 Altova GmbH

Editing XQuery Documents 111Text View

User Manual

XQUERY (: Retrieve details of all customers :)
declare default element namespace "http://www.altova.com/xquery/databases/db2"
;
<a> {db2-fn:xmlcolumn("CUSTOMER.INFO")}

If the document uses the optional xquery version expression, the XQUERY keyword is still
required:

XQUERY xquery version "1.0"; (: Retrieve details of all customers :)
declare default element namespace "http://
http://www.altova.com/xquery/databases/db2";
<a> {db2-fn:xmlcolumn("CUSTOMER.INFO")}

Note: XMLSpy's built-in XQuery Engine reads the XQUERY keyword as indicating that an XML
DB is to be accessed. As a result, attempting to execute an XQuery document
containing the XQUERY keyword on any XML document other than one contained in an
XML DB will result in an error.

Enable DB support for XQuery and connect to the DB
DB support for an XQuery document is enabled by checking the Enable Database Support
check box in the Info window (screenshot below). Note that DB Support must be enabled for
each XQuery document separately and each time an XQuery document is opened afresh.

When you enable DB support in the Info window, a Quick Connect dialog pops up, which
enables you to connect to a database. Currently, only IBM DB2 databases are supported. How
to connect to a DB is described in the section, Connecting to a Data Source. If connections to
data sources already exists, then these are listed in the Data Sources combo box of the Info
window (screenshot below), and one of these data sources can be selected as the data source
for the active XQuery document. In the Info window, you can also select the root object from
among those available in the Root Object combo box.

The Quick Connect dialog (which enables you to connect to a DB) can be accessed at any time

112 Text View Editing XQuery Documents

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

by clicking the icon in the Info window.

Note: When you close an XQuery document the connection to the DB is closed as well. If you
subsequently re-open the XQuery document, you will also have to re-connect to the DB.

IBM DB2-specific XQuery language extensions
Two IBM DB2-specific functions can be used in XQuery documents to retrieve data from an IBM
DB2 database:

 db2-fn:xmlcolumn retrieves an entire XML column without searching or filtering the
column.

 db2-fn:sqlquery retrieves values based on an SQL SELECT statement

The XML data retrieved using these functions can then be operated on using standard XQuery
constructs. See examples below.

db2-fn:xmlcolumn:The argument of the function is a case-sensitive string literal that
identifies an XML column in a table. The string literal argument must be a qualified column

name of type XML. The function returns all the XML data in the column as a sequence, without
applying a search condition to it. In the following example, all the data of the INFO (XML) column
of the CUSTOMER table is returned within a top-level <newdocelement> element:

XQUERY (: Retrieve details of all customers :)
declare default element namespace "http://www.altova.com/xquery/databases/db2"
;
<newdocelement> {db2-fn:xmlcolumn("CUSTOMER.INFO")} </newdocelement>

The retrieved data can then be queried with XQuery constructs. In the example below, the XML
data retrieved from the the INFO (XML) column of the CUSTOMER table is filtered using an
XQuery construct so that only the profiles of customers from Toronto are retrieved.

XQUERY (: Retrieve details of Toronto customers :)
declare default element namespace "http://www.altova.com/xquery/databases/db2"
;
<newdocelement> {db2-fn:xmlcolumn("CUSTOMER.INFO")/customerinfo[addr/city=
'Toronto']} </newdocelement>

Note: In the example above, the document element of the XML files in each cell is
customerinfo and the root node of the XML sequence returned by db2-fn:xmlcolumn
is considered to be an abstract node above the customerinfo nodes.

db2-fn:sqlquery:The function takes an SQL Select statement as its argument and returns
a sequence of XML values. The retrieved sequence is then queried with XQuery constructs. In
the following example, the INFO column is filtered for records in the CUSTOMER table that have a
CID field with a value between 1000 and 1004. Note that while SQL is not case-sensitive,
XQuery is.

XQUERY (: Retrieve details of customers by Cid:)
declare default element namespace "http://www.altova.com/xquery/databases/db2"
;

<persons>
 {db2-fn:sqlquery("SELECT info FROM customer WHERE CID>1000 AND CID<1004")/
 <person>
 <id>{data(@Cid)}</id>
 <name>{data(name)}</name>
 </person>}

© 2007 Altova GmbH

Editing XQuery Documents 113Text View

User Manual

</persons>

The XQuery document above returns the following output:

<persons xmlns="http://www.altova.com/xquery/databases/db2">
 <person>

<id>1001</id>
<name>Kathy Smith</name>

 </person>
 <person>

<id>1002</id>
<name>Jim Jones</name>

 </person>
 <person>

<id>1003</id>
<name>Robert Shoemaker</name>

 </person>
</persons>

Note the following points:

 The default element namespace declaration in the prolog applies for the entire XQuery
document and is used for navigation of the XML document as well as for construction of
new elements. This means that the XQuery selector name is expanded to <default-
element-namespace>:name, and that constructed elements, such as persons, are in
the default element namespace.

 The SQL Select statement is not case-sensitive.
 The WHERE clause of the Select statement should reference another database item—not

a node inside the XML file being accessed.
 The "/" after the db2-fn:sqlquery function represents the first item of the returned

sequence, and this item is the context node for further navigation.

Execute the XQuery
To execute the XQuery document, select the XQuery Execution command (XSL/XQuery

menu). Alternatively, press Alt+F10 or click the XQuery Execution icon . The result of the
execution is displayed in a new document.

114 Text View Editing CSS Documents

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

3.6 Editing CSS Documents

CSS documents can be edited using Text View's intelligent editing features. These features, as
they apply to the editing of CSS documents, are listed below.

Syntax coloring: A CSS rule consists of a selector, one or more properties, and the values of
those properties. These three components may be further sub-divided into more specific
categories; for example, a selector may be a class, pseudo-class, ID, element, or attribute.
Additionally, a CSS document can contain other items than rules: for example, comments. In
Text View, each such category of items can be displayed in a different color (screenshot below)
according to settings you make in the Options dialog (see below).

You can set the colors of the various CSS components in the Text Fonts tab of the Options
dialog (screenshot below). In the combo box at top left, select CSS, and then select the required
color (in the Styles pane) for each CSS item.

Folding margins: Each rule can be collapsed and expanded by clicking, respectively, the
minus and plus icons to the left of the rule (see screenshot above). Note also that the pair of
curly braces that delimit a rule (screenshot above) turns bold when the cursor is placed either
before or after one of the curly braces. This indicates clearly where the definition of a particular
rule starts and ends.

© 2007 Altova GmbH

Editing CSS Documents 115Text View

User Manual

CSS outline: The CSS Outline entry helper (screenshots below) provides an outline of the
document in terms of its selectors, which are listed in groups. Each group can be collapsed and
expanded. Clicking a selector in the CSS Outline highlights it in the document. In the screenshot
at left below, the selectors are unsorted and are listed in the order in which they appear in the
document. In the screenshot at right, the Alphabetical Sorting feature has been toggled on
(using the toolbar icon), and the selectors are sorted alphabetically.

You should note the following points: (i) For evaluating the alphabetical order of selectors, all
parts of the selector are considered, including the period, hash, and colon characters; (ii) When
several selectors are grouped together to define a single rule (e.g. h4, h5, h6 {...}), then
each selector in the group is listed separately.

The icons in the toolbar of the CSS Outline entry helper, from left to right, do the following:

Toggles automatic synchronization (with the document) on and off. When
auto-synchronization is switched on, selectors are entered in the entry helper
even as you type them into the document.

Synchronizes the entry helper with the current state of the document.

Toggles alphabetical sorting on and off. When off, the selectors are listed in
the order in which they appear in the document. When sorted alphabetically,
ID selectors appear first because they are prefaced by a hash (e.g. #intro).

Properties entry helper: The Properties entry helper (screenshot below) provides a list of all
CSS properties, arranged alphabetically. A property can be inserted at the cursor insertion point
by double-clicking the property.

116 Text View Editing CSS Documents

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Auto-completion of properties and tooltips for properties: As you start to type the name of
a property, XMLSpy prompts you with a list of properties that begin with the letters you have
typed (screenshot below). Alternatively, you can place the cursor anywhere inside a property
name and then press Ctrl+Space to pop up the list of CSS properties.

You can view a tooltip containing the definition of a property and its possible values by scrolling
down the list or navigating the list with the Up and Down keys of your keyboard. The tooltip for
the highlighted property is displayed. To insert a property, either press Enter when it is selected,
or click it.

© 2007 Altova GmbH

 117Enhanced Grid View

User Manual

4 Enhanced Grid View

Clicking the Grid button at the bottom of the Document Window opens the Enhanced Grid View
(or Grid View). The Enhanced Grid View shows the hierarchical structure of XML documents
through a set of nested containers, that can be easily expanded and collapsed to get a clear
picture of the document's structure. In Grid View contents and structure can both be easily
manipulated.

A hierarchical item (such as the XML declaration, document type declaration, or element
containing child elements) is represented with a gray bar on the left side containing a small
upwards-pointing arrow at the top. Clicking the side bar expands or collapses the item. An

element is denoted with the icon, an attribute with the icon.

Display and navigation

 The contents of an item depend on its kind. For example, in the case of elements, the
contents will typically be attributes, character data, comments, and child elements.
Attributes are always listed and are ordered as in the input file. Following the attributes,
items appear exactly in the order found in the source file. This order can be changed
using drag-and-drop, and the change will also be implemented in the source data.

 If an element contains only character data, the data will be shown in the same line as
the element and the element will not be considered hierarchical by nature. The
character data for any other element will be shown indented with the attributes and
potential child elements and will be labeled as "Text".

 If an element is collapsed, its attributes and their values are shown in the same line in
gray. This attribute preview is especially helpful, when editing XML documents that
contain a large number of elements of the same name that differ only in their contents
and attributes (for example, database-like applications).

 The arrow keys move the selection bar in the grid view
 The + and – keys on the numeric keypad allow you to expand and collapse items.

Customizing the grid view

 To resize columns, place the cursor over the appropriate border and drag so as to

118 Enhanced Grid View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

achieve the desired width.
 To resize a column to the width of its largest entry, double-click on the grid line to the

right of that column.
 To adjust column widths to display all content, select the menu item View | Optimal

widths command, or click on the Optimal widths icon .
 The heights of cells are determined by their contents. They can be adjusted with the

menu option Tools | Options | View | Enhanced Grid view, "Limit cell height to xx
lines".

Please note: If you mark data in Grid View and switch to Text View, that data will be marked
also in Text View.

Intelligent editing
Grid View enables intelligent editing when the XML document is based on a schema. See
Editing in Grid View for details. The Entry Helpers used in Grid View are described below.

Embedded Database/Table view
Grid View allows you to display recurring elements in a Database/Table View. This function is
available for any type of XML file: XML, XSD, XSLT, etc. The Entry Helpers used in
Database/Table View are described below.

Elements Entry Helper
In Grid View, the Elements Entry Helper has three tabs: Append, Insert, and Add Child. The
Append tab displays elements that can be appended after all the siblings of the current
element; the Insert tab displays all elements that can be inserted before the current element;
and the Add Child tab displays those elements you can insert as a child of the current element.

To insert an element, select the appropriate tab and double-click the required element. Note
that mandatory elements are indicated with an exclamation mark. Siblings of allowed elements
that cannot themselves be inserted at the cursor point are unavailable.

If you create a structure that does not match the content model specified in your schema, the
built-in validating parser displays an error message in the Elements Entry Helper window in Grid
View.

© 2007 Altova GmbH

 119Enhanced Grid View

User Manual

Please note: In the Options dialog (Tools | Options | Editing), you can specify that
mandatory child elements are inserted when an element is inserted.

Attributes Entry Helper
The Attributes Entry Helper displays a list of available attributes for the element you are
currently editing. Mandatory attributes are indicated with an exclamation mark "!" before the
name of the attribute. If an attribute has already been entered for that element, that attribute is
shown in gray.

 To use the attributes in the Append and Insert tabs, select, in Grid View, an existing
attribute or an element that is a child of the attribute's parent element, and double-click
the required attribute in the Entry Helper.

 To use the attributes in the Add Child tab, select the attribute's parent element in Grid
View and double-click the required attribute in the Entry Helper.

Please note: Existing attributes, which cannot legally be added to the current element a second
time, are shown in gray.

Entities Entry Helper
The Entities Entry Helper displays all parsed or unparsed entities that are declared inline or in
an external DTD. If a text node or attribute node is selected in Grid View, the Add Child tab will
appear empty—because, by definition, such nodes cannot have any children.

To use the cursor to insert an entity in Grid View, place the cursor at the required position in a
text field or select the required field; then select the appropriate tab, and double-click the entity.
Note the following rules:

 If the cursor is placed within a text field (including an attribute value field), the entity is
inserted at the cursor insertion point.

 If an element with a text-only child (i.e. #PCDATA or simpleType) is selected but the
cursor is not placed in the text field, then any existing text content is replaced by the
entity.

 If a non-text field is selected, then the entity is created as text at a location
corresponding to the Entry Helper tab that you select.

Please note: If you add an internal entity, you will need to save and reopen your document
before the entity appears in the Entities Entry Helper.

120 Enhanced Grid View Editing in Grid View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

4.1 Editing in Grid View

When editing an XML document based on a schema (DTD or XML Schema), Enhanced Grid
View provides intelligent editing features based on information gathered from the schema.
These features are listed below.

Inserting or appending element or attribute names
To insert or append an element or attribute relative to a selected item, you can use either
commands in the XML menu or icons in the Attributes and Elements Toolbar

. If this toolbar is not visible, select the menu option Tools |
Customize, and, in the Toolbars tab, check the Attr & Elem entry. For a detailed explanation
of how to use the toolbar icon commands and XML menu commands, see the XML Menu
section.

To insert or append an element or attribute:

1. Select the item relative to which the element or attribute is to be inserted or appended.
2. Click on the appropriate icon in the Attributes and Elements toolbar, or select the

appropriate command from the XML menu. This creates a new entry in the grid and
opens a popup with available element or attribute options.

3 Select the desired element or attribute from the popup, and either click or press Enter.
Alternatively, you can type in the name of the desired element or attribute.

You will notice that the various Entry Helpers are constantly updated depending on the current
selection in the Grid View. The Info Window constantly shows important information regarding
the selected element or attribute.

Editing an element or attribute name
When you edit the name of an element or attribute, a popup menu containing the available
options opens. These options depend on the position of the element and the content model
defined by the schema. A similar popup is displayed if the contents of an element or attribute
are restricted by an enumeration or choice of some sort.

To edit an element or attribute name:

1. Double-click the element or attribute name. A popup with the available options appears.
2. Select the required element or attribute from the popup menu.
3. Accept the selection by hitting Return or clicking the name. (Esc causes the change to

be abandoned.)

Grid View context menu
In addition to the commands available through the various menus and toolbars, Grid View also
provides a context menu that contains the most frequently used commands collected from
several menus in one convenient place. To open the context menu, right-click the item for which
you wish to perform an action.

© 2007 Altova GmbH

Editing in Grid View 121Enhanced Grid View

User Manual

122 Enhanced Grid View Database/Table View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

4.2 Database/Table View

The Database/Table View (hereafter Table View) is integrated in the Enhanced Grid View and
allows you to view recurring elements in table form. Table View is different from the normal Grid
View in that it creates a column for each child-type of the element displayed as a table. You can
then modify properties for entire columns or selections.

For instance, consider the following XML document:

The document element is article, and article has the following sequence of child
elements: one title element, four sect1 elements, and one appendix element. Each
sect1 and appendix element has one title element followed by any number of para or
simpara elements.

The normal Grid View of this document is as follows:

Now here is the Table View of this document—more correctly, that of the article element.
(To get this view: select the article element in normal Grid View (by clicking on it) and click

the Display as Table icon . Alternatively, select the menu item XML | Table | Display as
Table (F12).)

© 2007 Altova GmbH

Database/Table View 123Enhanced Grid View

User Manual

Notice that each child element of article (the element displayed as a table)—that is, title,
sect1, and appendix—has been assigned a column and that each occurrence of each
child-type is listed in the appropriate column. Note also that the table structure extends only to
the child level (the sect1 elements themselves are not displayed as a table). In order to
display sect1 elements as a table, select any of the sect1 elements in the sect1 column,

and click . The sect1 elements are now displayed in a table (see screenshot below): each of
their child elements is assigned a column in the sect1 table.

In each column, if a child element (title, simpara, or para) exists for one of the four
occurrences of sect1, then that cell has a white background (e.g. simpara in the first sect1).
If a child does not exist for an occurrence then the corresponding cell has a gray background
(e.g. para in first sect1). It should be apparent, therefore, that columns were assigned by
taking a union of all child elements of all sect1 occurrences, and creating a column for each
unique child-type.

Please note:

 Attributes are also considered child nodes, and columns are also created for attributes.
 You can switch between normal Grid View and Table View by selecting the desired

element and clicking or F12.
 If you are viewing the document in Table View and you switch to Text View, when you

switch back to Grid View the document will display in normal Grid View.

Manipulating table data
You can manipulate table data in the following ways:

 Drag-and-drop column headers to move columns.
 Sort column data for text nodes using the menu command XML | Table | Ascending

Sort (also Descending Sort).
 Append (or insert) rows using the menu command XML | Table | Insert Row (also

Append Row).

Moving data between Table View and external applications
You can take advantage of the table structure of data in Table View to exchange data between
Table View and a spreadsheet application. To move data from Table View to another
application, select the required nodes in the table and use the Copy as Structured Text option to

124 Enhanced Grid View Database/Table View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

copy/paste the data directly into, say, an Excel sheet. (You can select nodes in Table View by
clicking the cells themselves, column headers, row headers (shown below), or the entire table.
If you click the entire table or column headers, then the text of the column headers is also
copied; otherwise it is not.)

The screenshot above shows 11 book elements displayed as a table in Table View. To copy the
entire table into an Excel sheet, you would select the book (11) element, copy it as structured
text, and paste it into an Excel sheet. If you were to select cell A1 and paste, the result would be
as shown below.

Data exchange works in both ways. So you can copy data from any spreadsheet-like application
and insert it directly into a table in Table View. Do this as follows:

© 2007 Altova GmbH

Database/Table View 125Enhanced Grid View

User Manual

1. Select a range in the external application and copy it (to the clipboard, in Windows
systems with Ctrl+C)

2. Select a single cell in Table View of your XML document.
3. Paste the copied data with Ctrl+V.

The data will be pasted into the table in XMLSpy with a cell structure corresponding to the
original structure and starting from the cell selected in Table View. The following points need to
be noted:

 If data already exists in these cells in Table View, the new data overwrites the original
data.

 If more rows are required to accommodate the new data, these are created.
 If more columns are required to accommodate the new data, these are not created.
 The data in the cells becomes the contents of the elements represented by the

respective cells.

For more complex data exchange tasks, XMLSpy also offers a set of unique conversion
functions that let you directly import or export XML data from any text file, Word document or
database.

126 Schema/WSDL Design View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

5 Schema/WSDL Design View

The Schema/WSDL Design View is enabled for XML Schema documents. The
Schema/WSDL Design View will hereafter be referred to as the Schema Design View, and it is
described in detail in the following sub-section. For a description of how to create XML
Schemas, see the XML Schema Tutorial. When designing a schema, if you have
SchemaAgent installed and licensed on your machine, you can have access not only to the
components of the schema currently active in XMLSpy but also to the components of multiple
schemas in other repositories on the network. How to set up and work with SchemaAgent is
described in the section Working with SchemaAgent.

© 2007 Altova GmbH

Schema Design View 127Schema/WSDL Design View

User Manual

5.1 Schema Design View

The Schema Design View itself has two types of view:

 A main Schema Overview, which displays all global components (global elements,
complex types, etc) in a simple table.

 Views of the content models of individual global components (Content Model View).

Given below is a brief overview of Schema Overview and Content Model View, followed by a
description of the Entry Helpers available in Schema Design View. The two sub-sections of this
section contain detailed descriptions of Schema Overview and Content Model View.

Schema Overview
The Schema Overview displays a list of all the global components of the schema (global
elements, complex types, etc).

You can insert, append, or delete global components, as well as modify their properties. To
insert, append, or delete, use the respective buttons at the top of the Schema Overview. To
modify properties, select the required component in the Schema Overview list, and edit its
properties in either the entry helpers (at right of view) or the Attributes/Identity Constraints pane
(at bottom of view).

Note the following editing features of Schema Overview:

 You can reposition components in the Schema Overview list using drag-and-drop.
 You can navigate using the arrow keys of your keyboard.
 You can copy or move global components, attributes, and identity constraints to a

different position and from one schema to another using cut/copy-and-paste.
 Right-clicking a component opens a context menu that allows you to cut, copy, paste,

delete, or edit the annotation data of that component.

Content Model View
A content model is a description of the structure and contents of an element. Global
components which can have a content model (for example, elements, complex types, and
model groups; but not, for example, simple types) are indicated in the Schema Overview list

with a icon to the left of the component name. Clicking on this icon opens the Content Model
View for that global component. Alternatively, (i) select a component and then select the menu
option Schema design | Display Diagram, or (ii) double-click on a component's name in the

128 Schema/WSDL Design View Schema Design View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Component Navigator (which is the entry helper at top right). Note that only one content model
in the schema can be open at a time. When a content model is open, you can jump to the
content model of a component within the current content model by holding down Ctrl and
double-clicking the required component.

The content model is displayed in the Content Model View as a tree (see screenshot below).
You can configure the appearance of the tree in the Schema Display Configuration dialog
(menu item Schema design | Configure view).

Note the following editing features of Content Model View:

 Each level (of elements or element groups) in the tree is joined to adjacent levels with a
compositor.

 Drag-and-drop functionality enables you to move tree objects (compositors, elements,
element groups) around.

 You can use keyboard shortcuts to copy (Ctrl-c) and paste (Ctrl-v) tree objects
 You can add objects (compositors, elements, and element groups) via the context

menu (right-click an object).
 You can edit the properties of an object in the Details entry helper (compositors,

elements, element groups) and the Attributes/Identity Constraints pane.
 The Attributes and Identity Constraints of a component are displayed in a pane at the

bottom of the Main Window. Attributes and Identity Constraints can also be displayed in
the Content Model diagram instead of in the Attributes/Identity Constraints pane. This
viewing option can be set in the Schema Display Configuration dialog.

These features are explained in detail in the subsections of this section and in the tutorial.

To return to the Schema Overview, click the Show Globals icon or select the menu option
Schema design | Display All Globals.

Entry Helpers in Schema View

© 2007 Altova GmbH

Schema Design View 129Schema/WSDL Design View

User Manual

There are three Entry Helpers in Schema/WSDL Design View: Component Navigator, Details
Entry Helper, and Facets Entry Helper. These are described below.

Component Navigator
The Component Navigator is an Entry Helper in Schema/WSDL Design View. It serves two
purposes:

 To organize global components in a tree view by component type and namespace (see
screenshots below). This provides organized overviews of all global components.

 To enable you to navigate to and display the Content Model View of a global component
—if the component has a content model. If a component does not have a content
model, the component is highlighted in the Schema Overview. Global components that
are included or imported from other schemas are also displayed in the Component
Navigator.

In the Type tab (above) global components are grouped in a tree according to their
component type. In the Namespace tab (below), components are organized first
according to namespace and then according to component type. Note that a
component type is listed in a tree only if at least one component of that type exists in
the schema.

In the tree display, global components are organized into the following six groups:

 Element Declarations (Elements)
 Model Groups (Groups)
 Complex Types
 Simple Types
 Attribute Declarations (Attributes)
 Attribute Groups

130 Schema/WSDL Design View Schema Design View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Expanding a component-type group in the tree displays all the components in that group (see
screenshot). This enables you to easily navigate to a required component.

If a component has a content model (i.e., if it is an Element, Group, or Complex Type),
double-clicking it will cause the content model of that component to be displayed in Content
Model View (in the Main Window). If the component does not have a content model (i.e. if it is a
Simple Type, Attribute, or Attribute Group), then the component is highlighted in the Schema
Overview (in the Main Window).

Please note: If the component is in an included or imported schema, then the
included/imported schema is opened (if it is not already open), and either the component's
content model is displayed in Content Model View or the component is highlighted in Schema
Overview.

Details Entry Helper
The Details Entry Helper is available in Schema/WSDL Design View. It displays editable
information about the compositor or component currently selected in the Main Window. If you
are editing a schema file which contains database extensions, an additional tab with information
about the DB extensions may be visible. Currently supported databases are: Oracle, SQL
Server, and Tamino.

© 2007 Altova GmbH

Schema Design View 131Schema/WSDL Design View

User Manual

To change the properties of the currently selected compositor or component, double-click the
field to be edited and edit or enter text directly. If a combo box is available in the field to be
edited, select the desired value; this value is entered in the field.

Changes you make via the Details Entry Helper are immediately reflected in the content model
diagram.

Facets Entry Helper
The Facets Entry Helper is available in the Schema/WSDL Design View, and enables you to
enter the values of facets, patterns, and enumerations. For examples of how to use facets in an
XML Schema, please see the relevant sections in the tutorial.

To change facets, patterns, or enumerations in the Facets Entry Helper:

1. Select the required tab (Facets, Patterns, or Enumerations)
2. If a combo box is present, select a value from the drop-down menu. Alternatively,

double-click a row, and edit or enter text directly.

Please note: You can use the cut, copy and paste shortcuts (CTRL+X, CTRL+C, CTRL+V,
respectively) to copy the patterns and enumerations of one component to another component.
In the Facets Entry Helper, select the pattern/s or enumeration/s to copy, cut or copy the
selection, then click in the Facets Entry Helper window of the target component, and paste.

132 Schema/WSDL Design View Schema Design View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

5.1.1 Schema Overview

At the top level of an XML Schema document (i.e., at the level of children of the schema
element), the following five basic components can be defined:

 Annotation
 Type definition (simple or complex)
 Declaration (element or attribute)
 Attribute group
 Model group

We call these components at the top level global components. The Schema Overview
displays a list of all global components in your schema in a tabular form. Some global
components (such as complex types, element declarations, and model groups) can have a
content model which describes the component's structure and contents. Other global
components (such as annotations, simple types, and attribute groups) do not have a content

model. Those components for which content models are possible have a icon to the left of
the component name. Clicking on this icon opens the Content Model View for that global
component.

Key terms

 Simple type and complex type. A simple type is used to define all attributes and
elements that contain only text and that have no associated attribute. A simple type,
therefore, has no content model—only text (which can be restricted by the datatype). A
complex type is one that has at least one child element or attribute. Declaring a child
element on an element automatically assigns the element a type of complex.

 Global and local components. A global component can be any of the five listed above. A
global component can be defined in Schema Overview, and it then immediately
appears in the list of global components in Schema Overview. If the global component
is a complex type, an element declaration, or a model group, you can subsequently
define its content model by editing it in Content Model View. Once a global component
has been defined, it can be referenced by local components. A local component is
created directly within the content model of some component. Note that, in the Content
Model View, a local component can be converted into a global component (via the
right-click context menu).

Creating global components
To create a global component in Schema Overview:

1. Click the Insert or Append icon at the top of the Schema Overview. This pops
up a menu listing the various component types (element, simple type, complex type,
model group, etc).

© 2007 Altova GmbH

Schema Design View 133Schema/WSDL Design View

User Manual

2. Select the type of component you want. An entry of that type is created in the list of
global components.

3. Enter the name of the component in the entry, and press Enter. The name of the new
global component is added to the appropriate list/s (Elm, Grp, Com, Sim, etc.) in the
Component Navigator entry helper. You can edit the content model of the new global
component either by double-clicking the component name in the Component Navigator

or by clicking the icon to the left of the new component's name in the list of global
components.

Please note:

 You can also create a global component while editing in Content Model View.
Right-click anywhere in the window and select New Global | Element.

 While editing in Content Model View, you can make a local element a global element—
or even a complex type if the element has an element or attribute child. Select the local
element, right-click anywhere in the window, and select Make Global | Element or
Make Global | Complex type.

Deleting global components
To delete a global component:

1. Select the global component in the list of global components in the Schema Overview.

2. Press the Delete key, or click the Delete icon at the top of the Schema Overview.

Attributes and identity constraints of components
You can define attributes and identity constraints for components in either Schema Overview or
Content Model View. In Schema Overview, the attributes and identity constraints of a
component are displayed in the Attributes/Identity Constraints pane at the bottom of the
Schema Overview window and can be edited there. In Content Model View, attributes and
identity constraints can appear either in the Attributes/Identity Constraints pane at the bottom of
the Content Model Window or within the Content Model diagram itself, where it can be edited.

134 Schema/WSDL Design View Schema Design View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

You can select how to display attributes and identity constraints in Content Model View with a
setting in the Schema Display Configuration dialog, which is accessed with the Schema design
| Configure view menu command.

Defining attributes for a component
To define attributes for a component, you use the Attributes/Identity Constraints pane, which is
at the bottom of the Schema Overview window.

To define attributes for a global component for which attributes are allowed:

1. Select the global component in the global components list.
2. In the Attributes/Identity Constraints pane, select the Attributes tab.

3. Click the Append or Insert icon at the top left of the Attribute tab.
4. From the popup that appears, select the attribute type you want to append or insert. An

entry is created in the Attribute list.
5. In the newly created entry, enter the attribute's properties.

Please note: You can also define attributes for global components in Content Model View:
Select the global component, and then define attributes as described above.

Defining identity constraints for a component
To define identity constraints for a component, you use the Attributes/Identity Constraints pane,
which is at the bottom of the Schema Overview window.

To define identity constraints for a component:

1. Select the global component in the global components list.
2. In the Attributes/Identity Constraints pane, select the Identity Constraints tab.

3. Click the Append or Insert icon at the top left of the Identity Constraints tab.
4. From the popup that appears, select the type of identity constraint you want to append

or insert.

© 2007 Altova GmbH

Schema Design View 135Schema/WSDL Design View

User Manual

An entry is created in the Identity Constraints list.
5. In the newly created entry, enter the Identity Constraint's properties. Selector

identifies the nodeset to which the identity constraint will apply. Field identifies the
value which must be unique within the nodeset identified by the Selector property. If
you have selected Keyref as the identity constraint type, the Refer property is
enabled, and the combo-box in it lists all Keys that have been defined in the schema (
see screenshot below).

Please note: You can also define identity constraints for global components in Content Model
View: Select the global component, and then define identity constraints as described above.

5.1.2 Content Model View

The Content Model View enables you to quickly define the content model of the following three
component types graphically with a few mouse clicks:

 Complex types
 Element declarations
 Model groups

All other schema components (annotations, attribute declarations, simple types, etc.) do not
have a content model.

In Content Model View, the various parts of the content model are represented graphically,
These parts are organized into two broad groups: compositors and components. Typically a
compositor is added and then the desired child components.

Compositors
A compositor defines the order in which child elements occur. There are three compositors:

136 Schema/WSDL Design View Schema Design View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

sequence, choice, and all.

To insert a compositor:

1. Right-click the element to which you wish to add child elements
2. Select Add Child | Sequence (or Choice or All).

The compositor is added, and will look as below:

 Sequence

 Choice

 All

To change the compositor, right-click the compositor and select Change Model | Sequence (or
Choice or All). After you have added the compositor, you will need to add child element/s or a
model group.

Components in the Content Model
Given below is a list of components that are used in content models. The graphical
representation of each provides detailed information about the component's type and structural
properties.

 Mandatory single element

Details: The rectangle indicates an element and the solid border indicates that the
element is required. The absence of a number range indicates a single element (i.e.
minOcc=1 and maxOcc=1). The name of the element is Country. The blue color
indicates that the element is currently selected; (a component is selected by clicking it).
When a component is not selected, it is white.

 Single optional element

Details: The rectangle indicates an element and the dashed border means the element

© 2007 Altova GmbH

Schema Design View 137Schema/WSDL Design View

User Manual

is optional. The absence of a number range indicates a single element (i.e. minOcc=0
and maxOcc=1). Element name is Location.
Note: The context menu option Optional converts a mandatory element into an optional
one.

 Mandatory multiple element

Details: The rectangle indicates an element and the solid border indicates that the
element is required. The number range 1..5 means that minOcc=1 and maxOcc=5.
Element name is Alias.

 Mandatory multiple element containing child elements

Details: The rectangle indicates an element and the solid border indicates that the
element is required. The number range 1..infinity means that minOcc=1 and
maxOcc=unbounded. The plus sign means complex content (i.e. at least one element
or attribute child). Element name is Division.
Note: The context menu option Unbounded changes maxOcc to unbounded.
Clicking on the + sign of the element expands the tree view and shows the child
elements.

 Element referencing global element

Details: The arrow in the bottom-left means the element references a global element.
The rectangle indicates an element and the solid border indicates that the element is
required. The number range 1..infinity means that minOcc=1 and
maxOcc=unbounded. The plus sign indicates complex content (i.e. at least one
element or attribute child). Element name is xs:field.
Note: A global element can be referenced from within simple and complex type
definitions, thus enabling you to re-use a global declaration at multiple locations in your
schema. You can create a reference to a global element in two ways: (i) by entering a
name for the local element that is the same as that of the global element; and (ii) by
right-clicking the local element and selecting the option Reference from the context

138 Schema/WSDL Design View Schema Design View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

menu. You can view the definition of a global element by holding down Ctrl and
double-clicking the element. Alternatively, right-click, and select Go to Definition. If you
create a reference to an element that does not exist, the element name appears in red
as a warning that there is no definition to refer to.

 Complex type

Details: The irregular hexagon with a plus sign indicates a complex type. The complex
type shown here has the name keybase. This symbol indicates a global complex type.
A global complex type is declared in the Schema Overview, and its content model is
typically defined in Content Model View. A global complex type can be used either as (i)
the data type of an element, or (ii) the base type of another complex type by assigning it
to the element or complex type, respectively, in the Details entry helper (in either
Content Model View or in Schema Overview).

The keybase complex type shown above was declared in Schema Overview with a
base type of xs:annotated. The base type is displayed as a rectangle with a dashed
gray border and a yellow background color. Then, in Content Model View, the child
elements xs:selector and xs:field were created. (Note the tiny arrows in the
bottom left corner of the xs:selector and xs:field rectangles. These indicate that
both elements reference global elements of those names.)

A local complex type is defined directly in Content Model View by creating a child
element or attribute for an element. There is no separate symbol for local complex
types.

Please note: The base type of a content model is displayed as a rectangle with a
dashed gray border and a yellow background color. You can go to the content model of
the base type by double-clicking its name.

 Model group

Details: The irregular octagon with a plus sign indicates a model group. A model group
allows you to define and reuse element declarations.
Note: When the model group is declared (in Schema Overview) it is given a name. You
subsequently define its content mode (in Content Model View) by assigning it a child
compositor that contains the element declarations. When the model group is used, it is
inserted as a child, or inserted or appended within the content model of some other
component (in Content Model View).

 Wildcards

© 2007 Altova GmbH

Schema Design View 139Schema/WSDL Design View

User Manual

Details: The irregular octagon with any at left indicates a wildcard.
Note: Wildcards are used as placeholders to allow elements not specified in the
schema or from other namespaces. ##other = elements can belong to any
namespace other than the target namespace defined in the schema; ##any = elements
can belong to any namespace; ##targetNamespace = elements must belong to the
target namespace defined in the schema; ##local = elements cannot belong to any
namespace; anyURI = elements belong to the namespace you specify.

 Attributes

Details: Indicated with the word 'attributes' in italics in a rectangle that can be expanded.
Each attribute is shown in a rectangle with a dashed border.
Note: Attributes can be edited in the Details Entry Helper. Attributes can be displayed in
the Content Model View diagram or in a pane below the Content Model View. You can

toggle between these two views by clicking the Display in Diagram icon. When
attributes are displayed in the Content Model View diagram, all attributes of a single
element are displayed in a rectangle with a dashed border. To change the order of
attributes of an element, drag the attribute outside the containing box and drop when
the arrow appears at the required location.

 Identity constraints

Details: Indicated with the word 'constraints' in italics in a rectangle that can be
expanded.
Note: The identity constraints listed in the content model of a component show
constraints as defined with the key and keyref elements, and with the unique
element. Identity constraints defined using the ID datatype are not shown in the content
model diagram, but in the Details Entry Helper. Identity constraints can be displayed in
the Content Model View or in a pane below the Content Model View. You can toggle

between these two views by clicking the Display in Diagram icon.

Please note:

 Property descriptor lines you have defined in the Schema Display Configuration dialog

can be turned on and off by clicking the Add Predefined Details toolbar icon.
 You can toggle Attributes and Identity Constraints to appear either in the diagram of the

content model itself or in a pane below the Content Model View by clicking the Display

140 Schema/WSDL Design View Schema Design View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

in Diagram icon.
 In Content Model View, you can jump to the content model view of any global

component within the current content model by holding down the CTRL key and
double-clicking the required component. You can go to the content model of a base
type by double-clicking the name of the base type.

Other editing operations in Content Model View
Editing operations in Content Model View are carried out via the context menu (see screenshot)
that appears when you right-click within Context Model View. A description of the operations are
given below.

Adding child compositors/components and inserting/appending
compositors/components

1. Right-click the compositor or component. This opens the context menu (with only the
allowed operations enabled).

2. Select the required operation from the context menu.

Changing a compositor

1. Right-click the compositor you want to change.
2. Select the context menu option Change Model and, from the sub-menu, select the

compositor to which you want to change. (The currently selected compositor is
checked.) If a compositor is not allowed at that point, it is disabled.

Creating global components

 To create a new global component, right-click anywhere in Content Model View, select
New Global, and, from the sub-menu, the required component.

© 2007 Altova GmbH

Schema Design View 141Schema/WSDL Design View

User Manual

 To make a local element a global element or global complex type, right-click the local
element, select Make Global, and, from the sub-menu, select either Element or
Complex type. If any of these components cannot legally be created, then it is
disabled.

Changing the occurrence definition
You can toggle the minimum and maximum occurrences values of a compositor between 0
and 1 (for minOccurs) and 1 and unbounded (for maxOccurs), respectively.

Do this as follows:

1. Right-click the compositor or component for which the occurrence value has to be
changed.

2. Select the context menu option Optional to set minOccurs to 0, deselect Optional to
set minOccurs to 1. Select the context menu option Unbounded to set maxOccurs
to unbounded, deselect Unbounded to set maxOccurs to 1. A check mark appears to
the left of the respective menu item when that menu item is selected.

Toggling between local definition and global definition
If a global element exists that has the same name as a local element, then you can toggle
between referencing the global definition and using the local definition.

Do this as follows:

1. Right-click the element.
2. Select the context menu option Reference. If the global element is referenced, then the

menu item is checked. If the local definition is used, the Reference item in the menu is
not checked.

Jumping to another definition
When you are within a content model, you can jump to the definition of any global component
that is contained in that content model.

Do this as follows:

1. Right-click the global component. The global component could be the yellow rectangle
of a base type; an element that references a global element; or a model group.

2. Select the context menu option Go to Definition. This opens the Content Model View
of that global component.

Alternatively, double-click the name of the base type, or press Ctrl and double-click the
referencing element or the model group.

Editing element names

1. Right-click the element.
2. Select the context menu option Edit | Name and edit the name.

Alternatively, double-click the element name, and type in the change.

Creating and editing documentation for a compositor or component
You can add documentation to individual compositors and components as a guide for schema
editors.

142 Schema/WSDL Design View Schema Design View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Do this as follows:

1. Right-click the compositor or component.

2. Select the context menu option Edit Annotation. This highlights the documentation
space below the compositor/component, in which you can enter descriptive text about
the compositor or component. In Text View, the annotation and
annotation/documentation elements will have been created and the
documentation element will contain the descriptive text you enter.

Alternatively, you can right-click the compositor or component and select Whole Annotation
Data. In the Annotation dialog that opens, you can append or insert a documentation item and
enter content for it.

In order to edit pre-existing documentation text, you can use either of the two methods
described above, but a quicker method is to double-click the annotation in the diagram and edit
directly.

Creating and editing application info for a compositor or component

1. Right-click the compositor or component.

2. Select the context menu option Whole Annotation Data. The Annotation dialog box
opens (see screenshot below). If annotation (either documentation or appinfo) exists for
that element, then this is indicated by a corresponding row in the dialog.

3. To create an appinfo element, click the Append or Insert icon at top left to
append or insert a new row, respectively.

4. In the Kind field of the new row, select the app option from the dropdown menu.
5. In the Content pane of the dialog, enter the script or info that you want to have

© 2007 Altova GmbH

Schema Design View 143Schema/WSDL Design View

User Manual

processed by a processing application.
6. Optionally, in the Source field, you can enter a source URI where further information

can be made available to the processing application.

Using keyboard shortcuts in Content Model View
You can copy and paste elements in Content Model View using the shortcuts Ctrl-c and Ctrl-v.

To copy and paste elements:
1. Select the elements you want to copy. To select one element, click on it. To select more

than one element, click on the first element and use SHIFT and the down arrow key to
select further elements.

2 Press Ctrl-c. The elements are copied to the clipboard.
3. Select the compositor you want to copy the elements to.
4. Press Ctrl-v. The elements are pasted as child elements of the compositor.

To copy and paste elements in reverse order:
1. Click on the lowermost element you want to copy and use SHIFT and the up arrow key

to select further elements.
2. Press Ctrl-c. The elements are copied to the clipboard.
3. Select the compositor you want to copy the elements to.
4. Press Ctrl-v. The elements are pasted such that the element that was the uppermost

element is now the lowermost element.

About XML Schema annotations
XML Schema annotations are held in the annotation element. There are two types of
annotation, both of which are elements of the annotation element:

 compositor or component documentation, which contains information that could be
useful for editors of the schema and is contained in the documentation child element
of annotation.

 application information, which allows you to insert a script or information that a
processing application may use; this information is contained in the appinfo child
element of annotation.

Given below is the text of an annotation element. It is based on the example in the description
of creating documentation and application information given above.

<xs:element name="session_date" type="xs:dateTime" nillable="true">
 <xs:annotation>
 <xs:documentation>Date and time when interview was
held</xs:documentation>
 <xs:appinfo
source="http://www.altova.com/datehandlers/interviews">separator =
:</xs:appinfo>
 </xs:annotation>
</xs:element>

Configuring the content model view
You can configure the content model view for the entire schema in the Schema display
configuration dialog (Schema design | Configure view). For details about configuration
options, see the Configure view section later in the User Reference. Note that the settings you
define here apply to the whole schema, and to the schema documentation output as well the
printer output.

Changing component properties directly in the content model

144 Schema/WSDL Design View Schema Design View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

If the Content Model View is configured so that components are displayed with property
descriptor lines (additional information about components) in the component box, then you can
edit this information and so change the properties of components. The property descriptor lines

you have defined can be turned on and off by clicking the Add Predefined Details toolbar
icon. You can toggle between a view containing the defined properties and a view not containing
them.

To edit component properties:

1. Double-click the (component's) information field that you want to edit, and start entering
or editing data. If a predefined option is available, then a drop-down list can be opened
and the appropriate entry selected. Otherwise simply enter the required value.

2. Press Enter to confirm. The Details entry helpers will be updated to reflect your
changes.

Alternatively, you can edit a component's properties in the Details entry helper, and changes will
be reflected in the placeholder fields—if these are configured to be displayed.

Documenting the content model
You can generate detailed documentation about your schema in HTML and MS Word formats.
Detailed documentation is generated for each global component, and the list of global
components is displayed in a table-of-contents page that allows you to link to the content
models of individual components. Additionally, related elements (such as child elements or
complex types) are referenced by hyperlinks, thus enabling you to navigate from element to
element. To generate schema documentation, select the menu command Schema design |
Generate documentation.

Attributes and Identity Constraints
Attributes and Identity constraints can appear in a pane below the Content Model View or as

boxes in the Content Model View itself. You can toggle between these views by clicking the
icon. For a description of how to insert and edit attributes and identity constraints, see Defining
attributes for components and Defining identity constraints for components, respectively.

5.1.3 Smart Restrictions

When restricting a complex type, parts of the content model of the base type are rewritten in the
derived type. This can be confusing if the content model is complex because while editing the
derived type it might be hard to correctly remember exactly what the content model of the base
type looks like.

Smart Restrictions combine and correlate the two content models in the graphical view of the
derived content model. In the derived complex type, all particles of the base complex type, and
how they relate to the derived type, can be seen. Additionally, Smart Restrictions provide visual

© 2007 Altova GmbH

Schema Design View 145Schema/WSDL Design View

User Manual

hints to show you all possible ways to restrict the base type. This makes it easy to correctly
restrict the derived type.

To switch on Smart Restrictions:

 Click the Smart Restrictions icon .

The example that follows illustrates the features of Smart Restrictions.

The following complex type is the base type used in this example:

The complex type "derived" is derived from the "base" type as follows:
1. Create a new complex type in the schema and call it "derived".
2. In the Details Entry Helper select "base" from the base drop-down list and "restriction"

from the derivedBy drop-down list.

With Smart Restrictions switched on, the new derived type looks like this:

146 Schema/WSDL Design View Schema Design View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Notice the following controls that can be used to restrict the derived type in this example:

 Use this icon to remove elements that are in the base type from the derived type.

Here, elem1 has been deleted. To add it again, click this icon .

 Click the down arrow on the Choice element to get the following list, which allows you
to change the Choice model group to a Sequence model group:

It is also possible to change wildcards in the same way, as seen in this example:

© 2007 Altova GmbH

Schema Design View 147Schema/WSDL Design View

User Manual

For a complete list of which particles can be replaced by which other particles, see the
XML schema specification.

 Change the number of occurrences of the model group using the following control

 to increase the minimum number of occurrences by clicking the plus sign
over the "1", or to decrease the maximum number of occurrences by clicking the minus
sign under "4". These controls are shown if the occurrence range in the base describes
a real range (e.g., 2-5) and not a certain amount (e.g. 4-4). They are also displayed if
the occurrence range is wrong.

Here you can see that the minimum occurrence for this element has been changed to
2. Notice that the model group now has a blue background, which means that it is no
longer the same as the model group in the base complex type. Also, the permitted
occurrence range of the model group in the base particle is now displayed in
parentheses.

 It is possible to change the data types of attributes or elements if the new data type is a
valid restriction of the base data type as defined in the XML schema specification. For
example, you can change the data type of elem3 in the "derived" data type from
decimal to integer. After you do this, the element has a blue background to show that is
different from the element in the base type, and the type that the element has in the
base type is displayed in parentheses:

http://www.w3.org/TR/xmlschema-1/#cos-particle-restrict
http://www.w3.org/TR/xmlschema-2/#built-in-datatypes

148 Schema/WSDL Design View Schema Design View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

This example shows attributes whose data types have been restricted in the derived
complex type:

 Smart Restrictions alert you to pointless occurrences in the content model. A pointless
occurrence happens, for example, when a sequence that is present in the content
model is unnecessary. This example shows a pointless occurrence:

Please note: Pointless occurrences are only shown if the content model contains an
error. It is possible for a content model to contain a pointless occurrence and be valid,

© 2007 Altova GmbH

Schema Design View 149Schema/WSDL Design View

User Manual

in which case the pointless occurrence is not explicitly shown in order to avoid
confusion.

See the XML schema specification for more information about pointless occurrences.

5.1.4 Working with SchemaAgent

XMLSpy can be set up to work with Altova's SchemaAgent technology.

SchemaAgent technology
The SchemaAgent technology enables users to build and edit relationships between multiple
schemas. It consists of:

 A SchemaAgent Server, which holds and serves information about the relationships
among schemas in one or more search path/s (folder/s on the network) that you
specify.

 A SchemaAgent client, Altova's SchemaAgent product, which uses schema
information from the SchemaAgent server to which it is connected (i) to build
relationships between these schemas; and (ii) to manage these schemas (rename,
move, delete schemas, etc).

Two types of SchemaAgent server are available:

 Altova SchemaAgent Server, which can be installed on, and accessed from, a network,
and

 Altova SchemaAgent, which is the SchemaAgent client product. It includes a lighter
server version, called LocalServer, which can only be used on the same machine on
which SchemaAgent is installed.

XMLSpy uses SchemaAgent technology to directly edit schemas in Schema View using
information about other schemas it gets from a SchemaAgent server. In this setup, XMLSpy is
connected to a SchemaAgent server, and, in interaction with SchemaAgent Client, sends
requests to SchemaAgent Server. When XMLSpy has been set up to work with SchemaAgent,
the Entry Helpers in Schema View not only list components from the schema currently active in
Schema View but also list components from other schemas in the search paths of the
SchemaAgent server to which it is connected. This provides you with direct access to these
components. You can view the content model of a component belonging to another schema in
Schema View, and reuse this component with or without modifications. You can also build
relationships between schemas, thereby enabling you to modularize and manage complex
schemas directly from within XMLSpy.

Installing SchemaAgent and SchemaAgent Server

For details about installing SchemaAgent and SchemaAgent Server and configuring search
paths on servers, see the SchemaAgent user manual.

Setting up XMLSpy as a SchemaAgent client
In order for XMLSpy to work as a SchemaAgent client, you must do the following:

 Download SchemaAgent from the Altova website. You can now use SchemaAgent's
LocalServer to serve schemas. For information about configuring search paths on
LocalServer, see the SchemaAgent user manual.
Please note: SchemaAgent requires a valid license, which must be purchased after the
free trial period runs out. Also note that Altova MissionKit product packages each
includes the SchemaAgent product and a license key for it. (The SchemaAgent Server
application, however, is not included in Altova MissionKit packages.)

http://www.w3.org/TR/xmlschema-1/#cos-particle-restrict
http://www.altova.com/download/

150 Schema/WSDL Design View Schema Design View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

 Additionally, you might want to download and install the network-based SchemaAgent
Server from the Altova website.

 Define the search path(s) for SchemaAgent server (also known as configuring
SchemaAgent Server). A detailed description of how to do this is given in the
SchemaAgent user manual. (A search path is a path to the folder containing the XML
schemas that will be mapped for their relationships with each other.)

 Start a connection from within XMLSpy to a SchemaAgent server.

Important: All SchemaAgent and SchemaAgent-related products from Altova (including
XMLSpy) starting with Version 2005 release 3 are not compatible with previous versions of
SchemaAgent or SchemaAgent-related products.

SchemaAgent commands in XMLSpy
The SchemaAgent functionality in XMLSpy is available only in Schema View and is accessed
via menu commands in the Schema Design menu (see screenshot) and by using the Entry
Helpers in Schema View.

The menu commands provide general administrative functionality. The Entry Helpers (and
standard GUI mechanisms, such as drag-and-drop) are used to actually edit schemas.

This section describes how to use the SchemaAgent functionality available in Schema View.

Connecting to SchemaAgent Server

Please note: SchemaAgent Client must be installed in order for you to be able to make a
connection.

Before you connect to SchemaAgent Server, only the Connect to SchemaAgent Server
command is enabled in the Schema Design menu; other SchemaAgent commands in the
Schema Design menu are disabled (see screenshot). The other menu items become enabled
once a connection to a SchemaAgent Server has been successfully made.

Connection steps
To connect to a SchemaAgent server:

1. Click the Connect to SchemaAgent server toolbar icon (Schema Design |
Connect to SchemaAgent Server). The Connect to SchemaAgent Server dialog (

http://www.altova.com/download/

© 2007 Altova GmbH

Schema Design View 151Schema/WSDL Design View

User Manual

screenshot below) opens:

2. You can use either the local server (the SchemaAgent server that is packaged with
Altova SchemaAgent) or a network server (the Altova SchemaAgent Server product,
which is available free of charge). If you select Work Locally, the local server of
SchemaAgent will be started when you click OK and a connection to it will be
established. If you select Connect to Network Server, the selected SchemaAgent
Server must be running in order for a connection to be made.

Note on servers running with Windows XP SP2
If the SchemaAgent Server name is listed in the Connect to SchemaAgent Server
dialog but you cannot connect to it, it is possible that your server is not taking part in
the name resolution process of your network. Name resolution is blocked by the
default settings of the Windows XP SP2 Firewall.

To connect to such a server, do one of the following:

 Change the server settings to enable the name resolution process, or
 Enter the IP address of the server in the Edit field of the Connect Dialog

box.

This need be done only once as SchemaAgent Client stores the connection string of
the last successful connection.

Schema/WSDL View after connecting to SchemaAgent server
After a connection to a SchemaAgent server is established, Schema/WSDL View will look
something like this:

152 Schema/WSDL Design View Schema Design View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Please note:

 At the top of the Globals view the text "Connected to SchemaAgent Server" appears,
specifying the server to which the connection has been made.

 You now have full access to all schemas and schema constructs available in the server
search path. SchemaAgent schema constructs such as global elements,
complexTypes, and simpleTypes are visible in bold blue text, below the constructs of
the active schema (bold black text).

Schema constructs can be viewed by Type, or by Namespace in the respective tabs in
the Schema/WSDL View.

Opening Schemas Found in the Search Path

This example demonstrates how to open a schema found in a search path defined in
SchemaAgent Server. It uses the DB2schema.xsd file available in the ..\Tutorial folder as
the active schema. The By Type tab of the Components entry helper is active.

1. Scroll down to the blue Company entry in the Components entry helper, and
double-click it. The Goto Definition dialog box is opened.

© 2007 Altova GmbH

Schema Design View 153Schema/WSDL Design View

User Manual

2. Click the Addresslast.xsd entry, and click OK to confirm. This opens the
addresslast.xsd schema and displays the content model of the Company element.

Please note: Double-clicking a SchemaAgent schema construct, such as Element,
complexType, or simpleType, opens the associated schema (as well as all other included
schemas) in XMLSpy.

Using Schema Constructs

XML schema provides Import, Include, and Redefine (IIR) statements to help modularize
schemas. Each method has different namespace requirements. These requirements are
automatically checked by SchemaAgent Client and XMLSpy when you try to create IIRs.

Imports, Includes, and Redefines (IIRs)
Schema constructs can be "inserted" by different methods:

 Global elements can be dragged directly from the Components Entry Helper into the
content model of a schema component (in the Schema/WSDL view).

 Components, such as complexTypes and simpleTypes, can be selected from the list
box that automatically opens when defining new elements/attributes, etc.

 Components, such as complexTypes, can be selected from the Details Entry Helper
when creating/updating these type of constructs.

Incorporating schema components
This example uses the DB2schema.xsd file available in the ..\Tutorial folder as the active
schema; the By Type tab of the Components Entry Helper is active.

To use schema constructs from SchemaAgent Server schemas:

1. Make sure you are connected to a SchemaAgent server (see Connecting to
SchemaAgent server).

2. Open and rename the DB2Schema.xsd file for this example, for example to
Altova-office.

154 Schema/WSDL Design View Schema Design View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

3. Click the icon of the Altova element in the Schema Overview to see its content
model.

4. Right-click the Altova sequence compositor and select the menu option Add Child |
Element. Note that a list box containing all global elements within the server path opens
automatically at this point. Selecting one would incorporate that element.

5. Enter Altova-office as the name for this new element and press Enter.
6. Using the Details Entry Helper, click the type combo box and select the entry

OfficeType.

This opens the Select Definition For OfficeType dialog box.

© 2007 Altova GmbH

Schema Design View 155Schema/WSDL Design View

User Manual

7. Select Orgchart.xsd and click OK to confirm.

8. Click OK. The Import command was automatically selected for you. An expand icon
appears in the Altova-office element.

Please note: The type entry in the Details entry helper has changed; it is now
displayed as ns1:OfficeType due to the fact that the Orgchart.xsd schema file
has been imported and the target namespaces must be different in both schemas. An
Import command has also been added to the schema.

9. Click the Expand button to see the OfficeType content model.

156 Schema/WSDL Design View Schema Design View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

10. Press F8 to validate the schema. The "Schema is valid" message should appear at this
stage.

Cleaning up the schema:

1. Delete the Division element in the content model.

2. Click the Return to globals icon to switch to the Schema Overview.
3. Delete the following global elements: Division, Person and VIP.

4. Select the menu option Schema Design | Schema settings to see how the
namespace settings have changed.

The ns1 prefix has been automatically added to the
www.xmlspy.com/schemas/orgchart namespace. The Components (see
screenshot) and Details Entry Helpers displays all imported constructs with the ns1:
namespace prefix.

© 2007 Altova GmbH

Schema Design View 157Schema/WSDL Design View

User Manual

Please note:

 Changes made to schemas under SchemaAgent Server control using XMLSpy
automatically update other schemas in the SchemaAgent Server path that referenced
the changed schema.

 It is possible to see duplicates of constructs element, simpleTypes etc. in entry helpers
(in black and blue), if the schema you are working on is also in the SchemaAgent
Server path.

Viewing Schemas in SchemaAgent

To work with the active schema and its related schemas in SchemaAgent, select the menu
option Schema Design | Show in SchemaAgent | schema or related schemas (see
screenshot).

You have the option of opening only the active schema in SchemaAgent, or the active schema
together with either (i) all directly referenced schemas, or (ii) all referenced schemas, or (iii) all
linked schemas.

Extended Validation

XMLSpy, in conjunction with SchemaAgent, allows you to validate not only the currently active
schema but also schemas related to the currently active schema. There are two types of related

158 Schema/WSDL Design View Schema Design View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

schemas that SchemaAgent distinguishes for extended validation: (i) directly referenced
schemas, and (ii) referenced schemas.

How to carry out extended validation is demonstrated below by means of an example. This
example assumes that the schema file address.xsd is the active schema in Schema/WSDL
View of XMLSpy. You would then do the following:

1. Click the Extended Validation icon in the toolbar or the menu item Schema Design
| Extended Validation. This opens the Extended Validation dialog box, in which you
can choose whether to validate the active schema only or one or more related schemas
as well.

2. To insert schemas into the list, click the Show Directly Referenced or Show All
Referenced button as required. In this example, we have clicked the Show All
Referenced button, and this inserts all referenced files into the list.

At this point, you can remove a schema from the list (Remove from List).

3. Click the Validate button to validate all the schemas in the list box.

© 2007 Altova GmbH

Schema Design View 159Schema/WSDL Design View

User Manual

The Validate column displays whether the validation was successful or whether it failed.

You can now open the schemas that failed validation or a set of selected schemas in XMLSpy.

160 Schema/WSDL Design View WSDL Design View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

5.2 WSDL Design View

WSDL Design View (screenshot below) provides an interface for graphically editing WSDL
documents. The structure and components of a WSDL document are created in the Main
Window using graphical design mechanisms, and additional editing is enabled from the Entry
Helpers.

The Main Window (consisting of the PortTypes, Bindings, and Services sections) and the Entry
Helpers (Overview and Detail) are described in the sub-sections of this section. (For a
description of how to work with projects, see Project Menu in the User Reference section.)

Functionality available in WSDL View
The following functionality is available in WSDL View:

 A graphical display in the Main Window of all WSDL elements, grouped by PortTypes,
Bindings, and Services. The structure of the WSDL document is also displayed in the
Main Window..

 Direct manipulation of WSDL elements using drag and drop.
 Ability to add, append, and delete any WSDL element visible in the graphical view

(context sensitive menu).
 Ability to enter and edit values in the Detail Entry Helper.
 WSDL validation against W3C Working Draft.
 Automatic switching to Schema Design View if a referenced or imported schema is

found to be invalid.
 Editing of schema types from within WSDL Design View.
 Generation of WSDL documentation in MS Word or HTML.
 Generation of a diagram (PNG image) of the WSDL document in the Main Window.

File viewing
Note the following points concerning file viewing:

 When you open a WSDL file, the file opens automatically in WSDL Design View.
 You can also view a WSDL document in the Text and Enhanced Grid Views. To do this,

click on the appropriate tab.
 If the WSDL file contains a reference to an XML Schema, then the schema can be

viewed and edited by selecting the menu command WSDL | Types | Edit schema.

© 2007 Altova GmbH

WSDL Design View 161Schema/WSDL Design View

User Manual

This opens the schema file in the Schema Design View.
 If an associated schema file is open, then you are not allowed to change the view of the

WSDL file (for example, from WSDL Design View to Text View). Before trying to
change views of the WSDL file, make sure that you have saved changes to the schema
file and closed the file.

5.2.1 Entry Helpers

There are two entry helpers to help you edit WSDL documents: Overview and Detail. Both entry
helpers can be docked/undocked by double-clicking the title bar. When docked, the auto-hide
feature can be activated by clicking the drawing-pin icon in the title bar. When auto-hidden, the
entry helper is minimized as a tab at an edge of the application window. An auto-hidden entry
helper can be re-docked by rolling it out from the edge (by mousing over its tab) and clicking the
drawing-pin icon in the title bar.

Overview entry helper
The Overview entry helper (screenshot below) provides an overview of the WSDL document by
grouping the document's various components into structural categories and by listing the target
namespace and imported schemas and WSDL documents. In addition to port types, messages,
bindings, and services, the various types defined in the document are also listed.

In each category, components are displayed in a tree view. Imported schemas and imported
WSDL documents are listed under the Imports heading. You can expand and collapse a tree
item, respectively, to reveal and to hide its contents. Selecting a component in the Overview
entry helper displays it and its properties in the Detail entry helper, where the properties can be
edited. The following points about individual categories in the Overview entry helper should be
noted.

Target namespace: Indicated in the tree by tns. The target namespace can be edited in the
Overview entry helper. All other namespaces must be edited in Text View.

Imports: XML Schema (XSD) files and WSDL files can be imported into the active WSDL
document. To import a file, right-click the Imports item or an already imported file in the Imports
list, and select Add new import. Right-clicking an imported file in the Imports list pops up a
context menu in which you can choose to add a new import, select another file to replace the
selected file as an import (Edit import), or delete the imported file. You can also open the file
from its location. The file opens in Schema/WSDL Design view, and can be edited there.

Types: Lists all types defined in the WSDL document (in black) and in any imported schema or
WSDL document (in gray). You can create a new XSD element, simpleType, or complexType
by right-clicking any type in the list and selecting the appropriate Add New command. The newly
created type is added as a type to the WSDL types definitions and is listed under the Types

162 Schema/WSDL Design View WSDL Design View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

item in the Overview entry helper. A type defined in the WSDL document can be edited in
XMLSpy's Schema View. To do this, right-click the type you wish to edit and select Edit
type/element (Schema View) from the context menu that pops up. This causes a temporary
XSD file to be generated on the fly from the types definitions in the WSDL document. This XSD
document is displayed in Schema View and can be edited. After you have finished editing the
XSD document, saving the changes will cause the changes to be saved back to the types
definitions in the WSDL document. You can close the XSD document without saving changes;
in this case, the types definitions in the WSDL document will not be modified.

Messages: When a message or its sub-component is selected, the properties of that message
or sub-component are displayed in the Detail entry helper, where they can be edited.
Additionally, with a message selected in the Overview entry helper, you can add a message part
to that message or delete the message, as well add a new message. With a message part
selected in the Overview entry helper, you can add another message part to that message or
delete the selected message part. The Synchronize command highlights the selected message
or message part in the relevant portType box.

PortTypes: With a portType selected, portTypes can be added, the selected portType can be
deleted, and operations can be added to the definition of the selected portType. With an
operation selected, additional operations can be appended, the selected operation can be
deleted, and elements can be added to the selected operation. With a message selected,
additional messages can be added and the selected message can be deleted. Clicking the
Synchronize command highlights the selected portType, operation, or message.

Bindings: With a binding selected, additional bindings can be appended to the already-existing
bindings, the selected binding can be deleted, and operations inserted for the selected binding.
With an operation or message selected, the same options are available as described for
operations and messages in the PortTypes category. Clicking the Synchronize command
highlights the selected binding, operation, or message.

Services: With a service selected, additional services can be added, the selected service can
be deleted, and ports can be added for the selected service. Clicking the Synchronize command
highlights the selected service or port.

Detail entry helper
The Detail entry helper displays the properties of the item selected in the Main Window or
Overview entry helper (screenshot below). These properties can be edited in the Detail entry
helper.

For example, as shown in the screenshot above, if in the Main Window, the port
TimeServiceSoap (of the TimeService service) is selected, then the properties of

© 2007 Altova GmbH

WSDL Design View 163Schema/WSDL Design View

User Manual

TimeServiceSoap are displayed in the Detail entry helper, where they can be edited. To edit a
text field such as for name or description, double-click in the field and edit the text. For some
properties, such as binding in the screenshot example above, where a selection can be made
from among options, a combo box allows you to select from the available options.

164 Authentic View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

6 Authentic View

Authentic View (see screenshot) is a graphical representation of your XML document. It enables
XML documents to be displayed without markup and with appropriate formatting and
data-entry features such as input fields, combo boxes, and radio buttons. Data that the user
enters in Authentic View is entered into the XML file.

Authentic View enables you to edit XML documents and databases (DBs) in an easy-to-use
graphical user interface (GUI).

To be able to view and edit an XML document in Authentic View, the XML document must be
associated with a StyleVision Power Stylesheet, which is created in Altova's StyleVision
product. A StyleVision Power Stylesheet (.sps file) is, in essence, an XSLT stylesheet. It
specifies an output presentation for an XML file that also includes data-entry mechanisms.
Authentic View users can, therefore, write data back to the XML file or DB. A StyleVision Power
Stylesheet is based on a schema and is specific to it. If you wish to use a StyleVision Power
Stylesheet to edit an XML file in Authentic View, you must use a StyleVision Power Stylesheet
that is based on the same schema as that on which the XML file is based.

Using Authentic View

 If an XML file is open, you can switch to Authentic View by clicking the Authentic button
at the bottom of the Document Window. If a StyleVision Power Stylesheet is not already
assigned to the XML file, you will be prompted to assign one to it. You must use a
StyleVision Power Stylesheet that is based on the same schema as the XML file.

 A new XML file is created and displayed in Authentic View by selecting the File | New
command and then clicking the "Select a StyleVision Stylesheet ..." button. This new file
is a template file associated with the StyleVision Power Stylesheet you open. It can
have a variable amount of starting data already present in it. This starting data is

© 2007 Altova GmbH

 165Authentic View

User Manual

contained in an XML file (a Template XML File) that may optionally be associated with
the StyleVision Power Stylesheet. After the Authentic View of an XML file is displayed,
you can enter data in it and save the file.

This section provides:

 An overview of the interface
 A description of the toolbar icons specific to Authentic View
 A description of viewing modes available in the main Authentic View window
 A description of the Entry Helpers and how they are to be used
 A description of the context menus available at various points in the Authentic View of

the XML document
 A detailed description of how to use various Authentic View features

Additional sources of Authentic View information are:

 An Authentic View Tutorial, which shows you how to use the Authentic View interface.
This tutorial is available in the documentation of the Altova XMLSpy and Altova
Authentic Desktop products (see the Tutorials section), as well as online.

 For a detailed description of Authentic View menu commands, see the User Reference
section of your product documentation.

http://www.altova.com/manual_Authentic/

166 Authentic View Interface

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

6.1 Interface

This section describes the Authentic View user interface. It contains the following sections:
 Overview of the GUI
 Authentic View toolbar icons
 Authentic View main window
 Authentic View entry helpers
 Authentic View context menus

6.1.1 Overview of the GUI

Authentic View has a menu bar and toolbar running across the top of the window, and three
areas that cover the rest of the interface: the Project Window, Main Window, and Entry Helpers
Window. These areas are shown below.

Menu bar
The menus available in the menu bar are described in detail in the User Reference section of
your product documentation.

Toolbar
The symbols and icons displayed in the toolbar are described in the section, Authentic View
toolbar icons.

Project window
You can group XML, XSL, HTML schema, and Entity files together in a project. To create and
modify the list of project files, use the commands in the Project menu (described in the User
Reference section of your product documentation). The list of project files is displayed in the
Project window. A file in the Project window can be accessed by double-clicking it.

Main window
This is the window in which the XML document is displayed and edited. It is described in the
section, Authentic View main window.

Entry helpers
There are three entry helper windows in this area: Elements, Attributes, and Entities. What
entries appear in these windows (Elements and Attributes Entry Helpers) are context-sensitive,

© 2007 Altova GmbH

Interface 167Authentic View

User Manual

i.e. it depends on where in the document the cursor is. You can enter an element or entity into
the document by double-clicking its entry helper. The value of an attribute is entered into the
value field of that attribute in the Attributes Entry Helper. See the section Authentic View Entry
Helpers for details.

Status Bar
The Status Bar displays the XPath to the currently selected node.

Context menus
These are the menus that appear when you right-click in the Main Window. The available
commands are context-sensitive editing commands, i.e. they allow you to manipulate structure
and content relevant to the selected node. Such manipulations include inserting, appending, or
deleting a node, adding entities, or cutting and pasting content.

6.1.2 Authentic View Toolbar Icons

Icons in the Authentic View toolbar are command shortcuts. Some icons will already be familiar
to you from other Windows applications or Altova products, others might be new to you. This
section describes icons unique to Authentic View.

In the description below, related icons are grouped together.

Switching to Authentic View

If the XML document is linked to a StyleVision Power Stylesheet, View | Authentic
view switches to Authentic View from another view.
If the document is not linked to a StyleVision Power Stylesheet, a dialog is
displayed that asks you to link the document to a StyleVision Power Stylesheet. If,
when you try to switch to Authentic View, you receive a message saying that a
temporary (temp) file could not be created, contact your system administrator. The
system administrator must change the default Security ID for "non-power users" to
allow them to create folders and files.

Show/hide XML markup
In Authentic View, the tags for all, some, or none of the XML elements or attributes can be
displayed, either with their names (large markup) or without names (small markup). The four
markup icons appear in the toolbar, and the corresponding commands are available in the
Authentic menu.

Hide markup. All XML tags are hidden except those which have been collapsed.
Double-clicking on a collapsed tag (which is the usual way to expand it) in Hide
markup mode will cause the node's content to be displayed and the tags to be
hidden.

Show small markup. XML element/attribute tags are shown without names.

Show large markup. XML element/attribute tags are shown with names.

Show mixed markup. In the StyleVision Power Stylesheet, each XML element or
attribute can be specified to display (as either large or small markup), or not display
at all, in mixed markup mode. In mixed markup mode, therefore, the Authentic View

168 Authentic View Interface

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

user sees a customized markup. Note, however, that this customization is created
by the person who has designed the StyleVision Power Stylesheet.

Editing dynamic table structures
Rows in a dynamic SPS table are repetitions of a data structure. Each row represents an
occurrence of a single element. Each row, therefore, has the same XML substructure as the
next.

The dynamic table editing commands manipulate the rows of a dynamic SPS table. That is, you
can modify the number and order of the element occurrences. You cannot, however, edit the
columns of a dynamic SPS table, since this would entail changing the substructure of individual
element occurrences.

The icons for dynamic table editing commands appear in the toolbar, and are also available in
the Authentic menu.

Append row to table

Insert row in table

Duplicate current table row (i.e. cell contents are duplicated)

Move current row up by one row

Move current row down by one row

Delete the current row

Please note: These commands apply only to dynamic SPS tables. They should not be used
inside static SPS tables. The various types of tables used in Authentic View are described in
the Using tables in Authentic View section of this documentation.

Creating and editing XML tables
You can insert your own tables should you want to present your data as a table. Such tables are
inserted as XML tables. You can modify the structure of an XML table, and format the table.
The icons for creating and editing XML tables are available in the toolbar, and are shown below.
They are described in the section XML table editing icons.

The commands corresponding to these icons are not available as menu items. Note also that
for you to be able to use XML tables, this function must be enabled and suitably configured in
the StyleVision Power Stylesheet.

A detailed description of the types of tables used in Authentic View and of how XML tables are
to be created and edited is given in Using tables in Authentic View.

Text formatting icons
Text in Authentic View is formatted by applying to it an XML element or attribute that has the

© 2007 Altova GmbH

Interface 169Authentic View

User Manual

required formatting. If such formatting has been defined, the designer of the StyleVision Power
Stylesheet can provide icons in the Authentic View toolbar to apply the formatting.

To apply text formatting using a text formatting icon, highlight the text you want to format, and
click the appropriate icon.

DB Row Navigation icons

 The arrow icons are, from left to right, Go to First Record in the DB; Go to
Previous Record; Open Go to Record # dialog; Go to Next Record; and Go to Last
Record..

This icon opens the Edit Database Query dialog in which you can enter a query.
Authentic View displays the queried record/s.

6.1.3 Authentic View Main Window

There are four viewing modes in Authentic View: Large Markup; Small Markup; Mixed Markup;
and Hide All Markup. These modes enable you to view the document with varying levels of
markup information.

To switch between modes, use the commands in the Authentic menu or the icons in the
toolbar (see the previous section, Authentic View toolbar icons).

Large markup
This shows the start and end tags of elements and attributes with the element/attribute names
in the tags:

The element Name in the figure above is expanded, i.e. the start and end tags, as well as the
content of the element, are shown. An element/attribute can be contracted by double-clicking
either its start or end tag:

To expand the contracted element/attribute, double-click the contracted tag.

In large markup, attributes are recognized by the symbol @ in the start and end tags of the
attribute:

Small markup
This shows the start and end tags of elements/attributes without names:

170 Authentic View Interface

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

To contract and expand an element/attribute, double-click the appropriate tag. The example
below shows two contracted elements in the table:

Mixed markup
Mixed markup shows a customized level of markup. The person who has designed the
StyleVision Power Stylesheet can specify either large markup, small markup, or no markup for
individual elements/attributes in the document. The Authentic View user sees this customized
markup in mixed markup viewing mode.

Hide all markup
All XML markup is hidden. Since the formatting seen in Authentic View is the formatting of the
printed document, this viewing mode is a WYSIWYG view of the document.

Content display
In Authentic View, content is displayed in two ways:

 Plain text. You type in the text, and this text becomes the content of the element or the
value of the attribute.

 Data-entry devices. The display contains either an input field (text box), a multiline input
field, combo box, check box, or radio button. In the case of input fields and multiline
input fields, the text you enter in the field becomes the XML content of the element or
the value of the attribute.

© 2007 Altova GmbH

Interface 171Authentic View

User Manual

In the case of the other data-entry devices, your selection produces a corresponding
XML value, which is specified in the StyleVision Power Stylesheet. Thus the selection
"approved" in the display example below could map to an XML value of "1", or to
"approved", or anything else; while "not approved" in the display could map to "0", or
"not approved", or anything else.

Optional nodes
When an element or attribute is optional (according to the referenced schema), a prompt of
type "add [element/attribute]" is displayed:

Clicking the prompt adds the element, and places the cursor for data entry. If there are multiple
optional nodes, the prompt "add..." is displayed. Clicking the prompt displays a menu of the
optional nodes.

6.1.4 Authentic View Entry Helpers

There are three entry helpers in Authentic View: for Elements, Attributes, and Entities. They are
displayed as windows down the right side of the Authentic View interface.

172 Authentic View Interface

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

The Elements and Attributes Entry Helpers are context-sensitive, i.e. what appears in the entry
helper depends on where the cursor is in the document. The entities displayed in the Entities
Entry Helper are not context-sensitive; all entities allowed for the document are displayed no
matter where the cursor is.

Each of the entry helpers is described separately below.

Elements Entry Helper
The Elements Entry Helper consists of two parts:
 The upper part, containing an XML tree that can be toggled on and off using the Show

XML tree check box. The XML tree shows the ancestors up to the document's root
element for the current element. When you click on an element in the XML tree,
elements corresponding to that element (as described in the next item in this list)
appear in the lower part of the Elements Entry Helper.

 The lower part, containing a list of the nodes that can be inserted within, before, and
after; removed; applied to or cleared from the selected element or text range in
Authentic View. What you can do with an element listed in the Entry Helper is indicated
by the icon to the left of the element name in the Entry Helper. The icons that occur in
the Elements Entry Helper are listed below, together with an explanation of what they

© 2007 Altova GmbH

Interface 173Authentic View

User Manual

mean.

To use node from the Entry Helper, click its icon.

Insert After Element
The element in the Entry Helper is inserted after the selected element. Note
that it is appended at the correct hierarchical level. For example, if your cursor
is inside a //sect1/para element, and you append a sect1 element, then
the new sect1 element will be appended not as a following sibling of
//sect1/para but as a following sibling of the sect1 element that is the
parent of that para element.

Insert Before Element
The element in the Entry Helper is inserted before the selected element. Note
that, just as with the Append After Element command, the element is inserted
at the correct hierarchical level.

Remove Element
Removes the element and its content.

Insert Element
An element from the Entry Helper can also be inserted within an element.
When the cursor is placed within an element, then the allowed child elements
of that element can be inserted. Note that allowed child elements can be part of
an elements-only content model as well as a mixed content model (text plus
child elements).

An allowed child element can be inserted either when a text range is selected
or when the cursor is placed as an insertion point within the text.

 When a text range is selected and an element inserted, the text range
becomes the content of the inserted element.

 When an element is inserted at an insertion point, the element is inserted at
that point.

After an element has been inserted, it can be cleared by clicking either of the
two Clear Element icons that appear (in the Elements Entry Helper) for these
inline elements. Which of the two icons appears depends on whether you
select a text range or place the cursor in the text as an insertion point (see
below).

Apply Element
If you select an element in your document (by clicking either its start or end tag
in the Show large markup view) and that element can be replaced by another
element (for example, in a mixed content element such as para, an italic
element can be replaced by the bold element), this icon indicates that the
element in the Entry Helper can be applied to the selected (original) element.
The Apply Element command can also be applied to a text range within an
element of mixed content; the text range will be created as content of the
applied element.

 If the applied element has a child element with the same name as a child
of the original element and an instance of this child element exists in the
original element, then the child element of the original is retained in the new
element's content.

174 Authentic View Interface

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

 If the applied element has no child element with the same name as that
of an instantiated child of the original element, then the instantiated child of
the original element is appended as a sibling of any child element or
elements that the new element may have.

 If the applied element has a child element for which no equivalent
exists in the original element's content model, then this child element is not
created directly but Authentic View offers you the option of inserting it.

If a text range is selected rather than an element, applying an element to the
selection will create the applied element at that location with the selected text
range as its content. Applying an element when the cursor is an insertion point
is not allowed.

Clear Element (when range selected)
This icon appears when text within an element of mixed content is selected.
Clicking the icon clears the element from around the selected text range.

Clear Element (when insertion point selected)
This icon appears when the cursor is placed within an element that is a child of
a mixed-content element. Clicking the icon clears the inline element.

Attributes Entry Helper
The Attributes Entry Helper consists of a drop-down combo box and a list of attributes. The
element that you have selected (you can click the start or end tag, or place the cursor anywhere
in the element content to select it) appears in the combo box.

The Attributes Entry Helper shown in the figures below has a para element in the combo box.
Clicking the arrow in the combo box drops down a list of all the para element's ancestors up
to the document's root element, which in this case is OrgChart.

Below the combo box, a list of valid attributes for that element is displayed, in this case for para
. If an attribute is mandatory on a given element, then it appears in bold. (In the example below,
there are no mandatory attributes.)

© 2007 Altova GmbH

Interface 175Authentic View

User Manual

To enter a value for an attribute, click in the value field of the attribute and enter the value. This
creates the attribute and its value in the XML document.

In the case of the xsi:nil attribute, which appears in the Attributes Entry Helper when a
nillable element has been selected, the value of the xsi:nil attribute can only be entered by
selecting one of the allowed values (true or false) from the dropdown list for the attribute's
value.

Entities Entry Helper
The Entities Entry Helper allows you to insert an entity in your document. Entities can be used to
insert special characters or text fragments that occur often in a document (such as the name of
a company). To insert an entity, place the cursor at the point in the text where you want to have
the entity inserted, then double-click the entity in the Entities Entry Helper.

Note: An internal entity is one that has its value defined within the DTD. An external entity is
one that has its value contained in an external source, e.g. another XML file. Both
internal and external entities are listed in the Entities Entry Helper. When you insert an
entity, whether internal or external, the entity—not its value—is inserted into the XML
text. If the entity is an internal entity, Authentic View displays the value of the entity. If
the entity is an external entity, Authentic View displays the entity—and not its value.
This means, for example, that an XML file that is an external entity will be shown in the
Authentic View display as an entity; its content does not replace the entity in the
Authentic View display.

You can also define your own entities in Authentic View: see Define Entities in the Editing in
Authentic View section.

6.1.5 Authentic View Context Menus

Right-clicking on some selected document content or node pops up a context menu with
commands relevant to the selection or cursor location.

Inserting elements
The figure below shows the Insert submenu, which is a list of all elements that can be inserted
at that current cursor location. The Insert Before submenu lists all elements that can be
inserted before the current element. The Insert After submenu lists all elements that can be
inserted after the current element. In the figure below, the current element is the para element.
The bold and italic elements can be inserted within the current para element.

As can be seen below, the para and Office elements can be inserted before the current

176 Authentic View Interface

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

para element.

Most of the commands available in the context menu are explained in Authentic View entry
helpers.

Remove node
Positioning the mouse cursor over the Remove command pops up a menu list consisting of the
selected node and all its removable ancestors (those that would not invalidate the document) up
to the document element. Click the element to be removed. This is a quick way to delete an
element or any removable ancestor. Note that clicking an ancestor element will remove all its
descendants, including the selected element.

Insert entity
Positioning the cursor over the Insert Entity command rolls out a submenu containing a list of all
declared entities. Clicking an entity inserts it a the selection. See Define Entities for a
description of how to define entities for the document.

Insert CDATA Section
This command is enabled when the cursor is placed within text. Clicking it inserts a CDATA
section at the cursor insertion point. The CDATA section is delimited by start and end tags; to
see these tags you should switch on large or small markup. Within CDATA sections, XML
markup and parsing is ignored. XML markup characters (the ampersand, apostrophe, greater
than, less than, and quote characters) are not treated as markup, but as literals. So CDATA
sections are useful for text such as program code listings, which have XML markup characters.

Remove
The Remove command removes the selected node and its contents. A node is considered to be
selected for this purpose by placing the cursor within the the node or by clicking either the start
or end tag of the node.

Clear
The Clear command clears the element markup from around the selection. If the entire node is
selected, then the element markup is cleared for the entire node. If a text segment is selected,
then the element markup is cleared from around that text segment only.

© 2007 Altova GmbH

Editing in Authentic View 177Authentic View

User Manual

6.2 Editing in Authentic View

This section describes important features of Authentic View in detail. Features have been
included in this section either because they are commonly used or require an explanation of the
mechanisms or concepts involved.

The section explains the following:

 There are three distinct types of tables used in Authentic View. The section Using
tables in Authentic View explains the three types of tables (static SPS, dynamic SPS,
and XML), and when and how to use them. It starts with the broad, conceptual picture
and moves to the details of usage.

 The Date Picker is a graphical calendar that enters dates in the correct XML format
when you click a date. See Using the Date Picker.

 An entity is shorthand for a special character or text string. You can define your own
entities, which allows you to insert these special characters or text strings by inserting
the corresponding entities. See Defining Entities for details.

 What image formats can be displayed in Authentic View.

6.2.1 Tables in Authentic View

The three table types fall into two categories: SPS tables (static and dynamic) and XML tables.

SPS tables are of two types: static and dynamic. SPS tables are designed by the designer of
the StyleVision Power Stylesheet to which your XML document is linked. You yourself cannot
insert an SPS table into the XML document, but you can enter data into SPS table fields and
add and delete the rows of dynamic SPS tables. The section on SPS tables below explains the
features of these tables.

XML tables are inserted by you, the user of Authentic View. Their purpose is to enable you to
insert tables at any allowed location in the document hierarchy should you wish to do so. The
editing features of XML tables and the XML table editing icons are described below.

SPS Tables

Two types of SPS tables are used in Authentic View: static tables and dynamic tables.

Static tables are fixed in their structure and in the content-type of cells. You, as the user of
Authentic View, can enter data into the table cells but you cannot change the structure of these
tables (i.e. add rows or columns, etc) or change the content-type of a cell. You enter data either
by typing in text, or by selecting from options presented in the form of check-box or radio button
alternatives or as a list in a combo-box. After you enter data, you can edit it.

Please note: The icons or commands for editing dynamic tables must not be used to edit
static tables.

178 Authentic View Editing in Authentic View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Dynamic tables have rows that represent a repeating data structure, i.e. each row has an
identical data structure (not the case with static tables). Therefore, you can perform row
operations: append row, insert row, move row up, move row down, and delete row. These
commands are available under the Authentic menu and as icons in the toolbar (shown below).

To use these commands, place the cursor anywhere in the appropriate row, and then select the
required command.

To move among cells in the table, use the Up, Down, Left, and Right arrow keys. To move
forward from one cell to the next, use the Tab key. Pressing the Tab key in the last cell of a row
creates a new row.

XML Tables

XML tables can be inserted by you, the user of Authentic View. They enable you to insert tables
anywhere in the XML document where they are allowed, which is useful if you need to insert
tabular information in your document. These tables will be printed out as tables when you print
out directly from Authentic View. If you are also generating output with XSLT stylesheets,
discuss the required output with the designer of the StyleVision Power Stylesheet.

Note that you can insert XML tables only at allowed locations. These locations are specified in
the schema (DTD or XML Schema). If you wish to insert a table at additional locations, discuss
this with the person designing the StyleVision Power Stylesheet.

Working with XML tables
There are three steps involved when working with XML tables: inserting the table; formatting it;
and entering data. The commands for working with XML tables are available as icons in the
toolbar (see XML table editing icons).

Inserting tables
To insert an XML table:

1. Place your cursor where you wish to insert the table, and click the icon. (Note that
where you can insert tables is determined by the schema.) This opens the Insert Table
dialog (shown below).

© 2007 Altova GmbH

Editing in Authentic View 179Authentic View

User Manual

2. Select the number of columns and rows, and specify whether you wish the table to
extend the entire available width. For the specifications given in the dialog box shown
above, the following table is created.

You can add and delete columns, create row and column joins later. Create the broad
structure first.

Please note: All modifications to table structure must be made by using the Table menu
commands. They cannot be made by changing attribute values in the Attribute Entry Helper.

Formatting tables and entering data
To format your table:

1. Place the cursor anywhere in the table and click the (Table Properties) icon. This
opens the Table Properties dialog (see screenshot), where you specify formatting for
the table, or for a row, column, or cell.

2. Set the cellspacing and cellpadding properties to "0". Your table will now look like this:

180 Authentic View Editing in Authentic View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

3. Place the cursor in the first row to format it, and click the (Table Properties) icon.
Click the Row tab.

Since the first row will be the header row, set a background color to differentiate this
row from the other rows. Note the Row properties that have been set in the figure
above. Then enter the column header text. Your table will now look like this:

Notice that the alignment is centered as specified.
4. Now, say you want to divide the "Telephone" column into the sub-columns "Office" and

"Home", in which case you would need to join cells. Place the cursor in the "Telephone"

cell, and click the (Split vertically) icon. Your table will look like this:

5. Now place the cursor in the cell below the cell containing "Telephone", and click the
 (Split horizontally) icon. Then type in the column headers "Office" and "Home". Your
table will now look like this:

© 2007 Altova GmbH

Editing in Authentic View 181Authentic View

User Manual

Now you will have to vertically split each cell in the "Telephone" column.

You can also add and delete columns and rows, and vertically align cell content, using the
table-editing icons. The XML table editing icons are described in the User Reference, in the
section titled "XML Table Icons".

Moving among cells in the table
To move among cells in the XML table, use the Up, Down, Right, and Left arrow keys.

Entering data in a cell
To enter data in a cell, place the cursor in the cell, and type in the data.

Formatting text
Text in an XML table, as with other text in the XML document, must be formatted using XML
elements or attributes. To add an element, highlight the text and double-click the required
element in the Elements Entry Helper. To specify an attribute value, place the cursor within the
text fragment and enter the required attribute value in the Attributes Entry Helper. After
formatting the header text bold, your table will look like this.

The text above was formatted by highlighting the text, and double-clicking the element strong,
for which a global template exists that specifies bold as the font-weight. The text formatting
becomes immediately visible.

Please note: For text formatting to be displayed in Authentic View, a global template with the
required text formatting must have been created in StyleVision for the element in question.

XML Table Editing Icons

The commands required to edit XML tables are available as icons in the toolbar, and are listed
below. Note that no corresponding menu commands exist for these icons.

For a full description of when and how XML tables are to be used, see XML tables.

Insert table

The "Insert Table" command inserts a CALS / HTML table at the current cursor
position.

Delete table

The "Delete table" command deletes the currently active table.

182 Authentic View Editing in Authentic View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Append row

The "Append row" command appends a row to the end of the currently active table.

Append column

The "Append column" command appends a column to the end of the currently active
table.

Insert row

The "Insert row" command inserts a row above the current cursor position in the
currently active table.

Insert column

The "Insert column" command inserts a column to the left of the current cursor position
in the currently active table.

Join cell left

The "Join cell left" command joins the current cell (current cursor position) with the cell
to the left. The tags of both cells remain in the new cell, the column headers remain
unchanged.

Join cell right

The "Join cell right" command joins the current cell (current cursor position) with the cell
to the right. The tags of both cells remain in the new cell, the column headers remain
unchanged.

Join cell below

The "Join cell below" command joins the current cell (current cursor position) with the
cell below. The tags of both cells remain in the new cell, the column headers remain
unchanged.

Join cell above

The "Join cell above" command joins the current cell (current cursor position) with the
cell above. The tags of both cells remain in the new cell, the column headers remain
unchanged.

Split cell horizontally

The "Split cell Horizontally" command creates a new cell to the right of the currently
active cell. The size of both cells, is now the same as the original cell.

Split cell vertically

The "Split cell Vertically" command creates a new cell below the currently active cell.

Align top

© 2007 Altova GmbH

Editing in Authentic View 183Authentic View

User Manual

This command aligns the cell contents to the top of the cell.

Center vertically

This command centers the cell contents.

Align bottom

This command aligns the cell contents to the bottom of the cell.

Table properties

The "Table properties" command opens the Table Properties dialog box. This icon is
only made active for HTML tables, it cannot be clicked for CALS tables.

6.2.2 Editing a DB

In Authentic View, you can edit database (DB) tables and save data back to a DB. This section
contains a full description of interface features available to you when editing a DB table. The
following general points need to be noted:

 The number of records in a DB table that are displayed in Authentic View may have
been deliberately restricted by the designer of the StyleVision Power Stylesheet in order
to make the design more compact. In such cases, only that limited number of records is
initially loaded into Authentic View. Using the DB table row navigation icons (see
Navigating a DB Table), you can load and display the other records in the DB table.

 You can query the DB to display certain records.
 You can add, modify, and delete DB records, and save your changes back to the DB.

See Modifying a DB Table.

To open a DB-based StyleVision Power Stylesheet in Authentic View:
 Click Authentic | Edit Database Data, and browse for the required StyleVision Power

Stylesheet.

184 Authentic View Editing in Authentic View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Navigating a DB Table

The commands to navigate DB table rows are available as buttons in the Authentic View
document. Typically, one navigation panel with either four or five buttons accompanies each DB
table.

The arrow icons are, from left to right, Go to First Record in the DB; Go to Previous Record;
Open the Go to Record dialog (see screenshot); Go to Next Record; and Go to Last Record.

To navigate a DB table, click the required button.

DB Queries

A DB query enables you to query the records of a table displayed in Authentic View. A query is
made for an individual table, and only one query can be made for each table. You can make a
query at any time while editing. If you have unsaved changes in your Authentic View document
at the time you submit the query, you will be prompted about whether you wish to save all
changes made in the document or discard all changes. Note that even changes made in other
tables will be saved/discarded. After you submit the query, the table is reloaded using the query
conditions.

Please note: If you get a message saying that too many tables are open, then you can reduce
the number of tables that are open by using a query to filter out some tables.

To create and submit a query:

1. Click the Query button for the required table in order to open the Edit Database
Query dialog (see screenshot). This button typically appears at the top of each DB table
or below it. If a Query button is not present for any table, the designer of the StyleVision
Power Stylesheet has not enabled the DB Query feature for that table.

© 2007 Altova GmbH

Editing in Authentic View 185Authentic View

User Manual

2. Click the Append AND or Append OR button. This appends an empty criterion for the
query (shown below).

4. Enter the expression for the criterion. An expression consists of: (i) a field name
(available from the associated combo-box); (ii) an operator (available from the
associated combo-box); and (iii) a value (to be entered directly). For details of how to
construct expressions see the Expressions in criteria section.

5. If you wish to add another criterion, click the Append AND or Append OR button
according to which logical operator (AND or OR) you wish to use to join the two criteria.
Then add the new criterion. For details about the logical operators, see the section
Re-ordering criteria in DB Queries.

Expressions in criteria

186 Authentic View Editing in Authentic View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Expressions in DB Query criteria consist of a field name, an operator, and a value. The
available field names are the child elements of the selected top-level data table; the names of
these fields are listed in a combo-box (see screenshot above). The operators you can use are
listed below:

= Equal to
<> Not equal to
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
LIKE Phonetically alike
NOT LIKE Phonetically not alike
IS NULL Is empty
NOT NULL Is not empty

If IS NULL or NOT NULL is selected, the Value field is disabled. Values must be entered
without quotes (or any other delimiter). Values must also have the same formatting as that of
the corresponding DB field; otherwise the expression will evaluate to FALSE. For example, if a
criterion for a field of the date datatype in an MS Access DB has an expression
StartDate=25/05/2004, the expression will evaluate to FALSE because the date datatype
in an MS Access DB has a format of YYYY-MM-DD.

Using parameters with DB Queries
You can enter the name of a parameter as the value of an expression when creating queries.
Parameters are variables that can be used instead of literal values in queries. You first declare
the parameter and its value, and then use the parameter in expressions. This causes the value
of the parameter to be used as the value of that expression. The parameters that you add in the
Edit Parameters dialog can be parameters that have already been declared for the stylesheet.
In this case, the new value overrides the value in the stylesheet.

Parameters are useful if you wish to use a single value in multiple expressions.

Declaring parameters from the Edit DB Query dialog
To declare parameters:

1. Click the Parameters... button in the Edit Database Query dialog. This opens the Edit
Parameters dialog (see screenshot).

© 2007 Altova GmbH

Editing in Authentic View 187Authentic View

User Manual

2. Click Append or Insert .
3. Type in the name and value of the parameter in the appropriate fields.

Please note: The Edit Parameters dialog contains all the parameters that have been defined
for the stylesheet. While it is an error to use an undeclared parameter in the StyleVision Power
Stylesheet, it is not an error to declare a parameter and not use it.

Using parameters in queries
To enter the name of a parameter as the value of an expression:
 Type $ into the value input field followed (without any intervening space) by the name of

the parameter in the Edit Database Query dialog.

Please note: If the parameter has already been declared, then the entry will be colored green. If
the parameter has not been declared, the entry will be red, and you must declare it.

Re-ordering criteria in DB Queries
The logical structure of the DB Query and the relationship between any two criteria or sets of
criteria is indicated graphically. Each level of the logical structure is indicated by a square
bracket. Two adjacent criteria or sets of criteria indicate the AND operator, whereas if two
criteria are separated by the word OR then the OR operator is indicated. The criteria are also
appropriately indented to provide a clear overview of the logical structure of the DB Query.

The DB Query shown in the screenshot above may be represented in text as:

State=CA AND (City=Los Angeles OR City=San Diego OR (City=San
Francisco AND CustomerNr=25))

You can re-order the DB Query by moving a criterion or set of criteria up or down relative to the
other criteria in the DB Query. To move a criterion or set of criteria, do the following:

1. Select the criterion by clicking on it, or select an entire level by clicking on the bracket
that represents that level.

2. Click the Up or Down arrow button in the dialog.

The following points should be noted:

188 Authentic View Editing in Authentic View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

 If the adjacent criterion in the direction of movement is at the same level, the two
criteria exchange places.

 A set of criteria (i.e. criterion within a bracket) changes position within the same level; it
does not change levels.

 An individual criterion changes position within the same level. If the adjacent criterion is
further outward/inward (i.e. not on the same level), then the selected criterion will move
outward/inward, one level at a time.

To delete a criterion in a DB Query, select the criterion and click Delete.

Modifying a DB Query

To modify a DB Query:

1. Click the Query button . The Edit Database Query dialog box opens. You can now
edit the expressions in any of the listed criteria, add new criteria, re-order criteria, or
delete criteria in the DB Query.

2. Click OK. The data from the DB is automatically re-loaded into StyleVision so as to
reflect the modifications to the DB Query.

Modifying a DB Table

Adding a record
To add a record to a DB table:

1. Place the cursor in the DB table row and click the icon (to append a row) or the
icon (to insert a row). This creates a new record in the temporary XML file.

2. Click the File | Save command to add the new record in the DB. In Authentic View a
row for the new record is appended to the DB table display. The AltovaRowStatus
for this record is set to A (for Added).

When you enter data for the new record it is entered in bold and is underlined. This enables you
to differentiate added records from existing records—if existing records have not been
formatted with these text formatting properties. Datatype errors are flagged by being displayed
in red.

The new record is added to the DB when you click File | Save. After a new record is saved to
the DB, its AltovaRowStatus field is initialized (indicated with ---) and the record is
displayed in Authentic View as a regular record.

Modifying a record
To modify a record, place the cursor at the required point in the DB table and edit the record as
required. If the number of displayed records is limited, you may need to navigate to the required
record (using the navigation icons described above).

When you modify a record, entries in all fields of the record are underlined and the
AltovaRowStatus of all primary instances of this record is set to U (for Updated). All
secondary instances of this record have their AltovaRowStatus set to u (lowercase). Primary
and secondary instances of a record are defined by the structure of the DB—and
correspondingly of the XML Schema generated from it. For example, if an Address table is
included in a Customer table, then the Address table can occur in the Design Document in two
types of instantiations: as the Address table itself and within instantiations of the Customer
table. Whichever of these two types is modified is the type that has been primarily modified.
Other types—there may be more than one other type—are secondary types. Datatype errors
are flagged by being displayed in red.

© 2007 Altova GmbH

Editing in Authentic View 189Authentic View

User Manual

The modifications are saved to the DB by clicking File | Save. After a modified record is saved
to the DB, its AltovaRowStatus field is initialized (indicated with ---) and the record is
displayed in Authentic View as a regular record.

Please note:

 If even a single field of a record is modified in Authentic View, the entire record is
updated when the data is saved to the DB.

 The date value 0001-01-01 is defined as a NULL value for some DBs, and could
result in an error message.

Deleting a record

To delete a record:

1. Place the cursor in the row representing the record to be deleted and click the icon.
The record to be deleted is marked with a strikethrough. The AltovaRowStatus is set
as follows: primary instances of the record are set to D; secondary instances to d; and
records indirectly deleted to X. Indirectly deleted records are fields in the deleted record
that are held in a separate table. For example, an Address table might be included in a
Customer table. If a Customer record were to be deleted, then its corresponding
Address record would be indirectly deleted. If an Address record in the Customer table
were deleted, then the Address record in the Customer table would be primarily deleted,
but the same record would be secondarily deleted in an independent Address table if
this were instantiated.

2. Click File | Save to save the modifications to the DB.

Please note: Saving data to the DB resets the Undo command, so you cannot undo actions
that were carried out prior to the save.

6.2.3 Working with Dates

There are two ways in which dates can be edited in Authentic View:

 Dates are entered or modified using the Date Picker.
 Dates are entered or modified by typing in the value.

The method the Authentic View user will use is defined in the SPS. Both methods are described
in the two sub-sections of this section.

Note on date formats
In the XML document, dates can be stored in one of several date datatypes. Each of these
datatypes requires that the date be stored in a particular lexical format in order for the XML
document to be valid. For example, the xs:date datatype requires a lexical format of
YYYY-MM-DD. If the date in an xs:date node is entered in anything other than this format, then
the XML document will be invalid.

In order to ensure that the date is entered in the correct format, the SPS designer can include
the graphical Date Picker in the design. This would ensure that the date selected in the Date
Picker is entered in the correct lexical format. If there is no Date Picker, the Authentic View
should take care to enter the date in the correct lexical format. Validating the XML document
could provide useful tips about the required lexical format.

190 Authentic View Editing in Authentic View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Date Picker

The Date Picker is a graphical calendar used to enter dates in a standard format into the XML
document. Having a standard format is important for the processing of data in the document.
The Date Picker icon appears near the date field it modifies (see screenshot).

To display the Date Picker (see screenshot), click the Date Picker icon.

To select a date, click on the desired date, month, or year. The date is entered in the XML
document, and the date in the display is modified accordingly. You can also enter a time zone if
this is required.

Text Entry

For date fields that do not have a Date Picker (see screenshot), you can edit the date directly by
typing in the new value.

Please note: When editing a date, you must not change its format.

If you edit a date and change it such that it is out of the valid range for dates, the date turns red
to alert you to the error. If you place the mouse cursor over the invalid date, an error message
appears (see screenshot).

© 2007 Altova GmbH

Editing in Authentic View 191Authentic View

User Manual

If you try to change the format of the date, the date turns red to alert you to the error (see
screenshot).

6.2.4 Defining Entities

You can define entities for use in Authentic View, whether your document is based on a DTD or
an XML Schema. Once defined, these entities are displayed in the Entities Entry Helper and in
the Insert Entity submenu of the context menu. When you double-click on an entity in the
Entities Entry Helper, that entity is inserted at the cursor insertion point.

An entity is useful if you will be using a text string, XML fragment, or some other external
resource in multiple locations in your document. You define the entity, which is basically a short
name that stands in for the required data, in the Define Entities dialog. After defining an entity
you can use it at multiple locations in your document. This helps you save time and greatly
enhances maintenance.

There are two broad types of entities you can use in your document: a parsed entity, which is
XML data (either a text string or a fragment of an XML document), or an unparsed entity,
which is non-XML data such as a binary file (usually a graphic, sound, or multimedia object).
Each entity has a name and a value. In the case of parsed entities the entity is a placeholder for
the XML data. The value of the entity is either the XML data itself or a URI that points to a .xml
file that contains the XML data. In the case of unparsed entities, the value of the entity is a URI
that points to the non-XML data file.

To define an entity:

1. Click Authentic | Define XML Entities.... This opens the Define Entities dialog (
screenshot below).

2. Enter the name of your entity in the Name field. This is the name that will appear in the
Entities Entry Helper.

3. Enter the type of entity from the drop-down list in the Type field. The following types are
possible: An Internal entity is one for which the text to be used is stored in the XML
document itself. Selecting PUBLIC or SYSTEM specifies that the resource is located
outside the XML file, and will be located with the use of a public identifier or a system
identifier, respectively. A system identifier is a URI that gives the location of the
resource. A public identifier is a location-independent identifier, which enables some

192 Authentic View Editing in Authentic View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

processors to identify the resource. If you specify both a public and system identifier,
the public identifier resolves to the system identifier, and the system identifier is used.

4. If you have selected PUBLIC as the Type, enter the public identifier of your resource in
the PUBLIC field. If you have selected Internal or SYSTEM as your Type, the PUBLIC
field is disabled.

5. In the Value/Path field, you can enter any one of the following:

 If the entity type is Internal, enter the text string you want as the value of your entity.
Do not enter quotes to delimit the entry. Any quotes that you enter will be treated as
part of the text string.
 If the entity type is SYSTEM, enter the URI of the resource or select a resource on

your local network by using the Browse button. If the resource contains parsed data,
it must be an XML file (i.e., it must have a .xml extension). Alternatively, the
resource can be a binary file, such as a GIF file.
 If the entity type is PUBLIC, you must additionally enter a system identifier in this field.

6. The NDATA entry tells the processor that this entity is not to be parsed but to be sent to
the appropriate processor. The NDATA field should therefore be used with unparsed
entities only.

Dialog features
You can do the following in the Define Entities dialog:

 Append entities
 Insert entities
 Delete entities
 Sort entities by the alphabetical value of any column by clicking the column header;

clicking once sorts in ascending order, twice in descending order.
 Resize the dialog box and the width of columns.
 Locking. Once an entity is used in the XML document, it is locked and cannot be edited

in the Define Entities dialog. Locked entities are indicated by a lock symbol in the first
column. Locking an entity ensures that the XML document valid with respect to entities.
(The document would be invalid if an entity is referenced but not defined.)

 Duplicate entities are flagged.

Limitations of entities

 An entity contained within another entity is not resolved, either in the dialog, Authentic
View, or XSLT output, and the ampersand character of such an entity is displayed in its
escaped form, i.e. &.

 External entities are not resolved in Authentic View, except in the case where an entity
is an image file and it is entered as the value of an attribute of type ENTITY or
ENTITIES. Such entities are resolved when the document is processed with an XSLT
generated from the SPS.

6.2.5 Images in Authentic View

Authentic View is based on Internet Explorer, and is able to display most of the image formats
that your version of Internet Explorer can display. The following commonly used image formats
are supported:

 GIF
 JPG
 PNG
 BMP
 WMF (Microsoft Windows Metafile)
 EMF (Enhanced Metafile)

© 2007 Altova GmbH

Editing in Authentic View 193Authentic View

User Manual

 SVG (for PDF output only)

Relative paths
Relative paths are resolved relative to the SPS file.

6.2.6 Keystrokes in Authentic View

Enter (Carriage Return) Key
In Authentic View the Return key is used to append additional elements when it is in certain
cursor locations. For example, if the chapter of a book may (according to the schema) contain
several paragraphs, then pressing Return inside the text of the paragraph causes a new
paragraph to be appended immediately after the current paragraph. If a chapter can contain one
title and several chapters, pressing Enter inside the chapter but outside any paragraph element
(including within the title element) causes a new chapter to be appended after the current
chapter (assuming that multiple chapters are allowed by the schema).

Please note: The Return key does not insert a carriage return/line feed, i.e. it does not jump to
a new line. This is the case even when the cursor is inside a text node, such as paragraph.

194 Browser View

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

7 Browser View

Browser View is typically used to view:

 XML files that have an associated XSLT file. When you switch to Browser View, the
XML file is transformed on the fly using the associated XSLT stylesheet and the result is
displayed directly in the browser.

 HTML files which are either created directly as HTML or created via an XSLT
transformation of an XML file.

Browser View requires Microsoft's Internet Explorer 5.0 or later. If you wish to use Browser View
for viewing XML files transformed by an XSLT stylesheet, we strongly recommend Internet
Explorer 6.0 or later, which uses MSXML 3.0, an XML parser that fully supports the XSLT 1.0
standard. You might also wish to install MSXML 4.0. Please see our Download Center for more
details.(Note that support for XSL in IE 5 is not 100% compatible with the official XSLT
Recommendation. So if you encounter problems, with Browser View with IE 5, you should
upgrade to IE 6 or later.)

To view XML and HTML files in Browser View, click the Browser tab.

Browser View features

 You can open the Browser View in a separate window. To do this, switch to Browser
View, and select the menu command Browser | Separate window. This allows you to
tile windows so that you see the Browser View side-by-side with an editing view. As a
result, any change you make in the editing view can be seen immediately in the
Browser View: Simply press F5 in the editing view or make the Browser View window
the active window (by clicking on it).

 Browser View supports Find. In Browser View, select the menu command Edit | Find to
find text strings.

 Browser View supports common browser commands: Back, Forward, Stop, Refresh,
Font Size, and Print.

http://www.altova.com/download.html

© 2007 Altova GmbH

 195XMLSpy in MS Visual Studio .NET

User Manual

8 XMLSpy in MS Visual Studio .NET

You can integrate your version of XMLSpy into the Microsoft Visual Studio .NET IDE versions
2002, 2003 and 2005. This unifies the best of both worlds, integrating advanced XML editing
capabilities with the advanced development environment of Visual Studio .NET. To do this, you
need to do the following:

 Install Microsoft Visual Studio .NET
 Install XMLSpy (Enterprise or Professional Edition)
 Download and run the XMLSpy integration for Microsoft Visual Studio .NET package.

This package is available on the XMLSpy (Enterprise and Professional Editions)
download page at www.altova.com. (Please note: You must use the integration
package corresponding to your XMLSpy edition (Enterprise or Professional).)

Once the integration package has been installed, you will be able to use XMLSpy in the Visual
Studio .NET environment.

http://www.altova.com

196 XMLSpy in MS Visual Studio .NET How the .NET and Standalone Versions Differ

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

8.1 How the .NET and Standalone Versions Differ

This section lists the ways in which the Visual Studio .NET versions differ from the standalone
versions of XMLSpy. A few features which are available in the standalone versions but not in
the Visual Studio .Net versions are listed at the end of this section.

XMLSpy Menus or menu options visible on Visual Studio .NET startup:

 File | New | AUTHENTIC File

 XML Convert

 SOAP
 Tools | XMLSPY Options

Entry helpers (Tool Windows in Visual Studio .NET)

 Entry helper windows are grouped in one tab group below the Solution Explorer window
on startup.

 You can drag the entry helper windows to any position in the development environment.
 Right clicking an entry helper tab allows you to further customize your interface. Entry

helper configuration options are: dockable, hide, floating and autohide.

Changed functionality in the Visual Studio .NET editions:

Menu File
Use File | Open | File from web instead of File | Open URL to open a file from an URL.
Use File | Save "my file" as | My network places instead of File | Save URL to save a file to
an URL.

Menu Edit, Undo and Redo
The Undo and Redo commands affect all actions (copy, paste, etc.) made in the development
environment, including all actions in XMLSpy.

Please note: There are two sets of undo/redo icons. The XMLSpy icons are in the XMLSpy
Main icon bar. The Visual Studio .NET icons are disabled while editing files opened with
XMLSpy.

© 2007 Altova GmbH

How the .NET and Standalone Versions Differ 197XMLSpy in MS Visual Studio .NET

User Manual

Menu Tools | Customize | Toolbar, Commands and Options.

These tabs contain both Visual Studio .NET and XMLSpy commands.

Menu View

198 XMLSpy in MS Visual Studio .NET How the .NET and Standalone Versions Differ

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

The View menu allows you to select:
 the type of view you want to see your XML document in: Text, Enhanced Grid,

Schema/WSDL, Authentic or Browser view.
 XMLSpy entry helper windows that may have been closed.
 XSLT and SOAP debugger Tool windows that may have been closed while a debugger

is running.
 Grid view functions which make viewing data easier.

Menu Help
The Help menu contains the submenu XMLSpy Help, which is where you can open the XMLSpy
help. It also contains links to the Altova Support center, Component download area, etc.

Unsupported features of the .NET edition of XMLSpy

Info window
The Info window is not supported. This window gives extra information on currently selected
elements/attributes etc. E.g. the name of the element or attribute, the datatype, enumerations
and occurrence.

Project window and Project menu (as well as source control submenus).
The Project menu (and Source control submenus) are not available, as MS Visual Studio .NET
has its own project and source control environment. This means that batch validation, and batch
conversion are currently not supported.

Tools | XML Spy Options | Scripting
The scripting environment is currently not available.

Separate Browser window
The "Show in separate window by default" check box in the menu Tools | Options | View tab,
is not supported. This means that the Text and Browser view are always incorporated in the
same window when you transform an XML file to HTML for example.

Authentic view
Text state icons are not available in the Authentic view. The functions or formatting that they
may provide, are still available in the entry helper or context menu, however. Please see the
Stylesheet Designer documentation for more information.

© 2007 Altova GmbH

Visual Studio .NET and XSLT Debugger 199XMLSpy in MS Visual Studio .NET

User Manual

8.2 Visual Studio .NET and XSLT Debugger

The screenshot below displays how the OrgChart.xml file (found in the Examples folder)
appears when the XSLT Debugger has been activated. By default, all files are displayed in one
tab group. To make the debugging process easier to follow, you can create your own tab group
in Visual Studio .NET.

To create a new tab group:

1. Click the XSL Output.html tab, then drag and drop it somewhere into the currently
active tab. This opens a pop-up menu which allows you to define the type of tab you
want to create.

2. Select New Vertical Tab Group. This creates a new tab consisting of the XSL
Output.html file.

200 XMLSpy in MS Visual Studio .NET Visual Studio .NET and XSLT Debugger

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

3. Use the same method to create a new debug window tab group.

4. Drag the rightmost XMLSPY XSLT Debugger window to the right.
5. Select New Vertical Tab Group from the pop-up menu.

View while debugging the OrgChart.xml file in XSLT Debugger:

© 2007 Altova GmbH

Visual Studio .NET and XSLT Debugger 201XMLSpy in MS Visual Studio .NET

User Manual

202 XMLSpy in MS Visual Studio .NET Visual Studio .NET and SOAP Debugger

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

8.3 Visual Studio .NET and SOAP Debugger

SOAP Debugger
The screenshot below displays how the DebuggerClient.html file appears when the SOAP
Debugger has been activated. Per default, all SOAP windows are displayed in one tab group.
To make the debugging process easier to follow, you can create your own tab group in Visual
Studio .NET.

To create a new tab group:
1. Click the SOAP Response tab, then drag and drop it somewhere into the currently active tab.

This opens a pop-up menu which allows you to define the type of tab you want to create.

2. Select New Vertical Tab Group.
This creates a new tab consisting of the SOAP Response window.

© 2007 Altova GmbH

Visual Studio .NET and SOAP Debugger 203XMLSpy in MS Visual Studio .NET

User Manual

204 XMLSpy in Eclipse Platform

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

9 XMLSpy in Eclipse Platform

Eclipse 3.x is an open source framework that integrates different types of applications delivered
in form of plugins. XMLSpy for the Eclipse Platform, is an Eclipse Plug-in that allows you to
access the functionality of a previously installed XMLSpy Edition from within the Eclipse 3.0 / 3.1
/ 3.2 Platform.

Installation Requirements

To successfully install the XMLSpy Plug-in for Eclipse 3.x, you need the following:

 The specific XMLSpy Edition you intend to use: Enterprise, Professional, or Home

 The Eclipse 3.x package, as well as

 The appropriate Java Runtime Edition

Installing the XML Spy Plug-in

To install the XML Spy Plug-in:

 Download and install the XMLSpy Plugin for Eclipse from the Download section of the
Altova.com website. You will be prompted for the installation folder of the Plug-in during
the installation process.

The XMLSpy Plug-in for Eclipse supplies the following functionality:

 A fully-featured editor that can edit any type of file that XMLSpy is capable of editing,
which also contributes application-specific actions to menu and toolbars.

 A set of Views that define the individual windows of the application: in this case the
XMLSpy entry helpers, as well as the individual windows for each of the specific
debuggers.

 Different Perspectives that determine the appearance of the workbench. XMLSpy
supplies three perspectives: XMLSpy, Debug SOAP and Debug XSLT.

 XMLSpy user help under the menu item Help | XMLSPY | Table of contents.

© 2007 Altova GmbH

Starting Eclipse and using the XMLSpy Plug-in 205XMLSpy in Eclipse Platform

User Manual

9.1 Starting Eclipse and using the XMLSpy Plug-in

1. Double-click eclipse.exe to start the Eclipse Platform.

This opens the "Welcome to Eclipse 3.0" start screen.
2. Place the cursor over the arrow symbol, and click when the "Go To Workbench" text

appears. This opens an empty XMLSpy window in Eclipse.

206 XMLSpy in Eclipse Platform Starting Eclipse and using the XMLSpy Plug-in

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Creating a new Project:

1. Right-click in the Navigator window, and select New | Project | Simple Project.

2. Enter XMLSpy as the project name, and click Finish.
3. This creates the XMLSpy project folder.

© 2007 Altova GmbH

Creating XML files in Eclipse 207XMLSpy in Eclipse Platform

User Manual

9.2 Creating XML files in Eclipse

To create a new XML file based on schema:

1. Click the XMLSpy XML icon.

2. Select xml | XML document then click Next.
You are then prompted to select a parent folder.

3. Enter XMLSpy as the parent folder (or select an existing folder) and use the supplied
default filename NewDocument.xml and click Finish.
The dialog boxes that now appear are from XMLSpy.

4. Select Schema and click OK, then select the schema file using the Browse button
(e.g., AddressLast.xsd) and click OK.
The new XML file appears in the NewDocument.xml tab in the Text view.

The preconfigured XMLSpy perspective is automatically activated to display the various entry
helpers.

208 XMLSpy in Eclipse Platform Creating XML files in Eclipse

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

© 2007 Altova GmbH

Importing XML files into folders 209XMLSpy in Eclipse Platform

User Manual

9.3 Importing XML files into folders

Importing XMLSpy Examples folder into the Navigator:

1. Right-click the Navigator tab and click Import.

2. Select "File system", then click Next.

3. Click the Browse button to the right of the "From directory:" text box, and select the
Examples directory in your XMLSpy folder.

210 XMLSpy in Eclipse Platform Importing XML files into folders

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

4. Activate the Examples check box.
This activates all files in the various subdirectories in the window at right.

5. Click the Browse button, next to the "Into folder:" text box, to select the target folder, then
click Finish.
The selected folder structure and files will be copied into the Eclipse workspace.

6. Double-click a file in Navigator to open it (e.g., Conditional.xsd).

© 2007 Altova GmbH

Importing XML files into folders 211XMLSpy in Eclipse Platform

User Manual

212 XMLSpy in Eclipse Platform Differences between Eclipse and standalone versions

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

9.4 Differences between Eclipse and standalone versions

The Enterprise, Professional and Home editions of the Eclipse Plug-in for XMLSpy generally
have the same functionality as their standalone counterparts.

Unsupported features in the integrated version:

Info window
The Info window is not supported. This window gives extra information on currently selected
elements/attributes etc. E.g. the name of the element or attribute, the datatype, enumerations
and occurrence.

Project window and Project menu (as well as source control submenus).
The Project menu (and Source control submenus) are not available, use the Eclipse Navigator.

Tools | XML Spy Options | Scripting
The scripting environment is currently not available.

Separate Browser window
The "Show in separate window by default" check box in the Options dialog (Tools | Options,
View tab) is not supported. This means that the Text and Browser view are always incorporated
in the same window when you transform an XML file to HTML file for example.

Authentic view
Text state icons are not available in the Authentic view. The functions or formatting that they
may provide, are still available in the entry helper or context menu, however. Please see the
Stylesheet Designer documentation for more information.

© 2007 Altova GmbH

Eclipse Platform and XSLT Debugger 213XMLSpy in Eclipse Platform

User Manual

9.5 Eclipse Platform and XSLT Debugger

To debug XSLT:
1. Open the OrgChart.xml and Orgchart.xsl files.
2. Select the menu option XSL/XQuery | Start Debugger/Go.
3. Choose the sample XML file you want to use (click the Window button and select

OrgChart.xml).
A prompt appears stating that the view will be changed; click OK to proceed.

Creating separate file windows:
1. Click the XSL Output.html tab, drag to the far right, and drop when an arrow appears. This

decouples the tab from the tab group.
Window outlines are displayed while dragging, to help you when positioning them.

2. Use the same method to decouple the OrgChart.xsl tab and place it between the two
windows.
The graphic below shows the new layout, and the debugging process in action.

214 XMLSpy in Eclipse Platform Eclipse Platform and XSLT Debugger

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Closing the debug session, automatically closes the XSL Output.html file and
switches back to the XMLSpy perspective.

© 2007 Altova GmbH

Eclipse views and perspectives 215XMLSpy in Eclipse Platform

User Manual

9.6 Eclipse views and perspectives

The XMLSpy Views define the main entry helpers as well as the debugger windows for each
specific debugger.

 Select the menu option Window | Show View | Other... to display the currently
available views.

The XMLSpy Perspectives define the main application window as well as the debugger user
interfaces.

 Select the menu option Window | Open Perspective| Other... to display the currently
available perspectives.

216 XMLSpy in Eclipse Platform Eclipse views and perspectives

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

© 2007 Altova GmbH

 217XSLT and XQuery Debugger

User Manual

10 XSLT and XQuery Debugger

The XSLT/XQuery Debugger enables you to test and debug XSLT stylesheets and XQuery
documents. The XSLT/XQuery Debugger interface presents simultaneous views of the
XSLT/XQuery document, the result document, and the source XML document. You can then go
step-by-step through the XSLT/XQuery document. The corresponding output is generated
step-by-step, and, if a source XML file is displayed, the corresponding position in the XML file is
highlighted for each step. At the same time, windows in the interface provide debugging
information.

The XSLT/XQuery Debugger always opens within a debugging session. Debugging sessions
can be of three types:

 XSLT 1.0, which uses the built-in Altova XSLT 1.0 engine
 XSLT 2.0, which uses the built-in Altova XSLT 2.0 engine
 XQuery, which uses the built-in Altova XQuery 1.0 engine

Which kind of debugging session is opened is determined automatically by the type of
document from which the debugging session is opened (hereafter called the active document
or active file). XSLT debugging sessions are opened from XSLT files (which version depends
on the value of the version attribute of the xsl:stylesheet (or xsl:transform) element
in the XSLT stylesheet ("1.0" for XSLT 1.0 and "2.0" for XSLT 2.0)). XQuery debugging
sessions are opened from XQuery files. If the active file is an XML file, the selection depends on
whether you choose to run an XSLT or XQuery file on the XML file; if the former, the selection
further depends on whether the stylesheet is an XSLT 1.0 or XSLT 2.0 stylesheet.

This information is summarized in the table below.

Active File Associated File Debugging Session

XSLT 1.0 XML; (required) XSLT 1.0 (using built-in Altova XSLT 1.0 engine)

XSLT 2.0 XML; (required) XSLT 2.0 (using built-in Altova XSLT 2.0 engine)

XQuery XML; (optional) XQuery (using built-in Altova XQuery engine)

XML XSLT 1.0, or
XSLT 2.0, or
XQuery;
(required)

XSLT 1.0, XSLT 2.0, or XQuery. XSLT 1.0 or 2.0
depending on value of version attribute of
xsl:stylesheet (or xsl:transform) element of
XSLT stylesheet.

For details about the three Altova engines, please see the following sections:

 Altova XSLT 1.0 Engine
 Altova XSLT 2.0 Engine
 Altova XQuery 1.0 Engine

Automating XSLT and XQuery tasks with Altova XML 2007

Altova XML is a free application which contains Altova's XML Validator, XSLT 1.0, XSLT 2.0,
and XQuery 1.0 engines. It can be used from the command line, via a COM interface, in Java
programs, and in .NET applications to validate XML documents, transform XML documents
using XSLT 1.0 and 2.0 stylesheets, and execute XQuery documents.

XSLT and XQuery tasks can therefore be automated with the use of Altova XML. For example,
you can create a batch file that calls Altova XML to transform a set of XML documents or to
execute a set of XQuery documents. See the Altova XML documentation for details.

http://www.altova.com/support_help.html

218 XSLT and XQuery Debugger

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

© 2007 Altova GmbH

Mechanism and Interface 219XSLT and XQuery Debugger

User Manual

10.1 Mechanism and Interface

The broad mechanism used for debugging XSLT and XQuery files using the XSLT/XQuery
Debugger is as follows:

 Open a debugging session. The appropriate session (XSLT 1.0, XSLT 2.0, or XQuery)
is selected on the basis of the active file (see XSLT and XQuery Debugger). The
XSLT/XQuery Debugger works only in Text View and Enhanced Grid View. If the view
of the active document is not Text View or Enhanced Grid View when you start the
debugging session, you will be prompted for permission to change the view to Text
View, which is the default view of the XSLT/XQuery Debugger. You can also choose to
have this option set permanently.

 Step through the XSLT or XQuery document. If an XML file is associated with the
session, the corresponding locations in the XML file are highlighted. Simultaneously,
output for corresponding steps is generated in the result file and the result document is
built up step-by-step. In this way, you can analyse what each statement of the XSLT or
XQuery file does.

Alternatively to the view of the three documents (XML, XSLT/XQuery, Output) shown
above, a view of two documents (XSLT/XQuery and Output), or a view of any one of the
documents can be selected.

 While a debugging session is open, information windows in the interface provide
information about various aspects of the transformation/execution (Variables, XPath
Watch, Call Stack, Messages, Info, etc).

 While a debugging session is open, you can stop the debugger (not the same as
stopping the debugging session) to make changes to any of the documents. All the
editing features that are available in your XMLSpy environment are also available while
editing a file during a debugging session. When the debugger is stopped, the
XSLT/XQuery Debugger interface stays open, and you have access to all the
information in the information windows. After stopping the debugger in a debugging
session, you can restart the debugger (from the beginning of the XSLT/XQuery
document) within the same debugging session.

 Breakpoints can be set in the XSLT file to interrupt the processing at selected points.
This speeds up debugging sessions since you do not have to step through each
statement in the XSLT or XQuery document manually.

 Tracepoints can be set in the XSLT file. For instructions where a tracepoint is set, the

220 XSLT and XQuery Debugger Mechanism and Interface

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

value of that instruction is output when the instruction is reached.
 Stop a debugging session. This closes the XSLT/XQuery Debugger interface and

returns you to your previous XMLSpy environment. The information in the information
windows is no longer available. Breakpoint and tracepoint information, however, is
retained in the respective files till the file is closed. (So if you start another debugging
session involving a file containing breakpoints, the breakpoints will apply in the newly
opened debugging session.)

Please note: The Debugger toolbar with Debugger icons appears automatically when a
debugging session is started.

© 2007 Altova GmbH

Commands and Toolbar Icons 221XSLT and XQuery Debugger

User Manual

10.2 Commands and Toolbar Icons

Debugger commands are available in the XSL/XQuery menu and as toolbar icons. The
debugger icons are automatically made available in the toolbar when a debugging session is
opened. These icons are listed below.

Start Debugger/Go (Alt+F11)
Starts or continues processing the XSLT/XQuery document till the end. If breakpoints have
been set, then processing will pause at that point. If the debugger session has not been started,
then this button will start the session and stop at the first node to be processed. If the session is
running, then the XSLT/XQuery document will be processed to the end, or until the next
breakpoint is encountered. If tracepoints have been set, the value of the instruction for which
the tracepoint was set is displayed in the Trace window when that instruction is reached.

View the active document only
Maximizes the window of the currently active document in the Debugger interface.

View XSLT/XQuery and Output
Displays the XSLT and Output documents in their windows, while hiding the XML document.

View XML, XSLT/XQuery and Output
Displays the XML, XSLT/XQuery, and Output documents. This is the default view when an XML
document is associated for the debugging session.

Stop Debugger
Stops the debugger. This is not the same as stopping the debugger session in which the
debugger is running. This is convenient if you wish to edit a document in the middle of a
debugging session or to use alternative files within the same debugging session. After stopping
the debugger, you must restart the debugger to start from the beginning of the XSLT/XQuery
document.

Step into (F11)
Proceeds in single steps through all nodes and XPath expressions in the stylesheet. This
command is also used to re-start the debugger after it has been stopped.

Step Over (Ctrl+F11)
Steps over the current node to the next node at the same level, or to the next node at the next

222 XSLT and XQuery Debugger Commands and Toolbar Icons

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

higher level from that of the current node. This command is also used to re-start the debugger
after it has been stopped.

Step Out (Shift+F11)
Steps out of the current node to the next sibling of the parent node, or to the next node at the
next higher level from that of the parent node.

Show current execution node
Displays/selects the current execution node in the XSLT/XQuery document and the
corresponding context node in the XML document. This is useful when you have clicked in other
tabs which show or mark specific code in the XSLT stylesheet or XML file, and you want to
return to where you were before you did this.

Restart Debugger
Clears the output window and restarts the debugging session with the currently selected files.

Insert/Remove Breakpoint (F9)
Inserts or removes a breakpoint at the current cursor position. Inline breakpoints can be defined
for nodes in both the XSLT/XQuery and XML documents, and determine where the processing
should pause. A dashed red line appears above the node when you set a breakpoint.
Breakpoints cannot be defined on closing nodes, and breakpoints on attributes in XSLT
documents will be ignored. This command is also available by right-clicking at the breakpoint
location.

Insert/Remove Tracepoint (Shift+F9)
Inserts or removes a tracepoint at the current cursor position. Inline tracepoints can be defined
for nodes in XSLT documents. During debugging, when a statement with a tracepoint is
reached, the result of that statement is output in the Trace window. A dashed blue line appears
above the node when you set a tracepoint. Tracepoints cannot be defined on closing nodes.
This command is also available by right-clicking at the tracepoint location.

Enable/Disable Breakpoint (CTRL+F9)
This command (no toolbar icon exists) enables or disables already defined breakpoints. The red
breakpoint highlight turns to gray when a breakpoint is disabled. The debugger does not stop at
disabled breakpoints. To disable/enable a breakpoint, place the cursor in that node name and
click the Enable/Disable Breakpoint command. This command is also available by right-clicking
at the breakpoint location.

© 2007 Altova GmbH

Commands and Toolbar Icons 223XSLT and XQuery Debugger

User Manual

Enable/Disable Tracepoint (Shift+CTRL+F9)
This command (no toolbar icon exists) enables or disables already defined tracepoints. The
blue tracepoint highlight turns to gray when a tracepoint is disabled. No output is made in the
Trace window for disabled tracepoints. To disable/enable a tracepoint, place the cursor in that
node name and click the Enable/Disable Tracepoint command. This command is also available
by right-clicking at the tracepoint location.

End Debugger Session
Ends the debugging session and returns you to the normal XMLSpy view that was active before
you started the debugging session. Whether the output documents that were opened for the
debugging session stay open depends on a setting you make in the XSLT/XQuery Debugger
Settings dialog.

XSLT Breakpoints / Tracepoints Dialog
This command opens the XSLT/XQuery Breakpoints / Tracepoints dialog, which displays a list
of all currently defined breakpoints/tracepoints (including disabled ones) in all files in the current
debugging session.

The check boxes indicate whether a breakpoint/tracepoint is enabled (checked) or disabled.
You can remove the highlighted breakpoint/tracepoint by clicking the corresponding Remove
button and remove all breakpoints or tracepoints by clicking the corresponding Remove All
button. The corresponding Edit Code button takes you directly to the selected
breakpoint/tracepoint in the file.

224 XSLT and XQuery Debugger Settings

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

10.3 Settings

The XSLT/XQuery Debugger Settings dialog enables you to set debugging and output options
that are applicable to all debugging sessions. To access the Settings dialog, click XSL/XQuery |

XSLT/XQuery Settings or click the icon in the toolbar. The different settings are described
below.

Output Window
Sets the view of the output document window (Default, Text, Grid, or Browser). The Default
View is that selected for the output file type in the File tab of the Options dialog (Tools |
Options). For XSLT transformations, the output file type is defined in the XSLT file. For XQuery
executions, the output file type is determined by the serialization format you choose in the
XQuery setting of this dialog (see below).

The Close All Output Windows option gives you the opportunity to keep open the output
document windows that were opened in the debugging session when the debugging session
ends.

Debugging
The Debug Built-in Templates setting causes the debugger to step into built-in templates code
whenever appropriate. It is not related to the display of built-in templates when clicking this type
of template entry in the Templates tab, or if the callstack shows a node from the built-in
template file.

The XSLT Debugger works only in Text View or Grid View. The Auto Change to Text View

© 2007 Altova GmbH

Settings 225XSLT and XQuery Debugger

User Manual

option enables you to automatically switch to the Text View of a document for debugging if a
document is not in Text View or Grid View. (The XQuery Debugger works in Text View only.)

Layout of Debugger Documents
The Debugger Documents are the documents that are open in the Debugger. You can select
whether these documents should be tiled vertically, horizontally, or XML/XSLT horizontally with
the result document tiled vertically relative to the XML and XSLT.

XQuery
The serialization method determines two things: (i) the file format of the generated output file,
and (ii) the rules followed in writing the output to the output file. The available options are HTML,
Text, XHTML, and XML. The selection you make sets up an empty file of the selected file type
when you start the debugger inside a debugging session. The file type is significant because it
enables currently active XMLSpy features for that file type (such as validation for XML files).

You can choose to omit the XML declaration and to indent the output. The Always Skip XML
Source option enables you to always skip the optional XML file association step when you start
a debugging session from an XQuery file.

Alternative output setting
In the Project Properties dialog, you can make XSLT transformation associations for a folder.
One of these options is the destination folder of the XSLT transformation, for which you can
select a file extension.

The file type selected here determines the file type of the output format for XML or XSLT files
that belong to a project for which XSLT transformation properties have been defined.

226 XSLT and XQuery Debugger Starting a Debugging Session

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

10.4 Starting a Debugging Session

The simplest way to start a debugging session is to start one from an XSLT, XQuery, or XML
file. If the required associated file (see Table of associated files) has already been assigned to
the active file, then the debugging session is started immediately. Otherwise you are prompted
to select the required associated file. Since XQuery files neither require nor contain an XML file
association, you can choose to be prompted for an optional XML file association each time you
start an XQuery debugging session from an XQuery file, or to not be prompted.

Predefined associations
Predefined associations are relevant only for XSLT debugging sessions, and refer to cases in
which the associated file assignment is already present in the active file. To make an
assignment in an XML or XSLT file, do the following:

 In XML files: Open the file, click XSL/XQuery | Assign XSL, and select the XSLT file.
 In XSLT files: Open the file, click XSL/XQuery | Assign sample XML file..., and select

the XML file.

When you click XSL/XQuery | Start Debugger/Go, the debugging session is started directly,
i.e. without you being prompted for any file to associate with the active file.

Direct assignment
If no predefined association is present in the active file, you are prompted for an association.
When you select XSL/XQuery | Start Debugger/Go, the following happens:

 For XML files: You are prompted to select an XSLT or XQuery file.
 For XSLT files: You are prompted to select an XML file.
 For XQuery files: You are given the option of selecting an XML file, which you can skip.

(The dialog shown in the screenshot appears when you start a debugging session from
an XQuery file.)

After you select the required associated file or skip an optional association, the debugging
session is started.

Alternative method of file association
In the Project Properties dialog, you can make predefined associations. Click Project | Project
properties, and assign the required files by clicking the Use this XSL / Use this XML check
box.

Debugger View
The XSLT/XQuery Debugger works only in Text View and Enhanced Grid View. If either your
XML or XSLT file is open in some other view than Text or Grid View, or if an SPS file is

© 2007 Altova GmbH

Starting a Debugging Session 227XSLT and XQuery Debugger

User Manual

associated with an XML file, the following dialog pops up when you start a debugging session
involving one of these files.

Clicking OK causes the document to open in Text View. Note that XQuery files are always
displayed in Text View.

228 XSLT and XQuery Debugger Information Windows

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

10.5 Information Windows

Information windows that are opened in the XSLT/XQuery Debugger interface during a
debugging session contain information about various aspects of the XSLT transformation or
XQuery execution. This information is important in helping you debug your XSLT and XQuery
files.

There are eight information windows in XSLT debugging sessions and five information windows
in XQuery debugging sessions. These windows are organized into two groups by default, which
are located at the bottom of the XSLT/XQuery Debugger interface (see illustration below).
These windows and the information they display are described in detail in this section.

The default layout of the XSLT/XQuery Debugger interface.

The first group of information windows displays the following windows as tabs in a single
window:

 Context (for XSLT debugging sessions only)
 Variables
 XPath-Watch

The second group of information windows displays the following windows as tabs in a single
window

 Call Stack
 Messages
 Templates (for XSLT debugging sessions only)
 Info
 Trace

In the default layout, therefore, there are two window groups, each having tabs for the different
windows in them. One tab is active at a time. So, for example, to display information about
Variables in the first information window group, click the Variables tab. This causes the
Variables information window to be displayed and the Context and XPath-Watch information
windows to be hidden. Note that in some tabs, you can use the information display as
navigation tools: clicking an item can take you to that item in the XML, XSLT, or XQuery file.
See the documentation of the respective information windows (Context, Call Stack, Templates)

© 2007 Altova GmbH

Information Windows 229XSLT and XQuery Debugger

User Manual

for details.

The two information window groups can be resized by dragging their borders. Individual
windows can be dragged out of the containing group by clicking the tab name and dragging the
window out of the group. A window can be added to a group by dragging its title bar onto the
title bar of the group. Note that there is no reset button to return the layout to the default layout.

10.5.1 Context Window

The Context Window is available in XSLT debugging sessions only; it is not available in XQuery
debugging sessions.

During the processing of the XSLT stylesheet, the processor's context is always within a
template that matches some sequence (of nodes or atomic values). The Context Window
displays the current processing context, which could be a sequence of nodes, a single node, or
an atomic value (such as a string). Depending on the kind of a context item, its value or
attribute/s is/are displayed. For example, if the context item is an element, the element's
attributes are displayed. If the context item is an attribute or text node, the node's value is
displayed.

Clicking an entry in the Context Window, displays that item in the XML document. If the XML
document is not currently displayed in the interface, a window for the XML document will be
opened.

10.5.2 Variables Window

The Variables Window is available in XSLT and XQuery debugging sessions. It displays the
variables and parameters that are used in the XSLT/XQuery document when they are in scope,
and their values.

Parameters are indicated with P, global variables (declared at top-level of a stylesheet) are

230 XSLT and XQuery Debugger Information Windows

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

indicated with G, and local variables (declared within an XSLT template) are indicated with L.
The type of the values of variables and parameters is also indicated by icons in the Value field.
The following types are distinguished: Node Set, Node Fragment, String, Number, and Boolean.

10.5.3 XPath-Watch Window

The XPath-Watch Window is available in XSLT and XQuery debugging sessions.

It enables you to enter XPath expressions that you wish to evaluate in one or more contexts. As
you step through the XSLT document, the XPath expression is evaluated in the current context
and the result is displayed in the Value column.

To enter an XPath expression, double-click in the text field under the Name column and enter
the XPath. Use expressions that are correct according to the XPath version that corresponds to
the XSLT version of the XSLT stylesheet (XPath 1.0 for XSLT 1.0, and XPath 2.0 for XSLT 2.0).

Please note: If namespaces have been used in the XML file or XSLT file, you must use the
correct namespace prefixes in your XPath expressions.

10.5.4 Call Stack Window

The Call Stack Window is displayed in XSLT and XQuery debugging sessions.

The Call Stack Window displays a list of previously processed XSLT templates and instructions,
with the current template/instruction appearing at the top of the list.

Clicking an entry in this window, causes the selected XSLT template/instruction to be displayed
in the XSLT document window. Clicking a template/instruction that references a built-in
template highlights the built-in template in a separate window that displays all built-in templates.

© 2007 Altova GmbH

Information Windows 231XSLT and XQuery Debugger

User Manual

10.5.5 Messages Window

The Messages Window is displayed in XSLT and XQuery debugging sessions.

XSLT 1.0 and XSLT 2.0
In XSLT debugging sessions, the Messages tab displays error messages, the xsl:message
instruction(s), or any error messages that may occur during debugging.

XQuery
In XQuery debugging sessions, the Messages Window displays error messages.

10.5.6 Templates Window

The Templates Window (see screenshot) is available in XSLT debugging sessions only; it is not
available in XQuery debugging sessions.

The Templates Window displays the various templates used in the XSLT stylesheet, including
built-in templates and named templates. Matched templates are listed by the nodes they match.
Named templates are listed by their name. For both types of template, the mode, priority, and
location of the template are displayed.

In the screenshot above, there are two templates in the XSLT stylesheet: a template which
matches the document node /, and a template named tokenize. All the other templates are
built-in templates (indicated with no entry in the Location field).

Clicking an entry in this window, causes the template to be highlighted in the XSLT document
window. If you click a built-in template, the template is highlighted in a separate window that
displays all the built-in templates.

10.5.7 Info Window

The Info Window is available in XSLT and XQuery debugging sessions. It provides meta
information about the current debugging session. This information includes what debugger is
being used, the names of the source and output documents, and the status of the debugger.

232 XSLT and XQuery Debugger Information Windows

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

10.5.8 Trace Window

The Trace Window is displayed in XSLT and XQuery debugging sessions.

The Trace Window contains the element the tracepoint is set for, its location in the XSLT
stylesheet and the result generated when that element is executed. Click on a row in the left
side of the window to display the full result on the right.

10.5.9 Arranging the Information Windows

The Information Windows can be arranged inside the XSLT/XQuery Debugger interface.
Windows can be docked in the interface, can float in it, and can be arranged as a collection of
panes in a window. You can use the following mechanisms to arrange the windows.

Menu
In the XSL/XQuery menu, placing the cursor over the item Debug Windows pops up the list of
Info Windows. You can hide or show individual windows by clicking the window.

This toggles the display of the window on and off.

Context Menu
The context menu can be accessed by right-clicking a window tab or title bar.

© 2007 Altova GmbH

Information Windows 233XSLT and XQuery Debugger

User Manual

Click the required option to cause that window to float, be docked or be hidden.

Drag-and-drop
You can drag a window by its tab or title bar and place it at a desired location.

Additionally, you can dock the window in another window or in the interface using placement
controls that appear when you drag a window:

 When you drag a window over another window, a circular placement control appears (
see screenshot below). This control is divided into five placement sectors. Releasing
the mouse key on any of these sectors docks the dragged window into the respective
sector of the target window. The four arrow sectors dock the dragged window into the
respective sides of the target window. The center button docks the dragged window as
a tab of the target window. You can also dock a window as a tab in another window by
dragging it to the tab bar and dropping it there.

 When you drag a window, a placement control consisting of four arrows appears. Each
arrow corresponds to one side of the Debugger interface. Releasing a dragged
window over one of these arrows docks the dragged window into one side of the
Debugger interface.

You can also double-click the title bar of a window to toggle it between its docked and floating
positions.

234 XSLT and XQuery Debugger Breakpoints

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

10.6 Breakpoints

The XSLT/XQuery Debugger enables you to define breakpoints in XSLT, XQuery, and XML
documents. Breakpoints are displayed as a dashed red line (shown in the screenshot below).

Please note: It is possible to set a tracepoint and a breakpoint for the same instruction. This
appears as a dashed blue and red line (see screenshot).

When you start the debugger within a debugging session, the debugging will pause at each
encountered breakpoint. In this way, you can identify specific areas to debug, and restrict
attention to these areas in either the XSLT, XQuery, and/or XML documents. You can set any
number of breakpoints.

Please note: Breakpoints set for a document remain in that document until it is closed.

Breakpoints in XML documents
You can set breakpoints on any node in an XML document. The break in processing will occur
at the start of that node.

Breakpoints in XSLT documents
You can set breakpoints at the following points in an XSLT document:

 At the beginning of templates and template instructions (e.g., xsl:for-each).

 On an XPath expression (XPath 1.0 or XPath 2.0).
 On any node in a literally constructed XML fragment. The break in processing will occur

at the start of that node.

Breakpoints in XQuery documents
You can set breakpoints at the following points in an XQuery document:

 At the beginning of XQuery statements.
 In an XQuery expression.
 On any node in a literally constructed XML fragment. The break in processing will occur

at the start of that node.

Inserting/removing breakpoints
To insert a breakpoint:

1. Place the cursor at the point in the document where you wish to insert the breakpoint (
see paragraphs above). In XSLT debugging sessions, you can set breakpoints in both
Text View and Grid View. XQuery debugging sessions are available only in Text View.

2. Do one of the following:

 Select XSL/XQuery | Insert/Remove Breakpoint.

© 2007 Altova GmbH

Breakpoints 235XSLT and XQuery Debugger

User Manual

 Press F9.
 Right-click and select Insert/Remove Breakpoint.

To remove a breakpoint:

1. Place the cursor at the point in the document containing the breakpoint.
2. Do one of the following:

 Select XSL/XQuery | Insert/Remove Breakpoint.
 Press F9.
 Right-click and select Insert/Remove Breakpoint.

Alternatively, you can use the Breakpoints dialog to remove a breakpoint:
1. Select the menu option XSL/XQuery | Breakpoints....
2. Click the breakpoint in the dialog box and click Remove.

The Remove All button deletes all the breakpoints from the dialog box (and all XSLT
stylesheets).

Disabling/enabling breakpoints:
After inserting breakpoints, you can disable them if you wish to skip over breakpoints without
having to delete them. You can enable them again when necessary.

To disable a breakpoint:

1. Place the cursor in the node or expression containing the breakpoint.
2. Select XSL/XQuery | Enable/Disable Breakpoint (or press Ctrl+F9). The breakpoint

changes from red to gray, indicating that it has been disabled.

Alternatively, you can use the Breakpoints dialog to disable a breakpoint:

1. Select the menu option XSL/XQuery | Breakpoints/Tracepoint.... This opens the
XSLT Breakpoints / Tracepoints dialog box which displays the currently defined
breakpoints in all open XML source and XSLT stylesheet documents.

236 XSLT and XQuery Debugger Breakpoints

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

2. Remove the check mark of the breakpoints you wish to disable, and click OK to
confirm. The breakpoint changes from red to gray, indicating that it has been disabled.

To enable a breakpoint:

1. Place the cursor in the node or expression containing the breakpoint.
2. Select XSL/XQuery | Enable/Disable Breakpoint (or press Ctrl+F9). The breakpoint

changes from gray to red, indicating that it has been enabled.

Finding a specific breakpoint
To find a specific breakpoint:

1. Select the menu option XSL/XQuery | Breakpoints/Tracepoints.... The XSLT
Breakpoints / Tracepoints dialog appears.

2. Click the required breakpoint in the breakpoint list.
3. Click the Edit Code button. The Breakpoints dialog box is closed and the text cursor is

placed directly in front of the breakpoint in Text view. In the Enhanced Grid view, the
table cell containing the breakpoint is highlighted in red.

Continuing debugging after a breakpoint
To continue debugging after a breakpoint:

 Select the XSL/XQuery | Step into or XSL/XQuery | Start Debugger/Go command.

© 2007 Altova GmbH

Tracepoints 237XSLT and XQuery Debugger

User Manual

10.7 Tracepoints

The XSLT/XQuery Debugger enables you to define tracepoints in XSLT documents.

Tracepoints allow you to trace content generated by an instruction or view the result of an XPath
expression at the point where the tracepoint is set without having to edit the XSLT stylesheet,
for example, using the xsl:message element to output debugging messages.

Tracepoints are displayed as a dashed blue line in XSLT stylesheets (shown in the screenshot
below).

Please note: It is possible to set a tracepoint and a breakpoint for the same instruction. This
appears as a dashed blue and red line (see screenshot).

The debugger outputs the content generated by each instruction that has a tracepoint set for it.
This output is visible in the Trace window. You can set any number of tracepoints in an XSLT
stylesheet.

Please note: Tracepoints set for a document remain in that document until it is closed.

Tracepoints in XSLT documents
You can set tracepoints on XSL instructions and literal results in an XSLT stylesheet.

Tracepoints in XML and XQuery documents
You can set tracepoints in XML and XQuery documents, however, these tracepoints have no
effect.

Inserting/removing tracepoints
To insert a tracepoint:

1. Place the cursor at the point in the XSLT document where you wish to insert the
tracepoint. During debugging sessions, you can set tracepoints in both Text View and
Grid View.

238 XSLT and XQuery Debugger Tracepoints

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

2. Do one of the following:

 Select XSL/XQuery | Insert/Remove Tracepoint.
 Press Shift+F9.
 Right-click and select Insert/Remove Tracepoint.

To remove a tracepoint:

1. Place the cursor at the point in the XSLT document containing the tracepoint.
2. Do one of the following:

 Select XSL/XQuery | Insert/Remove Tracepoint.
 Press Shift+F9.
 Right-click and select Insert/Remove Tracepoint.

Alternatively, you can use the XSLT Breakpoints / Tracepoints dialog to remove a tracepoint:

1. Select the menu option XSL/XQuery | Breakpoints/Tracepoints....
2. Click the tracepoint in the dialog box (see screenshot) and click Remove.

The Remove All button in the Tracepoints pane deletes all the tracepoints from the dialog box
(and from all XSLT stylesheets).

Setting an XPath for a tracepoint
You can set an XPath for a tracepoint. When you set an XPath for a tracepoint, the result of the
evaluation of the XPath is displayed in the Trace window instead of the content generated by
the statement for which the tracepoint is set. The XPath is evaluated relatively to the context
node at the point where the tracepoint is set.

To set an XPath for a tracepoint:
1. Select the menu option XSL/XQuery | Breakpoints/Tracepoints.... This opens the

XSLT Breakpoints / Tracepoints dialog box which displays the currently defined
tracepoints in all open XSLT stylesheet documents.

© 2007 Altova GmbH

Tracepoints 239XSLT and XQuery Debugger

User Manual

2. Enter the XPath in the XPath column in the row that corresponds to the tracepoint.

Example:

The following example uses the file OrgChart.xsl, which is found in the XMLSpy Examples
folder.
The tracepoint is set such that the context node is Person. The Person element contains a
Shares element. We want to display the number of shares that each person has, multiplied by
125 (the value of each share).

Do the following:
1. Open the file OrgChart.xsl.
2. Set a tracepoint at line 555.
3. Open the XSLT Breakpoints / Tracepoints dialog and enter the XPath

n1:Shares*125.00 for the tracepoint you just set.

4. Start the Debugger. The results of the XPath you entered for the tracepoint appear in
the Trace window.

240 XSLT and XQuery Debugger Tracepoints

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

The Trace window
Select XSL/XQuery | Start Debugger/Go to start debugging. The output of instructions for
which tracepoints are set is displayed in the Trace window (see screenshot). Click a row in the
Trace window to display the full result of that statement in the right side of the dialog (see
screenshot).

Please note: Results are displayed in the Trace window only after the traced instruction is
completed.

Disabling/enabling tracepoints
After inserting tracepoints, you can disable them if you wish to skip over them without having to
delete them. You can enable them again when necessary.

To disable a tracepoint:
1. Place the cursor at the point in the XSLT stylesheet containing the tracepoint.
2. Select XSL/XQuery | Enable/Disable Tracepoint (or press Ctrl+Shift+F9). The

tracepoint changes from blue to gray, indicating that it has been disabled.

Alternatively, you can use the XSLT Breakpoints / Tracepoints dialog to disable a tracepoint:
1. Select the menu option XSL/XQuery | Breakpoints/Tracepoints.... This opens the

XSLT Breakpoints / Tracepoints dialog box which displays the currently defined
tracepoints in all open XSLT stylesheet documents.

© 2007 Altova GmbH

Tracepoints 241XSLT and XQuery Debugger

User Manual

2. Remove the check mark of each tracepoint you wish to disable, and click OK to
confirm. The tracepoints change from blue to gray, indicating that they have been
disabled.

To enable a tracepoint:
1. Place the cursor at the point in the XSLT document containing the tracepoint.
2. Select XSL/XQuery | Enable/Disable Tracepoint (or press Ctrl+Shift+F9). The

tracepoint changes from gray to blue, indicating that it has been enabled.

Finding a specific tracepoint
To find a specific tracepoint:

1. Select the menu option XSL/XQuery | Breakpoints/Tracepoints.... The XSLT
Breakpoints / Tracepoints dialog appears.

2. Click the required tracepoint in the tracepoint list.
3. Click the Edit Code button. The XSLT Breakpoints / Tracepoints dialog box is closed

and the text cursor is placed directly in front of the tracepoint in Text view of the XSLT
document. In Enhanced Grid view, the table cell containing the tracepoint is highlighted
in blue.

242 User Reference

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

11 User Reference

The User Reference section contains a complete description of all XMLSpy menu commands
and explains their use in general. We've tried to make this user manual as comprehensive as
possible. If, however, you have questions which are not covered in the User Reference or other
parts of this documentation, please look up the FAQs and Discussion Forums on the Altova
website. If you are still not able to have your problem satisfactorily addressed, please do not
hesitate to contact us through the Support Center on the Altova website.

Note that in the File and Edit menus, all standard Windows commands are supported, as well
as additional XML- and Internet-related commands.

© 2007 Altova GmbH

File Menu 243User Reference

User Manual

11.1 File Menu

The File menu contains all commands relevant to manipulating files, in the order common to
most Windows software products.

In addition to the standard New, Open, Save, Print, Print Setup, and Exit commands, XMLSpy
offers a range of XML- and application-specific commands.

11.1.1 New...

Ctrl+N

The New... command is used to create a new document. Clicking New... opens the Create New
Document dialog, in which you can select the type of document you wish to create. If the
document type you wish to create is not listed, select XML and change the file extension when
you save the file. Note that you can add new file types to the list in this dialog using the Tools |
Options | File types tab.

244 User Reference File Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Creating templates for new documents
You can create multiple templates for various file types. These templates can then be opened
directly from the Create New Document dialog and edited. To create your own template so that
it appears in the list of documents in the Create New Document dialog, you first create the
template document and then save it to the folder that contains all the templates.

Do the following:

1. Open the XMLSpy\Template folder using Windows Explorer or your preferred
navigation tool, and select a rudimentary template file from among the files named
new.xxx (where .xxx is a file extension, such as .xml and .xslt).

2. Open the file in XMLSpy, and modify the file as required. This file will be the template
file.

3. When you are done, select File | Save as... to save the file back to the \Template
folder with a suitable name, say my-xml.xml. You now have a template called
my-xml, which will appear in the list of files in the Create New Document dialog.

© 2007 Altova GmbH

File Menu 245User Reference

User Manual

4. To open the template, select File | New, and then the template (my-xml, in this case).

Please note: To delete a template, delete the template file from the template folder.

Assigning a DTD/XML Schema to a new XML document
When you create a new document of a certain type that is based on a standard schema (DTD
or XML Schema), the document is automatically opened with the correct DTD or XML Schema
association. For example, an XHTML file will be opened with the DTD
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd associated with it. And an
XML Schema (.xsd) file is associated with the http://www.w3.org/2001/XMLSchema
schema document.

If you are creating a new file for which the schema is not known (for example, an XML file), then
you are prompted to associate a schema (DTD or XML Schema) with the document that is to be
created.

If you choose to associate a DTD or XML Schema with your document, clicking OK in the New
File dialog enables you to browse for the schema. Clicking Cancel in this dialog will create a
new file that is not associated with any schema.

Specifying the document element of a new XML document

246 User Reference File Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

If you select an XML Schema, there can be more than one global element in it, all of which are
potential document (or root) elements. You can select which of these is to be the root element
of the XML document in the Select a Root Element dialog, which pops up if you select Schema
in the New File dialog and if the XML Schema has more than one global element.

The new XML document is created with this element as its document element.

Assigning a StyleVision Power Stylesheet when creating a new document
When a new XML document is created, you can associate a StyleVision Power Stylesheet (
.sps file) to view the document in Authentic View. In the Create New Document dialog (see
screenshot above), when you click the Select StyleVision Stylesheet, the Create New Document
dialog (shown below) appears.

You can browse for the required StyleVision Power Stylesheet in the folder tabs displayed in the
New dialog. Alternatively, you can click the Browse... button to navigate for and select the
StyleVision Power Stylesheet. The tabs that appear in the New dialog correspond to folders in
the sps/Template folder of your application folder.

11.1.2 Open...

Ctrl+O

The Open... command pops up the familiar Windows Open dialog (screenshot below), and

© 2007 Altova GmbH

File Menu 247User Reference

User Manual

allows you to open any XML-related document or text document. In the Open dialog, you can
select more than one file to open. Use the Files of Type combo box to restrict the kind of files
displayed in the dialog box. (The list of available file types can be configured in the File Types
tab of the Options dialog (Tools | Options). When an XML file is opened, it is checked for
well-formedness. If the file is not well-formed, you will get a file-not-well-formed error. Fix the

error and click to recheck. If you have opted for automatic validation upon
opening and the file is invalid, you will get an error message. Fix the error and click

 to revalidate.

11.1.3 Open URL...

The Open URL... command opens non-local files from a URL using http and WebDAV.

To open a URL:

1. Click the Open URL command. This opens the Open URL dialog.

2. Enter the URL you want to access, in the Server URL field.
3. Enter your User-ID in the User and Password fields, if the server is password

protected.
4. Click Browse to view and navigate the directory structure of the server.
5. Click the file you want to load into XMLSpy.

248 User Reference File Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

The file URL appears in the File URL field. The OK button only becomes active at this
point.

6. Click the OK button to load the file. The file you open appears in the main window.

Please note: The Browse function is only available on servers which support the FTP, HTTP,
and HTTPS (if the server supports WebDAV) protocols, and on servers that support WebDAV.

File load
To give you more control over the loading process, you can choose to load the file through the
local cache or a proxy server (which considerably speeds up the process if the file has been
loaded before). Alternatively, you may want to reload the file if you are working, say, with an
electronic publishing or database system; select the Reload option in this case.

Repositories
Repositories supported by XMLSpy come in three flavors:
 Generic version control systems, such as Microsoft Visual Source-Safe (or compatible

products)
 Generic web servers, such as FTP or WebDAV servers
 Specialized XML or schema repositories, such as Tamino, TEXTML Server, Virtuoso,

or XML Canon.

XMLSpy currently supports Source-Safe, FTP, and WebDAV servers, as well as Virtuoso
through WebDAV. Other repository interfaces will be available in future versions.

11.1.4 Reload

The Reload command allows you to reload open documents. This is useful if an open

© 2007 Altova GmbH

File Menu 249User Reference

User Manual

document has been modified outside XMLSpy. If a modification occurs, XMLSpy asks whether
you wish to reload the file. If you reload, then any changes you may have made to the file since
the last save will be lost. This option can be changed in the Options dialog (Tools | Options).

11.1.5 Encoding

The Encoding command lets you view the current encoding of the active document (XML or
non-XML) and to select a different encoding with which the active document will be saved the
next time.

In XML documents, if you select a different encoding than the one in use before, the encoding
specification in the XML declaration will be adjusted accordingly. For two-byte and four-byte
character encodings (UTF-16, UCS-2, and UCS-4) you can also specify the byte-order to be
used for the file. Another way to change the encoding of an XML document is to directly edit the
encoding attribute of the document's XML declaration.

Default encodings for existing and new XML and non-XML documents can be set in the
Encoding tab of the Options dialog.

Note: When saving a document, XMLSpy automatically checks the encoding specification
and opens a dialog box if it cannot recognize the encoding entered by the user. Also, if
your document contains characters that cannot be represented in the selected
encoding, you will get a warning message when you save your file.

11.1.6 Close

The Close command closes the active document window. If the file was modified (indicated by
an asterisk * after the file name in the title bar), you will be asked if you wish to save the file

first.

11.1.7 Close All

The Close All command closes all open document windows. If any document has been
modified (indicated by an asterisk * after the file name in the title bar), you will be asked if you

wish to save the file first.

11.1.8 Save

Ctrl+S

250 User Reference File Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

The Save command saves the contents of the active document to the file from which it has
been opened. When saving a document, the file is automatically checked for well-formedness.
The file will also be validated automatically if this option has been set in the File tab of the
Options dialog (Tools | Options). The XML declaration is also checked for the encoding
specification, and this encoding is applied to the document when the file is saved.

11.1.9 Save As...

The Save As... command pops up the familiar Windows Save As dialog box, in which you enter
the name and location of the file you wish to save the active file as. The same checks and
validations occur as for the Save command.

11.1.10 Save to URL...

The Save to URL... command allows you to save files to a specified URL.

To save an XML document to a URL:

1. Make the file active in the Main Window.
2. Select the menu option File | Save to URL The following dialog appears.

3. Click the Browse button to see and navigate the directory structure of the server.
4. Enter the file name in the URL field or mark the file in the Available Files list box if you

want to overwrite it.

Please note:

 The Browse function is only available on servers which support the FTP, HTTP, and

© 2007 Altova GmbH

File Menu 251User Reference

User Manual

HTTPS (if the server supports WebDAV) protocols, and on servers that support
WebDAV.

 If the server you connect to is password protected, enter the required data and click the
OK button to connect. You can also enter these data in the User and Password fields.
The Save check box, supplies the password data for the logon attempt.

Repositories
Repositories supported by XMLSpy come in three flavors:
 Generic version control systems, such as Microsoft Visual Source-Safe (or compatible

products)
 Generic web servers, such as FTP or WebDAV servers; and
 Specialized XML or schema repositories, such as Tamino, TEXTML Server, Virtuoso,

or XML Canon.

XMLSpy currently supports Source-Safe, FTP, and WebDAV servers, as well as Virtuoso
through WebDAV. Other repository interfaces will be available in future versions.

11.1.11 Save All

The Save All command saves all modifications that have been made to any open documents.
The command is useful if you edit multiple documents simultaneously. If a document has not
been saved before (for example, after being newly created), the Save as... dialog box is
presented for that document.

11.1.12 Send by Mail...

The Send by Mail... command lets you send XML document/s or selections from an XML
document by e-mail. You can do any of the following:

 Send an XML document as an attachment or as the content of an e-mail.
 Send a selection in an XML document as an attachment or as the content of an e-mail.
 Send a group of files (selected in the Project Window) as an attachment to an e-mail.
 Send a URL (selected in the Project Window) as an attachment or as a link.

Please note: To use this function you must have a MAPI compliant e-mail system.

Sending documents and document fragments
To send an XML document:

1. Make that document the active document in the Main Window. If you wish to send a
selection or a group of files from a project, make the selection in the document or select
the required files in the Project.

2. Click Send by Mail.... The following dialog opens:

252 User Reference File Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

3. Make the required choices and click OK. The selected documents/contents/URLs are
attached to the e-mail or content is inserted into the e-mail.

Sending URLs by mail
To send one or more URLs, select the URLs in the Project Window, and click Send by Mail....
The following dialog opens:

Select how the URL is to be sent and click OK.

11.1.13 Print...

Ctrl+P

The Print... command opens the Print dialog box, in which you can select printer options.

Clicking the Print... command in Enhanced Grid View opens a Print options dialog (screenshot
below), which enables you to set printing options for the XML document. Clicking Print in this
dialog takes you to the Print dialog for printer options.

© 2007 Altova GmbH

File Menu 253User Reference

User Manual

The available options for Grid View printing are described below:

 In the Types pane, you select the items you wish to have appear in the output.
 For the What option, you specify whether the current selection or the entire file is to be

printed.
 The Expand option allows you to print the document as is, or with all descendant

elements expanded fully.
 The Contents option enables you to choose between printing contents of all nodes or

printing node names only.
 In the If Contents Are Wider Than Page pane, you select what to do if contents are

wider than the page. The Split Pages option prints the entire document at normal size,
splitting contents over pages both horizontally and vertically. The pages could then be
glued together to form a poster. The First Page option prints only the first, left-hand
page of the print area. The area that overflows horizontally is not printed. This option is
useful if most of the important information in your Grid View of the document is
contained on the left side. The Shrink Horizontally option reduces the size of the output
(proportionally) until it fits horizontally on the page; the document may run on for several
pages. The Shrink Both option shrinks the document in both directions until it fits
exactly on one sheet.

 The Print button prints the document with the selected options.
 The Preview button opens a print preview window that lets you view the final output

before committing it to paper.
 The Print Setup button opens the Print Setup dialog box and allows you to adjust the

paper format, orientation, and other printer options for this print job only. Also see the
Print Setup command.

Please note: You can change column widths in Grid View to optimize the print output.

11.1.14 Print Preview

The Print Preview command opens the Print dialog box. Click the Preview button to display a
print preview of the currently active document.

11.1.15 Print Setup...

The Print Setup... command, displays the printer-specific Print Setup dialog box, in which you
specify such printer settings as paper format and page orientation. These settings are applied to
all subsequent print jobs.

254 User Reference File Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

The screenshot above shows the Print Setup dialog in which an HP LaserJet 4 printer attached
to a parallel port (LPT1) is selected.

11.1.16 Most Recently Used Files

The File menu displays a list of the nine most recently used files, with the most recently opened
file shown at the top of the list. You can open any of these files by clicking its name. To open a
file in the list using the keyboard, press ALT+F to open the File menu, and then press the
number of the file you want to open.

11.1.17 Exit

The Exit command is used to quit XMLSpy. If you have any open files with unsaved changes,
you are prompted to save these changes. XMLSpy also saves modifications to program settings
and information about the most recently used files.

© 2007 Altova GmbH

Edit Menu 255User Reference

User Manual

11.2 Edit Menu

The Edit menu contains commands for editing documents in XMLSpy.

In addition to the standard Undo, Redo, Cut, Copy, Paste, Delete, Select All, Find, Find next
and Replace commands, XMLSpy offers special commands to:

 copy the selection to the clipboard as XML-Text,
 copy as structured text
 copy an XPath selector to the selected item to the clipboard.
 insert and remove bookmarks, and to navigate to bookmarks.

11.2.1 Undo

Ctrl+Z

The Undo command contains support for unlimited levels of Undo. Every action can be undone
and it is possible to undo one command after another. The Undo history is retained after using
the Save command, enabling you go back to the state the document was in before you saved
your changes.

256 User Reference Edit Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

11.2.2 Redo

Ctrl+Y

The Redo command allows you to redo previously undone commands, thereby giving you a
complete history of work completed. You can step back and forward through this history using
the Undo and Redo commands.

11.2.3 Cut

Shift+Del or Ctrl+X

The Cut command copies the selected text or items to the clipboard and deletes them from
their present location.

11.2.4 Copy

Ctrl+C

The Copy command copies the selected text or items to the clipboard. This can be used to
duplicate data within XMLSpy or to move data to another application.

Please note: There are two different commands for copying elements to the clipboard in textual
form: Copy as XML-Text and Copy as Structured Text. You can use the Editing tab on the Tools
| Options dialog to choose which of these two operations should be performed when using the
copy command.

11.2.5 Paste

Ctrl+V

The Paste command inserts the contents of the clipboard at the current cursor position.

11.2.6 Delete

Del

The Delete command deletes the currently selected text or items without placing them in the
clipboard.

11.2.7 Copy as XML-Text

The Copy as XML-Text command lets you exchange data easily with other products that allow
data manipulation on the XML source layer. While editing your document in Grid View, you may
occasionally want to copy some elements to the clipboard in their XML-Text representation:

 <row>

© 2007 Altova GmbH

Edit Menu 257User Reference

User Manual

 <para align="left">
 <bold>Check the FAQ</bold>
 </para>
 <para>
 <link mode="internal">
 <link_section>support</link_section>
 <link_subsection>faq30</link_subsection>
 <link_text>XMLSPY 4.0 FAQ</link_text>
 </link>
 <link mode="internal">
 <link_section>support</link_section>
 <link_subsection>faq25</link_subsection>
 <link_text>XMLSPY 3.5 FAQ</link_text>
 </link>
 </para>
 </row>

The Copy as XML-Text command automatically formats text using the currently active settings
for saving a file. These settings can be modified in the Save File section of the File tab of the
Options dialog (Tools | Options).

11.2.8 Copy as Structured Text

The Copy as Structured Text command copies elements to the clipboard as they appear on
screen. This command is useful for copying table-like data from Grid View. The copied data can
be used within XMLSpy as well as in third-party products, enabling you to transfer XML data to
spreadsheet-like applications (such as Microsoft Excel).

If you copy this table and paste it into Excel, the data will appear in the following way:

258 User Reference Edit Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Please note: The results of this command depend on the way the information is currently laid
out on screen. For example, if the XML fragment used as an example for the Copy as XML-Text
command were in the Table View of Grid View, the copied text would result in the following:

In normal Grid View, the data copied to the clipboard would look as below.

© 2007 Altova GmbH

Edit Menu 259User Reference

User Manual

11.2.9 Insert File Path

The Insert File Path command is enabled in the Text View and Grid View of documents of any
file type. Using it, you can insert the path to a file at the cursor selection point. Clicking the
command pops up a dialog (screenshot below) in which you select the required file.

The required file can be selected in one of two ways: (i) by browsing for the file (use the Browse
button); (ii) selecting the window in which the file is open (the Window button). When done,
click OK. The path to the selected file will be inserted in the active document at the cursor
selection point.

11.2.10 Copy XPath

The Copy XPath command creates an XPath expression that selects the currently highlighted
node/s and copies the expression to the clipboard. This enables you to paste the expression
into a document (for example, in an XSLT document). All expressions start from the document
root, for example:

 /company/person/last if the last element node is selected
 /company/person if one or more person element nodes are selected

The Copy XPath command is active only in Enhanced Grid View.

11.2.11 Pretty-Print XML Text

The Pretty-Print XML Text command reformats your XML document in Text View to give a
structured display of the document. Each child node is offset from its parent by the amount of
space specified in the Save File option of the File tab of the Options dialog (Tools | Options).
Note that the XML document must be well-formed for this command to work.

11.2.12 Select All

Ctrl+A

The Select All command selects the contents of the entire document.

260 User Reference Edit Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

11.2.13 Find...

Ctrl+F

The Find command pops up the Find dialog, in which you can specify the string you want to find
and other options for the search. Depending on the view you are using, the Find dialog displays
different options. To find text, enter the text in the Find What text box or use the combo box to
select from one of the last 10 search criteria, and then specify the options for the search.

Grid View
In Grid View, the following dialog box appears. The options available are described below.

Select the options you require or select a radio button.

 The Types pane allows you to select what XML document nodes or components you
wish to include in the search. This enables you to skip particular node types. The Set All
button activates all the type check boxes; the Clear All button deactivates all the type
check boxes.

 The Search In pane allows you to define whether the names of a node, the contents of
a node, or both should be searched for the input text string.

 The Settings pane enables you to define whether the search should be case-sensitive
and/or match the entire input string.

 The Where pane allows you to define the scope of the search.
 The Direction option specifies the search direction.

Text View
In Text View, the following dialog box appears. The options available are described below.

© 2007 Altova GmbH

Edit Menu 261User Reference

User Manual

The following Find options are available:

 Match whole word only: Only the exact words in the text will be matched. For example,
for the find string fit, with Match Whole Word checked, only the word fit will match
the find string; the fit in fitness, for example, would not.

 Match case: Case-sensitive search (Address is not the same as address).
 Regular expression: Searches for text specified by the regular expression you enter in

the text box. See Regular expressions for a description of regular expressions.

Clicking the Advanced button opens the Types pane (screenshot below), in which you can
select the type of node to search.

Please note:

 The Find dialog is modeless, which means that it can remain open while you continue
to use Text View. Pressing Enter while the dialog box is open, closes the dialog box. If
text is marked prior to opening the dialog box, then the marked text is automatically
inserted into the Find What text box.

 Once the Find dialog is closed, you can repeat the current search by pressing F3 for a
forward search, or Shift+F3 for a backward search.

 The unfold button to the right of the Find What combo box, opens a secondary window
which you can use to enter regular expressions.

Regular expressions
You can use regular expressions to further refine your search criteria. A pop-up list is available
to help you build regular expressions. To access this list, click the > button to the right of the

262 User Reference Edit Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

input field for the search term.

Clicking on the required expression description inserts the corresponding expression syntax in
the input field. Given below is a list of regular expression syntax characters.

. Matches any character. This is a placeholder for a single character.
\(Marks the start of a region for tagging a match.
\) Marks the end of a tagged region.
\n Where n is 1 through 9 refers to the first through ninth tagged region when

replacing. For example, if the search string was Fred\([1-9]\)XXX and the
replace string was Sam\1YYY, when applied to Fred2XXX this would
generate Sam2YYY.

\< Matches the start of a word.
\> Matches the end of a word.
\x Allows you to use a character x, that would otherwise have a special

meaning. For example, \[would be interpreted as [and not as the start of a
character set.

[...] Indicates a set of characters, for example, [abc] means any of the characters
a, b or c. You can also use ranges, for example [a-z] for any lower case
character.

[^...] The complement of the characters in the set. For example, [^A-Za-z] means
any character except an alphabetic character.

^ Matches the start of a line (unless used inside a set, see above).
$ Matches the end of a line. Example: A+$ to find one or more A's at end of

line.
* Matches 0 or more times.

For example, Sa*m matches Sm, Sam, Saam, Saaam and so on.
+ Matches 1 or more times.

For example, Sa+m matches Sam, Saam, Saaam and so on.

11.2.14 Find Next

F3

The Find next command repeats the last Find command to search for the next occurrence of
the requested text.

© 2007 Altova GmbH

Edit Menu 263User Reference

User Manual

11.2.15 Replace

Ctrl+H

The Replace command enables you to find and replace one text string with another text string.
It features the same options as the Find... command. Depending on the view you are using, the
Replace dialog displays different find options. You can replace each item individually, or you can
use the Replace All button to perform a global search-and-replace operation.

Grid View
The screenshot below shows the various find options.

These options are described in the Find... section.

Text view
In Text View, selecting the Replace... command opens the Find & Replace dialog shown below.
The options are the same as for the Find... dialog. The Replace In Selection only option carries
out the find and replace operation only within the text selection.

264 User Reference Edit Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Clicking the Advanced button opens the Types options (see Find... for details).

Please note: When using the Replace all command, each replacement is recorded as a single
operation, so Replace all can be undone step-by-step.

11.2.16 Find in Files

The Find in Files command is a powerful way to find and replace text quickly among a large
number of files. Clicking the command pops up the Find in Files dialog (screenshot below). The
Find in Files command is different from the Find command in that it searches all the specified
locations for the Find string at once and executes replace actions at once. A report is then
displayed in the Find in Files output bar. In the case of the Find command, however, the user
enters the search string and goes through the (single) active document one found item at a
time.

© 2007 Altova GmbH

Edit Menu 265User Reference

User Manual

Find criteria
There are two broad find criteria: (i) what to find, and (ii) where to look? For a description of how
to set the text that is to be searched (what to find), see the description of the Find command. If
the text entered in the Find What text box is a regular expression, then the Regular Expression
check box must be checked. An entry helper for regular expressions can be accessed by

clicking the button. The use of regular expressions for searching is explained in the section
about the Find command.

To specify what node types and parts of an XML document should be searched, check the
Advanced XML Search check box and then check the required node types.

You can specify what files should be searched by selecting a folder or a project to search (after
checking the Search On Disk check box. When a project folder is selected, external folders
added to the project can be skipped. The files to be searched can be filtered by file extension.
The separator between two file extensions can be a comma or a semi-colon. The star character
can also be used as a wildcard.

The instances of the Find string at all the search locations are listed in the Find in Files output
bar. Clicking on one of the listed items opens that file in Text View and highlights the item.

Replace
You should not that clicking the Replace button replaces all the instances of the Find string with
the Replace string. If Open Files On Replacing was checked in the Find in Files dialog, then the
file will be opened in Text View; otherwise the replacement is done silently. All the replaced

266 User Reference Edit Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

strings are listed in the Find in Files output bar. Clicking on one of the listed items opens that file
in Text View and highlights the item.

11.2.17 Insert/Remove Bookmark

Ctrl+F2

The Insert/Remove Bookmark command inserts a bookmark at the current cursor position, or
removes the bookmark if the cursor is in a line that has been bookmarked previously. This
command is only available in Text View.

Bookmarked lines are displayed in one of the following ways:

 If the bookmarks margin has been enabled, then a solid blue ellipse appears to the left
of the text in the bookmark margin.

 If the bookmarks margin has not been enabled, then the complete line containing the
cursor is highlighted.

The F2 key cycles through all the bookmarks in the document.

11.2.18 Remove All Bookmarks

Ctrl+Shift+F2

The Remove All Bookmarks command removes all the currently defined bookmarks. This
command is only available in Text View.

Please note: The Undo command does not undo the effects of this command.

11.2.19 Goto Next Bookmark

F2

The Goto Next Bookmark command places the text cursor at the beginning of the next
bookmarked line. This command is only available in the Text View.

11.2.20 Goto Previous Bookmark

Shift+F2

The Goto Previous Bookmark command places the text cursor at the beginning of the
previous bookmarked line. This command is only available in the Text View.

© 2007 Altova GmbH

Project Menu 267User Reference

User Manual

11.3 Project Menu

XMLSpy uses the familiar tree view to manage multiple files or URLs in XML projects. Files and
URLs can be grouped into folders by common extension or any arbitrary criteria, allowing for
easy structuring and batch manipulation.

Please note: Most project-related commands are also available in the context menu, which
appears when you right-click any item in the project window.

Absolute and relative paths
Each project is saved as a project file, and has the .spp extension. These files are actually
XML documents that you can edit like any regular XML File. In the project file, absolute paths
are used for files/folders on the same level or higher, and relative paths for files/folders in the
current folder or in sub-folders. For example, if your directory structure looks like this:

|-Folder1
| |
| |-Folder2
| |
| |-Folder3
| |
| |-Folder4

If your .spp file is located in Folder3, then references to files in Folder1 and Folder2 will
look something like this:

c:\Folder1\NameOfFile.ext
c:\Folder1\Folder2\NameOfFile.ext

268 User Reference Project Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

References to files in Folder3 and Folder4 will look something like this:

.\NameOfFile.ext

.\Folder4\NameOfFile.ext

If you wish to ensure that all paths will be relative, save the .spp files in the root directory of
your working disk.

Projects and source control providers
If you intend to add an XMLSpy project to a source control repository, please ensure that the
project files position in the hierarchical file system structure is one which enables you to add
files only from below it (taking the root directory to be the top of the directory tree).

In other words, the directory where the project file is located, essentially represents the root
directory of the project within the source control repository. Files added from above it (the
project root directory) will be added to the XMLSpy project, but their location in the repository
may be an unexpected one—if they are allowed to be placed there at all.

For example, given the directory structure show above, if a project file is saved in Folder3 and
placed under source control:

 Files added to Folder1 may not be placed under source control,
 Files added to Folder2 are added to the root directory of the repository, instead of to the

project folder, but are still under source control,
 Files located in Folder3 and Folder4 work as expected, and are placed under source

control.

11.3.1 New Project

The New Project command creates a new project in XMLSpy. If you are currently working with
another project, a prompt appears asking if you want to close all documents belonging to the
current project.

11.3.2 Open Project

The Open Project... command opens an existing project in XMLSpy. If you are currently
working with another project, the previous project is closed first.

11.3.3 Reload Project

The Reload Project command reloads the current project from disk. If you are working in a
multi-user environment, it can sometimes become necessary to reload the project from disk,
because other users might have made changes to the project.

Please note: Project files (.spp files) are actually XML documents that you can edit like any

© 2007 Altova GmbH

Project Menu 269User Reference

User Manual

regular XML File.

11.3.4 Close Project

The Close Project command closes the active project. If the project has been modified, you
will be asked whether you want to save the project first. When a project is modified in any way,
an asterisk is added to the project name in the Project Window's title bar.

11.3.5 Save Project

The Save Project command saves the current project. You can also save a project by making

the project window active and clicking the icon.

11.3.6 Source control

XMLSpy supports Microsoft Source-Safe and other compatible repositories.

Open source revision control systems:

 Concurrent Versions System (CVS).
The Jalindi Igloo software must be downloaded for XMLSpy to connect to CVS.
Download this software component from the Altova components web site, or from the
Jalindi.com site.

Commercial revision control systems:

 Microsoft Visual Source-Safe 6.0c

 PVCS Version Manager *

 StarTeam 5.1 *

* Compatibility with this third-party tool depends on its implementation of SCC interface
and cannot be expressly guaranteed.

A source control project is, however, not the same as a XMLSpy project. Source control
projects are extremely directory dependent, whereas XMLSpy projects are logical constructions
without direct directory dependence.

In the following description, Microsoft Source-Safe is used as the Source Control provider.

Please note:
Microsoft has defined a Registry Entry, where all SCC compatible programs can
register themselves. XMLSpy only reads this entry.

HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider\InstalledSCCProvi
ders

Delta V
Extends the WebDAV protocol, where WebDAV is itself an extension of the HTTP 1.1 protocol.
XMLSpy now supports Delta V at the project, folder and single file level via the context menu

http://ximbiot.com/cvs/wiki/index.php?title=Main_Page
http://www.xmlspy.com/components_revisions.html
http://www.jalindi.com/igloo/
http://msdn.microsoft.com/ssafe/
http://www.serena.com/
http://www.borland.com/us/products/starteam/index.html

270 User Reference Project Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

(right click on the respective object). The Delta V protocol is supported by XMLSpy but is only
enabled, if the server capabilities on which the files under source control are placed, allow this.

Accessing files placed under source control on a Delta V enabled web server, automatically
enables the Delta V versioning commands: check in/out, undo check out.

Delta V commands can be accessed by right-clicking:

 the file tab of an open file in the main window
 a file in the Open URL browse window
 a file in an external web folder of a project

Delta V is the versioning part of the WebDAV standard and supports:

 Check out
 Undo check out
 Check in (plus comment)

WebDAV capabilities include:
 Properties: list, add and remove
 Namespace operations: move and copy
 Collections:hierarchy operations and mkcol.

For more in-depth information on Delta V please see http://www.webdav.org/deltav.

Open Project

The Open Project command mirrors (or creates) an existing source control project locally. This
command can only take effect if an XMLSpy project has previously been added to source
control provider using the menu option Add to Source Control.

1. Select Project | Source Control | Open Project.
2. Select a source control provider from the list of those installed on your PC, and confirm

http://www.webdav.org/deltav

© 2007 Altova GmbH

Project Menu 271User Reference

User Manual

with OK.

3. Enter your login data in the Source Control Login dialog box, and confirm with OK. The
Create local project from SourceSafe dialog appears.

4. Define the directory to contain the local project.
5. Select the Source control project you want to download.

If the folder you define does not exist at the location, a dialog box opens prompting you
to create it there. Click Yes to confirm the new directory.

6. Click OK to download the source control project.

7. This opens the Open dialog box, and attempts to find the XMLSpy project file (*.spp) in
the local directory. Click the project file you want to create, if there are several to
choose from.

272 User Reference Project Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

A message box might appear at this point stating that the directory is under source
control, offering you the option of checking it out or not.

8. Click OK if you want source control to be enabled.
The Check out file(s) dialog box opens, allowing you to check out the *.spp file.

9. Add any comments to the file in the Comment text box and click OK, to check out the
XMLSpy project file. Depending on your source control provider, the dialog box might
contain extra command buttons. In this case the Advanced... button opens the
Advanced Check Out Options dialog box.

The *.spp file is checked out, and all the XML files contained in the XMLSpy project, are copied
to the local directory.

Result in XMLSpy:
The AltovaTest directory has been created locally, and all files included in the XMLSpy project
are made available in the project window. You can now work with these files as you normally do.

Source control symbols:

The red check mark denotes checked out, i.e. the AltovaTest project file has been checked
out.
The asterisk denotes that changes have been made to the file, and you will be prompted to
save it when you exit.

© 2007 Altova GmbH

Project Menu 273User Reference

User Manual

The lock symbol, at the top right corner the XML symbol, denotes that the file is under source
control, but is currently not checked out.

This URL document is part of the AltovaTest project but is not under source control.
Documents opened via URL, cannot be placed under source control.

Enable Source Code Control

This command allows you to enable or disable source control for a project.

To disable source control for a project:
1. Click on the project file or any other file in the project window.
2. Select the menu option Project | Source control and deactivate the Enable Source

Code Control check box.

To provisionally disable source control for the project select Yes.

To permanently disable source control for the project select No.

Get Latest Version

This command gets the latest source control version of the file you select.

To get the latest version of a file:

 Select Project | Source Control | Get Latest Version.

The file is a copy of the source control file and is placed in your local working directory.

274 User Reference Project Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Check Out

This command checks out the latest source control version of file(s) you select, and flags them
as "checked out" for all other users.

To check out files:

 Select Project | Source Control | Check Out.

Shortcut: Right-click an item in the project window, and select "Check out" from the context
menu.

The following items can be checked out:
 Single files, click on the respective files (CTRL + click, for several)
 XMLSpy project folders, click on the folders (CTRL + click, for several)
 XMLSpy project, click on the project file icon.

The red check mark denotes that the file has been checked out.

Check In

This command checks in the previously checked out files, i.e. your locally updated files, and
places them in the source control project.

To check in files:

 Select Project | Source Control | Check In.

Shortcut: Right-click a checked out item in the project window, and select "Check in" from the
Context menu.

© 2007 Altova GmbH

Project Menu 275User Reference

User Manual

The following items can be checked in:
 Single files, click on the respective files (CTRL + click, for several)
 XMLSpy project folders, click on the folders (CTRL + click, for several)
 A complete XMLSpy project, click on the project file icon.

The lock symbol denotes that the file is under source control, but is currently not checked out.

Undo Check Out...

This command rejects changes made to previously checked out files, i.e. your locally updated
files, and retains the old files in the source control project.

Shortcut: Right click a checked out item in the project window, and select Undo Check out
from the Context menu.

The Undo check out option can apply to the following items:
 Single files, click on the respective files (CTRL + click, for several)
 XMLSpy project folders, click on the folders (CTRL + click, for several)
 XMLSpy project, click on the project file icon.

276 User Reference Project Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Add to Source Control

This command adds an XMLSpy project to your Source Control provider.

To add an XML project to the source control provider:
1. Click the XMLSpy project icon and select the menu option Project | Source control |

Add to Source control.
2. Select your source control provider from the list box.
3. Enter the source control login data.
4. Select the source control project (directory) to which your XML project should be added,

and confirm with OK.

If the project does not exist, the following dialog box opens, prompting for more
information.

© 2007 Altova GmbH

Project Menu 277User Reference

User Manual

5. Select Yes to create the new project or No to cancel.

6. Select the XMLSpy project files that you want to be placed under control of the source
control provider, and confirm with OK.

The files are transferred to the source control provider and are now under source control. These
files are marked with the "lock symbol" in the project window. The files you did not transfer do
not have the lock symbol (datatypes.dtd and XMLschema.dtd in this example).

Remove from Source Control

This command removes previously added files from the source control provider.

To remove files from the source control provider:
 Select Project | Source Control | Remove from Source Control.

278 User Reference Project Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

The following items can be removed from source control:
 Single files, click on the respective files (CTRL + click, for several)
 XMLSpy project folders, click on the folders (CTRL + click for several)
 A complete XMLSpy project, click on the project file icon.

Show History

This command displays the history of a file. It can only be used on single files.

To show the history of a file:
1. Click on the file in the project window.
2. Select the menu option Project | Source control | Show history.

A dialog box prompting for more information may appear at this time (this example uses
MS Source-Safe).

3. Select the appropriate entries and confirm with OK.

© 2007 Altova GmbH

Project Menu 279User Reference

User Manual

Show Differences

This command displays the differences between the file currently in the source control
repository, and the file of the same name that you have checked out.

This command can only be used on single files.

To show the differences between two files:

1. Check out a file from your project. Click on the file in the project window.
2. Select the menu option Project | Source control | Show Differences.

A dialog box prompting for more information may appear at this time.

3. Select the appropriate entries and confirm with OK.

280 User Reference Project Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

The differences between the two files are highlighted in both windows (this example
uses MS Source-Safe).

Properties

This command displays the properties of the currently selected file, and is dependent on the
source control provider you use.

To display the properties of the currently selected file:
 Select Project | Source Control | Properties.

This command can only be used on single files.

© 2007 Altova GmbH

Project Menu 281User Reference

User Manual

Refresh Status

This command refreshes the status of all project files independent of their current status.

Run Native Interface

This command starts your source control software with its usual user interface.

11.3.7 Add Files to Project

The Project | Add Files to Project... command adds files to the current project. Use this
command to add files to any folder in your project. You can either select a single file or any
group of files (using Ctrl+ click) in the Open dialog box. If you are adding files to the project,
they will be distributed among the respective folders based on the File Type Extensions defined
in the Project Properties dialog box.

11.3.8 Add URL to Project

The Project | Add URL to Project... command adds a URL to the current project. URLs in a
project cause the target object of the URL to be included in the project. Whenever a batch
operation is performed on a URL or on a folder that contains a URL object, XMLSpy retrieves
the document from the URL, and performs the requested operation.

282 User Reference Project Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

11.3.9 Add Active File to Project

The Project | Add Active File to Project command adds the active file to the current project. If
you have just opened a file from your hard disk or through an URL, you can add the file to the
current project using this command.

11.3.10 Add Active And Related Files to Project

The Project | Add Active and Related Files to Project command adds the currently active
XML document and all related files to the project. When working on an XML document that is
based on a DTD or Schema, this command adds not only the XML document but also all
related files (for example, the DTD and all external parsed entities to which the DTD refers) to
the current project.

Please note: Files referenced by processing instructions (such as XSLT files) are not
considered to be related files.

11.3.11 Add Project Folder to Project

The Project | Add Project Folder to Project... command adds a new folder to the current
project. Use this command to add a new folder to the current project or a sub-folder to a project
folder. You can also access this command from the context-menu when you right-click on a
folder in the project window.

11.3.12 Add External Folder to Project

The Project | Add External Folder to Project command adds a new external folder to the
current project. Use this command to add a local or network folder to the current project. You
can also access this command from the context-menu when you right-click a folder in the
project window.
Please note: Files contained in external folders cannot be placed under source control.

Adding external folders to projects
To add an external folder to the project:

1. Select the menu option Project | Add External Folder to Project.
2. Select the folder you want to include from the Browse for Folder dialog box, and click

OK to confirm.

© 2007 Altova GmbH

Project Menu 283User Reference

User Manual

The selected folder now appears in the project window.

3. Click the plus icon to view the folder contents.

Filtering contents of folders
To filter the contents of the folder:

1. Right-click the local folder, and select the popup menu option Properties. This opens
the Properties dialog box.

2. Click in the File extensions field and enter the file extensions of the file types you want
to see. You can separate each file type with a semicolon to define multiple types (XML

284 User Reference Project Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

and Schema XSDs in this example).
3. Click OK to confirm.

The Project window now only shows the XML and XSD files of the tutorial folder.

Validating external folders
To validate and check an external folder for well-formedness:

1. Select the file types you want to see or check from the external folder,

2. Click the folder and click the Check well-formedness or Validate icon
(hotkeys F7 or F8). All the files visible under the folder are checked.

If a file is malformed or invalid, then this file is opened in the Main Window, allowing you
to edit it. In this case the CompanyLast file is opened because the PhoneExt value does
not match the facet defined in the underlying schema file. This schema only allows
two-digit numbers.

3. Correct the error and restart the process to recheck the rest of the folder.

Please note: You can select discontinuous files in the folder, by holding down CTRL and

© 2007 Altova GmbH

Project Menu 285User Reference

User Manual

clicking the files singly. Only these files are then checked when you click F7 or F8.

Updating a project folder
You might add or delete files in the local or network directory at any time. To update the folder
view,
 Right-click the external folder, and select the popup menu option Refresh external

folder.

Deleting files or folders:

 Right-click a folder and press the Delete key to delete the folder from the Project
window. This only deletes the folder from the Project view, and does not delete anything
on your hard disk or network.

 Right-clicking a single file and pressing Delete does not delete a file from the Project
window. You have to delete it physically and then Refresh the external folder contents.

11.3.13 Add External Web Folder to Project

This command adds a new external web folder to the current project.

Use this command to add a web folder to the current project. You can also access this
command from the context-menu when you right-click a folder in the project window. Please
note that files contained in external folders cannot be placed under source control.

To add an external web folder to the project:
1. Select the menu option Project | Add External Web Folder to project.

This opens the Add Web folder to project dialog box.

2. Click in the Server URL field to enter the server URL, and enter the login ID in the User
and Password fields.

3. Click Browse to connect to the server and view the files available there.

286 User Reference Project Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

4. Click the folder you want to add to the project view. The OK button only becomes
active once you do this. The Folder name and http: server address now appear in the
File URL field.

5. Click OK to add the folder to the project.

6. Click the plus icon to view the folder contents.

To filter the folder contents:
1. Right click the web folder, and select the popup menu option Properties.

This opens the Properties dialog box.
 2. Click in the File extensions field and enter the file extensions of the file types you want

to see. You can separate each file type with a semicolon to define multiple types (XML

© 2007 Altova GmbH

Project Menu 287User Reference

User Manual

and Schema XSDs for example).
3. Click OK to confirm.

The Project window now only shows the XML and XSD files of the web folder.

Validating and checking a folder for well-formedness:

1. Click the folder and click the Check well-formedness or Validate icon
(hotkeys F7 or F8).
All the files visible under the folder are checked.

If a file is malformed or invalid, then this file is opened in the main window, allowing you
to edit it.

 2. Correct the error and restart the process to recheck the rest of the folder.

Please note:
You can select discontinuous files in the folder, by holding down CTRL and clicking the
files singly. Only these files are then checked when you click F7 or F8.

To update the project folder contents:
Files may be added or deleted from the web folder at any time. To update the folder view,
 Right-click the external folder, and select the popup menu option Refresh external

folder.

Deleting files or folders:

 Right-click a folder and hit the Delete key, to delete the folder from the Project
window. This only deletes the folder from the Project view, and does not delete anything
on the web server.

 Right-clicking a single file and hitting Delete does not delete a file from the Project
window. You have to delete it physically and then Refresh the external folder contents.

11.3.14 Project Properties

The Project | Project Properties command lets you define important settings for any of the
specific folders in your project.

To define the Project Properties for a folder:
1. Right-click on the folder you want to define the properties for.
2. Select the Properties... command from the context menu.

Please note:
If your project file is under source control, a prompt appears asking if you want to check
out the project file (*.spp). Click OK if you want to edit settings and be able to save
them.

288 User Reference Project Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

The files specified in the Use this xxx entry will take precedence over any local assignment
directly within the XML file. For example, the OrgChart.xsl file (in the Use this XSL entry),
will always be used when transforming any of the XML files in the XML Files folder. Also, such
specified files for individual folders take precedence over files specified for ancestor folders.

File extensions
The File extensions help to determine the automatic file-to-folder distribution that occurs when
you add new files to the project (as opposed as to one particular folder).

Validate
Define the DTD or Schema document that should be used to validate all files in the current
folder (Main Pages in this example).

XSL transformation of XML files
You can define the XSL Stylesheet to be used for XSL Transformation of all files in the folder.

If you are developing XSL Stylesheets yourself, you can also assign an example XML document
to be used to preview the XSL Stylesheet in response to an XSL Transformation command
issued from the stylesheet document, instead of the XML instance document.

XSL:FO transformation of XML files
You can define the XSL Stylesheet, containing XSL:FO markup, to be used for XSL:FO
Transformation of all files in the folder.

Destination files of XSL transformation
For batch XSL Transformations, you can define the destination directory the transformed files

© 2007 Altova GmbH

Project Menu 289User Reference

User Manual

should be placed in.

If you have added one file or URL to more than one folder in your project, you can use the
Properties dialog to set the default folder whose settings should be used when you choose to
validate or transform the file in non-batch mode. To do this, use the Use settings in current
folder as default check box (see screenshot).

To access the Properties dialog and check this check box:
1. Copy an XML file in a project to a different folder.
2. Right-click the copied file in the Project window and select Properties from the context

menu.

Authentic View
The "Use config." option allows you to select a StyleVision Power Stylesheet (SPS file) when
editing XML files using Authentic View, in the current folder. After you have associated the
schema, SPS, and XML files with each other, and entered them in a project, changing the
location of any of the files could cause errors among the associations.

To avoid such errors, it is best to finalize the locations of your schema, SPS, and XML files
before associating them with each other and assigning them to a project.

11.3.15 Most Recently Used Projects

This command displays the file name and path for the nine most recently used projects,
allowing quick access to these files.

Also note, that XMLSpy can automatically open the last project that you used, whenever you
start XMLSpy. (Tools | Options | File tab, Project | Open last project on program start).

290 User Reference XML Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

11.4 XML Menu

The XML menu contains commands commonly used when working with XML documents. You
will find commands to insert or append elements, modify the element hierarchy, set a
namespace prefix, as well as to evaluate XPaths in the context of individual XML documents.

Among the most frequently used XML tasks are checks for the well-formedness of documents
and validity of XML documents. Commands for these tasks are in this menu.

11.4.1 Insert

The XML | Insert command, though enabled in all views, can be used in Grid View only. It has a
submenu (see screenshot) with which you can insert:

 The XML declaration and node types (Attribute, Element, Text, CDATA, Comment,
Processing Instruction) in XML documents;

 DOCTYPE declarations and external DTD declarations in XML documents;
 DTD declarations (ELEMENT, ATTLIST, ENTITY, and NOTATION) in DTD documents

and internal DTD declarations of XML documents.

© 2007 Altova GmbH

XML Menu 291User Reference

User Manual

Insert Attribute

Ctrl+Shift+I

The XML | Insert | Attribute command is available in Grid View only, and inserts a new
attribute before the selected item. An inserted attribute may appear a few lines before the
current item in Grid View. This is because attributes immediately follow their parent element in
Grid View and precede all child elements of that parent element.

Insert Element

Ctrl+Shift+E

The XML | Insert | Element command is available in Grid View only, and inserts a new element
before the selected item. If the current selection is an attribute, the new element is before the
first child element of the attribute's parent element.

Insert Text

Ctrl+Shift+T

The XML | Insert | Text command is available in Grid View only, and inserts a new text row
before the selected item. If the current selection is an attribute, the text row is inserted after the
attribute and before the first child element of the attribute's parent element.

292 User Reference XML Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Insert CDATA

Ctrl+Shift+D

The XML | Insert | Cdata command is available in Grid View only, and inserts a new CDATA
block before the selected item. If the current selection is an attribute, the CDATA block is
inserted after the attribute and before the first child element of the attribute's parent element.

Insert Comment

Ctrl+Shift+M

The XML | Insert | Comment command is available in Grid View only, and inserts a new
comment before the selected item. If the current selection is an attribute, the new comment row
is inserted after the attribute and before the first child element of the attribute's parent element.

Insert XML

The XML | Insert | XML command is available in Grid View only, and inserts a row for the XML
declaration before the selected item. You must insert the child attributes of the XML declaration
and the values of this attribute. An XML declaration must look something like this:

<?xml version="1.0" encoding="UTF-8"?>

Please note: Since an XML document may only contain one XML declaration at the very top of
the file, this command should only be used with the topmost row selected and if an XML
declaration does not already exist.

Insert Processing Instruction

The XML | Insert | Processing Instruction command is available in Grid View only, and inserts
 a new processing instruction (PI) before the selected item. If the current selection is an
attribute, the PI is inserted after the attribute and before the first child element of the attribute's
parent element.

Insert DOCTYPE

The XML | Insert | DOCTYPE command is available in the Grid View of an XML file when a
top-level node is selected. It appends a DOCTYPE declaration at the top of the XML document.
You must enter the name of the DOCTYPE, and this name must be the same as the name of
the document element.

© 2007 Altova GmbH

XML Menu 293User Reference

User Manual

After you have entered the name of the DOCTYPE, you can enter the declarations you wish to
use in the internal DTD subset.

Please note:

 A DOCTYPE declaration may only appear between the XML declaration and the XML
document element.

 You could use the Assign DTD command instead to create a DOCTYPE statement that
refers to an external DTD document.

Insert ExternalID

A DOCTYPE declaration in an XML file can contain a reference to an external resource
containing DTD declarations. This resource is referenced either through a public or system
identifier. For example:

<!DOCTYPE doc_element_name PUBLIC "publicID" "systemID">
<!DOCTYPE doc_element_name SYSTEM "systemID">

A system identifier is a URI that identifies the external resource. A public identifier is
location-independent and can be used to dereference the location of an external resource. For
example, in your XMLSpy installation, URIs for popular DTDs and XML Schemas are listed in a
catalog file called MainCatalog.xml. A public identifier in an XML document can be used to
dereference a DTD listed in MainCatalog.xml.

The XML | Insert | ExternalID command is available when a "child" item of the DOCTYPE
declaration in an XML file is selected in Grid View. This command inserts a Grid View row for an
external identifier (PUBLIC or SYSTEM). You must enter the type of identifier and its value.

The Text View corresponding to the screenshot of the Grid View shown above looks something
like this:

<!DOCTYPE OrgChart SYSTEM "orgchart.dtd" [
 <!ELEMENT name (#PCDATA)>
]>

Please note: A row for External-ID can be added as a child when the DOCTYPE item is
selected, or it can be inserted or appended when one of the child items of the DOCTYPE item is
selected, for example, the ELEMENT declaration name in the example above.

Insert ELEMENT

The XML | Insert | ELEMENT command is available in Grid View only, for DTD documents or

294 User Reference XML Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

when an item in the DOCTYPE declaration of an XML document is selected. It inserts an
ELEMENT declaration before the selected declaration.

Insert ATTLIST

The XML | Insert | ATTLIST command is available in Grid View only, for DTD documents or
when an item in the DOCTYPE declaration of an XML document is selected. It inserts an
ATTLIST declaration before the selected declaration.

Insert ENTITY

The XML | Insert | ENTITY command is available in Grid View only, for DTD documents or
when an item in the DOCTYPE declaration of an XML document is selected. It inserts an
ENTITY declaration before the selected declaration.

Insert NOTATION

The XML | Insert | NOTATION command is available in Grid View only, for DTD documents or
when an item in the DOCTYPE declaration of an XML document is selected. It inserts a
NOTATION declaration before the selected declaration.

11.4.2 Append

The XML | Append command, though enabled in all views, can be used in Grid View only. It
opens a submenu (see screenshot) with which you can append:

 The XML declaration and node types (Attribute, Element, Text, CDATA, Comment,
Processing Instruction) in XML documents;

 DOCTYPE declarations and external DTD declarations in XML documents
 DTD declarations (ELEMENT, ATTLIST, ENTITY, and NOTATION) in DTD documents

and internal DTD declarations of XML documents.

© 2007 Altova GmbH

XML Menu 295User Reference

User Manual

Append Attribute

Ctrl+I

The XML | Append | Attribute command is available in Grid View only, and appends a new
attribute.

Append Element

Ctrl+E

The XML | Append | Element command is available in Grid View only, and appends an
element node after the last sibling element of the selected element. If an attribute node is
selected, then the element node is appended after the last child of the selected attribute's
parent element.

Append Text

Ctrl+T

The XML | Append | Text command is available in Grid View only, and appends a text block
after the last sibling element of the selected element. If an attribute node is selected, then the
text block is appended after the last child of the selected attribute's parent element.

296 User Reference XML Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Append CDATA

Ctrl+D

The XML | Append | Cdata command is available in Grid View only, and appends a CDATA
node after the last sibling of any selected node other than an attribute node. If an attribute node
is selected, then the CDATA section is appended after the last child of the selected attribute's
parent element.

Append Comment

Ctrl+M

The XML | Append | Comment command is available in Grid View only, and appends a
comment node after the last sibling of any selected node other than an attribute node. If an
attribute node is selected, then the comment node is appended after the last child of the
selected attribute's parent element.

Append XML

The XML | Append | XML command inserts a new XML declaration <?xml version="1.0"
encoding="UTF-8"?> as the first item in a document.

Please note: An XML document may contain only one XML declaration, which must appear at
the very top of the file.

Append Processing Instruction

The XML | Append | Processing Instruction command is available in Grid View only, and
appends a processing instruction node after the last sibling of any selected node other than an
attribute node. If an attribute node is selected, then the comment node is appended after the
last child of the selected attribute's parent element.

Append DOCTYPE

The XML | Append | DOCTYPE command is available in the Grid View of an XML file when a
top-level node is selected. It appends a DOCTYPE declaration at the top of the XML document.
You must enter the name of the DOCTYPE, and this name must be the same as the name of
the document element.

© 2007 Altova GmbH

XML Menu 297User Reference

User Manual

After you have entered the name of the DOCTYPE, you can enter the declarations you wish to
use in the internal DTD subset.

Please note:

 A DOCTYPE declaration may only appear between the XML declaration and the XML
document element.

 You could use the Assign DTD command instead to create a DOCTYPE statement that
refers to an external DTD document.

Append ExternalID

A DOCTYPE declaration in an XML file can contain a reference to an external resource
containing DTD declarations. This resource is referenced either through a public or system
identifier. For example:

<!DOCTYPE doc_element_name PUBLIC "publicID" "systemID">
<!DOCTYPE doc_element_name SYSTEM "systemID">

A system identifier is a URI that identifies the external resource. A public identifier is
location-independent and can be used to dereference the location of an external resource. For
example, in your XMLSpy installation, URIs for popular DTDs and XML Schemas are listed in a
catalog file called MainCatalog.xml. A public identifier in an XML document can be used to
dereference a DTD listed in MainCatalog.xml.

The XML | Append | ExternalID command is available when a "child" item of the DOCTYPE
declaration in an XML file is selected in Grid View. This command inserts a Grid View row for an
external identifier (PUBLIC or SYSTEM). You must enter the type of identifier and its value.

The Text View corresponding to the screenshot of the Grid View shown above looks something
like this:

<!DOCTYPE OrgChart SYSTEM "orgchart.dtd" [
 <!ELEMENT name (#PCDATA)>
]>

Please note: A row for External-ID can be added as a child when the DOCTYPE item is
selected, or it can be inserted or appended when one of the child items of the DOCTYPE item is
selected, for example, the ELEMENT declaration name in the example above.

Append ELEMENT

The XML | Append | ELEMENT command is available in Grid View only, for DTD documents or
when an item in the DOCTYPE declaration of an XML document is selected. It appends an
ELEMENT declaration to the list of declarations.

298 User Reference XML Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Append ATTLIST

The XML | Append | ATTLIST command is available in Grid View only, for DTD documents or
when an item in the DOCTYPE declaration of an XML document is selected. It appends an
ATTLIST declaration to the list of declarations.

Append ENTITY

The XML | Append | ENTITY command is available in Grid View only, for DTD documents or
when an item in the DOCTYPE declaration of an XML document is selected. It appends an
ENTITY declaration to the list of declarations.

Append NOTATION

The XML | Append | NOTATION command is available in Grid View only, for DTD documents
or when an item in the DOCTYPE declaration of an XML document is selected. It appends a
NOTATION declaration to the list of declarations.

11.4.3 Add Child

The XML | Add Child command, though enabled in all views, can be used in Grid View only. It
opens a submenu (see screenshot) with which you can add the following child items to the
currently selected element.

 The XML declaration and node types (Attribute, Element, Text, CDATA, Comment,
Processing Instruction) in XML documents;

 DOCTYPE declarations and external DTD declarations in XML documents
 DTD declarations (ELEMENT, ATTLIST, ENTITY, and NOTATION) in DTD documents

and internal DTD declarations of XML documents.

© 2007 Altova GmbH

XML Menu 299User Reference

User Manual

Add Child Attribute

Ctrl+Alt+I

The XML | Add Child | Attribute command is available in Grid View only and when an element
node is selected. It inserts a new attribute as a child of the selected element node.

Add Child Element

Ctrl+Alt+E

The XML | Add Child | Element command is available in Grid View only. It inserts a new
element as a child of the selected node.

Add Child Text

Ctrl+Alt+T

The XML | Add Child | Text command is available in Grid View only, and inserts new text
content as a child of the selected item.

Add Child CDATA

Ctrl+Alt+D

The XML | Add Child | Cdata command is available in Grid View only, and inserts a new

300 User Reference XML Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

CDATA section as a child of the selected item.

Add Child Comment

Ctrl+Alt+M

The XML | Add Child | Comment command is available in Grid View only, and inserts a new
Comment node as a child of the selected item.

Add Child XML

The XML | Add Child | XML command is available in Grid View only and when the file is empty
. It inserts a new XML declaration <?xml version="1.0" encoding="UTF-8"?> as the
first item in a document.

Please note: An XML document may contain only one XML declaration, which must appear at
the very top of the file.

Add Child Processing Instruction

The XML | Add Child | Processing Instruction command is available in Grid View only and
inserts a new Processing Instruction (PI) as a child of the selected item.

Add Child DOCTYPE

The XML | Add Child | DOCTYPE command is only available in the Grid View of an empty
document. It inserts a DOCTYPE declaration in an XML document. The DOCTYPE declaration
can be used to declare an internal DTD subset.

Add Child ExternalID

The XML | Add Child | ExternalID command is available only when the DOCTYPE declaration
of an XML file is selected in Grid View. This command inserts a Grid View row for an external
identifier (PUBLIC or SYSTEM). You must enter the type of identifier and its value.

© 2007 Altova GmbH

XML Menu 301User Reference

User Manual

The Text View corresponding to the screenshot of the Grid View shown above looks something
like this:

<!DOCTYPE OrgChart SYSTEM "orgchart.dtd" [
 <!ELEMENT name (#PCDATA)>
]>

Please note: A row for External-ID can be added as a child when the DOCTYPE item is
selected, or it can be inserted or appended when one of the child items of the DOCTYPE item is
selected, for example, the ELEMENT declaration name in the example above.

Add Child ELEMENT

The XML | Add Child | ELEMENT command is available in Grid View only, for DTD
documents, or when the DOCTYPE declaration of an XML document is selected. It appends an
ELEMENT declaration to the list of declarations.

Add Child ATTLIST

The XML | Add Child | ATTLIST command is available in Grid View only, for DTD documents,
or when the DOCTYPE declaration of an XML document is selected. It appends an ATTLIST
declaration to the list of declarations.

Add Child ENTITY

The XML | Add Child | ENTITY command is available in Grid View only, for DTD documents, or
when the DOCTYPE declaration of an XML document is selected. It appends an ENTITY
declaration to the list of declarations.

Add Child NOTATION

The XML | Add Child | NOTATION command is available in Grid View only, for DTD
documents, or when the DOCTYPE declaration of an XML document is selected. It appends an
NOTATION declaration to the list of declarations.

11.4.4 Convert To

The XML | Convert to command converts a selected item in Grid View to a different item type.
This operation is available only in Grid View on individual items that do not contain any child
node. Placing the cursor over the Convert to command displays a submenu (see screenshot)
which contains the items to which the selected item can be converted.

302 User Reference XML Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Please note: If the operation you select would result in a loss of data (for example, converting
an attribute to a comment would result in a loss of the attribute name), a warning dialog box will
appear.

Convert To Attribute

The XML | Convert to | Attribute command converts the selected item to a attribute.

Convert To Element

The XML | Convert to | Element command converts the selected item to an element.

Convert To Text

The XML | Convert to | Text command converts the selected item into text content.

Convert To CDATA

The XML | Convert to | Cdata command converts the selected item into a CDATA segment.

Convert To Comment

The XML | Convert to | Comment command converts the selected item into a comment.

© 2007 Altova GmbH

XML Menu 303User Reference

User Manual

Convert To XML

The XML | Convert to | XML command converts the selected item to an XML declaration:

<?xml version="1.0" encoding="UTF-8"?>.

Please note: Each XML document may only contain one XML declaration and it must appear at
the very top of the file.

Convert To Processing Instruction

The XML | Convert to | Processing Instruction command converts the selected item to a new
Processing Instruction (PI).

Convert To DOCTYPE

The XML | Convert to | DOCTYPE command converts the selected item to a DOCTYPE
declaration (in an XML file).

Please note: A DOCTYPE declaration may only appear at the top of an XML instance
document between the XML Declaration and the document element of the XML document.

Convert To ExternalID

The XML | Convert to | ExternalID command converts the selected item to an external DTD
reference in a DOCTYPE declaration (PUBLIC or SYSTEM identifier).

Convert To ELEMENT

The XML | Convert to | ELEMENT command converts the selected item to an element
declaration in a DOCTYPE declaration or in an external DTD.

Convert To ATTLIST

The XML | Convert to | ATTLIST command converts the selected item to an attribute list
declaration in a DOCTYPE declaration or in an external DTD.

Convert To ENTITY

The XML | Convert to | ENTITY command converts the selected item to an entity declaration in
a DOCTYPE declaration or in an external DTD.

Convert To NOTATION

The XML | Convert to | NOTATION command converts the selected item to a notation
declaration in a DOCTYPE declaration or in an external DTD.

304 User Reference XML Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

11.4.5 Table

The XML | Table command, though enabled in all views, can be used only in Grid View. It
displays a submenu with all the commands relevant to the Database/Table View of Grid View.

Display as Table

F12

The XML | Table | Display as Table command allows you to switch between the standard Grid
View and Database/Table View (or Table View) of a document element. The Table View
enables you to view repeated elements as a table in which the rows represent the occurrences
while the columns represent child nodes (including comments, CDATA sections, and PIs).

To switch to Table View:

1. Select any one occurrence of the repeating element you wish to view as a table.

2. Click XML | Display as Table or F12 or the toolbar icon.

The element is displayed as a table and the toolbar icon is activated.

© 2007 Altova GmbH

XML Menu 305User Reference

User Manual

To switch from the Table View of a document element to the normal Grid View of that element,

select the table or any of its rows or columns, and click the toolbar icon. That table element
switches to Grid View.

Insert Row

Shift+F12

The XML | Table | Insert Row command is enabled in Database/Table View when a row or cell
is selected. It inserts a new row before the selected row. The new row corresponds to an
occurrence of the table element. Mandatory child elements are created for the new element

Append Row

Ctrl+F12

The XML | Table | Append Row command is enabled in Database/Table View when a row or
cell is selected. It appends a new row after the last row of the table. The new row corresponds
to an occurrence of the table element. Mandatory child elements are created for the new
element

Ascending Sort

The XML | Table | Ascending Sort command is enabled in Database/Table View when a
column or cell is selected. It sorts the column in either alphabetic or numeric ascending order.
XMLSpy tries to automatically determine what kind of data is used in the column, and sorts on
alphabetic or numeric order, as required. In case of uncertainty, you will be prompted for the
sort method to use (see screenshot).

Descending Sort

The XML | Table | Descending Sort command is enabled in Database/Table View when a
column or cell is selected. It sorts the column in either alphabetic or numeric descending order.
XMLSpy tries to automatically determine what kind of data is used in the column, and sorts on

306 User Reference XML Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

alphabetic or numeric order, as required. In case of uncertainty, you will be prompted for the
sort method to use (see screenshot).

11.4.6 Move Left

Ctrl+L

The XML | Move Left command is available in Grid View only. It moves the selected node to
the left by one level, thereby changing a child element into a sibling of its parent. This command
is often referred to as the Promote command.

11.4.7 Move Right

Ctrl+R

The XML | Move Right command is available in Grid View only. It moves the selected node to
the right by one level, thereby turning it into a child element of the preceding sibling element.
This command is often referred to as the Demote command.

11.4.8 Enclose in Element

The XML | Enclose in Element command is enabled in Grid View only. It encloses a selected
text range in a new element. The new element is created inline around the selected text. If you
are editing a document based on a Schema or DTD, you will automatically be presented with a
list of valid choices for the name of the element in which the text is to be enclosed.

For example, in the screenshot below, the text Nanonull in the para element is highlighted.

When you select the command XML | Enclose in Element, the text Nanonull is enclosed in a
newly created inline element and a list appears offering a choice of bold or italic for the
name of the element. These elements are defined in the schema as children of para.

© 2007 Altova GmbH

XML Menu 307User Reference

User Manual

The selection you make will be the name of the new element. Alternatively, you can enter some
other name for the element.

11.4.9 Evaluate XPath

The XML | Evaluate XPath command opens the Output Windows if these are not open and
activates the XPath tab in the Output Windows. In the XPath tab, you can evaluate an XPath
expression on the active document and see the results in the Output Window.

11.4.10 Check Well-Formedness

F7

The XML | Check well-formedness (F7) command checks the active document for
well-formedness by the definitions of the XML 1.0 specification. Every XML document must be
well-formed. XMLSpy checks for well-formedness whenever a document is opened or saved, or
when the view is changed from Text to any other view. You can also check for well-formedness
at any time while editing by using this command

If the well-formedness check succeeds when you explicitly invoke the check, a message is
displayed in the Validation window:

If an error is encountered during the well-formedness check, a corresponding error message is
displayed:

308 User Reference XML Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Please note: The output of the Validation window has 9 tabs. The validation output is always
displayed in the active tab. Therefore, you can check well-formedness in tab1 for one schema
file and keep the result by switching to tab 2 before validating the next schema document
(otherwise tab 1 is overwritten with the validation result).

It is generally not permitted to save a malformed XML document, but XMLSpy gives you a Save
Anyway option. This is useful when you want to suspend your work temporarily (in a not
well-formed condition) and resume it later.

Please note: You can also use the Check well-formedness command on any file, folder, or
group of files in the active project window. Click on the respective folder, and then on the Check
Well-Formedness icon.

11.4.11 Validate

F8

The XML | Validate (F8) command enables you to validate XML documents against DTDs,
XML Schemas, and other schemas. Validation is automatically carried out when you switch
from Text View to any other view. You can specify that a document be automatically validated
when a file is opened or saved (Tools | Options | File). The Validate command also carries
out a well-formedness check before checking validity, so there is no need to use the Check
Well-Formedness command before using the Validate command.

If a document is valid, a successful validation message is displayed in the Validation window:

Otherwise, a message that describes the error is displayed.

Please note: You can click on the links in the error message to jump to the spot in the XML file
where the error was found.

© 2007 Altova GmbH

XML Menu 309User Reference

User Manual

Please note: The output of the Validation window has 9 tabs. The validation output is always
displayed in the active tab. Therefore, you can check well-formedness in tab1 for one schema
file and keep the result by switching to tab 2 before validating the next schema document
(otherwise tab 1 is overwritten with the validation result).

The command is normally applied to the active document. But you can also apply the command
to a file, folder, or group of files in the active project. Select the required file or folder in the
Project Window (by clicking on it), and click XML | Validate or F8. Invalid files in a project will
be opened and made active in the Main Window, and the File Is Invalid error message will be
displayed.

Validating XML documents
To validate an XML file, make the XML document active in the Main Window, and click XML |
Validate or F8. The XML document is validated against the schema referenced in the XML file.
If no reference exists, an error message is displayed at the bottom of the Main Window. As long
as the XML document is open, the schema is kept in memory (see Flush Memory Cache in the
DTD/Schema menu).

Validating schema documents (DTDs and XML Schema)
XMLSpy supports major schema dialects, including DTD and XML Schema. To validate a
schema document, make the document active in the Main Window, and click XML | Validate
or F8.

Schema validation messages in the Validation window
If the schema (DTD or XML Schema) is valid, a successful validation message is displayed in
the Validation window; the Validation window pops up at the bottom of the application window. If
the schema is not valid, one or more error messages are displayed in the Validation window (
screenshot below).

310 User Reference XML Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

The error message is divided into three parts:

1. A description of the error. The description contains links to the relevant declarations or
definitions.

2. The location of the error within the schema structure. Clicking a node in the location
path highlights that node in the document.

3. Details of the error provides more information about the error and contains a link to the
relevant paragraph in the relevant specification (the XML specification for DTD
validation; and XML Schema specification for XML Schema validation).

Please note: When the validation is done in Text View, clicking a link in the Validation window
highlights the corresponding declaration or definition in Text View. When the validation is done
in Schema/WSDL View, the corresponding declaration or definition is highlighted either in the
graphic view of Schema/WSDL View or in the relevant entry helper window.

Catalogs
XMLSpy supports a subset of the OASIS XML catalogs mechanism. The catalog mechanism
enables XMLSpy to retrieve commonly used schemas (as well as stylesheets and other files)
from local user folders. This increases the overall processing speed, enables users to work
offline (that is, not connected to a network), and improves the portability of documents (because
URIs need to be changed in the catalog files only.) The catalog mechanism in XMLSpy works
as follows:

 XMLSpy loads a file called RootCatalog.xml, which contains a list of catalog files that
will be looked up. You can enter as many catalog files to look up, each in a
nextCatalog element in RootCatalog.xml.

 The catalog files included in RootCatalog.xml are looked up and the URIs are
resolved according to the mappings specified in the catalog files. You should take care
not to duplicate mappings, as this could lead to errors.

 Two catalog files are supplied with XMLSpy (in addition to RootCatalog.xml): (i)
CoreCatalog.xml (which maps the pre-defined PUBLIC system identifiers of several
popular schemas (such as SVG and DocBook) to URIs that point to the locally saved
schemas), and (ii) CustomCatalog.xml. (which is a skeleton file in which you can
create your own mappings). The files RootCatalog.xml, CoreCatalog.xml, and
CustomCatalog.xml are installed in the XMLSpy application folder.The schemas,
stylesheets, and other files referenced from CoreCatalog.xml are located in specific
subfolders of your XMLSpy application folder.

 The PUBLIC or SYSTEM identifier in the DOCTYPE statement of your XML file will be used
for the catalog lookup. For popular schemas, the PUBLIC identifier is usually
pre-defined, thus requiring only the URI in the catalog file to be changed when XML
documents are used on multiple machines.

© 2007 Altova GmbH

XML Menu 311User Reference

User Manual

When writing your CustomCatalog.xml file (or other custom catalog file), use only the following
subset of the OASIS catalog in order for XMLSpy to process the catalog correctly. Each of the
elements in the supported subset can take the xml:base attribute, which is used to specify the
base URI of that element.

<catalog...>
...
<public publicId="PublicID of Resource" uri="URL of local file"/>
<system systemId="SystemID of Resource" uri="URL of local file"/>
<rewriteURI uriStartString="StartString of URI to rewrite"
rewritePrefix="String to replace StartString"/>
<rewriteSystem systemIdStartString="StartString of SystemID"
rewritePrefix="Replacement string to locate resource locally"/>
<uri name="filename" uri="URL of file identified by filename"/>
...
</catalog>

Please note:

 Although the DTDs for XML Schemas are referenced from CoreCatalog.xml, you
cannot validate your XML files against either of these schemas. They are included to
provide entry helper info for editing purposes should you wish to create files according
to these older recommendations. Also see next point.

 If you create a custom file extension for a particular schema (for example, the .myhtml
extension for (HTML) files that are to be valid according to the HTML DTD), then you
can enable intelligent editing for files with these extensions by adding a line of text to
CustomCatalog.xml. For the example extension mentioned, you should add the
element <spy:fileExtHelper ext="myhtml"

uri="schemas/xhtml/xhtml1-transitional.dtd"/> as a child of the <catalog>
element. This would enable intelligent editing (auto-completion, entry helpers, etc) of
.myhtml files in XMLSpy according to the XHTML 1.0 Transitional DTD.

 For more information on catalogs, see the XML Catalogs specification.

Automating validation with Altova XML 2007

Altova XML is a free application which contains Altova's XML Validator, XSLT 1.0, XSLT 2.0,
and XQuery 1.0 engines. It can be used from the command line, via a COM interface, in Java
programs, and in .NET applications to validate XML documents, transform XML documents
using XSLT 1.0 and 2.0 stylesheets, and execute XQuery documents.

Validation tasks can therefore be automated with the use of Altova XML. For example, you can
create a batch file that calls Altova XML to perform validation on a set of documents and sends
the output to a text file. See the Altova XML documentation for details.

11.4.12 Update Entry-Helpers

The XML | Update Entry Helpers command updates the Entry Helper windows by reloading
the underlying DTD or Schema. If you have modified the XML Schema or DTD that an open
XML document is based upon, it is advisable to update the Entry Helpers so that the intelligent
editing information reflects the changes in the schema.

http://www.oasis-open.org/committees/entity/spec-2001-08-06.html
http://www.altova.com/support_help.html

312 User Reference XML Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

11.4.13 Namespace Prefix.

The XML | Namespace Prefix... command is available in Grid View and opens a dialog box in
which you can set the namespace prefix of the selected element or attribute, and, in the case of
elements, of its descendants as well.

 You can choose to set the namespace prefix on either elements, attributes, or both. The
namespace prefix is applied to the selected element or attribute, and, if an element is selected,
to descendant nodes of the selected element.

© 2007 Altova GmbH

DTD/Schema Menu 313User Reference

User Manual

11.5 DTD/Schema Menu

The DTD/Schema menu contains commands that let you work efficiently with DTDs and XML
Schemas.

This section contains a complete description of all the commands in this menu.

11.5.1 Assign DTD

The DTD/Schema | Assign DTD... command is enabled when an XML file is active. It assigns
a DTD to an XML document, thus allowing the document to be validated and enabling intelligent
editing for the document. The command opens the Assign File dialog to let you specify the DTD
file you wish to assign. Note that you can make the path of the assigned DTD file relative by
clicking the Make Path Relative To... check box. When you are done, your XML document will
contain a DOCTYPE declaration that references the assigned DTD. The DOCTYPE declaration
will look something like this:

<!DOCTYPE main SYSTEM "http://link.xmlspy.com/spyweb.dtd">

Please note: A DTD can be assigned to a new XML file at the time the file is created.

11.5.2 Assign Schema

314 User Reference DTD/Schema Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

The DTD/Schema | Assign Schema... command is enabled when an XML document is active.
It assigns an XML Schema to an XML document, thus allowing the document to be validated
and enabling intelligent editing for the document. The command opens the Assign File dialog to
let you specify the XML Schema file you wish to assign. Note that you can make the path of the
assigned file relative by clicking the Make Path Relative To... check box. When you are done,
your XML document will contain an XML Schema assignment with the required namespaces.
The schema assignment will look something like this:

xmlns="http://www.xmlspy.com/schemas/icon/orgchart"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xsi:schemaLocation="http://www.xmlspy.com/schemas/icon/orgchart

http://schema.xmlspy.com/schemas/icon/orgchart.xsd"

11.5.3 Include another DTD

The DTD/Schema | Include another DTD... command allows you to include another Document
Type Definition (DTD) or external parsed entity into the internal subset of a document type
definition, or in any DTD document. This is done by defining a corresponding external parsed
entity declaration and using that entity in the following line:

<!ENTITY % navigation.dtd SYSTEM "S:\xml\navigation.dtd">
%navigation.dtd;

The command opens the Assign File dialog to let you specify the DTD file you want to include in
your DTD.

Please note: This command is enabled in Grid View only.

11.5.4 Go to DTD

The DTD/Schema | Go to DTD command opens the DTD on which the active XML document
is based. If no DTD is assigned, then an error message is displayed.

11.5.5 Go to Schema

The DTD/Schema | Go to Schema command opens the XML Schema on which the active
XML document is based. If no XML Schema is assigned, then an error message is displayed.

11.5.6 Go to Definition

The DTD/Schema | Go to Definition command displays the exact definition of an element or
attribute in the corresponding Document Type Definition or Schema document.

To see the item definition in Enhanced Grid View
1. Click left on the item.
2. Select the menu item DTD/Schema | Go to Definition, or click on the icon.

© 2007 Altova GmbH

DTD/Schema Menu 315User Reference

User Manual

To see the item definition in Schema/WSDL Design View
1. Use CTRL + Double click on the item you want to see the definition of, or
2. Click the item and select menu option DTD/Schema | Go to Definition, or click on the

icon.

In both cases, the corresponding DTD or Schema file is opened, and the item definition
is highlighted.

11.5.7 Generate DTD/Schema

The DTD/Schema | Generate DTD/Schema command generates a new DTD or W3C XML
Schema from an XML document (or from a set of XML documents contained in a folder in the
project window). This command is useful when you want to generate a DTD or XML Schema
from XML documents.

316 User Reference DTD/Schema Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

If you generate an XML Schema, the following options are available:

 Elements: The type of elements can be defined locally or globally (Define types for
elements). If elements have the same name, a common type can be declared for use in
the definition of these elements (Generate one shared type).

 Atributes: The simple types of attributes (Define simple types for attributes) can be
defined as (i) common global types; (ii) distinct global types; (iii) local types. Attributes
with the same name and type can be defined either locally or globally.

 Simple type recognition: The recognition of types (Simple type recognition) can be set
to: (i) best possible; (ii) recognition of number datatypes only; (iii) no datatype
recognition, in which case all datatypes are set to xs:string.

 Entity resolution: In the XML document, entities may appear in element content and
attribute values. Whether they are resolved or not (Validate and resolve entities) is
therefore significant for enumeration values. Furthermore, some entities (especially
parsed entities that contain markup) can affect the content model differently depending
on whether they are resolved or not. Note that the XML document will be validated for
being correct XML before the schema is generated. If the document is invalid, the
schema generation process will be discontinued.

 Enumerations: All types of values, or string values only, can be enumerated.

If you generate a DTD, the entity resolution and enumeration options are available.

The Generate DTD/Schema command normally operates on the active main window, but you
can also use the Generate DTD/Schema command on any file, folder, or group of files in the
active project window.

11.5.8 Convert DTD/Schema

The DTD/Schema | Convert DTD/Schema... command converts a DTD into an XML Schema
and vice versa. If you select W3C Schema, you must also specify how to represent complex
elements, as elements or as complex types.

Converting a DTD to XML Schema
When you convert a DTD to XML Schema, XMLSpy makes a few assumptions because of the
limited information available. Most notably, the values of certain DTD components are treated
literally rather than having their semantics parsed. This is because the program cannot know
which of several possible usages is intended. In these cases, you should modify the generated
conversion.

© 2007 Altova GmbH

DTD/Schema Menu 317User Reference

User Manual

In any case, you should carefully examine the generated conversion to see if you can enhance
it. A few areas in which improvements may be required are given below.

Attribute Datatyping
DTDs allow for only 10 attribute datatypes, whereas XML Schemas, for instance, allow for 44
datatypes plus derived datatypes. You may wish to enhance a generated XML Schema, for
example, by using a more restrictive datatype. Note that when an XML Schema is converted to
DTD datatype information will be lost.

Namespaces
DTDs are not namespace-aware. As a result, if namespaces are to be specified in a DTD they
must be hard-coded into element and attribute names. This could pose challenging problems
when converting from one schema to another.

Entities
XML Schema does not have equivalents for the general entity declarations of DTDs. When
XMLSpy converts a DTD to an XML Schema, it ignores entity declarations.

Unparsed data declarations
DTDs and XML Schemas use different mechanisms for handling unparsed data. This is
explained in more detail below.

DTDs use the following mechanism:

1. A notation is declared consisting of a name and an identifier, e.g.
<!NOTATION gif SYSTEM "image/gif">

2. You declare the entity, e.g.
<!ENTITY cover_img SYSTEM "graphics/cover_img.gif" NDATA gif>

3. Typically, you specify an attribute type of ENTITY on the relevant attribute, e.g.
<!ELEMENT img EMPTY>
<!ATTLIST img format ENTITY #REQUIRED>

In XML Schema, the corresponding mechanism is as follows:

1. Declare a notation. This functions in the same way as for the DTD.
<xs:notation name="gif" public="image/gif"/>
Note that the public attribute is mandatory and holds the identifier. An optional
system attribute holds the system identifier and is usually an executable that can deal
with resources of the notation type.

2. You associate the notation declaration with a given attribute value using the NOTATION
datatype.

 You cannot, however, use the NOTATION datatype directly, but must derive another
datatype from the NOTATION datatype.
<xs:simpleType name="formatType">

<xs:restriction base="xs:NOTATION">
<xs:enumeration value="gif"/>
<xs:enumeration value="jpeg"/>

</xs:restriction>
</xs:simpleType>

 You associate the attribute with the datatype derived from the NOTATION datatype,
e.g.
<xs:complexType name="imgType">

<xs:attribute name="height"/>
<xs:attribute name="width"/>
<xs:attribute name="location"/>

318 User Reference DTD/Schema Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

<xs:attribute name="format" type="formatType"
use="required"/>

</xs:complexType>
<xs:element name="img" type="imgType"/>

When you convert a DTD to an XML Schema using the Convert DTD/Schema command,
XMLSpy does the following:

 Something like
<!ATTLIST image format ENTITY #REQUIRED
...>

is converted to
<xs:attribute name="format" type="xs:ENTITY" use="required"/>

 And
<!NOTATION gif SYSTEM "image/gif">

is converted to
<xs:notation name="gif" system="image/gif"/>

You should therefore make the following modifications:

1. In notations like <xs:notation name="gif" system="image/gif"/> replace
system with public, and add an optional system identifier if required.

2. Derive a datatype from the NOTATION datatype as described above for formatType.
3. Associate the derived datatype with the relevant attribute.

Please note: According to the XML Schema specification, you do not need to—or cannot,
depending on your viewpoint—declare an external entity.

Converting an XML Schema to a DTD
When you convert an XML Schema to a DTD, the namespace prefixes used in the XML
Schema—not the namespace URIs or the namespace declarations—are carried through to the
names of the corresponding elements and attributes in the DTD.

Note the following points:

1. Since XML parsers ignore namespaces when validating an XML document against a
DTD, the namespace declarations themselves are not converted.

2. The elementFormDefault and the attributeFormDefault attributes of the
xs:schema element determine what elements and attributes have their prefixes
included in the conversion process. If set to unqualified, then only globally declared
elements and attributes, respectively, include prefixes in the conversion. If set to
qualified, all element and attribute names have their prefixes included in the
conversion.

3. Prefixes are converted to their corresponding string value plus a colon. Elements and
attributes in default namespaces are converted to elements and attributes with names
that begin with the string: default_NS_X, where X is an integer (starting with 1 and
having a maximum value equal to the number of default namespaces used in the XML
Schema).

4. In the DTD, element names are composed of parameter entities. This enables you to
easily change the prefix in the DTD should the prefix in the XML document ever need to
change. Parameter entity definitions can be changed either in the DTD document itself
or by overriding the parameter entity definitions in the XML document's internal DTD
subset.

Please note: Namespaces have no semantic value in DTDs, and namespace prefixes carried

© 2007 Altova GmbH

DTD/Schema Menu 319User Reference

User Manual

over from the XML Schema become merely a lexical part of the name of the element or
attribute defined in the DTD.

11.5.9 Convert to UML

The DTD/Schema | Convert to UML command converts a W3C XML Schema to an Altova
UModel Project (.ump) document (hereafter UModel project). UMP is the native format of Altova
UModel, Altova's UML modeling application. UMP files can then be viewed and edited in Altova
UModel.

To convert a schema to UML, do the following:

1. With the schema open, click the Convert to UML command. This pops up the Convert
to UML dialog (screenshot below).

2. In the Content Diagrams tab, select the option Generate Diagrams for XSD Globals.
This will generate, in the UModel project, a content model diagram for each global
component.

3. Select the required options from those available in the dialog. These options are
explained below.

4. If you wish to view the created project in UModel immediately, select the option to open
the project in UModel. Otherwise leave this option unselected.

5. Click OK.
6. In the Save As dialog that appears, browse for the destination folder, then enter the

name of the UMP file, and click Save.

Convert to UML options
The following options are available in the Convert to UML dialog.

In the Content Diagrams tab:

 Hyperlink diagrams creates in each diagram a link to the entry of that global component
in the Model Tree view, thus enabling the component to be quickly located in the
schema hierarchy.

 In the Style pane, the show compartments options enables various compartments to be
either shown or hidden.

In the Package Dependency Diagram tab:

 The Generate Diagram option determines whether a package dependency diagram is

320 User Reference DTD/Schema Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

generated. A package dependency diagram provides an overview of the entire
package, showing the relationships of package components to one another. Note that
the other options in this tab will be enabled only if the Generate Diagram option is
selected.

 Selecting the Hyperlink Package to Diagram option creates a link from the package
diagram to the Model Tree View.

 Three options are available for the layout of the package dependencies diagram: (i)
unorganized layout (Autolayout option unselected); (ii) hierarchical layout (Autolayout
and Hierarchical options selected); and (iii) evenly spaced (Autolayout and Force
Directed options selected). The layout can be modified by editing the diagram in
UModel.

Note: The Convert to UML feature supports W3C XML Schemas only.

11.5.10 Map to other DTD/Schema or DB in MapForce...

The DTD/Schema | Map to other DTD/Schema or DB in MapForce command launches
Altova's MapForce if the application is installed. MapForce enables you to map a schema to
another DTD, XML Schema, or database.

11.5.11 Design HTML/PDF Output in StyleVision...

The DTD/Schema | Design HTML/PDF Output in StyleVision... command launches Altova's
StyleVision if the application is installed. StyleVision enables you to design stylesheets for
HTML, PDF, and RTF output.

11.5.12 Generate Sample XML File

The DTD/Schema | Generate Sample XML File command generates an XML file based on the
currently active schema (DTD or XML Schema) in the main window.

© 2007 Altova GmbH

DTD/Schema Menu 321User Reference

User Manual

Elements to be generated
One of the following choices can be selected: (i) mandatory elements only; (ii) all elements
(mandatory and non-mandatory); (iii) mandatory and minimum number of non-mandatory
elements (for example, the first definition in a choice). If elements are defined as being
repeatable, the number of elements to be generated (for each of these repeatable elements)
can be specified.

Generate non-mandatory attributes
Activating this option generates not only mandatory attributes, but also the non-mandatory
attributes, defined in the schema.

Generate X elements if marked repeatable in Schema/DTD
Activating this option generates the number of repeatable elements you enter in the text box.

Fill elements and attributes with data
Activating this option inserts the data type descriptors/values for the respective
elements/attributes. For example: Boolean = 1, xsd:string = string, Max/Min inclusive
= the value defined in the schema.

Nillable elements and abstract types
The contents of nillable elements can be treated as non-mandatory, and elements with an
abstract type can use a non-abstract type for its xsi:type attribute.

Schema assignment for the generated XML file
The schema used to generate the XML file can be assigned to the generated XML file with a
relative or absolute path.

322 User Reference DTD/Schema Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Root element
If the schema contains more than one global element, these are listed, and the root element
required for the sample XML file can be selected from the list.

11.5.13 Flush Memory Cache

The DTD/Schema | Flush Memory Cache command flushes all cached schema (DTD and
XML Schema) documents from memory. To speed up validation and intelligent editing, XMLSpy
caches recently used schema documents and external parsed entities in memory. Information
from these cached documents is also displayed when the Go to Definition command is
invoked.

Flush the memory cache if memory is tight on your system, or if you have used documents
based on different schemas recently.

© 2007 Altova GmbH

Schema Design Menu 323User Reference

User Manual

11.6 Schema Design Menu

The Schema Design menu enables you to configure the Schema Design View of XMLSpy. This
view enables you to design XML Schemas in a GUI. It is available when an XML Schema
document is active in Schema/WSDL View.

The commands available in this menu are described in this section.

11.6.1 Schema Settings

The Schema Design | Schema Settings command lets you define global settings for the active
schema. These settings are attributes and their values of the XML Schema document element,
xs:schema.

324 User Reference Schema Design Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

You can make the following settings in this dialog:
 The elementFormDefault and attributeFormDefault attributes of the xs:schema

element can each be set to qualified or unqualified.

 The blockDefault, finalDefault, and version attributes can be entered in their
respective fields.
 The target namespace for the XML instance document can be set by selecting the
Target Namespace radio button, and entering the target namespace in the field. If
you declare a target namespace, you must define that namespace for use in the schema
document. Do this by entering a namespace line in the Namespace list in the bottom
pane. You can define a prefix for this namespace, or let this namespace be the default
namespace (by leaving the prefix field blank as shown in the screenshot above).

The Text View of the schema settings shown in the screenshot above will look something like
this:

Please note: These settings apply to the active schema document only.

© 2007 Altova GmbH

Schema Design Menu 325User Reference

User Manual

11.6.2 Save Diagram

The Schema Design | Save Diagram... command saves the diagram of the Content Model
currently displayed in the Main Window in PNG format to any desired location.

11.6.3 Generate Documentation

The Schema Design | Generate Documentation command generates detailed documentation
about your schema in HTML, MS Word, or RTF. Documentation is generated for components
you select in the Schema Documentation dialog (which appears when you select the Generate
Documentation command; see screenshot). Related elements (child elements, complex types,
etc.) are hyperlinked in the onscreen output, enabling you to navigate from component to
component. Components with a content model also have links to the content model definitions.
Note also that schema documentation is also generated for included and imported schema
components.

Note: In order to generate documentation in MS Word format, you must have MS Word
(version 2000 or later) installed.

326 User Reference Schema Design Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Clicking the Generate Documentation command opens the Schema documentation dialog:

 The required format is specified in the Output Format pane: either HTML, Microsoft
Word, or RTF. The documentation can be generated either as a single file or be split
into multiple files. When multiple files are generated, each file corresponds to a
component. What components are included in the output is specified using the check
boxes in the Include pane.

 The Embed Diagrams option is enabled for the MS Word and RTF output options.
When this option is checked, diagrams are embedded in the result file, either in PNG or
EMF format. Otherwise diagrams are created as PNG or EMF files, which are displayed
in the result file via object links. When the output is HTML, all diagrams are created as
document-external PNG files.

 In the Include pane, you select which items you want to include in the documentation.
The Index option lists all related schemas at the top of the file, with their global
components organized by component type.

 The Details pane lists the details that may be included for each component. Select the
details you wish to include in the documentation.

 The Show Result File option is enabled for all three output options. When this option is
checked, the result files are displayed in Browser View (HTML output), MS Word (MS
Word output), and the default application for .rtf files (RTF output).

© 2007 Altova GmbH

Schema Design Menu 327User Reference

User Manual

The screenshot above shows generated schema documentation with an index (all related
schemas with their global components organized by component type) at the top of the
document.

Note: When generating documentation for W3C schema documents, XMLSpy uses
application-internal versions of these documents. Consequently, other locations of
these documents are not considered, and redefinitions and other schema modifications
will not be reflected in the documentation.

11.6.4 Configure View

The Schema Design | Configure view command allows you to configure the Content Model
View. Clicking the command opens the Schema Display Configuration dialog at the bottom right
of the XMLSpy window, enabling you to see the effect of your settings as you enter them in the
dialog. The settings take effect when you click the OK button of the dialog, and apply to the
Content Model View of all XML Schema files that are opened subsequently. These settings also
apply to the schema documentation output and printer output.

Defining property descriptor lines for the content model
You can define what properties of elements and attributes are displayed in the Content Model
View. These properties appear as grid lines in component boxes.

328 User Reference Schema Design Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

To define property descriptor lines:
1. Select Schema Design | Configure view. The Schema display configuration dialog

appears.

2. In the Element or Attribute tab, click the Append or Insert icon to add a
property descriptor line. The line is added in the dialog and to element boxes in the
Content Model View.

3. From the combo box, select the property you want to display. See screenshot.
4. Repeat steps 1 and 2 for as many properties as required.

The Content Model View is updated, showing the defined property descriptor lines for all
elements for which they exist.

Please note:

 For attributes, the configuration you define appears only when attributes are displayed
in the diagram (as opposed to them being displayed in a pane below the Content Model
View).

 The configured view applies to all Content Model Views opened after the configuration
is defined.

Deleting a property descriptor line from the Content Model View
To delete individual property descriptor lines, in the Schema Display Configuration dialog, select

© 2007 Altova GmbH

Schema Design Menu 329User Reference

User Manual

the property descriptor line you want to delete, and click the Delete icon .

330 User Reference Schema Design Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Settings for configuring the Content Model View
The Content Model View can be configured using settings in the Schema Display Configuration
dialog. How to define what property descriptor lines are displayed in Content Model View has
been described above. The other settings are described below.

Single line settings
You can define whether a property descriptor line is to contain single or double content, and
whether individual lines must appear for every element or only for elements that contain that
property. Use the appropriate radio buttons to define your settings. Note that these two settings
can be set for individual lines separately (select the required line and make the setting).

© 2007 Altova GmbH

Schema Design Menu 331User Reference

User Manual

Common line settings
This option toggles the line descriptions (i.e. the name of the property) on and off.

Widths
These sliders enable you to set the minimum and maximum size of the element rectangles in
Content Model View. Change the sizes if line descriptor text is not fully visible or if you want to
standardize your display.

Distances
These sliders let you define the horizontal and vertical distances between various elements
onscreen.

Show in diagram
The Annotations check box toggles the display of annotation text on or off, as well as the
annotation text width with the slider. You can also toggle the display of the substitution groups
on or off. The Attributes and Identity Constraints appear in the Content Model diagram if this
check box is selected; otherwise they appear as tabs in a pane at the bottom of the Content
Model window.

Draw direction
These options define the orientation of the element tree on screen, horizontal or vertical.

Editing the content model in the diagram itself
You can change element properties directly in the content model diagram. To do this,
double-click the property you wish to edit and start entering data. If a selection is available, a
drop-down list appears, from which you can select an option. Otherwise, enter a value and
confirm with Enter.

Buttons in the Schema display configuration dialog
This dialog has the following buttons:
 The Load/Save button allows you to load and retrieve the settings you make here.
 The Predefined button, resets the display configuration to default values.
 The Clear all button empties the list box of all entries.

11.6.5 Zoom

The Schema Design | Zoom command controls the zoom factor of the Content Model View.
This feature is useful if you have a large content model and wish to zoom out so that the entire
content model fits in the Main Window. You can zoom between 10% and 200% of actual size.

To zoom in and out, either drag the slider or click in the entry box and enter a percentage value.

11.6.6 Display All Globals

The Schema Design | Display All Globals command switches from Content Model View to
Schema Overview to display all global components in the schema. It is a toggle with the Display
Diagram command. The currently selected toggle is indicated with a check mark to its left (see

332 User Reference Schema Design Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

screenshot).

Alternatively, you could use the Display All Globals icon at the top of the Content Model
View to switch to the Schema Overview.

11.6.7 Display Diagram

The Schema Design | Display Diagram command switches to the Content Model View of the
selected global component—if the selected component has a content model. Global
components that have a content model (complex types, elements, and element groups) are

indicated with the icon to its left. The Display Diagram command is a toggle with the Display
All Globals command. The currently selected toggle is indicated with a check mark to its left (
screenshot below).

Alternatively, you could use the following methods to switch to Content Model View:

 Click the icon next to the component, the content model of which you want to
display.

 Double-click a component name in the Component Navigator Entry Helper (at top right).

11.6.8 Enable Oracle Schema Extensions

XMLSpy provides support for Oracle schema extensions for use with Oracle 9i Project XDB.
Using these schema extensions allows you to configure and customize how Oracle 9i Project
XDB stores XML documents. These XML documents are then accessible through SQL queries
and legacy tools. Please see the Oracle Website for more information.

When you select the Schema Design | Enable Oracle Schema Extensions command, the
following occurs:

 The XDB namespace is declared on the schema element:
xmlns:xdb="http://xmlns.oracle.com/xdb".

 An Oracle tab is created in the Details Entry Helper, enabling you to add attributes—
including XDB-specific attributes—to schema elements such as xsd:complexType
and xsd:element.

http://www.Oracle.com

© 2007 Altova GmbH

Schema Design Menu 333User Reference

User Manual

Oracle extensions can be defined for complex types, elements, and attributes. Use the
Entry Helper as you normally would in XMLSpy.

Please note: This menu command can be toggled on and off, that is, extensions can be
enabled or disabled. When Oracle extensions are enabled, the command is displayed with a
check mark to its left. Disabling Oracle extensions (by clicking the enabled command) deletes
the XDB namespace declaration and all XDB extensions in the file. A warning message
appears since this action cannot be undone.

11.6.9 Oracle Schema Settings

The Schema Design | Oracle Schema Settings command allows you to define global settings
for Oracle schema extensions.

In order to access this dialog, Oracle schema extensions must be enabled (using the Enable
Oracle Schema Extensions command).

11.6.10 Enable Microsoft SQL Server Schema Extensions

XMLSpy provides support for Microsoft SQL Server 2000 schema extensions for use with
Microsoft SQL Server. Using these schema extensions allows you to configure and customize
how Microsoft SQL Server stores XML documents. These XML documents are then accessible
through SQL queries and legacy tools. Please see the Microsoft Website for more information.

When you select the Schema Design | Enable Microsoft SQL Server Schema Extensions
command, the following occurs:

 The SQL Server namespace is declared on the schema element:
xmlns:sql="urn:schemas-microsoft-com:mapping-schema".

 An SQL Server tab is created in the Details Entry Helper, enabling you to add attributes

http://www.microsoft.com

334 User Reference Schema Design Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

to schema elements such as xsd:element.

Where SQL Server extensions can be defined for a schema component, the SQL
Server tab is available in the Details Entry Helper when the component is selected. Use
the Entry Helper as you normally would in XMLSpy.

Please note: This menu command can be toggled on and off, that is, extensions can be
enabled or disabled. When SQL Server extensions are enabled, the command is displayed with
a check mark to its left. Disabling SQL Server extensions (by clicking the enabled command)
deletes the SQL Server namespace declaration and all SQL extensions in the file. A warning
message appears since this action cannot be undone.

11.6.11 Named Schema Relationships

The Schema Design | Named Schema Relationships command allows the definition of
named relationships to provide the information needed to create the document hierarchy. You
have to have previously enabled the SQL Server schema extensions, using the menu option
"Enable SQL Server Schema Extensions", to be able to access this menu option.

To create a named schema relationship:

1. Click the insert or append icon , to add a new row to the dialog box.
2. Click the field and enter the corresponding relationship name.
3. Click OK to confirm.

This generates a SQL relationship element, placing it just after the namespace
declaration.

© 2007 Altova GmbH

Schema Design Menu 335User Reference

User Manual

Please note: Click the delete icon , to delete a row from the dialog box.

11.6.12 Unnamed Element Relationships

The Schema Design | Unnamed Element Relationships command allows the definition of
unnamed relationships to provide the information needed to create the document hierarchy. You
have to have previously enabled the SQL Server schema extensions, using the menu option
Enable Microsoft SQL Server Schema Extensions, to be able to access this menu option.

To create an unnamed schema relationship:

1. Click the insert or append icon , to add a new row to the dialog box.
2. Click the field and enter the corresponding relationship name.
3. Click OK to confirm.

This generates a SQL relationship element for the currently selected schema element.

Please note: Click the delete icon , to delete a row from the dialog box.

11.6.13 Enable Tamino Schema Extensions

XMLSpy provides support for Tamino schema extensions for use with Tamino Server. Software
AG and Altova GmbH have entered into a worldwide agreement giving XMLSpy users easy and
low-cost access to Tamino Server through a Tamino database bundle. For more information,
see the Tamino section of this documentation. Using the Tamino schema extensions allows you
to configure and customize how Tamino Server stores XML documents. These XML documents
are then accessible through queries and legacy tools.

When you select the Schema Design | Enable Tamino Schema Extensions command, the
following occurs:

 If the XML Schema namespace prefix is anything other than xs:, XMLSpy asks
whether it may change the prefix to xs:, as required by Tamino.

 If the file extension is anything other than .tsd, XMLSpy asks whether it may change
the file extension to .tsd., as required by Tamino.

 The Tamino Properties dialog appears, enabling you to specify Tamino settings. See
Tamino Properties for details.

 The Tamino namespace is declared on the schema element:
xmlns:tsd="http://namespaces.softwareag.com/tamino/TaminoSchemaD
efinition".

 A Tamino tab is created in the Details Entry Helper, enabling you to add attributes to

336 User Reference Schema Design Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

schema elements such as xsd:element.

Where Tamino extensions can be defined for a schema component, the Tamino tab is
available in the Details Entry Helper when the component is selected. Use the Entry
Helper as you normally would in XMLSpy.

Please note: This menu command can be toggled on and off, that is, extensions can be
enabled or disabled. When Tamino extensions are enabled, the command is displayed with a
check mark to its left. Disabling Tamino extensions (by clicking the enabled command) deletes
the Tamino namespace declaration and all Tamino extensions in the file. A warning message
appears since this action cannot be undone.

11.6.14 Tamino Schema Properties

The Schema Design | Tamino Schema Properties command opens the Tamino Properties
dialog box, in which you enter Tamino Database and Schema properties. See Tamino Schema
Properties in the Tamino section of this documentation for details about these properties.

11.6.15 Connect to SchemaAgent Server

The Schema Design | Connect to SchemaAgent Server command is enabled when an XML
Schema document is active and it enables you to connect to a SchemaAgent Server. You are
able to connect to a SchemaAgent server only if a licensed Altova SchemaAgent product is
installed on your machine. When you click this command, the Connect to SchemaAgent Server
dialog (screenshot below) opens:

© 2007 Altova GmbH

Schema Design Menu 337User Reference

User Manual

You can use either the local server (the SchemaAgent server that is packaged with Altova
SchemaAgent or a network server (the Altova SchemaAgent Server product, which is available
free of charge). If you select Work Locally, the local server of SchemaAgent will be started
when you click OK and a connection with it will be established. If you select Connect to
Network Server, the selected SchemaAgent Server must be running in order for a connection
to be made.

When connected to SchemaAgent Server, XMLSpy acts as a SchemaAgent client, and
provides powerful and enhanced schema editing and management functionality. For details
about SchemaAgent, the installation of SchemaAgent Server, and how to connect to
SchemaAgent Server, see Working with SchemaAgent in the Schema/WSDL View section of
this user manual. For more information about installing and working with these two products,
see the SchemaAgent user manual that is delivered with these products.

After you connect to SchemaAgent Server, a message appears in the bar at the top of the Main
Window with information about the connection. You now have full access to all schemas and
schema components in the search path/s (folder/s) defined for the SchemaAgent server to
which XMLSpy is connected.

Please note: In order for the connection to succeed, you must have Altova's SchemaAgent
Client product installed with a valid license on the same machine as that on which XMLSpy is
installed.

11.6.16 Disconnect from SchemaAgent Server

The Disconnect from SchemaAgent Server command is enabled when a connection to a
SchemaAgent Server has been made successfully. Selecting this command disconnects
XMLSpy from the SchemaAgent Server.

11.6.17 Show in SchemaAgent

The Show in SchemaAgent menu item causes the active schema and, optionally, linked
schemas to be displayed in the Altova product SchemaAgent. (This product must be installed
on the same machine as XMLSpy if you wish to use SchemaAgent functionality). The schema/s
are opened in a new SchemaAgent Design in SchemaAgent.

Mousing over the Show in SchemaAgent menu item pops out a submenu with options about
what schemas to show in SchemaAgent. These options are described in Viewing schemas in
SchemaAgent in the Schema/WSDL View section of this user manual.

338 User Reference Schema Design Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

11.6.18 Extended Validation

The Extended Validation command enables you to validate the currently active schema as
well as schemas related to the currently active schema. This feature is described in detail in the
Extended Validation section in the Schema/WSDL View of this user manual.

© 2007 Altova GmbH

XSL/XQuery Menu 339User Reference

User Manual

11.7 XSL/XQuery Menu

The XSL Transformation language lets you specify how an XML document should be converted
into other XML documents or text files. One kind of XML document that is generated with an
XSLT document is an FO document, which can then be further processed to generate PDF
output. XMLSpy contains built-in XSLT processors (for XSLT 1.0 and XSLT 2.0) and can link to
an FO processor on your system to transform XML files and generate various kinds of outputs.
The location of the FO processor must be specified in the XSL tab of the Options dialog (Tools |
Options) in order to be able to use it directly from within the XMLSpy interface.

XMLSpy also has a built-in XQuery engine, which can be used to execute XQuery documents
(with or without reference to an XML document).

Commands to deal with all the above transformations are accessible in the XSL/XQuery menu.
In addition, this menu also contains commands to work with the Altova XSLT/XQuery
Debugger.

340 User Reference XSL/XQuery Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

11.7.1 XSL Transformation

F10

The XSL/XQuery | XSL Transformation command transforms an XML document using an
assigned XSLT stylesheet. The transformation can be carried out using the appropriate built-in
Altova XSLT Engine (Altova XSLT 1.0 Engine for XSLT 1.0 stylesheets; Altova XSLT 2.0
Engine for XSLT 2.0 stylesheets), the Microsoft-supplied MSXML module, or an external XSLT
processor. The processor that is used in conjunction with this command is specified in the XSL
tab of the Options dialog (Tools | Options).

If your XML document contains a reference to an XSLT stylesheet, then this stylesheet is used

© 2007 Altova GmbH

XSL/XQuery Menu 341User Reference

User Manual

for the transformation. (An XSLT stylesheet can be assigned to an XML document using the
Assign XSL command. If the XML document is part of a project, an XSLT stylesheet can be
specified on a per-folder basis in the Project Properties dialog. Right-click the project folder/s or
file/s you wish to transform and select XSL Transformation.) If an XSLT stylesheet has not
been assigned to an XML file, you are prompted for the XSLT stylesheet to use.

Automating XSLT transformations with Altova XML 2007

Altova XML is a free application which contains Altova's XML Validator, XSLT 1.0, XSLT 2.0,
and XQuery 1.0 engines. It can be used from the command line, via a COM interface, in Java
programs, and in .NET applications to validate XML documents, transform XML documents
using XSLT 1.0 and 2.0 stylesheets, and execute XQuery documents.

XSLT transformation tasks can therefore be automated with the use of Altova XML. For
example, you can create a batch file that calls Altova XML to transform a set of documents. See
the Altova XML documentation for details.

11.7.2 XSL:FO Transformation

Ctrl+F10

FO is an XML format that describes paged documents. An FO processor, such as the Apache
XML Project's FOP, consumes FO to generate PDF output. So, the production of a PDF
document from an XML document is a two-step process.

1. The XML document is transformed to an FO document using an XSLT (aka XSL-FO)
stylesheet.

2. The FO document is processed to generate PDF (or some alternative output).

The XSL/XQuery | XSL:FO Transformation command transforms an XML document or an FO
document to PDF.

 If the XSL:FO Transformation command is executed on a source XML document,
then both of the steps listed above are executed, in sequence, one after the other. If the
XSLT (or XSL-FO) stylesheet required to transform to FO is not referenced in the XML
document, you are prompted to assign one for the transformation (screenshot below).

The resultant FO document is directly processed with the FO processor specified in the
XSL tab of the Options dialog (Tools | Options).

 If the XSL:FO Transformation command is executed on an FO document, then the
document is processed with the FO processor specified in the XSL tab of the Options
dialog (Tools | Options).

XSL:FO Transformation output
The XSL:FO Transformation command pops up the Choose XSL:FO Output dialog (

http://www.altova.com/support_help.html

342 User Reference XSL/XQuery Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

screenshot below). (If the active document is an XML document without an XSLT assignment,
you are first prompted for an XSLT file.)

You can view the output of the FO processor directly on screen using FOP viewer or you can
generate an output file in any one of the following formats: PDF, text, an XML area tree, MIF
PCL, or PostScript.

Please note:

 The Apache FOP processor can be downloaded free of charge using the link at the
Altova Download Center. After downloading and installing FOP, you must set the path
to the FOP batch file in the XSL tab of the Options dialog (Tools | Options).

 The XSL:FO Transformation command can not only be used on the active file in the
Main Window but also on any file or folder you select in the active project. To do this,
right-click and select XSL:Transformation. The XSLT stylesheet assigned to the
selected project folder is used.

11.7.3 XSL Parameters/XQuery Variables

The XSL/XQuery | XSL Parameters/XQuery Variables command opens the XSLT Input
Parameters/XQuery External Variables dialog (see screenshot). You can enter the name of one
or more parameters you wish to pass to the XSLT stylesheet, or one or more external XQuery
variables you wish to pass to the XQuery document, and their respective values. The parameter
value/s are passed to the parameter/s in the selected XSLT when you process an XML file
using the XSL Transformation command in the XSL menu. External XQuery variable values
are passed to the XQuery document when you select the XQuery Execution command.

Please note: Parameters or variables that you enter in the XSLT Input Parameters/XQuery
External Variables dialog are only passed on to the built-in Altova XSLT engine. Therefore, if
you are using MSXML or another external engine that you have configured, these parameters
are not passed to this engine.

Using XSLT Parameters
The value you enter for the parameter can be an XPath without quotes or a text string delimited
by quotes.

http://www.altova.com/components_processors.html

© 2007 Altova GmbH

XSL/XQuery Menu 343User Reference

User Manual

Please note: Once a set of parameter-values is entered in the XSLT Input Parameters/XQuery
External Variables dialog, it is used for all subsequent transformations until it is explicitly deleted
or the application is restarted. Parameters entered in the XSLT Input Parameters/XQuery
External Variables dialog are specified at the application-level, and will be passed to the
respective XSLT document for every transformation that is carried out via the IDE from that
point onward. This means that:

 parameters are not associated with any particular document
 any parameter entered in the XSLT Input Parameters/XQuery External Variables dialog

is erased once the XMLSpy has been closed.

Using XSLT parameters
In the following example, we select the required document footer from among three possibilities
in the XML document (footer1, footer2, footer3).

<?xml version="1.0" encoding="UTF-8"?>
<document xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="C:\workarea\footers\footers.xsd">
<footer1>Footer 1</footer1>
<footer2>Footer 2</footer2>
<footer3>Footer 3</footer3>
<title>Document Title</title>
<para>Paragraph text.</para>
<para>Paragraph text.</para>

</document>

The XSLT file contains a local parameter called footer in the template for the root element.
This parameter has a default value of footer1. The parameter value is instantiated
subsequently in the template with a $footer value in the definition of the footer block.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fo="http://www.w3.org/1999/XSL/Format">
...
<xsl:template match="/">

 <xsl:param name="footer" select="document/footer1" />
 <fo:root>
 <xsl:copy-of select="$fo:layout-master-set" />

<fo:page-sequence master-reference="default-page"
initial-page-number="1" format="1">

 <fo:static-content flow-name="xsl-region-after"
display-align="after">

 ...
<fo:inline color="#800000" font-size="10pt" font-weight="bold">

<xsl:value-of select="$footer"/>
</fo:inline>

344 User Reference XSL/XQuery Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

 ...
</fo:static-content>

</fo:page-sequence>
</fo:root>

</xsl:template>
</xsl:stylesheet>

In the XSLT Input Parameters dialog, a new value for the footer parameter can be entered,
such as the XPath: document/footer2 (see screenshot above) or a text string. During
transformation, this value is passed to the footer parameter in the template for the root
element and is the value used when the footer block is instantiated.

Please note:

 If you use the XSL:FO Transformation command (XSL/XQuery | XSL:FO
Transformation), parameters entered in the XSLT Input Parameters/XQuery External
Variables dialog are not passed to the stylesheet. In order for these parameters to be
used in PDF output, first transform from XML to FO using the XSLT Transformation
command (XSL/XQuery | XSL Transformation), and then transform the FO to PDF
using the XSL:FO Transformation command (XSL/XQuery | XSL:FO
Transformation).

 If you use an XSLT processor other than the built-in Altova XSLT Engines, parameters
you enter using the XSLT Input Parameters command will not be passed to the external
processor.

Using external XQuery variables
The value you enter for an external XQuery variable must be a literal value without quotes. The
datatype of the external variable is specified in the variable declaration in the XQuery document.

Please note: Once a set of external XQuery variables are entered in the XSLT Input
Parameters/XQuery External Variables dialog, they are used for all subsequent transformations
until they are explicitly deleted or the application is restarted. Variables entered in the XSLT
Input Parameters/XQuery External Variables dialog are specified at the application-level, and
will be passed to the respective XQuery document for every execution that is carried out via the
IDE from that point onward. This means that:

 Variables are not associated with any particular document
 Any variable entered in the XSLT Input Parameters/XQuery External Variables dialog is

erased once the application (XMLSpy) has been closed down.

Usage example for external XQuery variables
In the following example, a variable $first is declared in the XQuery document and is then
used in the return clause of the FLWOR expression:

© 2007 Altova GmbH

XSL/XQuery Menu 345User Reference

User Manual

 xquery version "1.0";
 declare variable $first as xs:string external;
 let $last := "Jones"
 return concat($first, " ", $last)

This XQuery returns Peter Jones, if the value of the external variable (entered in the XSLT
Input Parameters/XQuery External Variables dialog) is Peter. Note the following:

 The external keyword in the variable declaration in the XQuery document indicates
that this variable is an external variable.

 Defining the static type of the variable is optional. If a datatype for the variable is not
specified in the variable declaration, then the variable value is assigned the type
xs:untypedAtomic.

 If an external variable is declared in the XQuery document, but no external variable of
that name is passed to the XQuery document, then an error is reported.

 If an external variable is declared and is entered in the XSLT Input Parameters/XQuery
External Variables dialog, then it is considered to be in scope for the XQuery document
being executed. If a new variable with that name is declared within the XQuery
document, the new variable temporarily overrides the in-scope external variable. For
example, the XQuery document below returns Paul Jones even though the in-scope
external variable $first has a value of Peter.

xquery version "1.0";
declare variable $first as xs:string external;
let $first := "Paul"
let $last := "Jones"
return concat($first, " ", $last)

Please note: It is not an error if an external XQuery variable (or XSLT parameter) is defined in
the XSLT Input Parameters/XQuery External Variables dialog but is not used in the XQuery
document. Neither is it an error if an XSLT parameter (or external XQuery variable) is defined in
the XSLT Input Parameters/XQuery External Variables dialog but is not used in an XSLT
transformation.

11.7.4 XQuery Execution

The XSL/XQuery | XQuery Execution command executes an XQuery document. It can be
invoked when an XQuery or XML file is active. When invoked from an XML file, it opens a dialog
asking for an XQuery file to associate with the XML file.

Automating XQuery executions with Altova XML 2007

Altova XML is a free application which contains Altova's XML Validator, XSLT 1.0, XSLT 2.0,
and XQuery 1.0 engines. It can be used from the command line, via a COM interface, in Java
programs, and in .NET applications to validate XML documents, transform XML documents

346 User Reference XSL/XQuery Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

using XSLT 1.0 and 2.0 stylesheets, and execute XQuery documents.

XQuery execution tasks can therefore be automated with the use of Altova XML. For example,
you can create a batch file that calls Altova XML to execute a set of XQuery documents. See
the Altova XML documentation for details.

11.7.5 Assign XSL

The XSL/XQuery | Assign XSL... command assigns an XSLT stylesheet to an XML document.
Clicking the command opens a dialog to let you specify the XSLT file you want to assign.

An xml-stylesheet processing instruction is inserted in the XML document:
<?xml-stylesheet type="text/xsl"

href="C:\workarea\recursion\recursion.xslt"?>

Please note: You can make the path of the assigned file relative by clicking the Make Path
Relative To... check box.

11.7.6 Assign XSL:FO

The XSL/XQuery | Assign XSL:FO... command assigns an XSLT stylesheet for transformation
to FO to an XML document. The command opens a dialog to let you specify the XSL or XSLT
file you want to assign and inserts the required processing instruction into your XML document:

<?xmlspyxslfo C:\Program Files\Altova\xmlspy\Examples\OrgChartFO.xsl?>

You can make the path of the assigned file relative by clicking the Make Path Relative To...
check box.

Please note: An XML document may have two XSLT files assigned to it: one for standard
XSLT transformations, a second for an XSLT transformation to FO.

11.7.7 Assign Sample XML file

The XSL/XQuery | Assign Sample XML File command assigns an XML file to an XSLT
document. The command inserts a processing instruction naming an XML file to be processed
with this XSLT file when the XSL Transformation is executed on the XSLT file:

<?altova_samplexml C:\workarea\html2xml\article.xml?>

http://www.altova.com/support_help.html

© 2007 Altova GmbH

XSL/XQuery Menu 347User Reference

User Manual

Please note: You can make the path of the assigned file relative by clicking the Make Path
Relative To... check box.

11.7.8 Go to XSL

The XSL/XQuery | Go to XSL command opens the associated XSLT document. If your XML
document contains a stylesheet processing instruction (i.e. an XSLT assignment) such as this:

<?xml-stylesheet type="text/xsl" href="Company.xsl"?>

then the Go to XSL command opens the XSLT document in XMLSpy.

11.7.9 Start Debugger/Go

Alt+F11

The XSL/XQuery | Start Debugger/Go command starts or continues processing the
XSLT/XQuery document till the end. If breakpoints have been set, then processing will pause at
that point. If tracepoints have been set, output for these statements will be displayed in the
Trace window when the closing node of the statement with the tracepoint has been reached. If
the debugger session has not been started, then this button will start the session and stop at the
first node to be processed. If the session is running, then the XSLT/XQuery document will be
processed to the end, or until the next breakpoint is encountered.

11.7.10 Stop Debugger

The XSL/XQuery | Stop Debugger command stops the debugger. This is not the same as
stopping the debugger session in which the debugger is running. This is convenient if you wish
to edit a document in the middle of a debugging session or to use alternative files within the
same debugging session. After stopping the debugger, you must restart the debugger to start
from the beginning of the XSLT/XQuery document.

11.7.11 Restart Debugger

The XSL/XQuery | Restart Debugger command clears the output window and restarts the
debugging session with the currently selected files.

11.7.12 End Debugger Session

The XSL/XQuery | End Debugger Session command ends the debugging session and returns
you to the normal XMLSpy view that was active before you started the debugging session.

348 User Reference XSL/XQuery Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Whether the output documents that were opened for the debugging session stay open depends
on a setting you make in the XSLT/XQuery Debugger Settings dialog.

11.7.13 Step Into

F11

The XSL/XQuery | Step Into command proceeds in single steps through all nodes and XPath
expressions in the stylesheet. This command is also used to re-start the debugger after it has
been stopped.

11.7.14 Step Out

Shift+F11

The XSL/XQuery | Step Out command steps out of the current node to the next sibling of the
parent node, or to the next node at the next higher level from that of the parent node.

11.7.15 Step Over

Ctrl+F11

The XSL/XQuery | Step Over command steps over the current node to the next node at the
same level, or to the next node at the next higher level from that of the current node. This
command is also used to re-start the debugger after it has been stopped.

11.7.16 Show Current Execution Node

The XSL/XQuery | Show Current Execution Node command displays/selects the current
execution node in the XSLT/XQuery document and the corresponding context node in the XML
document. This is useful when you have clicked in other tabs which show or mark specific code
in the XSLT stylesheet or XML file, and you want to return to where you were before you did
this.

11.7.17 Insert/Remove Breakpoint

F9

The XSL/XQuery | Insert/Remove Breakpoint command inserts or removes a breakpoint at
the current cursor position. Inline breakpoints can be defined for nodes in both the
XSLT/XQuery and XML documents, and determine where the processing should pause. A
dashed red line appears above the node when you set a breakpoint. Breakpoints cannot be
defined on closing nodes, and breakpoints on attributes in XSLT documents will be ignored.
This command is also available by right-clicking at the breakpoint location.

© 2007 Altova GmbH

XSL/XQuery Menu 349User Reference

User Manual

11.7.18 Insert/Remove Tracepoint

 Shift+F9

The XSL/XQuery | Insert/Remove Tracepoint command inserts or removes a tracepoint at the
current cursor position in an XSLT/XQuery document. For statements with a tracepoint, during
debugging, the value of the statement is displayed in the Trace window when the closing node
of that statement is reached. A dashed blue line appears above the node when you set a
tracepoint. Tracepoints cannot be defined on closing nodes. This command is also available by
right-clicking at the tracepoint location.

11.7.19 Enable/Disable Breakpoint

Ctrl+F9

The XSL/XQuery | Enable/Disable Breakpoint command (no toolbar icon exists) enables or
disables already defined breakpoints. The red breakpoint highlight turns to gray when the
breakpoint is disabled. The debugger does not stop at disabled breakpoints. To disable/enable
a breakpoint, place the cursor in that node name and click the Enable/Disable Breakpoint
command. This command is also available by right-clicking at the location where you want to
enable/disable the breakpoint.

11.7.20 Enable/Disable Tracepoint

Ctrl+Shift+F9

The XSL/XQuery | Enable/Disable Tracepoint command (no toolbar icon exists) enables or
disables already defined tracepoints. The blue tracepoint highlight turns to gray when the
tracepoint is disabled. No output is displayed for statements with disabled tracepoints. To
disable/enable a tracepoint, place the cursor in that node name and click the Enable/Disable
Tracepoint command. This command is also available by right-clicking at the location where
you want to enable/disable the tracepoint.

11.7.21 Breakpoints/Tracepoints

The XSL/XQuery | Breakpoints/Tracepoints... command opens the XSLT Breakpoints /
Tracepoints dialog, which displays a list of all currently defined breakpoints and tracepoints
(including disabled breakpoints and tracepoints) in all files in the current debugging session.

350 User Reference XSL/XQuery Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

The check boxes indicate whether a breakpoint or tracepoint is enabled (checked) or disabled.
You can remove the highlighted breakpoint or tracepoint by clicking the corresponding Remove
button, and remove all breakpoints by clicking the corresponding Remove All button. The Edit
Code button takes you directly to that breakpoint/tracepoint in the file.

Use the down arrow to move the highlighted breakpoint to the Tracepoints pane and the

up arrow to move the highlighted tracepoint to the Breakpoints pane.

In the XPath column in the Tracepoints pane, you can set an XPath for each tracepoint.

11.7.22 Debug Windows

Placing the cursor over the XSL/XQuery | Debug Windows command pops out a submenu
with a list of the various Information Windows of the XSLT/XQuery Debugger. Selecting an
Information Window from this list highlights that Information Window in the XSLT/XQuery
Debugger interface. This command can be used to effect only when a debugging session is in
progress.

11.7.23 XSLT/XQuery Settings

The XSL/XQuery | XSLT/XQuery Settings command opens the XSLT/XQuery Settings dialog,
which enables you to set user options for the Debugger. See the XSLT/XQuery Debugger
section for details.

© 2007 Altova GmbH

Authentic Menu 351User Reference

User Manual

11.8 Authentic Menu

Authentic View enables you to edit XML documents based on StyleVision Power Stylesheets
(.sps files) created in Altova's StyleVision product! These stylesheets contain information
that enables an XML file to be displayed graphically in Authentic View. In addition to containing
display information, StyleVision Power Stylesheets also allow you to write data to the XML file.
This data is dynamically processed using all the capability available to XSLT stylesheets and
instantly produces the output in Authentic View.

Additionally, StyleVision Power Stylesheets can be created to display an editable XML view of a
database. The StyleVision Power Stylesheet contains information for connecting to the
database, displaying the data from the database in Authentic View, and writing back to the
database.

The Authentic menu contains commands relevant to editing XML documents in Authentic View
. For a tutorial on Authentic View, see the Tutorials section.

11.8.1 New Document

The Authentic | New Document... command enables you to open a new XML document
template in Authentic View. The XML document template is based on a StyleVision Power
Stylesheet (.sps file), and is opened by selecting the StyleVision Power Stylesheet.

Clicking the New Document... command opens the Create New Document dialog.

352 User Reference Authentic Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Browse for the required SPS file, and select it. This opens an XML document template in
Authentic View.

Please note: StyleVision Power Stylesheets are created using Altova StyleVision. The
StyleVision Power Stylesheet has a Template XML File assigned to it. The data in this XML file
provides the starting data of the new document template that is opened in Authentic View.

11.8.2 Edit Database Data

The Authentic | Edit Database Data... command enables you to open an editable view of a
database (DB) in Authentic View. All the information about connecting to the DB and how to
display the DB and accept changes to it in Authentic View is contained in a StyleVision Power
Stylesheet. It is such a DB-based StyleVision Power Stylesheet that you open with the Edit
Database Data... command. This sets up a connection to the DB and displays the DB data
(through an XML lens) in Authentic View.

Clicking the Edit Database Data... command opens the Edit Database Data dialog.

© 2007 Altova GmbH

Authentic Menu 353User Reference

User Manual

Browse for the required SPS file, and select it. This connects to the DB and opens an editable
view of the DB in Authentic View. The design of the DB view displayed in Authentic View is
contained in the StyleVision Power Stylesheet.

Please note: If, with the Edit Database Data... command, you attempt to open a StyleVision
Power Stylesheet that is not based on a DB or to open a DB-based StyleVision Power
Stylesheet that was created in a version of StyleVision prior to the StyleVision 2005 release, you
will receive an error.

Please note: StyleVision Power Stylesheets are created using Altova StyleVision.

11.8.3 Assign a StyleVision Stylesheet

This command assigns a StyleVision Power Stylesheet (SPS) to an XML document to enable
the viewing and editing of that XML document in Authentic View. The StyleVision Power
Stylesheet that is to be assigned to the XML file must be based on the same schema as that on
which the XML file is based.

To assign a StyleVision Power Stylesheet to an XML file:
1. Make the XML file the active file and select the Authentic | Assign a StyleVision

Stylesheet... command.
2. The command opens a dialog box in which you specify the StyleVision Power

Stylesheet file you wish to assign to the XML.
3. Click OK to insert the required SPS statement into your XML document. Note that you

can make the path to the assigned file relative by clicking the Make path relative to ...
check box.

<?xml version="1.0" encoding="UTF-8"?>
<?altova_sps HTML-Orgchart.sps?>

In the example above, the StyleVision Power Stylesheet is called HTML_Orgchart.sps, and it
is located in the same directory as the XML file.

Please note: Previous versions of Altova products used a processing instruction with a target or
name of xmlspysps, so a processing instruction would look something like <?xmlspysps
HTML-Orgchart.sps?>. These older processing instructions are still valid with Authentic View
in current versions of Altova products.

11.8.4 Edit StyleVision Stylesheet

The Authentic | Edit a StyleVision Stylesheet command starts StyleVision and allows you to
edit the StyleVision Power Stylesheet immediately in StyleVision.

11.8.5 Define XML Entities

You can define entities for use in Authentic View, whether your document is based on a DTD or
an XML Schema. Once defined, these entities are displayed in the Entities Entry Helper and in
the Insert Entity submenu of the context menu. When you double-click on an entity in the
Entities Entry Helper, that entity is inserted at the cursor insertion point.

An entity is useful if you will be using a text string, XML fragment, or some other external
resource in multiple locations in your document. You define the entity, which is basically a short
name that stands in for the required data, in the Define Entities dialog. After defining an entity
you can use it at multiple locations in your document. This helps you save time and greatly
enhances maintenance.

There are two broad types of entities you can use in your document: a parsed entity, which is

354 User Reference Authentic Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

XML data (either a text string or a fragment of an XML document), or an unparsed entity,
which is non-XML data such as a binary file (usually a graphic, sound, or multimedia object).
Each entity has a name and a value. In the case of parsed entities the entity is a placeholder for
the XML data. The value of the entity is either the XML data itself or a URI that points to a .xml
file that contains the XML data. In the case of unparsed entities, the value of the entity is a URI
that points to the non-XML data file.

To define an entity:

1. Click Authentic | Define XML Entities.... This opens the Define Entities dialog.

2. Enter the name of your entity in the Name field. This is the name that will appear in the
Entities Entry Helper.

3. Enter the type of entity from the drop-down list in the Type field. Three types are
possible. An Internal entity is one for which the text to be used is stored in the XML
document itself. Selecting PUBLIC or SYSTEM specifies that the resource is located
outside the XML file, and will be located with the use of a public identifier or a system
identifier, respectively. A system identifier is a URI that gives the location of the
resource. A public identifier is a location-independent identifier, which enables some
processors to identify the resource. If you specify both a public and system identifier,
the public identifier resolves to the system identifier, and the system identifier is used.

4. If you have selected PUBLIC as the Type, enter the public identifier of your resource in
the PUBLIC field. If you have selected Internal or SYSTEM as your Type, the PUBLIC
field is disabled.

5. In the Value/Path field, you can enter any one of the following:

 If the entity type is Internal, enter the text string you want as the value of your entity.
Do not enter quotes to delimit the entry. Any quotes that you enter will be treated as
part of the text string.
 If the entity type is SYSTEM, enter the URI of the resource or select a resource on

your local network by using the Browse button. If the resource contains parsed data,
it must be an XML file (i.e. it must have a .xml extension). Alternatively, the resource
can be a binary file, such as a GIF file.
 If the entity type is PUBLIC, you must additionally enter a system identifier in this field.

6. The NDATA entry tells the processor that this entity is not to be parsed but to be sent to
the appropriate processor. The NDATA field should therefore be used with unparsed
entities only.

Dialog features
You can append, insert, and delete entities by clicking the appropriate buttons. You can also
sort entities on the alphabetical value of any column by clicking the column header; clicking
once sorts in ascending order, twice in descending order. You can also resize the dialog box

© 2007 Altova GmbH

Authentic Menu 355User Reference

User Manual

and the width of columns.

Once an entity is used in the XML document, it is locked and cannot be edited in the Define
Entities dialog. Locked entities are indicated by a lock symbol in the first column. Locking an
entity ensures that the XML document valid with respect to entities. (The document would be
invalid if an entity is referenced but not defined.)

Duplicate entities are flagged.

Limitations

 An entity contained within another entity is not resolved, either in the dialog, Authentic
View, or XSLT output, and the ampersand character of such an entity is displayed in its
escaped form, i.e. &.

 External entities are not resolved in Authentic View, except in the case where an entity
is an image file and it is entered as the value of an attribute which has been defined in
the schema as being of type ENTITY or ENTITIES. Such entities are resolved when
the document is processed with an XSLT generated from the SPS.

11.8.6 Hide Markup

This command hides markup symbols in the Authentic View.

11.8.7 Show Small Markup

This command shows small markup symbols in the Authentic View.

11.8.8 Show Large Markup

This command shows large markup symbols in the Authentic View.

11.8.9 Show Mixed Markup

This command shows mixed markup symbols in Authentic View. The person who designs the
StyleVision Power Stylesheet can specify either large markup, small markup, or no markup for
individual elements/attributes in the document. The Authentic View user sees this customized
markup in mixed markup viewing mode.

11.8.10 Append Row

This command appends a row to the current table in Authentic View.

356 User Reference Authentic Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

11.8.11 Insert Row

This command inserts a row into the current table in Authentic View.

11.8.12 Duplicate Row

This command duplicates the current table row in Authentic View.

11.8.13 Move Row Up

This command moves the current table row up by one row in Authentic View.

11.8.14 Move Row Down

This command moves the current table row down by one row in Authentic View.

11.8.15 Delete Row

This command deletes the current table row in Authentic View.

© 2007 Altova GmbH

DB Menu 357User Reference

User Manual

11.9 DB Menu

The DB menu contains the following menu items:

 Query Database, which enables you to query a variety of databases.
 IBM DB2, which contains commands that provide support for DB2-specific functionality.
 Tamino, which contains commands that provide Tamino functionality
 Oracle databases, which contains command for working with Oracle databases.

Since all the operations described in this section require a connection to a database, this
section also includes a sub-section called Connecting to a Data Source.

11.9.1 Connecting to a Data Source

A number of commands and icons in the DB and Convert menus require a connection to a
database. XMLSpy enables you to connect to a variety of databases (see list below). It uses the
Connect to Data Source—or Quick Connect dialog—(see screenshot below) to set up and
make the connection. In this section, we describe how this dialog works. In descriptions of the
DB or Convert commands that require a database connection, these dialogs will be referenced;
this section should be referred to for information on making database connections using the
Connect to Data Source dialog or the Quick Connect dialog. Both dialogs are essentially the
same.

The options for connecting to the database are:

 Using a Connection Wizard that guides you through the connection process.
 Using an existing connection.
 Using an ADO Connection.

358 User Reference DB Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

 Using an ODBC Connection.

Each option is described in the subsections of this section.

Supported databases and their root objects
The following databases are supported. After connecting to the database, the available root
objects for each of the supported database is as follows:

Database Root Object

MS SQL Server 2000 and
2005

database

Oracle 9i and 10g schema

MS Access 2000, 2003, 2007 database

MySQL 4.x and 5.x database

IBM DB2 8.x and 9 schema

Sybase 11 database

Connection Wizard

When the Connection Wizard button is selected, the Connection Wizard (screenshot below)
pops up. The Connection Wizard helps you to connect to the most commonly used types of
databases. In this section, we go through the connection to a Microsoft Access database and an
IBM DB2 database.

MS Access
Carry out the following steps to connect to an MS Access database. Select Microsoft Access
(ADO) (screenshot below), and click Next.

© 2007 Altova GmbH

DB Menu 359User Reference

User Manual

In the Connect to MS Access dialog that pops up (screenshot below), browse for the MS
Access database, and click Next. The connection to the data source is established.

IBM DB2
In the first screen of the Connection Wizard (see first screenshot in this section), select IBM
DB2 and click Next. The Configuration dialog (screenshot below) pops up. The wizard will then
guide you in configuring the connection to the IBM DB2 database and making the connection.
These steps consist essentially of selecting the appropriate driver to connect to the DB, then
locating the DB, and entering user information that enables you to connect.

360 User Reference DB Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

In the Configuration dialog above, select an existing data source, or create a new data source
with an appropriate driver (additional drivers can be added to the list of available drivers by
clicking the Edit Drivers button and selecting the required drivers). In the following screen you
will be prompted for user information (ID and password). Clicking OK will establish the
connection with the database.

Existing Connections

When the Existing Connections button is selected, the Existing Connections pane opens (
screenshot below), showing all the connections that are currently established.

© 2007 Altova GmbH

DB Menu 361User Reference

User Manual

Select the required database and click Connect. The connection to the database is established.

ADO Connections

This procedure explains how to create an ADO connection. It uses IBM DB2 as an example.

1. In the Connect to Data Source dialog, select ADO Connections. The ADO Connections
box appears (screenshot below).

362 User Reference DB Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

2. Click the Build button. The Data Link Properties dialog (screenshot below) opens.

© 2007 Altova GmbH

DB Menu 363User Reference

User Manual

3. Select Microsoft OLE DB Provider for ODBC Drivers from the drop-down list and click
Next. The Connection tab is activated.

364 User Reference DB Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

4. Build a connection string via the Build button (the dialog which pops up prompts you for
a data source and user information).

5. If login information is required, enter a user name and password, and check the Allow
saving password check box.

6. Click OK. The Data Link Properties dialog closes. The connection string appears in the
ADO Connections box (screenshot below).

© 2007 Altova GmbH

DB Menu 365User Reference

User Manual

7. Click the Connect button. The connection to the data source is established.

ODBC Connections

To connect to an IBM DB2 database via ODBC, do the following:

1. Select ODBC Connections.

366 User Reference DB Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

2. Select one of the options for specifying a Data Source Name (DSN). If you select
System DSN or User DSN, the available DSNs are displayed in the Data Source pane.
If you select File DSN, you are prompted to select the folder which contains the File
DSNs. Alternatively, you can build a connection string to the DB by selecting the Build a
Connection String option.

3. If you wish to add a DSN to those in the Data Source pane, do the following: (i) click the
dropdown arrow of the Create a New Data Source icon; (ii) select the required driver;
(iii) in the dialog that appears (screenshot below), select the DB alias and give it a DSN.

(iv) click OK to finish. The DB is added as a Data Source to the list in the Data Source
pane.

4. Select the Data Source in the Data Source pane and click Connect.
5. When you are prompted for your user ID and password, enter these and then click OK.

The connection to the database is established.

© 2007 Altova GmbH

DB Menu 367User Reference

User Manual

11.9.2 Query Database

The Query Database command opens the Database Query window (screenshot below). Once
the Query Window is open, its display can be toggled on and off by clicking either the DB |

Query Database command or the Query Database toolbar icon .

Overview of the Database Query window
The Database Query window consists of three parts:

 A Browser pane at top left, which displays connection info and database tables.
 A Query pane at top right, in which the query is entered.
 A tabbed Results/Messages pane. The Results pane displays the query results in

what we call the Result Grid. The Messages pane displays messages about the query
execution, including warnings and errors.

The Database Query window has a toolbar at the top. At this point, take note of the two toolbar
icons below. The other toolbar icons are described in the section, Query Pane: Description and
Features.

Toggles the Browser pane on and off.

Toggles the Results/Messages pane on and off.

368 User Reference DB Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Overview of the Query Database mechanism
The Query Database mechanism is as follows. It is described in detail in the sub-sections of this
section

1. A connection to the database is established via the Database Query window. Supported
databases include: MS Access 2000 and 2003; Microsoft SQL Server; Oracle; MySQL;
Sybase; and IBM DB2.

2. The connected database or parts of it are displayed in the Browser pane, which can be
configured to suit viewing requirements.

3. A query written in a syntax appropriate to the database to be queried is entered in the
Query pane, and the query is executed.

4. The results of the query can be viewed through various filters, edited, and used in other
ways.

Data Sources

In order to query a database, you have to first connect to the required database This section
describes how to:

 Connect to a database, and
 Select the required data source and root object from among multiple existing

connections.

Connecting to a database
When you click the Query Database command for the first time in a session (or when no
database connection exists), the Quick Connect dialog (screenshot below) pops up to enable
you to connect to a database. To make connections subsequently, click the Quick Connect

icon in the Database Query window.

© 2007 Altova GmbH

DB Menu 369User Reference

User Manual

How to connect to a database via the Quick Connect dialog is described in the section
Connecting to a Data Source.

Supported databases and their root objects
The following databases are supported. After connecting to the database, the available root
objects for each of the supported database is as follows:

Database Root Object

MS SQL Server 2000 and
2005

database

Oracle 9i and 10g schema

MS Access 2000, 2003, 2007 database

MySQL 4.x and 5.x database

IBM DB2 8.x and 9 schema

Sybase 11 database

Selecting the required data source
All the existing connections and root objects are listed, respectively, in two combo boxes in the
toolbar of the Database Query window (screenshot below).

In the screenshot above, the database with the name StyleVision DB has been selected. Of
the available root objects for this database, the root object ALTOVA_USER has been selected.
The database and the root object are then displayed in the Browser pane.

Browser Pane: Viewing the DB Objects

The Browser pane provides an overview of objects in the selected database. This overview
includes database constraint information, such as whether a column is a primary or foreign key.
In IBM DB2 version 9 databases, the Browser additionally shows registered XML schemas in a
separate folder.

This section describes the following:

 The layouts available in the Browser pane.
 How to filter database objects.

370 User Reference DB Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

 How to find database objects.

Browser pane layouts
The default Folders layout displays database objects hierarchically. Depending on the selected
object, different context menu options are available when you right-click an item.

To select a layout for the Browser, click the Layout icon in the toolbar of the Browser pane and
select the layout from the drop-down list (screenshot below). Note that the icon changes with
the selected layout.

The available layouts are:

 Folders: Organizes database objects into folders based on object type in a hierarchical
tree, this is the default setting.

 No Schemas: Similar to the Folders layout, except that there are no database schema

© 2007 Altova GmbH

DB Menu 371User Reference

User Manual

folders; tables are therefore not categorized by database schema.
 No Folders: Displays database objects in a hierarchy without using folders.
 Flat: Divides database objects by type in the first hierarchical level. For example,

instead of columns being contained in the corresponding table, all columns are
displayed in a separate Columns folder.

 Table Dependencies: Categorizes tables according to their relationships with other
tables. There are categories for tables with foreign keys, tables referenced by foreign
keys and tables that have no relationships to other tables.

To sort tables into User and System tables, switch to Folders, No Schemas or Flat layout, then
right-click the table and select Sort into User and System Tables. The tables are sorted
alphabetically in the User Tables and System Tables folders.

Filtering database objects
In the Browser pane (in all layouts except No Folders), schemas, tables, and views can be
filtered by name or part of a name. Objects are filtered as you type in the characters, and
filtering is case-insensitive by default.

To filter objects in the Browser, do the following:

1. Click the Filter Folder Contents icon in the toolbar of the Browser pane. Filter icons
appear next to all folders in the currently selected layout (screenshot below).

2. Click the filter icon next to the folder you want to filter, and select the filtering option
from the popup menu, for example, Contains.

3. In the entry field that appears, enter the filter string (in the screenshot below, the filter
string on the Tables folder is NHE). The filter is applied as you type.

372 User Reference DB Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Finding database objects
To find a specific database item by its name, you can use the Browser pane's Object Locator.
This works as follows:

1. In the toolbar of the Browser pane, click the Object Locator icon. A drop-down list
appears at the bottom of the Browser.

2. Enter the search string in the entry field of this list, for example name (screenshot below
). Clicking the drop-down arrow displays all objects that contain the search string.

3. Click the object in the list to see it in the Browser.

© 2007 Altova GmbH

DB Menu 373User Reference

User Manual

Query Pane: Description and Features

The Query pane is an intelligent SQL editor for entering queries to the selected database. After
entering the query, clicking the Execute command of the Database Query window executes the
query and displays the result and execution messages in the Results/Messages pane. How to
work with queries is described in the next section, Query Pane: Working with Queries. In this
section, we describe the main features of the Query pane:

 SQL Editor icons in the Database Query toolbar
 SQL Editor options
 Auto-completion of SQL statements
 Definition of regions in an SQL script
 Insertion of comments in an SQL script
 Use of bookmarks

SQL Editor icons in the Database Query toolbar
The following icons in the toolbar of the Database Query window are used when working with
the SQL Editor:

Execute Executes currently selected SQL statement. If script
contains multiple statements and none is selected, then all
are executed.

Execute with
Data Editing

Same as for Execute command, except that results (in
Results tab) are editable.

Import SQL File Opens an SQL file in the SQL Editor.

Export SQL File Saves SQL queries to an SQL file.

Undo Undoes an unlimited number of edits in SQL Editor.

Redo Redoes an unlimited number of edits in SQL Editor.

Options Open the Options dialog of SQL Editor.

Open SQL
Script in
DatabaseSpy

Opens the SQL script in Altova's DatabaseSpy product.

SQL Editor options
Clicking the Options icon in the Database Query toolbar pops up the Options dialog (screenshot
below).

374 User Reference DB Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

The key settings are as follows:

 SQL Editor | Text Font: Options for setting the font style of the text in the SQL Editor.
 SQL Editor | Auto-completion: With the auto-completion feature switched on (in the

SQL Editor tab), you can select what type of entries auto-completion will support (Auto-
completion tab, screenshot above). Auto-completion offers a list of relevant entries as
you type. It is available for he following databases: for the following databases: MS SQL
Server 2000 and 2005, MS Access 2003, and IBM DB2 v.9. The Contents group lets
you define whether columns, system tables, or views should be displayed in the auto-
completion popup. The Sorting group allows you to choose whether entries are to
appear sorted by group or alphabetically.

 SQL Editor | Result View: Options to configure the Result tab.
 SQL Editor | Grid Font: Options for setting the font style of the text in the Result Grid

in the Results tab.
 General | Encoding: Options for setting the encoding of new SQL files and of existing

SQL files for which the encoding cannot be detected. (If the encoding of existing SQL
files can be detected, the files are opened and save without changing the encoding.)

Auto-completion of SQL statements
To activate the Auto-completion feature, check the Auto-completion check box in the SQL
Editor tab of the Options dialog. When this feature is active, popups appear as you type SQL
statements (screenshot below).

Press Enter to insert the highlighted entry.

© 2007 Altova GmbH

DB Menu 375User Reference

User Manual

Definition of regions in an SQL script
Regions are sections in SQL scripts that are marked and declared to be a unit. Regions can be
collapsed and expanded to hide or display parts of the script. It is also possible to nest regions
within other regions. Regions are delimited by --region and --endregion comments,
respectively, before and after the region. Regions can optionally be given a name, which is
entered after the -- region delimiter (see screenshot below).

To insert a region, select the statement/s to be made into a region, right-click, and select Insert
Region. The expandable/collapsible region is created. Add a name if you wish. In the
screenshot above, also notice the line-numbering. To remove a region, delete the two --region
and --endregion delimiters.

Insertion of comments in an SQL script
Text in an SQL script can be commented out. These portions of the script are skipped when the
script is executed.

 To comment out a block, mark the block, right-click, and select Insert/Remove Block
Comment. To remove the block comment, mark the comment, right-click and select
Insert/Remove Block Comment.

 To comment out a line or part of a line, place the cursor at the point where the line
comment should start, right-click, and select Insert/Remove Line Comment. To
remove the line comment, mark the comment, right-click and select Insert/Remove
Line Comment.

Use of bookmarks
Bookmarks can be inserted at specific lines, and you can then navigate through the bookmarks
in the document. To insert a bookmark, place the cursor in the line to be bookmarked, right-
click, and select Insert/Remove Bookmark. To go to the next or previous bookmark, right-
click, and select Go to Next Bookmark or Go to Previous Bookmark, respectively. To
remove a bookmark, place the cursor in the line for which the bookmark is to be removed, right-
click, and select Insert/Remove Bookmark. To remove all bookmarks, right-click, and select
Remove All Bookmarks.

Query Pane: Working with Queries

After connecting to a database, an SQL script can be entered in the SQL Editor and executed.
This section describes:

 How an SQL script is entered in the SQL Editor.
 How the script is executed in the Database Query window.

The following icons are referred to in this section:

376 User Reference DB Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Execute Executes currently selected SQL statement. If script
contains multiple statements and none is selected, then all
are executed.

Execute with
Data Editing

Same as for Execute command, except that results (in
Results tab) are editable.

Import SQL File Opens an SQL file in the SQL Editor.

Creating SQL statements and scripts in the SQL Editor
The following GUI methods can be used to create SQL statements or scripts:

 Drag and drop: Drag an object from the Browser pane into the SQL Editor. An SQL
statement is generated to query the databse for that object.

 Context menu: Right-click an object in the Browser pane and select Show in SQL
Editor | Select.

 Manual entry: Type SQL statements directly in SQL Editor. The Auto-completion feature
can help with editing.

 Import an SQL script: Click the Import SQL File icon in the toolbar of the Database
Query window.

Executing SQL statements
If the SQL script in the SQL Editor has more than one SQL statement, select the statement to
execute and click either the Execute icon or Execute with Data Editing icon in the toolbar of
the Database Query window. If no statement in the SQL script is selected, then all the
statements in the script are executed. The database data is retrieved and displayed as a grid in
the Results tab. If Execute with Data Editing was selected, then the retrieved data in the
Result Grid can be edited. Messages about the execution are displayed in the Messages tab.

Results and Messages

The Results/Messages pane has two tabs:

 The Results tab shows the data that is retrieved by the query.
 The Messages tab shows messages about the query execution.

Results tab
The data retrieved by the query is displayed in the form of a grid in the Results tab(screenshot
below).

© 2007 Altova GmbH

DB Menu 377User Reference

User Manual

The following operations can be carried out in the Results tab:

 Sorting on a column: Right-click anywhere in the column on which the records are to be
sorted, then select Sorting | Ascending/Descending/Restore Default.

 Copying to the clipboard: This consists of two steps: (i) selecting the data range; and (ii)
copying the selection. Data can be selected in several ways: (i) by clicking a column
header or row number to select the column or row, respectively; (ii) selecting individual
cells (use the Shift and/or Ctrl keys to select multiple cells); (iii) right-clicking a cell, and
selecting Selection | Row/Column/All. After making the selection, right-click, and
select Copy Selected Cells. This copies the selection to the clipboard, from where it can
be pasted into another application.

 Editing records: If the query was executed with the Execute with Data Editing
command, individual fields can be edited. To commit changes, click the Commit button
in the toolbar of the Results tab.

 Editing XML records: If an editable field is an XML field (only IBM DB2 XML databases
are currently supported), clicking the XML icon in the Result Grid opens the Edit XML
menu (screenshot below)

The Open for Editing command opens the XML document in an XMLSpy window.

When this document is saved and if the Auto-Commit XML changes icon in the
Query Database toolbar was selected when the document was opened, the changes to
the XML document are committed to the database. (Note that to toggle between the
XML document window and the Database Query window, you must click the DB |
Query Database command.) The Load XML Document from File command loads an
external XML document to the selected field in the database. The Save XML
Document to File saves the XML document in the selected database field to a file
location you choose. The Assign XML Schema command pops up the Choose XML
Schema dialog, in which you can select an XML Schema to assign to the XML
document. This assignment is saved to the database. XML Schema assignment is
explained in more detail in the section, IBM DB2 | Assign XML Schema.

The Results tab has the following toolbar icons:

378 User Reference DB Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Go to Statement Highlights the statement in the SQL Editor that produced the
current result.

Add New Line Adds a new row to the Result Grid.

Delete Row Deletes the current row in the Result Grid.

Undo Changes
to Result Grid

Undoes all changes to the Result Grid.

Commit Commits changes made in the Result Grid to the database.

Messages tab
The Messages tab provides information on the previously executed SQL statement and reports
errors or warning messages.

The toolbar of the Messages tab contains icons that enable you to customize the view, navigate
it, and copy messages to the clipboard. The Filter icon enables the display of particular types of
messages to be toggled on or off. The Next and Previous icons move the selection down and
up the list, respectively. Messages can also be copied with or without their child components to
the clipboard, enabling them to be pasted in documents. The Find function enables you to
specify a search term and then search up or down the listing for this term. Finally, the Clear
icon clears the contents of the Report pane.

Note: These toolbar icon commands are also available as context menu commands.

11.9.3 IBM DB2

The IBM DB2 menu item rolls out a submenu containing commands (i) to register and
unregister schemas with an IBM DB2 database (Manage XML Schemas), and (ii) to assign
schemas for XML file validation (Assign XML Schema).

Both these mechanisms require that you connect to the required IBM DB2 database. How to
connect to the database is described in the section Connecting to a Data Source. In this section
the focus is on how to manage schemas in an IBM DB2 database and how to assign XML
Schemas to a DB XML file.

Note: The Result Grid of the Database Query window provides important functionality for
working with XML files in IBM DB2 databases. This functionality includes the ability to
open files for editing, loading XML files into a DB XML files, saving DB XML files
externally, and assigning XML Schemas to DB XML files.

© 2007 Altova GmbH

DB Menu 379User Reference

User Manual

Assign XML Schema

The Assign XML Schema assigns a schema to an XML file opened for editing via the Result
Grid of the Database Query window. After the assignment is made, the XML file can be
validated against the assigned schema. The assignment is written to the DB when the XML file
is saved in XMLSpy.

Opening a DB XML file for editing
In the Database Query window, when a query is addressed to an XML DB and the query is
executed for data editing, the Result Grid at the bottom of the Database Query window provides
access to the XML files in the database so these can be edited (see screenshot below).

Clicking the XML icon pops up the following menu.

Selecting the Open for Editing command opens the XML document in XMLSpy, where it can
be edited.

380 User Reference DB Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Assigning a schema to the DB XML file
It is when the DB XML file is opened for editing in XMLSpy that the IBM DB2 | Assign XML
Schema command is enabled. With the XML document active in XMLSpy, clicking the Assign
XML Schema command pops up the Choose XML Schema dialog (screenshot below).

A schema can be selected from among those stored in the database (these are listed in the
dropdown list of the Schema from Database combo box), or from among external files that can
be browsed. Clicking OK assigns the schema to the XML file. Note that the assignment is not
written into the XML file. When the XML file is saved in XMLSpy—and if the Auto-Commit XML

changes icon in the Query Database toolbar was selected when the document was opened
—then the schema assignment is saved to the database. Note that the schema assignment is
written to the database—and not to the XML file.

Note: The Edit XML menu in the Result Grid of the Database Query window also has an
Assign XML Schema command (see screenshot below), which also assigns a schema
to the DB XML file.

The difference between the two Assign XML Schema commands is that the command
in the DB | IBM DB2 menu enables you to assign an XML Schema while you are editing
the XML file thereby allowing you to change schema assignments while editing the XML
document and to validate the XML document immediately.

11.9.4 Tamino

Software AG and Altova, Inc. have entered into a worldwide agreement giving XMLSpy users
easy and low-cost access to Tamino. The partnership also extends Software AG's reach to
Altova's community of developers.

Under the terms of the agreement, Altova's XMLSpy users and Software AG's Tamino users
obtain an integrated product bundle. Tamino XML Server is available on multiple platforms from
PC to Mainframe.

XMLSpy and Tamino (limited edition) are available for download and purchase at order page.
The Tamino database capacity varies from 50MB (per XMLSpy Enterprise/Professional single

https://shop.altova.com/category.asp?catalog%5Fname=Partner+Bundles&category%5Fname=&Page=1

© 2007 Altova GmbH

DB Menu 381User Reference

User Manual

license) up to 1000 MB depending on the number of XMLSpy licenses purchased.

Having paid for the bundle, you will receive an e-mail with details on how and where you can
download Tamino.

Installing Tamino

Having downloaded the XMLSpy and Tamino bundle you are ready to start the installation
process.

General installation process:
1. Download and install XMLSpy.
2. Download the Tamino XML Server.
3. Install Apache server (if necessary).
4. Install Tamino Server 3.1.1.
5. Create a database in Tamino.
6. Use XMLSpy.

Specific Tamino installation instructions are provided in HTML format. Open the Tamino
documentation home page located at:

<Root>/Windows/INO/Docu/overview.htm

where "<Root>" is the directory where you unpacked Tamino, and select the entry "Installing
Tamino".

Scope of this documentation:
This documentation assumes that you have successfully installed both XMLSpy Enterprise or
Professional edition, and Tamino Server 3.1.1.

Installing WebDAV

Installing and using WebDAV:
XMLSpy supports WebDAV. Installing the WebDAV server is optional. Using the Tamino
functionality provided by XMLSpy is not compatible with WebDAV, due to limitations in keeping
repositories synchronized in both Tamino Server and WebDAV.

Installing WebDAV:
 Install WebDAV server from Software AG.
 Create a WebDAV store, and restart WebDAV server.

Tamino Schema Extensions

While XML Schema covers the logical aspects of document type definitions, it does not
prescribe a way how to define the physical aspects. Many XML processors require extra
information on how to process the instances of a given document class.

Tamino, for example, requires information as to which collection a document class belongs,
which elements are used for indexing, what type of indexing is used, how document elements
may be mapped onto fields in external databases, and so on.

For these and other purposes XML Schema provides an extension mechanism. Any schema,
element or attribute definition in XML Schema can be equipped with one or more annotations.

Each annotation can consist of two child elements: documentation and appinfo. The
documentation element contains documentation for human readers, while the appinfo element

382 User Reference DB Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

contains information for machines.

Tamino uses this appinfo element to store Tamino-related information within a schema file:

<?xml version = "1.0" encoding = "UTF-8"?>
<xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema"
 xmlns:tsd =
 "http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition">
 <xs:annotation>
 <xs:appinfo>
 <tsd:schemaInfo name = "album">
 <tsd:collection name = "encyclopedia"/>
 <tsd:doctype name = "album">
 <tsd:logical>
 <tsd:content>open</tsd:content>
 <tsd:accessOptions>
 <tsd:read/>
 <tsd:insert/>
 <tsd:delete/>
 <tsd:update/>
 </tsd:accessOptions>
 </tsd:logical>
 </tsd:doctype>
 </tsd:schemaInfo>
 </xs:appinfo>
 </xs:annotation>
...
</xs:schema>

These annotations are generated by the Tamino Schema Editor, as well as in XMLSpy
Schema/WSDL Design view when working with Tamino Extensions.

Creating, Saving, and Listing Tamino Schemas

All communication between Tamino and XMLSpy occurs using the HTTP communication
protocol.

Populating the Tamino database
The first prerequisite to be able to save any data in Tamino, is to create and save a schema to
Tamino. In the following steps a simple schema will be created. The same schema is also
attached in the Examples folder as BMW.tsd.

Creating a Tamino Schema Definition file:
1. Create a schema using the menu option File | New in XMLSpy, and select the tsd

Tamino Schema Definition entry.

This opens the Tamino Properties dialog box where you define the database properties.

© 2007 Altova GmbH

DB Menu 383User Reference

User Manual

If not already supplied, enter the Server and Database and Tamino Alias names in the
appropriate fields.

2. Enter the Collection Name, Schema Name and Doctype name in the respective
fields, and confirm with OK. Entering these data here creates them in Tamino.

Collection Name: cars
Schema Name: BMW
Doctype Name: Limousine

Please note:
The Tamino Alias is configured by the database administrator, and is sometimes used
for security purposes, or if aliases are already occupied. Please contact your database
administrator for more information on the Tamino Alias.

384 User Reference DB Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

This creates a Tamino schema definition file which is displayed in the Schema/WSDL
Design view.

3. Enter the Doctype Name Limousine in the Root element field. (The Doctype name
can be any global element, it does not have to be the root element.) This Doctype name
must, however be present in the schema file, in order to save it in Tamino.

4. This completes the definition stage of making the schema file conformant to the Tamino
database. A Tamino tab has also been added to the Details entry helper. The Tamino
extensions can be applied via the Details entry helper to Elements and Attributes.
Clicking the Text tab displays the schema definitions.

© 2007 Altova GmbH

DB Menu 385User Reference

User Manual

5. Design your schema with the schema editor as follows:

Add to the root element "Limousine" a sequence node and then add the following
children element nodes:

EngineSpec xs:string

Type xs:string

Interior

Extras

Append a sequence node to the "Interior" element and add the following children:

HiFiSystem xs:string

Covering xs:string

SatNav xs:string

Append a sequence node to the "Extras" element and add the following children:

Metallic xs:boolean

Sunroof xs:boolean

Magwheels xs:boolean

386 User Reference DB Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Please note:
Tamino does not support Global complex types!

Saving a Tamino schema:

 Press CTRL+S, and then click the Save to Tamino button.
This saves the schema to the Tamino database. You can also select the menu option
Convert | Tamino | Save to Tamino... to save the schema to the database directly.

Please note:
Saving to Tamino invokes the Tamino schema validator. This validator takes Tamino
extensions and other Tamino-specific rules into consideration; it is not the same as the
XMLSpy validator. If the schema is not valid according to the Tamino validator, an error
message appears describing the problem. Please see the Tamino documentation if this
is the case.

Saving to Disk
Saving the schema using the above method, places it in the database without having
saved it on the hard disk. The main window tab contains Untitledxx.xsd as the schema
name. To save the schema locally, click the Save To Disk button.

If you want to create XML files in XMLSpy based on schemas saved in Tamino, make
sure that you use the Save to Disk function, to save a copy of the schema locally.

Listing schemas in the Tamino database:
1. Select the menu option DB | Tamino | List Schema...

This opens the List Schema dialog box.

© 2007 Altova GmbH

DB Menu 387User Reference

User Manual

2. If not already supplied, enter the Server and Database names in the appropriate fields.
3. Click the List Schemas button.

A list of schemas, and associated Collections, of the current database are displayed in
the list box.

Please note: The Ping Database button allows you to test the connection to Tamino.

To open a schema:

 Double-click the schema name in the list box, or
 Mark the respective schema, and click the Get Schema button.

To delete a schema from Tamino:

388 User Reference DB Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

1. List the schemas in the List schema dialog box.
2. Mark the schema you want to delete, and click the Delete Schema button.

Validating Tamino schemas

 Having retrieved a schema from Tamino, select the menu option XML | Validate, or
press F8.
The XMLSpy validator is used in this case; XMLSpy error messages appear if the
schema is invalid.

However, saving the schema back to Tamino invokes the Tamino schema validator. This
validator takes Tamino extensions and other Tamino specific rules into consideration; it is not
the same as the XMLSpy validator. If the schema is not valid according to this validator, an error
message appears detailing the problem. Please see the Tamino documentation if this is the
case.

Adding Legacy Schemas to Tamino

Schemas that have been created in XMLSpy can be easily added to Tamino Server.

To add an existing schema to Tamino Server:
1. Open the schema in the Schema/WSDL Design view.
2. Select the menu option Schema design | Enable Tamino Schema Extensions.

A dialog box opens if you are using a schema prefix other than 'xs'. Tamino requires
that the namespace prefix be 'xs'.

3. Click OK if the dialog box opened.
A further dialog box is opened, asking if the file extension should be changed to .tsd.
This is optional. (Click OK to confirm.)

4. The Tamino Properties dialog box is automatically opened. Enter the database
properties, as well as the schema properties: Collection, Schema, and Doctype names
and confirm with OK.

© 2007 Altova GmbH

DB Menu 389User Reference

User Manual

5. Select the menu option DB | Tamino | Save to Tamino.
A confirmation message appears when the schema is successfully saved.

Tamino Schema Definition Limitations

Limitations of the Tamino Schema Definition Language Implementation (Copyright
Software AG 2001)
The Tamino schema definition language as implemented in the current version of Tamino has
the following limits:

Logical TSD3 restrictions not deducible by syntactical subset of logical W3C XS meta schema:
 per model group (i.e. the content of 1 complexType) the element names of each local

element and all referenced global elements must be unique. That means for each
element name either one local element or several references to global elements are
allowed.

 the xs:type and xs:base attribute allows only datatypes defined in XML schema part 2,
also see commented definition of tsd:native Datatype in this documentation.
Logical TSD3 restrictions compared to full DTD capabilities, which are expressable in
full XML schema (e.g. General Entities)

 enumerations for elements without subelements and with attributes cannot be specified
(restriction of XML schema: this cannot not be expressed without named complex
types)
Physical TSD3 restrictions

 attachment of physical schema definition not possible without tsd:which element below
recursive elements

 only one schemaInfo, elementInfo, attributeInfo element possible for each schema,
element or attribute-definition

Limitations of the XMLSpy and Tamino bundle

 Transaction oriented processing not supported
 Only XML documents and XSD Schema documents can be saved in Tamino via

XMLSpy
 Including of schemas within schemas is not supported
 Importing of schemas is not supported
 Namespaces (prefixes) in a schema are not supported by Tamino Server
 Using Tamino functionality provided by XMLSpy is not compatible with WebDAV

Editing Tamino Schemas

Editing schemas (which reference XML documents in the database)
Changing a schema definition on which multiple XML documents are based, might invalidate all
associated XML documents. On saving, Tamino checks to see if the schema has been
changed inappropriately. A Tamino error message appears if this is the case.

E.g. A schema and associated document exist in Tamino. The schema is opened in XMLSpy
and a new mandatory element is added to a complex type. Saving this schema back to Tamino
causes an error message to appear.

390 User Reference DB Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Changing the occurrence of the mandatory element to optional (min=0 and max=1), allows the
schema to be saved back to Tamino without invalidating any of the referenced XML documents.

Creating XML Files Based on Tamino Schemas

Creating an XML file based on a Tamino schema:
You can create XML files based on schemas in the following ways:
 By using an existing XML document as a template, where both the XML and schema

file exist in Tamino, or
 By using a schema file saved in Tamino, as a basis for the new XML document.

Creating an XML file based on another XML (template) file:
1. Create a query for the XML document you want to use as a template, and retrieve the

XML document from Tamino Server. (You can also use the alternative Get File method
to retrieve the XML file.)

2. Edit the XML document.
3. Use the menu option Convert | Tamino | Add Document, to save the new XML

document back to Tamino Server.
Please note: There are sample XML Files available in the Examples folder,
cars1.xml and cars2.xml.

Creating an XML file based on a Tamino schema file (saved locally):
Having opened a schema file saved in Tamino (this is the BMW schema in our example), then

1. Make sure the opened schema file is the active document.
2. Select DB | Tamino | Generate Sample XML file.

3. A dialog appears. Ensure that the "Generate first choice of mandatory choice", and "Fill
elements and attributes with data" check boxes are selected. Confirm with OK.

4. A sample XML file is generated. Replace the data as shown below.

© 2007 Altova GmbH

DB Menu 391User Reference

User Manual

Please note:
When you select the menu option XML | Validate, the XML file is validated against the
local Tamino schema file using the XMLSpy validator.

Adding an XML file / record / document, to Tamino

1. Select the menu option DB | Tamino | Add Document to add the active XML
document to Tamino.
A prompt appears asking for more information.

2. Enter the Collection, Schema, and Doctype names in the Tamino properties dialog box,
and confirm with OK.

The XML file is now associated to the schema saved in Tamino. A confirmation
message appears when the XML document has been saved successfully.

3. Change one of the entries in the currently open XML file (metallic=false), and select the
menu entry DB | Tamino | Add Document again.
This adds the edited XML file to the database using the previously defined Tamino
settings. You now have two XML files associated to the cars Collection, BMW schema,
and Limousine Doctype.

Please note:
Validating an XML file that has been added to Tamino Server, validates it against the
referenced schema file in Tamino.

392 User Reference DB Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Only XML and associated XSD files can currently be saved in Tamino via XMLSpy.

Querying and Retrieving Tamino Data

Querying the Tamino database
A query is defined by using the menu option DB | Tamino | Search. Tamino uses a query
language called XQuery. The syntax of this language follows the standard XPath notation.

You can create an XQuery as well as retrieve a specific file from the database (if you know the
specific record ID) using this dialog box. The query result is an XML document that appears in
either the Grid or Text view.

E.g
we want to find out how many records exist with the Doctype "Limousine". We will use the
XPath command count() as the query statement.

1. Enter the count(//Limousine) query in the XQuery field.

2. Having defined the query you also have to define which Database, Collection and
Doctype have to be searched. Click the Settings button to enter these settings, and
confirm with OK. Please note that Tamino is case sensitive, so make sure you enter
the data correctly.

3. Click the Query button to execute the query, and then Close, to close the dialog box.

© 2007 Altova GmbH

DB Menu 393User Reference

User Manual

The query result is an XML document with the xql:result field displaying the result (11
in this case).

Please note: The default Result Size field is 5 results; it has been changed to 55 in this
example. Activating the "Show only results" check box causes the query result
document to contain only result data.

Retrieving specific documents from Tamino:
1. Define a new query, which should supply all XML documents of Doctype Limousine,

and click the Query button. Keep the same XQuery settings as before.

The resulting query response is opened, multiple results are displayed in Table view.

394 User Reference DB Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

2. Click the table row number in the query result document, and select DB | Tamino | Get
active Document. If the table view is not active, select the respective Limousine row.

The query result appears as an XML document in the main window.

Get Document method of retrieving a document:
1. Note the ID number from the query document, and open the Query dialog box again.

The document ID is the ino:id=x entry.
2. Click the Get Document tab, and enter the Tamino Doctype in the Enter Tamino

Doctype text box.
3. Enter the document ID in the Enter document Id text box.

4. Click the Get Document button to open the XML document.

To save a Tamino query:

 Use the CTRL+S shortcut to save the query document locally.

© 2007 Altova GmbH

DB Menu 395User Reference

User Manual

This saves the query file as an XML document; it is not linked to Tamino Server in any
way.

Updating a query:
Having defined and executed a query once, you can reuse the query document to execute the
same query.

1. Switch back to the original query document.
2. Select the menu option DB| Tamino | Refresh.

This queries Tamino with the same settings as before, and delivers a new query result
document containing updated data.

Editing existing XML documents and adding them to Tamino
Change some of the data in the XML document and select the menu option DB | Tamino | Add
Document. This saves the edited file back to Tamino. A confirmation message appears when
the file is added successfully.

11.9.5 Oracle XML DB

XMLSpy allows you to connect to and query Oracle XML Db databases.

The following database functions are supported:

 Add (and register) an XML schema to the Oracle XML Db. The Oracle XML DB client
must be installed for you to be able to register XML schemas through XMLSpy.

 Open and delete schemas
 Query the database using XPath statements (DBUri)
 Browse XML documents (using WebDAV)
 Create an XML document based on a schema saved in the database

General installation process:
 Download and install XMLSpy
 Install Oracle server (if necessary)
 Create an Oracle database

An Oracle XML DB Demo installation manual is provided at
http://otn.oracle.com/sample_code/tech/xml/xmldb/XDBBasicDemo.pdf. The document
describes how to install the Oracle software as well as how to configure it to work with XMLSpy.

Search...

The DB | Oracle XML DB | Search command lets you query the Oracle XML database using
DBUri statements.

When you select this command, the following dialog appears:

http://otn.oracle.com/sample_code/tech/xml/xmldb/XDBBasicDemo.pdf

396 User Reference DB Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Enter your Oracle settings and click OK.

Enter the query as an XPath in the XPath field. The query you enter is appended to the DBUri
field below, and is sent to the server using the http protocol.

The Schema Name field must be entered manually for the very first query; it is then
automatically filled in on successive queries.

The Table Name field is an optional table that you can query.

Settings
The Settings button opens the Settings dialog box in which you define the query settings:
Server Name, Port, User Name and Password.

Query
The Query button sends off the query and closes the dialog box.

The query result appears in either the Enhanced Grid or Text view depending on the option
you select in the dialog box. If the query was not successful an error message appears.

List schemas

© 2007 Altova GmbH

DB Menu 397User Reference

User Manual

To list the schemas available in the Oracle database:
1. Select the menu option DB | Oracle XML Db | List Schemas.

This opens the Oracle XML DB - List schemas dialog box.
2. Click the List button to list the schemas in the current database.

3. Double-click one of the schemas in the schema list, or click one of the schemas and
click the Get Schema button.
The selected schema appears in the Schema/WSDL Design view.

The Oracle XML DB - List schemas dialog box allows you to select further options.

Settings
This button allows you to define or change the current Oracle XML Db settings.

Delete
This button deletes a registered schema (visible in the list box) from Oracle XML Db.

1. Click Delete.
2. Select either the ADO or ODBC connection string radio button, and click the Build

button.
This opens the Data Link properties dialog box (or Select Data source dialog box, if you
selected ODBC).

3. Select the MS OLE DB Provider for Oracle and click the Next button.
4. Enter the server details in the respective fields: server name, User name, Password,

and click OK.
The ADO connection string is now visible in the connection string field.

5. Click the Delete button to delete the schema.

Get Schema
Opens the currently marked schema in the Schema/WSDL Design view.

Close
Closes the dialog box.

Add Schema

This command allows you to add an XML schema to Oracle XML Db. To add an XML document

398 User Reference DB Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

instance file to the database, please see Adding XML document instances.

1. Select the menu option DB | Oracle XML Db | Add Schema.
This is the first step in the add schema process, the schema is saved to the database.
The File URL is automatically entered in the File URL field.
Click the Browse button to define where you want to save the file. Enter the file name of
the new schema file.

2. Click the Save button to save the schema to the database. A message appears telling
you that the schema was saved successfully. Click OK to proceed with the registration
process.

This opens the Register Schema dialog box. The path of the schema you just saved is
visible in the Schema Path field.

3. Select either the ADO or ODBC connection string radio button, and click the Build
button.

This opens the Data Link properties dialog box (or Select Data source dialog box, if you
selected ODBC).

© 2007 Altova GmbH

DB Menu 399User Reference

User Manual

4. Select the MS OLE DB Provider for Oracle and click Next.
5. Enter the server details in the respective fields: server name, User name, Password

and activate the Allow Saving password check box. Click OK.
The ADO connection string is now visible in the connection string field.

6. Click the Register button.
The schema is now registered in Oracle XML Db.

Browse Oracle XML documents

This command allows you to browse the XML documents available on your server. The server
details are automatically filled in if you previously queried the database or listed schemas. If this
is not the case, then you have to enter them manually.

Use the tree view to find specific XML files. Double clicking a file in the tree view opens it. You
can also click a file and click OK to achieve the same thing. The New Folder button adds a new
folder, the Delete button deletes the currently selected XML file.

Properties

This command displays the Oracle XML Db settings of the currently active query, schema, or
XML document in the main window.

400 User Reference DB Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Server Name
The name of the server you are connecting to using the http protocol.

Port
The server port you are using to connect to the server. 8080 is the localhost connection.

User Name
Your user name.

Password
Your password.

Save Pswd.
Retains the password for this XML document.

Adding XML document instances

To add an XML document instance to the database:

1. Open an existing schema saved in the Oracle XML Db using the DB | Oracle XML DB
| List schemas command.

2. Select the menu option DTD/Schema | Generate Sample XML file.
3. Select the specific options for the XML file, and click OK.

This creates the XML file which is now associated to the schema (please refer to the
note below for more details).

4. Select the menu option File | Save to URL.
5. Click the Browse button and navigate to the folder in which you want to save the XML

document instance. Use the New Folder button to create a new folder if necessary.
6. Enter the name of the file after the file path/URL, in the File URL field (please ensure

that you are saving the file on the Oracle database server).
7. Click OK to save the XML instance file to this location.

Please note:
Since the root node of each document added includes a
noNamespaceschemalocation attribute that identifies it as an instance of the
registered schema, the documents are shredded and stored as objects in the database.

© 2007 Altova GmbH

Convert Menu 401User Reference

User Manual

11.10 Convert Menu

XMLSpy provides powerful data exchange functions that allow you to:

 Import and export text, word processor, database, and XML files.
 Create an XML Schema based on an existing database
 Import database data based on an existing XML Schema
 Create a database structure, based on an existing XML schema

These functions are available in the Convert menu (screenshot bvelow).

11.10.1 Import Text File

This command lets you import any structured text file into XMLSpy and convert it to XML
format immediately. This is useful when you want to import legacy data from older systems. The
steps for importing data in a text file as an XML document are described below.

1. Select the menu item Convert | Import Text File. The following dialog appears:

402 User Reference Convert Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

2. Select one of the following:

 Map EDI, CSV, or fixed-width text data into XML (you must have installed Altova
MapForce in order to select this option)
 Convert CSV text file into XML

3. Click OK. The Text import dialog appears (screenshot below). How to use this dialog is
described below.

© 2007 Altova GmbH

Convert Menu 403User Reference

User Manual

Path
Enter the path to the file to import in the Path text box, or select the file using the
Browse button to the right of the text box. After the file is selected, a Grid View preview
of the XML file is displayed in the Preview pane. Any change in the options selected in
this dialog will be reflected in the preview immediately.

Delimiter
To successfully import a text file, you need to specify the field delimiter that is used to
separate columns or fields within the file. XMLSpy will auto-detect common row
separators (CR, LF, or CR+LF).

String quotes
Text files exported from legacy systems sometimes enclose textual values in quotes to
better distinguish them from numeric values. If this is the case, you can specify what
kind of quotes are being used in your file, and remove them automatically when the
data is imported.

Encoding
The data is converted into Unicode (the basis of all XML documents), so you need to
specify which character-set the file is currently encoded in. For US or Western
European Windows systems this will most likely be Codepage 1252, also referred to as
the ANSI encoding.

Byte order
If you are importing 16-bit or 32-bit Unicode (UCS-2, UTF-16, or UCS-4) files, you can
also switch between little-endian and big-endian byte order.

First row contains column names
It is also very common for text files to contain the field names in the first row within the
file. If this is the case, check this check box.

Preview
In the Preview pane you can rename column headers by clicking in a name and editing
it. The column headers will be the element or attribute names in the XML document.
You can select whether a column should be an element or an attribute in the XML
document, or whether it should not be imported into the XML document. In the
screenshot above, Col1 is an element, Col2 is an attribute, and Col3 will not be
imported.

When you are satisfied with the options, click Import. The imported data is converted
into an XML document that is displayed in Grid View.

11.10.2 Import Database Data

The Import Database Data command enables you to import data from any of a variety of
databases into an XML file. The import mechanism involves two steps:

1. A connection to the database is established.
2. The data to be imported is selected.

To import database data, do the following:

1. When you click the Import Database Data command, the Import Database Data dialog
(screenshot below) pops up.

404 User Reference Convert Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

2. Select Convert Database Data into XML and click OK. The Connect to a Data Source
dialog appears. (The Map Database Data into XML Based on Existing DTD/Schema
option requires the use of Altova MapForce to carry out the mapping.)

3. In the Connect to Data Source dialog, you establish a connection to the database. How
to do this for different types of databases is explained in the section, Connecting to a
Data Source.

4. After the connection to the database is established, the Import Database Data dialog
displays tabs and windows that enable you to select the database data to import. These
options are described below. After finishing, click the Import button to import the
database data.

© 2007 Altova GmbH

Convert Menu 405User Reference

User Manual

Data selection and import options
The Import Database Data dialog for setting the selection and import options consists of two
parts (shown separately in the screenshots below):

 an upper part with two tabs: (i) Selection, and (ii) Options.
 a lower part, which is a Preview window showing the data according to the data

selection and import options.

Selection tab
In the Selection tab (screenshot above), the Source pane (screenshot below) displays either a
representation of the tables of the database or an editable SQL statement for selecting the
required tables.

406 User Reference Convert Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

In the Table view, you can select the tables in the database that you want to import by checking
the table's check box (screenshot above). The contents of the table are displayed in the
Preview pane. The table selection can be further filtered in the Preview pane (see below).

Options tab
In the Options tab (screenshot below), you can specify how number, date, and time values are
to be imported; whether data is imported as elements or attributes; and whether comments and
NULL fields are to be included in the import.

When NULL fields are enabled for import, you can enter a substitution XML value for them.

Preview pane
The Preview pane (screenshot below) displays the structure of the table currently selected in
the Selection tab. When a new table is selected in the Selection tab, click the Refresh button in
the Preview pane to refresh the preview.

© 2007 Altova GmbH

Convert Menu 407User Reference

User Manual

A field can be specified to be imported as an element or attribute, or not to be imported, by
clicking the symbol to the left of the column name. You can click through the element, attribute,
and ignore options. In the screenshot above, the Manager field has been set to be imported as
an element and the Degree field as an attribute, while the Programmer field will not be imported.

Datatype conversions
Information about the conversion of database datatypes to XML Schema datatypes is listed in
the Appendices.

11.10.3 Import Microsoft Word Document

This command enables the direct import of any Word document and conversion into XML
format if you have been using paragraph styles in Microsoft Word. This option requires
Microsoft Word or Microsoft Office (Version 97 or 2000).

When you select this command, the Open dialog box appears. Select the Word document you
want to import.

XMLSpy automatically generates an XML document with included CSS stylesheet. Each Word
paragraph generates an XML element, whose name is defined as the name of the
corresponding paragraph style in Microsoft Word.

11.10.4 Create XML Schema from DB Structure

The Create XML Schema from DB Structure command enables you to create an XML
Schema from the structure of any of a variety of databases. The XML Schema-creation
mechanism involves two steps:

1. A connection to the database is established.
2. Options for the database data selection and the XML Schema are specified.

To create an XML Schema from a DB structure you would do the following:

1. When you click the Create XML Schema from DB Structure command, the Connect
to Data Source dialog appears.

2. In the Connect to Data Source dialog, you establish a connection to the database. How

408 User Reference Convert Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

to do this for different types of databases is explained in the section, Connecting to a
Data Source.

3. After the connection to the database is established, the Import Database Structure to
XML Schema dialog (screenshot below) displays tabs and windows that enable you to
select the database structure to import. These options are described below. After
finishing, click the Import button to import the database data.

Selection tab
In the Selection tab (screenshot below), the data source is listed in the Source Database pane.
The Source pane displays either a representation of the tables of the database or an editable
SQL statement for selecting the required tables.

© 2007 Altova GmbH

Convert Menu 409User Reference

User Manual

In the Table view, you can select the tables in the database that you want to import by checking
the table's check box (screenshot above). The contents of the table are displayed in the
Preview pane. The table selection can be further filtered in the Preview pane (see below).

Options tab
In the Options tab (screenshot below), you can specify the format of the schema, its extension
type, whether columns should be imported as elements or attributes, and the database
constraints that should be generated in the schema.

Schema format: You can select between a flat (SQL/XML Standard) and a hierarchical
schema form

 The flat schema model is based on an ISO-ANSI Working draft titled XML-Related

410 User Reference Convert Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Specification (SQL/XML) (Henceforth referenced as the" SQL/XML Working Draft").
The SQL/XML Working Draft defines how to map databases to XML. Relationships are
defined in schema using identity constraints and there are no references to elements.
Hence the schema is flat structure which resembles a tree-like view of the database.
For more information on the SQL/XML working draft please see:
http://www.sqlx.org/SQLXdocs

 The hierarchical schema model displays the table dependencies visually, in a type of
tree view where dependent tables are shown as indented child elements in the content
model. Table dependencies are also displayed in the Identity constraints tab.

Tables are listed as global elements in the schema, and columns are the elements or
attributes of these global elements (The user decides whether to map the columns as
elements or as attributes). Relationships are created in a hierarchical way so that a
foreign key field in one table is actually a reference to the global element that
represents that table.

Schema extension type: Schema extension information is additional information read from a
database that is then embedded in the schema as either annotation data or attributes. There
are four extension type options when generating schemas: (i) no extensions information; (ii)
SQL/XML extensions; (iii) MS SQL Server extensions; and (iv) Oracle extensions. These are
described below:

 None: No additional information is provided by the database.
 SQL XML: SQL/XML extensions are only inserted when generating schemas in a Flat

Format. The extension information is stored in annotations, and is described in the
SQL/XML Working Draft.

 MS SQL Server: Selecting Microsoft SQL Server, generates SQL Server extensions.
See Using Annotations in XSL Schemas in the the SQL Server Books Online for
detailed information (Download from
http://www.microsoft.com/sql/techinfo/productdoc/2000/books.asp). The following
subset of annotation data are generated in the schema: sql:relation, sql:field,
sql:datatype, sql:mapped.

 Oracle: Oracle extensions are selected by default when working with an Oracle
database. Additional database information is stored as attributes. A full description of
these attributes can be found at
http://download-west.oracle.com/docs/cd/B10501_01/appdev.920/a96620/xdb05obj.htm
#1027227 (You need to have access to the Oracle Technology network to access this
page.) The following subset of attributes is currently generated: SQLName, SQLType,
SQLSchema.

Note: Although SQL Server and Oracle extensions can be generated for their respective
databases they are not restricted in this way. This proves useful when working with a
third database and wanting to generate a schema that later should be working with
either SQL Server or Oracle.

Preview pane
The Preview pane (screenshot below) displays the structure of the table currently selected in
the Selection tab. When a new table is selected in the Selection tab, click the Refresh button in
the Preview pane to refresh the preview.

http://www.w3.org/XML/Query
http://www.microsoft.com/sql/techinfo/productdoc/2000/books.asp
http://download-west.oracle.com/docs/cd/B10501_01/appdev.920/a96620/xdb05obj.htm#1027227
http://download-west.oracle.com/docs/cd/B10501_01/appdev.920/a96620/xdb05obj.htm#1027227

© 2007 Altova GmbH

Convert Menu 411User Reference

User Manual

A field can be specified to be generated as an element or attribute, or not to be generated, by
clicking the symbol to the left of the column name. You can click through the element, attribute,
and ignore options. In the screenshot above, the Manager field has been set to be generated as
an element and the Degree field as an attribute, while the Programmer field will not be
generated.

Datatype conversions
Information about the conversion of database datatypes to XML Schema datatypes is listed in
the Appendices.

11.10.5 DB Import Based on XML Schema

The DB Import Based on XML Schema command creates an XML document which is valid
according to a given XML Schema and contains data imported from a database. For this
feature, the following databases are supported:

 Microsoft Access 2000 and 2003
 Microsoft SQL Server
 Oracle
 MySQL
 Sybase
 IBM DB2

The data to be imported is determined by the table that is selected in the database.With the
XML Schema on which you wish to base the import the active document in Schema View,
connect to the database. Then select the table/s you wish to import, and click Import. The data
is imported into an XML document, and the document has the structure of the XML Schema
that was active when the data was imported.

In the example below, data from the MS Access database DB2schema.mdb is imported with the
XML Schema DBschema2xml.xsd active in Schema View. Both these files are in the
Examples/Tutorial folder in your application folder. These are the steps to carry out for the
import:

1. Open the schema file DBschema2xml.xsd in Schema View (screenshot below).

412 User Reference Convert Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

2. Select the menu command DB Import based on XML Schema. This opens the
Connect to Data Source dialog.

3. Select the Microsoft Access (ADO) option and click Next.
4. Click Browse and select the database file DB2schema.mdb, then click Next.
5. In the DB Import Based on XML Schema dialog which pops up, go to the Tables tab,

select one or more tables you wish to import (for example, Altova), then click Import.
The table is imported into an XML document that is displayed in Grid View.

Datatype conversions
Information about the conversion of database datatypes to XML Schema datatypes is listed in
the Appendices.

11.10.6 Create DB Structure from XML Schema

XMLSpy allows you to create an empty database (or skeleton database) based on an existing
schema file. The method described below is generally the same for each type of database.

1. Open the schema file in Schema/WSDL View
2. Select the menu command Convert | Create DB Structure from XML Schema. This

pops up the Connect to a Data Source dialog, which enables you to connect to a
database (DB).

3. Use the steps described in the section Connecting to a Data Source to connect to the
required database. For example, to connect to a Microsoft Access database, select the
Microsoft Access radio button, and continue the process to select a database. You can
use an existing database or create a new database in which the schema structure will
be contained.

4. In the Create DB Structure from XML Schema dialog, tables are created from the
schema and displayed in a tree format at the location where they they will occur in the
DB. For example, in the screenshot below, the Address table is created and selected
for export. Tables that should not be exported should be deselected (by unchecking the
check box or selecting the appropriate item from the context menu for that table).

© 2007 Altova GmbH

Convert Menu 413User Reference

User Manual

5. If you wish to drop (delete) tables in an existing DB that have the same name as tables
coming in from the schema, then check the Drop Existing Tables with the Same name
check box.

Creating DB tables with relationships
If the XML Schema from which the DB structure is generated has relationships defined in the
form of identity constraints, then these relationships are automatically created in the generated
DB structure and displayed in the Table Structure. Tables with relationships are listed under the
sections: Tables with ForeignKeys and Tables used by ForeignKeys. Tables without
relationships are listed in the Independent Tables section.

In the Relationships tab, you can create and modify table relationships. The tab lists all possible
primary-key/foreign-key relationships (screenshot below).

414 User Reference Convert Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

To create a relationship, do the following:

1. Select one of the possible primary-key/foreign-key relationships.
2. In the lower pane of the dialog, click the Plus button to create a relationship.
3. Select the required columns in each of the two tables from the respective dropdown

lists.

You can also remove a relationship by selecting it and then clicking the Minus button.

Notes on database structure and connecting
The schema structure, defined by the identity constraints, is mirrored in the resulting database.
The table below shows the type of database created, the restrictions, and the connecting
methods, when using the Create DB Structure from XML Schema menu command.

Directly using ODBC using ADO

MS Access (2000 and 2003) OK * OK OK

MS SQL Server OK * OK OK

Oracle OK * OK OK

MySQL - OK * OK

Sybase - OK * OK

IBM DB2 - OK * OK

* Recommended connection method for each database.

© 2007 Altova GmbH

Convert Menu 415User Reference

User Manual

 MySQL: When creating the ADO connection based on ODBC, it is recommended to use
either the User or System DSN.
 - Not supported

XMLSpy will map both hierarchical and flat formatted schemas. XMLSpy recognizes both
formats automatically.
The flat format is mapped to SQL in two different ways.

 SQL Server DB, Oracle DB, or Sybase DB:
A schema that was generated in flat format, for one of the above databases, will have
the schema catalog name extracted and used in the generated SQL script as the DB
name. This means that the resulting SQL script will be executed on a target DB whose
name must be identical to the schema catalog name.

 Access (2000 or 2003), MySQL, or DB2 DB:
A schema that was generated in flat format, for one of the above databases, will ignore
the schema catalog name when the SQL script is generated. This means that the
resulting SQL script will be executed on a target database that was logged into.

Datatype conversions
Information about the conversion of XML Schema datatypes to database datatypes is listed in
the Appendices.

11.10.7 Export to Text Files

The command Convert | Export to Text Files exports XML data into text formats for exchange
with databases or legacy systems. On clicking this command, the Export XML to Text dialog
pops. It consists of two parts (shown separately in the screenshots below):

 an upper part with two tabs: (i) Selection, and (ii) Export Options.
 a lower part, which is a Preview window.

After you have selected the desired options in this dialog (described below), click the Export
button to export to text file/s.

Selection
In the Selection tab (screenshot below), you can select the destination of the file to be exported
and text generation options.

416 User Reference Convert Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Destination: The exported file can be saved directly to a folder. The file extension can be
specified. The filenames will be those of the elements (in the XML file) that will be exported.
Alternatively, untitled files can be exported to XMLSpy. These files will be displayed in the GUI,
and can be saved later.

Include comments: Activate this option to include a comment in the exported XML file that
shows the SQL query used to select the data, as well as a list containing one item for each
column header in the database table.

Create first row with field names: When activated, the exported tables include the database
column names.

Remove delimiters: Removes delimiters that are contained in text values in the exported data.
Set the delimiter you want to remove by using the Delimiter combo box in this tab. For example,
if this option is activated and the selected delimiter is the apostrophe, when you export the XML
value Ba'ker, the string will be Baker in the exported text.

Remove newlines: Removes newlines from exported data.

Delimiter: Select from the drop-down list the character that you wish to have removed during
export. Alternatively, enter the desired character string.

String quotes: This puts each string of data into the quotes specified in this combo box.

Encoding: Select from the drop-down list, the desired encoding for files that are generated
during export.

Byte order: If you are importing 16-bit or 32-bit Unicode (UCS-2, UTF-16, or UCS-4) files, you
can also switch between little-endian and big-endian byte order.

© 2007 Altova GmbH

Convert Menu 417User Reference

User Manual

Export Options
Additional export options, which are described below, can be specified in the Export Options tab
(screenshot below):

Start point of export: You can choose to export the entire XML document or restrict your
export to the data hierarchy starting from the currently selected element. The number of
sub-levels below the start point that will be exported is specified in the Export Depth option.

Export depth: Specifies the number of sub-levels below the start point that will be exported.

Export fields: Depending on your XML data, you may want to export only elements, attributes,
or the textual content of your elements. Note that you can deselect the export of individual
elements in the Preview window.

Automatic fields: XMLSpy will produce one output file or table for each element type selected.
You can choose to automatically create primary/foreign key pairs to link your data in the
relational model, or define a primary key for each element.

Exclude namespace name: Together with the Replace Colon With Underscore radio button
this is an either/or choice. Specifies whether namespace prefixes of elements and attributes
should be excluded or whether the colon in the namespace prefix should be replaced with an
underscore.

Preview window
The Preview window (screenshot below) is displayed below the Selection and Export Options
tab.

418 User Reference Convert Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

In the Resulting Elements from XML File pane, shows the node name that will be exported and
the name in the generated file. You can select/deselect nodes that will be exported. When an
element is selected, a preview of its structure is shown in a second pane below. In this pane,
clicking to the left of a column name toggles the export of that column on and off. In the
screenshot above, the paidnewyear column has been toggled off, so it will not be exported.

11.10.8 Export to a Database

The command Convert | Export to a Database exports XML data to a database. On clicking
this command, the Connection Wizard starts up and enables you to set up a connection to the
database you wish to update. After a connection has been established, the Export Data to
Database dialog pops. It consists of two parts (shown separately in the screenshots below):

 an upper part with two tabs: (i) Selection, and (ii) Export Options.
 a lower part, which is a Preview window.

After you have selected the desired options in this dialog (described below), click the Export
button to export to the database.

Selection
In the Selection tab, you can select the destination database and table generation options. The
destination field selects the connection to the database. You must select whether the data is
created as new tables, updates existing tables, or first tries to update an existing table and then
creates a new table if an an update is not possible. You can also set a stop action based on the
number of errors, and, optionally, SQL script logging.

Export Options
Export options, which are described below, can be specified in the Export Options tab (
screenshot below):

© 2007 Altova GmbH

Convert Menu 419User Reference

User Manual

Start point of export: You can choose to export the entire XML document or restrict your
export to the data hierarchy starting from the currently selected element. The number of
sub-levels below the start point that will be exported is specified in the Export Depth option.

Export depth: Specifies the number of sub-levels below the start point that will be exported.

Export fields: Depending on your XML data, you may want to export only elements, attributes,
or the textual content of your elements. Note that you can deselect the export of individual
elements in the Preview window.

Automatic fields: XMLSpy will produce one output file or table for each element type selected.
You can choose to automatically create primary/foreign key pairs to link your data in the
relational model, or define a primary key for each element.

Exclude namespace name: Together with the Replace Colon With Underscore radio button
this is an either/or choice. Specifies whether namespace prefixes of elements and attributes
should be excluded or whether the colon in the namespace prefix should be replaced with an
underscore.
Null value and text field length: Text strings in the XML document that should be treated as
NULL values can be specified, and the length of text fields in the database can be specified.

Preview window
The Preview window (screenshot below) is displayed below the Selection and Export Options
tab.

420 User Reference Convert Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

In the Resulting Elements from XML File pane, shows the node name that will be exported and
the name in the generated file. You can select/deselect nodes that will be exported. When an
element is selected, a preview of its structure is shown in a second pane below. In this pane,
clicking to the left of a column name toggles the export of that column on and off. In the
screenshot above, the paidnewyear column has been toggled off, so it will not be exported.

When the element's table structure shows the data, the key constraint type can be set by
clicking to the left of a column name. When the element's table structure shows field definitions,
the definitions can be edited by selecting the definition and selecting an option from the
definition's combo box (see screenshot above).

© 2007 Altova GmbH

View Menu 421User Reference

User Manual

11.11 View Menu

The View menu controls the display of the active Main window and allows you to change the
way XMLSpy displays your XML documents.

This section provides a complete description of commands in the View menu.

11.11.1 Text View

This command switches the current view of the document to Text View, which enables you to
edit the document in its text form. It supports a number of advanced text editing features,
described in detail in Text View section of this document.

Please note: You can configure aspects of the Text View using options available in the various
tabs of the Options dialog (Tools | Options).

11.11.2 Enhanced Grid View

This command switches the current document into Enhanced Grid View.

If the previous view was the Text View, the document is automatically checked for
well-formedness.

Embedded Database/Table view
XMLSpy allows you to display recurring elements in a Database/Table view from within the
Enhanced Grid view. This function is available wherever the Enhanced Grid view can be
activated, and can be used when editing any type of XML file - XML, XSD, XSL etc.

For further information on this view, please see the Grid View section of this documentation.

11.11.3 Schema/WSDL Design View

This command switches the current document to Schema/WSDL View. This view is described
in detail in the Schema/WSDL Design view section of this documentation.

422 User Reference View Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

11.11.4 Authentic View

This command switches the current document into the Authentic View.

Authentic View enables you to edit XML documents based on StyleVision Power Stylesheet
templates created in StyleVision! The templates in StyleVision are saved as StyleVision
Power Stylesheets (*.sps files), and supply all the necessary information needed by Authentic
View.

To open a template select the File | New command and then click the Select a StyleVision
stylesheet... button. Please see the Authentic View documentation for further information.

Please note: If, when you try to switch to Authentic View, you receive a message saying that a
temporary (temp) file could not be created, contact your system administrator. The system
administrator must change the default Security ID for "non-power users" to allow them to create
folders and files.

11.11.5 Browser View

This command switches the current document into Browser View.

This view uses an XML-enabled browser to render the XML document using information from
potential CSS or XSL style-sheets.

When switching to browser view, the document is first checked for validity, if you have selected
Validate upon saving in the File tab of the Options dialog. Use the menu command Tools |
Options to open this dialog.

For further information on this view, please see the detailed description of the various views in
the Main Window section.

11.11.6 Expand

Hotkey: "+" on the numeric keypad

This command expands the selected element by one level.

The command can be used in the Enhanced Grid view.

In the Enhanced Grid view, the element and all its children remain selected after expansion.
This allows you to expand a large element by pressing the + key repeatedly.

You can expand and collapse any element by clicking on the gray bar to the left of each
element.

11.11.7 Collapse

Hotkey: "-" on the numeric keypad

This command collapses the selected element by one level.

The command can be used in the Enhanced Grid view.

© 2007 Altova GmbH

View Menu 423User Reference

User Manual

You can expand and collapse any element by clicking on the gray bar to the left of each
element.

11.11.8 Expand Fully

Hotkey: "*" on the numeric keypad

This command expands all child items of the selected element, down to the last level of
nesting.

The command can be used in the Enhanced Grid view.

11.11.9 Collapse Unselected

Hotkey: CTRL + "-" key on the numeric keypad

This command allows you to focus on one element and its children, and ignore all the other
surrounding elements.

The command can be used in the Enhanced Grid view.

Select the item that you want to work with and choose this command to collapse all other
(unselected) elements.

11.11.10Optimal Widths

This command adjusts the widths of all columns so that the text of the entire document fits into
the designated columns.

If you expand and collapse several elements, select the Optimal widths command, as only
visible items are taken into account when calculating the optimum column widths.

11.11.11Word Wrap

This command enables or disables word wrapping in the Text view.

11.11.12Go to Line/Char

Hotkey: CTRL+ g

This command goes to a specific line number and/or character position in an XML document
in the Text view.

If you are working with an external XSLT processor (see the XSL tab on the Tools | Options
dialog for details) you may often get error messages by line number and character position.
XMLSpy lets you quickly navigate to that spot, using this command:

424 User Reference View Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

This command works in both the Text View and Enhanced Grid View, but will only be able to
show an approximate position in the grid view by highlighting the element closest to the
character position specified.

11.11.13Go to File

This command opens a document that is being referred to, from within the file you are
currently editing.

Select the file name, path name, or URL you are interested in, and choose this command from
the View menu.

You can select:
 An entire element or attribute in the Enhanced Grid View
 Some characters from within any item in the Text or Enhanced Grid view.
 An enclosed string. If your text cursor is between quotes, XMLSpy will automatically use

the entire string that is enclosed in the quotes.

11.11.14Line Numbers Margin

This command switches the line numbering margin on or off in the Text view.

11.11.15Bookmarks Margin

This command toggles the Bookmarks Margin on and off in Text View. If a bookmark is
present in the Bookmarks Margin and the Bookmarks Margin is then toggled off, the
bookmarked line is highlighted. When the Bookmarks Margin is toggled on again, the
highlighting is removed and the bookmark appears in the Bookmarks Margin.

11.11.16Source Folding Margin

This command switches the source folding margin on or off in the Text view. Clicking the plus
or minus symbols in this margin allows you to expand or collapse the respective section of
code.

© 2007 Altova GmbH

View Menu 425User Reference

User Manual

Please note:
You can expand or collapse child "nodes" in the text view:

SHIFT+Click on a plus symbol collapses all child nodes of that current node, while

CTRL+Click on a previously collapsed node, expands all the child nodes.

11.11.17Indentation Guides

This command switches the indentation guides on or off in the Text view. The indentation
guides are the vertical lines, aligned along the whitespace borders, which give you a visual
indication of the hierarchical levels.

426 User Reference Browser Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

11.12 Browser Menu

The commands on the Browser menu are only available in Browser View.

11.12.1 Back

Backspace

The Back command displays the previously viewed page. The Backspace key also achieves
the same effect. The Back command is useful if you click a link in your XML document and
want to return to your XML document.

11.12.2 Forward

The Forward command is only available once you have used the Back command. It moves you
forward through previously viewed pages.

11.12.3 Stop

The Stop command instructs the browser to stop loading your document. This is useful if large
external files or graphics are being downloaded over a slow Internet connection, and you wish
to stop the process.

11.12.4 Refresh

F5

The Refresh (F5) command updates the Browser View by reloading the document and related
documents, such as CSS and XSL stylesheets, and DTDs.

11.12.5 Fonts

The Fonts command allows you to select the default font size for rendering the text of your XML
document. It is similar to the Font Size command in most browsers.

11.12.6 Separate Window

The Separate Window command opens the Browser View in a separate window, so that
side-by-side viewing is possible. If you have separated the Browser View, press F5 in editing
view to automatically refresh the corresponding Browser View. To dock separate windows back
into the interface, click the maximize button (at top right) of the active window.

© 2007 Altova GmbH

Tools Menu 427User Reference

User Manual

11.13 Tools Menu

The tools menu allows you to:
 Check the spelling of your XML documents.
 Access the scripting environment of XMLSpy. You can create, manage and store your

own forms, macros and event handlers.
 View the currently assigned macros
 Assign (or deassign) scripts to a project
 Compare any two files to check for differences
 Compare any two folders to check for differences
 Customize your version of XMLSpy: define your own toolbars, keyboard shortcuts,

menus, and macros
 Define the global program settings

11.13.1 Spelling

XMLSpy includes a built-in spelling checker.

The spelling checker can be used in the following views: Enhanced grid, Text and Authentic
View. Please note that you can check any type of XML file. The view you select influences the
spelling checker options that are made available. A schema file (*.xsd) can be checked in the
Text and Enhanced grid view, but not in the Schema/WSDL Design view.

Spell checking in the Text and Enhanced grid view presents you with the most options. You
can additionally check the spelling of:

 Element content
 Attribute content
 CDATA content
 Comment text

You can also define which specific element or attribute content to check or ignore. These
selections are defined in the "Spelling context" dialog box.

The Tools | Spelling... command (Shift+F7) opens the Spelling dialog box, and automatically
starts checking the currently active XML document (in this screenshot, the OrgChart.xml
document in Authentic View).

428 User Reference Tools Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Not in Dictionary
This text box contains the word that cannot be found in any of the existing dictionaries (default
and custom dictionaries). You can edit the text here and click Change to change it in the XML
document. The word is also highlighted in the XML document. The command buttons become
active at this point and allow you to decide which action to take.

Suggestions
This list box displays a list of words that resemble the unknown word (supplied from all
dictionaries). Double-clicking a word in this list automatically inserts it in the document and
continues the spell checking process.

Ignore once
This command allows you to continue checking the document while ignoring the first occurrence
of the unknown word. The same word will be flagged again if it appears in the document.

Ignore all
This command ignores all instances of the unknown word in the whole document.

Add to dictionary
This command adds the unknown word to the currently active custom dictionary. The active
dictionary is the dictionary that is selected in the Custom Dictionaries dialog box. To open this
dialog, click Options, then Spelling options, then Custom Dictionaries.

© 2007 Altova GmbH

Tools Menu 429User Reference

User Manual

Change
This command replaces the currently highlighted word in the XML document with the selected
word in the Suggestions list box.

Change all
This command replaces all occurrences of the currently highlighted word in the XML document,
with the selected word in the Suggestions list box.

Recheck
The Recheck button restarts the check from the beginning of the document.

Close
This command closes the Spelling dialog box.

Options...
This command opens a dialog box depending on the current view.
 If opened from Authentic View, the Options dialog box is opened.
 If opened from the Text or Enhanced Grid view, the Spelling context dialog box is

opened.

11.13.2 Spelling Options

The Tools | Spelling options command opens either the Spelling Options or Spelling
context dialog box, depending on the view you are using to display your XML document.

Spelling Options dialog (Browser View and Schema/WSDL View)
When viewing an XML document in Browser View or Schema/WSDL View, this command
opens the Spelling Options dialog box. Use this dialog box to define the global spelling checker
options.

Always suggest corrections:
Activating this option causes suggestions (from all of the dictionaries) to be displayed in the
Suggestions list box. Disabling this option causes no suggestions to be shown.

Make corrections only from main dictionary:
Activating this option causes only the default dictionary to be used; none of the custom
dictionaries are scanned for suggestions. It also disables the Custom Dictionaries button,

430 User Reference Tools Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

preventing any editing of the custom dictionaries.

Ignore words in UPPER case:
Activating this option causes all upper case words to be ignored.

Ignore words with numbers:
Activating this number causes all words containing numbers to be ignored.

Dictionary Language
Use this combo box to select the dictionary language for the spelling checking. The default
installation allows you to select English. Other language dictionaries will be made available on
the Altova download web site.

Custom dictionaries
The Custom Dictionaries... button allows you to:
 modify an existing dictionary (add or delete dictionary entries)
 create a totally new dictionary
 add an existing dictionary
 remove an existing dictionary

When you start the spell checking process, all dictionaries listed in the Custom Dictionaries
list box are searched. If you want to limit the search to specific dictionaries, use the
Remove button to delete those you do not want searched.

To add a new dictionary entry:
1. In the Custom Dictionaries dialog, click the name of the custom dictionary to which you

want to add an entry, and click Modify...
This opens the dictionary highlighted in the list box (custom.tlx in this case). A
prompt appears if none of the dictionaries has been selected.

© 2007 Altova GmbH

Tools Menu 431User Reference

User Manual

2. Click in the Word: field and enter the new dictionary entry (this automatically activates
the Add button).

3. Click Add to add it to the dictionary.
4. Click OK.

To delete an entry from the dictionary:
1. In the Custom Dictionaries dialog, click the name of the custom dictionary from which

you want to delete an entry, and click Modify...
This opens the dictionary highlighted in the list box (custom.tlx in this case). A
prompt appears if none of the dictionaries has been selected.

2. Click the word in the Dictionary list box to highlight it, and click Delete.
3. Click OK.

To add a new dictionary:
1. In the Custom Dictionaries dialog, click New, and enter the name of the new custom

dictionary in the File name field.
2. Click Save to save the dictionary.
3. You can now add entries to the dictionary using the procedure above, or the Add to

Dictionary button while performing a spell check.

To add an existing dictionary:
Use this option to add previously removed (or third party) dictionaries.

1. In the Custom Dictionaries dialog, click Add and enter the name of the dictionary in the
File name field.
Dictionaries have a *.tlx extension.

2. Click Open to add the dictionary to the Custom dictionary list.

Please note:
It is not mandatory for a dictionary to have a *.tlx extension. It can have any
extension, or no extension at all, and still be added to the dictionary list box.

To remove a dictionary:

 In the Custom Dictionaries dialog, click the dictionary name in the list and click Remove
. This removes the dictionary from the list, but does not physically delete it from your
hard disk.

Spelling context dialog- Text and Enhanced Grid view

432 User Reference Tools Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

When viewing an XML document in the Text or Enhanced Grid view, this command opens the
"Spelling context" dialog box. Starting the spelling checking in the Text and Enhanced grid
view presents you with the most options, you can define the specific content which is to be
checked:
 Element content
 Attribute content
 CDATA content
 Comment text

The Spelling options... button opens the Spelling Options dialog box, which allows you to
define the global spelling checker options.

To define specific element or attribute "content" you want to check:
1. Click the All, except listed below or Only listed below radio button.

2. Click the Append element/attribute icon , and enter the tag name containing the text
you want checked (e.g., para). Press Enter to confirm.

3. Click OK to confirm these settings, and click it again in the Spelling dialog box to start
the spelling checker with these new settings.
The only element content to be checked will be the text between the para tags,
attribute content will also be checked.

© 2007 Altova GmbH

Tools Menu 433User Reference

User Manual

To delete a tag name:

 Select the tag name, and press the Delete or Backspace key.

11.13.3 Switch to Scripting Environment

The scripting environment is currently available as a downloadable component. If you have not
downloaded and installed the scripting component, you will be prompted to do so when you
select the Switch to Scripting environment menu item.

Click OK to connect with the Altova Component Download Center from where you can choose
to download the "Scripting Environment".

After you have downloaded the component, double-click on Spyscripting.exe to install it.

This command switches to the scripting environment, a predefined global scripting project is
active the first time you start the form editor. Please see the Scripting section in this manual for
more information.

11.13.4 Show Macros

This command opens a dialog box which displays a list of all macros defined in the global
scripting project and in the scripting project associated with the current project opened in
XMLSpy.

The Run button in the dialog box calls the selected macro.

434 User Reference Tools Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

11.13.5 Project

The Tools | Options command opens a further submenu from where you can assign (or
de-assign) scripts to a project.

Please note:
You have to have a XMLSpy project open for these menu items to become active.

Assign Script to Project

This command enables you to assign scripts to a scripting project.

Unassign Scripts from Project

This command enables you to de-assign scripts from a scripting project.

Project Scripts Active

This command allows you to activate or temporarily deactivate project scripts.

11.13.6 Comparisons

XMLSpy provides a comparison (or differencing) feature, with which you can compare XML and
Text files, as well as folders, in order to check for differences.

There are the following menu items in the Tools menu that enable you to perform comparison
tasks on files and folders:

 Compare open file with
 Compare directories
 Compare options

These commands are described in detail in the following sub-sections.

Compare Open File With

This command allows you to compare the open file with another file. The comparison shows
both files tiled vertically in the main window with the differences between them highlighted in
each file in green. You can compare files as XML documents (where the structure and
semantics of tags is significant) or as text documents.

To compare the open file with another file:

1. With the file active in the Main Window (only one open file can be active in the Main
Window at a given time), click Tools | Compare open file with.... The following dialog

© 2007 Altova GmbH

Tools Menu 435User Reference

User Manual

appears:

2. Browse for the file you wish to compare the open file with, and select it. Alternatively, if
the file you wish to select is open (but not active) in the Main Window, or if the file is in a
project, click the Window... button, and select the file.

3. Click OK. The second file is opened, and the Settings dialog appears:

These settings are described under Compare Options. If you do not wish to have this
dialog appear each time you start a compare session, uncheck Show settings before
starting compare, which is at the bottom of the dialog.

4. Select the required settings, then click OK. The two files now appear in the Main
Window. Lines that are different are highlighted in green. One difference is selected at
a time and is indicated in both files in a darker green color.

436 User Reference Tools Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

A Compare Files control window also appears:

To select the next difference, click the Next button. The First, Last, and Previous
buttons help you to navigate among the differences and to select a difference.
The "Merge difference" pane enables you to copy the selected difference from one file
to the other. In order to enable merging, the following Compare options must be set:
Detailed differencing must be checked and Ignore node depth must be unchecked. If
you wish to undo a merge, stop the Compare session, select the file in which the
change is to be undone, and select Edit | Undo or press Ctrl + Z.

5. When you are done with reviewing and/or merging differences, click Done.

Please note:

 While the Compare session is active, no editing or change of views is allowed. Any
attempt to edit or change the view of either file will pop up a message warning that the
Compare session will be ended.

 Compare settings can be changed during a Compare session (by selecting Tools |
Compare options...), but will only take effect from the next Compare session onward;
the new settings will not affect the current session.

Compare Directories

The Compare directories command allows you to compare two directories, with or without their
sub-directories. Directories are compared to indicate missing files, and whether files of the
same name are different or not.

To compare two directories:

1. Click Tools | Compare directories. The following dialog appears.

© 2007 Altova GmbH

Tools Menu 437User Reference

User Manual

2. Browse for the directories to compare, and check the Include subdirectories check
box if you wish to include subdirectories in the Compare.

3. Select the file types you want to compare in the Files of type field.
4. Click OK. The Settings dialog (described in Compare Options) appears.
5. Select the required settings for comparing files.
6. Click OK. A dialog will appear indicating the progress of the Compare.

The result will appear in a window, and will look like this:

Directory symbols
All directory names are given in black.

This directory contains files, all of which either cannot be compared or are not different
from the corresponding file in the compared directory.

This directory contains one or more files that do not exist in the compared directory.

This directory contains one or more files that are different from the corresponding file in
the compared directory.

Please note: If a directory contains both a file that does not exist in the compared directory as
well as a file that is different from the corresponding file in the compared directory, then the

438 User Reference Tools Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

directory will be shown with the icon .

File symbols
The colors in which file names appear depend on their compare status. These colors are noted
below.

This file cannot be compared (with the corresponding file in the
compared directory). A question mark appears in the middle column.
The file name appears in black.

This file is not different from the corresponding file in the compared
directory. An equals-to sign appears in the middle column. The file
name appears in black.

This file does not exist in the compared directory. The middle column is
empty. The file name appears in blue.

This file is different from the corresponding file in the compared
directory, and the last modification to this file is more recent than the
last modification to the corresponding file. An arrow pointing towards
the older file appears in the middle column. The file name appears in
dark red.

This file is different from the corresponding file in the compared
directory, and the last modification to this file is older than the last
modification to the corresponding file in the compared directory. An
arrow pointing towards this (the older) file appears in the middle
column. The file name appears in light red.

Viewing options

 Select what files to show by checking or unchecking the options in the Show pane at
the bottom of the Result window.

 Open or close all subdirectories by clicking the appropriate button in the Directories
pane.

 Expand or collapse subdirectories by double-clicking the folder icon.
 The Size and Last Modified can be toggled on and off by right-clicking on either file

titlebar and clicking Size and Last Modified.

 Change column widths by dragging columns.
 The Result window can be maximized, minimized, and resized.

Comparing and merging files
Double-clicking on a line opens both files on that line in the Main Window, and directly starts a
File Compare for the two files. You can then continue as in a regular Compare session (see
Compare open file with...).

Compare Options

Click Tools | Compare options to open the Settings dialog (see screenshot). In it you make the
settings for your Compare sessions. The settings that are current when a Compare session is

© 2007 Altova GmbH

Tools Menu 439User Reference

User Manual

started are the settings that are applied to that Compare session.

View results
Selects the view in which results are shown. You can select from the following options:

 Grid View (XML comparison)
 Text View with Textual Comparison Only unchecked (XML comparison)
 Text View with Textual Comparison Only checked (Text comparison)

If a view that provides XML comparison is selected, then the documents are treated as XML
documents, and XML Compare Options are enabled. If Text comparison is selected, only
Compare Options valid for Text comparison (Whitespaces and Case-sensitivity) are enabled; all
other Compare Options are disabled.

Please note: You can merge differences in both Grid View and Text View, and in both XML and
Text comparison modes. If you wish to undo a merge, stop the Compare session, select the file
in which the change is to be undone, and select Edit | Undo or press Ctrl + Z.

Detailed differencing
If unselected, differences in immediate sibling elements are represented as a single difference,
and the merge option is disabled. If selected, differences in immediate siblings are represented
as separate differences, and merging is enabled.

440 User Reference Tools Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Please note: The Detailed differencing check box must be checked to enable merging.

Whitespaces
Whitespace characters are space, tab, carriage return, and line feed. The options here compare
files with whitespace unchanged; with whitespace normalized (i.e., all consecutive whitespace
characters are reduced to one whitespace character); and with all whitespace stripped. The
Whitespaces option is available for both XML and Text comparisons.

Case sensitivity
If the Ignore case check box is checked, then you have the option of ignoring or not ignoring
case in node names (for XML comparisons only). The Case-sensitivity option is available for
both XML and Text comparisons.

Namespace/Prefix
These are options for ignoring namespaces and prefixes when searching for differences.

Order
If Ignore order of child nodes is checked, then the position of child nodes relative to each
other does not matter. The comparison is made for the entire set of child nodes, and if the only
difference between a child node in one document and a child node in the compare document is
the relative position in the nodeset, then this difference is ignored.
Please note: Each child element node is identified by its name, its attributes, and its position. If
the names of more than one node in the sibling set are the same, then the position of these
nodes is used to identify the nodes even if the "Ignore order of child nodes" option is checked.
This option applies to each level separately.

If Ignore order of child nodes is unchecked, then differences in order are represented as
differences.

The option of ignoring the order of attributes is also available, and applies to the order of
attributes of a single element.

Entities
If "Resolve entities" is selected, then all entities in the document are resolved. Otherwise the
files are compared with the entities as is.

Text
If "Ignore text" is selected, then differences in corresponding text nodes are not reported.

Ignore node types
Check the node types that will not be compared in the Compare session. Node types that may
be ignored are Attributes, CDATA, Comments, Processing Instructions, and DOCTYPE
statements.

Depth
If Ignore node depth is checked, then the additional depth of any element (i.e. more levels of
descendants) relative to the depth of the corresponding element in the compared file is ignored.
This option must be unchecked to enable merging.

Show settings before starting compare
Checking this option causes this dialog to appear whenever the Compare open file with
command is clicked. Having the Settings dialog appear before each comparison allows you to
check and modify the settings for each comparison.

If this command is unchecked, then the Compare session will start directly when a comparison
is invoked.

© 2007 Altova GmbH

Tools Menu 441User Reference

User Manual

11.13.7 Customize

The Customize command lets you customize XMLSpy to suit your personal needs.

Commands

The Commands tab allows you customize your menus or toolbars.

To add a command to a toolbar or menu:
1. Select the menu item Tools | Customize. The Customize dialog appears.
2. Select the All Commands category in the Categories list box. The available commands

appear in the Commands list box.
3. Click on a command in the Commands list box and drag it to an to an existing menu or

toolbar. An I-beam appears when you place the cursor over a valid position to drop the
command.

4. Release the mouse button at the position you want to insert the command.

 A small button appears at the tip of mouse pointer when you drag a command. The "x"
below the pointer means that the command cannot be dropped at the current cursor
position.

 The "x" disappears whenever you can drop the command (over a tool bar or menu).
 Placing the cursor over a menu when dragging opens it, allowing you to insert the

command anywhere in the menu.
 Commands can be placed in menus or tool bars. If you created you own toolbar you

can populate it with your own commands/icons.

Please note:
You can also edit the commands in the context menus (right-click anywhere to open
the context menu), using the same method. Click the Menu tab and then select the
specific context menu available in the Context Menus combo box.

442 User Reference Tools Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

To delete a command or menu:
1. Select the menu item Tools | Customize. The Customize dialog appears.
2. Click on the menu entry or icon you want to delete, and drag with the mouse.
3. Release the mouse button whenever the "x" icon appears below the mouse pointer.

The command, or menu item, is deleted from the menu or tool bar.

Toolbars

The Toolbars tab allows you to activate or deactivate specific toolbars, as well as create your
own specialized ones.

XMLSpy toolbars contain symbols for the most frequently used menu commands.
For each symbol you get a brief "tool tip" explanation when the mouse cursor is directly over the
item and the status bar shows a more detailed description of the command.

You can drag the toolbars from their standard position to any location on the screen, where they
appear as a floating window. Alternatively you can also dock them to the left or right edge of the
main window.

 Toolbar settings defined in the Grid, Schema/WSDL design and Text view are valid in
those views. The Browser view toolbars are independent of all the other views.

To activate or deactivate a toolbar:
1. Click the check box to activate (or deactivate) the specific toolbar.

To create a new toolbar:
1. Click the New... button, and give the toolbar a name in the Toolbar name dialog box.
2. Drag commands to the toolbar in the Commands tab of the Customize dialog box.

To reset the Menu Bar
1. Click the Menu Bar entry.
2. Click the Reset button, to reset the menu commands to the state they were in when

XMLSpy was installed.

© 2007 Altova GmbH

Tools Menu 443User Reference

User Manual

To reset all toolbar and menu commands
1. Click the Reset All button, to reset all the toolbar commands to the state they were

when the program was installed. A prompt appears stating that all toolbars and menus
will be reset.

2. Click Yes to confirm the reset.

To change a toolbar name:

 Click the Rename... button to edit the name of the toolbar.

To delete a toolbar:
1. Select the toolbar you want to delete in the Toolbars list box.
2. Click the Delete button.
3. A prompt appears, asking if you really want to delete the toolbar. Click Yes to confirm

the deletion.

Show text labels:
This option displays explanatory text below toolbar icons when activated.

Keyboard

The Keyboard tab allows you to define (or change) keyboard shortcuts for any XMLSpy
command.

To assign a new Shortcut to a command:
1. Select the All Commands category using the Category combo box.
2. Select the command you want to assign a new shortcut to, in the Commands list box
3. Click in the Press New Shortcut Key: text box, and press the shortcut keys that are to

activate the command.
The shortcuts appear immediately in the text box. If the shortcut was assigned
previously, then that function is displayed below the text box.

4. Click the Assign button to assign the shortcut.
The shortcut now appears in the Current Keys list box.

444 User Reference Tools Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

(To clear this text box, press any of the control keys, CTRL, ALT or SHIFT).

To de-assign or delete a shortcut:
1. Click the shortcut you want to delete in the Current Keys list box.
2. Click the Remove button.
3. Click the Close button to confirm.

Set accelerator for:
Currently no function.

© 2007 Altova GmbH

Tools Menu 445User Reference

User Manual

Currently assigned keyboard shortcuts:

Hotkeys by key
F1 Help Menu
F3 Find Next
F5 Refresh
F7 Check well-formedness
F8 Validate
F9 Insert/Remove breakpoint
Shift+F9 Insert/Remove tracepoint
CTRL+F9 Enable/Disable breakpoint
Shift+CTRL+F9 Enable/Disable tracepoint
F10 XSL Transformation
CTRL+F10 XSL:FO Transformation
F11 Step into
CTRL+F11 Step Over
Shift + F11 Step Out
Alt+F11 Start Debugger/Go

Num + Expand
Num - Collapse
Num * Expand fully
CTRL+Num- Collapse unselected
CTRL + G Goto line/char

CTRL+TAB Switches between open documents
CTRL+F6 Cycle through open windows

Arrow keys
(up / down) Move selection bar
Esc. Abandon edits/close dialog box
Return/Space bar confirms a selection

Alt + F4 Closes XMLSpy
CTRL + F4 Closes active window
Alt + F, 1 Open last file

CTRL + Double click
an element (Schema view)

Display element definition

CTRL + N File New
CTRL + O File Open
CTRL + S File Save
CTRL + P File Print

CTRL + A Select All
Shift + Del Cut (or CTRL + X)
CTRL + C Copy
CTRL + V Paste
CTRL + Z Undo
CTRL + Y Redo
Del Delete (Delete item in

Schema/Enhanced Grid view)

CTRL + F Find
F3 Find Next

446 User Reference Tools Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

CTRL + H Replace

CTRL + I Append Attribute
CTRL + E Append Element
CTRL + T Append Text
CTRL + D Append CDATA
CTRL + M Append Comment

CTRL + SHIFT + I Insert Attribute
CTRL + SHIFT + E Insert Element
CTRL + SHIFT + T Insert Text content
CTRL + SHIFT + D Insert CDATA
CTRL + SHIFT + M Insert Comment

CTRL + ALT + I Add Child Attribute
CTRL + ALT + E Add Child Element
CTRL + ALT + T Add Child Text
CTRL + ALT + D Add Child CDATA
CTRL + ALT + M Add Child Comment

Hotkeys for Text View
CTRL + "+" Zoom In
CTRL + "-" Zoom Out
CTRL + 0 Reset Zoom
CTRL + mouse wheel forward Zoom In
CTRL + mouse wheel back Zoom Out

© 2007 Altova GmbH

Tools Menu 447User Reference

User Manual

Currently assigned keyboard shortcuts:

Hotkeys by function

Abandon edits Esc.
Add Child Attribute CTRL + ALT + I
Add Child CDATA CTRL + ALT + D
Add Child Comment CTRL + ALT + M
Add Child Element CTRL + ALT + E
Add Child Text CTRL + ALT + T
Append Attribute CTRL + I
Append CDATA CTRL + D
Append Comment CTRL + M
Append Element CTRL + E
Append Text CTRL + T
Check well-formedness F7
Closes active window CTRL + F4
Close XMLSpy Alt + F4
Collapse Num -
Collapse unselected CTRL + Num-
Confirms a selection Return / Space bar
Copy CTRL + C
Cut SHIFT + Del (or CTRL + X)
Cycle through windows CTRL + TAB and CTRL + F6
Delete item Del
Enable/Disable breakpoint CTRL + F9
Enable/Disable tracepoint Shift + CTRL + F9
Expand Num +
Expand fully Num *
File New CTRL + N
File Open CTRL + O
File Print CTRL + P
File Save CTRL + S
Find CTRL + F
Find Next F3
Goto line/char CTRL + G
Help Menu F1
Insert Attribute CTRL + SHIFT + I
Insert CDATA CTRL + SHIFT + D
Insert Comment CTRL + SHIFT + M
Insert Element CTRL + SHIFT + E
Insert/Remove breakpoint F9
Insert/Remove tracepoint SHIFT+F9
Insert Text content CTRL + SHIFT + T
Move selection bar Arrow keys (up / down)
Open last file Alt + F, 1
Paste CTRL + V
Redo CTRL + Y
Refresh F5
Replace CTRL + H
Select All CTRL + A
Start Debugger/Go Alt + F11
Step Into F11
Step Out Shift + F11
Step Over CTRL + F11

448 User Reference Tools Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

To view an element definition CTRL + Double click on an element.
Undo CTRL + Z
Validate F8
XSL Transformation F10
XSL:FO Transformation CTRL + F10

In the application, you can see a list of commands, together with their shortcuts and
descriptions, in the Keyboard Map dialog (Help | Keyboard Map).

Menu

The Menu tab allows you to customize the main menu bars as well as the (popup - right click)
context menus.

You can customize both the Default and XMLSpy menu bars.

The Default menu is the one visible when no XML documents of any type are open in XMLSpy.

The XMLSpy menu is the menu bar visible when at least one XML document has been opened.

To customize a menu:
1. Select the menu bar you want to customize from the Show Menus for: combo box
2. Click the Commands tab, and drag the commands to the menu bar of your choice.

To delete commands from a menu:
1. Click right on the command, or icon representing the command.
2. Select the Delete option from the popup menu,

or,

© 2007 Altova GmbH

Tools Menu 449User Reference

User Manual

1. Select Tools | Customize to open the Customize dialog box.
2. Drag the command away from the menu, and drop it as soon as the check mark icon

appears below the mouse pointer.

To reset either of the menu bars:
1. Select either the Default or XMLSpy entry in the Show Menus for combo box.
2. Click the Reset button just below the menu name.

A prompt appears asking if you are sure you want to reset the menu bar.

To customize any of the Context menus (right-click menus):
1. Select the context menu from the Select context menu combo box. The context menu

you selected appears.
2. Click the Commands tab, and drag the commands to the context menu.

To delete commands from a context menu:
1. Click right on the command, or icon representing the command.
2. Select the Delete option from the popup menu

or,
1. Select Tools | Customize to open the Customize dialog box.
2. Drag the command away from the context menu, and drop it as soon as the check

mark icon appears below the mouse pointer.

To reset any of the context menus:
1. Select the context menu from the combo box, and
2. Click the Reset button just below the context menu name.

A prompt appears asking if you are sure you want to reset the context menu.

To close a context menu window:

 Click on the Close icon at the top right of the title bar
or
 Click the Close button of the Customize dialog box.

Menu animations (only prior to Windows 2000)

 Select one of the menu animations from the combo box, if you want animated menus.
Please note that the combo box is only visible in Windows versions prior to Windows
2000. For Windows 2000 and later, these settings have to be changed in the Effects tab
of the Display properties dialog box. Double-click the Display icon in the Control Panel
to open the dialog box.

Menu shadows

450 User Reference Tools Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

 Click the Menu shadows check box, if you want all your menus to have shadows.

Macros

The Macros tab allows you to place macros (created using the XML scripting environment) in a
toolbar or menu.

To place a macro (icon) into a toolbar or menu:
1. Start the scripting environment using Tools | Switch to Scripting environment.
2. Double-click the XMLSpyMacros entry in the Modules folder of the

XMLSpyGlobalScripts project.
Previously defined macros will then be visible in the right hand window.

3. Switch back to XMLSpy, and select Tools | Customize and click on the Macros tab.
The macros defined in the scripting environment are now visible in the Macros list box
at left.

4. Click the macro name and then the Add Command button. This places the macro
name in the Associated commands list box.

5. Click the macro name in the Associated commands list box, and drag it to any tool bar
or menu.

To edit a macro icon:

 Click the Edit Icon button.

To delete a macro from the Associated commands list box:

 Click the Remove button.

Plug-Ins

The Plug-Ins tab allows you to place plug-ins in a toolbar or menu.

To place a plug-in icon into a toolbar or menu:
1. Click the Add Plug-In... button.

© 2007 Altova GmbH

Tools Menu 451User Reference

User Manual

2. Select the folder and then click the plug-in file to mark it (XMLSpyPlugIn.dll in this
case).

3. Click the Open button to install the plug-in.
The plug-in name appears in the "list of active plug-ins" list, and the plug-in icon(s)
appears in a new toolbar.

To remove a plug-in:

 Click the plug-in name in the "List of active plug-ins" list and click the "Remove Plug-in"
button.

452 User Reference Tools Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Options

The Options tab allows you to set general environment settings.

Toolbar
When active, the Show ScreenTips on toolbars check box displays a popup when the mouse
pointer is placed over an icon in any of the icon bars. The popup contains a short description of
the icon function, as well as the associated keyboard shortcut, if one has been assigned.

The Show shortcut keys in ScreenTips check box, allows you to decide if you want to have
the shortcut displayed in the tooltip.

When active, the Large icons check box switches between the standard size icons, and larger
versions of the icons.

Customize Context Menu

The Customize context menu allows you to further customize icons and menu items.

To open the customize context menu:
1. First open the Customize dialog by selecting Tools | Customize.
2. Then place the mouse pointer over an icon (or menu) and click right to open the

context menu.

Reset to default
Currently no function.

© 2007 Altova GmbH

Tools Menu 453User Reference

User Manual

Copy Button image
This option copies the icon you right-click to the clipboard.

Delete
This option deletes the icon or menu you right click. Deleting a menu deletes all menu options
contained in it!

To restore a deleted menu:
1. Select the Menu tab in the Customize dialog.
2. Select the menu you want to restore (XMLSpy or Default).
3. Click the Reset button below the menu selection combo box.

Button Appearance...
This option allows you to edit the button image as well as the button text. Currently only the
macro icons can be edited (default XMLSpy icon).

The Image only, Text only and Image and text radio buttons, let you define what you want to
edit. Click the Select User-defined Image radio button and click one of the icons.

Click the Edit... button, to open the Edit button image dialog box. The Button text can be edited
if you select either Text only or Image and text options.

454 User Reference Tools Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Image
This option changes the graphical display of an icon to the text representing it.

Text
This option changes the textual description of a function to the graphical image (icon)
representing that function.

Image and Text
This option enables the simultaneous display of an icon and its text.

Start group
This option inserts a vertical divider to the left of the icon you right clicked.

11.13.8 Options

The Tools | Options command enables you to define global application settings. These
settings are specified in a tabbed dialog box and saved in the registry. They apply to all current
and future document windows. The Apply button in the Options dialog displays the changes in
the currently open documents and fixes the current settings. The changes are seen immediately
in the background windows.

Each tab of the Options dialog is described in detail in this section.

File

The File tab defines the way XMLSpy opens and saves documents. Related settings are in the
Encoding tab.

© 2007 Altova GmbH

Tools Menu 455User Reference

User Manual

Open/New file in Grid view
You can choose to open an existing file or create a new file either in Grid View or in Text View.
If you select Grid View, you can also choose to automatically expand all lines.

Automatic reload of changed files
If you are working in a multi-user environment, or if you are working on files that are dynamically
generated on a server, you can watch for changes to files that are currently open in the
interface. Each time XMLSpy detects a change in an open document, it will prompt you about
whether you want to reload the changed file.

Validation
If you are using DTDs or schemas to define the structure of your XML documents, you can
automatically check the document for validity whenever it is opened or saved. XMLSpy can also
cache these files in memory to save any unnecessary reloading (e.g. when the schema being
referred to is accessed through a URL). If your schema location declaration uses an URL,
disable the "cache DTD/Schema files in memory" option to have changes made to the schema
appear immediately, and not use the cached version of the schema.

Project
When you start XMLSpy, you can open the last-used project automatically.

Save File
When you select Edit | Pretty-Print XML Text, indentation is made in your XML file as
specified in this pane, i.e., with tab characters (#x09), the number of spaces specified, or
without any indentation. If a StyleVision Power Stylesheet is associated with an XML file, the
'Authentic: save link to design file' option will cause the link to the StyleVision Power Stylesheet
to be saved with the XML file.

456 User Reference Tools Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

When saving an XML document, XMLSpy includes a short comment <!-- Edited with
XMLSpy http://www.altova.com --> near the top of the file. This option can only be
deactivated by licensed users, and takes effect when editing or saving files in the Enhanced
Grid or Schema Design View.

When saving a content model diagram (using the menu option Schema design | Generate
Documentation), XMLSpy includes the XMLSpy logo. This option can only be deactivated by
licensed users.

Line breaks
When you open a file, the character coding for line breaks in it are preserved if Preserve old is
selected. Alternatively, you can choose to code line breaks in any of three codings: CR&LF (for
PC), CR (for MacOS), or LF (for Unix).

No output formatting for
In Text View, the indentation of an element can be made to reflect its position in the element
hierarchy (see Save File). You can, however, override this indentation for individual elements.
To do this, enter the element name in the No output formatting for field. All elements entered
in this field will be formatted such that their descendant elements have no whitespace between
them (see screenshots).

Hierarchical indentation for all elements:

No output formatting has been specified for element xs:restriction:

File Types

The File types tab allows you to customize the behavior of XMLSpy on a per-file-type basis.

© 2007 Altova GmbH

Tools Menu 457User Reference

User Manual

Choose a file type from the File Types list box to customize the functions for that particular file
type:

Windows Explorer settings
You can define the file type description and MIME-compliant content type used by Windows
Explorer and whether XMLSpy is to be the default editor for documents of this file type.

Conformance
XMLSpy provides specific editing and other features for various file types. The features for a file
type are set by specifying the conformance in this option. XMLSpy lets you set file type to
conform with XML, XQuery, and other (text) grammars. Furthermore, XML conformance is
differentiated between XML, DTD, and XML Entity file types. A large number of file types are
defined with a default conformance that is appropriate for the file type. We recommend that you
do not modify these settings unless you are adding a new file type or deliberately wish to set a
file type to another kind of conformance.

Default view
This group lets you define the default view to be used for each file type.

Grid View
This check box lets you define whether the Enhanced Grid View should automatically build
tables.

Text View
This text box lets you set syntax-coloring for particular file types.

Disable automatic validation
This option enables you to disable automatic validation per file type. Automatic validation

458 User Reference Tools Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

typically takes place when a file is opened or saved, or when a view is changed.

Save empty elements in short <E/> format
Some applications that use XML documents or output generated from XML documents may
have problems understanding the short <Element/> form for empty elements defined in the
XML 1.0 Specification. You can instruct XMLSpy to save elements in the longer (but also valid)
<Element></Element> form.

Add new file extension
Adds a new file type to the File types list. You must then define the settings for this new file type
using the other options in this tab.

Delete selected file extension
Deletes the currently selected file type and all its associated settings.

Editing

The Editing tab enables you to specify editing behaviour in XMLSpy.

Intelligent editing
While editing documents, XMLSpy provides Intelligent Editing based on these settings. You can
also customize various aspects of the behavior of these Entry Helpers here.

Default copy to clipboard in grid view as
You can choose the format in which data will be exported to foreign applications using the
clipboard. If you select XML-Text, the contents of the clipboard will be formatted and tagged just
like the resulting XML file itself.

© 2007 Altova GmbH

Tools Menu 459User Reference

User Manual

The structured text mode attempts to format the clipboard contents as a table, for use in a
spreadsheet or database application. This option does not affect the internal clipboard format
that XMLSpy uses for copying and pasting.

Table view
You can also control, how XMLSpy decides when to display repeating elements in the Table
View.

View

The View tab enables you to customize the XML documents presentation in XMLSpy.

Enhanced Grid View
Collapsed elements in the Enhanced Grid View can be displayed in preview form. This displays
the attributes and their values in gray in the same line as the element. You can automatically
apply the Optimal Widths command while editing, and limit the maximum cell width and height.

Text View
Turn the Text View word-wrapping support on or off.

Program logo
You can turn off the splash screen upon program startup to speed up the application.

Window title
The window title for each document window can contain either the file name only or the full path
name.

Authentic View
XML files based on a StyleVision Power Stylesheet are automatically opened in the Authentic
View when this option is active.

Browser View

460 User Reference Tools Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

You can choose to see the browser view in a separate window, enabling side-by-side placement
of the edit and browser views.

Grid Fonts

The Grid fonts tab allows you to customize the appearance of text in Grid View.

Font face and script
You can select the font face and size to be used for displaying the various items in Enhanced
Grid View. The same fonts are also used for printing, so only TrueType fonts should be
selected.

Size
Select the required size. If you want to use the same font size for all items, check the Use the
same for all check box.

Styles
The style and color can be set using the options in this pane. The current settings are
immediately reflected in the list in the left-hand pane, so you can preview the way your
document will look.

Schema Fonts

The Schema fonts tab enables you to customize the appearance of text in the Schema/WSDL
View.

© 2007 Altova GmbH

Tools Menu 461User Reference

User Manual

Font face and script
You can select the font face and size to be used for displaying the various items in the Schema
Design view. The same fonts are used when printing and creating schema documentation, so
only TrueType fonts should be selected. Components prefixed with "Doc." are used in the
schema documentation.

Size
Select the required size. If you want to use the same font size for all items, click on the Use The
Same For All" check box.

Styles
The style and color can be set using the options in this pane. The current settings are
immediately reflected in the list in the left pane, so you can preview the way your document will
look.

Text Fonts

The Text fonts tab you to customize the appearance of text in the Text View.

462 User Reference Tools Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

The types listed in the left hand pane are XML node types, ASP/JSP code, and XQuery
grammar components. You can choose the common font face, style and size of all text that
appears in Text View. Note that the same font, style, and size is used for all text types. Only the
text color and background color can be changed for individual text types. This enables the
syntax coloring feature.

Colors

The Colors tab enables you to customize the background colors used in the Table View of Grid
View.

© 2007 Altova GmbH

Tools Menu 463User Reference

User Manual

Table View
The Header unselected and Header selected options refer to the column and row headers. The
screenshot below shows headers unselected; its color is as set in the dialog above.

The Header Selected color is activated when all headers are selected (screenshot below)—not
when individual headers are selected. The screenshot below shows this using the colors
defined in the dialog shown above. All headers can be selected by clicking the cell that
intersects both headers or by selecting the element created as the table—or any of its
ancestors.

Non-existent Elements
When an element or attribute does not exist in the XML document, then it can be given different
background colors when selected and unselected. This is shown in the screenshot below, in
which the first row is selected.

464 User Reference Tools Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Please note: In addition to the colors you define here, XMLSpy uses the regular selection and
menu color preferences set in the Display Settings in the Control Panel of your Windows
installation.

Encoding

The Encoding tab specifies options for file encodings.

Default encoding for new XML files
The default encoding for new XML files can be set by selecting an option from the dropdown
list. A new document is created with an XML declaration containing the encoding value you
specify here. If a two- or four-byte encoding is selected as the default encoding (i.e. UTF-16,
UCS-2, or UCS-4) you can also choose between little-endian and big-endian byte-ordering.

The encoding of existing XML files will be retained and can only be changed with the File |
Encoding command.

Open XML files with unknown encoding as
If the encoding of an XML file cannot be determined or if the XML document has no encoding
specification, the file will be opened with the encoding you select in this combo box.

Open non-XML files in
Existing and new non-XML files are opened with the encoding you select in this combo box. You
can change the encoding of the document by using the File | Encoding command.

BOM (Byte Order Mark)
When a document with two-byte or four-byte character encoding is saved, the document can be
saved either with (i) little-endian byte-ordering and a little-endian BOM (Always create BOM if
not UTF-8); or (ii) the detected byte-ordering and the detected BOM (Preserve detected BOM
on saving).

© 2007 Altova GmbH

Tools Menu 465User Reference

User Manual

XSL

The XSL tab allows you to define options for XSLT transformations as well as the path to an FO
processor.

XMLSpy contains the Altova XSLT 1.0 Engine and Altova XSLT 2.0 Engine, which you can use
for XSLT transformations. The appropriate XSLT engine is always used (according to the value
of the version attribute set on the xsl:stylesheet or xsl:transform element) for
transformations and when using the XSLT/XQuery Debugger.

For transforming XML documents, you could use either the MSXML 3.0 or 4.0 parser (which is
pre-installed) or any external XSLT processor of your choice. Note that parameters set in the
XSLT Input Parameters dialog are passed to the internal Altova XSLT Engines only; they are
not passed to any other XSLT Engine that you set up as the standard XSLT processor to be
used in XMLSpy.

Use Microsoft XML Parser (MSXML) 3.0 or 4.0
If you are using Internet Explorer 5 or above (i.e. the MSXML module) for XSLT processing, you
must specify if the resulting output is to be transformed as an XML-compliant document (such
as XHTML or WML), or non-XML compliant text files. The "Choose version automatically"
option is active by default. XMLSpy first tries to use version 4.0 and if not available version 3.0.
You can however, manually choose either version by clicking the respective radio button.

External XSL transformation program
If you are using an external XSL processor, you must specify a command-line string that is to be
executed by XMLSpy in order to initiate the XSL Transformation. In this case, use the following
variables to build your command-line string:

466 User Reference Tools Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

%1 the XML instance document that is to be processed
%2 the output file that is to be generated
%3 the XSL Stylesheet to be used (optional, if the document contains an

<?xsl-stylesheet ...?> reference)

For example, the command to run a simple transformation with the Saxon (XSLT 1.0) processor
is:

saxon.exe -o output.xml input.xml stylesheet.xslt
parameter-name=parameter-value

In order to set up XMLSpy to run the Saxon processor, select the External XSL Transformation
Program radio button, and enter the following line in the text box:

c:\saxon\saxon.exe -o %2 %1 %3 parameter-name=parameter-value

You can also choose to show the result of the external program's output and error messages in
a message box within XMLSpy.

Reuse output window
When disabled, the reuse output window option only takes effect when you also disable the
"Save in folder" output file path in the folder properties of the respective XML file in a XMLSpy
project.

Folder properties window:

FO processor
If you wish to use the FO transformation command in the interface, you must specify the path to
the executable of the FO processor in this dialog.

Scripting

The Scripting tab allows you to select the scripting environment and other scripting specific
parameters.

© 2007 Altova GmbH

Tools Menu 467User Reference

User Manual

Activation
Define if the scripting environment is to be active when XMLSpy starts. Click the Browse...
button to select the scripting project file.

Standard script language
Select the scripting language you want to use (JavaScript or VBScript).

Automatic script processing
This section defines if auto-macros have the right to run, and if event processing is to be
enabled.

468 User Reference Window Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

11.14 Window Menu

To organize the individual document windows in an XMLSpy session, the Window menu
contains standard commands common to most Windows applications.

You can cascade the open document windows, tile them, or arrange document icons once you
have minimized them. You can also switch the various Entry Helper windows on or off, or switch
to an open document window directly from the menu.

11.14.1 Cascade

This command rearranges all open document windows so that they are all cascaded (i.e.
staggered) on top of each other.

11.14.2 Tile Horizontally

This command rearranges all open document windows as horizontal tiles, making them all
visible at the same time.

11.14.3 Tile Vertically

This command rearranges all open document windows as vertical tiles, making them all visible
at the same time.

11.14.4 Project Window

This command lets you switch the Project Window on or off.

This is a dockable window. Dragging on its title bar detaches it from its current position and
makes it a floating window. Click right on the title bar, to allow docking or hide the window.

11.14.5 Info Window

This command lets you switch the Info Window on or off.

This is a dockable window. Dragging on its title bar detaches it from its current position and

© 2007 Altova GmbH

Window Menu 469User Reference

User Manual

makes it a floating window. Click right on the title bar, to allow docking or hide the window.

11.14.6 Entry Helpers

This command lets you switch all three Entry-Helper Windows on or off.

All three Entry helpers are dockable windows. Dragging on a title bar detaches it from its current
position and makes it a floating window. Click right on the title bar to allow docking or hide the
window.

11.14.7 Output Windows

The Output Windows are a set of three tabbed outputs: (i) Validation Results; (ii) Find in Files;
and (iii) XPath Evaluation results. The initial setting is for them to open at below the Main
Window. The Output Windows command lets you switch the Output Windows on or off.

The Output Windows window is dockable. Dragging on its title bar detaches it from its current
position and makes it a floating window. Click right on the title bar to allow docking or to hide the
window.

For a complete description of Output Windows see Output Windows in the section, Text View.

11.14.8 Project and Entry Helpers

This command toggles on and off the display of the Project Window and the Entry Helpers
together.

11.14.9 All On/Off

This command lets you switch all dockable windows on, or off:

 the Project Window
 the Info Window
 the three Entry-Helper Windows

This is useful if you want to hide all non-document windows quickly, to get the maximum
viewing area for the document you are working on.

11.14.10Currently Open Window List

This list shows all currently open windows, and lets you quickly switch between them.

You can also use the Ctrl-TAB or CTRL F6 keyboard shortcuts to cycle through the open

470 User Reference Window Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

windows.

© 2007 Altova GmbH

Help Menu 471User Reference

User Manual

11.15 Help Menu

The Help menu contains all commands required to get help or more information on XMLSpy, as
well as links to information and support pages on our web server.

The Help menu also contains the Registration dialog, which lets you enter your license
key-code once you have purchased the product.

11.15.1 Table of Contents

The Help | Table of contents command displays a hierarchical representation of all chapters
and topics contained in the online help system. Use this command to jump to the table of
contents directly from within XMLSpy.

Once the help window is open, use the three tabs to toggle between the table of contents, index
, and search panes. The Favorites tab lets you bookmark certain pages within the help system.

11.15.2 Index

The Help | Index command accesses the keyword index of the Online Help. You can also use
the Index tab in the left pane of the online help system.

The index lists all relevant keywords and lets you navigate to a topic by double-clicking the
respective keyword. If more than one topic matches the selected keyword, you are presented a
list of available topics to choose from.

11.15.3 Search

The Help | Search command performs a full-text search on the entire online help system.

1. Enter your search term in the query field and press Enter.
The online help system displays a list of available topics that contain the search term
you've entered.

2. Double-click on any item in the list to display the corresponding topic.

472 User Reference Help Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

11.15.4 Keyboard Map

The Help | Keyboard Map... command causes an information box to be displayed that contains
a menu-by-menu listing of all commands in XMLSpy. Menu commands are listed with a
description and shortcut keystrokes for the command.

To view commands in a particular menu, select the menu name in the Category combo box.
You can print the command by clicking the printer icon.

You should note the following points about shortcuts:

 Certain commands (and their shortcuts) are applicable only within a certain view. For
example, most of the commands in the XML menu are applicable only in Grid View.
Other commands (such as File | Save or XML | Check Well-Formedness) are
available in multiple views.

 Other cool shortcuts: Shift+F10 brings up the context menu in Text View and
Schema/WSDL View; Ctrl+E when the cursor is inside an element start or end tag in
Text View moves the cursor to the end or start tag, respectively.

 In the Keyboard tab of the Customize dialog, you can also set your own shortcuts for
various menu commands.

11.15.5 Activation, Order Form, Registration, Updates

Software Activation
After you download your Altova product software, you can activate it using either a free
evaluation key or a purchased permanent license key.

 Free evaluation key. When you first start the software after downloading and installing
it, the Software Activation dialog will pop up. In it is a button to request a free evaluation

© 2007 Altova GmbH

Help Menu 473User Reference

User Manual

key-code. Enter your name, company, and e-mail address in the dialog that appears,
and click Request Now! The evaluation key is sent to the e-mail address you entered
and should reach you in a few minutes. Now enter the key in the key-code field of the
Software Activation dialog box and click OK to start working with your Altova product.
The software will be unlocked for a period of 30 days.

 Permanent license key. The Software Activation dialog contains a button to purchase
a permanent license key. Clicking this button takes you to Altova's online shop, where
you can purchase a permanent license key for your product. There are two types of
permanent license: single-user and multi-user. Both will be sent to you by e-mail. A
single-user license contains your license-data and includes your name, company,
e-mail, and key-code.A multi-user license contains your license-data and includes your
company name and key-code. Note that your license agreement does not allow you to
install more than the licensed number of copies of your Altova software on the
computers in your organization (per-seat license). Please make sure that you enter the
data required in the registration dialog exactly as given in your license e-mail.

Note: When you enter your license information in the Software Activation dialog, ensure that
you enter the data exactly as given in your license e-mail. For multi-user licenses, each
user should enter his or her own name in the Name field.

The Software Activation dialog can be accessed at any time by clicking the Help | Software
Activation command.

Order Form
When you are ready to order a licensed version of the software product, you can use either the
Order license key button in the Software Activation dialog (see previous section) or the Help |
Order Form command to proceed to the secure Altova Online Shop.

Registration
The first time you start your Altova software after having activated it, a dialog appears asking
whether you would like to register your product. There are three buttons in this dialog:

 OK: Takes you to the Registration Form
 Remind Me Later: Pops up a dialog in which you can select when you wish to be next

reminded.
 Cancel: Closes the dialog and suppresses it in future. If you wish to register at a later

time, you can use the Help | Registration command.

Check for Updates
Checks with the Altova server whether a newer version than yours is currently available and
displays a message accordingly.

11.15.6 Support Center, FAQ, Downloads

Support Center
If you have any questions regarding our product, please feel free to use this command to send a
query to the Altova Support Center at any time. This is the place where you'll find links to the
FAQ, support form, and e-mail addresses for contacting our support staff directly.

FAQ
To help you in getting the best support possible, we are providing a list of Frequently Asked
Questions (FAQ) on the Internet, that is constantly updated as our support staff encounters new

474 User Reference Help Menu

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

issues that are raised by our customers.

Please make sure to check the FAQ before contacting our technical support team. This will
allow you to get help more quickly.

We regret that we are not able to offer technical support by phone at this time, but our support
staff will typically answer your e-mail requests within one business day.

If you would like to make a feature suggestion for a future version of XMLSpy or if you wish to
send us any other general feedback, please use the questionnaire form.

Download components and free tools
This command is a link to the Components Download page at the Altova website, from where
you can download components, free tools, and third-party add-ins that you can use in your XML
development environment. Included among these are the Altova Validator, and XSLT and
XQuery engines.

11.15.7 On the Internet

On the Internet
This command takes you directly to the Altova web-server http://www.altova.com where you can
find out about news, product updates and additional offers from the Altova team.

Training
The Training command takes you to the Online Training page on the Altova website. Here you
can enroll for online courses to help you develop expertise in using Altova products.

11.15.8 About

This command shows the XMLSpy splash screen and copyright information dialog box, which
includes the XMLSpy logo.

Please note:
This dialog box shows the version number - to find the number of the actual build you are using,
please look at the status bar, which always includes the full version and build number.

http://www.altova.com

Programmers' Reference

Altova XMLSpy 2007 Professional Edition

476

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Programmers' Reference

XMLSpy as an Automation Server
XMLSpy is an Automation Server. That is, it is an application that exposes programmable
objects to other applications (called Automation Clients). As a result, an Automation Client can
directly access the objects and functionality that the Automation Server makes available. This is
beneficial to an Automation Client because it can make use of the functionality of XMLSpy. For
example, an Automation Client can use the XML validation functionality of XMLSpy. Developers
can therefore improve their applications by using the ready-made functionality of XMLSpy.

The programmable objects of XMLSpy are made available to Automation Clients via the
XMLSpy API, which is a COM API. The object model of the API and a complete description of
all available objects are provided in this documentation (see the section XMLSpyAPI). The API
can also be used with a Java implementation. A description of how this can be done is given in
the chapter Using the XMLSpy API with Java.

Customizing XMLSpy, and modifying functionality
You can customize your installation of XMLSpy by modifying and adding functionality to it. You
can also create Forms for user input and modify the user interface so that it contains new menu
commands and toolbar shortcuts. All these features are achieved by writing scripts that interact
with objects of the XMLSpy API. To aid you in carrying out these tasks efficiently, XMLSpy
offers you an in-built Scripting Environment. A complete description of the functionality available
in the Scripting Environment and how the environment is to be used is given in the Scripting
section of this documentation.

Additionally, you can manipulate XMLSpy with external scripts. For example, you could write a
script to open XMLSpy at a given time, then open an XML file in XMLSpy, validate the file, and
print it out. These external scripts would again make use of the XMLSpy API to carry out these
tasks. For a description of the XMLSpy API, see the section XMLSpyAPI.

Creating plug-ins for XMLSpy
XMLSpy enables you to create your own plug-ins and integrate them into XMLSpy. You can do
this using XMLSpy's special interface for plug-ins. A description of how to create plug-ins is
given in the section XMLSpy Plug-ins.

About Programmers' Reference
The documentation contained in the Programmers' Reference for XMLSpy consists of the
following sections:

 Release Notes, which lists changes since the previous version
 Scripting: a user reference for the Scripting Environment available in XMLSpy
 XMLSpy Plug-ins: a description of how to create plug-ins for XMLSpy
 XMLSpy API: a reference for the XMLSpy API
 Using XMLSpy API with Java: a reference for using the XMLSpy API with Java

© 2007 Altova GmbH

 477Release Notes

Programmers' Reference

1 Release Notes

For each release of the XMLSpy API, important changes since the previous release are listed
below.

Automation Interface for XMLSpy 2007: type library version 1.6
Changes since the previous release are as follows:

 The Document interface has the method GenerateDTDOrSchemaEx to automatically
generate a DTD or schema for the current XML document

 The GenerateSampleXMLDlg interface has the following additional properties:
FillAttributesWithSampleData, FillElementsWithSampleData,
ContentOfNillableElementsIsNonMandatory, TryToUseNonAbstractTypes,
Optimization, SchemaOrDTDAssignment, LocalNameOfRootElement,
NamespaceURIOfRootElement, OptionsDialogAction.

 The following properties of the GenerateSampleXMLDlg interface are obsolete and are
no longer supported: NonMandatoryElements - obsolete, TakeFirstChoice -
obsolete, FillWithSampleData - obsolete.

 The following enumerations are new: SPYAttributeTypeDefinition,
SPYSampleXMLGenerationOptimization,
SPYSampleXMLGenerationSchemaOrDTDAssignment.

Automation Interface for XMLSpy 2006sp2: type library version 1.5
Changes since XMLSpy API ver 2006:

 The CodeGeneratorDlg interface now has the properties: CompatibilityMode,
CPPSettings_GenerateVC6ProjectFile,
CPPSettings_GenerateVSProjectFile. These properties generate project files
for Visual Studio 2005.

Automation Interface for XMLSpy 2006: type library version 1.5
Important changes since the previous release (XMLSpy API 2004R4) are as follows:

 The Application interface has the following methods: ReloadSettings,
RunMacro, ScriptingEnvironment.

 The Document interface has the following additional methods: GenerateSampleXML,
SetExternalIsValid, UpdateXMLData.

 The Document interface has the additional event: OnBeforeValidate.

 The XMLData interface has the following additional declarations: CountChildren,
CountChildrenKind, HasChildrenKind, GetChild, GetChildKind.

 A new interface GenerateSampleXMLDlg has been added.

Automation Interface for XMLSpy 2004R4: type library version 1.4
Important changes since the previous release (XMLSpy API 2004R3) are as follows:

Authentic View

 AuthenticView, AuthenticRange and AuthenticDataTransfer interfaces
replace DocEdit, DocEditSelection and DocEditDataTransfer.

 The AuthenticView and AuthenticRange interfaces now supersede the old
DocEdit interface.

 The DocEdit interfaces have been renamed OldAuthentic and are now obsolete.

478 Release Notes

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

 The DocEditSelection interface has been renamed AuthenticSelection and is
now obsolete.

 The DocEditDataTransfer interface has been renamed
AuthenticDataTransfer.

 The functionality of now obsolete interfaces are still available. However, usage of the
new interfaces is strongly recommended.

Improved events
All events are available as connection point events to allow for easy and flexible integration
of external clients using VBA, C++, VBScript, JScript or Perl. New events supporting the
document life cycle have been added. All events pass event context information as
parameters. Many events support cancellation of the signaled operation. See the section
Overview of Events for more details.

Extension of Document interface

 Supports generation of program code (C++, C# and Java) for schema definitions
 Supports generation of MSWord and HTML documentation for schema definitions
 Supports XSL-FO transformation
 Extension of standard properties for documents
 Direct access to data root element of XML documents

Data import and export

 Choice of database for database import.
 Import of hierarchical data, which was previously done using a hand-written SHAPE

statement with ImportFromDatabase, now requires a schema file and the use of
ImportFromSchema.

Automation Interface for XMLSpy 2004R3 - type library version 1.3
Important changes since XMLSpy API ver 5 rel 4:

Authentic View

 Completely new interfaces AuthenticView and AuthenticRange to work with
Authentic View.

© 2007 Altova GmbH

 479Scripting

Programmers' Reference

2 Scripting

XMLSpy provides a Scripting Environment within the XMLSpy IDE. The Scripting Environment
can be used to:

 Graphically design Forms for user input and for output
 Create, manage, and store scripts for these Forms
 Create scripts for application Event Handlers and for Macros.

Scripts access and interact with objects in the XMLSpy API, which is a COM API. They thus
allow you to modify and add functionality to your installation of XMLSpy. Programming
languages that can be used in the Scripting Environment are JavaScript and VBScript.

Forms
In the Scripting Environment, you build a Form graphically using a palette of Form Objects, such
as text input fields and buttons. For example, you can create a Form to accept the input of an
element name and to then remove all occurrences of that element from the active XML
document. For such a Form, a function script can be associated with the text input field so as to
take an input variable; and an event handler can be associated with a button to start execution
of the functionality, which is available in the XMLSpy API. For details, see Creating a Form.

Global Declarations
In the Scripting Environment, a set of Global Declarations contains the variables and functions
that will be used by Forms, Event Handlers, and Macros. The functions make use of the
XMLSpy API to access XMLSpy functionality.

Event handling
Using the Scripting Environment, you can easily customize XMLSpy by writing scripts for a
variety of available events. You can control events that occur both within Forms (Form events)
and within the general XMLSpy interface (application events).

Scripting code for an event is executed immediately upon the triggering of an event. Most
events have parameters which provide detailed information on the event. The return value from
the script typically instructs the application about how to continue its own processing (for
example, the application may not allow editing). For details, see Creating an Event Handler.

Macros
Macros are used to implement complex or repetitive tasks. Macros do not use either
parameters or return values. In a Macro, it is possible to access all variables and functions
declared in the global declarations and to display forms for user input. Please see Writing a
Macro for a simple example of creating a Macro. Also see Calling macros for a description of
the ways in which a Macro can be called.

480 Scripting Overview

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

2.1 Overview

This overview of the Scripting Environment discusses the following:

 The relationship between scripting projects and XMLSpy projects
 How and when Forms, Event Handlers and Macros are executed within XMLSpy
 How settings for the Scripting Environment are to be made (in XMLSpy)

2.1.1 Scripting projects

Working with scripting projects

 In the Scripting Environment, all scripts and scripting information are stored in scripting
projects (.prj files).

 After you have created and saved a scripting project, you must assign it to an XMLSpy
project. The scripts in the scripting project can then be used when the XMLSpy project
to which it has been assigned is opened in XMLSpy.

 Only one scripting project can be assigned to an XMLSpy project at a time.
 You can assign a scripting project to more than one XMLSpy project.
 An XMLSpy project uses the scripts in the global scripting project and the scripts in the

scripting project assigned to it.
 If you wish to make scripts applicable to the entire XMLSpy application, you must

modify the global scripting project.
 The scripts in the global scripting project apply to the entire XMLSpy application even

when no XMLSpy project is open.

The contents of a scripting project and how scripting projects are assigned to and unassigned
from XMLSpy projects are described below.

Content of a scripting project
The Scripting Environment screenshot below shows the content of a typical scripting project.

The following points should be noted:

 A scripting project consists of two components: a Forms component and a Modules
component. The Forms component contains all the Forms defined for that scripting
project. The Modules component comprises three modules: Global Declarations,

© 2007 Altova GmbH

Overview 481Scripting

Programmers' Reference

XMLSpy Events, and XMLSpy Macros.The Global Declarations module contains
definitions for variables and functions used in that scripting project. The XMLSpy Events
module contains event handler scripts for that scripting project. The XMLSpy Macros
module contains the macros that have been defined for that project.

 A scripting project, called GlobalScripts.prj, is installed with XMLSpy in the
XMLSpy2007 folder. This scripting project contains default global declarations and
template scripts for standard XMLSpy event handlers and macro tasks.

 Forms, events, and macros defined in the global scripting project can be accessed from
within any XMLSpy project or XML file.

 In addition to the global scripting project, any number of additional scripting projects can
be created within the Scripting Environment and saved.

Assigning scripting projects
A scripting project is assigned to an XMLSpy project from within the XMLSpy interface with the
required XMLSpy project open.

To assign and unassign a scripting project to a project, use the Tools | Project submenu (see
screenshot below). (These menu items are not enabled if there is no XMLSpy project active
currently.)

To assign a scripting project, click Assign Scripts to Project and select the scripting project (
.prj file) from the standard file-selection dialog that appears. The scripting project is loaded,
and you are able to edit scripts in it if you switch to the Scripting Environment.

To unassign the current scripting project, select Unassign Scripts from Project. The scripting
project is unassigned, and the Scripting Environment closes the scripting project.

The following points should be noted:

 For a given XMLSpy project, scripts from the scripting project specific to that XMLSpy
project as well as scripts from the global scripting project can be accessed.

 Only one scripting project can be assigned to an XMLSpy project at a time.

Making a scripting project active
A scripting project is said to be active when it is the active project in the Scripting
Environment. (More than one scripting project can be open in the Scripting Environment, but
only one is active.)

You can activate and deactivate the project-specific scripting project by toggling the Project
Scripts active command on and off. Note that making the scripting project inactive does not
unassign it; it merely deactivates the sripting project in the Scripting Environment.

2.1.2 Running Forms, Event Handlers, and Macros

Forms, Event Handlers, and Macros that have been defined in the Scripting Environment are all
executed within the XMLSpy interface. However, the way they are called and executed is
different for each and has a bearing on how you create your scripting projects.

482 Scripting Overview

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

 A Form is invoked by a call to it either within a function in the Global Declarations
module or directly in a Macro.

 An Event Handler runs when the relevant event occurs in XMLSpy. If an Event Handler
for a single event is defined in both the global scripting project and the project-specific
scripting project, then the Event Handler for the project-specific scripting project is
executed first and that for the global scripting project immediately afterwards.

 A Macro is executed from within the XMLSpy interface by clicking Tools | Show
macros.... This pops up the Show Macros dialog:

In the Project combo box, select either the global scripting project or the scripting
project currently assigned to the XMLSpy project (only these two scripting projects are
available as options). The macros defined in the scripting project you select appear in
the Macros window. Select the macro you wish to run, and click Run.

You can also customize your Tools menu to display a list of Macros (Tools | Show
Macros...). A Macro in this list can subsequently be run by selecting it. See Calling
macros for details.

Also see:

 Scripting Settings for information about configuring the XMLSpy interface for scripting.
 Calling macros for details about the various ways Macros can be called.
 The examples of how to create Forms, Global Declarations, Event Handlers, and

Macros.

© 2007 Altova GmbH

Overview 483Scripting

Programmers' Reference

2.1.3 Scripting Options

The screenshot below shows the Settings dialog for the Scripting Environment of XMLSpy:

Activate scripting environment when XMLSpy starts
If this checkbox is selected, the Scripting Environment is opened as a separate window when
XMLSpy starts. Otherwise, the Scripting Environment is not activated until the user selects
Tools | Switch to scripting environment for the first time.

Global scripting project file
This entry specifies the global scripting project file. A sample global scripting project file is
installed with your XMLSpy application. If this file does not exist when the Scripting Environment
starts, a new scripting project with the specified name will be created at the specified location.

Run auto-macros
Enables or disables the execution of auto-macros. Currently Autorun from the global scripts is
the only supported automatic macro. Autorun executes when the scripting environment starts.

Process events
Enables or disables the execution of event handlers. If this check box is not ticked, then Event
Handlers in the scripting projects will not be executed.

Standard script language
Every new scripting project created in XMLSpy will propose this scripting language as the
default scripting language..

484 Scripting The Scripting Environment GUI

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

2.2 The Scripting Environment GUI

The Scripting Environment GUI (shown below) is launched from XMLSpy by selecting Tools |
Switch to scripting environment.... Alternatively, you can specify in XMLSpy (Tools |
Options | Scripting) that the Scripting Environment be activated automatically each time
XMLSpy starts.

The Scripting Environment window has three parts: a Project Window, Main Window, and Form
Object Bar. Each of these parts is described individually below. When a Form is active in the
Main Window, the Scripting Environment becomes an effective graphical editor, called the
Form Editor. The special features of the Form Editor are described separately below.

2.2.1 Project Window

Project Window
The Project Window displays all open scripting projects in a tree view. Only one scripting project
can be active at a time. The title of the active project is displayed in bold.

To set a scripting project as the active project, right-click the scripting project and select Set as
active Project. Closing a project removes it from the Project Window. If a project is not the
active project, closing it automatically makes it the active project before it is closed—therefore,
after it is closed no project is active.

© 2007 Altova GmbH

The Scripting Environment GUI 485Scripting

Programmers' Reference

Double-clicking a Form or Module in the Project Window, opens that Form or Module in the
Main Window, where you can graphically design the Form or edit the script.

Icons
The following icons are in the Project Window's title bar:

New Form: Adds a new form to the Forms folder.

View Code: Displays the selected Form or the code of a Module. The code of the
selected Form is displayed only if Layout | Edit Script has been toggled on for that
Form. Otherwise the editable (if Layout | Edit View is selected) or non-editable (if
neither Layout | Edit Script nor Layout | Edit View is selected) view of the Form is
displayed. This icon is enabled when a Form or Module is selected.

View Form: Displays the selected Form. The editable view of the selected Form is
displayed only if Layout | Edit View has been toggled on for that Form. Otherwise the
code (if Layout | Edit Script is selected) or non-editable view (if neither Layout | Edit
View nor Layout | Edit Script is selected) of the Form is displayed. This icon is
enabled when a Form is selected.

Run Form: This icon is enabled when a Form is selecteds.

Toggle Folders: Toggles the Forms and Modules level of the tree on and off.

Context menus
Two context-sensitive popup menus are available within the Project Window. The first appears
when you right-click the title of a project. The second appears when you right-click a Form or
Module. These popup menus give you access to commands available in the File and Project
menus.

486 Scripting The Scripting Environment GUI

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

2.2.2 Main Window

The Main Window is the area in the GUI where individual Forms and Modules are displayed in
separate windows. It is in these windows that you design Forms and edit scripts.

Forms

 Each Form is displayed in a separate window.
 When the Scripting Environment GUI has a Form window active, it is called a Form

Editor. For details of usage, see The Form Editor.
 A Form is displayed as the graphical dialog box presented to the user (Design View). If

Layout | Edit View is toggled on for a given Form, then that Form is editable.
Otherwise the Design View is non-editable.

 Additionally, if Layout | Edit Script has been toggled on for a Form, then the script
underlying that Form is displayed in the Form window. Clicking the Close Script View
icon switches back to the Design View (editable or non-editable according to whether
Layout | Edit View is toggled on or off, respectively).

 Note that the Layout | Edit View and Layout | Edit Script switches are specified
separately for each Form.

Modules

 Each Module (Global Declarations, (Application) Events, and Macros) opens in a
separate window.

 Within a Module window, the combo box on the left indicates which module is selected
(in the screenshot below, the combo box shows that the Events Module is the selected
Module). To select a specific item (Global Declaration, Event-Handler, or Macro), click
the required option in the drop-down menu of the combo box on the right.

Context menus
Right-clicking within the Script View of a Form or within a Module window pops up a context

© 2007 Altova GmbH

The Scripting Environment GUI 487Scripting

Programmers' Reference

menu that gives you access to features that help you with your scripting.

2.2.3 Form Object Bar

The Form Object Bar is a tool palette that helps you add controls to your Forms. Select a Form
Object from the bar, then place the pointer at the desired location in your Form and draw a
rectangle to specify the size of the object.

The most commonly used objects are described below:

Static Text: Adds text fields such as captions or field descriptions.

Button:Adds a button. It is possible to assign bitmaps to these buttons.

Check Box: Adds a check box, which enables Yes–No type elements.

Combo Box: Adds a combo box, which allows the user to select an option from a
drop-down menu.

List Box: Adds a list box, which displays a list of items for selection.

Edit Box: Defines a single line of text.

Multi-edit Box: Defines multiple lines of text.

ActiveX: Allows the integration of an ActiveX control in the Form.

Setting Form Object properties and events
Each Form Object has its own set of properties and events. You can specify the settings of a
Form Object in the Property Sheet for that object, as well as add some scripting code to the
provided events. For details about how to do this, see The Form Editor.

488 Scripting The Scripting Environment GUI

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

2.2.4 The Form Editor

The Form Editor is the Scripting Environment used for editing a Form. A Form can be opened
by double-clicking that Form's icon in the Project Window or by right-clicking a Form icon and
selecting either View Code or View Object.

Form views
Each Form opens in a separate window (shown below) that can be resized and minimized. The
two views in which a Form is displayed are Design View and Script View.

The Design View shown above is editable. In order to make a Design View editable, you must
toggle on the menu item Layout | Edit View. If this menu item is toggled off, then the Design
View is uneditable and the Form appears as it will to the user (see screenshot below).

Additionally, a Form can be displayed in a Script View (shown below) by toggling on the menu
item Layout | Edit Script. Closing the Script View switches the view back to Design View

© 2007 Altova GmbH

The Scripting Environment GUI 489Scripting

Programmers' Reference

(editable or non-editable according to whether Layout | Edit View is toggled on or off,
respectively).

Design View
A Form must be created and edited in the editable Design View of the Form. To specify the
settings of the workarea, use the menu item Layout | Grid Settings....

In order to insert objects into the Form, use the Form Objects in the Form Object Bar. Build up
the visual design of your Form by placing objects from the Form Object Bar at suitable locations
within the Form outline. Specify visual refinements of the layout through the Layout menu
items.

To specify the properties of the Form, either right-click in an empty area of the Form or select
Layout | Properties.... This displays the Properties Sheet of the Form, where you can define
the size of the Form, its font, buttons, and so on.

490 Scripting The Scripting Environment GUI

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

To switch to the Property Sheet of a particular object, either select that object in the design view
or select the name of that object from the drop-down list of the combo box in the Property
Sheet.

To close the Property Sheet, click the Close button.

The Property Sheet
The Property Sheet lists all properties and events of the selected Form or Form Object when
the editable Design View of the Form is active. It enables you to modify properties and to add or
modify code for properties and Form event handlers. The combo box at the top of the Property
Sheet lists all the properties and events of the active Form.

The Property Sheet has three tabs: Normal, Events, and ActiveX. The screenshots below show
the three tabs of the Microsoft DatePicker ActiveX control. Note that different Form Objects
have different properties and events, and not all objects have three tabs in the Property Sheet.

© 2007 Altova GmbH

The Scripting Environment GUI 491Scripting

Programmers' Reference

The Normal tab specifies the name of the object and properties relating to the object's
appearance in the Form. The name is specified by the ObjectCode property (here
MScomCtl21). If you write a script and need access to methods or properties of this object, you
must use this name. For example:

var strTmp;
strTmp = "";
strTmp = MSComCtl21.Year + '-' + MSComCtl21.Month + '-' +

MSComCtl21.Day;

If a property has enumerated values, then these become available in a drop-down menu when
the property is selected (see screenshot below).

In the above screenshot, the EditFind object is selected. When the CursorPointer
property is selected, a drop-down menu with the possible values for this property becomes
available. This enables you to quickly and correctly select a suitable value for the property.

492 Scripting The Scripting Environment GUI

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

In the Events and ActiveX tabs, to enter code for a property, first select the property for which
you want to enter code. A button with an ellipsis (...) appears at the right of the entry field.
Click this button to open a Script Editor window for that code fragment.

Using layers in Form design
When you insert Form Objects while in the Design View of the Form, these objects are created
by default on a layer titled "Default". You can add additional layers below the Default layer if
you wish to create a Form with backgrounds objects. The objects in each layer are
superimposed on the objects of underlying layers if there is an overlap. Layers below the
Default layer can be moved relative to each other (i.e. up or down), but the Default layer
remains the top layer. As a result, objects in the Default layer will be superimposed on all
objects in lower layers. For details of using layers, see Layout.

Setting the tab sequence for data-input objects
When users input data in a Form, they commonly move from one input field to the next by
pressing the Tab key. You can specify the tab sequence in the Objects Sheet (Tab Order)
dialog. See Layout for details.

Also see:

 The Layout menu for commands used to layout a Form. There are a range of
commands that help you to format

 Creating a Form for more details about creating a Form.

© 2007 Altova GmbH

Using the Scripting Environment 493Scripting

Programmers' Reference

2.3 Using the Scripting Environment

The Forms, Event Handlers, and Macros you create in the Scripting Environment use scripts
that interact with the XMLSpy API, which is a COM API. The variables and functions required for
this interaction are defined in the Global Declarations module of the Scripting Environment.
The object model of the XMLSpy API is documented in the XMLSpyAPI documentation.

Event Handler scripts can be written for standard XMLSpy events as well as for custom
events. This allows you to add and modify event handling in your XMLSpy interface. See
Creating an Event-handler for an example of how to work with Event Handlers in XMLSpy.

When you create a Form, you require variables to accept user input and functions that carry out
the required functionality. Both variables and functions are defined in the Global Declarations. In
addition, you need to reference some event handler to execute the Form in the desired way.
Creating a Form describes the steps required to create a Form.

Macros automate repetitive or complex tasks. In the Scripting Environment, you can create a
script that calls functions both XMLSpy functions as well as custom functions you define in the
Global Declarations module. This flexibility provides you with powerful method of automating
tasks within the XMLSpy IDE. How you create a Macro is described in Writing a Macro.

The subsections of this section explain, with examples, how each of the above is to be created.
The section ends with a subsection explaining how Macros are called in XMLSpy.

2.3.1 Creating an Event Handler

To create an Event Handler for application events (as opposed to Form events), double-click
the XMLSpyEvents Module in the Project Window. This pops up a scripting window for event
handlers in the Main Window.

The combo box on the right lists all the application events. To access a particular event-handler
script, click the relevant event in the righ-hand combo box. This pops up the script which you
can edit or a script outline you can fill in. If the event you want to write code for does not have an
entry in the Event combo box, use the Project | Add Function command (or right-click in the
script window and select Add Function) to add an Event.

494 Scripting Using the Scripting Environment

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Note:

 Event Handlers need function headers with the correct spelling of the event name.
Otherwise the Event Handler will not get called.

 It is possible to define local variables and helper functions within macros and event
handlers. Example:

//return value: true allows editing
//return value: false disallows editing
var txtLocal;
function Helper()
{
txtMessage = txtLocal;
Application.ShowForm("MsgBox");

}
function On_BeforeStartEditing(objXMLData)
{
txtLocal = "On_BeforeStartEditing()";
Helper();

}

 While a Macro is executed, Event Handlers from XMLSpy are not processed.
 The best way to re-create a deleted event handler is to create a new scripting project

and copy name and function definition from there.
 In order for events to be processed, the Process Events options must be toggled on in

the Settings dialog of XMLSpy. See Scripting Settings for details.
 Also see Programming points to note.

Example
The screenshot above shows the XMLSpyEvents module with a list of predefined events. The
On_OpenProject allows you to add a script that will be executed each time XMLSpy opens a
project. The example script below sequentially opens all XML files located in the XML folder of
the project and validates them. If the validation fails the script shows the validation error and
stops. If a file passes the validity test, it will be closed and the next file will be opened.

Enter the following script for the On_OpenProject() event, and then save the scripting project.

function On_OpenProject()
{
varbOK;
varnIndex,nCount;
varobjItems,objXMLFolder = null;

objItems = Application.CurrentProject.RootItems;
nCount = objItems.Count;

// search for XML folder
for(nIndex = 0;nIndex < nCount;nIndex++) {
var txtExtensions;
txtExtensions = objItems.Item(nIndex).FileExtensions;

if(txtExtensions.indexOf("xml") >= 0) {
objXMLFolder = objItems.Item(nIndex);

break;
}
}

// does XML folder exist?
if(objXMLFolder) {
var objChild,objDoc;

nCount = objXMLFolder.ChildItems.Count;

© 2007 Altova GmbH

Using the Scripting Environment 495Scripting

Programmers' Reference

// step through associated xml files
for(nIndex = 1;nIndex <= nCount;nIndex++) {
objChild = objXMLFolder.ChildItems.Item(nIndex);

try{
objDoc = objChild.Open();

// use JScript method to access out-parameters
var strError = new Array(1);
var nErrorPos = new Array(1);
var objBadData = new Array(1);

bOK = objDoc.IsValid(strError,nErrorPos,objBadData);

if(!bOK) {
// if the validation fails, we should display the
// message from XMLSpy
// of course we have to create the form "MsgBox" and
// define the global txtMessage variable
//
// txtMessage = Position:" + nErrorPos[0] + "\n" + // strError[0];
// txtMessage += "\n\nXML:\n" + objBadData[0].Name + ", " +
// objBadData[0].TextValue;
//
// Application.ShowForm("MsgBox");

break;
}

objDoc.Close(true);
objDoc = null;

}
catch(Err) {
// displaying the error description here is a good idea

// txtMessage = Err.Description;

// Application.ShowForm("MsgBox");

break;
}

}
}
}

Testing the Event Handler
Switch to XMLSpy, and open a project to see how the Open Project event is handled.

2.3.2 Creating a Form

A Form queries users for input (data and/or a choice), and executes the required action based
on the input. In the Scripting Environment, you can graphically design a Form as well as create
the scripts to perform the required action. The example below takes you through the steps
needed to create a Form. In it we create a Form in which the user can type in the name of
elements that are to be deleted from the active XML file in XMLSpy.

Creating a new Form
To add a new Form to a scripting project, select Project | Add Form or click the New Form
button in the toolbar of the Project Window. The new Form is added immediately. It appears as
a separate window (see screenshot below), and its title appears in the Project Window. Open
the Property Sheet for the Form by either right-clicking within the Form Window or selecting
Layout | Properties....

496 Scripting Using the Scripting Environment

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Naming the Form
You name a Form by entering a name for it in the line FormCode of the Property Sheet . For
our example, enter RemoveDlg as the name of the Form. After entering the name, press Enter.
The name of the Form now also appears in the title box of the Propery ySheet.

Inserting a Form Object
We need an edit box in which the user can type the names of the elements to be removed from

the XML file. Select the edit box icon from the Form Objects Bar on the right side of the
Main Window. Then, in the Design View of the RemoveDlg Form, draw, with the mouse, a
rectangle for the edit box. This rectangle sets out the position and dimensions of the edit box.
The edit box is created in the Design View, and (if Layout | Properties... is toggled on) the
Property Sheet for the edit box is displayed. (To display the Property Sheet for the edit box,
either select the edit box and toggle on Layout | Properties... or right-click the edit box.)

In the (ObjectCode) line of the Property Sheet, type in EditElements as the name of the
edit box.

Position and dimension of a Form Object
The position and dimensions of the edit box are specified in the Property Sheet in terms of the
Left, Right, Top, and Bottom properties. The Left and Right properties take values that are the
distances (in pixels) of the left and right borders of the edit box, respectively, from the left border

© 2007 Altova GmbH

Using the Scripting Environment 497Scripting

Programmers' Reference

of the Form. The Top and Bottom properties take values that are the distances (in pixels) of the
top and bottom borders of the edit box, respectively, from the top border of the Form.

Inserting text in the Form

Add a caption for the edit box with the static text icon from the Form Objects Bar. The
Design View of the Form should look something like this:

Inserting buttons
We now need two buttons in our form: Delete and Cancel. To insert these, do the following:

1. Select the button icon and then draw the two buttons in the Design View.
2. Name each button in the (ObjectCode) line of the respective Property Sheets:

BtnDelete and BtnCancel.
3. Specify the Button text (Delete and Cancel, respectively) either by editing the button

text directly in the Design View or by editing the value of the Text property in the
Property Sheet.

Writing the required scripts
After the visual design of the Form is complete, we need to associate the Form Objects with
suitable scripts. In this case, we need two types of scripts:

 A function that loops through the XML file, deleting all XMLData objects with a given
name (specified by the user in the edit box)

 Event handlers that are executed when the two buttons are clicked

Creating the function
The function that deletes the XMLData objects must be defined in the Global Declarations
module of the scripting project. Open the Global Declarations window by double-clicking the
GlobalDeclarations module in the Project Window. Type the following code into the Global
Declarations window:

var txtElementName;

function DeleteXMLElements(objXMLData)

498 Scripting Using the Scripting Environment

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

{
if(objXMLData == null)
return;

if(objXMLData.HasChildren){
var objChild;
objChild = objXMLData.GetFirstChild(-1);

while(objChild) {
DeleteXMLElements(objChild);

try{
if(objChild.Name == txtElementName)
objXMLData.EraseCurrentChild();

objChild = objXMLData.GetNextChild();
}
catch(Err) {

objChild = null;
}

}
}

}

The Global Declarations window should look like this:

© 2007 Altova GmbH

Using the Scripting Environment 499Scripting

Programmers' Reference

Creating the button events

 Select the BtnDelete button and click the Events tab in the Property Sheet.

 Select the EventClick property and click the ellipsis button at the right. A Script
Editor window pops up with the predefined function header of the click-event. This
function will be executed every time the user clicks the Delete button. Add the following
code to the event:

if(EditElements.Text != "") {
txtElementName = EditElements.Text;
DeleteXMLElements(Application.ActiveDocument.RootElement);

}

Summary of Form creation
The Form we have created using the steps above does the following:

 The Delete button sets the global variable txtElementName to the string that the user
enters in the edit box (EditElements is the name we have assigned the edit box).

 The global variable txtElementName calls the function DeleteXMLElements() with

500 Scripting Using the Scripting Environment

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

the root element of the active XML document. (The function DeleteXMLElements()
is the one we have defined in the Global Declarations module.)

 The DeleteXMLElements() function uses the XMLData object of the XMLSpy API.

Running the Form
To run the Form, create a Macro as follows:

1. Open the Macros module (by double-clicking XMLSpyMacros in the Project Window).
2. Create a new Macro called DeleteElements and enter thefollowing code:

var a;
if(Application.ActiveDocument != null)

a = Application.ShowForm("RemoveDlg");

3. Run the Macro by selecting the DeleteElements in the Show Macros dialog, which
you open by clicking Tools | Show macros... in the XMLSpy GUI.

Note:

 A Form can display another Form with the function Application.ShowForm().

2.3.3 Writing a Macro

A Macro automates a repetitive or complex task. In this section, we write a Macro that removes
all namespace prefixes from the active document.

Creating a new Macro

1. To create a new Macro, right-click XMLSpyMacros in the Project Window and select
Add Function from the context menu.

2. In the New Function dialog that appears, enter RemoveNamespaces for the name of
the Macro.

The Scripting Environment creates a new Macro with this name and adds it to the
XMLSpyMacros module.

3. Double-click the XMLSpyMacros module in the Project Window to open the Macros
window.

4. Select the RemoveNamespaces Macro.

© 2007 Altova GmbH

Using the Scripting Environment 501Scripting

Programmers' Reference

5. Enter the code below in the Macro window:

if(Application.ActiveDocument != null) {

RemoveAllNamespaces(Application.ActiveDocument.RootElement);
Application.ActiveDocument.UpdateViews();

}

Note: Macros do not support parameters or return values, so no function header should
exist in the macro implementation.

Creating the function used in the Macro
We now have to write the RemoveAllNamespaces function. Creating it in the Global
Declarations module makes it accessible to all Macros, Event Handlers, and Forms.

1. Activate the Global Declarations module by double-clicking it in the Project Window.
2. Append the following code for the RemoveAllNamespaces() function to code for any

previously defined global variables or functions:

function RemoveAllNamespaces(objXMLData)
{

if(objXMLData == null)
return;

if(objXMLData.HasChildren) {
var objChild;

// spyXMLDataElement := 4
objChild = objXMLData.GetFirstChild(4);

while(objChild) {
RemoveAllNamespaces(objChild);

try {
var nPos,txtName;
txtName = objChild.Name;

if((nPos = txtName.indexOf(":")) >= 0) {
objChild.Name = txtName.substring(nPos+1);

}

objChild = objXMLData.GetNextChild();
}
catch(Err) {

objChild = null;
}

}
}

}

This completes the creation of the new macro.

Note:

 It is possible to define local variables and helper functions within macros and event
handlers. Example:

//return value: true allows editing
//return value: false disallows editing
var txtLocal;
function Helper()
{
txtMessage = txtLocal;
Application.ShowForm("MsgBox");

502 Scripting Using the Scripting Environment

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

}
function On_BeforeStartEditing(objXMLData)
{
txtLocal = "On_BeforeStartEditing()";
Helper();

}

 Recursive functions are supported. The function DeleteXMLElements() in Creating
a Form, for example, calls itself recursively.

Running the Macro
Run the Macro by selecting the DeleteElements in the Show Macros dialog, which you open
by clicking Tools | Show macros... in the XMLSpy GUI. See Calling macros.

Note: While a Macro is executed, Event Handlers from XMLSpy are not processed.

Modifying the Macro
This Macro can be easily modified to rename namespaces rather than remove them. You would
need to carry out the following steps:

1. Design a Form (see Creating a Form) in which the user can specify the old and the new
namespace names.

2. In the Macro code, change the try-catch block of the RemoveAllNamespaces()
function to something like this:

try{
var nPos,txtName;
txtName = objChild.Name;

if((nPos = txtName.indexOf(":")) >= 0) {
var txtOld;
txtOld = txtName.substring(0,nPos);

if(txtOld == txtOldNamespace)
objChild.Name = txtNewNamespace + ":" + txtName.substring(nPos+1);

}

objChild = objXMLData.GetNextChild();
}
catch(Err) {
objChild = null;
}

This code assumes that txtOldNamespace and txtNewNamespace are declared as
global variables and are set with the proper values.

2.3.4 Calling macros

There are two ways to call or run a Macro:

 With the Show Macros dialog of XMLSpy
 By creating and using a menu item (or Run command) for the Macro in the Tools

menu of XMLSpy
 By creating and using a toolbar button for a macro

Note: While a Macro is executed, Event Handlers from XMLSpy are not processed.

Using the Show Macros dialog

1. In XMLSpy, click Tools | Show macros. This pops up the Show Macros dialog, which
displays all macros defined in the global scripting project and in the scripting project

© 2007 Altova GmbH

Using the Scripting Environment 503Scripting

Programmers' Reference

assigned to the current XMLSpy project. In the Project combo box, select whether the
Macros in the global scripting project or the Macros in the assigned scripting project are
to be displayed.

2. Select the Macro you wish to run.
3. Click the Run button. Before the Macro is executed, the Show Macros dialog is closed.

Debugging a macro
You can debug a macro from within the Scripting Environment. In the Show Macros dialog, click
the Debug button. This pops up the Just-In-Time dialog, in which you can select from the
debuggers that are installed on your system. Select a debugger and click Yes. The debugger
starts.

Creating a menu item in the Tools menu
The XMLSpy API includes a function to add Macros as menu items to the Tools menu. This
function can be used to add one or more Macros to the Tools | Show macros list of Macros.
To do this carry out the following steps:

1. To add a menu item, call the XMLSpy API function AddMacroMenuItem().
2. To reset the Tools menu call ClearMacroMenu(). This removes all previously added

menu items

The best way to call these two functions is with the Autorun macro of the global scripting
project or the On_OpenProject event.

Example:

Application.AddMacroMenuItem("DeleteElements","Delete Elements
Dialog");

 The first parameter (DeleteElements in the example) is the name of the Macro. If
you run the Macro and there is an open project having scripts associated with it,
XMLSpy searches for the Macro in the project scripts first. If there are no project
scripts, or if XMLSpy cannot find the macro, then it looks for the Macro in the global
scripts.

 The second parameter (Delete Elements Dialog)is the display text for the menu
item.

Using a toolbar icon for a macro
You can create an icon in the toolbar, which, when it is clicked, will run a Macro. To do this,
click Tools | Customize | Macros.

504 Scripting Using the Scripting Environment

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Now do the following:

1. In the Macros pane, select the required Macro.
2. In the Display text input field enter the name of the icon. This name will appear when

the cursor is placed over the icon when it is in the toolbar.
3. Click Add Command to add it to the list of commands.
4. Select the command and click Edit Icon to create a new icon.
5. Drag the finished icon from the Associated commands pane and drop it on to the

toolbar when the cursor changes from an arrow to an I-beam.
6. Click Reset bars for this Macro icon and command to be displayed in the Tools | Show

Macros... dialog.

2.3.5 Programming points to note

The following programming points should be noted:

 Out-parameters from methods of the XMLSpy API require special variables in
JavaScript. Given below are some examples.

// use JavaScript method to access out-parameters
var strError = new Array(1);
var nErrorPos = new Array(1);
var objBadData = new Array(1);
bOK = objDoc.IsValid(strError,nErrorPos,objBadData);

© 2007 Altova GmbH

Menus 505Scripting

Programmers' Reference

2.4 Menus

2.4.1 File

New Project
Creates a new project. You are prompted for the scripting language of the new project, which
can be either JavaScript or VBScript. The project is opened as the active project, and its title is
diaplayed in bold in the Projects Window.

Open Project
Opens an existing project. The newly opened project becomes the active project. Only one
project among all the open projects can be active at a time. A project is made the active project
automatically when it is opened or if it is created as a new project. Otherwise, a project is made
active by explicitly specifying this—right-click a project title and select Set as Active Project.

If only one instance of the project is open, then its title is displayed in bold. Multiple instances of
a single project can be open, and in this case the title of the currently active instance or of the
last instance to have been active is displayed in bold.

Close Project
Closes the selected project. If a project is not the active project, closing it automatically makes it
the active project before it is closed—therefore, after it is closed no project is active.

Save Project
Saves the selected project.

Save Project As
Saves an unnamed open project with a name or a named open project under another name.

Printing
You can print a form or script by using the Print command. A Print Preview is also available.
Note that to switch back from the Print Preview to the Scripting Environment, you should press
the Close button. Do not close the Print Preview window; this will cause the entire Scripting
Environment to close.

Switch to XMLSPY...
Minimizes the Scripting Environment and restores the XMLSpy window.

Exit
Closes the Scripting Environment window.

2.4.2 Edit

Undo and Redo
The Undo and Redo commands enable you to carry out multiple undo and redo commands.

Cut, Copy, Paste, Delete
To cut, copy and delete, select an object or text fragment, and select one of these commands.
To paste, place the cursor at the desired location and select the Paste command.

2.4.3 View

Toolbars
Toggles on/off a number of toolbars.

Project Bar

506 Scripting Menus

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Toggles on/off the Project Bar.

Status Bar
Toggles on/off the Status Bar at the bottom of the Sripting Environment window.

Ruler Bars
Toggles on/off the ruler guides along the top and left margins of the page.

Snap Points
Toggles on/off the snap points of an object. Snap points are the points on an object that will
snap to another object when that object is being moved. You can add and delete snap points by
selecting the object, and, in the Property Sheet of the object, clicking the ellipsis in the value
field of the AnchorSnaps property. This pops up the Enter Snap Ponts dialog, in which you can
add snap points.

When the snap points are toggled on, they are visible and aid you to position objects accurately.

2.4.4 Project

Add Form
Enables you to add a Form to the current set of Forms in the project.

Add Function
When Events or Macros is selcted in the Project Window, you can add a Function to the list of
already available functions. Selecting this command pops up the following dialog:

© 2007 Altova GmbH

Menus 507Scripting

Programmers' Reference

Entering the name of the function and clicking OK adds a function with this name to the list of
existing functions and opens a scriptig window for this function.

Remove Function
This command opens the Remove Function dialog, in which you enter the name of the Events
or Macros functon to be removed.

Project Information
This command gives you the path to the current project file and information about whether the
project was opened from within XMLSpy or not.

2.4.5 Layout

The Layout menu contains commands for Form layout and view controls. These commands are
not relevant for Modules.

Spacing, positioning, and sizing of objects
When two or more Form Objects are selected (by pressing Shift while clicking the objects), they
can be spaced and sized relative to each other as well as positioned relative to the borders of
the Form. You can do this by using the Align Objects, Space Evenly, Align in View, and
Make Same Size commands. Note that to use the Space Evenly command at least three
objects have to be selected.

Objects
The Objects... command pops up the Object Sheet (Tab Order) window, in which you specify
the tab sequence of the data-input fields. Data-input fields correspond to data-input Form
Objects.

508 Scripting Menus

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

When you insert a Form Object in your design, the new object is appended to the appropriate
section (numbered or non-numbered) in the Object Sheet list. The Object Sheet list has two
parts, a numbered part for data-input objects and a non-numbered part for display objects. The
number of an object in the numbered part indicates the position of that object in the run-time tab
sequence. You can change the position of an object in the tab sequence by selecting it and
pressing the Up or Down buttons as required. You can also delete an object by pressing the
Delete button.

Note: The tab sequence applies to data-input objects only at run-time, i.e. when the Form is
displayed for user input. In the Form Editor, pressing the Tab key first takes you through the
display objects (in the order in which these are listed in the Object Sheet), and then through the
data-input objects (in the tab sequence).

Layers
A Form is designed in a "Default" layer that is always the top layer. You can add additional
layers below the Default layer, and move these lower layers relative to each other. The Default
layer remains the top layer. Layers, therefore, allow you to add background effects to your
Form.

To add and manipulate layers, select the Layers... command. This pops up the Layers Sheet.

© 2007 Altova GmbH

Menus 509Scripting

Programmers' Reference

To add a new layer, click the Add button. You can rename a layer by selecting it and typing a
new name into the Name input field. To delete a layer, select the layer to be deleted and click
the Delete button. To move a layer up or down in the layer sequence, select the layer to move
and press the Up or Down buttons as required. The layer sequence is ordered with the first
layer in the Layers Sheet corresponding to the topmost layer of the Form.

The Select button selects, in the design view, all the objects of the currently selected layer. You
can also turn the display of all objects in a layer on or off by using the View check box. Locking
a layer, with the Lock check box, renders that layer uneditable and causes the Object Bar to be
grayed out when that layer is active.

Properties
The Properties... command pops up the Property Sheet for the selected Form. A Property
Sheet is available not only for each Form but also for each Form Object. You can modify
properties of a Form or Form Object via its Property Sheet. How to use Property Sheets is
described in detail in The Form Editor.

Grid Settings
The Grid Settings... command pops up the Grid Settings dialog, in which you can specify the
appearance of the background grid for the design view.

510 Scripting Menus

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Spacing settings specify the horizontal and vertical distances between grid lines. Four
guidelines are available (top, right, bottom, left), and you can specify the offset of each from the
corresponding border of the Form. Grid Settings take effect with the next design view to be
made active.

Edit View
This is a toggle setting that is specified individually for each Form. Checking the Edit View
command causes the Form to be opened in editable design view or for it to switch from
non-editable view to editable design view. Unchecking the Edit View command causes the
Form to be opened in non-editable view or for it to switch from editable design view to
non-editable view. Note that the setting is made for the active Form only; it does not apply to all
Forms.

Edit Script
This is a toggle setting that is specified individually for each Form. Cecking the Edit Script
command causes a separate script window to be displayed for that Form. Unchecking the
command causes the script window to close.

2.4.6 Draw

Order
This is a Form Editor command and enables you to place the selected object in front of or
behind other objects on the same layer. If you wish to arrange objects which are on different
layers, then you should manipulate layers in the Layers Sheet (accessed with the Layout |
Layers command).

Zoom
This is a Form Editor command menu and enables you to zoom in and out on an object or the
Form as a whole.

Group
This is a Form Editor command menu which is enabled when two or more objects, or a group of
objects, are selected. It allows you to group and ungroup two or more objects. This is useful if
you wish to keep objects together as a group.

Rotate
Enables you to rotate certain objects. The Free Rotate command is a toggle command. It
allows you to grab the object by one of its handles and rotate it about its center. You acn also
Rotate Right by 90º. The Unrotate command functions like an Undo command.

© 2007 Altova GmbH

Menus 511Scripting

Programmers' Reference

2.4.7 Window

The Window menu enables you to manipulate the arrangement of open windows in the Main
Window. You can cascade and tile windows, and arrange icons. You can also use this menu to
select, from a list of all open windows, the window you wish to make the active window.

512 XMLSpy Plugins

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

3 XMLSpy Plugins

XMLSpy allows you to create your own IDE plug-ins and integrate them into XMLSpy.

Use plug-ins to:

 Configure your version of XMLSpy, add commands through menus, icons, buttons etc.
 React to events from XMLSpy.
 Run your specific code within XMLSpy with access to the complete XMLSpy API

XMLSpy expects your plug-in to implement the IXMLSpyPlugIn interface. See ATL sample files
for an example using C++. See the folder "xmlspy\Examples\XMLSpyPlugIn" of your XMLSpy
installation for a sample using VisualBasic.

Note: If you are interested in developing a Plugin for XMLSPY using this API, please visit the
Altova Partner Portal at http://partners.altova.com, or contact us via e-mail at
mailto:partners@altova.com to learn more about the different partnership options!

mailto:mailto:partners@altova.com

© 2007 Altova GmbH

Registration of IDE PlugIns 513XMLSpy Plugins

Programmers' Reference

3.1 Registration of IDE PlugIns

XMLSpy maintains a specific key in the Registry where it stores all registered IDE plug-ins:

HKEY_CURRENT_USER\Software\Altova\XML Spy\PlugIns

All values of this key are treated as references to registered plug-ins and must conform to the
following format:

Value name: ProgID of the plug-in
Value type: must be REG_SZ
Value data: CLSID of the component

Each time the application starts the values of the "PlugIns" key is scanned, and the registered
plug-ins are loaded.

Register plug-in manually
To register a plug-in manually, use the "Customize" dialog box of the XMLSpy "Tools" menu.
Use the "Add Plug-In..." button to specify the DLL that implements your plug-in. XMLSpy
registers the DLL as a COM server and adds the corresponding entry in its "PlugIns" key.

If you experience problems with manual registration you can check if the CLSID of your plug-in
is correctly registered in the "PlugIns" key. If this is not the case, the name of your plug-in DLL
was probably not sufficiently unique. Use a different name or perform direct registration.

Register plug-in directly
A plug-in can be directly registered as an IDE plug-in by first registering the DLL and then
adding the appropriate value to the "PlugIns" key of XMLSpy during plug-in setup for example.
The new plug-in will be activated the next time XMLSpy is launched.

514 XMLSpy Plugins ActiveX Controls

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

3.2 ActiveX Controls

ActiveX controls are supported. Any IDE PlugIn which is also an ActiveX control will be
displayed in a Dialog Control Bar. A sample PlugIn that is also an ActiveX control is included in
the XMLSpyPlugInActiveX folder in the Examples folder of your application folder.

© 2007 Altova GmbH

Configuration XML 515XMLSpy Plugins

Programmers' Reference

3.3 Configuration XML

The IDE plug-in allows you to change the user interface (UI) of XMLSpy. This is done by
describing each separate modification using an XML data stream. The XML configuration is
passed to XMLSpy using the GetUIModifications method of the IXMLSpyPlugIn interface.

The XML file containing the UI modifications for the IDE PlugIn, must have the following
structure:

<ConfigurationData>
<ImageFile>path To image file</ImageFile>
<Modifications>
<Modification>
...

</Modification>
...

</Modifications>
</ConfigurationData>

You can define icons or toolbar buttons for the new menu items which are added to the UI of
XMLSpy by the plug-in. The path to the file containing the images is set using the ImageFile
element. Each image must be 16 x 16 pixels using max. 256 colors. The image references
must be arranged from left to right in a single (<ImageFile>...) line. The rightmost image index
value, is zero.

The Modifications element can have any number of Modification child elements. Each
Modification element defines a specific change to the standard UI of XMLSpy. Starting with
version 4.3, it is also possible to remove UI elements from XMLSpy.

Structure of Modification elements
All Modification elements consist of the following two child elements:

<Modification>
<Action>Type of action</Action>
<UIElement Type="type of UI element">
</UIElement>
</Modification>

Valid values for the Action element are:

Add - to add the following UI element to XMLSpy
Hide - to hide the following UI element in XMLSpy
Remove - to remove the UI element from the "Commands" list box, in the customize dialog

You can combine values of the Action element e.g. "Hide Remove"

The UIElement element describes any new, or existing UI element for XMLSpy. Possible
elements are currently: new toolbars, buttons, menus or menu items. The type attribute, defines
which UI element is described by the XML element.

Common UIElement children
The ID and Name elements are valid for all different types of XML UIElement fragments. It is
however possible, to ignore one of the values for a specific type of UIElement e.g. Name is
ignored for a separator.

<ID></ID>
<Name></Name>

If UIElement describes an existing element of the UI, the value of the ID element is predefined

516 XMLSpy Plugins Configuration XML

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

by XMLSpy. Normally these ID values are not known to the public. If the XML fragment
describes a new part of the UI, then the ID is arbitrary and the value should be less than 1000.
The Name element sets the textual value. Existing UI elements can be identified just by name,
for e.g. menus and menu items with associated sub menus. For new UI elements, the Name
element sets the caption e.g. the title of a toolbar, or text for a menu item.

Toolbars and Menus
To define a toolbar its necessary to specify the ID and/or the name of the toolbar. An existing
toolbar can be specified using only the name, or by the ID if it is known. To create a new toolbar
both values must be set. The type attribute must be equal to "ToolBar".

<UIElement Type="ToolBar">
<ID>1</ID>
<Name>TestPlugIn</Name>
</UIElement>

To specify an XMLSpy menu you need two parameters:
 The ID of the menu bar which contains the menu. If no XML documents are open in the

main window, the menu bar ID is 128. If one or more XML documents are open, the
menu bar ID is 129.

 The menu name. Menus do not have an associated ID value. The following example
defines the "Edit" menu of the menu bar which is active, when at least one XML
document is open:

<UIElement Type="Menu">
<ID>129</ID>
<Name>Edit</Name>
</UIElement>

An additional element is used if you want to create a new menu. The Place element defines the
position of the new menu in the menu bar:

<UIElement Type="Menu">
<ID>129</ID>
<Name>PlugIn Menu</Name>
<Place>12</Place>
</UIElement>

A value of -1 for the Place element sets the new button or menu item at the end of the menu or
toolbar.

Commands
If you add a new command, through a toolbar button or a menu item, the UIElement fragment
can contain any of these sub elements:

<MacroName></MacroName>
<Info></Info>
<ImageID></ImageID>

If MacroName is specified, XMLSpy searches for a macro with the same name in the scripting
environment and executes it each time this command is processed. The Info element contains
a short description string which is displayed in the status bar, when the mouse pointer is over
the associated command (button or menu item). ImageID defines the index of the icon the
external image file. Please note that all icons are stored in one image file.

To define a toolbar button create an UIElement with this structure:

<UIElement Type="ToolBarItem">
<!--don't reuse local IDs even the commands do the same-->
<ID>5</ID>

© 2007 Altova GmbH

Configuration XML 517XMLSpy Plugins

Programmers' Reference

<Name>Open file from repository...</Name>
<!--Set Place To -1 If this is the first button To be inserted-->
<Place>-1</Place>
<ImageID>0</ImageID>
<ToolBarID>1</ToolBarID>
<!--instead of the toolbar ID the toolbar name could be used-->
<ToolBarName>TestPlugIn</ToolBarName>
</UIElement>

Additional elements to declare a toolbar button are Place, ToolBarID and ToolBarName.
ToolBarID and ToolBarName are used to identify the toolbar which contains the new or existing
button. The textual value of ToolBarName is case sensitive. The (UIElement) type attribute
must equal "ToolBarItem".

To define a menu item, the elements MenuID, Place and Parent are available in addition to the
standard elements used to declare a command. MenuID can be either 128 or 129. Please see
"Toolbars and Menus" for more information on these values.

The Parent element is used to identify the menu where the new menu entry should be inserted.
As sub menu items have no unique Windows ID, we need some other way to identify the parent
of the menu item.

The value of the Parent element is a path to the menu item.
The text value of the Parent element, must equal the parent menu name of the submenu,
where the submenu name is separated by a colon. If the menu has no parent, because its not a
submenu, add a colon to the beginning of the name. The type attribute must be set to
"MenuItem". Example for an UIElement defining a menu item:

<UIElement Type="MenuItem">
<!--the following element is a Local command ID-->
<ID>3</ID>
<Name>Open file from repository...</Name>
<Place>-1</Place>
<MenuID>129</MenuID>
<Parent>:PlugIn Menu</Parent>
<ImageID>0</ImageID>
</UIElement>

XMLSpy makes it possible to add toolbar separators and menus if the value of the ID element is
set to 0.

518 XMLSpy Plugins ATL sample files

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

3.4 ATL sample files

The following pages show how to create a simple XMLSpy IDE plug-in DLL using ATL. To build
the DLL it is necessary to know about ATL, the wizards that generate new ATL objects, as well
as MS VisualStudio.

To access the API the implementation imports the Type Library of XMLSpy. The code reads
various properties and calls methods using the smart pointers provided by the #import
statement.

In addition, the sample code uses the MFC class CString and the ATL conversion macros such
as W2T.

At a glance the steps to create an ATL DLL are as follows:

1. Open VisualStudio and select "New..." from the "File" menu.
2. Select the "Projects" tab.
3. Select "ATL COM AppWizard" and type in a project name.
4. Select "Support for MFC" if you want to use MFC classes, or if you want to create a

project for the sample code.

Having created the project files you can add an ATL object to implement the
IXMLSpyPlugIn interface:

1. Select "New ATL Object..." from the "Insert" menu.
2. Select "Simple Object" from the wizard and click "Next".
3. Type in a name for the object.
4. On the "Attributes" tab, select "Custom" for the type of interface, and disable

Aggregation.

These steps produce the skeleton code for the implementation of the IDE plug-in interface.
Please see the following pages on how to modify the code and achieve some basic
functionality.

3.4.1 Interface description (IDL)

The IDL of the newly created ATL object contains a declaration for one COM interface.

 This interface declaration must be replaced by the declaration of IXMLSpyPlugIn as
shown below.

 The IDL must also contain the definition of the SPYUpdateAction enumeration.

 Replace the generated default interface name, (created by the wizard) with
"IXMLSpyPlugIn" in the coclass declaration. The IDL should then look something like
the example code below:

Having created the ATL object, you then need to implement the IDE plug-in interface of
XMLSpy.

import "oaidl.idl";
import "ocidl.idl";

// ----- please insert the following block into your IDL file -----
typedef enum {
spyEnable = 1,
spyDisable = 2,
spyCheck = 4,
spyUncheck = 8
} SPYUpdateAction;

© 2007 Altova GmbH

ATL sample files 519XMLSpy Plugins

Programmers' Reference

// ----- end insert block ----

// ----- E.g. Interface entry automatically generated by the ATL wizard -----
// [
// object,
// uuid(AB7CD86A-8145-429A-A1F3-270692EO8AFC),

// helpstring("IXMLSpyPlugIn Interface")
// pointer_default(unique)
//]
// interface IXMLSpyPlugIn : IUnknown
// {
// };

// ----- end automatically generated Interface Entry

// ----- replace the Interface Entry (shown above) generated for you by the
ATL wizard, with the following block -----

[
odl,
uuid(88F2A622-4B7E-42CD-8D04-3C0E5389DD85),
helpstring("IXMLSpyPlugIn Interface")
]
interface IXMLSpyPlugIn : IUnknown
{
HRESULT _stdcall OnCommand([in] long nID, [in] IDispatch* pXMLSpy);

HRESULT _stdcall OnUpdateCommand([in] long nID, [in] IDispatch* pXMLSpy,
[out, retval] SPYUpdateAction* pAction);

HRESULT _stdcall OnEvent([in] long nEventID, [in] SAFEARRAY(VARIANT)*
arrayParameters, [in] IDispatch* pXMLSpy, [out, retval] VARIANT*
pReturnValue);

HRESULT _stdcall GetUIModifications([out, retval] BSTR* pModificationsXML);

HRESULT _stdcall GetDescription([out, retval] BSTR* pDescription);
};

// ----- end replace block -----

// ----- The code below is automatically generated by the ATL wizard and will
look slightly different in your case -----

 [
uuid(24FE0D1B-3FC0-494E-B36E-1D4CE412B014),
version(1.0),
helpstring("XMLSpyIDEPlugInDLL 1.0 Type Library")

]
 library XMLSPYIDEPLUGINDLLLib
 {
importlib("stdole32.tlb");
importlib("stdole2.tlb");

[
uuid(3800E791-7F6B-4ACD-9E32-2AC184444501),
helpstring("XMLSpyIDEPlugIn Class")
]
coclass XMLSpyIDEPlugIn
{
[default] interface IXMLSpyPlugIn; // ----- define IXMLSpyPlugIn as the

default interface -----

520 XMLSpy Plugins ATL sample files

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

};
};

3.4.2 Class definition

In the class definition of the ATL object, several changes must be made. The class has to
derive from IXMLSpyPlugIn, the "Interface Map" needs an entry for IXMLSpyPlugIn, and the
methods of the IDE plug-in interface must be declared:

#ifndef __XMLSPYIDEPLUGIN_H_
#define __XMLSPYIDEPLUGIN_H_

#include "resource.h" // main symbols

///
// CXMLSpyIDEPlugIn
class ATL_NO_VTABLE CXMLSpyIDEPlugIn :
public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<CXMLSpyIDEPlugIn, &CLSID_XMLSpyIDEPlugIn>,
public IXMLSpyPlugIn

{
public:
CXMLSpyIDEPlugIn()
{
}

DECLARE_REGISTRY_RESOURCEID(IDR_XMLSPYIDEPLUGIN)
DECLARE_NOT_AGGREGATABLE(CXMLSpyIDEPlugIn)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CXMLSpyIDEPlugIn)
COM_INTERFACE_ENTRY(IXMLSpyPlugIn)

END_COM_MAP()

// IXMLSpyIDEPlugIn
public:
virtual HRESULT _stdcall OnCommand(long nID, IDispatch* pXMLSpy);

virtual HRESULT _stdcall OnUpdateCommand(long nID, IDispatch* pXMLSpy,
SPYUpdateAction* pAction);

virtual HRESULT _stdcall OnEvent(long nEventID, SAFEARRAY **arrayParameters,
IDispatch* pXMLSpy, VARIANT* pReturnValue);

virtual HRESULT _stdcall GetUIModifications(BSTR* pModificationsXML);

virtual HRESULT _stdcall GetDescription(BSTR* pDescription);
};

#endif //__XMLSPYIDEPLUGIN_H_

3.4.3 Implementation

The code below shows a simple implementation of an XMLSpy IDE plug-in. It adds a menu item
and a separator (available with XMLSpy) to the Tools menu. Inside the OnUpdateCommand()
method, the new command is only enabled when the active document is displayed using the
Grid View. The command searches for the XML element which has the current focus, and
opens any URL starting with "http://", from the textual value of the element.

///
// CXMLSpyIDEPlugIn

© 2007 Altova GmbH

ATL sample files 521XMLSpy Plugins

Programmers' Reference

#import "XMLSpy.tlb"
using namespace XMLSpyLib;

HRESULT CXMLSpyIDEPlugIn::OnCommand(long nID, IDispatch* pXMLSpy)
{
USES_CONVERSION;

if(nID == 1) {
IApplicationPtr ipSpyApp;

if(pXMLSpy) {
if(SUCCEEDED(pXMLSpy->QueryInterface(__uuidof(IApplication),(void

**)&ipSpyApp))) {
IDocumentPtr ipDocPtr = ipSpyApp->ActiveDocument;

// we assume that grid view is active
if(ipDocPtr) {
IGridViewPtr ipGridPtr = ipDocPtr->GridView;

if(ipGridPtr) {
IXMLDataPtr ipXMLData = ipGridPtr->CurrentFocus;

CString strValue = W2T(ipXMLData->TextValue);

if(!strValue.IsEmpty() && (strValue.Left(7) == _T("http://")))
::ShellExecute(NULL,_T("open")

,W2T(ipXMLData->TextValue),NULL,NULL,SW_SHOWNORMAL);
}
}

}
}
}

return S_OK;
}

HRESULT CXMLSpyIDEPlugIn::OnUpdateCommand(long nID, IDispatch* pXMLSpy,
SPYUpdateAction* pAction)
{
*pAction = spyDisable;

if(nID == 1) {
IApplicationPtr ipSpyApp;

if(pXMLSpy) {
if(SUCCEEDED(pXMLSpy->QueryInterface(__uuidof(IApplication),(void

**)&ipSpyApp))) {
IDocumentPtr ipDocPtr = ipSpyApp->ActiveDocument;

// only enable if grid view is active
if((ipDocPtr != NULL) && (ipDocPtr->CurrentViewMode == spyViewGrid))
*pAction = spyEnable;

}
}
}

return S_OK;
}

HRESULT CXMLSpyIDEPlugIn::OnEvent(long nEventID, SAFEARRAY **arrayParameters,
IDispatch* pXMLSpy, VARIANT* pReturnValue)
{
return S_OK;

522 XMLSpy Plugins ATL sample files

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

}

HRESULT CXMLSpyIDEPlugIn::GetUIModifications(BSTR* pModificationsXML)
{
CComBSTR bstrMods = _T(" \

<ConfigurationData> \
<Modifications> ");

// add "Open URL..." to Tools menu
bstrMods.Append (_T(" \

<Modification> \
<Action>Add</Action> \
<UIElement type=\"MenuItem\"> \
<ID>1</ID> \
<Name>Open URL...</Name> \
<Place>0</Place> \
<MenuID>129</MenuID> \
<Parent>:Tools</Parent> \
</UIElement> \

</Modification> "));
// add Seperator to Tools menu
bstrMods.Append (_T(" \

<Modification> \
<Action>Add</Action> \
<UIElement type=\"MenuItem\"> \
<ID>0</ID> \
<Place>1</Place> \
<MenuID>129</MenuID> \
<Parent>:Tools</Parent> \
</UIElement> \

</Modification> "));
// finish modification description
bstrMods.Append (_T(" \

</Modifications> \
</ConfigurationData>"));

return bstrMods.CopyTo(pModificationsXML);
}

HRESULT CXMLSpyIDEPlugIn::GetDescription(BSTR* pDescription)
{
CComBSTR bstrDescr = _T("ATL C++ XMLSpy IDE PlugIn;This PlugIn demonstrates

the implementation of a simple ATL DLL as a IDE PlugIn for XMLSpy.");
return bstrDescr.CopyTo(pDescription);

}

© 2007 Altova GmbH

IXMLSpyPlugIn 523XMLSpy Plugins

Programmers' Reference

3.5 IXMLSpyPlugIn

See also

Methods
OnCommand
OnUpdateCommand
OnEvent
GetUIModifications
GetDescription

Description
If a DLL is added to XMLSpy as an IDE plug-in, it is necessary that it registers a COM
component that answers to an IXMLSpyPlugIn interface with the reserved
uuid(88F2A622-4B7E-42CD-8D04-3C0E5389DD85), for it to be recognized as a plug-in.

3.5.1 OnCommand

See also

Declaration: OnCommand(nID as long, pXMLSpy as IDispatch)

Description
The OnCommand() method of the interface implementation, is called each time a command
added by the the IDE plug-in (menu item or toolbar button) is processed. nID stores the
command ID defined by the ID element of the respective UIElement.

pXMLSpy holds a reference to the dispatch interface of the Application object of XMLSpy.

Example

Public Sub IXMLSpyPlugIn_OnCommand(ByVal nID As Long, ByVal pXMLSpy As Object)
 If (Not (pXMLSpy Is Nothing)) Then
 Dim objDlg
 Dim objDoc As XMLSpyLib.Document
 Dim objSpy As XMLSpyLib.Application
 Set objSpy = pXMLSpy

 If nID = 3 Or nID = 5 Then
 Set objDlg = CreateObject("MSComDlg.CommonDialog")
 objDlg.Filter = "XML Files (*.xml)|*.xml|All Files (*.*)|*.*||"
 objDlg.FilterIndex = 1
 objDlg.ShowOpen

 If Len(objDlg.FileName) > 0 Then
 Set objDoc = objSpy.Documents.OpenFile(objDlg.FileName, False)
 Set objDoc = Nothing
 End If
 End If

 If nID = 4 Or nID = 6 Then
 Set objDlg = CreateObject("MSComDlg.CommonDialog")
 objDlg.Filter = "All Files (*.*)|*.*||"
 objDlg.Flags = cdlOFNPathMustExist
 objDlg.ShowSave

 If Len(objDlg.FileName) > 0 Then
 Set objDoc = objSpy.ActiveDocument

 If Not (objDoc Is Nothing) Then
 objDoc.SetPathName objDlg.FileName

524 XMLSpy Plugins IXMLSpyPlugIn

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

 objDoc.Save
 Set objDoc = Nothing
 End If
 End If
 End If

 Set objSpy = Nothing
 End If
End Sub

3.5.2 OnUpdateCommand

See also

Declaration: OnUpdateCommand(nID as long, pXMLSpy as IDispatch) as
SPYUpdateAction

Description
The OnUpdateCommand() method is called each time the visible state of a button or menu
item needs to be set. nID stores the command ID defined by the ID element of the respective
UIElement.

pXMLSpy holds a reference to the dispatch interface of the Application object.

Possible return values to set the update state are:

 spyEnable = 1
 spyDisable = 2
 spyCheck = 4
 spyUncheck = 8

Example

Public Function IXMLSpyPlugIn_OnUpdateCommand(ByVal nID As Long, ByVal
pXMLSpy As Object) As SPYUpdateAction
 IXMLSpyPlugIn_OnUpdateCommand = spyDisable

 If (Not (pXMLSpy Is Nothing)) Then
 Dim objSpy As XMLSpyLib.Application
 Set objSpy = pXMLSpy

 If nID = 3 Or nID = 5 Then
 IXMLSpyPlugIn_OnUpdateCommand = spyEnable
 End If
 If nID = 4 Or nID = 6 Then
 If objSpy.Documents.Count > 0 Then
 IXMLSpyPlugIn_OnUpdateCommand = spyEnable
 Else
 IXMLSpyPlugIn_OnUpdateCommand = spyDisable
 End If
 End If
 End If
End Function

3.5.3 OnEvent

See also

Declaration: OnEvent(nEventID as long, arrayParameters as SAFEARRAY(VARIANT),
pXMLSpy as IDispatch) as VARIANT

© 2007 Altova GmbH

IXMLSpyPlugIn 525XMLSpy Plugins

Programmers' Reference

Description
OnEvent() is called each time an event is raised from XMLSpy.

Possible values for nEventID are:

On_BeforeStartEditing = 1
On_EditingFinished = 2
On_FocusChanged = 3
On_Beforedrag = 4
On_BeforeDrop = 5
On_OpenProject = 6
On_OpenDocument = 7
On_CloseDocument = 8
On_SaveDocument = 9

Events available since XMLSpy 4r4:

On_DocEditDragOver = 10
On_DocEditDrop = 11
On_DocEditKeyDown = 12
On_DocEditKeyUp = 13
On_DocEditKeyPressed = 14
On_DocEditMouseMove = 15
On_DocEditButtonUp = 16
On_DocEditButtonDown = 17
On_DocEditContextMenu = 18
On_DocEditPaste = 19
On_DocEditCut = 20
On_DocEditCopy = 21
On_DocEditClear = 22
On_DocEditSelectionChanged = 23

Events available since XMLSpy 2004:

On_DocEditDragOver = 10

526 XMLSpy Plugins IXMLSpyPlugIn

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Events available since XMLSpy 2004r4 (type library version 1.4):

On_BeforeOpen Project = 25
On_BeforeOpenDocument = 26
On_BeforeSaveDocument = 27
On_BeforeCloseDocument = 28
On_ViewActivation = 29
On_DocEditKeyboardEvent = 30
On_DocEditMouseEvent = 31

The names of the events are the same as they appear in the Scripting Environment of XMLSpy.
For IDE plug-ins the names used are immaterial. The events are identified using the ID value.

arrayParameters is an array which is filled with the parameters of the currently raised event.
Order, type and meaning of the single parameters are available through the scripting
environment of XMLSpy. The events module of a scripting project, contains predefined
functions for all events prior to version 4.4. The parameters passed to the predefined functions
are identical to the array elements of the arrayParameters parameter.

Events raised from the Authentic View of XMLSpy do not pass any parameters directly. An
"event" object is used instead. The event object can be accessed through the Document object
of the active document.

pXMLSpy holds a reference to the dispatch interface of the Application object of XMLSpy.

If the return value of OnEvent() is set, then neither the IDE plug-in, nor an event handler
inside of the scripting environment will get this event afterwards. Please note that all IDE
plug-ins get/process the event before the Scripting Environment does.

3.5.4 GetUIModifications

See also

Declaration: GetUIModifications() as String

Description
The GetUIModifications() method is called during initialization of the plug-in, to get the
configuration XML data that defines the changes to the UI of XMLSpy. The method is called
when the plug-in is loaded for the first time, and at every start of XMLSpy.

See also Configuration XML for a detailed description how to change the UI.

Example

Public Function IXMLSpyPlugIn_GetUIModifications() As String
 ' GetUIModifications() gets the XML file with the specified modifications
of
 ' the UI from the config.xml file in the plug-in folder
 Dim strPath As String
 strPath = App.Path

 If Len(strPath) > 0 Then
 Dim fso As New FileSystemObject
 Dim file As file

 Set file = fso.GetFile(strPath & "\config.xml")

 If (Not (file Is Nothing)) Then
 Dim stream As TextStream

© 2007 Altova GmbH

IXMLSpyPlugIn 527XMLSpy Plugins

Programmers' Reference

 Set stream = file.OpenAsTextStream(ForReading)

 ' this replaces the token '**path**' from the XML file with
 ' the actual installation path of the plug-in to get the image
file
 Dim strMods As String
 strMods = stream.ReadAll
 strMods = Replace(strMods, "**path**", strPath)

 IXMLSpyPlugIn_GetUIModifications = strMods
 Else
 IXMLSpyPlugIn_GetUIModifications = ""
 End If
 End If
End Function

3.5.5 GetDescription

See also

Declaration: GetDescription() as String

Description
GetDescription() is used to define the description string for the plug-in entries visible in the
Customize dialog box.

Example

Public Function IXMLSpyPlugIn_GetDescription() As String
 IXMLSpyPlugIn_GetDescription = "Sample Plug-in for XMLSpy;This Plug-in
demonstrates the implementation of a simple VisualBasic DLL as a Plug-in for
XMLSpy."
End Function

528 The XMLSpy API

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

4 The XMLSpy API

The COM-based XMLSpy API of XMLSpy enables other applications to use the functionality of
XMLSpy. As a result, it is now possible to automate a wide range of tasks, from validating an
XML file to modifying complex XML content (with the XMLData interface). The XMLSpy API is
also used by the built-in Scripting Environment of XMLSpy to access application functionality
(for a complete description of which, see Scripting). It is also used by IDE Plugins.

XMLSpy and the XMLSpy API follow the common specifications for automation servers set out
by Microsoft. It is possible to access the methods and properties of the XMLSpy API from
common development environments, such as those using C, C++, VisualBasic, and Delphi, and
with scripting languages like JavaScript and VBScript.

The following limitations must be considered in your client code:

 Be aware that if your client code crashes, instances of XMLSpy may still remain in the
system.

 Don't hold references to objects in memory longer than you need them, especially those
from the XMLData interface. If the user interacts between two calls of your client, then
there is no guarantee that these references are still valid.

 Terminate XMLSpy with the Application.Quit method.
 Don't forget to disable dialogs if the user interface is not visible.
 See Error handling for details of how to avoid annoying error messages.
 Free references explicitly if you are using C or C++.

This documentation
The documentation about the XMLSpy API is broadly divided into two parts.

 The first part consists of an Overview, which describes the object model for the API,
important concepts, and Usage Examples to help you get started.
 The second part is a reference section that contains descriptions of all the interface

objects of the XMLSpy API.

There have been improvements and updates made from release to release. The differences
between releases are documented in Release Notes.

© 2007 Altova GmbH

Overview 529The XMLSpy API

Programmers' Reference

4.1 Overview

This overview of the XMLSpy API provides you with the object model for the API, and with a
description of the most important API processes. The following topics are covered:

 The object model
 Simple document access
 Error handling
 Events
 Import and export of data
 Using XMLData to modify document structure
 The DOM and XMLData

Changes to the API from from version to version of the type library are listed in the release
notes section.

4.1.1 Object model

The starting point for every application which uses the XMLSpy API is the Application
object. This object contains general methods like import/export support and references to the
open documents and any open project.

To create an instance of the Application object, call
CreateObject("XMLSpy.Application") from VisualBasic or a similar function from your
preferred development environment to create a COM object. There is no need to create any
other objects, to use the complete XMLSpy API (It is in fact not even possible). All other
interfaces are accessed through other objects with the Application object as the starting point.

The picture below shows you the links between the main objects of the XMLSpy API:

The application object consists of the following parts:

530 The XMLSpy API Overview

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

1. Document collection and reference to the active document.

2. Reference to current project and methods for creating and opening of projects.

3. Methods to support the export to and import from databases, text files and Word
documents.

4. URL management.

5. Methods for macro menu items.

Once you have created an Application object you can start using the functionality of XMLSpy.
Most of the times you either open a project and access the documents from there or you directly
open a document via the Documents interface.

4.1.2 Simple document access

Create and open files
Use the methods of the Documents interface to create and open documents. This interface is
accessible via the Application.Documents property.

Example:

Dim objDoc As Document
Set objDoc = objSpy.Documents.OpenFile("C:\xmlfiles\myfile.xml", False)

Sometimes it is necessary to show a file dialog to the user to select a file. This usually happens
in the scripting environment and you only need to pass True as the second parameter to
OpenFile().

To create a new file use Documents.NewFile(). Any existing file with the same path will be
overwritten during the next Document.Save() call.

Documents collection
All open documents are accessible via the Documents collection. All collection objects in the
XMLSpy API conform to the Microsoft specifications. So it is possible to use the For-Each loop
in VisualBasic to iterate through the open documents.

Example:

Dim objDocs As Documents
Dim objDoc As Document

Set objDocs = objSpy.Documents

For Each objDoc In objDocs
'do something useful with your document
objDoc.AssignXSL "C:\myXSL.xsl", False
Next

Another way to access a document is the Documents.Item method. The method takes an
index as a parameter and gets the corresponding document object from the collection. Please
note that 1 is the first index value. Documents.Count retrieves the total number of documents.

Example:

Dim objDocs As Documents

© 2007 Altova GmbH

Overview 531The XMLSpy API

Programmers' Reference

Dim objDoc As Document

Set objDoc = objDocs.Item(1) 'gets the first document

Validation
One common task on documents is to validate them against an assigned schema or DTD. If the
XML file has no schema or DTD already assigned, use Document.AssignSchema or
Document.AssignDTD to add the necessary references to the document.

Examples:

objSpy.ActiveDocument.AssignSchema "C:\mySchema.xsd", False

Or

objSpy.ActiveDocument.AssignDTD "C:\myDTD.dtd", False

If you want the user to select a schema or DTD, pass True as the second parameter to these
functions to display a file-dialog. These methods only put the reference into the document and
do not check the existence of the specified file. If the file path is not valid, the validation will fail.

After you have assigned a valid schema or DTD reference to your file, you are able to validate it
with Document.IsValid. IsValid needs some out-parameters that must be declared as
VARIANTs to be accessible from script languages like VBScript and JavaScript.

Example:

Dim bValid As Boolean
Dim strMsg As Variant
Dim nPos As Variant
Dim objBadXMLData As Variant

bValid = objSpy.ActiveDocument.IsValid(strMsg, nPos, objBadXMLData)

If bValid = False Then
a = MsgBox("The document is not valid:" & Chr(13) &

strMsg & Chr(13) & "position: " & nPos &
Chr(13) & "XMLData name: " & objBadXMLData.Name)

Else
a = MsgBox("The document is valid")
End If

4.1.3 Error handling

The XMLSpy API returns errors in two different ways. Every API method returns an HRESULT.
This return value informs the caller about any malfunctions during the execution of the method.
If the call was successful, the return value is equal to S_OK. C/C++ programmers generally use
HRESULT to detect any errors.

VisualBasic, scripting languages and other high-level development environments, don't give the
programmer access to the returning HRESULT of a COM call. They use the second error raising
mechanism also supported by the XMLSpy API, the IErrorInfo interface. If an error occurs
the API creates a new object that implements the IErrorInfo interface. The development
environment takes this interface, and fills its own error handling mechanism with the provided
information.

The next paragraphs describes how to deal with errors raised from the XMLSpy API in different
development environments.

532 The XMLSpy API Overview

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

VisualBasic
A common way to handle errors in VisualBasic is to define an error handler. This error handler
can be set with the On Error statement. Usually the handler displays a error message and
does some cleanup to avoid spare references and any kind of resource leaks. VisualBasic fills
its own Err object with the information from the IErrorInfo interface.

Example:

Sub Validate()
'place variable declarations here

'set error handler
On Error GoTo ErrorHandler

'if IsValid() fails, program execution continues
'at ErrorHandler:

bValid = objSpy.ActiveDocument.IsValid(strMsg,nPos,objBadXMLData)

'additional code comes here

'exit
Exit Sub

ErrorHandler:
Set objBadXMLData = Nothing

MsgBox("Error: " & (Err.Number - vbObjectError) & Chr(13) &
"Description: " & Err.Description)

End Sub

JavaScript
The Microsoft implementation of JavaScript (JScript) provides a try-catch mechanism to deal
with errors raised from COM calls. It is very similar to the VisualBasic approach, because you
also declare an error object containing the necessary information.

Example:

Function Validate()
{
// please insert variable declarations here

try{
bValid = objSpy.ActiveDocument.IsValid(sMsg,nPos,objBad);

}
catch(Error) {
objBad = Null;
sError = Error.description;
nErrorCode = Error.number;
Return False;

}

Return bValid;
}

C/C++
C/C++ gives you easy access to the HRESULT of the COM call and to the IErrorInterface.

H R ESU LThr;

// Call IsValid() from the XMLSpy API
If(FAILED(hr = ipDoc->IsValid(&varMsg,&varPos,&varBadData))) {
IErrorInfo *ipErrorInfo = Null;

© 2007 Altova GmbH

Overview 533The XMLSpy API

Programmers' Reference

If(SUCCEEDED(::GetErrorInfo(0,&ipErrorInfo))) {
BSTRbstrDescr;
ipErrorInfo->GetDescription(&bstrDescr);

// handle Error information
wprintf(L"Error message:\t%s\n",bstrDescr);
::SysFreeString(bstrDescr);

// release Error info
ipErrorInfo->Release();

}
}

4.1.4 Events

The automation interface of XMLSPY provides a large set of events to allow for a tight
integration of XMLSPY and its clients. The way events can be used by clients depends on their
technology used to connect to XMLSPY and on the clients programming language.

XMLSPY scripting environment - macros, forms and event handlers written with the
FormEditor

The XMLSPY scripting environment automatically invokes the event handler with the
corresponding name. Use the FormEditor to add code for those events you want to handle.
The FormEditor predefines the correct signatures for all event handlers when you create a
new project. For more information see the scripting environment.

VBScript
All event handler functions start with 'On_'. To stay compatible to existing events, their
name might differ slightly from the name used on the connection point interface.
Specification of event parameters is optional so that old event handlers that did not expect
any parameters still work.

JScript
All event handler functions start with 'On_'. To stay compatible to existing events, their
name might differ slightly from the name used on the connection point interface.
Specification of event parameters is optional so that old event handlers that did not expect
any parameters still work.

XMLSPY IDE Plugin
XMLSPY Plugins get informed about outstanding events by a call to the method
IXMLSpyPlugIn.OnEvent. Different events are identified by a unique number. Parameters are
passed to the event handler packed into a save-array.
Alternatively, Plugins can use the connection point mechanism to request events on specific
objects like any other external client. See below for more information.

External clients
COM specifies the connection point mechanism to define a way how a client can register
itself at a server for callbacks. The automation interface for XMLSPY defines the necessary
event interfaces. The way to connect to those events, depends on the programming language
you use in your client.

VBA - VisualBasic for Applications
Use the Dim WithEvents statement to receive events from a dedicated object instance.

' tell VBA to connect to events once this objects gets created
Dim WithEvents objView As XMLSpyLib.AuthenticView
' initialize the object somewhere in your code
...
Set objView = objSpy.ActiveDocument.AuthenticView
...

534 The XMLSpy API Overview

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

' sample event handler for the OnMouseEvent of the object in objView
Private Function objView_OnMouseEvent (ByVal i_nXPos As Long, ByVal
i_nYPos As Long,

 ByVal i_eMouseEvent As
XMLSpyLib.SPYMouseEvent,

 ByVal i_pRange As
XMLSpyLib.IAuthenticRange) As Boolean
 If (i_eMouseEvent = (XMLSpyLib.spyLeftButtonDownMask Or
XMLSpyLib.spyCtrlKeyDownMask)) Then
 On Error Resume Next
 i_pRange.Select
 objView_OnMouseEvent = True
 Else
 objView_OnMouseEvent = False
 End If
End Function

Windows Scripting Technologies - VBScript
Use the method WScript.ConnectObject to receive events.

' the event handler function
Function DocEvent_OnBeforeCloseDocument(objDocument)

Call WScript.Echo("received event - before closing document")
End Function

' create or connect to XMLSPY
Set objWshShell = WScript.CreateObject("WScript.Shell")
Set objFSO = WScript.CreateObject("Scripting.FileSystemObject")
Set objSpy = WScript.GetObject("", "XMLSpy.Application")

' create document object and connect to its events
objSpy.Visible = True
Set objDoc = objSpy.Documents.OpenFile ("C:\\Program
Files\\Altova\\XMLSPY2004\\Examples\\OrgChart.xml", False)
Call WScript.ConnectObject(objDoc, "DocEvent_")

' keep running while waiting on the event
' in the meantime close the document in XMLSPY manually
Call WScript.Echo ("sleeping for 10 seconds ...")
Call WScript.Sleep (10000)

Set objDoc = Nothing
Call WScript.Echo ("stopped listening for event")
Call objSpy.Quit

Windows Scripting Technologies - JScript
Use the method WScript.ConnectObject to receive events.

// the event handler function
function DocEvent_OnBeforeCloseDocument(objDocument)
{

WScript.Echo("received event - before closing document");
}

// create or connect to XMLSPY
try
{

// create the environment and XMLSPY
objWshShell = WScript.CreateObject("WScript.Shell");
objFSO = WScript.CreateObject("Scripting.FileSystemObject");
objSpy = WScript.GetObject("", "XMLSpy.Application");

}
catch(err)

{ WScript.Echo ("Can't create WScript.Shell object or XMLSPY"); }

© 2007 Altova GmbH

Overview 535The XMLSpy API

Programmers' Reference

// create document object and connect to its events
objSpy.Visible = true;
objDoc = objSpy.Documents.OpenFile ("C:\\Program
Files\\Altova\\XMLSPY2004\\Examples\\OrgChart.xml", false);
WScript.ConnectObject(objDoc, "DocEvent_");

// keep running while waiting on the event
// in the meantime close this document in XMLSPY manually
WScript.Echo ("sleeping for 10 seconds ...");
WScript.Sleep (10000);

objDoc = null;
WScript.Echo ("stopped listening for event");
objSpy.Quit();

C++
The following is an excerpt of a C++ client using connection points via ATL

#import "XMLSpy.tlb"
using namespace XMLSpyLib;

static const int XMLSPYSE_APPLICATION_SOURCE_ID = 0;
class XMLSpySEApplicationEventPump;

// nested class to receive application events
typedef IDispEventImpl< XMLSPYSE_APPLICATION_SOURCE_ID,

XMLSpySEApplicationEventPump,
&DIID__IApplicationEvents,
&LIBID_XMLSpyLib, TYPELIB_MAJ, TYPELIB_MIN >

XMLSpySEApplicationEventImpl;

// the class receiving the application events using a sink map
class XMLSpySEApplicationEventPump :

public XMLSpySEApplicationEventImpl
{

private:
static _ATL_FUNC_INFO Info_OnBeforeOpenProject;

public:
XMLSpySEApplicationEventPump ();
~XMLSpySEApplicationEventPump();

// connection point events on XMLSpySEApplicationEventImpl
public:

void __stdcall OnBeforeOpenProject (IFileSelectionDlg
*io_ipDlg);

BEGIN_SINK_MAP(XMLSpySEApplicationEventPump)
// OnBeforeOpenProject
SINK_ENTRY_INFO(XMLSPYSE_APPLICATION_SOURCE_ID,

DIID__IApplicationEvents,
 1, OnBeforeOpenProject,

&Info_OnBeforeOpenProject)
END_SINK_MAP()

};

// we use here explicit declaration of event signature to avoid loading
the typelib
_ATL_FUNC_INFO XMLSpySEApplicationEventPump::Info_OnBeforeOpenProject =

{CC_STDCALL, VT_EMPTY, 1, {VT_DISPATCH}};

XMLSpySEApplicationEventPump::XMLSpySEApplicationEventPump ()
{

...

536 The XMLSpy API Overview

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

// get an IUnknown pointer to XMLSpy application from somewhere and
store it in ipXMLSPY

HRESULT hRes = XMLSpySEApplicationEventImpl::DispEventAdvise(ipXMLSPY,
&DIID__IApplicationEvents);

...
}

XMLSpySEApplicationEventPump::~XMLSpySEApplicationEventPump()
{

...
// disconnect from connection point
HRESULT hRes =

XMLSpySEApplicationEventImpl::DispEventUnadvise(ipXMLSPY,
&DIID__IApplicationEvents);

...
}

// the handler for the OnBeforeOpenProject event
void __stdcall XMLSpySEApplicationEventPump::OnBeforeOpenProject
(IFileSelectionDlg *io_ipDlg)
{

// do something with io_ipDlg here
}

4.1.5 Import and export of data

Before you implement your import and export tasks with the XMLSpy API, it is a good practice
to test the connections, parameters, SQL queries and so on in XMLSpy. This way, you are able
to verify the results and to make quick adjustments to all import or export parameters.

Most of the methods for importing and exporting data are placed in the Application object,
the remaining functions are accessible via the Document interface.

There is some preparatory work necessary, before the actual import or export can be started.
Every import/export job consists of two parts. You need to define a connection to your data and
the specific behaviour for the import/export process.

In case of an import, the connection is either a database, a text-file or a Word document. The
behaviour is basically which data (columns) should be imported in XMLSpy.

In case of an export, the connection is either a database or a text file. Specify which data
(elements of the XML file) and additional parameters (e.g. automatic key generation or number
of sub-levels) to use from the XML-structure for the behaviour.

The properties in the DatabaseConnection, TextImportExportSettings and
ExportSettings interfaces have default values. See the corresponding descriptions in the
Interfaces chapter for further information.

Import from database
These are the steps to establish a connection to an existing database for import:

1. Use a DatabaseConnection object and set the properties:
The method Application.GetDatabaseSettings returns a new object for a
database connection:

Dim objImpSettings As DatabaseConnection
Set objImpSettings = objSpy.GetDatabaseSettings

You have to set either an ADO connection string,
 objImpSettings.ADOConnection = strADOConnection

© 2007 Altova GmbH

Overview 537The XMLSpy API

Programmers' Reference

or the path to an existing database file:
 objImpSettings.File = "C:\myDatabase.mdb"

To complete the settings you create a SQL select statement to define the data to be queried:
 objImpSettings.SQLSelect = "SELECT * FROM myTable"

2. Call Application.GetDatabaseImportElementList to get a collection of the

resulting columns of the SQL query:

Dim objElementList As ElementList
Set objElementList =
objSpy.GetDatabaseImportElementList(objImpSettings)

This collection gives you the opportunity to control which columns should be imported
and what type the new elements will become. Each item of the collection represents
one column to import. If you remove an item, the corresponding column will not be
imported. You can additionally modify the ElementListItem.ElementKind
property, to set the type of the created XML elements for each column.

Please consider that GetDatabaseImportElementList() executes the SQL query
and could initiate a time consuming call. To avoid this, it is possible to pass a
null-pointer (Nothing in VisualBasic) as the second parameter to
ImportFromDatabase() to import all columns as plain XML elements.

3. Start the import with Application.ImportFromDatabase:

Dim objImpDoc As Document
Set objImpDoc =
objSpy.ImportFromDatabase(objImpSettings,objElementList)

Import from Text
Importing data from a text file is similar to the import from a database. You must use other
interfaces (described in steps 1-3 below) with different methods and properties:

1. Use a TextImportExportSettings object and set the properties:
The method Application.GetTextImportExportSettings returns a new object
to specify a text file for import.

Dim objImpSettings As TextImportExportSettings
Set objImpSettings = objSpy.GetTextImportExportSettings

You have to set at least the ImportFile property to the path of the file for the import.
Another important property is HeaderRow. Set it to False, if the text file does not
contain a leading line as a header row.

objImpSettings.ImportFile = "C:\myFile.txt"
objImpSettings.HeaderRow = False

Call Application.GetTextImportElementList to get a collection of all columns
inside the text file:

Dim objElementList As ElementList
Set objElementList = objSpy.GetTextImportElementList(objImpSettings)

3. Start the import with Application.ImportFromText:

538 The XMLSpy API Overview

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Dim objImpDoc As Document
Set objImpDoc = objSpy.ImportFromText(objImpSettings,objElementList)

Export to database

1. Use a DatabaseConnection object and set the necessary properties.
All properties except SQLSelect are important for the export. ADOConnection or
File defines the target for the output. You need to set only one of them.

2. Fill an ExportSettings object with the required values.
These properties are the same options as those available in the export dialog of
XMLSpy. Select the menu option Convert | Export to Text files/Database to see the
options and try a combination of export settings. After that it is easy to transfer these
settings to the properties of the interface.

Call "Application.GetExportSettings" to get a ExportSettings object:

Dim objExpSettings As ExportSettings
Set objExpSettings = objSpy.GetExportSettings

objExpSettings.CreateKeys = False
objExpSettings.ExportAllElements = False
objExpSettings.SubLevelLimit = 2

3. Build an element list with Document.GetExportElementList.
The element list enables you to eliminate XML elements from the export process. It also
gives you information about the record and field count in the RecordCount and
FieldCount properties. Set the ExportSettings.ElementList property to this
collection. It is possible to set the element list to null/Nothing (default) to export all
elements.

4. Call Document.ExportToDatabase to execute the export.
The description of the ExportToDatabase method contains also a code example for
a database export.

Export to text

1. Use a TextImportExportSettings object and set the necessary properties.

2. Fill an ExportSettings object with the required values.
See item number 2 from "Export to database" earlier on this page.

3. Build an element list with Document.GetExportElementList.
See item number 3 from "Export to database" earlier on this page.

4. Call Document.ExportToText to execute the export.
The description of the ExportToText method contains also a code example for a
database export.

4.1.6 Using XMLData to modify document structure

XMLData gives you access to the elements of an currently open XML file. It enables you to
perform all necessary modifications to the elements of the XML structure. The main functionality
of XMLData is:

1. Access to the names and values of all kinds of elements (e.g. elements, attributes)

© 2007 Altova GmbH

Overview 539The XMLSpy API

Programmers' Reference

2. Creation of new elements of all kinds.

3. Insertion and appending of new elements.

4. Erasing of existing child elements.

Structure of XMLData
Before you can use the XMLData interface, you have to know how an existing XML file is
mapped into a XMLData structure. One major thing you must be aware of is, that XMLData has
no separate branch of objects for attributes.

The attributes of an element are also children of the element. The XMLData.Kind property,
gives you the opportunity to distinguish between the different types of children of an element.

Example:

This XML code,

<ParentElement>
<FirstChild attr1="Red" attr2="Black">
This is the value of FirstChild

</FirstChild>
<SecondChild>
<!--Your Comment-->
</DeepChild>

</SecondChild>
This is Text
</ParentElement>

is mapped to the following XMLData object structure:

540 The XMLSpy API Overview

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

The parent of all XML elements inside of a document is the property Document.RootElement
. The first element of a document's content - without the XML prolog - is accessible with the
property Docum ent.DataRoot . Use one of these XMLData objects to get references to all other
XML elements in the structure.

Name and value of elements
To get and to modify the name and value of all types of XML elements use the XMLData.Name
and XMLData.TextValue properties. It is possible that several kinds of XMLData objects and
empty elements do not have a text value associated.

Creation and insertion of new XMLData objects
The creation of a new XML language entity requires the following steps:

1. Create the new XMLData object:
Use the Document.CreateChild method to create a new XMLData object. Set name
and value after you have inserted the new XML entity (see point 3).

2. Find the correct location for the new XMLData object:
To insert a new XMLData object you have to get a reference to the parent first. If the
new child is to become the last child of the parent, use the XMLData.AppendChild
method to insert the XMLData object. If the new child should be located elsewhere in
the sequence of child objects, use the XMLData.GetFirstChild and
XMLData.GetNextChild to move the iterator to the child before which the new child
should be inserted.

3. Insert the new child with XMLData.InsertChild. The new child will be inserted
immediately before the current child.

© 2007 Altova GmbH

Overview 541The XMLSpy API

Programmers' Reference

The following example adds a third child between <FirstChild> and the <SecondChild>
element:

Dim objParent As XMLData
Dim objChild As XMLData
Dim objNewChild As XMLData

Set objNewChild = objSpy.ActiveDocument.CreateChild(spyXMLDataElement)

'objParent is set to <ParentElement>
'GetFirstChild(-1) gets all children of the parent element
'and move to <SecondChild>
Set objChild = objParent.GetFirstChild(-1)
Set objChild = objParent.GetNextChild

objParent.InsertChild objNewChild
objNewChild.Name = "OneAndAHalf"
Set objNewChild = Nothing

Child elements should be inserted in a special order. Please avoid inserting attributes into a
sequence after any other child elements, i.e. make sure that attributes are placed first.

Copying of existing XMLData objects
If you want to insert existing XMLData objects at a different place in the same document or into
another document you can't use the XMLData.InsertChild and XMLData.AppendChild
methods. These methods only work for new XMLData objects.

Instead of using InsertChild or AppendChild you have to copy the object hierarchy
manually. The following function written in JavaScript is an example for recursively copying
XMLData:

// ---
// XMLSpy scripting environment - GlobalDeclarations - JScript
// return a deep copy of the XMLData Object.
// the new object is owned by the document sepcified in objDoc
// ---
function XMLDataDeepCopy(objXMLData, objDoc)
{
// create new element of same kind
var objNew = objDoc.CreateChild(objXMLData.Kind);

// copy name, some element have default names and do not
// allow to modifying these names.
try
{ objNew.Name = objXMLData.Name; }
catch (e)
{
if ((e.number & 0xffff) != 1513) // modification operation not allowed
throw(e);

}

// copy the text value
objNew.TextValue = objXMLData.TextValue;

// copy and insert all children
if(objXMLData.HasChildren)
{
var objChild = objXMLData.GetFirstChild(-1);

while(objChild)
{
try

542 The XMLSpy API Overview

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

{
objNew.AppendChild(XMLDataDeepCopy(objChild, objDoc));
objChild = objXMLData.GetNextChild();

}
catch(e)
{
if ((e.number & 0xffff) == 1503) // end of list
objChild = null;
else
throw(e);

}
}
}

return objNew;
}

Erasing of XMLData objects
XMLData provides two methods for the deletion of child objects,
XMLData.EraseAllChildren and XMLData.EraseCurrentChild.

To erase XMLData objects you need access to the parent of the elements you want to remove.
Use XMLData.GetFirstChild and XMLData.GetNextChild to get a reference to the
parent XMLData object.

See the method descriptions of EraseAllChildren and EraseCurrentChild for examples
how to erase XML elements.

4.1.7 The DOM and XMLData

The XMLData interface gives you full access to the XML structure behind the current document
with less methods than DOM and is much simpler. The XMLData interface is a minimalist
approach to reading and modifying existing, or newly created XML data. You might however,
want to use a DOM tree because you can access one from an external source or you just prefer
the MSXML DOM implementation.

The ProcessDOMNode() and ProcessXMLDataNode() functions provided below convert
any segments of an XML structure between XMLData and DOM.

To use the ProcessDOMNode() function:

 pass the root element of the DOM segment you want to convert in objNode and

 pass the plugin object with the CreateChild() method in objCreator

To use the ProcessXMLDataNode() function:

 pass the root element of the XMLData segment in objXMLData and

 pass the DOMDocument object created with MSXML in xmlDoc

//
// DOM To XMLData conversion
Function ProcessDOMNode(objNode,objCreator)
{
var objRoot;
objRoot = CreateXMLDataFromDOMNode(objNode,objCreator);

If(objRoot) {

© 2007 Altova GmbH

Overview 543The XMLSpy API

Programmers' Reference

If((objNode.nodeValue != Null) && (objNode.nodeValue.length > 0))
objRoot.TextValue = objNode.nodeValue;
// add attributes

If(objNode.attributes) {
var Attribute;
var oNodeList = objNode.attributes;

For(var i = 0;i < oNodeList.length; i++) {
Attribute = oNodeList.item(i);

var newNode;
newNode = ProcessDOMNode(Attribute,objCreator);

objRoot.AppendChild(newNode);
}

}
If(objNode.hasChildNodes){
try {
// add children
var Item;
oNodeList = objNode.childNodes;

For(var i = 0;i < oNodeList.length; i++) {
 Item = oNodeList.item(i);

var newNode;
newNode = ProcessDOMNode(Item,objCreator);

objRoot.AppendChild(newNode);
}

}
catch(err) {
}

}
}
Return objRoot;

}

Function CreateXMLDataFromDOMNode(objNode,objCreator)
{
var bSetName = True;
var bSetValue = True;

var nKind = 4;

switch(objNode.nodeType){
Case 2:nKind = 5;break;
Case 3:nKind = 6;bSetName = False;break;
Case 4:nKind = 7;bSetName = False;break;
Case 8:nKind = 8;bSetName = False;break;
Case 7:nKind = 9;break;
}
var objNew = Null;
objNew = objCreator.CreateChild(nKind);

If(bSetName)
objNew.Name = objNode.nodeName;

If(bSetValue && (objNode.nodeValue != Null))
objNew.TextValue = objNode.nodeValue;

Return objNew;
}
//
// XMLData To DOM conversion

544 The XMLSpy API Overview

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Function ProcessXMLDataNode(objXMLData,xmlDoc)
{
var objRoot;
objRoot = CreateDOMNodeFromXMLData(objXMLData,xmlDoc);

If(objRoot) {
If(IsTextNodeEnabled(objRoot) && (objXMLData.TextValue.length > 0))
objRoot.appendChild(xmlDoc.createTextNode(objXMLData.TextValue));

If(objXMLData.HasChildren){
try {
var objChild;
objChild = objXMLData.GetFirstChild(-1);

While(True) {
If(objChild) {
var newNode;
newNode = ProcessXMLDataNode(objChild,xmlDoc);

If(newNode.nodeType == 2){
// child node is an attribute
objRoot.attributes.setNamedItem(newNode);

}
Else
objRoot.appendChild(newNode);

}
objChild = objXMLData.GetNextChild();
}

}
catch(err) {
}

}
}
Return objRoot;

}

Function CreateDOMNodeFromXMLData(objXMLData,xmlDoc)
{
switch(objXMLData.Kind){
Case 4:Return xmlDoc.createElement(objXMLData.Name);
Case 5:Return xmlDoc.createAttribute(objXMLData.Name);
Case 6:Return xmlDoc.createTextNode(objXMLData.TextValue);
Case 7:Return xmlDoc.createCDATASection(objXMLData.TextValue);
Case 8:Return xmlDoc.createComment(objXMLData.TextValue);
Case 9:Return

xmlDoc.createProcessingInstruction(objXMLData.Name,objXMLData.TextValue);
}

Return xmlDoc.createElement(objXMLData.Name);
}
Function IsTextNodeEnabled(objNode)
{
switch(objNode.nodeType) {
Case 1:
Case 2:
Case 5:
Case 6:
Case 11:Return True;
}
Return False;

}

4.1.8 Obsolete Authentic View Row operations

If the schema on which an XML document is based specifies that an element is repeatable,
such a structure can be represented in Authentic View as a table. When represented as a table,

© 2007 Altova GmbH

Overview 545The XMLSpy API

Programmers' Reference

rows and their contents can be manipulated individually, thereby allowing you to manipulate
each of the repeatable elements individually. Such row operations would be performed by an
external script.

If an external script is to perform row operations then two steps must occur:

 The first step checks whether the cursor is currently in a row using a property. Such a
check could be, for example, IsRowInsertEnabled, which returns a value of either
TRUE or FALSE.

 If the return value is TRUE then a row method, such as RowAppend, can be called. (
RowAppend has no parameters and returns no value.)

The following is a list of properties and methods available for table operations. Each property
returns a BOOL, and the methods have no parameter.

Property Method Table operations

IsRowInsertEnabled RowInsert, superseded by
AuthenticRange.InsertRow

Insert row operation

IsRowAppendEnabled RowAppend, superseded by
AuthenticRange.AppendRow

Append row
operation

IsRowDeleteEnabled RowDelete, superseded by
AuthenticRange.DeleteRow

Delete row operation

IsRowMoveUpEnabled RowMoveUp, superseded by
AuthenticRange.MoveRowUp

Move XML data up
one row

IsRowMoveDownEnabled RowMoveDown, superseded by
AuthenticRange.MoveRowDown

Move XML data down
one row

IsRowDuplicateEnabled RowDuplicate, superseded by
AuthenticRange.DuplicateRow

Duplicate currently
selected row

4.1.9 Obsolete Authentic View Editing operations

When XML data is displayed as data in Authentic View, it is possible to manipulate individual
elements using standard editing operations such as cut, copy, and paste. However, not all XML
data nodes can be edited. So, in order to carry out an editing operation, first a property is used
to test whether editing is possible, and then a method is called to perform the editing operation.

The only method that does not have a test is the method EditSelectAll, which automatically
selects all elements displayed in the document.

The following is a list of properties and methods that perform editing operations. Each property
returns a BOOL, and the methods have no parameter.

Property Method Editing operation

IsEditUndoEnabled EditUndo, superseded by
AuthenticView.Undo

Undo an editing operation

IsEditRedoEnabled EditRedo, superseded by
AuthenticView.Redo

Redo an editing operation

IsEditCopyEnabled EditCopy, superseded by
AuthenticRange.Copy

Copy selected text to the
clipboard

546 The XMLSpy API Overview

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

IsEditCutEnabled EditCut, superseded by
AuthenticRange.Cut

Cut selected text to the
clipboard

IsEditPasteEnabled EditPaste, superseded by
AuthenticRange.Paste

Paste from clipboard to
current cursor position

IsEditClearEnabled EditClear, superseded by
AuthenticRange.Delete

Clear selected text from
XML document

© 2007 Altova GmbH

Usage Examples 547The XMLSpy API

Programmers' Reference

4.2 Usage Examples

The automation interface of XMLSpy can be used in many different ways and accessed from
different programming languages. In this section you will find sample code that show the
capabilities of the new AuthenticView and AuthenticRange interfaces. These samples should
make it easier for you to get started with your own project. Although they are more complex
then those you will find in the descriptions of the various methods and properties, they are
fragments and might require additional code or small adaptations in order for them to be
properly executed in your environment.

The listed code samples are:

 JScript: Bubble Sort Dynamic Tables
 VBScript: Using object-level events

This section also briefly describes some operations that can be performed within Authentic View
. This is to give you an idea of what is possible with the XMLSpy API.

4.2.1 JScript: Bubble Sort Dynamic Tables

The following JScript snippet will sort any dynamic table by the table column identified by the
current cursor position. The sort process is performed on screen. The undo buffer is available
for all performed operations.

If you can run JScript on you computer - as you most likely will - copy the following code into a
file with extension 'js'. Execute the script by double-clicking it in Windows Explorer, or run it from
the command line.

// some useful XMLSpy enum constants
var spyAuthenticTag = 6;
var spyAuthenticTable = 9;
var spyAuthenticTableRow = 10;
var spyAuthenticTableColumn = 11;

var spyAuthenticRangeBegin = 2;

// example call for the sort table function
try
{
var objSpy = objSpy = WScript.GetObject("", "XMLSpy.Application");
// use current selection to indicate which column to sort
SortCurrentTable (objSpy.ActiveDocument.AuthenticView.Selection);

}
catch (err)
{ WScript.Echo ("Please open a document in authentic view, and select a
table column\n" +

 "Error : (" + (err.number & 0xffff) + ")" +
err.description); }

// we assume that XMLSpy is running, a document with a dynamic table
// is open, and the cursor is in a table column that will
// be used for sorting.
function SortCurrentTable (objCursor)
{
if (objCursor.IsInDynamicTable())
{
// calculate current column index
var nColIndex = 0;
while (true)
{

548 The XMLSpy API Usage Examples

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

// go left column-by-column
try { objCursor.GotoPrevious(spyAuthenticTableColumn); }
catch (err) { break; }
nColIndex++;

}

// count number of table rows, so the bubble loops become simpler.
// goto begin of table
var objTableStart =
objCursor.ExpandTo(spyAuthenticTable).CollapsToBegin().Clone();
var nRows = 1;
while (true)
{
// go down row-by-row
try { objTableStart.GotoNext(spyAuthenticTableRow); }
catch (err) { break; }
nRows++;

}

// bubble sort through table
for (var i = 0; i < nRows - 1; i++)
{
// select correct column in first table row
var objBubble =
objCursor.ExpandTo(spyAuthenticTable).CollapsToBegin().Clone();
objBubble.Goto (spyAuthenticTableColumn, nColIndex,
spyAuthenticRangeBegin).ExpandTo(spyAuthenticTag);

// bubble this row down as far as necessary
for (var j = 0; j < nRows - i - 1; j++)
{
var strField1 = objBubble.Text;
// now look for the comparison table cell: start of next row and right
of the correct column
var strField2 = objBubble.GotoNext(spyAuthenticTableRow).
 Goto (spyAuthenticTableColumn, nColIndex,
spyAuthenticRangeBegin).
 ExpandTo(spyAuthenticTag).Text;
if (strField1 > strField2)
{
objBubble.MoveRowUp(); // swap the rows
// and re-calculate objBubble to select the cell to bubble
objBubble.GotoNext(spyAuthenticTableRow).
 Goto (spyAuthenticTableColumn, nColIndex,
spyAuthenticRangeBegin).
 ExpandTo(spyAuthenticTag);

}
}

}
}
else
WScript.Echo ("please, select a table cell first");

}

4.2.2 VBScript: Using object-level events

Authentic view now supports event connection on a per-object basis. Implementation of this
feature is based on COM connection points and is available in environments that support this
mechanism.

The following example is a VB code snippet that shows how to connect to object-level events
from within a VB project.

'

© 2007 Altova GmbH

Usage Examples 549The XMLSpy API

Programmers' Reference

--
' VB code snippet - connecting to object level events
'
--
Dim objSpy As XMLSpyLib.Application
' use VBA keyword WithEvents to automatically connect to object-level event
Dim WithEvents objView As XMLSpyLib.AuthenticView

' this is the event callback routine that will be connected to the
' OnSelectionChanged event of object objView
Private Sub objView_OnSelectionChanged (ByVal i_ipNewRange As
XMLSpyLib.IAuthenticRange)
 MsgBox ("new selection: " & i_ipNewRange.Text)
End Sub

' this is the event callback routine that will be connected to the
' OnSelectionChanged event of object objView
Private Sub objView_OnSelectionChanged (ByVal i_ipNewRange As
XMLSpyLib.IAuthenticRange)
 MsgBox ("new selection: " & i_ipNewRange.Text)
End Sub

' this is the event callback routine that will be connected to the
' OnMouseEvent event of object objView.
' If you click with the left mouse button while pressing a control key,
' the current selection will be set to the tag below the current
' mouse cursor position
Private Function objView_OnMouseEvent(ByVal i_nXPos As Long, ByVal i_nYPos
As Long, ByVal i_eMouseEvent As XMLSpyLib.SPYMouseEvent, ByVal i_pRange As
XMLSpyLib.IAuthenticRange) As Boolean
 If (i_eMouseEvent = (XMLSpyLib.spyLeftButtonDownMask Or
XMLSpyLib.spyCtrlKeyDownMask)) Then
 On Error Resume Next
 i_pRange.Select
 objView_OnMouseEvent = True
 Else
 objView_OnMouseEvent = False
 End If
End Function

' connect to running XMLSpy application
' this code will most likely be in some Form_Load() subroutine
Set objSpy = GetObject("", "XMLSpy.Application")
objSpy.ShowApplication (True)
If (objSpy.ActiveDocument Is Nothing) Then
 Dim objDoc As XMLSpyLib.Document
 Rem replace path below With a valid absolute path On your machine
 Set objDoc = objSpy.Documents.OpenFile("InputData\orgchart.xml", False)
End If

If (objSpy.ActiveDocument.CurrentViewMode <> spyViewContent) Then
 objSpy.ActiveDocument.SwitchViewMode (spyViewContent)
End If
Set objView = objSpy.ActiveDocument.AuthenticView
' now the object objView is set and selection change events are received

' continue here with something useful ...
' and serve the windows message loop

' if you want to stop receiving events from object objView
' add the following line somewhere appropriate
Set objView = Nothing

550 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

4.3 Interfaces

Object Hierarchy
Application

SpyProject
SpyProjectItems

SpyProjectItem
Documents

Document
GridView
AuthenticView

AuthenticRange
AuthenticDataTransfer (previously DocEditDataTransfer)

OldAuthenticView (previously DocEditView, now obsolete, superseded by
AuthenticView and AuthenticRange)

AuthenticSelection (previously DocEditSelection, now obsolete,
superseded by AuthenticRange)
AuthenticEvent (previously DocEditEvent, now obsolete)
AuthenticDataTransfer (previously DocEditDataTransfer)

XMLData
Dialogs
CodeGeneratorDlg
FileSelectionDlg
SchemaDocumentationDlg

DatabaseConnection
ExportSettings
TextImportExportSettings
ElementList

ElementListItem

Enumerations

Description
This chapter contains the reference of the XMLSpy 1.5 Type Library.

Most of the given examples are written in VisualBasic. These code snippets assume that there
is a variable defined and set, called objSpy of type Application. There are also some code
samples written in JavaScript.

4.3.1 Application

See also

Methods
GetDatabaseImportElementList
GetDatabaseSettings
GetDatabaseTables
ImportFromDatabase

GetTextImportElementList
GetTextImportExportSettings
ImportFromText

ImportFromWord

ImportFromSchema

GetExportSettings

© 2007 Altova GmbH

Interfaces 551The XMLSpy API

Programmers' Reference

NewProject
OpenProject

AddMacroMenuItem
ClearMacroMenu

ShowForm

ShowApplication

URLDelete
URLMakeDirectory

FindInFiles

Quit

Properties
Application
Parent

ActiveDocument
Documents

CurrentProject

Dialogs

WarningNumber
WarningText

Description
Application is the root for all other objects. It is the only object you can create by CreateObject
(VisualBasic) or other similar COM related functions.

Example

Dim objSpy As Application
Set objSpy = CreateObject("XMLSpy.Application")

Events

OnBeforeOpenDocument

See also

Event: OnBeforeOpenDocument(objDialog as FileSelectionDlg)

Description
This event gets fired whenever a document gets opened via the OpenFile or OpenURL menu
command. It is sent after a document file has been selected but before the document gets
opened. The file selection dialog object is initialized with the name of the selected document file.
You can modify this selection. To continue the opening of the document leave the
FileSelectionDlg.DialogAction property of io_objDialog at its default value spyDialogOK . To
abort the opening of the document set this property to spyDialogCancel .

552 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Examples
Given below are examples of how this event can be scripted.

XMLSpy scripting environment - VBScript:
Function On_BeforeOpenDocument(objDialog)
End Function

XMLSpy scripting environment - JScript:
function On_BeforeOpenDocument(objDialog)
{
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (26, ...) // nEventId = 26

OnBeforeOpenProject

See also

Event: OnBeforeOpenProject(objDialog as FileSelectionDlg)

Description
This event gets fired after a project file has been selected but before the project gets opened.
The file selection dialog object is initialized with the name of the selected project file. You can
modify this selection. To continue the opening of the project leave the
FileSelectionDlg.DialogAction property of io_objDialog at its default value spyDialogOK . To
abort the opening of the project set this property to spyDialogCancel .

Examples
Given below are examples of how this event can be scripted.

XMLSpy scripting environment - VBScript:
Function On_BeforeOpenProject(objDialog)
End Function

XMLSpy scripting environment - JScript:
function On_BeforeOpenProject(objDialog)
{
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (25, ...) // nEventId = 25

OnDocumentOpened

See also

Event: OnDocumentOpened(objDocument as Document)

Description
This event gets fired whenever a document opens in XMLSpy. This can happen due to opening
a file with the OpenFile or OpenURL dialog, creating a new file or dropping a file onto XMLSpy.
The new document gets passed as parameter. The operation cannot be canceled.

© 2007 Altova GmbH

Interfaces 553The XMLSpy API

Programmers' Reference

Examples
Given below are examples of how this event can be scripted.

XMLSpy scripting environment - VBScript:
Function On_OpenDocument(objDocument)
End Function

XMLSpy scripting environment - JScript:
function On_OpenDocument(objDocument)
{
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (7, ...) // nEventId = 7

OnProjectOpened

See also

Event: OnProjectOpened(objProject as SpyProject)

Description
This event gets fired whenever a project gets opened in XMLSpy. The new project gets passed
as parameter.

Examples
Given below are examples of how this event can be scripted.

XMLSpy scripting environment - VBScript:
Function On_OpenProject(objProject)
End Function

XMLSpy scripting environment - JScript:
function On_OpenProject(objProject)
{
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (6, ...) // nEventId = 6

ActiveDocument

See also

Property: ActiveDocument as Document

Description
Reference to the active document. If no document is open, ActiveDocument is null (nothing).

Errors
1111 The application object is no longer valid.

554 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

1100 Invalid address for the return parameter was specified.

AddMacroMenuItem

See also

Method: AddMacroMenuItem(strMacro as String,strDisplayText as String)

Return Value

Description
Adds an menu item to the Tools menu. This new menu item invokes the macro defined by
strMacro . See also Calling macros from XMLSpy".

Errors
1111 The application object is no longer valid.
1100 Invalid parameter or invalid address for the return parameter was

specified.
1108 Number of macro items is limited with 16 items.

Application

See also

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors
1111 The application object is no longer valid.
1100 Invalid address for the return parameter was specified.

ClearMacroMenu

See also

Method: ClearMacroMenu()

Return Value
None

Description
Removes all menu items from the Tools menu. See also Calling macros from XMLSpy".

Errors
1111 The application object is no longer valid.

CurrentProject

See also

Property: CurrentProject as SpyProject

© 2007 Altova GmbH

Interfaces 555The XMLSpy API

Programmers' Reference

Description
Reference to the active document. If no project is open, CurrentProject is null (nothing).

Errors
1111 The application object is no longer valid.
1100 Invalid address for the return parameter was specified.

Dialogs

See also

Property: Dialogs as Dialogs (read-only)

Description
Access the built-in dialogs of XMLSpy.

Errors
1111 The application object is no longer valid.
1100 Invalid address for the return parameter was specified.

Documents

See also

Property: Documents as Documents

Description
Collection of all open documents. See also Simple document access.

Errors
1111 The application object is no longer valid.
1100 Invalid address for the return parameter was specified.

FindInFiles

See also

Method: FindInFiles(pSettings as FindInFilesDlg) as FindInFilesResults

Description
Returns a FindInFilesResults object containing information about the files that matched the
specified settings.

Errors
1111 The application object is no longer valid.
1100 Invalid address for the return parameter was specified.

GetDatabaseImportElementList

See also

Method: GetDatabaseImportElementList(pImportSettings as
DatabaseConnection) as ElementList

556 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Description
The function returns a collection of ElementListItems where the properties
ElementListItem.Name contain the names of the fields that can be selected for import and
the properties ElementListItem.ElementKind are initialized either to spyXMLDataAttr or
spyXMLDataElement, depending on the value passed in
DatabaseConnection.AsAttributes. This list serves as a filter to what finally gets
imported by a future call to ImportFromDatabase. Use ElementList.RemoveElement to
exclude fields from import.

Properties mandatory to be filled out for the database connection are one of
DatabaseConnection.File, DatabaseConnection.ADOConnection and
DatabaseConnection.ODBCConnection, as well as DatabaseConnection.SQLSelect.
Use the property DatabaseConnection.AsAttributes to initialize
ElementListItem.ElementKind of the resulting element list to either spyXMLDataAttr or
spyXMLDataElement, respectively.

Example
See example at ImportFromDatabase.

Errors
1111 The application object is no longer valid.
1100 Invalid parameter or invalid address for the return parameter was

specified.
1107 Import from database failed.
1112 Invalid database specified.
1114 Select statement is missing.
1119 database element list import failed.

GetDatabaseSettings

See also

Method: GetDatabaseSettings() as DatabaseConnection

Description
GetDatabaseSettings creates a new object of database settings. The object is used to
specify database connection parameters for the methods GetDatabaseTables,
GetDatabaseImportElementList, ImportFromDatabase, ImportFromSchema and
ExportToDatabase.

Example
See example of ImportFromDatabase.

Errors
1111 The application object is no longer valid.
1100 Invalid address for the return parameter was specified.

GetDatabaseTables

See also

Method: GetDatabaseTables(pImportSettings as DatabaseConnection) as
ElementList

Description
GetDatabaseTables reads the table names from the database specified in pImportSettings.

© 2007 Altova GmbH

Interfaces 557The XMLSpy API

Programmers' Reference

Properties mandatory to be filled out for the database connection are one of
DatabaseConnection.File, DatabaseConnection.ADOConnection and
DatabaseConnection.ODBCConnection. All other properties are ignored.
The function returns a collection of ElementListItems where the properties
ElementListItem.Name contain the names of tables stored in the specified database. The
remaining properties of ElementListItem are unused.

Errors
1111 The application object is no longer valid.
1100 Invalid parameter or invalid address for the return parameter was

specified.
1112 Invalid database specified.
1113 Error while reading database table information.
1118 Database table query failed.

Example

Dim objImpSettings As DatabaseConnection
 Set objImpSettings = objSpy.GetDatabaseSettings
 objImpSettings.ADOConnection = TxtADO.Text

 'store table names in list box
 ListTables.Clear

 Dim objList As ElementList
 Dim objItem As ElementListItem
 On Error GoTo ErrorHandler
 Set objList = objSpy.GetDatabaseTables(objImpSettings)

For Each objItem In objList
ListTables.AddItem objItem.Name
Next

GetExportSettings

See also

Method: GetExportSettings()as ExportSettings (read-only)

Description
GetExportSettings creates a new object of common export settings. This object is used to pass
the parameters to the export functions and defines the behaviour of the export calls. See also
the export functions from Document and the examples at Import and Export.

Errors
1111 The application object is no longer valid.
1100 Invalid address for the return parameter was specified.

GetTextImportElementList

See also

Method: GetTextImportElementList(pImportSettings as
TextImportExportSettings) as ElementList

Description
GetTextImportElementList retrieves importing information about the text-file as specified in
pImportSettings . The function returns a collection of ElementListItems where the properties
ElementListItem.Name contain the names of the fields found in the file. The values of

558 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

remaining properties are undefined.

If the text-file does not contain a column header, set pImportSettings. HeaderRow to false . The
resulting element list will contain general column names like 'Field1' and so on.

See also Import and export of data.

Errors
1111 The application object is no longer valid.
1100 Invalid parameter or invalid address for the return parameter was

specified.
1107 Import from database failed.
1115 Error during text element list import. Cannot create parser for import file.
1116 Error during text element list import.

Example
 ' ---
 ' VBA client code fragment - import selected fields from text file
 ' ---
Dim objImpSettings As TextImportExportSettings
Set objImpSettings = objSpy.GetTextImportExportSettings

objImpSettings.ImportFile = "C:\ImportMe.txt"
objImpSettings.HeaderRow = False

Dim objList As ElementList
Set objList = objSpy.GetTextImportElementList(objImpSettings)

'exclude first column
objList.RemoveItem 1

Dim objImpDoc As Document
On Error Resume Next
Set objImpDoc = objSpy.ImportFromText(objImpSettings, objList)
CheckForError

GetTextImportExportSettings

See also

Method: GetTextImportExportSettings() as TextImportExportSettings (read-only)

Description
GetTextImportExportSettings creates a new object of common import and export
settings for text files. See also the example for
Application.GetTextImportElementList and Import and Export.

See also Import and export of data.

Errors
1111 The application object is no longer valid.
1100 Invalid address for the return parameter was specified.

ImportFromDatabase

See also

Method: ImportFromDatabase(pImportSettings as DatabaseConnection

© 2007 Altova GmbH

Interfaces 559The XMLSpy API

Programmers' Reference

,pElementList as ElementList) as Document

Return Value
Creates a new document containing the data imported from the database.

Description
ImportFromDatabase imports data from a database as specified in pImportSettings and creates
a new document containing the data imported from the database. Properties mandatory to be
filled out are one of DatabaseConnection.File,
DatabaseConnection.ADOConnection or DatabaseConnection.ODBCConnection
and DatabaseConnection.SQLSelect. Additionally, you can use
DatabaseConnection.AsAttributes, DatabaseConnection.ExcludeKeys,
DatabaseConnection.IncludeEmptyElements and NumberDateTimeFormat to further
parameterize import.

The parameter pElementList specifies which fields of the selected data gets written into the
newly created document, and which are created as elements and which as attributes. This
parameter can be NULL, specifying that all selected fields will be imported as XML elements.

See GetDatabaseSettings and GetDatabaseImportElementList for necessary steps
preceding any import of data from a database.

Errors
1111 The application object is no longer valid.
1100 Invalid parameter or invalid address for the return parameter was

specified.
1107 Import from database failed.
1112 Invalid database specified.
1114 Select statement is missing.
1117 Transformation to XML failed.
1120 Database import failed.

Example

Dim objImpSettings As DatabaseConnection
Set objImpSettings = objSpy.GetDatabaseSettings

objImpSettings.ADOConnection = strADOConnection
objImpSettings.SQLSelect = "SELECT * FROM MyTable"

Dim objDoc As Document
On Error Resume Next
Set objDoc = objSpy.ImportFromDatabase(objImpSettings,

objSpy.GetDatabaseImportElementList(objImpSettings))
' CheckForError here

ImportFromSchema

See also

Method: ImportFromSchema(pImportSettings as DatabaseConnection,strTable as
String,pSchemaDoc as Document) as Document

Return Value
Creates a new document filled with data from the specified database as specified by the
schema definition in pSchemaDoc.

Description

560 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Im portFrom Schem a imports data from a database specified in pImportSettings . Properties
mandatory to be filled out are one of DatabaseConnection.File,
DatabaseConnection.ADOConnection or DatabaseConnection.ODBCConnection.
Additionally, you can use DatabaseConnection.AsAttributes,
DatabaseConnection.ExcludeKeys and NumberDateTimeFormat to further
parameterize import. All other properties get ignored.

Im portFrom Schem a does not use and explicit SQL statement to select the data. Instead, it
expects a structure definition of the document to create in form of an XML schema document in
pSchemaDoc. From this definition the database select statement is automatically deduced.
Specify in strTable the table name of the import root that will become the root node in the new
document.

See GetDatabaseSettings and GetDatabaseTables for necessary steps preceding an
import from a database based on a schema definition. To create the schema definition file use
command 'create database schema' from the 'convert' menu of XMLSpy.

Errors
1111 The application object is no longer valid.
1100 Invalid parameter or invalid address for the return parameter was

specified.
1107 Import from database failed.
1112 Invalid database specified.
1120 Database import failed.
1121 Could not create validator for the specified schema.
1122 Failed parsing schema for database import.

ImportFromText

See also

Method: ImportFromText(pImportSettings as TextImportExportSettings,
pElementList as ElementList) as Document

Description
ImportFromText imports the text file as specified in pImportSettings. The parameter
pElementList can be used as import filter. Either pass the list returned by a previous call to
GetTextImportElementList or null to import all columns. To avoid import of unnecessary
columns use ElementList.RemoveElement to remove the corresponding field names from
pElementList before calling ImportFromText .
The method returns the newly created document containing the imported data. This document
is the same as the active document of XMLSpy.

See also Import and export of data.

Errors
1111 The application object is no longer valid.
1100 Invalid parameter or invalid address for the return parameter was

specified.
1107 Import from text file failed.
1117 Transformation to XML failed.

Example
 ' ---
 ' VBA client code fragment - import from text file
 ' ---
Dim objImpSettings As TextImportExportSettings

© 2007 Altova GmbH

Interfaces 561The XMLSpy API

Programmers' Reference

Set objImpSettings = objSpy.GetTextImportExportSettings

objImpSettings.ImportFile = strFileName
objImpSettings.HeaderRow = False

Dim objImpDoc As Document
On Error Resume Next
Set objImpDoc = objSpy.ImportFromText(objImpSettings,

objSpy.GetTextImportElementList(objImpSettings))

CheckForError

ImportFromWord

See also

Method: ImportFromWord(strFile as String) as Document

Description
Im portFrom W ord imports the MS-Word Document strFile into a new XML document.

Errors
1111 The application object is no longer valid.
1100 Invalid parameter or invalid address for the return parameter was

specified.
Import from document failed.

NewProject

See also

Method: NewProject(strPath as String,bDiscardCurrent as Boolean)

Description
NewProject creates a new project.

If there is already a project open that has been modified and bDiscardCurrent is false, then
NewProject() fails.

Errors
1111 The application object is no longer valid.
1102 A project is already open but bDiscardCurrent is true.
1103 Creation of new project failed.

OpenProject

See also

Method: OpenProject(strPath as String,bDiscardCurrent as Boolean,bDialog as
Boolean)

Parameters
strPath
Path and file name of the project to open. Can be empty if bDialog is true.

bDiscardCurrent
Discard currently open project and possible lose changes.

562 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

bDialog
Show dialogs for user input.

Return Value
None

Description
OpenProject opens an existing project. If there is already a project open that has been modified
and bDiscardCurrent is false, then OpenProject() fails.

Errors
1111 The application object is no longer valid.
1100 Invalid parameter or invalid address for the return parameter was

specified.
1101 Cannot open specified project.
1102 A project is already open but bDiscardCurrent is true.

Parent

See also

Property: Parent as Application (read-only)

Description
Access the XMLSpy application object.

Errors
1111 The application object is no longer valid.
1100 Invalid address for the return parameter was specified.

Quit

See also

Method: Quit()

Return Value
None

Description
This method terminates XMLSpy. All modified documents will be closed without saving the
changes. This is also true for an open project.

If XMLSpy was automatically started as an automation server by a client program, the
application will not shut down automatically when your client program shuts down if a project or
any document is still open. Use the Quit method to ensure automatic shut-down.

Errors
1111 The application object is no longer valid.

ReloadSettings

See also

Method: ReloadSettings

© 2007 Altova GmbH

Interfaces 563The XMLSpy API

Programmers' Reference

Return Value

Description
The application settings are reloaded from the registry.

Available with TypeLibrary version 1.5

Errors
1111 The application object is no longer valid.

RunMacro

See also

Method: RunMacro(strMacro as String)

Return Value

Description
Calls the specified macro either from the project scripts (if present) or from the global scripts.

Available with TypeLibrary version 1.5

Errors
1111 The application object is no longer valid.

ScriptingEnvironment

See also

Property: ScriptingEnvironment as IUnknown (read-only)

Description
Reference to any active scripting environment. This property makes it possible to access the
TypeLibrary of the XMLSpyFormEditor.exe application which is used as the current scripting
environment.

Available with TypeLibrary version 1.5

Errors
1111 The application object is no longer valid.
1100 Invalid address for the return parameter was specified.

ShowApplication

See also

Method: ShowApplication(bShow as Boolean)

Return Value
None

Description
The method shows (bShow = True) or hides (bShow = False) XMLSpy.

564 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Errors
1110 The application object is no longer valid.

ShowFindInFiles

See also

Method: ShowFindInFiles(pSettings as FindInFilesDlg) as Boolean

Return Value
Returns false if the user pressed the Cancel button, true otherwise.

Description
Displays the FindInFiles dialog preset with the given settings. The user modifications of the
settings are stored in the passed dialog object.

Errors
1111 The application object is no longer valid.
1100 Invalid parameter or invalid address for the return parameter was

specified.

ShowForm

See also

Method: ShowForm(strFormName as String) as Long

Return Value
Returns zero if the user pressed a Cancel button or the form calls TheView.Cancel() .

Description
Displays the form strForm Nam e .

Forms, event handlers and macros can be created with the Scripting Environment. Select
"Switch to scripting environment" from the Tools menu to invoke the Scripting Environment.

Errors
1111 The application object is no longer valid.
1100 Invalid parameter or invalid address for the return parameter was

specified.

URLDelete

See also

Method: URLDelete(strURL as String,strUser as String,strPassword as String)

Return Value
None

Description
The method deletes the file at the URL strURL .

Errors
1111 The application object is no longer valid.
1109 Error deleting file at specified URL.

© 2007 Altova GmbH

Interfaces 565The XMLSpy API

Programmers' Reference

URLMakeDirectory

See also

Method: URLMakeDirectory(strURL as String,strUser as String,strPassword as String
)

Return Value
None

Description
The method creates a new directory at the URL strURL .

Errors
1111 The application object is no longer valid.
1100 Invalid parameter specified.

Visible

See also

Property: Visible as Boolean

Description
Sets or gets the visibility attribute of XMLSpy. This standard automation property makes usage of
ShowApplication obsolete.

Errors
1110 The application object is no longer valid.
1100 Invalid address for the return parameter was specified.

WarningNumber

See also

Property: WarningNumber as integer

Description
Some methods fill the property W arningNum ber with additional information if an error occurs.

Currently just Documents.OpenFile fills this property.

Errors
1111 The application object is no longer valid.
1100 Invalid address for the return parameter was specified.

WarningText

See also

Property: WarningText as String

Description
Some methods fill the property W arningText with additional information if an error occurs.

566 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Currently just Documents.OpenFile fills this property.

Errors
1111 The application object is no longer valid.
1100 Invalid address for the return parameter was specified.

4.3.2 AuthenticDataTransfer

Renamed from DocEditDataTransfer to AuthenticDataTransfer

The DocEditView object is renamed to OldAuthenticView .
DocEditSelection is renamed to AuthenticSelection .
DocEditEvent is renamed to AuthenticEvent .
DocEditDataTransfer is renamed to AuthenticDataTransfer .

Their usage—except for AuthenticDataTransfer —is no longer recommended. We
will continue to support existing functionality for a yet undefined period of time but
no new features will be added to these interface. All functionality available up to
now in DocEditView, DocEditSelection, DocEditEvent and
DocEditDataTransfer is now available via AuthenticView,
AuthenticRange and AuthenticDataTransfer. Many new features have
been added.

For examples on migrating from DocEdit to Authentic see the description of the
different methods and properties of the different DocEdit objects.

See also

Methods

getData

Properties

dropEffect
ownDrag
type

Description

The events OnDragOver and OnBeforeDrop provide information about the object being dragged
with an instance of type AuthenticDataTransfer . It contains a description of the dragged object
and its content. The latter is available either as string or a pointer to a COM object supporting
the IUnkown interface.

dropEffect

See also

Property: dropEffect as long

Description
The property stores the drop effect from the default event handler. You can set the drop effect if
you change this value and return TRUE for the event handler (or set
AuthenticEvent.cancelBubble to TR U E if you are still using the now obsolete

© 2007 Altova GmbH

Interfaces 567The XMLSpy API

Programmers' Reference

AuthenticEvent interface).

Errors
2101 Invalid address for the return parameter was specified.

getData

See also

Method: getData() as Variant

Description
Retrieve the data associated with the dragged object. Depending on
AuthenticDataTransfer.type, that data is either a string or a COM interface pointer of
type IUnknown .

Errors
2101 Invalid address for the return parameter was specified.

ownDrag

See also

Property: ownDrag as Boolean (read-only)

Description
The property is TR U E if the current dragging source comes from inside Authentic View.

Errors
2101 Invalid address for the return parameter was specified.

type

See also

Property: type as String (read-only)

Description
Holds the type of data you get with the DocEditDataTransfer.getData method.

Currently supported data types are:

OWN data from Authentic View itself
TEXT plain text
UNICODETEXT plain text as UNICODE

Errors
2101 Invalid address for the return parameter was specified.

4.3.3 AuthenticRange

See also

The first table lists the properties and methods of AuthenticRange that can be used to navigate
through the document and select specific portions.

568 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Properties Methods
Application Clone MoveBegin
FirstTextPosition CollapsToBegin M oveEnd
FirstXMLData CollapsToEnd NextCursorPosition
FirstXMLDataOffset ExpandTo PreviousCursorPosition
LastTextPosition Goto Select
LastXMLData GotoNext SelectNext
LastXMLDataOffset GotoPrevious SelectPrevious
Parent IsEmpty SetFrom Range
 IsEqual

The following table lists the content modification methods, most of which can be found on the
right/button mouse menu.

Properties Edit operations Dynamic table operations
Text Copy AppendRow
 Cut DeleteRow
 Delete DuplicateRow
 IsCopyEnabled InsertRow
 IsCutEnabled IsFirstRow

 IsDeleteEnabled IsInDynamicTable

 IsPasteEnabled IsLastRow

 Paste M oveRowDown
 M oveRowUp

The following methods provide the functionality of the Authentic entry helper windows for range
objects.

Operations of the entry helper windows

Elements

Attributes

Entities
CanPerformActionW ith GetElementAttributeValue GetEntityNames
CanPerformAction GetElementAttributeNames InsertEntity
PerformAction GetElementHierarchy

 HasElementAttribute
 IsTextStateApplied

 SetElementAttributeValue

Description
AuthenticRange objects are the 'cursor' selections of the automation interface. You can use
them to point to any cursor position in the Authentic view, or select a portion of the document.
The operations available for AuthenticRange objects then work on this selection in the same
way, as the corresponding operations of the user interface do with the current user interface
selection. The main difference is that you can use an arbitrary number of AuthenticRange
objects at the same time, whereas there is exactly one cursor selection in the user interface.

To get to an initial range object use AuthenticView.Selection, to obtain a range
corresponding with the current cursor selection in the user interface. Alternatively, some trivial
ranges are accessible via the read/only properties AuthenticView.DocumentBegin,
AuthenticView.DocumentEnd, and AuthenticView.WholeDocument. The most flexible
method is AuthenticView.Goto, which allows navigation to a specific portion of the
document within one call. For more complex selections, combine the above, with the various
navigation methods on range objects listed in the first table on this page.

Another method to select a portion of the document is to use the position properties of the
range object. Two positioning systems are available and can be combined arbitrarily:

© 2007 Altova GmbH

Interfaces 569The XMLSpy API

Programmers' Reference

 Absolute text cursor positions, starting with position 0 at the document beginning, can
be set and retrieved for the beginning and end of a range. For more information see
FirstTextPosition and LastTextPosition. This method requires complex
internal calculations and should be used with care.

 The XMLData element and a text position inside this element, can be set and retrieved
for the beginning and end of a range. For more information see FirstXMLData,
FirstXMLDataOffset, LastXMLData, and LastXMLDataOffset. This method is
very efficient but requires knowledge on the underlying document structure. It can be
used to locate XMLData objects and perform operations on them otherwise not
accessible through the user interface.

Modifications to the document content can be achieved by various methods:

 The Text property allows you to retrieve the document text selected by the range
object. If set, the selected document text gets replaced with the new text.

 The standard document edit functions Cut, Copy, Paste and Delete.

 Table operations for tables that can grow dynamically.
 Methods that map the functionality of the Authentic entry helper windows.
 Access to the XMLData objects of the underlying document to modify them directly.

AppendRow

See also

Method: AppendRow()as Boolean

Description
If the beginning of the range is inside a dynamic table, this method inserts a new row at the end
of the selected table. The selection of the range is modified to point to the beginning of the new
row. The function returns true if the append operation was successful, otherwise false.

Errors
2001 The authentic range object or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

Examples
' ---
' XMLSpy scripting environment - VBScript
' Append row at end of current dynamically growable table
' ---
Dim objRange
' we assume that the active document is open in authentic view mode
Set objRange = Application.ActiveDocument.AuthenticView.Selection

' check if we can insert something
If objRange.IsInDynamicTable Then

objRange.AppendRow
' objRange points to beginning of new row
objRange.Select

End If

Application

See also

Property: Application as Application (read-only)

570 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Description
Access the XMLSpy application object.

Errors
2001 The authentic range object or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

CanPerformAction

See also

Method: CanPerformAction (eAction as SPYAuthenticActions, strElementName as
String) as Boolean

Description
CanPerformAction and its related methods enable access to the entry-helper functions of
Authentic. This function allows easy and consistent modification of the document content,
without having to know exactly where the modification will take place. The beginning of the
range object is used to locate the next valid location where the specified action can be
performed. If the location can be found, the method returns True, otherwise it returns False.

HINT: To find out all valid element names for a given action, use CanPerformActionWith.

Errors
2001 The authentic range object or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.
2007 Invalid action was specified.

Examples
See PerformAction.

CanPerformActionWith

See also

Method: PerformActionWith (eAction as SPYAuthenticActions,
out_arrElementNames as Variant)

Description
PerformActionW ith and its related methods, enable access to the entry-helper functions of
Authentic. These function allows easy and consistent modification of the document content
without having to know exactly where the modification will take place.

This method returns an array of those element names that the specified action can be
performed with.

HINT: To apply the action use CanPerformActionWith.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.
2007 Invalid action was specified.

Examples
See PerformAction.

© 2007 Altova GmbH

Interfaces 571The XMLSpy API

Programmers' Reference

Clone

See also

Method: Clone() as AuthenticRange

Description
Returns a copy of the range object.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

CollapsToBegin

See also

Method: CollapsToBegin() as AuthenticRange

Description
Sets the end of the range object to its begin. The method returns the modified range object.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

CollapsToEnd

See also

Method: CollapsToEnd() as AuthenticRange

Description
Sets the beginning of the range object to its end. The method returns the modified range
object.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

Copy

See also

Method: Copy() as Boolean

Description
Returns False if the range contains no portions of the document that may be copied.
Returns True if text, and in case of fully selected XML elements the elements as well, has been
copied to the copy/paste buffer.

Errors
2001 The authentic range object or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

572 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Cut

See also

Method: Cut() as Boolean

Description
Returns False if the range contains portions of the document that may not be deleted.
Returns True after text, and in case of fully selected XML elements the elements as well, has
been deleted from the document and saved in the copy/paste buffer.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

Delete

See also

Method: Delete() as Boolean

Description
Returns False if the range contains portions of the document that may not be deleted.
Returns True after text, and in case of fully selected XML elements the elements as well, has
been deleted from the document.

Errors
2001 The authentic range object or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

DeleteRow

See also

Method: DeleteRow() as Boolean

Description
If the beginning of the range is inside a dynamic table, this method deletes the selected row.
The selection of the range gets modified to point to the next element after the deleted row. The
function returns true, if the delete operation was successful, otherwise false.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

Examples
' ---
' XMLSpy scripting environment - VBScript
' Delete selected row from dynamically growing table
' ---
Dim objRange
' we assume that the active document is open in authentic view mode
Set objRange = Application.ActiveDocument.AuthenticView.Selection

' check if we are in a table
If objRange.IsInDynamicTable Then

© 2007 Altova GmbH

Interfaces 573The XMLSpy API

Programmers' Reference

objRange.DeleteRow
End If

DuplicateRow

See also

Method: DuplicateRow() as Boolean

Description
If the beginning of the range is inside a dynamic table, this method inserts a duplicate of the
current row after the selected one. The selection of the range gets modified to point to the
beginning of the new row. The function returns true if the duplicate operation was successful,
otherwise false.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

Examples
' ---
' XMLSpy scripting environment - VBScript
' duplicate row in current dynamically growable table
' ---
Dim objRange
' we assume that the active document is open in authentic view mode
Set objRange = Application.ActiveDocument.AuthenticView.Selection

' check if we can insert something
If objRange.IsInDynamicTable Then

objRange.DuplicateRow
' objRange points to beginning of new row
objRange.Select

End If

ExpandTo

See also

Method: ExpandTo (eKind as SPYAuthenticElementKind), as AuthenticRange

Description
Selects the whole element of type eKind , that starts at, or contains, the first cursor position of
the range. The method returns the modified range object.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2003 Range expansion would be beyond end of document.
2005 Invalid address for the return parameter was specified.

FirstTextPosition

See also

Property: FirstTextPosition as Long

Description
Set or get the left-most text position index of the range object. This index is always less or equal

574 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

to LastTextPosition. Indexing starts with 0 at document beginning, and increments with
every different position that the text cursor can occupy. Incrementing the test position by 1, has
the same effect as the cursor-right key. Decrementing the test position by 1 has the same effect
as the cursor-left key.

If you set FirstTextPosition to a value greater than the current LastTextPosition,
LastTextPosition gets set to the new FirstTextPosition .

HINT: Use text cursor positions with care, since this is a costly operation compared to XMLData
based cursor positioning.

Errors
2001 The authentic range object, or its related view object is not valid.
2005 Invalid address for the return parameter was specified.
2006 A text position outside the document was specified.

Examples
' ---------------------------------------
' XMLSpy scripting environment - VBScript
' ---------------------------------------
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

nDocStartPosition = objAuthenticView.DocumentBegin.FirstTextPosition
nDocEndPosition = objAuthenticView.DocumentEnd.FirstTextPosition

' let's create a range that selects the whole document
' in an inefficient way
Dim objRange
' we need to get a (any) range object first
Set objRange = objAuthenticView.DocumentBegin
objRange.FirstTextPosition = nDocStartPosition
objRange.LastTextPosition = nDocEndPosition

' let's check if we got it right
If objRange.isEqual(objAuthenticView.WholeDocument) Then

MsgBox "Test using direct text cursor positioning was ok"
Else

MsgBox "Ooops!"
End If

FirstXMLData

See also

Property: FirstXMLData as XMLData

Description
Set or get the first XMLData element in the underlying document that is partially, or completely
selected by the range. The exact beginning of the selection is defined by the
FirstXMLDataOffset attribute.

Whenever you set FirstXMLData to a new data object, FirstXMLDataOffset gets set to the
first cursor position inside this element. Only XMLData objects that have a cursor position may
be used. If you set FirstXMLData / FirstXMLDataOffset selects a position greater then the
current LastXMLData / LastXMLDataOffset, the latter gets moved to the new start position.

HINT: You can use the FirstXMLData and LastXMLData properties, to directly access and
manipulate the underlying XML document in those cases where the methods available with the

© 2007 Altova GmbH

Interfaces 575The XMLSpy API

Programmers' Reference

AuthenticRange object are not sufficient.

Errors
2001 The authentic range object, or its related view object is not valid.
2005 Invalid address for the return parameter was specified.
2008 Internal error
2009 The XMLData object cannot be accessed.

Examples
' ---
' XMLSpy scripting environment - VBScript
' show name of currently selected XMLData element
' ---
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

Dim objXmlData
Set objXMLData = objAuthenticView.Selection.FirstXMLData
' authentic view adds a 'text' child element to elements
' of the document which have content. So we have to go one
' element up.
Set objXMLData = objXMLData.Parent
MsgBox "Current selection selects element " & objXMLData.Name

FirstXMLDataOffset

See also

Property: FirstXMLDataOffset as Long

Description
Set or get the cursor position offset inside FirstXMLData element for the beginning of the
range. Offset positions are based on the characters returned by the Text property, and start
with 0. When setting a new offset, use -1 to set the offset to the last possible position in the
element. The following cases require specific attention:

 The textual form of entries in Combo Boxes, Check Boxes and similar controls can be
different from what you see on screen. Although the data offset is based on this text,
there only two valid offset positions, one at the beginning and one at the end of the
entry. An attempt to set the offset to somewhere in the middle of the entry, will result in
the offset being set to the end.

 The textual form of XML Entities might differ in length from their representation on the
screen. The offset is based on this textual form.

If FirstXMLData / FirstXMLDataOffset selects a position after the current LastXMLData /
LastXMLDataOffset, the latter gets moved to the new start position.

Errors
2001 The authentic range object, or its related view object is not valid.
2005 Invalid offset was specified.

Invalid address for the return parameter was specified.

Examples
' ---
' XMLSpy scripting environment - VBScript
' Select the complete text of an XMLData element
' using XMLData based selection and ExpandTo
' ---

576 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

' first we use the XMLData based range properties
' to select all text of the first XMLData element
' in the current selection
Dim objRange
Set objRange = objAuthenticView.Selection
objRange.FirstXMLDataOffset = 0 ' start at beginning of element text
objRange.LastXMLData = objRange.FirstXMLData ' select only one element
objRange.LastXMLDataOffset = -1 ' select till its end

' the same can be achieved with the ExpandTo method
Dim objRange2
Set objRange2 = objAuthenticView.Selection.ExpandTo(spyAuthenticTag)

' were we successful?
If objRange.IsEqual(objRange2) Then

objRange.Select()
Else

MsgBox "Oops"
End If

GetElementAttributeNames

See also

Method: GetElementAttributeNames (strElementName as String,
out_arrAttributeNames as Variant)

Description
Retrieve the names of all attributes for the enclosing element with the specified name. Use the
element/attribute pairs, to set or get the attribute value with the methods
GetElementAttributeValue and SetElementAttributeValue.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2005 Invalid element name was specified.

Invalid address for the return parameter was specified.

Examples
See SetElementAttributeValue.

GetElementAttributeValue

See also

Method: GetElementAttributeValue (strElementName as String, strAttributeName
 as String) as String

Description
Retrieve the value of the attribute specified in strAttributeName , for the element identified with
strElem entNam e . If the attribute is supported but has no value assigned, the empty string is
returned. To find out the names of attributes supported by an element, use
GetElementAttributeNames, or HasElementAttribute.

Errors
2001 The authentic range object, or its related view object is no longer valid.

© 2007 Altova GmbH

Interfaces 577The XMLSpy API

Programmers' Reference

2005 Invalid element name was specified.
Invalid attribute name was specified.
Invalid address for the return parameter was specified.

Examples
See SetElementAttributeValue.

GetElementHierarchy

See also

Method: GetElementHierarchy (out_arrElementNames as Variant)

Description
Retrieve the names of all XML elements that are parents of the current selection. Inner
elements get listed before enclosing elements. An empty list is returned whenever the current
selection is not inside a single XM LData element.

The names of the element hierarchy, together with the range object uniquely identify XM LData
elements in the document. The attributes of these elements can be directly accessed by
GetElementAttributeNames, and related methods.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

Examples
See SetElementAttributeValue.

GetEntityNames

See also

Method: GetEntityNames (out_arrEntityNames as Variant)

Description
Retrieve the names of all defined entities. The list of retrieved entities is independent of the
current selection, or location. Use one of these names with the InsertEntity function.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

Examples
See InsertEntity.

Goto

See also

Method: Goto (eKind as SPYAuthenticElementKind, nCount as Long, eFrom as
SPYAuthenticDocumentPosition) as AuthenticRange

Description
Sets the range to point to the beginning of the nCount element of type eKind . The start position

578 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

is defined by the parameter eFrom .

Use positive values for nCount to navigate to the document end. Use negative values to
navigate to the beginning of the document. The method returns the modified range object.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2003 Target lies after end of document.

2004 Target lies before begin of document.

2005 Invalid element kind specified.
Invalid start position specified.
Invalid address for the return parameter was specified.

GotoNext

See also

Method: GotoNext (eKind as SPYAuthenticElementKind) as AuthenticRange

Description
Sets the range to the beginning of the next element of type eKind . The method returns the
modified range object.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2003 Target lies after end of document.

2005 Invalid element kind specified.
Invalid address for the return parameter was specified.

Examples
' --
' XMLSpy scripting environment - VBScript
' Scan through the whole document word-by-word
' --
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

Dim objRange
Set objRange = objAuthenticView.DocumentBegin
Dim bEndOfDocument
bEndOfDocument = False

On Error Resume Next
While Not bEndOfDocument

objRange.GotoNext(spyAuthenticWord).Select
If ((Err.number - vbObjecterror) = 2003) Then

bEndOfDocument = True
Err.Clear

ElseIf (Err.number <> 0) Then
Err.Raise ' forward error

End If
Wend

GotoNextCursorPosition

See also

Method: GotoNextCursorPosition() as AuthenticRange

© 2007 Altova GmbH

Interfaces 579The XMLSpy API

Programmers' Reference

Description
Sets the range to the next cursor position after its current end position. Returns the modified
object.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2003 Target lies after end of document.

2005 Invalid address for the return parameter was specified.

GotoPrevious

See also

Method: GotoPrevious (eKind as SPYAuthenticElementKind) as AuthenticRange

Description
Sets the range to the beginning of the element of type eKind which is before the beginning of
the current range. The method returns the modified range object.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2004 Target lies before beginning of document.

2005 Invalid element kind specified.
Invalid address for the return parameter was specified.

Examples
' --
' XMLSpy scripting environment - VBScript
' Scan through the whole document tag-by-tag
' --
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

Dim objRange
Set objRange = objAuthenticView.DocumentEnd
Dim bEndOfDocument
bBeginOfDocument = False

On Error Resume Next
While Not bBeginOfDocument

objRange.GotoPrevious(spyAuthenticTag).Select
If ((Err.number - vbObjecterror) = 2004) Then

bBeginOfDocument = True
Err.Clear

ElseIf (Err.number <> 0) Then
Err.Raise ' forward error

End If
Wend

GotoPreviousCursorPosition

See also

Method: GotoPreviousCursorPosition() as AuthenticRange

Description
Set the range to the cursor position immediately before the current position. Returns the

580 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

modified object.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2004 Target lies before begin of document.

2005 Invalid address for the return parameter was specified.

HasElementAttribute

See also

Method: HasElementAttribute (strElementName as String, strAttributeName as
String) as Boolean

Description
Tests if the enclosing element with name strElem entNam e , supports the attribute specified in
strAttributeName .

Errors
2001 The authentic range object, or its related view object is no longer valid.
2005 Invalid element name was specified.

Invalid address for the return parameter was specified.

InsertEntity

See also

Method: InsertEntity (strEntityName as String)

Description
Replace the ranges selection with the specified entity. The specified entity must be one of the
entity names returned by GetEntityNames.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2005 Unknown entry name was specified.

Examples
' ---
' XMLSpy scripting environment - VBScript
' Insert the first entity in the list of available entities
' ---
Dim objRange
' we assume that the active document is open in authentic view mode
Set objRange = Application.ActiveDocument.AuthenticView.Selection

' first we get the names of all available entities as they
' are shown in the entry helper of XMLSpy
Dim arrEntities
objRange.GetEntityNames arrEntities

' we insert the first one of the list
If UBound(arrEntities) >= 0 Then

objRange.InsertEntity arrEntities(0)
objRange.Select()

Else
MsgBox "Sorry, no entities are available for this document"

End If

© 2007 Altova GmbH

Interfaces 581The XMLSpy API

Programmers' Reference

InsertRow

See also

Method: InsertRow() as Boolean

Description
If the beginning of the range is inside a dynamic table, this method inserts a new row before the
current one. The selection of the range, gets modified to point to the beginning of the newly
inserted row. The function returns true if the insert operation was successful, otherwise false.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

Examples
' ---
' XMLSpy scripting environment - VBScript
' Insert row at beginning of current dynamically growing table
' ---
Dim objRange
' we assume that the active document is open in authentic view mode
Set objRange = Application.ActiveDocument.AuthenticView.Selection

' check if we can insert something
If objRange.IsInDynamicTable Then

objRange.InsertRow
' objRange points to beginning of new row
objRange.Select

 End If

IsCopyEnabled

See also

Property: IsCopyEnabled as Boolean (read-only)

Description
Checks if the copy operation is supported for this range.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

IsCutEnabled

See also

Property: IsCutEnabled as Boolean (read-only)

Description
Checks if the cut operation is supported for this range.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

582 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

IsDeleteEnabled

See also

Property: IsDeleteEnabled as Boolean (read-only)

Description
Checks if the delete operation is supported for this range.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

IsEmpty

See also

Method: IsEmpty() as Boolean

Description
Tests if the first and last position of the range are equal.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

IsEqual

See also

Method: IsEqual (objCmpRange as AuthenticRange) as Boolean

Description
Tests if the start and end of both ranges are the same.

Errors
2001 One of the two range objects being compared, is invalid.
2005 Invalid address for a return parameter was specified.

IsFirstRow

See also

Property: IsFirstRow() as Boolean (read-only)

Description
Test if the range is in the first row of a table. Which table is taken into consideration depends on
the extend of the range. If the selection exceeds a single row of a table, the check is if this table
is the first element in an embedding table. See the entry helpers of the user manual for more
information.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

© 2007 Altova GmbH

Interfaces 583The XMLSpy API

Programmers' Reference

IsInDynamicTable

See also

Method: IsInDynamicTable() as Boolean

Description
Test if the whole range is inside a table that supports the different row operations like 'insert',
'append', duplicate, etc.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

IsLastRow

See also

Property: IsLastRow() as Boolean (read-only)

Description
Test if the range is in the last row of a table. Which table is taken into consideration depends on
the extend of the range. If the selection exceeds a single row of a table, the check is if this table
is the last element in an embedding table. See the entry helpers of the user manual for more
information.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

IsPasteEnabled

See also

Property: IsPasteEnabled as Boolean (read-only)

Description
Checks if the paste operation is supported for this range.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

IsTextStateApplied

See also

Method: IsTextStateApplied (i_strElementName as String) as Boolean

Description
Checks if all the selected text is embedded into an XML Element with name i_strElementName .
Common examples for the parameter i_strElementName are "strong", "bold" or "italic".

Errors

584 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

2001 The authentic range object, or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

LastTextPosition

See also

Property: LastTextPosition as Long

Description
Set or get the rightmost text position index of the range object. This index is always greater or
equal to FirstTextPosition. Indexing starts with 0 at the document beginning, and
increments with every different position that the text cursor can occupy. Incrementing the test
position by 1, has the same effect as the cursor-right key. Decreasing the test position by 1 has
the same effect as the cursor-left key.

If you set LastTextPosition to a value less then the current FirstTextPosition,
FirstTextPosition gets set to the new LastTextPosition .

HINT: Use text cursor positions with care, since this is a costly operation compared to XMLData
based cursor positioning.

Errors
2001 The authentic range object, or its related view object is not valid.
2005 Invalid address for the return parameter was specified.
2006 A text position outside the document was specified.

Examples
' ---------------------------------------
' XMLSpy scripting environment - VBScript
' ---------------------------------------
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

nDocStartPosition = objAuthenticView.DocumentBegin.FirstTextPosition
nDocEndPosition = objAuthenticView.DocumentEnd.FirstTextPosition

' let's create a range that selects the whole document
' in an inefficient way
Dim objRange
' we need to get a (any) range object first
Set objRange = objAuthenticView.DocumentBegin
objRange.FirstTextPosition = nDocStartPosition
objRange.LastTextPosition = nDocEndPosition

' let's check if we got it right
If objRange.isEqual(objAuthenticView.WholeDocument) Then

MsgBox "Test using direct text cursor positioning was ok"
Else

MsgBox "Oops!"
End If

LastXMLData

See also

Property: LastXMLData as XMLData

© 2007 Altova GmbH

Interfaces 585The XMLSpy API

Programmers' Reference

Description
Set or get the last XM LData element in the underlying document that is partially or completely
selected by the range. The exact end of the selection is defined by the LastXMLDataOffset
attribute.

Whenever you set LastXMLData to a new data object, LastXMLDataOffset gets set to the
last cursor position inside this element. Only XM LData objects that have a cursor position may
be used. If you set LastXMLData / LastXMLDataOffset, select a position less then the
current FirstXMLData / FirstXMLDataOffset, the latter gets moved to the new end
position.

HINT: You can use the FirstXMLData and LastXMLData properties to directly access and
manipulate the underlying XML document in those cases, where the methods available with the
AuthenticRange object are not sufficient.

Errors
2001 The authentic range object, or its related view object is not valid.
2005 Invalid address for the return parameter was specified.
2008 Internal error
2009 The XM LData object cannot be accessed.

LastXMLDataOffset

See also

Property: LastXMLDataOffset as Long

Description
Set or get the cursor position inside LastXMLData element for the end of the range.

Offset positions are based on the characters returned by the Text property and start with 0.
When setting a new offset, use -1 to set the offset to the last possible position in the element.
The following cases require specific attention:

 The textual form of entries in Combo Boxes, Check Boxes and similar controls can be
different from what you see on the screen. Although, the data offset is based on this
text, there only two valid offset positions, one at the beginning and one at the end of the
entry. An attempt to set the offset to somewhere in the middle of the entry, will result in
the offset being set to the end.

 The textual form of XML Entities might differ in length from their representation on the
screen. The offset is based on this textual form.

If LastXMLData / LastXMLDataOffset selects a position before FirstXMLData /
FirstXMLDataOffset, the latter gets moved to the new end position.

Errors
2001 The authentic range object, or its related view object is not valid.
2005 Invalid offset was specified.

Invalid address for the return parameter was specified.

Examples
' ---
' XMLSpy scripting environment - VBScript
' Select the complete text of an XMLData element
' using XMLData based selection and ExpandTo
' ---
Dim objAuthenticView
' we assume that the active document is open in authentic view mode

586 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Set objAuthenticView = Application.ActiveDocument.AuthenticView

' first we use the XMLData based range properties
' to select all text of the first XMLData element
' in the current selection
Dim objRange
Set objRange = objAuthenticView.Selection
objRange.FirstXMLDataOffset = 0 ' start at beginning of element text
objRange.LastXMLData = objRange.FirstXMLData ' select only one element
objRange.LastXMLDataOffset = -1 ' select till its end

' the same can be achieved with the ExpandTo method
Dim objRange2
Set objRange2 = objAuthenticView.Selection.ExpandTo(spyAuthenticTag)

' were we successful?
If objRange.IsEqual(objRange2) Then

objRange.Select()
Else

MsgBox "Ooops"
End If

MoveBegin

See also

Method: MoveBegin (eKind as SPYAuthenticElementKind, nCount as Long) as
AuthenticRange

Description
Move the beginning of the range to the beginning of the nCount element of type eKind . Counting
starts at the current beginning of the range object.

Use positive numbers for nCount to move towards the document end, use negative numbers to
move towards document beginning. The end of the range stays unmoved, unless the new
beginning would be larger than it. In this case, the end is moved to the new beginning. The
method returns the modified range object.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2003 Target lies after end of document.

2004 Target lies before beginning of document.

2005 Invalid element kind specified.
Invalid address for the return parameter was specified.

MoveEnd

See also

Method: MoveEnd (eKind as SPYAuthenticElementKind, nCount as Long) as
AuthenticRange

Description
Move the end of the range to the begin of the nCount element of type eKind . Counting starts at
the current end of the range object.

Use positive numbers for nCount to move towards the document end, use negative numbers to
move towards document beginning. The beginning of the range stays unmoved, unless the new
end would be less than it. In this case, the beginning gets moved to the new end. The method

© 2007 Altova GmbH

Interfaces 587The XMLSpy API

Programmers' Reference

returns the modified range object.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2003 Target lies after end of document.

2004 Target lies before begin of document.

2005 Invalid element kind specified.
Invalid address for the return parameter was specified.

MoveRowDown

See also

Method: MoveRowDown() as Boolean

Description
If the beginning of the range is inside a dynamic table and selects a row which is not the last
row in this table, this method swaps this row with the row immediately below. The selection of
the range moves with the row, but does not otherwise change. The function returns true if the
move operation was successful, otherwise false.

Errors
2001 The authentic range object or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

MoveRowUp

See also

Method: MoveRowUp() as Boolean

Description
If the beginning of the range is inside a dynamic table and selects a row which is not the first
row in this table, this method swaps this row with the row above. The selection of the range
moves with the row, but does not change otherwise. The function returns true if the move
operation was successful, otherwise false.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

Examples
See JScript - Bubble Sort Dynamic Tables.

Parent

See also

Property: Parent as AuthenticView (read-only)

Description
Access the view that owns this range object.

Errors
2001 The authentic range object, or its related view object is no longer valid.

588 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

2005 Invalid address for the return parameter was specified.

Paste

See also

Method: Paste() as Boolean

Description
Returns False if the copy/paste buffer is empty, or its content cannot replace the current
selection.

Otherwise, deletes the current selection, inserts the content of the copy/paste buffer, and
returns True.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.

PerformAction

See also

Method: PerformAction (eAction as SPYAuthenticActions, strElementName as
String) as Boolean

Description
PerformAction and its related methods, give access to the entry-helper functions of Authentic.
This function allows easy and consistent modification of the document content without a need to
know exactly where the modification will take place. The beginning of the range object is used
to locate the next valid location where the specified action can be performed. If no such location
can be found, the method returns False. Otherwise, the document gets modified and the range
points to the beginning of the modification.

HINT: To find out element names that can be passed as the second parameter use
CanPerformActionWith.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2005 Invalid address for the return parameter was specified.
2007 Invalid action was specified.

Examples
' --
' XMLSpy scripting environment - VBScript
' Insert the innermost element
' --
Dim objRange
' we assume that the active document is open in authentic view mode
Set objRange = Application.ActiveDocument.AuthenticView.Selection

' we determine the elements that can be inserted at the current position
Dim arrElements()
objRange.CanPerformActionWith spyAuthenticInsertBefore, arrElements

' we insert the first (innermost) element
If UBound(arrElements) >= 0 Then

objRange.PerformAction spyAuthenticInsertBefore, arrElements(0)
' objRange now points to the beginning of the inserted element

© 2007 Altova GmbH

Interfaces 589The XMLSpy API

Programmers' Reference

' we set a default value and position at its end
objRange.Text = "Hello"
objRange.ExpandTo(spyAuthenticTag).CollapsToEnd().Select

Else
MsgBox "Can't insert any elements at current position"

End If

Select

See also

Method: Select()

Description
Makes this range the current user interface selection. You can achieve the same result using: '
objRange.Parent.Selection = objRange'

Errors
2001 The authentic range object or its related view object is no longer valid.

Examples
' ---------------------------------------
' XMLSpy scripting environment - VBScript
' ---------------------------------------
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

' set current selection to end of document
objAuthenticView.DocumentEnd.Select()

SelectNext

See also

Method: SelectNext (eKind as SPYAuthenticElementKind) as AuthenticRange

Description
Selects the element of type eKind after the current end of the range. The method returns the
modified range object.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2003 Target lies after end of document.

2005 Invalid element kind specified.
Invalid address for the return parameter was specified.

Examples
' --
' XMLSpy scripting environment - VBScript
' Scan through the whole document word-by-word
' --
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

Dim objRange
Set objRange = objAuthenticView.DocumentBegin
Dim bEndOfDocument
bEndOfDocument = False

590 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

On Error Resume Next
While Not bEndOfDocument

objRange.SelectNext(spyAuthenticWord).Select
If ((Err.number - vbObjecterror) = 2003) Then

bEndOfDocument = True
Err.Clear

ElseIf (Err.number <> 0) Then
Err.Raise ' forward error

End If
Wend

SelectPrevious

See also

Method: GotoPrevious (eKind as SPYAuthenticElementKind) as AuthenticRange

Description
Selects the element of type eKind before the current beginning of the range. The method
returns the modified range object.

Errors
2001 The authentic range object, or its related view object is no longer valid.
2004 Target lies before begin of document.

2005 Invalid element kind specified.
Invalid address for the return parameter was specified.

Examples
' --
' XMLSpy scripting environment - VBScript
' Scan through the whole document tag-by-tag
' --
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

Dim objRange
Set objRange = objAuthenticView.DocumentEnd
Dim bEndOfDocument
bBeginOfDocument = False

On Error Resume Next
While Not bBeginOfDocument

objRange.SelectPrevious(spyAuthenticTag).Select
If ((Err.number - vbObjecterror) = 2004) Then

bBeginOfDocument = True
Err.Clear

ElseIf (Err.number <> 0) Then
Err.Raise ' forward error

End If
Wend

SetElementAttributeValue

See also

Method: SetElementAttributeValue (strElementName as String, strAttributeName
 as String, strAttributeValue as String)

© 2007 Altova GmbH

Interfaces 591The XMLSpy API

Programmers' Reference

Description
Retrieve the value of the attribute specified in strAttributeName for the element identified with
strElem entNam e . If the attribute is supported but has no value assigned, the empty string is
returned. To find out the names of attributes supported by an element, use
GetElementAttributeNames, or HasElementAttribute.

Errors
2001 The authentic range object or its related view object is no longer valid.
2005 Invalid element name was specified.

Invalid attribute name was specified.
Invalid attribute value was specified.

Examples
' --
' XMLSpy scripting environment - VBScript
' Get and set element attributes
' --
Dim objRange
' we assume that the active document is open in authentic view mode
Set objRange = Application.ActiveDocument.AuthenticView.Selection

' first we find out all the elements below the beginning of the range
Dim arrElements
objRange.GetElementHierarchy arrElements

If IsArray(arrElements) Then
If UBound(arrElements) >= 0 Then

' we use the top level element and find out its valid attributes
Dim arrAttrs()
objRange.GetElementAttributeNames arrElements(0), arrAttrs

If UBound(arrAttrs) >= 0 Then
' we retrieve the current value of the first valid

attribute
Dim strAttrVal
strAttrVal = objRange.GetElementAttributeValue

(arrElements(0), arrAttrs(0))
msgbox "current value of " & arrElements(0) & "//" &

arrAttrs(0) & " is: " & strAttrVal

' we change this value and read it again
strAttrVal = "Hello"
objRange.SetElementAttributeValue arrElements(0),

arrAttrs(0), strAttrVal
strAttrVal = objRange.GetElementAttributeValue

(arrElements(0), arrAttrs(0))
msgbox "new value of " & arrElements(0) & "//" &

arrAttrs(0) & " is: " & strAttrVal
End If

End If
End If

SetFromRange

See also

Method: SetFromRange (objSrcRange as AuthenticRange)

Description
Sets the range object to the same beginning and end positions as objSrcRange .

592 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Errors
2001 One of the two range objects, is invalid.
2005 Null object was specified as source object.

Text

See also

Property: Text as String

Description
Set or get the textual content selected by the range object.

The number of characters retrieved are not necessarily identical, as there are text cursor
positions between the beginning and end of the selected range. Most document elements
support an end cursor position different to the beginning cursor position of the following
element. Drop-down lists maintain only one cursor position, but can select strings of any length.
In the case of radio buttons and check boxes, the text property value holds the string of the
corresponding XML element.

If the range selects more then one element, the text is the concatenation of the single texts.
XML entities are expanded so that '&' is expected as '&'.

Setting the text to the empty string, does not delete any XML elements. Use Cut, Delete or
PerformAction instead.

Errors
2001 The authentic range object or its related view object is no longer valid.
2005 Invalid address for a return parameter was specified.

4.3.4 AuthenticView

See also

Properties Methods Events
Application Goto OnBeforeCopy
AsXMLString IsRedoEnabled OnBeforeCut
Docum entBegin IsUndoEnabled OnBeforeDelete
Docum entEnd Print OnBeforeDrop
Event Redo OnBeforePaste
MarkupVisibility Undo OnDragOver
Parent UpdateXMLInstanceEntities OnKeyBoardEvent
Selection OnM ouseEvent

XM LDataRoot OnSelectionChanged
W holeDocum ent

Description
AuthenticView and its child objects AuthenticRange and AuthenticDataTransfer provide
you with an interface for Authentic View, which allow easy and consistent modification of
document contents. These interfaces replace the following interfaces which are marked now as
obsolete:
OldAuthenticView (old name was DocEditView)
AuthenticSelection (old name was DocEditSelection, superseded by
AuthenticRange)

© 2007 Altova GmbH

Interfaces 593The XMLSpy API

Programmers' Reference

AuthenticEvent (old name was DocEditEvent)Interfaces

AuthenticView gives you easy access to specific features such as printing, the multi-level
undo buffer, and the current cursor selection, or position.

AuthenticView uses objects of type AuthenticRange to make navigation inside the
document straight-forward, and to allow for the flexible selection of logical text elements. Use
the properties DocumentBegin, DocumentEnd, or WholeDocument for simple selections,
while using the Goto method for more complex selections. To navigate relative to a given
document range, see the methods and properties of the AuthenticRange object.

Examples
' ---------------------------------------
' XMLSpy scripting environment - VBScript
' secure access to authentic view object
' ---------------------------------------
Dim objDocument
Set objDocument = Application.ActiveDocument
If (Not objDocument Is Nothing) Then

' we have an active document, now check for view mode
If (objDocument.CurrentViewMode <> spyViewContent) Then

If (Not objDocument.SwitchViewMode (spyViewContent)) Then
MsgBox "Active document does not support authentic view

mode"
Else

' now it is safe to access the authentic view object
Dim objAuthenticView
Set objAuthenticView = objDocument.AuthenticView
' now use the authentic view object

End If
End If

Else
MsgBox "No document is open"

End If

Events

OnBeforeCopy

See also

Event: OnBeforeCopy() as Boolean

XMLSpy scripting environment - VBScript:
Function On_DocEditCopy()

' On_BeforeCopy = False ' to disable operation
End Function

XMLSpy scripting environment - JScript:
function On_DocEditCopy()
{

// return false; /* to disable operation */
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (21, ...) // nEventId = 21

594 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Description
This event gets triggered before a copy operation gets performed on the document. Return True
(or nothing) to allow copy operation. Return False to disable copying.

OnBeforeCut

See also

Event: OnBeforeCut() as Boolean

XMLSpy scripting environment - VBScript:
Function On_DocEditCut()

' On_BeforeCopy = False ' to disable operation
End Function

XMLSpy scripting environment - JScript:
function On_DocEditCut()
{

// return false; /* to disable operation */
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (20, ...) // nEventId = 20

Description
This event gets triggered before a cut operation gets performed on the document. Return True
(or nothing) to allow cut operation. Return False to disable operation.

OnBeforeDelete

See also

Event: OnBeforeDelete() as Boolean

XMLSpy scripting environment - VBScript:
Function On_DocEditClear()

' On_BeforeCopy = False ' to disable operation
End Function

XMLSpy scripting environment - JScript:
function On_DocEditClear()
{

// return false; /* to disable operation */
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (22, ...) // nEventId = 22

Description
This event gets triggered before a delete operation gets performed on the document. Return
True (or nothing) to allow delete operation. Return False to disable operation.

© 2007 Altova GmbH

Interfaces 595The XMLSpy API

Programmers' Reference

OnBeforeDrop

See also

Event: OnBeforeDrop (i_nXPos as Long, i_nYPos as Long, i_ipRange as
AuthenticRange, i_ipData as cancelBoolean

XMLSpy scripting environment - VBScript:
Function On_DocEditDrop(nXPos, nYPos, objRange, objData)

' On_BeforeCopy = False ' to disable operation
End Function

XMLSpy scripting environment - JScript:
function On_DocEditDrop(nXPos, nYPos, objRange, objData)
{

// return false; /* to disable operation */
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (11, ...) // nEventId = 11

Description
This event gets triggered whenever a previously dragged object gets dropped inside the
application window. All event related information gets passed as parameters.

The first two parameters specify the mouse position at the time when the event occurred. The
parameter objRange passes a range object that selects the XML element below the mouse
position. The value of this parameter might be NULL. Be sure to check before you access the
range object. The parameter objData allows to access information about the object being
dragged.

Return False to cancle the drop operation. Return True (or nothing) to continue normal
operation.

Examples
'
--
' VB code snippet - connecting to object level events
'
--
' access XMLSpy (without checking for any errors)
Dim objSpy As XMLSpyLib.Application
Set objSpy = GetObject("", "XMLSpy.Application")

' this is the event callback routine connected to the OnBeforeDrop
' event of object objView
Private Function objView_OnBeforeDrop(ByVal i_nXPos As Long, ByVal i_nYPos
As Long,
 ByVal i_ipRange As IAuthenticRange,
 ByVal i_ipData As
IAuthenticDataTransfer) As Boolean

 If (Not i_ipRange Is Nothing) Then
 MsgBox ("Dropping on content is prohibited");
 Return False;
 Else
 Return True;
 End If
End Function

596 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

' use VBA keyword WithEvents to connect to object-level event
Dim WithEvents objView As XMLSpyLib.AuthenticView
Set objView = objSpy.ActiveDocument.AuthenticView

' continue here with something useful ...
' and serve the windows message loop

OnBeforePaste

See also

Event: OnBeforePaste (objData as Variant, strType as String) as Boolean

XMLSpy scripting environment - VBScript:
Function On_DocEditPaste(objData, strType)

' On_BeforeCopy = False ' to disable operation
End Function

XMLSpy scripting environment - JScript:
function On_DocEditPaste(objData, strType)
{

// return false; /* to disable operation */
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (19, ...) // nEventId = 19

Description
This event gets triggered before a paste operation gets performed on the document. The
parameter strType is one of "TEXT", "UNICODETEXT" or "IUNKNOWN". In the first two
cases objData contains a string representation of the object that will be pasted. In the later
case, objData contains a pointer to an IUnknown COM interface.

Return True (or nothing) to allow paste operation. Return False to disable operation.

OnDragOver

See also

Event: OnDragOver (nXPos as Long, nYPos as Long, eMouseEvent as SPYMouseEvent,
objRange as AuthenticRange, objData as AuthenticDataTransfer) as Boolean

XMLSpy scripting environment - VBScript:
Function On_DocEditDragOver(nXPos, nYPos, eMouseEvent, objRange, objData)

' On_BeforeCopy = False ' to disable operation
End Function

XMLSpy scripting environment - JScript:
function On_DocEditDragOver(nXPos, nYPos, eMouseEvent, objRange, objData)
{

// return false; /* to disable operation */
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (10, ...) // nEventId = 10

© 2007 Altova GmbH

Interfaces 597The XMLSpy API

Programmers' Reference

Description
This event gets triggered whenever an object from within our outside of Authentic View gets
dragged with the mouse over the application window. All event related information gets passed
as parameters.

The first three parameters specify the mouse position, the mouse button status and the status
of the virtual keys at the time when the event occurred. The parameter objRange passes a
range object that selects the XML element below the mouse position. The value of this
parameter might be NULL. Be sure to check before you access the range object. The
parameter objData allows to access information about the object being dragged.

Return False to cancel the drag operation. Return True (or nothing) to continue normal
operation.

Examples
'
--
' VB code snippet - connecting to object level events
'
--
' access XMLSpy (without checking for any errors)
Dim objSpy As XMLSpyLib.Application
Set objSpy = GetObject("", "XMLSpy.Application")

' this is the event callback routine connected to the OnDragOver
' event of object objView
Private Function objView_OnDragOver(ByVal i_nXPos As Long, ByVal i_nYPos As
Long,
 ByVal i_eMouseEvent As SPYMouseEvent,
 ByVal i_ipRange As IAuthenticRange,
 ByVal i_ipData As
IAuthenticDataTransfer) As Boolean

 If (((i_eMouseEvent And spyShiftKeyDownMask) <> 0) And
 (Not i_ipRange Is Nothing)) Then
 MsgBox ("Floating over element " &
i_ipRange.FirstXMLData.Parent.Name);
 End If

 Return True;
End Function

' use VBA keyword WithEvents to connect to object-level event
Dim WithEvents objView As XMLSpyLib.AuthenticView
Set objView = objSpy.ActiveDocument.AuthenticView

' continue here with something useful ...
' and serve the windows message loop

OnKeyboardEvent

See also

Event: OnKeyboardEvent (eKeyEvent as SPYKeyEvent, nKeyCode as Long,
nVirtualKeyStatus as Long) as Boolean

XMLSpy scripting environment - VBScript:
Function On_DocEditKeyboardEvent(eKeyEvent, nKeyCode, nVirtualKeyStatus
)

' On_DocEditKeyboardEvent = True ' to cancel bubbling of event

598 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

End Function

XMLSpy scripting environment - JScript:
function On_DocEditKeyboardEvent(eKeyEvent, nKeyCode, nVirtualKeyStatus)
{

// return false; /* to cancel bubbling of event */
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (30, ...) // nEventId = 30

Description
This event gets triggered for WM_KEYDOWN, WM_KEYUP and WM_CHAR Windows
messages.

The actual message type is available in the eKeyEvent parameter. The status of virtual keys is
combined in the parameter nVirtualKeyStatus. Use the bit-masks defined in the enumeration
datatype SPYVirtualKeyMask, to test for the different keys or their combinations.

REMARK: The following events from the scripting environment and IDE Plugin of XMLSpy are
still supported but become obsolete with this event:
On_DocEditKeyUp() IXMLSpyPlugIn.OnEvent (13, ...) // nEventId =
13
On_DocEditKeyDown() IXMLSpyPlugIn.OnEvent (12, ...) // nEventId =
12
On_DocEditKeyPressed() IXMLSpyPlugIn.OnEvent (14, ...) // nEventId =
14

Examples
'
--
' VB code snippet - connecting to object level events
'
--
' access XMLSpy (without checking for any errors)
Dim objSpy As XMLSpyLib.Application
Set objSpy = GetObject("", "XMLSpy.Application")

' this is the event callback routine connected to the OnKeyboard
' event of object objView
Private Function objView_OnKeyboardEvent(ByVal i_keyEvent As Long, ByVal
io_pnKeyCode As Long, ByVal i_nVirtualKeyStatus As Long) As Boolean
 If ((i_keyEvent = XMLSpyLib.spyKeyUp) And ((i_nVirtualKeyStatus And
XMLSpyLib.spyCtrlKeyMask) <> 0)) Then
 MsgBox ("Ctrl " & io_pnKeyCode & " pressed")
 objView_OnKeyboardEvent = True
 Else
 objView_OnKeyboardEvent = False
 End If
End Function

' use VBA keyword WithEvents to connect to object-level event
Dim WithEvents objView As XMLSpyLib.AuthenticView
Set objView = objSpy.ActiveDocument.AuthenticView

' continue here with something useful ...
' and serve the windows message loop

© 2007 Altova GmbH

Interfaces 599The XMLSpy API

Programmers' Reference

OnMouseEvent

See also

Event: OnMouseEvent (nXPos as Long, nYPos as Long, eMouseEvent as SPYMouseEvent
, objRange as AuthenticRange) as Boolean

XMLSpy scripting environment - VBScript:
Function On_DocEditMouseEvent(nXPos, nYPos, eMouseEvent, objRange)

' On_DocEditMouseEvent = True ' to cancel bubbling of event
End Function

XMLSpy scripting environment - JScript:
function On_DocEditMouseEvent(nXPos, nYPos, eMouseEvent, objRange)
{

// return false; /* to cancel bubbling of event */
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (31, ...) // nEventId = 31

Description
This event gets triggered for every mouse movement and mouse button Windows message.

The actual message type and the mouse buttons status, is available in the eMouseEvent
parameter. Use the bit-masks defined in the enumeration datatype SPYMouseEvent to test for
the different messages, button status, and their combinations.

The parameter objRange identifies the part of the document found at the current mouse cursor
position. The range objects always selects a complete tag of the document. (This might change
in future versions, when a more precise positioning mechanism becomes available). If no
selectable part of the document is found at the current position, the range object is null.

REMARK: The following events from the scripting environment and IDE Plugin of XMLSpy are
still supported but become obsolete with this event:
On_DocEditMouseMove() IXMLSpyPlugIn.OnEvent (15, ...) //
nEventId = 15
On_DocEditButtonUp() IXMLSpyPlugIn.OnEvent (16, ...) //
nEventId = 16
On_DocEditButtonDown() IXMLSpyPlugIn.OnEvent (17, ...) //
nEventId = 17
On_DocEditButtonDoubleClick() IXMLSpyPlugIn.OnEvent (24, ...) //
nEventId = 24

Examples
'
--
' VB code snippet - connecting to object level events
'
--
' access XMLSpy (without checking for any errors)
Dim objSpy As XMLSpyLib.Application
Set objSpy = GetObject("", "XMLSpy.Application")

' this is the event callback routine connected to the OnMouseEvent
' event of object objView. If you click with the left mouse button

600 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

' while pressing a control key, the current selection will be set
' to the tag below the current mouse cursor position
Private Function objView_OnMouseEvent(ByVal i_nXPos As Long, ByVal i_nYPos
As Long, ByVal i_eMouseEvent As XMLSpyLib.SPYMouseEvent, ByVal i_pRange As
XMLSpyLib.IAuthenticRange) As Boolean
 If (i_eMouseEvent = (XMLSpyLib.spyLeftButtonDownMask Or
XMLSpyLib.spyCtrlKeyDownMask)) Then
 On Error Resume Next
 i_pRange.Select
 objView_OnMouseEvent = True
 Else
 objView_OnMouseEvent = False
 End If
End Function

' use VBA keyword WithEvents to connect to object-level event
Dim WithEvents objView As XMLSpyLib.AuthenticView
Set objView = objSpy.ActiveDocument.AuthenticView

' continue here with something useful ...
' and serve the windows message loop

OnSelectionChanged

See also

Event: OnSelectionChanged (objNewSelection as AuthenticRange)

XMLSpy scripting environment - VBScript:
Function On_DocEditSelectionChanged (objNewSelection)
End Function

XMLSpy scripting environment - JScript:
function On_DocEditSelectionChanged (objNewSelection)
{
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (23, ...) // nEventId = 23

Description
This event gets triggered whenever the selection in the user interface changes.

Examples
'
--
' VB code snippet - connecting to object level events
'
--
' access XMLSpy (without checking for any errors)
Dim objSpy As XMLSpyLib.Application
Set objSpy = GetObject("", "XMLSpy.Application")

' this is the event callback routine connected to the OnSelectionChanged
' event of object objView
Private Sub objView_OnSelectionChanged (ByVal i_ipNewRange As
XMLSpyLib.IAuthenticRange)
 MsgBox ("new selection: " & i_ipNewRange.Text)
End Sub

' use VBA keyword WithEvents to connect to object-level event
Dim WithEvents objView As XMLSpyLib.AuthenticView

© 2007 Altova GmbH

Interfaces 601The XMLSpy API

Programmers' Reference

Set objView = objSpy.ActiveDocument.AuthenticView

' continue here with something useful ...
' and serve the windows message loop

Application

See also

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors
2000 The authentic view object is no longer valid.
2005 Invalid address for the return parameter was specified.

AsXMLString

See also

Property: AsXMLString as String

Description
Returns or sets the document content as an XML string. Setting the content to a new value
does not change the schema file or sps file in use. If the new XMLString does not match the
actual schema file error 2011 gets returned.

Errors
2000 The authentic view object is no longer valid.
2011 AsXMLString was set to a value which is no valid XML for the current

schema file.

DocumentBegin

See also

Property: DocumentBegin as AuthenticRange (read-only)

Description
Retrieve a range object that points to the beginning of the document.

Errors
2000 The authentic view object is no longer valid.
2005 Invalid address for the return parameter was specified.

DocumentEnd

See also

Property: DocumentEnd as AuthenticRange (read-only)

Description
Retrieve a range object that points to the end of the document.

602 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Errors
2000 The authentic view object is no longer valid.
2005 Invalid address for the return parameter was specified.

Event

See also

Property: Event as AuthenticEvent (read-only)

Description
This property gives access to parameters of the last event in the same way as
OldAuthenticView.event does. Since all events for the scripting environment and external clients
are now available with parameters this Event property should only be used from within
IDE-Plugins.

Errors
2000 The authentic view object is no longer valid.
2005 Invalid address for the return parameter was specified.

Goto

See also

Method: Goto (eKind as SPYAuthenticElementKind, nCount as Long, eFrom as
SPYAuthenticDocumentPosition) as AuthenticRange

Description
Retrieve a range object that points to the beginning of the nCount element of type eKind. The
start position is defined by the parameter eFrom. Use positive values for nCount to navigate to
the document end. Use negative values to navigate towards the beginning of the document.

Errors
2000 The authentic view object is no longer valid.
2003 Target lies after end of document.

2004 Target lies before beginning of document.

2005 Invalid element kind specified.
The document position to start from is not one of spyAuthenticDocumentBegin
or spyAuthenticDocumentEnd.
Invalid address for the return parameter was specified.

Examples
' ---------------------------------------
' XMLSpy scripting environment - VBScript
' ---------------------------------------
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

On Error Resume Next
Dim objRange
' goto beginning of first table in document
Set objRange = objAuthenticView.Goto (spyAuthenticTable, 1,
spyAuthenticDocumentBegin)
If (Err.number = 0) Then

objRange.Select()
Else

© 2007 Altova GmbH

Interfaces 603The XMLSpy API

Programmers' Reference

MsgBox "No table found in document"
End If

IsRedoEnabled

See also

Property: IsRedoEnabled as Boolean (read-only)

Description
True if redo steps are available and Redo is possible.

Errors
2000 The authentic view object is no longer valid.
2005 Invalid address for the return parameter was specified.

IsUndoEnabled

See also

Property: IsUndoEnabled as Boolean (read-only)

Description
True if undo steps are available and Undo is possible.

Errors
2000 The authentic view object is no longer valid.
2005 Invalid address for the return parameter was specified.

MarkupVisibility

See also

Property: MarkupVisibility as SPYAuthenticMarkupVisibility

Description
Set or get current visibility of markup.

Errors
2000 The authentic view object is no longer valid.
2005 Invalid enumeration value was specified.

Invalid address for the return parameter was specified.

Parent

See also

Property: Parent as Document (read-only)

Description
Access the document shown in this view.

Errors

604 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

2000 The authentic view object is no longer valid.
2005 Invalid address for the return parameter was specified.

Print

See also

Method: Print (bWithPreview as Boolean, bPromptUser as Boolean)

Description
Print the document shown in this view. If bWithPreview is set to True, the print preview dialog
pops up. If bPromptUser is set to True, the print dialog pops up. If both parameters are set to
False, the document gets printed without further user interaction.

Errors
2000 The authentic view object is no longer valid.

Redo

See also

Method: Redo() as Boolean

Description
Redo the modification undone by the last undo command.

Errors
2000 The authentic view object is no longer valid.
2005 Invalid address for the return parameter was specified.

Selection

See also

Property: Selection as AuthenticRange

Description
Set or get current text selection in user interface.

Errors
2000 The authentic view object is no longer valid.
2002 No cursor selection is active.
2005 Invalid address for the return parameter was specified.

Examples
' ---------------------------------------
' XMLSpy scripting environment - VBScript
' ---------------------------------------
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

' if we are the end of the document, re-start at the beginning
If (objAuthenticView.Selection.IsEqual(objAuthenticView.DocumentEnd)) Then

objAuthenticView.Selection = objAuthenticView.DocumentBegin

© 2007 Altova GmbH

Interfaces 605The XMLSpy API

Programmers' Reference

Else
' objAuthenticView.Selection =

objAuthenticView.Selection.GotoNextCursorPosition()
' or shorter:
 objAuthenticView.Selection.GotoNextCursorPosition().Select

End If

Undo

See also

Method: Undo() as Boolean

Description
Undo the last modification of the document from within this view.

Errors
2000 The authentic view object is no longer valid.
2005 Invalid address for the return parameter was specified.

UpdateXMLInstanceEntities

See also

Method: UpdateXMLInstanceEntities()

Description
Updates the internal representation of the declared entities, and refills the entry helper. In
addition, the validator is reloaded, allowing the XML file to validate correctly. Please note that
this may also cause schema files to be reloaded.

Errors
The method never returns an error.

Example
// ---
// XMLSpy scripting environment - JavaScript
// ---
if(Application.ActiveDocument &&
(Application.ActiveDocument.CurrentViewMode == 4))
{

var objDocType;
objDocType =

Application.ActiveDocument.DocEditView.XMLRoot.GetFirstChild(10);

if(objDocType)
{

var objEntity = Application.ActiveDocument.CreateChild(14);
objEntity.Name = "child";
objEntity.TextValue = "SYSTEM \"child.xml\"";
objDocType.AppendChild(objEntity);

Application.ActiveDocument.AuthenticView.UpdateXMLInstanceEntities();
}

}

606 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

WholeDocument

See also

Property: WholeDocument as AuthenticRange (read-only)

Description
Retrieve a range object that selects the whole document.

Errors
2000 The authentic view object is no longer valid.
2005 Invalid address for the return parameter was specified.

XMLDataRoot

See also

Property: XMLDataRoot as XMLData (read-only)

Description
Returns or sets the top-level XMLData element of the current document. This element typically
describes the document structure and would be of kind spyXMLDataXMLDocStruct,
spyXMLDataXMLEntityDocStruct or spyXMLDataDTDDocStruct..

Errors
2000 The authentic view object is no longer valid.
2005 Invalid address for the return parameter was specified.

4.3.5 CodeGeneratorDlg

See also
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other
version.

Properties and Methods

Standard automation properties
Application
Parent

Programming language selection properties
Program m ingLanguage
TemplateFileName
CompatibilityMode

Settings for C++ code
CPPSettings_DOM Type
CPPSettings_LibraryType
CPPSettings_UseM FC
CPPSettings_GenerateVC6ProjectFile
CPPSettings_GenerateVSProjectFile

Settings for C# code
CSharpSettings_ProjectType

© 2007 Altova GmbH

Interfaces 607The XMLSpy API

Programmers' Reference

Dialog handling for above code generation properties
PropertySheetDialogAction

Output path selection properties
OutputPath
OutputPathDialogAction

Presentation of result
OutputResultDialogAction

Description
Use this object to configure the generation of program code for schema files. The method
GenerateProgram Code expects a CodeGeneratorDlg as parameter to configure code
generation as well as the associated user interactions.

Application

See also
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other
version.

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors
2200 The object is no longer valid.
2201 Invalid address for the return parameter was specified.

CompatibilityMode

Property: CompatibilityMode as Boolean
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other
version.

Description
Set to true to generate code compatible to XMLSpy 2005R3. Set to false to use newly added
code-generation features.

Errors
2200 The object is no longer valid.
2201 Invalid action passed as parameter or an invalid address was specified

for the return parameter.

CPPSettings_DOMType

Property: CPPSettings_DOMType as SPYDOMType
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other
version.

Description
Defines one of the settings that configure generation of C++ code.

608 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Errors
2200 The object is no longer valid.
2201 Invalid action passed as parameter or an invalid address was specified

for the return parameter.

CPPSettings_GenerateVC6ProjectFile

Property: CPPSettings_GenerateVC6ProjectFile as Boolean
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other
version.

Description
Defines one of the settings that configure generation of C++ code.

Errors
2200 The object is no longer valid.
2201 Invalid action passed as parameter or an invalid address was specified

for the return parameter.

CPPSettings_GenerateVSProjectFile

Property: CSharpSettings_GenerateVSProjectFile as SPYProjectType
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other
version.

Description
Defines one of the settings that configure generation of C++ code. Only
spyVisualStudio2003Project (=1) and spyVisualStudio2005Project (=4) are valid project types.

Errors
2200 The object is no longer valid.
2201 Invalid action passed as parameter or an invalid address was specified

for the return parameter.

CPPSettings_LibraryType

Property: CPPSettings_LibraryType as SPYLibType
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other
version.

Description
Defines one of the settings that configure generation of C++ code.

Errors
2200 The object is no longer valid.
2201 Invalid action passed as parameter or an invalid address was specified

for the return parameter.

CPPSettings_UseMFC

Property: CPPSettings_UseMFC as Boolean
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other
version.

© 2007 Altova GmbH

Interfaces 609The XMLSpy API

Programmers' Reference

Description
Defines one of the settings that configure generation of C++ code.

Errors
2200 The object is no longer valid.
2201 Invalid action passed as parameter or an invalid address was specified

for the return parameter.

CSharpSettings_ProjectType

Property: CSharpSettings_ProjectType as SPYProjectType
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other
version.

Description
Defines the only setting to configure generation of C# code.

Errors
2200 The object is no longer valid.
2201 Invalid action passed as parameter or an invalid address was specified

for the return parameter.

OutputPath

Property: OutputPath as String
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other
version.

Description
Selects the base directory for all generated code.

Errors
2200 The object is no longer valid.
2201 Invalid address for the return parameter was specified.

OutputPathDialogAction

Property: OutputPathDialogAction as SPYDialogAction
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other
version.

Description
Defines how the sub-dialog for selecting the code generation output path gets handled. Set this
value to spyDialogUserInput(2) to show the dialog with the current value of the OutputPath
property as default. Use spyDialogOK(0) to hide the dialog from the user.

Errors
2200 The object is no longer valid.
2201 Invalid action passed as parameter or an invalid address was specified

for the return parameter.

610 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

OutputResultDialogAction

Property: OutputResultDialogAction as SPYDialogAction
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other
version.

Description
Defines how the sub-dialog that asks to show the result of the code generation process gets
handled. Set this value to spyDialogUserInput(2) to show the dialog. Use spyDialogOK(0) to
hide the dialog from the user.

Errors
2200 The object is no longer valid.
2201 Invalid action passed as parameter or an invalid address was specified

for the return parameter.

Parent

See also
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other
version.

Property: Parent as Dialogs (read-only)

Description
Access the parent of the object.

Errors
2200 The object is no longer valid.
2201 Invalid address for the return parameter was specified.

ProgrammingLanguage

Property: ProgrammingLanguage as ProgrammingLanguage
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other
version.

Description
Selects the output language for the code to be generated.

CAUTION: Setting this property to one of C++, C# or Java, changes the property
TemplateFileName to the appropriate template file delivered with XMLSpy as well. If you want
to generate C++, C# or Java code based on your own templates, set first the programming
language and then select your template file.

Errors
2200 The object is no longer valid.
2201 Invalid address for the return parameter was specified.

PropertySheetDialogAction

Property: PropertySheetDialogAction as SPYDialogAction
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other
version.

© 2007 Altova GmbH

Interfaces 611The XMLSpy API

Programmers' Reference

Description
Defines how the sub-dialog that configures the code generation process gets handled. Set this
value to spyDialogUserInput(2) to show the dialog with the current values as defaults. Use
spyDialogOK(0) to hide the dialog from the user.

Errors
2200 The object is no longer valid.
2201 Invalid action passed as parameter or an invalid address was specified

for the return parameter.

TemplateFileName

Property: TemplateFileName as String
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other
version.

Description
Selects the code generation template file. XMLSpy comes with template files for C++, C# or
Java in the SPL folder of your installation directory.

Setting this property to one of the code generation template files of your XMLSpy installation
automatically sets the ProgrammingLanguage property to its appropriate value.

Errors
2200 The object is no longer valid.
2201 Invalid address for the return parameter was specified.

4.3.6 DatabaseConnection

See also

Properties for import and export
File or

ADOConnection or
ODBCConnection

Properties for import only
DatabaseKind
SQLSelect
AsAttributes
ExcludeKeys
IncludeEmptyElements
NumberDateTimeFormat
NullReplacement
CommentIncluded

Properties for export only
CreateMissingTables
CreateNew
TextFieldLen

Description
DatabaseConnection specifies the parameters for the database connection.

Please note that the properties of the DatabaseConnection interface are referring to the settings

612 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

of the import and export dialogs of XMLSpy.

ADOConnection

See also

Property: ADOConnection as String

Description
The property ADOConnection contains a connection string. Either use this property or
ODBCConnection or File to refer to a database.

Errors
No error codes are returned.

Example

Dim objSpyConn As DatabaseConnection
Set objSpyConn = objSpy.GetDatabaseSettings

Dim objADO As DataLinks
Set objADO = CreateObject("DataLinks")

If Not (objADO Is Nothing) Then
Dim objConn As Connection
Set objConn = objADO.PromptNew
objSpyConn.ADOConnection = objConn.ConnectionString
End If

AsAttributes

See also

Property: AsAttributes as Boolean

Description
Set AsAttributes to true if you want to initialize all import fields to be imported as attributes.
Default is false and will initialize all fields to be imported as elements. This property is used only
in calls to Application.GetDatabaseImportElementList .

Errors
No error codes are returned.

CommentIncluded

See also

Property: CommentIncluded as Boolean

Description
This property tells whether additional comments are added to the generated XML. Default is
true. This property is used only when importing from databases.

Errors
No error codes are returned.

© 2007 Altova GmbH

Interfaces 613The XMLSpy API

Programmers' Reference

CreateMissingTables

See also

Property: CreateMissingTables as Boolean

Description
If CreateMissingTables is true, tables which are not already defined in the export database
will be created during export. Default is true. This property is used only when exporting to
databases.

Errors
No error codes are returned.

CreateNew

See also

Property: CreateNew as Boolean

Description
Set CreateNew true if you want to create a new database on export. Any existing database will
be overwritten. See also DatabaseConnection.File. Default is false. This property is used
only when exporting to databases.

Errors
No error codes are returned.

DatabaseKind

See also

Property: DatabaseKind as SPYDatabaseKind

Description
Select the kind of database that gets access. The default value is spyDB_Unspecified(7) and is
sufficient in most cases. This property is used only when importing from databases.

Errors
No error codes are returned.

ExcludeKeys

See also

Property: ExcludeKeys as Boolean

Description
Set ExcludeKeys to true if you want to exclude all key columns from the import data. Default
is false. This property is used only when importing from databases.

Errors
No error codes are returned.

614 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

File

See also

Property: File as String

Description
The property File sets the path for the database during export or import. This property can
only be used in conjunction with a Microsoft Access database. Either use this property or
ODBCConnection or ADOConnection to refer to the database.

See also Import and Export.

Errors
No error codes are returned.

IncludeEmptyElements

See also

Property: IncludeEmptyElements as Boolean

Description
Set IncludeEmptyElements to false if you want to exclude all empty elements. Default is
true. This property is used only when importing from databases.

Errors
No error codes are returned.

NullReplacement

See also

Property: NullReplacement as String

Description
This property contains the text value that is used during export for empty elements (null values).
Default is "". This property is used only when importing from databases.

Errors
No error codes are returned.

NumberDateTimeFormat

See also

Property: NumberDateTimeFormat as SPYNumberDateTimeFormat

Description
The property NumberDateTimeFormat sets the format of numbers and date- and time-values.
Default is spySystemLocale. This property is used only when importing from databases.

Errors
No error codes are returned.

© 2007 Altova GmbH

Interfaces 615The XMLSpy API

Programmers' Reference

ODBCConnection

See also

Property: ODBCConnection as String

Description
The property ODBCConnection contains a ODBC connection string. Either use this property
or ADOConnection or File to refer to a database.

Errors
No error codes are returned.

SQLSelect

See also

Property: SQLSelect as String

Description
The SQL query for the import is stored in the property SQLSelect. This property is used only when
importing from databases. See also Import and Export.

Errors
No error codes are returned.

TextFieldLen

See also

Property: TextFieldLen as long

Description
The property TextFieldLen sets the length for created text fields during the export. Default is
255. This property is used only when exporting to databases.

Errors
No error codes are returned.

4.3.7 Dialogs

See also

Properties and Methods

Standard automation properties
Application
Parent

Various dialog objects
CodeGeneratorDlg
FileSelectionDlg
Schem aDocum entationDlg
GenerateSampleXMLDlg
DTDSchemaGeneratorDlg

616 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

FindInFilesDlg
WSDLDocumentationDlg

Description
The Dialogs object provides access to different built-in dialogs of XMLSpy. These dialog objects
allow to initialize the fields of user dialogs before they get presented to the user or allow to
simulate complete user input by your program.

Application

See also

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors
2300 The object is no longer valid.
2301 Invalid address for the return parameter was specified.

CodeGeneratorDlg

See also
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other
version.

Property: CodeGeneratorDlg as CodeGeneratorDlg (read-only)

Description
Get a new instance of a code generation dialog object. You will need this object to pass the
necessary parameters to the code generation methods. Initial values are taken from last usage
of the code generation dialog.

Errors
2300 The Dialogs object or one of its parents is no longer valid.
2301 Invalid address for the return parameter was specified.

FileSelectionDlg

See also

Property: FileSelectionDlg as FileSelectionDlg (read-only)

Description
Get a new instance of a file selection dialog object.

File selection dialog objects are passed to you with the some events that signal opening or
saving of documents and projects.

Errors
2300 The Dialogs object or one of its parents is no longer valid.
2301 Invalid address for the return parameter was specified.

© 2007 Altova GmbH

Interfaces 617The XMLSpy API

Programmers' Reference

Parent

See also

Property: Parent as Application (read-only)

Description
Access the XMLSpy application object.

Errors
2300 The object is no longer valid.
2301 Invalid address for the return parameter was specified.

SchemaDocumentationDlg

See also

Property: SchemaDocumentationDlg as SchemaDocumentationDlg (read-only)

Description
Get a new instance of a dialog object that parameterizes generation of schema documentation.
See Document.GenerateSchemaDocumentation for its usage.

Errors
2300 The Dialogs object or one of its parents is no longer valid.
2301 Invalid address for the return parameter was specified.

GenerateSampleXMLDlg

See also

Property: GenerateSampleXMLDlg as GenerateSampleXMLDlg (read-only)

Description
Get a new instance of a dialog object that parameterizes generation of a sample XML based on
a W3C schema or DTD. See GenerateSampleXML for its usage.

Errors
2300 The Dialogs object or one of its parents is no longer valid.
2301 Invalid address for the return parameter was specified.

DTDSchemaGeneratorDlg

See also

Property: DTDSchemaGeneratorDlg as DTDSchemaGeneratorDlg (read-only)

Description
Get a new instance of a dialog object that parameterizes generation of a schema or DTD. See
Document.GenerateDTDOrSchemaEx for its usage.

Errors
2300 The Dialogs object or one of its parents is no longer valid.
2301 Invalid address for the return parameter was specified.

618 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

FindInFilesDlg

See also

Property: FindInFilesDlg as FindInFilesDlg (read-only)

Description
Get a new instance of a dialog object that parameterizes the search (or replacement) of strings
in files. See Application.FindInFiles for its usage.

Errors
2300 The Dialogs object or one of its parents is no longer valid.
2301 Invalid address for the return parameter was specified.

WSDLDocumentationDlg

See also

Property: WSDLDocumentationDlg as WSDLDocumentationDlg (read-only)

Description
Get a new instance of a dialog object that parameterizes generation of WSDL documentation.
See Document.GenerateWSDLDocumentation for its usage.

Errors
2300 The Dialogs object or one of its parents is no longer valid.
2301 Invalid address for the return parameter was specified.

4.3.8 Document

See also

Properties and Methods

Standard automation properties
Application
Parent

Various document properties and methods
SetActiveDocument
Encoding
SetEncoding (obsolete)
Suggestions

XML validation
IsWellFormed
IsValid
SetExternalIsValid

Document conversion and transformation
AssignDTD
AssignSchema
AssignXSL
AssignXSLFO
ConvertDTDOrSchema
ConvertDTDOrSchemaEx

© 2007 Altova GmbH

Interfaces 619The XMLSpy API

Programmers' Reference

GenerateDTDOrSchema
GenerateDTDOrSchemaEx
CreateSchemaDiagram
ExecuteXQuery
TransformXSL
TransformXSLFO
GenerateProgramCode (Enterprise Edition only)
GenerateSchemaDocumentation
GenerateSampleXML
GenerateWSDLDocumentation

Document export
GetExportElementList
ExportToText
ExportToDatabase

File saving and naming
FullName
Name
Path
GetPathName (obsolete)
SetPathName (obsolete)
Title
IsModified
Saved
SaveAs
Save
SaveInString
SaveToURL
Close

View access
CurrentViewMode
SwitchViewMode
AuthenticView
GridView
DocEditView (obsolete)

Access to XMLData
RootElement
DataRoot
CreateChild
UpdateViews
StartChanges
EndChanges
UpdateXMLData

Description
Document objects represent XML documents opened in XMLSpy.

Use one of the following properties to access documents that are already open XMLSpy:
Application.ActiveDocument
Application.Documents

Use one of the following methods to open a new document in XMLSpy:
Documents.OpenFile
Documents.OpenURL
Documents.OpenURLDialog
Documents.NewFile

620 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Documents.NewFileFromText
SpyProjectItem.Open
Application.ImportFromDatabase
Application.ImportFromSchema
Application.ImportFromText
Application.ImportFromWord
Document.ConvertDTDOrSchema
Document.GenerateDTDOrSchema

Events

OnBeforeSaveDocument

See also

Event: OnBeforeSaveDocument(objDocument as Document, objDialog as
FileSelectionDlg)

XMLSpy scripting environment - VBScript:
Function On_BeforeSaveDocument(objDocument, objDialog)
End Function

' old handler - now obsolete
' return string to save to new file name
' return empty string to cancel save operation
' return nothing to save to original name
Function On_SaveDocument(objDocument, strFilePath)
End Function

XMLSpy scripting environment - JScript:
function On_BeforeSaveDocument(objDocument, objDialog)
{
}

// old handler - now obsolete
// return string to save to new file name
// return empty string to cancel save operation
// return nothing to save to original name
function On_SaveDocument(objDocument, strFilePath)
{
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (27, ...) // nEventId = 27

Description
This event gets fired on any attempt to save a document. The file selection dialog object is
initialized with the name chosen for the document file. You can modify this selection. To
continue saving the document leave the FileSelectionDlg.DialogAction property of io_objDialog
at its default value spyDialogOK . To abort saving of the document set this property to
spyDialogCancel .

© 2007 Altova GmbH

Interfaces 621The XMLSpy API

Programmers' Reference

OnBeforeCloseDocument

See also

Event: OnBeforeCloseDocument(objDocument as Document)as Boolean

XMLSpy scripting environment - VBScript:
Function On_BeforeCloseDocument(objDocument)

' On_BeforeCloseDocument = False ' to prohibit closing of document
End Function

XMLSpy scripting environment - JScript:
function On_BeforeCloseDocument(objDocument)
{

// return false; /* to prohibit closing of document */
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (28, ...) // nEventId = 28

Description
This event gets fired on any attempt to close a document. To prevent the document from being
closed return false.

OnBeforeValidate

See also

Event: OnBeforeValidate(objDocument as Document, bOnLoading as Boolean,
bOnCommand as Boolean) as Boolean

XMLSpy scripting environment - VBScript:
Function On_BeforeValidate(objDocument, bOnLoading, bOnCommand)

On_BeforeValidate = bCancelDefaultValidation 'set by the script if
necessary
End Function

XMLSpy scripting environment - JScript:
function On_BeforeValidate(objDocument, eViewMode, bActivated)
{

return bCancelDefaultValidation //set by the script if necessary
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (32, ...) // nEventId = 32

Description
This event gets fired before the document is validated. It is possible to suppress the default
validation by returning false from the event handler. In this case the script should also set the
validation result using the SetExternalIsValid method.

bOnLoading is true if the the event is raised on the initial validation on loading the document.

bOnCommand is true whenever the user selected the Validate command from the Toolbar or

622 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

menu.

Available with TypeLibrary version 1.5

OnCloseDocument

See also

Event: OnCloseDocument(objDocument as Document)

XMLSpy scripting environment - VBScript:
Function On_Close Document(objDocument)
End Function

XMLSpy scripting environment - JScript:
function On_Close Document(objDocument)
{
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (8, ...) // nEventId = 8

Description
This event gets fired as a result of closing a document. Do not modify the document from within
this event.

OnViewActivation

See also

Event: OnViewActivation(objDocument as Document, eViewMode as SPYViewModes,
bActivated as Boolean)

XMLSpy scripting environment - VBScript:
Function On_ViewActivation(objDocument, eViewMode, bActivated)
End Function

XMLSpy scripting environment - JScript:
function On_ViewActivation(objDocument, eViewMode, bActivated)
{
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (29, ...) // nEventId = 29

Description
This event gets fired whenever a view of a document becomes visible (i.e. becomes the active
view) or invisible (i.e. another view becomes the active view or the document gets closed).
However, the first view activation event after a document gets opened cannot be received, since
there is no document object to get the event from. Use the Application.OnDocumentOpened
event instead.

© 2007 Altova GmbH

Interfaces 623The XMLSpy API

Programmers' Reference

Application

See also

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors
1400 The object is no longer valid.
1407 Invalid address for the return parameter was specified.

AssignDTD

See also

Method: AssignDTD(strDTDFile as String, bDialog as Boolean)

Description
The method places a reference to the DTD file "strDTDFile" into the document. Note that no
error occurs if the file does not exist, or is not accessible. If bDialog is true XMLSpy presents
a dialog to set the file.

See also Simple document access.

Errors
1400 The object is no longer valid.
1409 You are not allowed to assign a DTD to the document.

AssignSchema

See also

Method: AssignSchema (strSchemaFile as String, bDialog as Boolean)

Description
The method places a reference to the schema file "strSchemaFile" into the document. Note that
no error occurs if the file does not exist or is not accessible. If bDialog is true XMLSpy
presents a dialog to set the file.

See also Simple document access.

Errors
1400 The object is no longer valid.
1409 You are not allowed to assign a schema file to the document.

AssignXSL

See also

Method: AssignXSL (strXSLFile as String, bDialog as Boolean)

Description
The method places a reference to the XSL file "strXSLFile" into the document. Note that no

624 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

error occurs if the file does not exist or is not accessible. If bDialog is true XMLSpy presents a
dialog to set the file.

Errors
1400 The object is no longer valid.
1409 You are not allowed to assign an XSL file to the document.

AssignXSLFO

See also

Method: AssignXSLFO (strXSLFOFile as String, bDialog as Boolean)

Description
The method places a reference to the XSLFO file "strXSLFile" into the document. Note that no
error occurs if the file does not exist or is not accessible. If bDialog is true XMLSpy presents a
dialog to set the file.

Errors
1400 The object is no longer valid.
1409 You are not allowed to assign an XSL file to the document.

AuthenticView

See also

Method: AuthenticView as AuthenticView (read-only)

Description
Returns an object that gives access to properties and methods specific to Authentic view. The
object returned is only valid if the current document is opened in Authentic view mode. The
lifetime of an object ends with the next view switch. Any attempt to access objects or any of its
children afterwards will result in an error indicating that the object is invalid.

AuthenticView and DocEditView both provide automation access to the Authentic view
mode of XMLSpy. Functional overlap is intentional. A future version of Authentic View will
include all functionality of DocEditView and its sub-objects, thereby making usage of
DocEditView obsolete.

Errors
1400 The object is no longer valid.
1417 Document needs to be open in authentic view mode.

Examples
' ---------------------------------------
' XMLSpy scripting environment - VBScript
' secure access to authentic view object
' ---------------------------------------
Dim objDocument
Set objDocument = Application.ActiveDocument
If (Not objDocument Is Nothing) Then

' we have an active document, now check for view mode
If (objDocument.CurrentViewMode <> spyViewContent) Then

If (Not objDocument.SwitchViewMode (spyViewContent)) Then
MsgBox "Active document does not support authentic view

mode"
Else

' now it is safe to access the authentic view object

© 2007 Altova GmbH

Interfaces 625The XMLSpy API

Programmers' Reference

Dim objAuthenticView
Set objAuthenticView = objDocument.AuthenticView
' now use the authentic view object

End If
End If

Else
MsgBox "No document is open"

End If

Close

See also

Method: Close (bDiscardChanges as Boolean)

Description
To close the document call this method. If bDiscardChanges is true and the document is
modified, the document will be closed but not saved.

Errors
1400 The object is no longer valid.
1401 Document needs to be saved first.

ConvertDTDOrSchema

See also

Method: ConvertDTDOrSchema (nFormat as SPYDTDSchemaFormat,
nFrequentElements as SPYFrequentElements)

Parameters
nFormat
Sets the schema output format to DTD, or W3C.

nFrequentElements
Create complex elements as elements or complex types.

Description
ConvertDTDOrSchema takes an existing schema format and converts it into a different format.
For a finer tuning of DTD / schema conversion, use ConvertDTDOrSchemaEx.

Errors
1400 The object is no longer valid.
1412 Error during conversion.

ConvertDTDOrSchemaEx

See also

Method: ConvertDTDOrSchemaEx (nFormat as SPYDTDSchemaFormat,
nFrequentElements as SPYFrequentElements, sOutputPath as String,
nOutputPathDialogAction as SPYDialogAction)

Parameters
nFormat
Sets the schema output format to DTD, or W3C.

626 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

nFrequentElements
Create complex elements as elements or complex types.

sOutputPath
The file path for the newly generated file.

nOutputPathDialogAction
Defines the dialog interaction for this call.

Description
ConvertDTDOrSchemaEx takes an existing schema format and converts it into a different
format.

Errors
1400 The object is no longer valid.
1412 Error during conversion.

CreateChild

See also

Method: CreateChild (nKind as SPYXMLDataKind) as XMLData

Return Value
The method returns the new XMLData object.

Description
To create a new XMLData object use the CreateChild() method. See also Using XMLData.

Errors
1400 The object is no longer valid.
1404 Cannot create XMLData object.

1407 Invalid address for the return parameter was specified.

CreateSchemaDiagram

See also

Method: CreateSchemaDiagram (nKind as SPYSchemaDefKind, strName as String,
strFile as String)

Return Value
None.

Description
The method creates a diagram of the schema type strName of kind nKind and saves the
output file into strFile.

Errors
1400 The object is no longer valid.
1414 Failed to save diagram.
1415 Invalid schema definition type specified.

© 2007 Altova GmbH

Interfaces 627The XMLSpy API

Programmers' Reference

CurrentViewMode

See also

Method: CurrentViewMode as SPYViewModes

Description
The property holds the current view mode of the document. See also
Document.SwitchViewMode.

Errors
1400 The object is no longer valid.
1407 Invalid address for the return parameter was specified.

DataRoot

See also

Property: DataRoot as XMLData (read-only)

Description
This property provides access to the document's first XMLData object of type
spyXMLDataElement. This is typically the root element for all document content data. See
XMLSpyDocument.RootElement to get the root element of the whole document including XML
prolog data.

Errors
1400 The document object is no longer valid.
1407 Invalid address for the return parameter was specified.

DocEditView

See also

Method: DocEditView as DocEditView

Description
Holds a reference to the current Authentic View object.

Errors
1400 The object is no longer valid.
1407 Invalid address for the return parameter was specified.
1417 Document needs to be open in authentic view mode.

Encoding

See also

Property: Encoding as String

Description
This property provides access to the document's encoding value. However, this property can
only be accessed when the document is opened in spyViewGrid, spyViewText or
spyViewContent. See CurrentViewMode on how to detect that a document's actual view mode.

628 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

This property makes the method SetEncoding obsolete.

Possible values are, for example:

8859-1,
8859-2,
ASCII, ISO-646,
850,
1252,
1255,
SHIFT-JIS, MS-KANJI,
BIG5, FIVE,
UTF-7,
UTF-8,
UTF-16

Errors
1400 The document object is no longer valid.
1407 Invalid address for the return parameter was specified.
1416 Operation not supported in current view mode.

EndChanges

See also

Method: EndChanges()

Description
Use the method EndChanges to display all changes since the call to
Document.StartChanges.

Errors
1400 The object is no longer valid.

ExecuteXQuery

See also

Method: ExecuteXQuery (strXMLFileName as String)

Description
Execute the XQuery statements contained in the document. Use the XML file specified as XML
source for the transformation. If your XQuery script does not use an XML source set the
parameter strXMLFileNam e to an empty string.

Errors
1400 The document object is no longer valid.
1423 XQuery transformation error.
1424 Not all files required for operation could be loaded. Most likely, the file

specified in strXMLFileNam e does not exist or is not valid.

ExportToDatabase

See also

© 2007 Altova GmbH

Interfaces 629The XMLSpy API

Programmers' Reference

Method: ExportToDatabase (pFromChild as XMLData, pExportSettings as
ExportSettings, pDatabase as DatabaseConnection)

Description
ExportToDatabase exports the XML document starting with the element pFromChild. The
parameter pExportSettings defines the behaviour of the export (see
Application.GetExportSettings). The parameter pDatabase specifies the destination
of the export (see Application.GetDatabaseSettings).

Errors
1400 The object is no longer valid.
1407 Invalid parameter or invalid address for the return parameter was

specified.
1416 Error during export.
1429 Database selection missing.
1430 Document export failed.

Example

Dim objDoc As Document
Set objDoc = objSpy.ActiveDocument

'set the behaviour of the export with ExportSettings
Dim objExpSettings As ExportSettings
Set objExpSettings = objSpy.GetExportSettings

'set the destination with DatabaseConnection
Dim objDB As DatabaseConnection
Set objDB = objSpy.GetDatabaseSettings

objDB.CreateMissingTables = True
objDB.CreateNew = True
objDB.File = "C:\Export.mdb"

objDoc.ExportToDatabase objDoc.RootElement, objExpSettings, objDB
If Err.Number <> 0 Then
a = MsgBox("Error: " & (Err.Number - vbObjectError) & Chr(13) &

"Description: " & Err.Description)
End If

ExportToText

See also

Method: ExportToText (pFromChild as XMLData, pExportSettings as
ExportSettings, pTextSettings as TextImportExportSettings)

Description
ExportToText exports tabular information from the document starting at pFromChild into one
or many text files. Columns of the resulting tables are generated in alphabetical order of the
column header names. Use GetExportElementList to learn about the data that will be
exported. The parameter pExportSettings defines the specifics for the export. Set the property
ExportSettings.ElementList to the - possibly modified - list returned by
GetExportElementList to avoid exporting all contained tables. The parameter
pTextSettings defines the options specific to text export and import. You need to set the
property TextImportExportSettings.DestinationFolder before you call ExportToText
.

See also Import and export of data.

630 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Errors
1400 The object is no longer valid.
1407 Invalid parameter or invalid address for the return parameter was

specified.
1416 Error during export.
1430 Document export failed.

Example
 ' ---
 ' VBA client code fragment - export document to text files
 ' ---
Dim objDoc As Document
Set objDoc = objSpy.ActiveDocument

Dim objExpSettings As ExportSettings
Set objExpSettings = objSpy.GetExportSettings
objExpSettings.ElementList = objDoc.GetExportElementList(

objDoc.RootElement,
objExpSettings)

Dim objTextExp As TextImportExportSettings
Set objTextExp = objSpy.GetTextExportSettings
objTextExp.HeaderRow = True
objTextExp.DestinationFolder = "C:\Exports"

On Error Resume Next
objDoc.ExportToText objDoc.RootElement, objExpSettings, objTextExp

If Err.Number <> 0 Then
a = MsgBox("Error: " & (Err.Number - vbObjectError) & Chr(13) &

"Description: " & Err.Description)
End If

FullName

See also

Property: FullName as String

Description
This property can be used to get or set the full file name - including the path - to where the
document gets saved. The validity of the name is not verified before the next save operation.

This property makes the methods GetPathName and SetPathName obsolete.

Errors
1400 The document object is no longer valid.
1402 Empty string has been specified as full file name.

GenerateDTDOrSchema

See also

Method: GenerateDTDOrSchema (nFormat as SPYDTDSchemaFormat, nValuesList as
integer, nDetection as SPYTypeDetection, nFrequentElements as
SPYFrequentElements)

Parameters

© 2007 Altova GmbH

Interfaces 631The XMLSpy API

Programmers' Reference

nFormat
Sets the schema output format to DTD, or W3C.

nValuesList
Generate not more than this amount of enumeration-facets per type. Set to -1 for unlimited.

nDetection
Specifies granularity of simple type detection.

nFrequentElements
Shall the types for all elements be defined as global? Use that value spyGlobalComplexType to
define them on global scope. Otherwise, use the value spyGlobalElements.

Description
Use this method to automatically generate a DTD or schema for the current XML document.
For a finer tuning of DTD / schema generation, use GenerateDTDOrSchemaEx.

Errors
1400 The object is no longer valid.
1407 Invalid parameter or invalid address for the return parameter was

specified.

GenerateDTDOrSchemaEx

See also

Method: GenerateDTDOrSchemaEx (objDlg as DTDSchemaGeneratorDlg) as Document

Description
Use this method to automatically generate a DTD or schema for the current XML document. A
DTDSchemaGeneratorDlg object is used to pass information to the schema/DTD generator.
The generation process can be configured to allow user interaction or run without further user
input.

Errors
1400 The object is no longer valid.
1407 Invalid parameter or invalid address for the return parameter was

specified.

GenerateProgramCode

Method: GenerateProgramCode (objDlg as CodeGeneratorDlg)
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other
version.

Description
Generate Java, C++ or C# class files from the XML Schema definitions in your document. A
CodeGeneratorDlg object is used to pass information to the code generator. The generation
process can be configured to allow user interaction or run without further user input.

Errors
1400 The document object is no longer valid.
1407 An empty file name has been specified.
1421 Feature not available in this edition

632 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

GenerateSampleXML

Method: GenerateSampleXML (objDlg as GenerateSampleXMLDlg) as Document

Description
Generates a sample XML if the document is a schema or DTD. Use
Dialogs.GenerateSampleXMLDlg to get an initialized set of options.

Available with TypeLibrary version 1.5

Errors
1400 The document object is no longer valid.

GenerateSchemaDocumentation

Method: GenerateSchemaDocumentation (objDlg as SchemaDocumentationDlg)

Description
Generate documentation for a schema definition file in HTML, MS-Word, or RTF format. The
parameter objDlg is used to parameterize the generation process. Use
Dialogs.SchemaDocumentationDlg to get an initialized set of options. As a minimum, you will
need to set the property SchemaDocumentationDlg.OutputFile before starting the generation
process.

Errors
1400 The document object is no longer valid.
1407 Invalid parameters have been passed or an empty file name has been

specified as output target.
1417 The document is not opened in schema view, maybe it is not an '.xsd'

file.
1421 Feature is not available in this edition.
1422 Error during generation

GenerateWSDLDocumentation

Method: GenerateWSDLDocumentation (objDlg as WSDLDocumentationDlg)

Description
Generate documentation for a WSDL definition file in HTML, MS-Word, or RTF format. The
parameter objDlg is used to parameterize the generation process. Use
Dialogs.W SDLDocumentationDlg to get an initialized set of options. As a minimum, you will
need to set the property W SDLDocumentationDlg.OutputFile before starting the generation
process.

Errors
1400 The document object is no longer valid.
1407 Invalid parameters have been passed or an empty file name has been

specified as output target.
1417 The document is not opened in schema view, maybe it is not an '.xsd'

file.
1421 Feature is not available in this edition.
1422 Error during generation

© 2007 Altova GmbH

Interfaces 633The XMLSpy API

Programmers' Reference

GetExportElementList

See also

Method: GetExportElementList (pFromChild as XMLData, pExportSettings as
ExportSettings) as ElementList

Description
GetExportElementList creates a collection of elements to export from the document,
depending on the settings in pExportSettings and starting from the element pFromChild.
The function returns a collection of ElementListItems where the properties
ElementListItem.Name contain the names of the tables that can be exported from the
document. The property ElementListItem.FieldCount contains the number of columns in
the table. The property ElementListItem.RecordCount contains the number of records in
the table. The property ElementListItem.ElementKind is unused.

See also Import and export of data.

Errors
1400 The object is no longer valid.
1407 Invalid parameter or invalid address for the return parameter was

specified.
1427 Failed creating parser for the specified XML.

1428 Export of element list failed.

GetPathName (obsolete)

Superseded by Document.FullName

// ----- javascript sample -----
// instead of:
// strPathName = Application.ActiveDocument.GetPathName();
// use now:
strPathName = Application.ActiveDocument.FullName;

See also

Method: GetPathName() as String

Description
The method GetPathName gets the path of the active document.

See also Document.SetPathName (obsolete).

GridView

See also

Property: GridView as GridView

Description
This property provides access to the grid view functionality of the document.

634 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Errors
1400 The object is no longer valid.
1407 Invalid address for the return parameter was specified.
1417 Document needs to be open in enhanced grid view mode.

IsModified

See also

Property: IsModified as Boolean

Description
True if the document is modified.

Errors
1400 The object is no longer valid.
1407 Invalid address for the return parameter was specified.

IsValid

See also

Method: IsValid (strError as Variant, nErrorPos as Variant, pBadData as Variant) as
Boolean

Return Value
True if the document is valid, false if not.

Description
IsValid() validates the document against its associated schema or DTD. strError and
nErrorPos give you the same information as XMLSpy if you validate the file within the editor.

Errors
1400 The object is no longer valid.
1407 Invalid parameter or invalid address for the return parameter was

specified.
1408 Unable to validate file.

Examples

For an example written in VBA see Overview - Simple document access

' ---------------------------------------
' XMLSpy scripting environment - VBScript
' ---------------------------------------
Dim errorText
Dim errorPos
Dim badData

' validate the active document
Set doc = Application.ActiveDocument
valid = doc.IsValid(errorText, errorPos, badData)

If (Not valid) Then
' create the validation error message text
Text = errorText

© 2007 Altova GmbH

Interfaces 635The XMLSpy API

Programmers' Reference

If (Not IsEmpty(badData)) Then
Text = Text & "(" & badData.Name & "/" & badData.TextValue & ")"

End If

Call MsgBox("validation error[" & errorPos & "]: " & Text)
End If

// ---------------------------------------
// XMLSpy scripting environment - JScript
// ---------------------------------------
// define as arrays to support their usage as return parameters
var errorText = new Array(1);
var errorPos = new Array(1);
var badData = new Array(1);

// validate the active document
var doc = Application.ActiveDocument;
var valid = doc.IsValid(errorText, errorPos, badData);

if (! valid)
{

// compose the error description
var text = errorText;

// access that XMLData object only if filled in
if (badData[0] != null)

text += "(" + badData[0].Name + "/" + badData[0].TextValue + ")"
;

MsgBox("validation error[" + errorPos + "]: " + text);
}

IsWellFormed

See also

Method: IsWellFormed (pData as XMLData, bWithChildren as Boolean, strError as
Variant, nErrorPos as Variant, pBadXMLData as Variant) as Boolean

Return Value
True if the document is well formed.

Description
IsWellFormed checks the document for well-formedness starting at the element pData.

If the document is not well formed, strError contains an error message, nErrorPos the
position in the file and pBadXMLData holds a reference to the element which breaks the
well-formedness. These out-parameters are defined as VARIANTs to support scripting
languages like VBScript.

Errors
1400 The object is no longer valid.
1407 Invalid parameter or invalid address for the return parameter was

specified.

Example

See IsValid.

636 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Name

See also

Property: Name as String (read-only)

Description
Use this property to retrieve the name - not including the path - of the document file. To change
the file name for a document use the property FullName.

Errors
1400 The document object is no longer valid.
1407 Invalid address for the return parameter was specified.

Parent

See also

Property: Parent as Documents (read-only)

Description
Access the parent of the document object.

Errors
2400 The document object is no longer valid.
2401 Invalid address for the return parameter was specified.

Path

See also

Property: Path as String (read-only)

Description
Use this property to retrieve the path - not including the file name - of the document file. To
change the file name and path for a document use the property FullName.

Errors
1400 The document object is no longer valid.
1407 Invalid address for the return parameter was specified.

RootElement

See also

Property: RootElement as XMLData (read-only)

Description
The property RootElement provides access to the root element of the XML structure of the
document including the XML prolog data. To access the first element of a document's content
navigate to the first child of kind spyXMLDataElement or use the Document.DataRoot property.

Errors
1400 The document object is no longer valid.

© 2007 Altova GmbH

Interfaces 637The XMLSpy API

Programmers' Reference

1407 Invalid address for the return parameter was specified.

Save

See also

Method: Save()

Description
The method writes any modifications of the document to the associated file. See also
Document.FullName.

Errors
1400 The document object is no longer valid.
1407 An empty file name has been specified.
1403 Error when saving file, probably the file name is invalid.

SaveAs

See also

Method: SaveAs (strFileName as String)

Description
Save the document to the file specified. If saving was successful, the FullName property gets
set to the specified file name.

Errors
1400 The document object is no longer valid.
1407 An empty file name has been specified.
1403 Error when saving file, probably the file name is invalid.

Saved

See also

Property: Saved as Boolean (read-only)

Description
This property can be used to check if the document has been saved after the last modifications.
It returns the negation of IsModified.

Errors
1400 The document object is no longer valid.
1407 Invalid address for the return parameter was specified.

SaveInString

See also

Method: SaveInString (pData as XMLData, bMarked as Boolean) as String

Parameters
pData

638 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

XMLData element to start. Set pData to Document.RootElement if you want to copy the
complete file.

bMarked
If bMarked is true, only the elements selected in the grid view are copied.

Return Value
Returns a string with the XML data.

Description
SaveInString starts at the element pData and converts the XMLData objects to a string
representation.

Errors
1400 The object is no longer valid.
1407 Invalid parameter or invalid address for the return parameter was

specified.

SaveToURL

See also

Method: SaveToURL (strURL as String, strUser as String, strPassword as String)

Return Value

Description
SaveToURL() writes the document to the URL strURL. This method does not set the
permanent file path of the document.

Errors
1400 The object is no longer valid.
1402 Invalid URL specified.
1403 Error while saving to URL.

SetActiveDocument

See also

Method: SetActiveDocument()

Description
The method sets the document as the active and brings it to the front.

Errors
1400 The object is no longer valid.

© 2007 Altova GmbH

Interfaces 639The XMLSpy API

Programmers' Reference

SetEncoding (obsolete)

Superseded by Document.Encoding

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.SetEncoding("UTF-16");
// use now:
Application.ActiveDocument.Encoding = "UTF-16";

See also

Method: SetEncoding (strEncoding as String)

Description
SetEncoding sets the encoding of the document like the menu item "File/Encoding..." in
XMLSpy. Possible values for strEncoding are, for example:

8859-1,
8859-2,
ASCII, ISO-646,
850,
1252,
1255,
SHIFT-JIS, MS-KANJI,
BIG5, FIVE,
UTF-7,
UTF-8,
UTF-16

640 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

SetExternalIsValid

See also

Method: SetExternalIsValid (bValid as Boolean)

Parameters

bValid
Sets the result of an external validation process.

Description
The internal information set by this method is only queried on cancelling the default validation in
any OnBeforeValidate handler.

Available with TypeLibrary version 1.5

Errors
1400 The object is no longer valid.

SetPathName (obsolete)

Superseded by Document.FullName

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.SetPathName("C:\\myXMLFiles\\test.xml");
// use now:
Application.ActiveDocument.FullName = "C:\\myXMLFiles\\test.xml";

See also

Method: SetPathName (strPath as String)

Description
The method SetPathName sets the path of the active document. SetPathName only copies
the string and does not check if the path is valid. All succeeding save operations are done into
this file.

StartChanges

See also

Method: StartChanges()

Description
After StartChanges is executed XMLSpy will not update its editor windows until
Document.EndChanges is called. This increases performance of complex tasks to the XML
structure.

Errors
1400 The object is no longer valid.

© 2007 Altova GmbH

Interfaces 641The XMLSpy API

Programmers' Reference

Suggestions

Property: Suggestions as Array

Description
This property contains the last valid user suggestions for this document. The XMLSpy
generated suggestions can be modified before they are shown to the user in the
OnBeforeShowSuggestions event.

Errors
1400 The object is no longer valid.
1407 Invalid parameter or invalid address for the return parameter was

specified.

SwitchViewMode

See also

Method: SwitchViewMode (nMode as SPYViewModes) as Boolean

Return value
Returns true if view mode is switched.

Description
The method sets the current view mode of the document in XMLSpy. See also
Document.CurrentViewMode.

Errors
1400 The object is no longer valid.
1407 Invalid address for the return parameter was specified.
1417 Invalid view mode specified.

TextView

See also

Property: TextView as TextView

Description
This property provides access to the text view functionality of the document.

Errors
1400 The object is no longer valid.
1407 Invalid address for the return parameter was specified.

Title

See also

Property: Title as String (read-only)

Description
Title contains the file name of the document. To get the path and filename of the file use
FullName.

642 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Errors
1400 The document object is no longer valid.
1407 Invalid address for the return parameter was specified.

TransformXSL

See also

Method: TransformXSL()

Description
TransformXSL processes the XML document via the associated XSL file. See
Document.AssignXSL on how to place a reference to a XSL file into the document.

Errors
1400 The document object is no longer valid.
1411 Error during transformation process.

TransformXSLFO

See also

Method: TransformXSLFO()

Description
TransformXSLFO processes the XML document via the associated XSLFO file. See
AssignXSLFO on how to place a reference to a XSLFO file into the document. You need to
assign a FOP processor to XMLSpy before you can use this method.

Errors
1400 The document object is no longer valid.
1411 Error during transformation process.

UpdateViews

See also

Method: UpdateViews()

Description
To redraw the Enhanced Grid View and the Tree View call UpdateViews. This can be
important after you changed the XMLData structure of a document. This method does not
redraw the text view of XMLSpy.

Errors
1400 The document object is no longer valid.

UpdateXMLData

See also

Method: UpdateXMLData() as Boolean

© 2007 Altova GmbH

Interfaces 643The XMLSpy API

Programmers' Reference

Description
The XMLData tree is updated from the current view. Please note that this can fail in case of the
TextView if the current XML text is not well-formed.

Available with TypeLibrary version 1.5

Errors
1400 The document object is no longer valid.

4.3.9 Documents

See also

Properties
Count
Item

Methods
NewFile
OpenFile
OpenURL
OpenURLDialog
NewFileFromText

Description
This object represents the set of documents currently open in XMLSpy. Use this object to open
further documents or iterate through already opened documents.

Examples
' ---------------------------------------
' XMLSpy scripting environment - VBScript
' iterate through open documents
' ---------------------------------------
Dim objDocuments
Set objDocuments = Application.Documents

For Each objDoc In objDocuments
'do something useful with your document
objDoc.SetActiveDocument()

Next

// ---------------------------------------
// XMLSpy scripting environment - JScript
// close all open documents
// ---------------------------------------
for (var iter = new Enumerator (Application.Documents);
 ! iter.atEnd();
 iter.moveNext())
{

// MsgBox ("Closing file " + iter.item().Name);
iter.item().Close (true);

}

Count

See also

644 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Property: Count as long

Description
Count of open documents.

Item

See also

Method: Item (n as long) as Document

Description
Gets the document with the index n in this collection. Index is 1-based.

NewFile

See also

Method: NewFile (strFile as String, strType as String) as Document

Parameters
strFile
Full path of new file.

strType
Type of new file as string (i.e. "xml", "xsd", ...)

Return Value
Returns the new file.

Description
NewFile creates a new file of type strType (i.e. "xml"). The newly created file is also the
ActiveDocument.

NewFileFromText

See also

Method: NewFileFromText (strText as String, strType as String) as Document

Parameters
strText
The content of the new document in plain text.

strType
Type of the document to create (i.e. "xml").

Return Value
The method returns the new document.

Description
NewFileFromText creates a new document with strText as its content.

© 2007 Altova GmbH

Interfaces 645The XMLSpy API

Programmers' Reference

OpenFile

See also

Method: OpenFile (strPath as String, bDialog as Boolean) as Document

Parameters
strPath
Path and file name of file to open.

bDialog
Show dialogs for user input.

Return Value
Returns the opened file on success.

Description
OpenFile opens the file strPath . If bDialog is TRUE, a file-dialog will be displayed.

Example

Dim objDoc As Document
Set objDoc = objSpy.Documents.OpenFile(strFile, False)

OpenURL

See also

Method: OpenURL (strURL as String, nURLType as �, nLoaSPYURLTypesing as
SPYLoading, strUser as String, strPassword as String) as Document

Parameters
strURL
URL to open as document.

nURLType
Type of document to open. Set to -1 for auto detection.

nLoading
Set nLoading to 0 (zero) if you want to load it from cache or proxy. Otherwise set nLoading to 1.

strUser
Name of the user if required. Can be empty.

strPassword
Password for authentification. Can be empty.

Return Value
The method returns the opened document.

Description
O penURL opens the URL strURL.

646 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

OpenURLDialog

See also

Method: OpenURLDialog (strURL as String, nURLType as SPYURLTypes, nLoading as
SPYLoading, strUser as String, strPassword as String) as Document

Parameters
strURL
URL to open as document.

nURLType
Type of document to open. Set to -1 for auto detection.

nLoading
Set nLoading to 0 (zero) if you want to load it from cache or proxy. Otherwise set nLoading to 1.

strUser
Name of the user if required. Can be empty.

strPassword
Password for authentification. Can be empty.

Return Value
The method returns the opened document.

Description
OpenURLDialog displays the "open URL" dialog to the user and presets the input fields with the given
parameters.

4.3.10 DTDSchemaGeneratorDlg

See also

Properties and Methods

Standard automation properties
Application
Parent

DTDSchem aForm at
ValueList
TypeDetection
FrequentElements
MergeAllEqualNam ed
ResolveEntities
AttributeTypeDefinition
GlobalAttributes
OnlyStringEnums
M axEnum Length
OutputPath
OutputPathDialogAction

Description
Use this object to configure the generation of a schema or DTD. The method
GenerateDTDOrSchemaEx expects a DTDSchemaGeneratorDlg as parameter to configure the

© 2007 Altova GmbH

Interfaces 647The XMLSpy API

Programmers' Reference

generation as well as the associated user interactions.

Application

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors
3000 The object is no longer valid.
3001 Invalid address for the return parameter was specified.

AttributeTypeDefinition

Property: AttributeTypeDefinition as SPYAttributeTypeDefinition

Description
Specifies how attribute definitions get merged.

Errors
3000 The object is no longer valid.
3001 Invalid address for the return parameter was specified.

DTDSchemaFormat

Property: DTDSchemaFormat as SPYDTDSchemaFormat

Description
Sets the schema output format to DTD, or W3C.

Errors
3000 The object is no longer valid.
3001 Invalid address for the return parameter was specified.

FrequentElements

Property: FrequentElements as SPYFrequentElements

Description
Shall the types for all elements be defined as global? Use that value spyGlobalComplexType to
define them on global scope. Otherwise, use the value spyGlobalElements.

Errors
3000 The object is no longer valid.
3001 Invalid address for the return parameter was specified.

GlobalAttributes

Property: GlobalAttributes as Boolean

Description

648 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Shall attributes with same name and type be resolved globally?

Errors
3000 The object is no longer valid.
3001 Invalid address for the return parameter was specified.

MaxEnumLength

Property: MaxEnumLength as Integer

Description
Specifies the maximum number of characters allowed for enumeration names. If one value is
longer than this, no enumeration will be generated.

Errors
3000 The object is no longer valid.
3001 Invalid address for the return parameter was specified.

MergeAllEqualNamed

Property: MergeAllEqualNamed as Boolean

Description
Shall types of all elements with the same name be merged into one type?

Errors
3000 The object is no longer valid.
3001 Invalid address for the return parameter was specified.

OnlyStringEnums

Property: OnlyStringEnums as Boolean

Description
Specifies if enumerations will be created only for plain strings or all types of values.

Errors
3000 The object is no longer valid.
3001 Invalid address for the return parameter was specified.

OutputPath

Property: OutputPath as String

Description
Selects the file name for the generated schema/DTD.

Errors
3000 The object is no longer valid.
3001 Invalid address for the return parameter was specified.

© 2007 Altova GmbH

Interfaces 649The XMLSpy API

Programmers' Reference

OutputPathDialogAction

Property: OutputPathDialogAction as SPYDialogAction

Description
Defines how the sub-dialog for selecting the schema/DTD output path gets handled. Set this
value to spyDialogUserInput(2) to show the dialog with the current value of the OutputPath
property as default. Use spyDialogOK(0) to hide the dialog from the user.

Errors
3000 The object is no longer valid.
3001 Invalid address for the return parameter was specified.

Parent

Property: Parent as Dialogs (read-only)

Description
Access the parent of the object.

Errors
3000 The object is no longer valid.
3001 Invalid address for the return parameter was specified.

ResolveEntities

Property: ResolveEntities as Boolean

Description
Shall all entities be resolved before generation starts? If yes, an info-set will be built.

Errors
3000 The object is no longer valid.
3001 Invalid address for the return parameter was specified.

TypeDetection

Property: TypeDetection as SPYTypeDetection

Description
Specifies granularity of simple type detection.

Errors
3000 The object is no longer valid.
3001 Invalid address for the return parameter was specified.

ValueList

Property: ValueList as Integer

Description
Generate not more than this amount of enumeration-facets per type. Set to -1 for unlimited.

650 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Errors
3000 The object is no longer valid.
3001 Invalid address for the return parameter was specified.

4.3.11 ElementList

See also

Properties
Count
Item

Methods
RemoveElement

Description
Element lists are used for different purposes during export and import of data. Depending on
this purpose, different properties of ElementListItem are used.

It can hold
 a list of table names returned by a call to Application.GetDatabaseTables,

 a list of field names retuned by a call to
Application.GetDatabaseImportElementList or
Application.GetTextImportElementList,

 a field name filter list used in Application.ImportFromDatabase and
Application.ImportFromText,

 a list of table names and counts for their rows and columns as returned by calls to
GetExportElementList or

 a field name filter list used in Document.ExportToDatabase and
Document.ExportToText.

Count

See also

Property: Count as long (read-only)

Description
Count of elements in this collection.

Item

See also

Method: Item(n as long) as ElementListItem

Description
Gets the element with the index n from this collection. The first item has index 1.

RemoveElement

See also

© 2007 Altova GmbH

Interfaces 651The XMLSpy API

Programmers' Reference

Method: RemoveElement(Index as long)

Description
Rem oveElem ent removes the element Index from the collection. The first Item has index 1.

4.3.12 ElementListItem

See also

Properties
Name

ElementKind

FieldCount
RecordCount

Description
An element in an ElementList. Usage of its properties depends on the purpose of the
element list. For details see ElementList.

ElementKind

See also

Property: ElementKind as SPYXMLDataKind

Description
Specifies if a field should be imported as XML element (data value of spyXM LDataElem ent) or
attribute (data value of spyXMLDataAttr).

FieldCount

See also

Property: FieldCount as long (read-only)

Description
Count of fields (i.e. columns) in the table described by this element. This property is only valid
after a call to Document.GetExportElementList .

Name

See also

Property: Name as String (read-only)

Description
Name of the element. This is either the name of a table or a field, depending on the purpose of
th element list.

RecordCount

See also

652 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Property: RecordCount as long (read-only)

Description
Count of records (i.e. rows) in the table described by this element. This property is only valid
after a call to Document.GetExportElementList .

4.3.13 ExportSettings

See also

Properties

ElementList

EntitiesToText

ExportAllElements
SubLevelLimit

FromAttributes
FromSingleSubElements
FromTextValues

CreateKeys
IndependentPrimaryKey

Namespace

ExportCompleteXML
StartFromElement

Description
ExportSettings contains options used during export of XML data to a database or text file. See
Import and export of data for a general overview.

CreateKeys

See also

Property: CreateKeys as Boolean

Description
This property turns creation of keys (i.e. primary key and foreign key) on or off. Default is True.

ElementList

See also

Property: ElementList as ElementList

Description
Default is empty list. This list of elements defines which fields will be exported. To get the list of
available fields use Document.GetExportElementList . It is possible to prevent exporting
columns by removing elements from this list with ElementList.RemoveElement before
passing it to Document.ExportToDatabase or Document.ExportToText .

© 2007 Altova GmbH

Interfaces 653The XMLSpy API

Programmers' Reference

EntitiesToText

See also

Property: EntitiesToText as Boolean

Description
Defines if XML entities should be converted to text or left as they are during export. Default is
True.

ExportAllElements

See also

Property: ExportAllElements as Boolean

Description
If set to true , all elements in the document will be exported. If set to false , then
ExportSettings.SubLevelLimit is used to restrict the number of sub levels to export.
Default is true .

ExportCompleteXML

See also

Property: ExportCompleteXML as Boolean

Description
Defines whether the complete XML is exported or only the element specified by
StartFromElement and its children. Default is True.

FromAttributes

See also

Property: FromAttributes as Boolean

Description
Set FromAttributes to false if no export data should be created from attributes. Default is True.

FromSingleSubElements

See also

Property: FromSingleSubElements as Boolean

Description
Set FromSingleSubElements to false if no export data should be created from elements. Default
is True.

FromTextValues

See also

654 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Property: FromTextValues as Boolean

Description
Set FromTextValues to false if no export data should be created from text values. Default is
True.

IndependentPrimaryKey

See also

Property: IndependentPrimaryKey as Boolean

Description
Turns creation of independent primary key counter for every element on or off. If
ExportSettings.CreateKeys is False, this property will be ignored. Default is True.

Namespace

See also

Property: Namespace as SPYExportNamespace

Description
The default setting removes all namespace prefixes from the element names. In some
database formats the colon is not a legal character. Default is spyNoNam espace .

StartFromElement

See also

Property: StartFromElement as String

Description
Specifies the start element for the export. This property is only considered when
ExportCompleteXML is false.

SubLevelLimit

See also

Property: SubLevelLimit as Integer

Description
Defines the number of sub levels to include for the export. Default is 0. This property is ignored
if ExportSettings.ExportAllElements is true .

4.3.14 FileSelectionDlg

See also

Properties and Methods

Standard automation properties
Application
Parent

© 2007 Altova GmbH

Interfaces 655The XMLSpy API

Programmers' Reference

Dialog properties
FullName

Acceptance or cancellation of action that caused event
DialogAction

Description
The dialog object allows you to receive information about an event and pass back information to
the event handler in the same way as with a user dialog. Use the FileSelectionDlg.FullName to
select or modify the file path and set the FileSelectionDlg.DialogAction property to cancel or
agree with the action that caused the event.

Application

See also

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors
2400 The object is no longer valid.
2401 Invalid address for the return parameter was specified.

DialogAction

Property: DialogAction as SPYDialogAction

Description
If you want your script to perform the file selection operation without any user interaction
necessary, simulate user interaction by either setting the property to spyDialogOK(0) or
spyDialogCancel(1).
To allow your script to fill in the default values but let the user see and react on the dialog, use
the value spyDialogUserInput(2). If you receive a FileSelectionDlg object in an event handler,
spyDialogUserInput(2) is not supported and will be interpreted as spyDialogOK(0).

Errors
2400 The object is no longer valid.
2401 Invalid value for dialog action or invalid address for the return parameter

was specified.

FullName

Property: FullName as String

Description
Access the full path of the file the gets selected by the dialog. Most events that pass a
FileSelectionDlg object to you allow you modify this value and thus influence the action that
caused the event (e.g. load or save to a different location).

Errors
2400 The object is no longer valid.
2401 Invalid address for the return parameter was specified.

656 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Parent

See also

Property: Parent as Dialogs (read-only)

Description
Access the parent of the object.

Errors
2400 The object is no longer valid.
2401 Invalid address for the return parameter was specified.

4.3.15 FindInFilesDlg

See also

Properties and Methods

Standard automation properties
Application
Parent

Find
RegularExpression
Replace
DoReplace
ReplaceOnDisk
M atchW holeW ord
M atchCase
SearchLocation
StartFolder
IncludeSubfolders
SearchInProjectFilesDoExternal
FileExtension
AdvancedXM LSearch
XM LElem entNam es
XMLElem entContents
XMLAttributeNames
XMLAttributeContents
XM LCom m ents
XM LCData
XM LPI
XM LRest
ShowResult

Description
Use this object to configure the search (or replacement) for strings in files. The method
FindInFiles expects a FindInFilesDlg as parameter.

AdvancedXMLSearch

Property: AdvancedXMLSearch as Boolean

Description
Specifies if the XML search properties (XMLElementNames, XMLElementContents,

© 2007 Altova GmbH

Interfaces 657The XMLSpy API

Programmers' Reference

XMLAttributeNames, XMLAttributeContents, XMLComments, XMLCData, XMLPI and XMLRest
) are considered. The default is false.

Errors
3500 The object is no longer valid.
3501 Invalid address for the return parameter was specified.

Application

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors
3500 The object is no longer valid.
3501 Invalid address for the return parameter was specified.

DoReplace

Property: DoReplace as Boolean

Description
Specifies if the matched string is replaced by the string defined in Replace. The default is false.

Errors
3500 The object is no longer valid.
3501 Invalid address for the return parameter was specified.

FileExtension

Property: FileExtension as String

Description
Specifies the file filter of the files that should be considered during the search. Multiple file filters
must be delimited with a semicolon (eg: *.xml;*.dtd;a*.xsd). Use the wildcards * and ? to define
the file filter.

Errors
3500 The object is no longer valid.
3501 Invalid address for the return parameter was specified.

Find

Property: Find as String

Description
Specifies the string to search for.

Errors
3500 The object is no longer valid.
3501 Invalid address for the return parameter was specified.

658 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

IncludeSubfolders

Property: IncludeSubfolders as Boolean

Description
Specifies if subfolders are searched too. The default is true.

Errors
3500 The object is no longer valid.
3501 Invalid address for the return parameter was specified.

MatchCase

Property: MatchCase as Boolean

Description
Specifies if the search is case sensitive. The default is true.

Errors
3500 The object is no longer valid.
3501 Invalid address for the return parameter was specified.

MatchWholeWord

Property: MatchWholeWord as Boolean

Description
Specifies whether the whole word or just a part of it must match. The default is false.

Errors
3500 The object is no longer valid.
3501 Invalid address for the return parameter was specified.

Parent

Property: Parent as Dialogs (read-only)

Description
Access the parent of the object.

Errors
3500 The object is no longer valid.
3501 Invalid address for the return parameter was specified.

RegularExpression

Property: RegularExpression as Boolean

Description
Specifies if Find contains a regular expression. The default is false.

Errors
3500 The object is no longer valid.
3501 Invalid address for the return parameter was specified.

© 2007 Altova GmbH

Interfaces 659The XMLSpy API

Programmers' Reference

Replace

Property: Replace as String

Description
Specifies the replacement string. The matched string is only replaced if DoReplace is set true.

Errors
3500 The object is no longer valid.
3501 Invalid address for the return parameter was specified.

ReplaceOnDisk

Property: ReplaceOnDisk as Boolean

Description
Specifies if the replacement is done directly on disk. The modified file is not opened. The default
is false.

Errors
3500 The object is no longer valid.
3501 Invalid address for the return parameter was specified.

SearchInProjectFilesDoExternal

Property: SearchInProjectFilesDoExternal as Boolean

Description
Specifies if the external folders in the open project are searched, when a project search is
performed. The default is false.

Errors
3500 The object is no longer valid.
3501 Invalid address for the return parameter was specified.

SearchLocation

Property: SearchLocation as SPYFindInFilesSearchLocation

Description
Specifies the location of the search. The default is spyFindInFiles_Documents.

Errors
3500 The object is no longer valid.
3501 Invalid address for the return parameter was specified.

ShowResult

Property: ShowResult as Boolean

Description
Specifies if the result is displayed in the Find in Files output window. The default is false.

Errors
3500 The object is no longer valid.
3501 Invalid address for the return parameter was specified.

660 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

StartFolder

Property: StartFolder as String

Description
Specifies the folder where the disk search starts.

Errors
3500 The object is no longer valid.
3501 Invalid address for the return parameter was specified.

XMLAttributeContents

Property: XMLAttributeContents as Boolean

Description
Specifies if attribute contents are searched when AdvancedXMLSearch is true. The default is
true.

Errors
3500 The object is no longer valid.
3501 Invalid address for the return parameter was specified.

XMLAttributeNames

Property: XMLAttributeNames as Boolean

Description
Specifies if attribute names are searched when AdvancedXMLSearch is true. The default is
true.

Errors
3500 The object is no longer valid.
3501 Invalid address for the return parameter was specified.

XMLCData

Property: XMLCData as Boolean

Description
Specifies if CData tags are searched when AdvancedXMLSearch is true. The default is true.

Errors
3500 The object is no longer valid.
3501 Invalid address for the return parameter was specified.

XMLComments

Property: XMLComments as Boolean

Description
Specifies if comments are searched when AdvancedXMLSearch is true. The default is true.

Errors
3500 The object is no longer valid.
3501 Invalid address for the return parameter was specified.

© 2007 Altova GmbH

Interfaces 661The XMLSpy API

Programmers' Reference

XMLElementContents

Property: XMLElementContents as Boolean

Description
Specifies if element contents are searched when AdvancedXMLSearch is true. The default is
true.

Errors
3500 The object is no longer valid.
3501 Invalid address for the return parameter was specified.

XMLElementNames

Property: XMLElementNames as Boolean

Description
Specifies if element names are searched when AdvancedXMLSearch is true. The default is
true.

Errors
3500 The object is no longer valid.
3501 Invalid address for the return parameter was specified.

XMLPI

Property: XMLPI as Boolean

Description
Specifies if XML processing instructions are searched when AdvancedXMLSearch is true. The
default is true.

Errors
3500 The object is no longer valid.
3501 Invalid address for the return parameter was specified.

XMLRest

Property: XMLRest as Boolean

Description
Specifies if the rest of the XML (which is not covered by the other XML search properties) is
searched when AdvancedXMLSearch is true. The default is true.

Errors
3500 The object is no longer valid.
3501 Invalid address for the return parameter was specified.

4.3.16 FindInFilesResult

See also

Properties and Methods

Standard automation properties

662 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Application
Parent

Count
Item

Path
Docum ent

Description
This object represents a file that matched the search criteria. It contains a list of
FindInFilesResultMatch objects that describe the matching position.

Application

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors
3700 The object is no longer valid.
3701 Invalid address for the return parameter was specified.

Count

Property: Count as long (read-only)

Description
Count of elements in this collection.

Document

Property: Path as Document (read-only)

Description
This property returns the Document object if the matched file is already open in XMLSpy.

Errors
3700 The object is no longer valid.
3701 Invalid address for the return parameter was specified.

Item

Method: Item(n as long) as FindInFilesResultMatch

Description
Gets the element with the index n from this collection. The first item has index 1.

Parent

Property: Parent as FindInFilesResults (read-only)

Description

© 2007 Altova GmbH

Interfaces 663The XMLSpy API

Programmers' Reference

Access the parent of the object.

Errors
3700 The object is no longer valid.
3701 Invalid address for the return parameter was specified.

Path

Property: Path as String (read-only)

Description
Returns the path of the file that matched the search criteria.

Errors
3700 The object is no longer valid.
3701 Invalid address for the return parameter was specified.

4.3.17 FindInFilesResultMatch

See also

Properties and Methods

Standard automation properties
Application
Parent

Line
Position
Length
LineText
Replaced

Description
Contains the exact position in the file of the matched string.

Application

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors
3800 The object is no longer valid.
3801 Invalid address for the return parameter was specified.

Length

Property: Length as Long (read-only)

Description
Returns the length of the matched string.

664 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Errors
3800 The object is no longer valid.
3801 Invalid address for the return parameter was specified.

Line

Property: Line as Long (read-only)

Description
Returns the line number of the match. The line numbering starts with 0.

Errors
3800 The object is no longer valid.
3801 Invalid address for the return parameter was specified.

LineText

Property: LineText as String (read-only)

Description
Returns the text of the line.

Errors
3800 The object is no longer valid.
3801 Invalid address for the return parameter was specified.

Parent

Property: Parent as FindInFilesResult (read-only)

Description
Access the parent of the object.

Errors
3800 The object is no longer valid.
3801 Invalid address for the return parameter was specified.

Position

Property: Position as Long (read-only)

Description
Returns the start position of the match in the line. The position numbering starts with 0.

Errors
3800 The object is no longer valid.
3801 Invalid address for the return parameter was specified.

© 2007 Altova GmbH

Interfaces 665The XMLSpy API

Programmers' Reference

Replaced

Property: Replaced as Boolean (read-only)

Description
True if the matched string was replaced.

Errors
3800 The object is no longer valid.
3801 Invalid address for the return parameter was specified.

4.3.18 FindInFilesResults

See also

Properties and Methods

Standard automation properties
Application
Parent

Count
Item

Description
This is the result of the FindInFiles method. It is a list of FindInFilesResult objects.

Application

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors
3600 The object is no longer valid.
3601 Invalid address for the return parameter was specified.

Count

Property: Count as long (read-only)

Description
Count of elements in this collection.

Item

Method: Item(n as long) as FindInFilesResult

Description
Gets the element with the index n from this collection. The first item has index 1.

666 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Parent

Property: Parent as Application (read-only)

Description
Access the parent of the object.

Errors
3600 The object is no longer valid.
3601 Invalid address for the return parameter was specified.

4.3.19 GenerateSampleXMLDlg

See also

Properties and Methods

Standard automation properties
Application
Parent

NonMandatoryAttributes
RepeatCount
FillAttributesWithSampleData
FillElementsWithSampleData
ContentOfNillableElementsIsNonMandatory
TryToUseNonAbstractTypes
Optimization
SchemaOrDTDAssignment
LocalNameOfRootElement
NamespaceURIOfRootElement
OptionsDialogAction

Properties that are no longer supported
NonMandatoryElements - obsolete
TakeFirstChoice - obsolete
FillWithSampleData - obsolete

Description
Used to set the parameters for the generation of sample XML instances based on a W3C
schema or DTD.

Application

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors
2200 The object is no longer valid.
2201 Invalid address for the return parameter was specified.

© 2007 Altova GmbH

Interfaces 667The XMLSpy API

Programmers' Reference

Parent

Property: Parent as Dialogs (read-only)

Description
Access the parent of the object.

Errors
2200 The object is no longer valid.
2201 Invalid address for the return parameter was specified.

NonMandatoryAttributes

Property: NonMandatoryAttributes as Boolean

Description
If true attributes which are not mandatory are created in the sample XML instance file.

Errors
2200 The object is no longer valid.
2201 Invalid address for the return parameter was specified.

NonMandatoryElements - obsolete

Property: NonMandatoryElements as Boolean

Description
Do no longer use this property. Use Optimization, instead.

Errors
0001 The property is no longer accessible.

TakeFirstChoice - obsolete

Property: TakeFirstChoice as Boolean

Description
Do no longer use this property.

Errors
0001 The property is no longer accessible.

RepeatCount

Property: RepeatCount as long

Description
Number of elements to create for repeated types.

Errors
2200 The object is no longer valid.
2201 Invalid address for the return parameter was specified.

668 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

FillWithSampleData - obsolete

Property: FillWithSampleData as Boolean

Description
Do no longer access this property. Use FillAttributesWithSampleData and
FillElementsWithSampleData, instead.

Errors
0001 The property is no longer accessible.

FillElementsWithSampleData

Property: FillElementsWithSampleData as Boolean

Description
If true, elements will have sample content.

Errors
2200 The object is no longer valid.
2201 Invalid address for the return parameter was specified.

FillAttributesWithSampleData

Property: FillAttributesWithSampleData as Boolean

Description
If true, attributes will have sample content.

Errors
2200 The object is no longer valid.
2201 Invalid address for the return parameter was specified.

ContentOfNillableElementsIsNonMandatory

Property: ContentOfNillableElementsIsNonMandatory as Boolean

Description
If true, the contents of elements that are nillable will not be treated as mandatory.

Errors
2200 The object is no longer valid.
2201 Invalid address for the return parameter was specified.

TryToUseNonAbstractTypes

Property: TryToUseNonAbstractTypes as Boolean

Description
If true, tries to use a non-abstract type for xsi:type, if element has an abstract type.

Errors
2200 The object is no longer valid.
2201 Invalid address for the return parameter was specified.

© 2007 Altova GmbH

Interfaces 669The XMLSpy API

Programmers' Reference

Optimization

Property: Optimization as SPYSampleXMLGenerationOptimization

Description
Specifies which elements will be generated.

Errors
2200 The object is no longer valid.
2201 Invalid address for the return parameter was specified.

SchemaOrDTDAssignment

Property: SchemaOrDTDAssignment as
SPYSampleXMLGenerationSchemaOrDTDAssignment

Description
Specifies in which way a reference to the related schema or DTD - which is this document - will
be generated into the sample XML.

Errors
2200 The object is no longer valid.
2201 Invalid address for the return parameter was specified.

LocalNameOfRootElement

Property: LocalNameOfRootElement as String

Description
Specifies the local name of the root element for the generated sample XML.

Errors
2200 The object is no longer valid.
2201 Invalid address for the return parameter was specified.

NamespaceURIOfRootElement

Property: NamespaceURIOfRootElement as String

Description
Specifies the namespace URI of the root element for the generated sample XML.

Errors
2200 The object is no longer valid.
2201 Invalid address for the return parameter was specified.

OptionsDialogAction

Property: OptionsDialogAction as SPYDialogAction

Description
To allow your script to fill in the default values and let the user see and react on the dialog, set
this property to the value spyDialogUserInput(2). If you want your script to define all the options
in the schema documentation dialog without any user interaction necessary, use
spyDialogOK(0). Default is spyDialogOK.

670 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Errors
2200 The object is no longer valid.
2201 Invalid value has been used to set the property.

Invalid address for the return parameter was specified.

4.3.20 GridView

See also

Methods
Deselect
Select

SetFocus

Properties
CurrentFocus

IsVisible

Description
GridView Class

Events

OnBeforeDrag

See also

Event: OnBeforeDrag() as Boolean

XMLSpy scripting environment - VBScript:
Function On_BeforeDrag()

' On_BeforeStartEditing = False ' to prohibit dragging
End Function

XMLSpy scripting environment - JScript:
function On_BeforeDrag()
{

// return false; /* to prohibit dragging */
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (4, ...) // nEventId = 4

Description
This event gets fired on an attempt to drag an XMLData element on the grid view. Return false
to prevent dragging the data element to a different position.

OnBeforeDrop

See also

Event: OnBeforeDrop(objXMLData as XMLData) as Boolean

© 2007 Altova GmbH

Interfaces 671The XMLSpy API

Programmers' Reference

XMLSpy scripting environment - VBScript:
Function On_BeforeDrop(objXMLData)

' On_BeforeStartEditing = False ' to prohibit dropping
End Function

XMLSpy scripting environment - JScript:
function On_BeforeDrop(objXMLData)
{

// return false; /* to prohibit dropping */
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (5, ...) // nEventId = 5

Description
This event gets fired on an attempt to drop a previously dragged XMLData element on the grid
view. Return false to prevent the data element to be moved from its original position to the drop
destination position.

OnBeforeStartEditing

See also

Event: OnBeforeStartEditing(objXMLData as XMLData, bEditingName as Boolean)as
Boolean

XMLSpy scripting environment - VBScript:
Function On_BeforeStartEditing(objXMLData, bEditingName)

' On_BeforeStartEditing = False ' to prohibit editing the field
End Function

XMLSpy scripting environment - JScript:
function On_BeforeStartEditing(objXMLData, bEditingName)
{

// return false; /* to prohibit editing the field */
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (1, ...) // nEventId = 1

Description
This event gets fired before the editing mode for a grid cell gets entered. If the parameter
bEditingName is true, the name part of the element will be edited, it its value is false, the value
part will be edited.

OnEditingFinished

See also

Event: OnEditingFinished(objXMLData as XMLData, bEditingName as Boolean)

672 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

XMLSpy scripting environment - VBScript:
Function On_EditingFinished(objXMLData, bEditingName)
End Function

XMLSpy scripting environment - JScript:
function On_EditingFinished(objXMLData, bEditingName)
{
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (2, ...) // nEventId = 2

Description
This event gets fired when the editing mode of a grid cell gets left. The parameter
bEditingName specifies if the name part of the element has been edited.

OnFocusChanged

See also

Event: OnFocusChanged(objXMLData as XMLData, bSetFocus as Boolean,
bEditingName as Boolean)

XMLSpy scripting environment - VBScript:
Function On_FocusChanged(objXMLData, bSetFocus, bEditingName)
End Function

XMLSpy scripting environment - JScript:
function On_FocusChanged(objXMLData, bSetFocus, bEditingName)
{
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (3, ...) // nEventId = 3

Description
This event gets fired whenever a grid cell receives or looses the cursor focus. If the parameter
bEditingName is true, focus of the name part of the grid element has changed. Otherwise, focus
of the value part has changed.

CurrentFocus

See also

Property: CurrentFocus as XMLData

Description
Holds the XML element with the current focus. This property is read-only.

Deselect

See also

© 2007 Altova GmbH

Interfaces 673The XMLSpy API

Programmers' Reference

Method: Deselect(pData as XMLData)

Description
Deselects the element pData in the grid view.

IsVisible

See also

Property: IsVisible as Boolean

Description
True if the grid view is the active view of the document. This property is read-only.

Select

See also

Method: Select (pData as XMLData)

Description
Selects the XML element pData in the grid view.

SetFocus

See also

Method: SetFocus (pFocusData as XMLData)

Description
Sets the focus to the element pFocusData in the grid view.

4.3.21 SchemaDocumentationDlg

See also

Properties and Methods

Standard automation properties
Application
Parent

Interaction and visibility properties
OutputFile
OutputFileDialogAction
OptionsDialogAction
ShowProgressBar
ShowResult

Document generation options and methods
OutputFormat
EmbedDiagrams
DiagramFormat
MultipleOutputFiles

IncludeAll

674 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

IncludeIndex
IncludeGlobalAttributes
IncludeGlobalElements
IncludeLocalAttributes
IncludeLocalElements
IncludeGroups
IncludeComplexTypes
IncludeSimpleTypes
IncludeAttributeGroups
IncludeRedefines
IncludeReferencedSchemas

AllDetails
ShowDiagram
ShowNamespace
ShowType
ShowChildren
ShowUsedBy
ShowProperties
ShowSingleFacets
ShowPatterns
ShowEnumerations
ShowAttributes
ShowIdentityConstraints
ShowAnnotations
ShowSourceCode

Description
This object combines all options for schema document generation as they are available through
user interface dialog boxes in XMLSpy. The document generation options are initialized with the
values used during the last generation of schema documentation. However, before using the
object you have to set the OutputFile property to a valid file path. Use
OptionsDialogAction, OutputFileDialogAction and ShowProgressBar to specify
the level of user interaction desired. You can use IncludeAll and AllDetails to set whole option
groups at once or the individual properties to operate on a finer granularity.

AllDetails

See also

Method: AllDetails (i_bDetailsOn as Boolean)

Description
Use this method to turn all details options on or off.

Errors
2900 The object is no longer valid.

Application

See also

© 2007 Altova GmbH

Interfaces 675The XMLSpy API

Programmers' Reference

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

DiagramFormat

See also

Property: DiagramFormat as SPYImageKind

Description
Set this property to true , to specify the diagram image type. This property is not available for
HTML documentation. The property is initialized with the value used during the last call to
Docum ent.GenerateSchem aDocum entation . The default for the first run is PNG.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

EmbedDiagrams

See also

Property: EmbedDiagrams as Boolean

Description
Set this property to true , to embed the diagrams in the generated document. This property is not
available for HTML documentation. The property is initialized with the value used during the last
call to Docum ent.GenerateSchem aDocum entation . The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

IncludeAll

See also

Method: IncludeAll (i_bInclude as Boolean)

Description
Use this method to mark or unmark all include options.

Errors
2900 The object is no longer valid.

676 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

IncludeAttributeGroups

See also

Property: IncludeAttributeGroups as Boolean

Description
Set this property to true , to include attribute groups in the schema documentation. The property
is initialized with the value used during the last call to
Docum ent.GenerateSchem aDocum entation . The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

IncludeComplexTypes

See also

Property: IncludeComplexTypes as Boolean

Description
Set this property to true , to include complex types in the schema documentation. The property is
initialized with the value used during the last call to Docum ent.GenerateSchem aDocum entation .
The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

IncludeGlobalAttributes

See also

Property: IncludeGlobalAttributes as Boolean

Description
Set this property to true , to include global attributes in the schema documentation. The property
is initialized with the value used during the last call to
Docum ent.GenerateSchem aDocum entation . The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

IncludeGlobalElements

See also

Property: IncludeGlobalElements as Boolean

Description
Set this property to true , to include global elements in the schema documentation. The property
is initialized with the value used during the last call to

© 2007 Altova GmbH

Interfaces 677The XMLSpy API

Programmers' Reference

Docum ent.GenerateSchem aDocum entation . The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

IncludeGroups

See also

Property: IncludeGroups as Boolean

Description
Set this property to true , to include groups in the schema documentation. The property is
initialized with the value used during the last call to Docum ent.GenerateSchem aDocum entation .
The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

IncludeIndex

See also

Property: IncludeIndex as Boolean

Description
Set this property to true , to include an index in the schema documentation. The property is
initialized with the value used during the last call to Docum ent.GenerateSchem aDocum entation .
The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

IncludeLocalAttributes

See also

Property: IncludeLocalAttributes as Boolean

Description
Set this property to true , to include local attributes in the schema documentation. The property
is initialized with the value used during the last call to
Docum ent.GenerateSchem aDocum entation . The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

IncludeLocalElements

See also

678 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Property: IncludeLocalElements as Boolean

Description
Set this property to true , to include local elements in the schema documentation. The property is
initialized with the value used during the last call to Docum ent.GenerateSchem aDocum entation .
The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

IncludeRedefines

See also

Property: IncludeRedefines as Boolean

Description
Set this property to true , to include redefines in the schema documentation. The property is
initialized with the value used during the last call to Docum ent.GenerateSchem aDocum entation .
The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

IncludeReferencedSchemas

See also

Property: IncludeReferencedSchemas as Boolean

Description
Set this property to true , to include referenced schemas in the schema documentation. The
property is initialized with the value used during the last call to
Docum ent.GenerateSchem aDocum entation . The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

IncludeSimpleTypes

See also

Property: IncludeSimpleTypes as Boolean

Description
Set this property to true , to include simple types in the schema documentation. The property is
initialized with the value used during the last call to Docum ent.GenerateSchem aDocum entation .
The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

© 2007 Altova GmbH

Interfaces 679The XMLSpy API

Programmers' Reference

MultipleOutputFiles

See also

Property: MultipleOutputFiles as Boolean

Description
Set this property to true , to split the documentation files. The property is initialized with the value
used during the last call to Docum ent.GenerateSchem aDocum entation . The default for the first
run is false.

Errors
2900 The object is no longer valid.
2901 Invalid value has been used to set the property.

Invalid address for the return parameter was specified.

OptionsDialogAction

See also

Property: OptionsDialogAction as SPYDialogAction

Description
To allow your script to fill in the default values and let the user see and react on the dialog, set
this property to the value spyDialogUserInput(2). If you want your script to define all the options
in the schema documentation dialog without any user interaction necessary, use
spyDialogOK(0). Default is spyDialogOK.

Errors
2900 The object is no longer valid.
2901 Invalid value has been used to set the property.

Invalid address for the return parameter was specified.

OutputFile

See also

Property: OutputFile as String

Description
Full path and name of the file that will contain the generated documentation. In case of HTML
output, additional '.png' files will be generated based on this filename. The default value for this
property is an empty string and needs to be replaced before using this object in a call to
Docum ent.GenerateSchem aDocum entation .

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

OutputFileDialogAction

See also

Property: OutputFileDialogAction as SPYDialogAction

680 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Description
To allow the user to select the output file with a file selection dialog, set this property to
spyDialogUserInput(2). If the value stored in OutputFile should be taken and no user interaction
should occur, use spyDialogOK(0). Default is spyDialogOK.

Errors
2900 The object is no longer valid.
2901 Invalid value has been used to set the property.

Invalid address for the return parameter was specified.

OutputFormat

See also

Property: OutputFormat as SPYSchem aDocum entationForm at

Description
Defines the kind of documentation that will be generated: HTML (value=0), MS-Word (value=1),
or RTF (value=2). The property gets initialized with the value used during the last call to
Docum ent.GenerateSchem aDocum entation . The default for the first run is HTML.

Errors
2900 The object is no longer valid.
2901 Invalid value has been used to set the property.

Invalid address for the return parameter was specified.

Parent

See also

Property: Parent as Dialogs (read-only)

Description
Access the parent of the object.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

ShowAnnotations

See also

Property: ShowAnnotations as Boolean

Description
Set this property to true , to show the annotations to a type definition in the schema
documentation. The property is initialized with the value used during the last call to
Docum ent.GenerateSchem aDocum entation . The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

© 2007 Altova GmbH

Interfaces 681The XMLSpy API

Programmers' Reference

ShowAttributes

See also

Property: ShowAttributes as Boolean

Description
Set this property to true , to show the type definitions attributes in the schema documentation.
The property is initialized with the value used during the last call to
Docum ent.GenerateSchem aDocum entation . The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

ShowChildren

See also

Property: ShowChildren as Boolean

Description
Set this property to true , to show the children of a type definition as links in the schema
documentation. The property is initialized with the value used during the last call to
Docum ent.GenerateSchem aDocum entation . The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

ShowDiagram

See also

Property: ShowDiagram as Boolean

Description
Set this property to true , to show type definitions as diagrams in the schema documentation.
The property is initialized with the value used during the last call to
Docum ent.GenerateSchem aDocum entation . The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

ShowEnumerations

See also

Property: ShowEnumerations as Boolean

Description
Set this property to true , to show the enumerations contained in a type definition in the schema

682 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

documentation. The property is initialized with the value used during the last call to
Docum ent.GenerateSchem aDocum entation . The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

ShowIdentityConstraints

See also

Property: ShowIdentityConstraints as Boolean

Description
Set this property to true , to show a type definitions identity constraints in the schema
documentation. The property is initialized with the value used during the last call to
Docum ent.GenerateSchem aDocum entation . The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

ShowNamespace

See also

Property: ShowNamespace as Boolean

Description
Set this property to true , to show the namespace of type definitions in the schema
documentation. The property is initialized with the value used during the last call to
Docum ent.GenerateSchem aDocum entation . The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

ShowPatterns

See also

Property: ShowPatterns as Boolean

Description
Set this property to true , to show the patterns of a type definition in the schema documentation.
The property is initialized with the value used during the last call to
Docum ent.GenerateSchem aDocum entation . The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

© 2007 Altova GmbH

Interfaces 683The XMLSpy API

Programmers' Reference

ShowProgressBar

See also

Property: ShowProgressBar as Boolean

Description
Set this property to true , to make the window showing the document generation progress
visible. Use false , to hide it. Default is false .

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

ShowProperties

See also

Property: ShowProperties as Boolean

Description
Set this property to true , to show the type definition properties in the schema documentation.
The property is initialized with the value used during the last call to
Docum ent.GenerateSchem aDocum entation . The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

ShowResult

See also

Property: ShowResult as Boolean

Description
Set this property to true , to automatically open the resulting document when generation was
successful. HTML documentation will be opened in XMLSpy. To show Word documentation,
MS-Word will be started. The property gets initialized with the value used during the last call to
Docum ent.GenerateSchem aDocum entation . The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

ShowSingleFacets

See also

Property: ShowSingleFacets as Boolean

Description
Set this property to true , to show the facets of a type definition in the schema documentation.
The property is initialized with the value used during the last call to

684 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Docum ent.GenerateSchem aDocum entation . The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

ShowSourceCode

See also

Property: ShowSourceCode as Boolean

Description
Set this property to true , to show the XML source code for type definitions in the schema
documentation. The property is initialized with the value used during the last call to
Docum ent.GenerateSchem aDocum entation . The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

ShowType

See also

Property: ShowType as Boolean

Description
Set this property to true , to show the type of type definitions in the schema documentation. The
property is initialized with the value used during the last call to
Docum ent.GenerateSchem aDocum entation . The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

ShowUsedBy

See also

Property: ShowUsedBy as Boolean

Description
Set this property to true , to show the used-by relation for type definitions in the schema
documentation. The property is initialized with the value used during the last call to
Docum ent.GenerateSchem aDocum entation . The default for the first run is true.

Errors
2900 The object is no longer valid.
2901 Invalid address for the return parameter was specified.

© 2007 Altova GmbH

Interfaces 685The XMLSpy API

Programmers' Reference

4.3.22 SpyProject

See also

Methods
CloseProject
SaveProject
SaveProjectAs

Properties
RootItems
ProjectFile

Description
SpyProject Class

CloseProject

See also

Declaration: CloseProject(bDiscardChanges as Boolean, bCloseFiles as Boolean,
bDialog as Boolean)

Parameters
bDiscardChanges
Set bDiscardChanges to FALSE if you want to save the changes of the open project files and
the project.

bCloseFiles
Set bCloseFiles to TRUE to close all open project files.

bDialog
Show dialogs for user input.

Description
CloseProject closes the current project.

ProjectFile

See also

Declaration: ProjectFile as String

Description
Path and filename of the project.

RootItems

See also

Declaration: RootItems as SpyProjectItems

Description
Root level of collection of project items.

686 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

SaveProject

See also

Declaration: SaveProject

Description
SaveProject saves the current project.

SaveProjectAs

See also

Declaration: SaveProjectAs (strPath as String, bDialog as Boolean)

Parameters
strPath
Full path with file name of new project file.

bDialog
If bDialog is TRUE, a file-dialog will be displayed.

Description
SaveProjectAs stores the project data into a new location.

4.3.23 SpyProjectItem

See also

Methods
Open

Properties
ChildItems
ParentItem
FileExtensions
ItemType
Name
Path
ValidateWith
XMLForXSLTransformation
XSLForXMLTransformation
XSLTransformationFileExtension
XSLTransformationFolder

Description
SpyProjectItem Class

ChildItems

See also

Declaration: ChildItems as SpyProjectItems

Description

© 2007 Altova GmbH

Interfaces 687The XMLSpy API

Programmers' Reference

If the item is a folder, ChildItems is the collection of the folder content.

FileExtensions

See also

Declaration: FileExtensions as String

Description
Used to set the file extensions if the project item is a folder.

ItemType

See also

Declaration: ItemType as SPYProjectItemTypes

Description
This property is read-only.

Name

See also

Declaration: Name as String

Description
Name of the project item. This property is read-only.

Open

See also

Declaration: Open as Document

Return Value
The project item opened as document.

Description
Opens the project item.

ParentItem

See also

Declaration: ParentItem as SpyProjectItem

Description
Parent item of the current project item. Can be NULL (Nothing) if the project item is a top-level
item.

688 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Path

See also

Declaration: Path as String

Description
Path of project item. This property is read-only.

ValidateWith

See also

Declaration: ValidateWith as String

Description
Used to set the schema/DTD for validation.

XMLForXSLTransformation

See also

Declaration: XMLForXSLTransformation as String

Description
Used to set the XML for XSL transformation.

XSLForXMLTransformation

See also

Declaration: XSLForXMLTransformation as String

Description
Used to set the XSL for XML transformation.

XSLTransformationFileExtension

See also

Declaration: XSLTransformationFileExtension as String

Description
Used to set the file extension for XSL transformation output files.

XSLTransformationFolder

See also

Declaration: XSLTransformationFolder as String

Description
Used to set the destination folder for XSL transformation output files.

© 2007 Altova GmbH

Interfaces 689The XMLSpy API

Programmers' Reference

4.3.24 SpyProjectItems

See also

Methods
AddFile
AddFolder
AddURL
RemoveItem

Properties
Count
Item

Description
SpyProjectItems Class

AddFile

See also

Declaration: AddFile (strPath as String)

Parameters

strPath
Full path with file name of new project item

Description
The method adds a new file to the collection of project items.

AddFolder

See also

Declaration: AddFolder (strName as String)

Parameters

strNam e
Name of the new folder.

Description
The method AddFolder adds a folder with the name strNam e to the collection of project items.

AddURL

See also

Declaration: AddURL (strURL as String, nURLType as SPYURLTypes, strUser as String,
strPassword as String, bSave as Boolean)

Description

690 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

strURL
URL to open as document.

nURLType
Type of document to open. Set to -1 for auto detection.

nLoading
Set nLoading to 0 (zero) if you want to load it from cache or proxy. Otherwise set nLoading to 1.

strUser
Name of the user if required. Can be empty.

strPassword
Password for authentification. Can be empty.

bSave
Save user and password information.

Description
The method adds an URL item to the project collection.

Count

See also

Declaration: Count as long

Description
This property gets the count of project items in the collection. The property is read-only.

Item

See also

Declaration: Item (n as long) as SpyProjectItem

Description
Retrieves the n-th element of the collection of project items. The first item has index 1.

RemoveItem

See also

Declaration: RemoveItem (pItem as SpyProjectItem)

Description
RemoveItem deletes the item pItem from the collection of project items.

4.3.25 TextImportExportSettings

See also

Properties for import only
ImportFile

© 2007 Altova GmbH

Interfaces 691The XMLSpy API

Programmers' Reference

Properties for export only
DestinationFolder
FileExtension
CommentIncluded
RemoveDelimiter
RemoveNewline

Properties for import and export
HeaderRow
FieldDelimiter
EnclosingCharacter
Encoding
EncodingByteOrder

Description
TextImportExportSettings contains options common to text import and export functions.

CommentIncluded

See also

Property: CommentIncluded as Boolean

Description
This property tells whether additional comments are added to the generated text file. Default is
true. This property is used only when exporting to text files.

DestinationFolder

See also

Property: DestinationFolder as String

Description
The property DestinationFolder sets the folder where the created files are saved during
text export.

EnclosingCharacter

See also

Property: EnclosingCharacter as SPYTextEnclosing

Description
This property defines the character that encloses all field values for import and export. Default
is spyNoEnclosing.

Encoding

See also

Property: Encoding as String

Description
The property Encoding sets the character encoding for the text files for importing and

692 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

exporting.

EncodingByteOrder

See also

Property: EncodingByteOrder as SPYEncodingByteOrder

Description
The property EncodingByteOrder sets the byte order for Unicode characters. Default is spyNONE.

FieldDelimiter

See also

Property: FieldDelimiter as SPYTextDelimiters

Description
The property FieldDelimiter defines the delimiter between the fields during import and
export. Default is spyTabulator.

FileExtension

See also

Property: FileExtension as String

Description
This property sets the file extension for files created on text export.

HeaderRow

See also

Property: HeaderRow as Boolean

Description
The property HeaderRow is used during import and export. Set HeaderRow true on import, if
the first line of the text file contains the names of the columns. Set HeaderRow true on export, if
the first line in the created text files should contain the name of the columns. Default value is
true.

ImportFile

See also

Property: ImportFile as String

Description
This property is used to set the text file for import. The string has to be a full qualified path. See
also Import and Export.

© 2007 Altova GmbH

Interfaces 693The XMLSpy API

Programmers' Reference

RemoveDelimiter

See also

Property: RemoveDelimiter as Boolean

Description
The property RemoveDelimiter defines whether characters in the text that are equal to the
delimiter character are removed. Default is false. This property is used only when exporting to
text files.

RemoveNewline

See also

Property: RemoveNewline as Boolean

Description
The property RemoveNewline defines whether newline characters in the text are removed.
Default is false. This property is used only when exporting to text files.

4.3.26 TextView

See also

Properties and Methods

Application
Parent

LineFromPosition
PositionFromLine
LineLength
SelText
GetRangeText
ReplaceText
MoveCaret
GoToLineChar
SelectText
SelectionStart
SelectionEnd
Text
LineCount
Length

Description

Events

OnBeforeShowSuggestions

See also

Event: OnBeforeShowSuggestions() as Boolean

694 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Description
This event gets fired before a suggestion window is shown. The Document property
Suggestions contains a string array that is recommended to the user. It is possible to modify the
displayed recommendations during this event. Before doing so you have to assign an empty
array to the Suggestions property. The best location for this is the OnDocumentOpened event.
To prevent the suggestion window to show up return false and true to continue its display.

Examples
Given below are examples of how this event can be scripted.

XMLSpy scripting environment - VBScript:
Function On_BeforeShowSuggestions()
End Function

XMLSpy scripting environment - JScript:
function On_BeforeShowSuggestions()
{
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (33, ...) // nEventId = 33

OnChar

See also

Event: OnChar(nChar as Long, bExistSuggestion as Boolean) as Boolean

Description
This event gets fired on each key stroke. The parameter nChar is the key that was pressed and
bExistSuggestions tells whether a XMLSpy generated suggestions window is displayed after
this key. The Document property Suggestions contains a string array that is recommended to
the user. It is possible to modify the displayed recommendations during this event. Before doing
so you have to assign an empty array to the Suggestions property. The best location for this is
the OnDocumentOpened event. To prevent the suggestion window to show up return false and
true to continue its display.
It is also possible to create a new suggestions window when none is provided by XMLSpy. Set
the Document property Suggestions to a string array with your recommendations and return
true.
This event is fired before the OnBeforeShowSuggestions event. If you prevent to show the
suggestion window by returning false then OnBeforeShowSuggestions is not fired.

Examples
Given below are examples of how this event can be scripted.

XMLSpy scripting environment - VBScript:
Function On_Char(nChar, bExistSuggestions)
End Function

XMLSpy scripting environment - JScript:
function On_Char(nChar, bExistSuggestions)
{
}

© 2007 Altova GmbH

Interfaces 695The XMLSpy API

Programmers' Reference

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (35, ...) // nEventId = 35

Application

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

GetRangeText

Method: GetRangeText(nStart as Long, nEnd as Long) as String

Description
Returns the text in the specified range.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

GoToLineChar

Method: GoToLineChar(nLine as Long, nChar as Long)

Description
Moves the caret to the specified line and character position.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

Length

Property: Length as Long

Description
Returns the character count of the document.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

LineCount

Property: LineCount as Long

Description
Returns the number of lines in the document.

696 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

LineFromPosition

Method: LineFromPosition(nCharPos as Long) as Long

Description
Returns the line number of the character position.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

LineLength

Method: LineLength(nLine as Long) as Long

Description
Returns the length of the line.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

MoveCaret

Method: MoveCaret(nDiff as Long)

Description
Moves the caret nDiff characters.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

Parent

Property: Parent as Document (read-only)

Description
Access the parent of the object.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

PositionFromLine

Method: PositionFromLine(nLine as Long) as Long

Description
Returns the start position of the line.

© 2007 Altova GmbH

Interfaces 697The XMLSpy API

Programmers' Reference

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

ReplaceText

Method: ReplaceText(nPosFrom as Long, nPosTill as Long, sText as String)

Description
Replaces the text in the specified range.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

SelectionEnd

Property: SelectionEnd as Long

Description
Returns/sets the text selection end position.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

SelectionStart

Property: SelectionStart as Long

Description
Returns/sets the text selection start position.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

SelectText

Method: SelectText(nPosFrom as Long, nPosTill as Long)

Description
Selects the text in the specified range.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

SelText

Property: SelText as String

Description
Returns/sets the selected text.

Errors

698 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

Text

Property: Text as String

Description
Returns/sets the document text.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

4.3.27 WSDLDocumentationDlg

See also

Properties and Methods

Standard automation properties
Application
Parent

Interaction and visibility properties
OutputFile
OutputFileDialogAction
OptionsDialogAction
ShowProgressBar
ShowResult

Document generation options and methods
OutputFormat
EmbedDiagrams
DiagramFormat
MultipleOutputFiles

IncludeAll
IncludeBinding
IncludeImportedWSDLFiles
IncludeMessages
IncludeOverview
IncludePortType
IncludeService
IncludeTypes

AllDetails
ShowBindingDiagram
ShowExtensibility
ShowMessageParts
ShowPort
ShowPortTypeDiagram
ShowPortTypeOperations
ShowServiceDiagram
ShowSourceCode
ShowTypesDiagram
ShowUsedBy

© 2007 Altova GmbH

Interfaces 699The XMLSpy API

Programmers' Reference

Description
This object combines all options for WSDL document generation as they are available through
user interface dialog boxes in XMLSpy. The document generation options are initialized with the
values used during the last generation of WSDL documentation. However, before using the
object you have to set the OutputFile property to a valid file path. Use
OptionsDialogAction, OutputFileDialogAction and ShowProgressBar to specify
the level of user interaction desired. You can use IncludeAll and AllDetails to set whole option
groups at once or the individual properties to operate on a finer granularity.

AllDetails

See also

Method: AllDetails (i_bDetailsOn as Boolean)

Description
Use this method to turn all details options on or off.

Errors
3900 The object is no longer valid.

Application

See also

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

DiagramFormat

See also

Property: DiagramFormat as SPYImageKind

Description
Set this property to true , to specify the diagram image type. This property is not available for
HTML documentation. The property is initialized with the value used during the last call to
Docum ent.GenerateW SDLDocum entation . The default for the first run is PNG.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

700 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

EmbedDiagrams

See also

Property: EmbedDiagrams as Boolean

Description
Set this property to true , to embed the diagrams in the generated document. This property is not
available for HTML documentation. The property is initialized with the value used during the last
call to Docum ent.GenerateW SDLDocum entation . The default for the first run is true.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

IncludeAll

See also

Method: IncludeAll (i_bInclude as Boolean)

Description
Use this method to mark or unmark all include options.

Errors
3900 The object is no longer valid.

IncludeBinding

See also

Property: IncludeBinding as Boolean

Description
Set this property to true , to include bindings in the WSDL documentation. The property is
initialized with the value used during the last call to Docum ent.GenerateW SDLDocum entation .
The default for the first run is true.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

IncludeImportedWSDLFiles

See also

Property: IncludeImportedWSDLFiles as Boolean

Description
Set this property to true , to include imported WSDL finles in the WSDL documentation. The
property is initialized with the value used during the last call to
Docum ent.GenerateW SDLDocum entation . The default for the first run is true.

© 2007 Altova GmbH

Interfaces 701The XMLSpy API

Programmers' Reference

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

IncludeMessages

See also

Property: IncludeMessages as Boolean

Description
Set this property to true , to include messages in the WSDL documentation. The property is
initialized with the value used during the last call to Docum ent.GenerateW SDLDocum entation .
The default for the first run is true.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

IncludeOverview

See also

Property: IncludeOverview as Boolean

Description
Set this property to true , to include an overview in the WSDL documentation. The property is
initialized with the value used during the last call to Docum ent.GenerateW SDLDocum entation .
The default for the first run is true.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

IncludePortType

See also

Property: IncludePortType as Boolean

Description
Set this property to true , to include port types in the WSDL documentation. The property is
initialized with the value used during the last call to Docum ent.GenerateW SDLDocum entation .
The default for the first run is true.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

IncludeService

See also

Property: IncludeService as Boolean

702 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Description
Set this property to true , to include services in the WSDL documentation. The property is
initialized with the value used during the last call to Docum ent.GenerateW SDLDocum entation .
The default for the first run is true.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

IncludeTypes

See also

Property: IncludeTypes as Boolean

Description
Set this property to true , to include types in the WSDL documentation. The property is initialized
with the value used during the last call to Docum ent.GenerateW SDLDocum entation . The
default for the first run is true.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

MultipleOutputFiles

See also

Property: MultipleOutputFiles as Boolean

Description
Set this property to true , to split the documentation files. The property is initialized with the value
used during the last call to Docum ent.GenerateW SDLDocum entation . The default for the first
run is false.

Errors
3900 The object is no longer valid.
3901 Invalid value has been used to set the property.

Invalid address for the return parameter was specified.

OptionsDialogAction

See also

Property: OptionsDialogAction as SPYDialogAction

Description
To allow your script to fill in the default values and let the user see and react on the dialog, set
this property to the value spyDialogUserInput(2). If you want your script to define all the options
in the schema documentation dialog without any user interaction necessary, use
spyDialogOK(0). Default is spyDialogOK.

Errors
3900 The object is no longer valid.

© 2007 Altova GmbH

Interfaces 703The XMLSpy API

Programmers' Reference

3901 Invalid value has been used to set the property.
Invalid address for the return parameter was specified.

OutputFile

See also

Property: OutputFile as String

Description
Full path and name of the file that will contain the generated documentation. In case of HTML
output, additional '.png' files will be generated based on this filename. The default value for this
property is an empty string and needs to be replaced before using this object in a call to
Docum ent.GenerateW SDLDocum entation .

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

OutputFileDialogAction

See also

Property: OutputFileDialogAction as SPYDialogAction

Description
To allow the user to select the output file with a file selection dialog, set this property to
spyDialogUserInput(2). If the value stored in OutputFile should be taken and no user interaction
should occur, use spyDialogOK(0). Default is spyDialogOK.

Errors
3900 The object is no longer valid.
3901 Invalid value has been used to set the property.

Invalid address for the return parameter was specified.

OutputFormat

See also

Property: OutputFormat as SPYSchem aDocum entationForm at

Description
Defines the kind of documentation that will be generated: HTML (value=0), MS-Word (value=1),
or RTF (value=2). The property gets initialized with the value used during the last call to
Docum ent.GenerateW SDLDocum entation . The default for the first run is HTML.

Errors
3900 The object is no longer valid.
3901 Invalid value has been used to set the property.

Invalid address for the return parameter was specified.

704 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Parent

See also

Property: Parent as Dialogs (read-only)

Description
Access the parent of the object.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

ShowBindingDiagram

See also

Property: ShowBindingDiagram as Boolean

Description
Set this property to true , to show binding diagrams in the WSDL documentation. The property is
initialized with the value used during the last call to Docum ent.GenerateW SDLDocum entation .
The default for the first run is true.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

ShowExtensibility

See also

Property: ShowExtensibility as Boolean

Description
Set this property to true , to show service and binding extensibilities in the WSDL
documentation. The property is initialized with the value used during the last call to
Docum ent.GenerateW SDLDocum entation . The default for the first run is true.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

ShowMessageParts

See also

Property: ShowMessageParts as Boolean

Description
Set this property to true , to show message parts of messges in the WSDL documentation. The
property is initialized with the value used during the last call to
Docum ent.GenerateW SDLDocum entation . The default for the first run is true.

© 2007 Altova GmbH

Interfaces 705The XMLSpy API

Programmers' Reference

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

ShowPort

See also

Property: ShowPort as Boolean

Description
Set this property to true , to show service ports in the WSDL documentation. The property is
initialized with the value used during the last call to Docum ent.GenerateW SDLDocum entation .
The default for the first run is true.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

ShowPortTypeDiagram

See also

Property: ShowPortTypeDiagram as Boolean

Description
Set this property to true , to show port type diagrams in the WSDL documentation. The property
is initialized with the value used during the last call to Docum ent.GenerateW SDLDocum entation
. The default for the first run is true.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

ShowPortTypeOperations

See also

Property: ShowPortTypeOperations as Boolean

Description
Set this property to true , to show port type operations in the WSDL documentation. The property
is initialized with the value used during the last call to Docum ent.GenerateW SDLDocum entation
. The default for the first run is true.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

706 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

ShowProgressBar

See also

Property: ShowProgressBar as Boolean

Description
Set this property to true , to make the window showing the document generation progress
visible. Use false , to hide it. Default is false .

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

ShowResult

See also

Property: ShowResult as Boolean

Description
Set this property to true , to automatically open the resulting document when generation was
successful. HTML documentation will be opened in XMLSpy. To show Word documentation,
MS-Word will be started. The property gets initialized with the value used during the last call to
Docum ent.GenerateW SDLDocum entation . The default for the first run is true.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

ShowServiceDiagram

See also

Property: ShowServiceDiagram as Boolean

Description
Set this property to true , to show service diagrams in the WSDL documentation. The property is
initialized with the value used during the last call to Docum ent.GenerateW SDLDocum entation .
The default for the first run is true.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

ShowSourceCode

See also

Property: ShowSourceCode as Boolean

Description
Set this property to true , to show source code for the includes in the WSDL documentation. The
property is initialized with the value used during the last call to

© 2007 Altova GmbH

Interfaces 707The XMLSpy API

Programmers' Reference

Docum ent.GenerateW SDLDocum entation . The default for the first run is true.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

ShowTypesDiagram

See also

Property: ShowTypesDiagram as Boolean

Description
Set this property to true , to show type diagrams in the WSDL documentation. The property is
initialized with the value used during the last call to Docum ent.GenerateW SDLDocum entation .
The default for the first run is true.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

ShowUsedBy

See also

Property: ShowUsedBy as Boolean

Description
Set this property to true , to show the used-by relation for types, bindings and messages
definitions in the WSDL documentation. The property is initialized with the value used during the
last call to Docum ent.GenerateW SDLDocum entation . The default for the first run is true.

Errors
3900 The object is no longer valid.
3901 Invalid address for the return parameter was specified.

4.3.28 XMLData

See also

Properties
Kind
Name
TextValue

HasChildren
MayHaveChildren
Parent

Methods
GetFirstChild
GetNextChild
GetCurrentChild

708 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

InsertChild
AppendChild

EraseAllChildren
EraseCurrentChild

IsSameNode

CountChildren
CountChildrenKind

GetChild
GetChildKind

HasChildrenKind

Description
The XMLData interface provides direct XML-level access to a document. You can read and
directly modify the XML representation of the document. However, please, note the following
restrictions:
 The XMLData representation is only valid when the document is shown in grid view or

authentic view.
 When in authentic view, additional XMLData elements are automatically inserted as

parents of each visible document element. Typically this is an XMLData of kind
spyXM LDataElem ent with the Name property set to 'Text'.
 When you use the XMLData interface while in a different view mode you will not receive

errors, but changes are not reflected to the view and might get lost during the next view
switch.

Objects of this class represent the different atomic parts of an XML document. See the
enumeration type SPYXM LDataKind for the available part types. Each part knows its children,
thus forming a XMLData tree with Document.RootElem ent at its top. To get the top element of
the document content - ignoring the XML header - use Docum ent.DataRoot . For examples on
how to traverse the XMLData tree see Using XMLData to modify document structure and
GetNextChild .

AppendChild

See also

Declaration: AppendChild (pNewData as XMLData)

Description
AppendChild appends pNewData as last child to the XM LData object. See also Using XMLData.

Errors
1500 The XMLData object is no longer valid.
1505 Invalid XMLData kind was specified.
1506 Invalid address for the return parameter was specified.
1507 Element cannot have Children
1512 Cyclic insertion - new data element is already part of document
1900 Document must not be modified

Example
Dim objCurrentParent As XMLData

© 2007 Altova GmbH

Interfaces 709The XMLSpy API

Programmers' Reference

Dim objNewChild As XMLData

Set objNewChild = objSpy.ActiveDocument.CreateChild(spyXMLDataElement)
Set objCurrentParent = objSpy.ActiveDocument.RootElement

objCurrentParent.AppendChild objNewChild

Set objNewChild = Nothing

CountChildren

See also

Declaration: CountChildren as long

Description
CountChildren gets the number of children.

Available with TypeLibrary version 1.5

Errors
1500 The XMLData object is no longer valid.

CountChildrenKind

See also

Declaration: CountChildrenKind (nKind as SPYXMLDataKind) as long

Description
CountChildrenKind gets the number of children of the specific kind.

Available with TypeLibrary version 1.5

Errors
1500 The XMLData object is no longer valid.

EraseAllChildren

See also

Declaration: EraseAllChildren

Description
EraseAllChildren deletes all associated children of the XM LData object.

Errors
1500 The XMLData object is no longer valid.
1900 Document must not be modified

Example
The sample erases all elements of the active document.

710 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Dim objCurrentParent As XMLData

Set objCurrentParent = objSpy.ActiveDocument.RootElement
objCurrentParent.EraseAllChildren

EraseCurrentChild

See also

Declaration: EraseCurrentChild

Description
EraseCurrentChild deletes the current XM LData child object. Before you call EraseCurrentChild
you must initialize an internal iterator with XMLData.GetFirstChild. After deleting the
current child, EraseCurrentChild increments the internal iterator of the XMLData element. No
error is returned when the last child gets erased and the iterator is moved past the end of the
child list. The next call to EraseCurrentChild however, will return error 1503.

Errors
1500 The XMLData object is no longer valid.
1503 No iterator is initialized for this XMLData object, or the iterator points past

the last child.
1900 Document must not be modified

Examples
// ---------------------------------------
// XMLSpy scripting environment - JScript
// erase all children of XMLData
// ---------------------------------------
// let's get an XMLData element, we assume that the
// cursor selects the parent of a list in grid view
var objList = Application.ActiveDocument.GridView.CurrentFocus;

// the following line would be shorter, of course
//objList.EraseAllChildren ();

// but we want to demonstrate the usage of EraseCurrentChild
if ((objList != null) && (objList.HasChildren))
{
try
{
objEle = objList.GetFirstChild(-1);
while (objEle != null)
objList.EraseCurrentChild();
// no need to call GetNextChild

}
catch (err)
// 1503 - we reached end of child list
{ if ((err.number & 0xffff) != 1503) throw (err); }

}

GetChild

See also

Declaration: GetChild (position as long) as XMLData

Return Value
Returns an XML element as XM LData object.

© 2007 Altova GmbH

Interfaces 711The XMLSpy API

Programmers' Reference

Description
GetChild() returns a reference to the child at the given index (zero-based).

Available with TypeLibrary version 1.5

Errors
1500 The XMLData object is no longer valid.
1510 Invalid address for the return parameter was specified.

GetChildKind

See also

Declaration: GetChildKind (position as long, nKind as SPYXMLDataKind) as XMLData

Return Value
Returns an XML element as XM LData object.

Description
GetChildKind() returns a reference to a child of this kind at the given index (zero-based). The
position parameter is relative to the number of children of the specified kind and not to all
children of the object.

Available with TypeLibrary version 1.5

Errors
1500 The XMLData object is no longer valid.
1510 Invalid address for the return parameter was specified.

GetCurrentChild

See also

Declaration: GetCurrentChild as XMLData

Return Value
Returns an XML element as XM LData object.

Description
GetCurrentChild gets the current child. Before you call GetCurrentChild you must initialize an
internal iterator with XMLData.GetFirstChild.

Errors
1500 The XMLData object is no longer valid.
1503 No iterator is initialized for this XMLData object.
1510 Invalid address for the return parameter was specified.

GetFirstChild

See also

712 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Declaration: GetFirstChild (nKind as SPYXMLDataKind) as XMLData

Return Value
Returns an XML element as XM LData object.

Description
GetFirstChild initializes a new iterator and returns the first child. Set nKind = -1 to get an iterator
for all kinds of children.
REMARK: The iterator is stored inside the XMLData object and gets destroyed when the
XMLData object gets destroyed. Be sure to keep a reference to this object as long as you want
to use GetCurrentChild , GetNextChild or EraseCurrentChild .

Errors
1500 The XMLData object is no longer valid.
1501 Invalid XMLData kind was specified.
1504 Element has no children of specified kind.
1510 Invalid address for the return parameter was specified.

Example
See the example at XMLData.GetNextChild.

GetNextChild

See also

Declaration: GetNextChild as XMLData

Return Value
Returns an XML element as XM LData object.

Description
GetNextChild steps to the next child of this element. Before you call GetNextChild you must
initialize an internal iterator with XMLData.GetFirstChild.

Check for the last child of the element as shown in the sample below.

Errors
1500 The XMLData object is no longer valid.
1503 No iterator is initialized for this XMLData object.
1510 Invalid address for the return parameter was specified.

Examples
' --
' VBA code snippet - iterate XMLData children
' --
On Error Resume Next
Set objParent = objSpy.ActiveDocument.RootElement

'get elements of all kinds
Set objCurrentChild = objParent.GetFirstChild(-1)

Do
 'do something useful with the child

 'step to next child
 Set objCurrentChild = objParent.GetNextChild
Loop Until (Err.Number - vbObjectError = 1503)

© 2007 Altova GmbH

Interfaces 713The XMLSpy API

Programmers' Reference

// ---------------------------------------
// XMLSpy scripting environment - JScript
// iterate through children of XMLData
// ---------------------------------------
try
{

var objXMLData = ... // initialize somehow
var objChild = objXMLData.GetFirstChild(-1);

while (true)
{

// do something usefull with objChild

objChild = objXMLData.GetNextChild();
}

}
catch (err)
{

if ((err.number & 0xffff) == 1504)
; // element has no children
else if ((err.number & 0xffff) == 1503)
;// last child reached
else
throw (err);

}

HasChildrenKind

See also

Declaration: HasChildrenKind (nKind as SPYXMLDataKind) as Boolean

Description
The method returns true if the object is the parent of other XM LData objects of the specific kind.

Available with TypeLibrary version 1.5

Errors
1500 The XMLData object is no longer valid.
1510 Invalid address for the return parameter was specified.

HasChildren

See also

Declaration: HasChildren as Boolean

Description
The property is true if the object is the parent of other XM LData objects. This property is
read-only.

Errors
1500 The XMLData object is no longer valid.
1510 Invalid address for the return parameter was specified.

714 The XMLSpy API Interfaces

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

InsertChild

See also

Declaration: InsertChild (pNewData as XMLData)

Description
InsertChild inserts the new child before the current child (see also XMLData.GetFirstChild,
XMLData.GetNextChild to set the current child).

Errors
1500 The XMLData object is no longer valid.
1503 No iterator is initialized for this XMLData object.
1505 Invalid XMLData kind was specified.
1506 Invalid address for the return parameter was specified.
1507 Element cannot have Children
1512 Cyclic insertion - new data element is already part of document
1900 Document must not be modified

Examples
See Using XMLData to modify document structure .

IsSameNode

See also

Declaration: IsSameNode (pNodeToCompare as XMLData) as Boolean

Description

Returns true if pNodeToCom pare references the same node as the object itself.

Errors
1500 The XMLData object is no longer valid.
1506 Invalid address for the return parameter was specified.

Kind

See also

Declaration: Kind as SPYXMLDataKind

Description
Kind of this XM LData object. This property is read-only.

Errors
1500 The XMLData object is no longer valid.
1510 Invalid address for the return parameter was specified.

MayHaveChildren

See also

Declaration: MayHaveChildren as Boolean

© 2007 Altova GmbH

Interfaces 715The XMLSpy API

Programmers' Reference

Description
Indicates whether it is allowed to add children to this XM LData object.
This property is read-only.

Errors
1500 The XMLData object is no longer valid.
1510 Invalid address for the return parameter was specified.

Name

See also

Declaration: Name as String

Description
Used to modify and to get the name of the XM LData object.

Errors
1500 The XMLData object is no longer valid.
1510 Invalid address for the return parameter was specified.

Parent

See also

Declaration: Parent as XMLData

Return value
Parent as XM LData object. Nothing (or NULL) if there is no parent element.

Description
Parent of this element. This property is read-only.

Errors
1500 The XMLData object is no longer valid.
1510 Invalid address for the return parameter was specified.

TextValue

See also

Declaration: TextValue as String

Description
Used to modify and to get the text value of this XM LData object.

Errors
1500 The XMLData object is no longer valid.
1510 Invalid address for the return parameter was specified.

Examples
See Using XMLData to modify document structure .

716 The XMLSpy API Interfaces (obsolete)

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

4.4 Interfaces (obsolete)

Interfaces contained in this book are obsolete. It is recommended to migrate your applications
to the new interfaces. See the different properties and methods in this book for migration hints.

4.4.1 AuthenticEvent (obsolete)

Superseded by AuthenticView and AuthenticRange

The DocEditView object is renamed to OldAuthenticView.
DocEditSelection is renamed to AuthenticSelection.
DocEditEvent is renamed to AuthenticEvent.
DocEditDataTransfer is renamed to AuthenticDataTransfer.

Their usage - except for AuthenticDataTransfer - is no longer recommended. We will continue
to support existing functionality for a yet undefined period of time but no new features will be
added to these interface. All functionality available up to now in DocEditView,
DocEditSelection, DocEditEvent and DocEditDataTransfer is now available via AuthenticView,
AuthenticRange and AuthenticDataTransfer. Many new features have been added.

For examples on migrating from DocEdit to Authentic see the description of the different
methods and properties of the different DocEdit objects.

See also

Properties

altKey
altLeft
ctrlKey
ctrlLeft
shiftKey
shiftLeft

keyCode
repeat

button

clientX
clientY

dataTransfer

srcElement
fromElement

propertyName

cancelBubble
returnValue

type

Description
DocEditEvent interface.

© 2007 Altova GmbH

Interfaces (obsolete) 717The XMLSpy API

Programmers' Reference

altKey (obsolete)

Superseded by parameters to
AuthenticView.OnKeyboardEvent (On_AuthenticView_KeyPressed)
AuthenticView.OnMouseEvent (On_AuthenticView_MouseEvent)
AuthenticView.OnDragOver (On_AuthenticView_DragOver)

The event object that holds the information of the last event is now replaced by parameters to
the different event handler functions to simplify data access. The event object will be
supported for a not yet defined period of time for compatibility reasons. No improvements are
planned. It is highly recommended to migrate to the new event handler functions.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditKeyPressed ()
// {
// if (Application.ActiveDocument.DocEditView.event.altKey ||
// Application.ActiveDocument.DocEditView.event.altLeft)
// MsgBox ("alt key is down");
// }
// use now:
function On_AuthenticView_KeyPressed (SPYKeyEvent i_eKeyEvent, long
i_nKeyCode, SPYVirtualKeyMask i_nVirtualKeyStatus)
{
 if (i_nVirtualKeyStatus & spyAltKeyMask)
 MsgBox ("alt key is down");
}

See also

Declaration: altKey as Boolean

Description
True if the right ALT key is pressed.

718 The XMLSpy API Interfaces (obsolete)

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

altLeft (obsolete)

Superseded by parameters to
AuthenticView.OnKeyboardEvent (On_AuthenticView_KeyPressed)
AuthenticView.OnMouseEvent (On_AuthenticView_MouseEvent)
AuthenticView.OnDragOver (On_AuthenticView_DragOver)

The event object that holds the information of the last event is now replaced by parameters to
the different event handler functions to simplify data access. The event object will be
supported for a not yet defined period of time for compatibility reasons. No improvements are
planned. It is highly recommended to migrate to the new event handler functions.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditKeyDown ()
// {
// if (Application.ActiveDocument.DocEditView.event.altKey ||
// Application.ActiveDocument.DocEditView.event.altLeft)
// MsgBox ("alt key is down");
// }
// use now:
function On_AuthenticView_KeyDown (SPYKeyEvent i_eKeyEvent, long i_nKeyCode,
SPYVirtualKeyMask i_nVirtualKeyStatus)
{
 if (i_nVirtualKeyStatus & spyAltKeyMask)
 MsgBox ("alt key is down");
}

See also

Declaration: altLeft as Boolean

Description
True if the left ALT key is pressed.

© 2007 Altova GmbH

Interfaces (obsolete) 719The XMLSpy API

Programmers' Reference

button (obsolete)

Superseded by parameters to
AuthenticView.OnMouseEvent (On_AuthenticView_MouseEvent)
AuthenticView.OnDragOver (On_AuthenticView_DragOver)

The event object that holds the information of the last event is now replaced by parameters to
the different event handler functions to simplify data access. The event object will be
supported for a not yet defined period of time for compatibility reasons. No improvements are
planned. It is highly recommended to migrate to the new event handler functions.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditButtonDown ()
// {
// if (Application.ActiveDocument.DocEditView.event.button == 1)
// MsgBox ("left mouse button down detected");
// }
// use now:
function On_AuthenticView_MouseEvent (long i_nXPos, long i_nYPos,
SPYMouseEvent i_eMouseEvent, IAuthenticRange *i_ipRange)
{
 if (i_eMouseEvent & spyLeftButtonDownMask)
 MsgBox ("left mouse button down detected");
}

See also

Declaration: button as long

Description
Specifies which mouse button is pressed:

0 No button is pressed.
1 Left button is pressed.
2 Right button is pressed.
3 Left and right buttons are both pressed.
4 Middle button is pressed.
5 Left and middle buttons both are pressed.
6 Right and middle buttons are both pressed.
7 All three buttons are pressed.

720 The XMLSpy API Interfaces (obsolete)

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

cancelBubble (obsolete)

Superseded by the boolean return value of following event handler
functions

AuthenticView.OnKeyboardEvent (On_AuthenticView_KeyPressed)
AuthenticView.OnMouseEvent (On_AuthenticView_MouseEvent)
AuthenticView.OnDragOver (On_AuthenticView_DragOver)

The event object that holds the information of the last event is now replaced by parameters to
the different event handler functions to simplify data access. The event object will be
supported for a not yet defined period of time for compatibility reasons. No improvements are
planned. It is highly recommended to migrate to the new event handler functions.

Returning true from an event handler function signals that the event has beend handled and
normal event handling should be aborted.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditKeyPressed ()
// {
// if (Application.ActiveDocument.DocEditView.event.keyCode == 0x20)
// {
// // cancel key processing, swallow spaces :-)
// Application.ActiveDocument.DocEditView.event.cancelBubble = true;
// }
// }
// use now:
function On_AuthenticView_KeyPressed (SPYKeyEvent i_eKeyEvent, long
i_nKeyCode, SPYVirtualKeyMask i_nVirtualKeyStatus)
{
 if (i_nKeyCode == 0x20)
 return true; // cancel key processing, swallow spaces :-)
}

See also

Declaration: cancelBubble as Boolean

Description
Set cancelBubble to TRUE if the default event handler should not be called.

© 2007 Altova GmbH

Interfaces (obsolete) 721The XMLSpy API

Programmers' Reference

clientX (obsolete)

Superseded by parameters to
AuthenticView.OnMouseEvent (On_AuthenticView_MouseEvent)
AuthenticView.OnBeforeDrop (On_AuthenticView_BeforeDrop)
AuthenticView.OnDragOver (On_AuthenticView_DragOver)

The event object that holds the information of the last event is now replaced by parameters to
the different event handler functions to simplify data access. The event object will be
supported for a not yet defined period of time for compatibility reasons. No improvements are
planned. It is highly recommended to migrate to the new event handler functions.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditMouseMove ()
// {
// MsgBox ("moving over " +
Application.ActiveDocument.DocEditView.event.clientX +
// "/" + Application.ActiveDocument.DocEditView.event.clientY);
// }
// use now:
function On_AuthenticView_MouseEvent (long i_nXPos, long i_nYPos,
SPYMouseEvent i_eMouseEvent, IAuthenticRange *i_ipRange)
{
 if (i_eMouseEvent & spyMouseMoveMask)
 MsgBox ("moving over " + i_nXPos + "/" + i_nYPos);
}

See also

Declaration: clientX as long

Description
X value of the current mouse position in client coordinates.

722 The XMLSpy API Interfaces (obsolete)

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

clientY (obsolete)

Superseded by parameters to
AuthenticView.OnMouseEvent (On_AuthenticView_MouseEvent)
AuthenticView.OnBeforeDrop (On_AuthenticView_BeforeDrop)
AuthenticView.OnDragOver (On_AuthenticView_DragOver)

The event object that holds the information of the last event is now replaced by parameters to
the different event handler functions to simplify data access. The event object will be
supported for a not yet defined period of time for compatibility reasons. No improvements are
planned. It is highly recommended to migrate to the new event handler functions.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditMouseMove ()
// {
// MsgBox ("moving over " +
Application.ActiveDocument.DocEditView.event.clientX +
// "/" + Application.ActiveDocument.DocEditView.event.clientY);
// }
// use now:
function On_AuthenticView_MouseEvent (long i_nXPos, long i_nYPos,
SPYMouseEvent i_eMouseEvent, IAuthenticRange *i_ipRange)
{
 if (i_eMouseEvent & spyMouseMoveMask)
 MsgBox ("moving over " + i_nXPos + "/" + i_nYPos);
}

See also

Declaration: clientY as long

Description
Y value of the current mouse position in client coordinates.

© 2007 Altova GmbH

Interfaces (obsolete) 723The XMLSpy API

Programmers' Reference

ctrlKey (obsolete)

Superseded by parameters to
AuthenticView.OnKeyboardEvent (On_AuthenticView_KeyPressed)
AuthenticView.OnMouseEvent (On_AuthenticView_MouseEvent)
AuthenticView.OnDragOver (On_AuthenticView_DragOver)

The event object that holds the information of the last event is now replaced by parameters to
the different event handler functions to simplify data access. The event object will be
supported for a not yet defined period of time for compatibility reasons. No improvements are
planned. It is highly recommended to migrate to the new event handler functions.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditMouseMove ()
// {
// if (Application.ActiveDocument.DocEditView.event.ctrlKey ||
// Application.ActiveDocument.DocEditView.event.altLeft)
// MsgBox ("control key is down");
// }
// use now:
function On_AuthenticView_MouseEvent (long i_nXPos, long i_nYPos,
SPYMouseEvent i_eMouseEvent, IAuthenticRange *i_ipRange)
{
 if (i_eMouseEvent & spyCtrlKeyMask)
 MsgBox ("control key is down");
}

See also

Declaration: ctrlKey as Boolean

Description
True if the right CTRL key is pressed.

724 The XMLSpy API Interfaces (obsolete)

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

ctrlLeft (obsolete)

Superseded by parameters to
AuthenticView.OnKeyboardEvent (On_AuthenticView_KeyPressed)
AuthenticView.OnMouseEvent (On_AuthenticView_MouseEvent)
AuthenticView.OnDragOver (On_AuthenticView_DragOver)

The event object that holds the information of the last event is now replaced by parameters to
the different event handler functions to simplify data access. The event object will be
supported for a not yet defined period of time for compatibility reasons. No improvements are
planned. It is highly recommended to migrate to the new event handler functions.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditMouseMove ()
// {
// if (Application.ActiveDocument.DocEditView.event.ctrlKey ||
// Application.ActiveDocument.DocEditView.event.altLeft)
// MsgBox ("control key is down");
// }
// use now:
function On_AuthenticView_MouseEvent (long i_nXPos, long i_nYPos,
SPYMouseEvent i_eMouseEvent, IAuthenticRange *i_ipRange)
{
 if (i_eMouseEvent & spyCtrlKeyMask)
 MsgBox ("control key is down");
}

See also

Declaration: ctrlLeft as Boolean

Description
True if the left CTRL key is pressed.

© 2007 Altova GmbH

Interfaces (obsolete) 725The XMLSpy API

Programmers' Reference

dataTransfer (obsolete)

Superseded by parameters to
AuthenticView.OnBeforeDrop (On_AuthenticView_BeforeDrop)
AuthenticView.OnDragOver (On_AuthenticView_DragOver)

The event object that holds the information of the last event is now replaced by parameters to
the different event handler functions to simplify data access. The event object will be
supported for a not yet defined period of time for compatibility reasons. No improvements are
planned. It is highly recommended to migrate to the new event handler functions.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditDrop ()
// {
// if (Application.ActiveDocument.DocEditView.event.dataTransfer !=
null)
// if (!
Application.ActiveDocument.DocEditView.event.dataTransfer.ownDrag)
// {
// // cancel key processing, don't drop foreign objects :-)
// Application.ActiveDocument.DocEditView.event.cancelBubble =
true;
// }
// }
// use now:
function On_AuthenticView_BeforeDrop (long i_nXPos, long i_nYPos,

 IAuthenticRange *i_ipRange,
 IAuthenticDataTransfer *i_ipData)

{
 if (i_ipRange != null)
 if (! i_ipRange.ownDrag)
 return true; // cancel key processing, don't drop foreign
objects :-)

 return false;
}

See also

Declaration: dataTransfer as Variant

Description
Property dataTransfer.

726 The XMLSpy API Interfaces (obsolete)

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

fromElement (obsolete)

Not supported

See also

Declaration: fromElement as Variant (not supported)

Description
Currently no event sets this property.

keyCode (obsolete)

Superseded by a parameter to AuthenticView.OnKeyboardEvent
(On_AuthenticView_KeyPressed)

The event object that holds the information of the last event is now replaced by parameters to
the different event handler functions to simplify data access. The event object will be
supported for a not yet defined period of time for compatibility reasons. No improvements are
planned. It is highly recommended to migrate to the new event handler functions.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditKeyPressed ()
// {
// if (Application.ActiveDocument.DocEditView.event.keyCode == 0x20)
// {
// // cancel key processing, swallow spaces :-)
// Application.ActiveDocument.DocEditView.event.cancelBubble = true;
// }
// }
// use now:
function On_AuthenticView_KeyPressed (SPYKeyEvent i_eKeyEvent, long
i_nKeyCode, SPYVirtualKeyMask i_nVirtualKeyStatus)
{
 if (i_nKeyCode == 0x20)
 return true; // cancel key processing, swallow spaces :-)
}

See also

Declaration: keyCode as long

Description
Keycode of the currently pressed key. This property is read-write.

© 2007 Altova GmbH

Interfaces (obsolete) 727The XMLSpy API

Programmers' Reference

propertyName (obsolete)

Not supported

See also

Declaration: propertyName as String (not supported)

Description
Currently no event sets this property.

repeat (obsolete)

Not supported

See also

Declaration: repeat as Boolean (not supported)

Description
True if the onkeydown event is repeated.

returnValue (obsolete)

No longer supported

See also

Declaration: returnValue as Variant

Description
Use returnValue to set a return value for your event handler.

728 The XMLSpy API Interfaces (obsolete)

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

shiftKey (obsolete)

Superseded by parameters to
AuthenticView.OnKeyboardEvent (On_AuthenticView_KeyPressed)
AuthenticView.OnMouseEvent (On_AuthenticView_MouseEvent)
AuthenticView.OnDragOver (On_AuthenticView_DragOver)

The event object that holds the information of the last event is now replaced by parameters to
the different event handler functions to simplify data access. The event object will be
supported for a not yet defined period of time for compatibility reasons. No improvements are
planned. It is highly recommended to migrate to the new event handler functions.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditDragOver ()
// {
// if (Application.ActiveDocument.DocEditView.event.shiftKey ||
// Application.ActiveDocument.DocEditView.event.shiftLeft)
// MsgBox ("shift key is down");
// }
// use now:
function On_AuthenticView_DragOver (long i_nXPos, long i_nYPos,

 SPYMouseEvent i_eMouseEvent,
 IAuthenticRange *i_ipRange,
 IAuthenticDataTransfer *i_ipData)

{
 if (i_eMouseEvent & spyShiftKeyMask)
 MsgBox ("shift key is down");
}

See also

Declaration: shiftKey as Boolean

Description
True if the right SHIFT key is pressed.

© 2007 Altova GmbH

Interfaces (obsolete) 729The XMLSpy API

Programmers' Reference

shiftLeft (obsolete)

Superseded by parameters to
AuthenticView.OnKeyboardEvent (On_AuthenticView_KeyPressed)
AuthenticView.OnMouseEvent (On_AuthenticView_MouseEvent)
AuthenticView.OnDragOver (On_AuthenticView_DragOver)

The event object that holds the information of the last event is now replaced by parameters to
the different event handler functions to simplify data access. The event object will be
supported for a not yet defined period of time for compatibility reasons. No improvements are
planned. It is highly recommended to migrate to the new event handler functions.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditDragOver ()
// {
// if (Application.ActiveDocument.DocEditView.event.shiftKey ||
// Application.ActiveDocument.DocEditView.event.shiftLeft)
// MsgBox ("shift key is down");
// }
// use now:
function On_AuthenticView_DragOver (long i_nXPos, long i_nYPos,

 SPYMouseEvent i_eMouseEvent,
 IAuthenticRange *i_ipRange,
 IAuthenticDataTransfer *i_ipData)

{
 if (i_eMouseEvent & spyShiftKeyMask)
 MsgBox ("shift key is down");
}

See also

Declaration: shiftLeft as Boolean

Description
True if the left SHIFT key is pressed.

730 The XMLSpy API Interfaces (obsolete)

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

srcElement (obsolete)

Superseded by parameters to
AuthenticView.OnMouseEvent (On_AuthenticView_MouseEvent)
AuthenticView.OnBeforeDrop (On_AuthenticView_BeforeDrop)
AuthenticView.OnDragOver (On_AuthenticView_DragOver)

The event object that holds the information of the last event is now replaced by parameters to
the different event handler functions to simplify data access. The event object will be
supported for a not yet defined period of time for compatibility reasons. No improvements are
planned. It is highly recommended to migrate to the new event handler functions.

With the new event handler function, a range object selecting this element is provided instead
of the XMLData element currently below the mouse cursor.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditMouseMove ()
// {
// var objEvent = Application.ActiveDocument.DocEditView.event;
// if (objEvent.srcElement != null)
// MsgBox ("moving over " + objEvent.srcElement.Parent.Name);
// }
// use now:
function On_AuthenticView_MouseEvent (long i_nXPos, long i_nYPos,
SPYMouseEvent i_eMouseEvent, IAuthenticRange *i_ipRange)
{
 if ((i_eMouseEvent & spyMouseMoveMask) &&
 (i_ipRange != null))
 MsgBox ("moving over " + i_ipRange.FirstXMLData.Parent.Name);
}

See also

Declaration: srcElement as Variant

Description
Element which fires the current event. This is usually an XMLData object.

© 2007 Altova GmbH

Interfaces (obsolete) 731The XMLSpy API

Programmers' Reference

type (obsolete)

Not supported

See also

Declaration: type as String (not supported)

Description
Currently no event sets this property.

732 The XMLSpy API Interfaces (obsolete)

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

4.4.2 AuthenticSelection (obsolete)

Superseded by AuthenticRange

The DocEditView object is renamed to OldAuthenticView.
DocEditSelection is renamed to AuthenticSelection.
DocEditEvent is renamed to AuthenticEvent.
DocEditDataTransfer is renamed to AuthenticDataTransfer.

Their usage - except for AuthenticDataTransfer - is no longer recommended. We will continue
to support existing functionality for a yet undefined period of time but no new features will be
added to these interface. All functionality available up to now in DocEditView,
DocEditSelection, DocEditEvent and DocEditDataTransfer is now available via AuthenticView,
AuthenticRange and AuthenticDataTransfer. Many new features have been added.

For examples on migrating from DocEdit to Authentic see the description of the different
methods and properties of the different DocEdit objects.

See also

Properties
Start
StartTextPosition
End
EndTextPosition

© 2007 Altova GmbH

Interfaces (obsolete) 733The XMLSpy API

Programmers' Reference

End (obsolete)

Superseded by AuthenticRange.LastXMLData

// ----- javascript sample -----
// instead of:
// var objXMLData =
Application.ActiveDocument.DocEditView.CurrentSelection.End;
// use now:
var objXMLData =
Application.ActiveDocument.AuthenticView.Selection.LastXMLData;

See also

Declaration: End as XMLData

Description
XML element where the current selection ends.

EndTextPosition (obsolete)

Superseded by AuthenticRange.LastXMLDataOffset

// ----- javascript sample -----
// instead of:
// var nOffset =
Application.ActiveDocument.DocEditView.CurrentSelection.EndTextPosition;
// use now:
var nOffset =
Application.ActiveDocument.AuthenticView.Selection.LastXMLDataOffset;

See also

Declaration: EndTextPosition as long

Description
Position in DocEditSelection.End.TextValue where the selection ends.

734 The XMLSpy API Interfaces (obsolete)

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Start (obsolete)

Superseded by AuthenticRange.FirstXMLData

// ----- javascript sample -----
// instead of:
// var objXMLData =
Application.ActiveDocument.DocEditView.CurrentSelection.Start;
// use now:
var objXMLData =
Application.ActiveDocument.AuthenticView.Selection.FirstXMLData;

See also

Declaration: Start as XMLData

Description
XML element where the current selection starts.

StartTextPosition (obsolete)

Superseded by AuthenticRange.FirstXMLDataOffset

// ----- javascript sample -----
// instead of:
// var nOffset =
Application.ActiveDocument.DocEditView.CurrentSelection.StartTextPosition;
// use now:
var nOffset =
Application.ActiveDocument.AuthenticView.Selection.FirstXMLDataOffset;

See also

Declaration: StartTextPosition as long

Description
Position in DocEditSelection.Start.TextValue where the selection starts.

© 2007 Altova GmbH

Interfaces (obsolete) 735The XMLSpy API

Programmers' Reference

4.4.3 OldAuthentictView (obsolete)

Superseded by AuthenticView and AuthenticRange

The DocEditView object is renamed to OldAuthenticView.
DocEditSelection is renamed to AuthenticSelection.
DocEditEvent is renamed to AuthenticEvent.
DocEditDataTransfer is renamed to AuthenticDataTransfer.

Their usage - except for AuthenticDataTransfer - is no longer recommended. We will continue
to support existing functionality for a yet undefined period of time but no new features will be
added to these interfaces. All functionality available up to now in DocEditView,
DocEditSelection, DocEditEvent and DocEditDataTransfer is now available via AuthenticView,
AuthenticRange and AuthenticDataTransfer. Many new features have been added.

For examples on migrating from DocEdit to Authentic see the description of the different
methods and properties of the different DocEdit objects.

See also

Methods

LoadXML
SaveXML

EditClear
EditCopy
EditCut
EditPaste
EditRedo
EditSelectAll
EditUndo

RowAppend
RowDelete
RowDuplicate
RowInsert
RowMoveDown
RowMoveUp

ApplyTextState
IsTextStateApplied
IsTextStateEnabled

MarkUpView

SelectionSet
SelectionMoveTabOrder

GetNextVisible
GetPreviousVisible

GetAllowedElements

736 The XMLSpy API Interfaces (obsolete)

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Properties
CurrentSelection

event

XMLRoot

IsEditClearEnabled
IsEditCopyEnabled
IsEditCutEnabled
IsEditPasteEnabled
IsEditRedoEnabled
IsEditUndoEnabled

IsRowAppendEnabled
IsRowDeleteEnabled
IsRowDuplicateEnabled
IsRowInsertEnabled
IsRowMoveDownEnabled
IsRowMoveUpEnabled

Description
Interface for Authentic View.

© 2007 Altova GmbH

Interfaces (obsolete) 737The XMLSpy API

Programmers' Reference

ApplyTextState (obsolete)

Superseded by AuthenticRange.PerformAction

Use spyAuthenticApply for the eAction parameter. The PerformAction method allows to apply
text state attributes to any range of the document, not only the current UI selection.

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.ApplyTextState ("bold");
// use now:
if (! Application.ActiveDocument.AuthenticView.Selection.PerformAction
(spyAuthenticApply, "bold"))
 MsgBox ("Error: can't set current selection to bold");

See also

Declaration: ApplyTextState (elementName as String)

Description
Applies or removes the text state defined by the parameter elementName. Common examples
for the parameter elementName would be strong and italic.

In an XML document there are segments of data, which may contain sub-elements. For
example consider the following HTML:

fragment

The HTML tag will cause the word fragment to be bold. However, this only happens
because the HTML parser knows that the tag is bold. With XML there is much more
flexibility. It is possible to define any XML tag to do anything you desire. The point is that it is
possible to apply a Text state using XML. But the Text state that is applied must be part of the
schema. For example in the OrgChart.xml, OrgChart.sps, OrgChart.xsd example
the tag is the same as bold. And to apply bold the method ApplyTextState() is
called. But like the row and edit operations it is necessary to test if it is possible to apply the text
state.

See also IsTextStateEnabled and IsTextStateApplied.

738 The XMLSpy API Interfaces (obsolete)

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

CurrentSelection (obsolete)

Superseded by AuthenticView.Selection

The returned AuthenticRange object supports navigation via XMLData elements as well as
navigation by document elements (e.g. characters, words, tags) or text cursor positions.

// ----- javascript sample -----
// instead of:
// var objDocEditSel =
Application.ActiveDocument.DocEditView.CurrentSelection;
// use now:
 var objRange = Application.ActiveDocument.AuthenticView.Selection;

See also

Declaration: CurrentSelection as DocEditSelection

Description
The property provides access to the current selection in the Authentic View.

EditClear (obsolete)

Superseded by AuthenticRange.Delete

The Delete method of AuthenticRange allows to delete any range of the document, not only
the current UI selection.

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.EditClear();
// use now:
if (! Application.ActiveDocument.AuthenticView.Selection.Delete())
 MsgBox ("Error: can't delete current selection");

See also

Declaration: EditClear

Description
Deletes the current selection.

© 2007 Altova GmbH

Interfaces (obsolete) 739The XMLSpy API

Programmers' Reference

EditCopy (obsolete)

Superseded by AuthenticRange.Copy

The Copy method of AuthenticRange allows to delete any range of the document, not only the
current UI selection.

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.EditCopy();
// use now:
if (! Application.ActiveDocument.AuthenticView.Selection.Copy())
 MsgBox ("Error: can't copy current selection");

See also

Declaration: EditCopy

Description
Copies the current selection to the clipboard.

EditCut (obsolete)

Superseded by AuthenticRange.Cut

The Cut method of AuthenticRange allows to delete any range of the document, not only the
current UI selection.

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.EditCut();
// use now:
if (! Application.ActiveDocument.AuthenticView.Selection.Cut())
 MsgBox ("Error: can't cut out current selection");

See also

Declaration: EditCut

Description
Cuts the current selection from the document and copies it to the clipboard.

740 The XMLSpy API Interfaces (obsolete)

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

EditPaste (obsolete)

Superseded by AuthenticRange.Paste

The Paste method of AuthenticRange allows to delete any range of the document, not only
the current UI selection.

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.EditPaste();
// use now:
if (! Application.ActiveDocument.AuthenticView.Selection.Paste())
 MsgBox ("Error: can't paste to current selection");

See also

Declaration: EditPaste

Description
Pastes the content from the clipboard into the document.

EditRedo (obsolete)

Superseded by AuthenticView.Redo

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.EditRedo();
// use now:
if (! Application.ActiveDocument.AuthenticView.Redo())
 MsgBox ("Error: no redo step available");

See also

Declaration: EditRedo

Description
Redo the last undo step.

© 2007 Altova GmbH

Interfaces (obsolete) 741The XMLSpy API

Programmers' Reference

EditSelectAll (obsolete)

Superseded by AuthenticView.WholeDocument and
AuthenticRange.Select

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.EditSelectAll();
// use now:
Application.ActiveDocument.AuthenticView.WholeDocument.Select();

See also

Declaration: EditSelectAll

Description
The method selects the complete document.

EditUndo (obsolete)

Superseded by AuthenticView.Undo

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.EditUndo();
// use now:
if (! Application.ActiveDocument.AuthenticView.Undo())
 MsgBox ("Error: no undo step available");

See also

Declaration: EditUndo

Description
Undo the last action.

742 The XMLSpy API Interfaces (obsolete)

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

event (obsolete)

Superseded by parameters to AuthenticView events.

See also

Declaration: event as DocEditEvent

Description
The event property holds a DocEditEvent object which contains information about the current
event.

GetAllowedElements (obsolete)

Superseded by AuthenticRange.CanPerformActionWith

AuthenticRange now supports all functionality of the 'elements' entry helper. Besides querying
the elements that can be inserted, appended, etc., you can invoke the action as well. See
AuthenticRange.PerformAction for more information.

// ----- javascript sample -----
// instead of:
// var arrElements = New Array();
// var objDocEditView = Application.ActiveDocument.DocEditView;
// var objStartElement = objDocEditView.CurrentSelection.Start;
// var objEndElement = objDocEditView.CurrentSelection.End;
// objDocEditView.GetAllowedElements(k_ActionInsertBefore, objStartElement,
objEndElement, arrElements);
// use now:
var arrElements = New Array();
Application.ActiveDocument.AuthenticView.Selection.CanPerformActionWith
(spyAuthenticInsertBefore, arrElements);

See also

Declaration: GetAllowedElements (nAction as SpyAuthenticElementActions,
pStartElement as XMLData, pEndElement as XMLData, pElements as Variant)

Description
GetAllowedElements() returns the allowed elements for the various actions specified by
nAction.

JavaScript example:

Function GetAllowed()
{
var objView = Application.ActiveDocument.DocEditView;

var arrElements = New Array(1);

© 2007 Altova GmbH

Interfaces (obsolete) 743The XMLSpy API

Programmers' Reference

var objStart = objView.CurrentSelection.Start;
var objEnd = objView.CurrentSelection.End;

var strText;
strText = "valid elements at current selection:\n\n";

For(var i = 1;i <= 4;i++){
objPlugIn.GetAllowedElements(i,objStart,objEnd,arrElements);
strText = strText + ListArray(arrElements) + "------------------\n";

}

Return strText;
}

Function ListArray(arrIn)
{
var strText = "";

If(TypeOf(arrIn) == "object") {
For(var i = 0;i <= (arrIn.length - 1);i++)
strText = strText + arrIn[i] + "\n";

}

Return strText;
}

VBScript example:

Sub DisplayAllowed
Dim objView
Set objView = Application.ActiveDocument.DocEditView

Dim arrElements()

Dim objStart
Dim objEnd
Set objStart = objView.CurrentSelection.Start
Set objEnd = objView.CurrentSelection.End

Dim strText
strText = "valid elements at current selection:" & chr(13) & chr(13)

Dim i

For i = 1 To 4
objView.GetAllowedElements i,objStart,objEnd,arrElements
strText = strText & ListArray(arrElements) & "---------------" & chr(13)

Next

msgbox strText
End Sub

Function ListArray(arrIn)
Dim strText

If IsArray(arrIn) Then
Dim i

For i = 0 To UBound(arrIn)
strText = strText & arrIn(i) & chr(13)

Next
End If

ListArray = strText
End Function

744 The XMLSpy API Interfaces (obsolete)

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

© 2007 Altova GmbH

Interfaces (obsolete) 745The XMLSpy API

Programmers' Reference

GetNextVisible (obsolete)

Superseded by AuthenticRange.SelectNext

AuthenticRange now supports a wide range of element navigation methods based on
document elements like characters, words, tags and many more. Selecting the text passage
that represents the content of the next XML element is just one of them.

// ----- javascript sample -----
// instead of:
// var objCurrXMLData = ...
// var objXMLData =
Application.ActiveDocument.DocEditView.GetNextVisible(objCurrXMLData);
// Application.ActiveDocument.DocEditView.SelectionSet (objXMLData, 0,
objXMLData, -1);
// use now:
var objRange = ...
try
 { objRange.SelectNext (spyAuthenticTag).Select(); }
catch (err)
{
 if ((err.number & 0xffff) == 2003)
 MsgBox ("end of document reached");
 else
 throw (err);
}

See also

Declaration: GetNextVisible (pElement as XMLData) as XMLData

Description
The method gets the next visible XML element in the document.

746 The XMLSpy API Interfaces (obsolete)

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

GetPreviousVisible (obsolete)

Superseded by AuthenticRange.SelectPrevious

AuthenticRange now supports a wide range of element navigation methods based on
document elements like characters, words, tags and many more. Selecting the text passage
that represents the content of the previous XML element is just one of them.

// ----- javascript sample -----
// instead of:
// var objCurrXMLData = ...
// var objXMLData =
Application.ActiveDocument.DocEditView.GetPreviousVisible(objCurrXMLData);
// Application.ActiveDocument.DocEditView.SelectionSet (objXMLData, 0,
objXMLData, -1);
// use now:
var objRange = ...
try
 { objRange.SelectPrevious (spyAuthenticTag).Select(); }
catch (err)
{
 if ((err.number & 0xffff) == 2004)
 MsgBox ("begin of document reached");
 else
 throw (err);
}

See also

Declaration: GetPreviousVisible (pElement as XMLData) as XMLData

Description
The method gets the previous visible XML element in the document.

© 2007 Altova GmbH

Interfaces (obsolete) 747The XMLSpy API

Programmers' Reference

IsEditClearEnabled (obsolete)

Superseded by AuthenticRange.IsDeleteEnabled

The IsDeleteEnabled property is now supported for any range of the document, not only the
current UI selection.

// ----- javascript sample -----
// instead of:
// if (Application.ActiveDocument.DocEditView.IsEditClearEnabled)
// Application.ActiveDocument.DocEditView.EditClear();
// use now:
var objCurrSelection = Application.ActiveDocument.AuthenticView.Selection;
if (objCurrSelection.IsDeleteEnabled)
 objCurrSelection.Delete();

See also

Declaration: IsEditClearEnabled as Boolean

Description
True if EditClear is possible. See also Editing operations.

IsEditCopyEnabled (obsolete)

Superseded by AuthenticRange.IsCopyEnabled

The IsCopyEnabled property is now supported for any range of the document, not only the
current UI selection.

// ----- javascript sample -----
// instead of:
// if (Application.ActiveDocument.DocEditView.IsEditCopyEnabled)
// Application.ActiveDocument.DocEditView.EditCopy();
// use now:
var objCurrSelection = Application.ActiveDocument.AuthenticView.Selection;
if (objCurrSelection.IsCopyEnabled)
 objCurrSelection.Copy();

See also

Declaration: IsEditCopyEnabled as Boolean

Description
True if copy to clipboard is possible. See also EditCopy and Editing operations.

748 The XMLSpy API Interfaces (obsolete)

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

IsEditCutEnabled (obsolete)

Superseded by AuthenticRange.IsCutEnabled

The IsCutEnabled property is now supported for any range of the document, not only the
current UI selection.

// ----- javascript sample -----
// instead of:
// if (Application.ActiveDocument.DocEditView.IsEditCutEnabled)
// Application.ActiveDocument.DocEditView.EditCut();
// use now:
var objCurrSelection = Application.ActiveDocument.AuthenticView.Selection;
if (objCurrSelection.IsCutEnabled)
 objCurrSelection.Cut();

See also

Declaration: IsEditCutEnabled as Boolean

Description
True if EditCut is currently possible. See also Editing operations.

IsEditPasteEnabled (obsolete)

Superseded by AuthenticRange.IsPasteEnabled

The IsPasteEnabled property is now supported for any range of the document, not only the
current UI selection.

// ----- javascript sample -----
// instead of:
// if (Application.ActiveDocument.DocEditView.IsEditPasteEnabled)
// Application.ActiveDocument.DocEditView.EditPaste();
// use now:
var objCurrSelection = Application.ActiveDocument.AuthenticView.Selection;
if (objCurrSelection.IsPasteEnabled)
 objCurrSelection.Paste();

See also

Declaration: IsEditPasteEnabled as Boolean

Description
True if EditPaste is possible. See also Editing operations.

© 2007 Altova GmbH

Interfaces (obsolete) 749The XMLSpy API

Programmers' Reference

IsEditRedoEnabled (obsolete)

Superseded by AuthenticView.IsRedoEnabled

// ----- javascript sample -----
// instead of:
// if (Application.ActiveDocument.DocEditView.IsEditRedoEnabled)
// Application.ActiveDocument.DocEditView.EditRedo();
// use now:
if (Application.ActiveDocument.AuthenticView.IsRedoEnabled)
 Application.ActiveDocument.AuthenticView.Redo();

See also

Declaration: IsEditRedoEnabled as Boolean

Description
True if EditRedo is currently possible. See also Editing operations.

IsEditUndoEnabled (obsolete)

Superseded by AuthenticView.IsUndoEnabled

// ----- javascript sample -----
// instead of:
// if (Application.ActiveDocument.DocEditView.IsEditUndoEnabled)
// Application.ActiveDocument.DocEditView.EditUndo();
// use now:
if (Application.ActiveDocument.AuthenticView.IsUndoEnabled)
 Application.ActiveDocument.AuthenticView.Undo();

See also

Declaration: IsEditUndoEnabled as Boolean

Description
True if EditUndo is possible. See also Editing operations.

750 The XMLSpy API Interfaces (obsolete)

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

IsRowAppendEnabled (obsolete)

Superseded by AuthenticRange.IsInDynamicTable

The operations 'insert', 'append', 'delete' and 'duplicate' row are available whenever the
selection is inside a dynamic table.

// ----- javascript sample -----
// instead of:
// if (Application.ActiveDocument.DocEditView.IsRowAppendEnabled)
// Application.ActiveDocument.DocEditView.RowAppend();
// use now:
if (Application.ActiveDocument.AuthenticView.Selection.IsInDynamicTable())
 Application.ActiveDocument.AuthenticView.Selection.AppendRow();

See also

Declaration: IsRowAppendEnabled as Boolean

Description
True if RowAppend is possible. See also Row operations.

IsRowDeleteEnabled (obsolete)

Superseded by AuthenticRange.IsInDynamicTable

The operations 'insert', 'append', 'delete' and 'duplicate' row are available whenever the
selection is inside a dynamic table.

// ----- javascript sample -----
// instead of:
// if (Application.ActiveDocument.DocEditView.IsRowDeleteEnabled)
// Application.ActiveDocument.DocEditView.Rowdelete();
// use now:
if (Application.ActiveDocument.AuthenticView.Selection.IsInDynamicTable())
 Application.ActiveDocument.AuthenticView.Selection.DeleteRow();

See also

Declaration: IsRowDeleteEnabled as Boolean

Description
True if RowDelete is possible. See also Row operations.

© 2007 Altova GmbH

Interfaces (obsolete) 751The XMLSpy API

Programmers' Reference

IsRowDuplicateEnabled (obsolete)

Superseded by AuthenticRange.IsInDynamicTable

The operations 'insert', 'append', 'delete' and 'duplicate' row are available whenever the
selection is inside a dynamic table.

// ----- javascript sample -----
// instead of:
// if (Application.ActiveDocument.DocEditView.IsRowDuplicateEnabled)
// Application.ActiveDocument.DocEditView.RowDuplicate();
// use now:
if (Application.ActiveDocument.AuthenticView.Selection.IsInDynamicTable())
 Application.ActiveDocument.AuthenticView.Selection.DuplicateRow();

See also

Declaration: IsRowDuplicateEnabled as Boolean

Description
True if RowDuplicate is currently possible. See also Row operations.

IsRowInsertEnabled (obsolete)

Superseded by AuthenticRange.IsInDynamicTable

The operations 'insert', 'append', 'delete' and 'duplicate' row are available whenever the
selection is inside a dynamic table.

// ----- javascript sample -----
// instead of:
// if (Application.ActiveDocument.DocEditView.IsRowInsertEnabled)
// Application.ActiveDocument.DocEditView.RowInsert();
// use now:
if (Application.ActiveDocument.AuthenticView.Selection.IsInDynamicTable())
 Application.ActiveDocument.AuthenticView.Selection.InsertRow();

See also

Declaration: IsRowInsertEnabled as Boolean

Description
True if RowInsert is possible. See also Row operations.

752 The XMLSpy API Interfaces (obsolete)

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

IsRowMoveDownEnabled (obsolete)

Superseded by AuthenticRange.IsLastRow

// ----- javascript sample -----
// instead of:
// if (Application.ActiveDocument.OldAuthenticView.IsRowMoveDownEnabled)
// Application.ActiveDocument.DocEditView.RowMoveDown();
// use now:
if (!Application.ActiveDocument.AuthenticView.Selection.IsLastRow)
 Application.ActiveDocument.AuthenticView.Selection.MoveRowDown();

See also

Declaration: IsRowMoveDownEnabled as Boolean

Description
True if RowMoveDown is currently possible. See also Row operations.

IsRowMoveUpEnabled (obsolete)

Superseded by AuthenticRange.IsFirstRow

// ----- javascript sample -----
// instead of:
// if (Application.ActiveDocument.DocEditView.IsRowMoveUpEnabled)
// Application.ActiveDocument.DocEditView.RowMoveUp();
// use now:
if (!Application.ActiveDocument.AuthenticView.Selection.IsFirstRow)
 Application.ActiveDocument.AuthenticView.Selection.MoveRowUp();

See also

Declaration: IsRowMoveUpEnabled as Boolean

Description
True if RowMoveUp is possible. See also Row operations.

© 2007 Altova GmbH

Interfaces (obsolete) 753The XMLSpy API

Programmers' Reference

IsTextStateApplied (obsolete)

Superseded by AuthenticRange.IsTextStateApplied

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.IsTextStateApplied ("bold");
// use now:
if (Application.ActiveDocument.AuthenticView.Selection.IsTextStateApplied (
"bold"))
 MsgBox ("bold on");
else
 MsgBox ("bold off");

See also

Declaration: IsTextStateApplied (elementName as String) as Boolean

Description
Checks to see if the it the text state has already been applied. Common examples for the
parameter elementName would be strong and italic.

IsTextStateEnabled (obsolete)

Superseded by AuthenticRange.CanPerformAction

Use spyAuthenticApply for the eAction parameter. The CanPerformAction method allows to
operate on any range of the document, not only the current UI selection.

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.IsTextStateEnabled ("bold");
// use now:
if (Application.ActiveDocument.AuthenticView.Selection.CanPerformAction
(spyAuthenticApply, "bold"))
 ... // e.g. enable 'bold' button

See also

Declaration: IsTextStateEnabled (i_strElementName as String) as Boolean

Description
Checks to see if it is possible to apply a text state. Common examples for the parameter
elementName would be strong and italic.

754 The XMLSpy API Interfaces (obsolete)

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

LoadXML (obsolete)

Superseded by AuthenticView.AsXMLString

AuthenticView now supports the property AsXMLString that can be used to directly access
and replace the document content as an XMLString.

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.LoadXML (strDocAsXMLString);
// use now:
try
 { Application.ActiveDocument.AuthenticView.AsXMLString =
strDocAsXMLString; }
catch (err)
 { MsgBox ("Error: invalid XML string"); }

See also

Declaration: LoadXML (xmlString as String)

Description
Loads the current XML document with the XML string applied. The new content is displayed
immediately.
The xmlString parameter must begin with the XML declaration, e.g.,
objPlugIn.LoadXML("<?xml version='1.0' encoding='UTF-8'?><root></root>");

MarkUpView (obsolete)

Superseded by AuthenticView.MarkupVisibility

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.MarkuUpView = 2;
// use now:
Application.ActiveDocument.AuthenticView.MarkupVisibility =
spyAuthenticMarkupLarge;

See also

Declaration: MarkUpView (kind as long)

Description
By default the document displayed is using HTML techniques. But sometimes it is desirable to
show the editing tags. Using this method it is possible to display three different types of markup
tags:

0 hide the markup tags
2 show the large markup tags
3 show the mixed markup tags.

© 2007 Altova GmbH

Interfaces (obsolete) 755The XMLSpy API

Programmers' Reference

756 The XMLSpy API Interfaces (obsolete)

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

RowAppend (obsolete)

Superseded by AuthenticRange.AppendRow

The table operations of AuthenticRange now allow to manipulate any table in the current
document independent of the current UI selection.

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.RowAppend();
// use now:
if (! Application.ActiveDocument.AuthenticView.Selection.AppendRow())
 MsgBox ("Error: can't append row");

See also

Declaration: RowAppend

Description
Appends a row at the current position.

See also Row operations.

RowDelete (obsolete)

Superseded by AuthenticRange.DeleteRow

The table operations of AuthenticRange now allow to manipulate any table in the current
document independent of the current UI selection.

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.RowDelete();
// use now:
if (! Application.ActiveDocument.AuthenticView.Selection.DeleteRow())
 MsgBox ("Error: can't delete row");

See also

Declaration: RowDelete

Description
Deletes the currently selected row(s).

See also Row operations.

© 2007 Altova GmbH

Interfaces (obsolete) 757The XMLSpy API

Programmers' Reference

RowDuplicate (obsolete)

Superseded by AuthenticRange.DuplicateRow

The table operations of AuthenticRange now allow to manipulate any table in the current
document independent of the current UI selection.

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.RowDuplicate();
// use now:
if (! Application.ActiveDocument.AuthenticView.Selection.DuplicateRow())
 MsgBox ("Error: can't duplicate row");

See also

Declaration: RowDuplicate

Description
The method duplicates the currently selected rows.

See also Row operations.

RowInsert (obsolete)

Superseded by AuthenticRange.InsertRow

The table operations of AuthenticRange now allow to manipulate any table in the current
document independent of the current UI selection.

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.RowInsert();
// use now:
if (! Application.ActiveDocument.AuthenticView.Selection.InsertRow())
 MsgBox ("Error: can't insert row");

See also

Declaration: RowInsert

Description
Inserts a new row immediately above the current selection.

See also Row operations.

758 The XMLSpy API Interfaces (obsolete)

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

RowMoveDown (obsolete)

Superseded by AuthenticRange.MoveRowDown

The table operations of AuthenticRange now allow to manipulate any table in the current
document independent of the current UI selection.

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.RowMoveDown();
// use now:
if (! Application.ActiveDocument.AuthenticView.Selection.MoveRowDown())
 MsgBox ("Error: can't move row down");

See also

Declaration: RowMoveDown

Description
Moves the current row one position down.

See also Row operations.

RowMoveUp (obsolete)

Superseded by AuthenticRange.MoveRowUp

The table operations of AuthenticRange now allow to manipulate any table in the current
document independent of the current UI selection.

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.RowAppend();
// use now:
if (! Application.ActiveDocument.AuthenticView.Selection.MoveRowUp())
 MsgBox ("Error: can't move row up");

See also

Declaration: RowMoveUp

Description
Moves the current row one position up.

See also Row operations.

© 2007 Altova GmbH

Interfaces (obsolete) 759The XMLSpy API

Programmers' Reference

SaveXML (obsolete)

Superseded by AuthenticView.AsXMLString

AuthenticView now supports the property XMLString that can be used to directly access and
replace the document content as an XMLString.

// ----- javascript sample -----
// instead of:
// var strDocAsXMLString = Application.ActiveDocument.DocEditView.SaveXML();
// use now:
try
{
 var strDocAsXMLString =
Application.ActiveDocument.AuthenticView.AsXMLString;
 ... // do something here
}
catch (err)
 { MsgBox ("Error: invalid XML string"); }

See also

Declaration: SaveXML as String

Return Value
XML structure as string

Description
Saves the current XML data to a string that is returned to the caller.

760 The XMLSpy API Interfaces (obsolete)

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

SelectionMoveTabOrder (obsolete)

Superseded by AuthenticRange.SelectNext

AuthenticRange now supports a wide range of element navigation methods based on
document elements like characters, words, tags and many more. Selecting the next
paragraph is just one of them, and navigation is not necessarily bound to the current UI
selection.

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.SelectionMoveTabOrder(true, true);
// use now:
Application.ActiveDocument.AuthenticView.Selection.SelectNext
(spyAuthenticParagraph).Select();
// to append a row to a table use AuthenticRange.AppendRow

See also

Declaration: SelectionMoveTabOrder (bForward as Boolean, bTag as Boolean)

Description
SelectionMoveTabOrder() moves the current selection forwards or backwards.

If bTag is false and the current selection is at the last cell of a table a new line will be added.

© 2007 Altova GmbH

Interfaces (obsolete) 761The XMLSpy API

Programmers' Reference

SelectionSet (obsolete)

Superseded by AuthenticRange.FirstXMLData and related properties

AuthenticRange supports navigation via XMLData elements as well as navigation by
document elements (e.g. characters, words, tags) or text cursor positions.

// ----- javascript sample -----
// instead of:
// if (! Application.ActiveDocument.DocEditView.SelectionSet(varXMLData1, 0,
varXMLData2, -1))
// MsgBox ("Error: invalid data position");
// use now:
try
{
 var objSelection = Application.ActiveDocument.AuthenticView.Selection;
 objSelection.FirstXMLData = varXMLData1;
 objSelection.FirstXMLdataOffset = 0;
 objSelection.LastXMLData = varXMLData2;
 objSelection.LastXMLDataOffset = -1;
 objSelection.Select();
}
catch (err)
 { MsgBox ("Error: invalid data position"); }
// to select all text between varXMLData1 and varXMLdata2, inclusive

See also

Declaration: SelectionSet (pStartElement as XMLData, nStartPos as long,
pEndElement as XMLData, nEndPos as long) as Boolean

Description
Use SelectionSet() to set a new selection in the Authentic View. Its possible to set
pEndElement to null (nothing) if the selection should be just over one (pStartElement) XML
element.

762 The XMLSpy API Interfaces (obsolete)

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

XMLRoot (obsolete)

Superseded by AuthenticView.XMLDataRoot

// ----- javascript sample -----
// instead of:
// var objXMLData = Application.ActiveDocument.DocEditView.XMLRoot;
// use now:
var objXMLData = Application.ActiveDocument.AuthenticView.XMLDataRoot;

See also

Declaration: XMLRoot as XMLData

Description
XMLRoot is the parent element of the currently displayed XML structure. Using the XMLData
interface you have full access to the complete content of the file.

See also Using XMLData for more information.

© 2007 Altova GmbH

Interfaces (obsolete) 763The XMLSpy API

Programmers' Reference

764 The XMLSpy API Enumerations

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

4.5 Enumerations

This is a list of all enumerations used by the XMLSpy API. If your scripting environment does
not support enumerations use the number-values instead.

4.5.1 SPYAttributeTypeDefinition

Description
Attribute type definition that can be selected for generation of Sample XML.
This type is used with the method GenerateDTDOrSchema and GenerateDTDOrSchemaEx.

Possible values:
spyMergedGlobal = 0
spyDistinctGlobal = 1
spyLocal = 2

4.5.2 SPYAuthenticActions

Description
Actions that can be performed on AuthenticRange objects.

Possible values:
spyAuthenticInsertAt = 0
spyAuthenticApply = 1
spyAuthenticClearSurr = 2
spyAuthenticAppend = 3
spyAuthenticInsertBefore = 4
spyAuthenticRemove = 5

4.5.3 SPYAuthenticDocumentPosition

Description
Relative and absolute positions used for navigating with AuthenticRange objects.

Possible values:
spyAuthenticDocumentBegin = 0
spyAuthenticDocumentEnd = 1
spyAuthenticRangeBegin = 2
spyAuthenticRangeEnd = 3

4.5.4 SPYAuthenticElementActions

Description
Actions that can be used with GetAllowedElements (superseded by
AuthenticRange.CanPerformActionWith).

Possible values:
k_ActionInsertAt = 0
k_ActionApply = 1
k_ActionClearSurr = 2
k_ActionAppend = 3
k_ActionInsertBefore = 4
k_ActionRemove = 5

© 2007 Altova GmbH

Enumerations 765The XMLSpy API

Programmers' Reference

4.5.5 SPYAuthenticElementKind

Description
Enumeration of the different kinds of elements used for navigation and selection within the
AuthenticRange and AuthenticView objects.

Possible values:
spyAuthenticChar = 0
spyAuthenticWord = 1
spyAuthenticLine = 3
spyAuthenticParagraph = 4
spyAuthenticTag = 6
spyAuthenticDocument = 8
spyAuthenticTable = 9
spyAuthenticTableRow = 10
spyAuthenticTableColumn = 11

4.5.6 SPYAuthenticMarkupVisibility

Description
Enumeration values to customize the visibility of markup with MarkupVisibility.

Possible values:
spyAuthenticMarkupHidden = 0
spyAuthenticMarkupSmall = 1
spyAuthenticMarkupLarge = 2
spyAuthenticMarkupMixed = 3

4.5.7 SPYDatabaseKind

Description
Values to select different kinds of databases for import. See
DatabaseConnection.DatabaseKind for its use.

Possible values:
spyDB_Access = 0
spyDB_SQLServer = 1
spyDB_Oracle = 2
spyDB_Sybase = 3
spyDB_MySQL = 4
spyDB_DB2 = 5
spyDB_Other = 6
spyDB_Unspecified = 7

4.5.8 SPYDialogAction

Description
Values to simulate different interactions on dialogs. See Dialogs for all dialogs available.

Possible values:
spyDialogOK = 0 // simulate click on OK button
spyDialogCancel = 1 // simulate click on Cancel button
spyDialogUserInput = 2 // show dialog and allow user interaction

766 The XMLSpy API Enumerations

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

4.5.9 SPYDOMType

Description
Enumeration values to parameterize generation of C++ code from schema definitions.

Possible values:
spyDOMType_msxml4 = 0
spyDOMType_xerces = 1

4.5.10 SPYDTDSchemaFormat

Description
Enumeration to identify the different schema formats.

Possible values:
spyDTD = 0
spyW3C = 1

4.5.11 SPYEncodingByteOrder

Description
Enumeration values to specify encoding byte ordering for text import and export.

Possible values:
spyNONE = 0
spyLITTLE_ENDIAN = 1
spyBIG_ENDIAN = 2

4.5.12 SPYExportNamespace

Description
Enumeration type to configure handling of namespace identifiers during export.

Possible values:
spyNoNamespace = 0
spyReplaceColonWithUnderscore = 1

4.5.13 SPYFindInFilesSearchLocation

Description
The different locations where a search can be performed. This type is used with the
FindInFilesDlg dialog.

Possible values:
spyFindInFiles_Documents = 0
spyFindInFiles_Project = 1
spyFindInFiles_Folder = 2

4.5.14 SPYFrequentElements

Description
Enumeration value to parameterize schema generation.

Possible values:

© 2007 Altova GmbH

Enumerations 767The XMLSpy API

Programmers' Reference

spyGlobalElements = 0
spyGlobalComplexType = 1

4.5.15 SPYImageKind

Description
Enumeration values to parameterize image type of the generated documentation. These values
are used in SchemaDocumentationDialog.DiagramFormat and
W SDLDocum entationDlg.Diagram Form at .

Possible values:
spyImageType_PNG = 0
spyImageType_EMF = 1

4.5.16 SPYKeyEvent

Description
Enumeration type to identify the different key events. These events correspond with the equally
named windows messages.

Possible values:
spyKeyDown = 0
spyKeyUp = 1
spyKeyPressed = 2

4.5.17 SPYLibType

Description
Enumeration values to parameterize generation of C++ code from schema definitions.

Possible values:
spyLibType_static = 0
spyLibType_dll = 1

4.5.18 SPYLoading

Description
Enumeration values to define loading behaviour of URL files.

Possible values:
spyUseCacheProxy = 0
spyReload = 1

4.5.19 SPYMouseEvent

Description
Enumeration type that defines the mouse status during a mouse event. Use the enumeration
values as bitmasks rather then directly comparing with them.

Examples

' to check for ctrl-leftbutton-down in VB
If (i_eMouseEvent = (XMLSpyLib.spyLeftButtonDownMask Or
XMLSpyLib.spyCtrlKeyDownMask)) Then

' react on ctrl-leftbutton-down
End If

768 The XMLSpy API Enumerations

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

' to check for double-click with any button in VBScript
If (((i_eMouseEvent And spyDoubleClickMask) <> 0) Then

' react on double-click
End If

Possible values:
spyNoButtonMask = 0
spyMouseMoveMask = 1
spyLeftButtonMask = 2
spyMiddleButtonMask = 4
spyRightButtonMask = 8
spyButtonUpMask = 16
spyButtonDownMask = 32
spyDoubleClickMask = 64
spyShiftKeyDownMask = 128
spyCtrlKeyDownMask = 256
spyLeftButtonDownMask = 34 // spyLeftButtonMask | spyButtonDownMask
spyMiddleButtonDownMask = 36 // spyMiddleButtonMask | spyButtonDownMask
spyRightButtonDownMask = 40 // spyRightButtonMask | spyButtonDownMask
spyLeftButtonUpMask = 18 // spyLeftButtonMask | spyButtonUpMask
spyMiddleButtonUpMask = 20 // spyMiddleButtonMask | spyButtonUpMask
spyRightButtonUpMask = 24 // spyRightButtonMask | spyButtonUpMask
spyLeftDoubleClickMask = 66 // spyRightButtonMask | spyButtonUpMask
spyMiddleDoubleClickMask = 68 // spyMiddleButtonMask | spyDoubleClickMask
spyRightDoubleClickMask = 72 // spyRightButtonMask | spyDoubleClickMask

4.5.20 SPYNumberDateTimeFormat

Description
Enumeration value to configure database connections.

Possible values:
spySystemLocale = 0
spySchemaCompatible = 1

4.5.21 SPYProgrammingLanguage

Description
Enumeration values to select the programming language for code generation from schema
definitions.

Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other
version.

Possible values:
spyUndefinedLanguage = -1
spyJava = 0
spyCpp = 1
spyCSharp = 2

4.5.22 SPYProjectItemTypes

Description
Enumeration values to identify the different elements in project item lists. See
SpyProjectItem.ItemType.

© 2007 Altova GmbH

Enumerations 769The XMLSpy API

Programmers' Reference

Possible values:
spyUnknownItem = 0
spyFileItem = 1
spyFolderItem = 2
spyURLItem = 3

4.5.23 SPYProjectType

Description
Enumeration values to parameterize generation of C# code from schema definitions.

Possible values:
spyVisualStudioProject = 0
spyVisualStudio2003Project = 1
spyBorlandProject = 2
spyMonoMakefile = 3
spyVisualStudio2005Project = 4

4.5.24 SPYSampleXMLGenerationOptimization

Description
Specify the elements that will be generated in the Sample XML.
This enumeration is used in GenerateSampleXMLDlg.

Possible values:
spySampleXMLGen_Optimized = 0
spySampleXMLGen_NonMandatoryElements = 1
spySampleXMLGen_Everything = 2

4.5.25 SPYSampleXMLGenerationSchemaOrDTDAssignment

Description
Specifies what kind of reference to the schema/DTD should be added to the generated Sample
XML.
This enumeration is used in GenerateSampleXMLDlg.

Possible values:
spySampleXMLGen_AssignRelatively = 0
spySampleXMLGen_AssignAbsolutely = 1
spySampleXMLGen_DoNotAssign = 2

4.5.26 SPYSchemaDefKind

Description
Enumeration type to select schema diagram types.

Possible values:
spyKindElement = 0
spyKindComplexType = 1
spyKindSimpleType = 2
spyKindGroup = 3
spyKindModel = 4
spyKindAny = 5
spyKindAttr = 6

770 The XMLSpy API Enumerations

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

spyKindAttrGroup = 7
spyKindAttrAny = 8
spyKindIdentityUnique = 9
spyKindIdentityKey = 10
spyKindIdentityKeyRef = 11
spyKindIdentitySelector = 12
spyKindIdentityField = 13
spyKindNotation = 14
spyKindInclude = 15
spyKindImport = 16
spyKindRedefine = 17
spyKindFacet = 18
spyKindSchema = 19
spyKindCount = 20

4.5.27 SPYSchemaDocumentationFormat

Description
Enumeration values to parameterize generation of schema documentation. These values are
used in SchemaDocumentationDialog.OutputFormat and
W SDLDocum entationDlg.OutputForm at .

Possible values:
spySchemaDoc_HTML = 0
spySchemaDoc_MSWord = 1
spySchemaDoc_RTF = 2

4.5.28 SPYTextDelimiters

Description
Enumeration values to specify text delimiters for text export.

Possible values:
spyTabulator = 0
spySemicolon = 1
spyComma = 2
spySpace = 3

4.5.29 SPYTextEnclosing

Description
Enumeration value to specify text enclosing characters for text import and export.

Possible values:
spyNoEnclosing = 0
spySingleQuote = 1
spyDoubleQuote = 2

4.5.30 SPYTypeDetection

Description
Enumeration to select how type detection works during GenerateDTDOrSchema and
GenerateDTDOrSchemaEx.

Possible values:
spyBestPossible = 0

© 2007 Altova GmbH

Enumerations 771The XMLSpy API

Programmers' Reference

spyNumbersOnly = 1
spyNoDetection = 2

4.5.31 SPYURLTypes

Description
Enumeration to specify different URL types.

Possible values:
spyURLTypeAuto = -1
spyURLTypeXML = 0
spyURLTypeDTD = 1

4.5.32 SPYViewModes

Description
Enumeration values that define the different view modes for XML documents. The mode
spyViewContent(4) identifies the mode that was intermediately called DocEdit mode and is now
called Authentic mode. The mode spyViewWSDL identifies a mode which is mapped to the
schema view on the GUI but distinguished internally.

Possible values:
spyViewGrid = 0
spyViewText = 1
spyViewBrowser = 2
spyViewSchema = 3
spyViewContent = 4 // obsolete
spyViewAuthentic = 4
spyViewWSDL = 5

4.5.33 SPYVirtualKeyMask

Description
Enumeration type for the most frequently used key masks that identify the status of the virtual
keys. Use these values as bitmasks rather then directly comparing with them. When necessary,
you can create further masks by using the 'logical or' operator.

Examples

' VBScript sample: check if ctrl-key is pressed
If ((i_nVirtualKeyStatus And spyCtrlKeyMask) <> 0)) Then

' ctrl-key is pressed
End If

' VBScript sample: check if ONLY ctrl-key is pressed
If (i_nVirtualKeyStatus == spyCtrlKeyMask) Then

' exactly ctrl-key is pressed
End If

// JScript sample: check if any of the right virtual keys is pressed
if ((i_nVirtualKeyStatus & (spyRightShiftKeyMask | spyRightCtrlKeyMask |
spyRightAltKeyMask)) != 0)
{

; ' right virtual key is pressed
}

Possible values:
spyNoVirtualKeyMask = 0
spyLeftShiftKeyMask = 1

772 The XMLSpy API Enumerations

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

spyRightShiftKeyMask = 2
spyLeftCtrlKeyMask = 4
spyRightCtrlKeyMask = 8
spyLeftAltKeyMask = 16
spyRightAltKeyMask = 32
spyShiftKeyMask = 3 // spyLeftShiftKeyMask | spyRightShiftKeyMask
spyCtrlKeyMask = 12 // spyLeftCtrlKeyMask | spyRightCtrlKeyMask
spyAltKeyMask = 48 // spyLeftAltKeyMask | spyRightAltKeyMask

4.5.34 SPYXMLDataKind

Description
The different types of XMLData elements available for XML documents.

Possible values:

spyXMLDataXMLDocStruct = 0
spyXMLDataXMLEntityDocStruct = 1
spyXMLDataDTDDocStruct = 2
spyXMLDataXML = 3
spyXMLDataElement = 4
spyXMLDataAttr = 5
spyXMLDataText = 6
spyXMLDataCData = 7
spyXMLDataComment = 8
spyXMLDataPI = 9
spyXMLDataDefDoctype = 10
spyXMLDataDefExternalID = 11
spyXMLDataDefElement = 12
spyXMLDataDefAttlist = 13
spyXMLDataDefEntity = 14
spyXMLDataDefNotation = 15
spyXMLDataKindsCount = 16

© 2007 Altova GmbH

 773Using the XMLSpy API with Java

Programmers' Reference

5 Using the XMLSpy API with Java

The XMLSpy API has an interface built up of Java classes, each of which corresponds to an
object in the XMLSpy API. Developers can use these Java classes to interact with the COM
API. These classes are listed below and described in subsequent sections. For a description of
the XMLSpy API objects themselves, see the XMLSpy API documentation. Bear in mind that
some API features are only available in scripting environments; these have therefore not been
ported to Java.

Java classes

SpyApplication
 SpyProject

 SpyProjectItems
 SpyProjectItem

 SpyDocuments
 SpyDoc

 SpyAuthenticView
 SpyAuthenticRange

 SpyDocEditView
 SpyDocEditSelection

 SpyGridView
 SpyXMLData

SpyDialogs
SpyCodeGeneratorDlg
SpyFileSelectionDlg
SpySchemaDocumentationDlg

SpyDatabaseConnection
SpyElementList
SpyElementListItem
SpyExportSettings
SpyTextImportExportSettings

Implementation of COM properties in Java
Properties in Java have been defined to include both a set and get method (set if it is allowed
by the COM implementation). For example, the COM class Document contains the GridView
property. In Java the method is called SpyDoc and the property is defined as a GetGridView
method.

If you encounter compiling problems, please check the following points:

 The xmlspylib.dll must be available in ..\windows\system32.

 The XMLSpyInterface.jar file must be inserted in the ClassPath environment
variable.

Setting the ClassPath variable in Windows 2000 and XP

1. Click Start | Settings | Control panel | System | Advanced | Environment Variables.
This opens the Environment Variables dialog box.

2. If a ClassPath entry already exists in the System variables group, select the
ClassPath entry, and click the Edit button. Edit the path to: "C:\Program
Files\Altova\xmlspy\XMLSpyInterface.jar".

774 Using the XMLSpy API with Java

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

If a ClassPath entry does not exist in the System variables group, click the New
button. The New System Variable dialog pops up. Enter CLASSPATH as the variable
name, and "C:\Program Files\Altova\xmlspy\XMLSpyInterface.jar" as
the ClassPath variable (alter the path to match your installation, if necessary).

© 2007 Altova GmbH

Sample source code 775Using the XMLSpy API with Java

Programmers' Reference

5.1 Sample source code

The "SpyDoc doc = app.GetDocuments().OpenFile(...)" command parameter must
be altered to suit your environment.

What the sample does:

 Starts a new XMLSPY instance
 Opens the Datasheet.xml file (alter the path here...)
 Switches to the Enhanced Grid view
 Appends a new child element called "NewChild" with the text value "NewValuE"

element to the root element
 Checks if the document is valid and outputs a message to the Java console
 Quits and releases the XMLSPY application

import XMLSpyInterface.*;

public class TestSpyInterface
{
public TestSpyInterface() {}

public static void main(String[] args)
{
SpyApplication app = new SpyApplication();
app.ShowApplication(true);

SpyDoc doc = app.GetDocuments().OpenFile("C:\\Program Files\\Altova\\xmlspy
2007\\Examples\\OrgChart.xml", true);

doc.SwitchViewMode(SPYViewModes.spyViewGrid);
SpyXMLData oData = doc.GetRootElement();
SpyXMLData oNewChild = doc.CreateChild(SPYXMLDataKind.spyXMLDataElement);

oNewChild.SetName("NewChild");
oNewChild.SetTextValue("newVaLuE");
oData.AppendChild(oNewChild);
oNewChild.ReleaseInstance();
oData.ReleaseInstance();

if (doc.IsValid() == false)
{
// is to be expected after above insertion
System.out.println("!!!!!!validation error: "+doc.GetErrorString());
System.out.println("!!!!!!validation error: "+doc.GetErrorPos());
System.out.println("!!!!!!validation error: "+doc.GetBadData());

}

doc.ReleaseInstance();
app.Quit();
app.ReleaseInstance();
}

}

If you have difficulties compiling this sample, please try the following commands on the (Start |
Run | cmd) command line. Please make sure you are currently in the folder that contains the
sample java file.

compilation
javac -classpath c:\yourpathhere\XMLSpyInterface.jar testspyinterface.java

776 Using the XMLSpy API with Java Sample source code

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Execution
java -classpath c:\yourpathhere\XMLSpyInterface.jar testspyinterface

© 2007 Altova GmbH

SpyApplication 777Using the XMLSpy API with Java

Programmers' Reference

5.2 SpyApplication

public class SpyApplication
{
public void ReleaseInstance();
public void ShowApplication(boolean bShow);
public void Quit ();
public void AddMacroMenuItem(String sMacro, String sDisplayText);
public void ClearMacroMenu();
public SpyDoc GetActiveDocument();
public SpyProject GetCurrentProject();
public SpyDocuments GetDocuments();
public SpyElementList GetDatabaseImportElementList(SpyDatabaseConnection
oImportSettings);
public SpyDatabaseConnection GetDatabaseSettings();
public SpyElementList GetDatabaseTables(SpyDatabaseConnection
oImportSettings);
public SpyExportSettings GetExportSettings();
public SpyElementList GetTextImportElementList(SpyTextImportExportSettings
oImportSettings);
public SpyTextImportExportSettings GetTextImportExportSettings();
public SpyDoc ImportFromDatabase(SpyDatabaseConnection oImportSettings,
SpyElementList oElementList);
public SpyDoc ImportFromSchema(SpyDatabaseConnection oImportSettings,
String strTable, SpyDoc oSchemaDoc);
public SpyDoc ImportFromText(SpyTextImportExportSettings oImportSettings,
SpyElementList oElementList);
public SpyDoc ImportFromWord(String sFile);
public void NewProject(String sPath, boolean bDiscardCurrent);
public void OpenProject(String sPath , boolean bDiscardCurrent, boolean
bDialog);
public long ShowForm(String sName);
public void URLDelete(String sURL, String sUser, String sPassword);
public void URLMakeDirectory(String sURL, String sUser, String sPassword);

public int GetWarningNumber();
public String GetWarningText();

// since Version 2004R4
public SpyApplication GetApplication()
public SpyApplication GetParent()
public SpyDialogs GetDialogs()
public boolean GetVisible()
public void SetVisible(boolean i_bVisibility)
public long GetWindowHandle()

}

778 Using the XMLSpy API with Java SpyCodeGeneratorDlg

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

5.3 SpyCodeGeneratorDlg

Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other
version.

// since version 2004R4
public class SpyCodeGeneratorDlg
{

public SpyApplication GetApplication();
public SpyDialogs GetParent();
public long GetProgrammingLanguage();
public void SetProgrammingLanguage(long i_eVal);
public String GetTemplateFileName();
public void SetTemplateFileName(String i_strVal);
public String GetOutputPath();
public void SetOutputPath(String i_strVal);
public long GetOutputPathDialogAction();
public void SetOutputPathDialogAction(long i_eVal);
public long GetPropertySheetDialogAction();
public void SetPropertySheetDialogAction(long i_eVal);
public long GetOutputResultDialogAction();
public void SetOutputResultDialogAction(long i_eVal);
public long GetCPPSettings_DOMType();
public void SetCPPSettings_DOMType(long i_eVal);
public long GetCPPSettings_LibraryType();
public void SetCPPSettings_LibraryType(long i_eVal);
public boolean GetCPPSettings_UseMFC();
public void SetCPPSettings_UseMFC(boolean i_bVal);
public long GetCSharpSettings_ProjectType();
public void SetCSharpSettings_ProjectType(long i_eVal);

}

© 2007 Altova GmbH

SpyDatabaseConnection 779Using the XMLSpy API with Java

Programmers' Reference

5.4 SpyDatabaseConnection

public class SpyDatabaseConnection
{
public void ReleaseInstance();
public String GetADOConnection ();
public void SetADOConnection (String sValue);
public boolean GetAsAttributes ();
public void SetAsAttributes(boolean bValue);
public boolean GetCreateMissingTables ();
public void SetCreateMissingTables(boolean bValue);
public boolean GetCreateNew ();
public void SetCreateNew(boolean bValue);
public boolean GetExcludeKeys ();
public void SetExcludeKeys (boolean bValue);
public String GetFile ();
public void SetFile (String sValue);
public boolean GetIncludeEmptyElements();
public void SetIncludeEmptyElements(boolean bValue);
public long GetNumberDateTimeFormat();
public void SetNumberDateTimeFormat (long nValue);
public String GetODBCConnection();
public void SetODBCConnection(String sValue);
public String GetSQLSelect();
public void SetSQLSelect(String sValue);
public long GetTextFieldLen ();
public void SetTextFieldLen(long nValue);

// since version 2004R4
public long GetDatabaseKind ()
public void SetDatabaseKind(long nValue)

}

780 Using the XMLSpy API with Java SpyDialogs

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

5.5 SpyDialogs

// Since version 2004R4
public class SpyDialogs
{
public SpyApplication GetApplication();
public SpyApplication GetParent();
public SpyCodeGeneratorDlg GetCodeGeneratorDlg ();
public SpyFileSelectionDlg GetFileSelectionDlg ();
public SpySchemaDocumentationDlg GetSchemaDocumentationDlg ();

}

© 2007 Altova GmbH

SpyDoc 781Using the XMLSpy API with Java

Programmers' Reference

5.6 SpyDoc

public class SpyDoc
{
public void ReleaseInstance();
public void SetEncoding(String strEncoding);
public void SetPathName(String strPath);
public String GetPathName();
public String GetTitle();
public boolean IsModified();
public void Save();
public void Close(boolean bDiscardChanges);
public void UpdateViews();
public long GetCurrentViewMode();
public boolean SwitchViewMode(long nMode);
public SpyGridView GetGridView();
public void SetActiveDocument();
public void StartChanges();
public void EndChanges();
public void TransformXSL();
public void AssignDTD(String sDTDFile, boolean bDialog);
public void AssignSchema(String sSchemaFile, boolean bDialog);
public void AssignXSL(String sXSLFile, boolean bDialog);
public void ConvertDTDOrSchema(long nFormat, long nFrequentElements);
public SpyXMLData CreateChild(long nKind);
public void CreateSchemaDiagram(long nKind, String sName, String sFile);
public SpyDocEditView GetDocEditView();
public void ExportToDatabase(SpyXMLData oFromChild, SpyExportSettings
oExportSettings, SpyDatabaseConnection oDatabaseConnection);
public void ExportToText(SpyXMLData oFromChild, SpyExportSettings
oExportSettings, SpyTextImportExportSettings oTextSettings);
public void GenerateDTDOrSchema(long nFormat, int nValuesList, long
nDetection, long nFrequentElements);
public SpyElementList GetExportElementList(SpyXMLData oFromChild,
SpyExportSettings oExportSettings);
public SpyXMLData GetRootElement();
public String SaveInString(SpyXMLData oData, boolean bMarked);
public void SaveToURL(String sUrl, String sUser, String sPassword);
public String GetErrorString();
public int GetErrorPos();
public SpyXMLData GetBadData();
public boolean IsValid();
public boolean IsWellFormed(SpyXMLData oData, boolean bWithChildren);

// Since version 2004R3
public SpyAuthenticView GetAuthenticView()

// Since version 2004R4
public SpyApplication GetApplication();
public SpyDocuments GetParent();
public String GetFullName();
public void SetFullName(String i_strName);
public String GetName();
public String GetPath();
public boolean GetSaved();
public void SaveAs(String i_strFileNameOrPath);
public String GetEncoding();
public SpyXMLData GetDataRoot();
public void GenerateProgramCode(SpyCodeGeneratorDlg i_dlg);
public void AssignXSLFO(String i_strFile, boolean i_bUseDialog);
public void TransformXSLFO ();

782 Using the XMLSpy API with Java SpyDoc

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

public void GenerateSchemaDocumentation (SpySchemaDocumentationDlg i_dlg);
}

© 2007 Altova GmbH

SpyDocuments 783Using the XMLSpy API with Java

Programmers' Reference

5.7 SpyDocuments

public class SpyDocuments
{
public void ReleaseInstance();
public long Count();
public SpyDoc GetItem(long nNo);
public SpyDoc NewFile(String strFile, String strType);
public SpyDoc NewFileFromText(String nSource, String strType);
public SpyDoc OpenFile(String sPath, boolean bDialog);
public SpyDoc OpenURL(String sUrl, long nURLType, long nLoading, String
sUser, String sPassword);
public SpyDoc OpenURLDialog(String sURL, long nURLType, long nLoading,
String sUser, String sPassword)

}

784 Using the XMLSpy API with Java SpyElementList

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

5.8 SpyElementList

public class SpyElementList
{
public void ReleaseInstance();
public long GetCount();
public SpyElementListItem GetItem(long nIndex);
public void RemoveElement(long nIndex);

}

© 2007 Altova GmbH

SpyElementListItem 785Using the XMLSpy API with Java

Programmers' Reference

5.9 SpyElementListItem

public class SpyElementListItem
{
public void ReleaseInstance();
public long GetElementKind();
public void SetElementKind(long nKind);
public long GetFieldCount ();
public String GetName();
public long GetRecordCount();

}

786 Using the XMLSpy API with Java SpyExportSettings

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

5.10 SpyExportSettings

public class SpyExportSettings
{
public void ReleaseInstance();
public boolean GetCreateKeys();
public void SetCreateKeys(boolean bValue);
public SpyElementList GetElementList();
public void SetElementList(SpyElementList obj);
public boolean GetEntitiesToText ();
public void SetEntitiesToText (boolean bValue);
public boolean GetExportAllElements ();
public void SetExportAllElements (boolean bValue);
public boolean GetFromAttributes ();
public void SetFromAttributes (boolean bValue);
public boolean GetFromSingleSubElements ();
public void SetFromSingleSubElements (boolean bValue);
public boolean GetFromTextValues ();
public void SetFromTextValues (boolean bValue);
public boolean GetIndependentPrimaryKey ();
public void SetIndependentPrimaryKey (boolean bValue);
public long GetNamespace ();
public void SetNamespace (long nValue);
public int GetSubLevelLimit ();
public void SetSubLevelLimit (int nValue);

}

© 2007 Altova GmbH

SpyFileSelectionDlg 787Using the XMLSpy API with Java

Programmers' Reference

5.11 SpyFileSelectionDlg

// Since version 2004R4
public class SpyFileSelectionDlg
{
public SpyApplication GetApplication();
public SpyDialogs GetParent();
public String GetFullName();
public void SetFullName(String i_strName);
public long GetDialogAction();
public void SetDialogAction(long i_eAction);

}

788 Using the XMLSpy API with Java SpyGridView

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

5.12 SpyGridView

public class SpyGridView
{
public void ReleaseInstance();
public SpyXMLData GetCurrentFocus();
public void Deselect(SpyXMLData oData);
public boolean GetIsVisible();
public void Select(SpyXMLData oData);
public void SetFocus(SpyXMLData oData);

}

© 2007 Altova GmbH

SpyProject 789Using the XMLSpy API with Java

Programmers' Reference

5.13 SpyProject

public class SpyProject
{
public void ReleaseInstance();
public void CloseProject(boolean bDiscardChanges, boolean bCloseFiles,
boolean bDialog);
public String GetProjectFile();
public void SetProjectFile(String sFile);
public SpyProjectItems GetRootItems();
public void SaveProject();
public void SaveProjectAs(String sPath, boolean bDialog);

}

790 Using the XMLSpy API with Java SpyProjectItem

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

5.14 SpyProjectItem

public class SpyProjectItem
{
public void ReleaseInstance();
public SpyProjectItems GetChildItems ();
public String GetFileExtensions();
public void SetFileExtensions(String sExtensions);
public long GetItemType();
public String GetName();
public SpyDoc Open();
public SpyProjectItem GetParentItem();
public String GetPath();
public String GetValidateWith();
public void SetValidateWith(String sVal);
public String GetXMLForXSLTransformation();
public void SetXMLForXSLTransformation(String sVal);
public String GetXSLForXMLTransformation();
public void SetXSLForXMLTransformation(String sVal);
public String GetXSLTransformationFileExtension();
public void SetXSLTransformationFileExtension(String sVal);
public String GetXSLTransformationFolder();
public void SetXSLTransformationFolder(String sVal);

}

© 2007 Altova GmbH

SpyProjectItems 791Using the XMLSpy API with Java

Programmers' Reference

5.15 SpyProjectItems

public class SpyProjectItems
{
public void ReleaseInstance();
public void AddFile(String sPath);
public void AddFolder(String sName);
public void AddURL(String sURL, long nURLType, String sUser, String
sPassword, boolean bSave);
public long Count();
public SpyProjectItem GetItem(long nNumber);
public void RemoveItem(SpyProjectItem oItemToRemove);

}

792 Using the XMLSpy API with Java SpySchemaDocumentationDlg

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

5.16 SpySchemaDocumentationDlg

// Since version 2004R4
public class SpySchemaDocumenttaionDlg
{

public SpyApplication GetApplication();
public SpyDialogs GetParent();

public String GetOutputFile();
public void SetOutputFile(String i_strVal);
public long GetOutputFormat();
public void SetOutputFormat(long i_eVal);

public boolean GetShowResult();
public void SetShowResult(boolean i_bVal);
public long GetOptionsDialogAction();
public void SetOptionsDialogAction(long i_eVal);
public long GetOutputFileDialogAction();
public void SetOutputFileDialogAction(long i_eVal);
public boolean GetShowProgressBar();
public void SetShowProgressBar(boolean i_bVal);

public void IncludeAll(boolean i_bInclude);
public boolean GetIncludeIndex();
public void SetIncludeIndex(boolean i_bVal);
public boolean GetIncludeGlobalElements();
public void SetIncludeGlobalElements(boolean i_bVal);
public boolean GetIncludeLocalElements();
public void SetIncludeLocalElements(boolean i_bVal);
public boolean GetIncludeGroups();
public void SetIncludeGroups(boolean i_bVal);
public boolean GetIncludeComplexTypes();
public void SetIncludeComplexTypes(boolean i_bVal);
public boolean GetIncludeSimpleTypes();
public void SetIncludeSimpleTypes(boolean i_bVal);
public boolean GetIncludeAttributeGroups();
public void SetIncludeAttributeGroups(boolean i_bVal);
public boolean GetIncludeRedefines();
public void SetIncludeRedefines(boolean i_bVal);

public void AllDetails(boolean i_bDetailsOn);
public boolean GetShowDiagram();
public void SetShowDiagram(boolean i_bVal);
public boolean GetShowNamespace();
public void SetShowNamespace(boolean i_bVal);
public boolean GetShowType();
public void SetShowType(boolean i_bVal);
public boolean GetShowChildren();
public void SetShowChildren(boolean i_bVal);
public boolean GetShowUsedBy();
public void SetShowUsedBy(boolean i_bVal);
public boolean GetShowProperties();
public void SetShowProperties(boolean i_bVal);
public boolean GetShowSingleFacets();
public void SetShowSingleFacets(boolean i_bVal);
public boolean GetShowPatterns();
public void SetShowPatterns(boolean i_bVal);
public boolean GetShowEnumerations();
public void SetShowEnumerations(boolean i_bVal);
public boolean GetShowAttributes();
public void SetShowAttributes(boolean i_bVal);

© 2007 Altova GmbH

SpySchemaDocumentationDlg 793Using the XMLSpy API with Java

Programmers' Reference

public boolean GetShowIdentityConstraints();
public void SetShowIdentityConstraints(boolean i_bVal);
public boolean GetShowAnnotations();
public void SetShowAnnotations(boolean i_bVal);
public boolean GetShowSourceCode();
public void SetShowSourceCode(boolean i_bVal);

}

794 Using the XMLSpy API with Java SpyTextImportExportSettings

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

5.17 SpyTextImportExportSettings

public class SpyTextImportExportSettings
{
public void ReleaseInstance();
public String GetDestinationFolder ();
public void SetDestinationFolder (String sVal);
public long GetEnclosingCharacter ();
public void SetEnclosingCharacter (long nEnclosing);
public String GetEncoding ();
public void SetEncoding (String sVal);
public long GetEncodingByteOrder();
public void SetEncodingByteOrder(long nByteOrder);
public long GetFieldDelimiter();
public void SetFieldDelimiter(long nDelimiter);
public String GetFileExtension ();
public void SetFileExtension (String sVal);
public boolean GetHeaderRow();
public void SetHeaderRow(boolean bVal);
public String GetImportFile();
public void SetImportFile(String sVal);

}

© 2007 Altova GmbH

SpyXMLData 795Using the XMLSpy API with Java

Programmers' Reference

5.18 SpyXMLData

public class SpyXMLData
{
public void ReleaseInstance();
public void AppendChild(SpyXMLData oNewData);
public void EraseAllChildren();
public void EraseCurrentChild();
public SpyXMLData GetCurrentChild();
public SpyXMLData GetFirstChild(long nKind);
public SpyXMLData GetNextChild();
public boolean GetHasChildren();
public void InsertChild(SpyXMLData oNewData);
public boolean IsSameNode(SpyXMLData oToComp);
public long GetKind();
public boolean GetMayHaveChildren ();
public String GetName();
public void SetName(String sValue);
public SpyXMLData GetParent();
public String GetTextValue();
public void SetTextValue (String sValue);

}

796 Using the XMLSpy API with Java Authentic

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

5.19 Authentic

5.19.1 SpyAuthenticRange

// Since version 2004R3
public class SpyAuthenticRange
{
 public void ReleaseInstance();
 public SpyApplication GetApplication();
 public SpyAuthenticView GetParent();
 public SpyAuthenticRange GotoNext(long eKind);
 public SpyAuthenticRange GotoPrevious(long eKind);
 public void Select();
 public long GetFirstTextPosition();
 public void SetFirstTextPosition (long nTextPosition);
 public long GetLastTextPosition();
 public void SetLastTextPosition (long nTextPosition);
 public String GetText();
 public void SetText (String strText);
 public boolean PerformAction(long eAction, String strElementName);
 public boolean CanPerformAction(long eAction, String strElementName);
 public String[] CanPerformActionWith (long eAction);
 public SpyAuthenticRange GoTo(long eKind, long nCount, long nFrom);
 public SpyAuthenticRange SelectNext (long eKind);
 public SpyAuthenticRange SelectPrevious (long eKind);
 public SpyAuthenticRange MoveBegin (long eKind, long nCount);
 public SpyAuthenticRange MoveEnd (long eKind, long nCount);
 public SpyAuthenticRange ExpandTo (long eKind);
 public SpyAuthenticRange CollapsToBegin ();
 public SpyAuthenticRange CollapsToEnd ();
 public SpyAuthenticRange GotoNextCursorPosition ();
 public SpyAuthenticRange GotoPreviousCursorPosition ();
 public boolean IsEmpty ();
 public boolean IsEqual (SpyAuthenticRange ipCmp);
 public SpyAuthenticRange Clone ();
 public SpyAuthenticRange SetFromRange (SpyAuthenticRange ipSrc);
 public boolean Delete ();
 public boolean Cut ();
 public boolean Copy ();
 public boolean Paste ();
 public SpyXMLData GetFirstXMLData ();
 public void SetFirstXMLData (SpyXMLData objXMLDataPtr);
 public long GetFirstXMLDataOffset ();
 public void SetFirstXMLDataOffset (long nOffset);
 public SpyXMLData GetLastXMLData ();
 public void SetLastXMLData (SpyXMLData objXMLDataPtr);
 public long GetLastXMLDataOffset ();
 public void SetLastXMLDataOffset (long nOffset);
 public String[] GetElementHierarchy ();
 public String[] GetElementAttributeNames (String strElementName);
 public boolean HasElementAttribute (String strElementName, String
strAttributeName);
 public String GetElementAttributeValue (String strElementName, String
strAttributeName);
 public void SetElementAttributeValue (String strElementName, String
strAttributeName, String strNewValue);
 public String[] GetEntityNames ();
 public void InsertEntity (String strEntityName);
 public boolean IsInDynamicTable ();
 public boolean AppendRow ();
 public boolean InsertRow ();

© 2007 Altova GmbH

Authentic 797Using the XMLSpy API with Java

Programmers' Reference

 public boolean DuplicateRow ();
 public boolean DeleteRow ();
 public boolean MoveRowUp ();
 public boolean MoveRowDown ();

// Since version 2004R4
public boolean IsCopyEnabled();
public boolean IsCutEnabled();
public boolean IsPasteEnabled();
public boolean IsDeleteEnabled();
public boolean IsTextStateApplied(String i_strElementName);
public boolean IsFirstRow();
public boolean IsLastRow();

}

5.19.2 SpyAuthenticView

// Since version 2004R3
public class SpyAuthenticView
{
 public void ReleaseInstance();
 public SpyApplication GetApplication();
 public SpyDoc GetParent();
 public SpyAuthenticRange GetSelection();
 public void SetSelection (SpyAuthenticRange obj);
 public SpyAuthenticRange GetDocumentBegin();
 public SpyAuthenticRange GetDocumentEnd();
 public SpyAuthenticRange GetWholeDocument();
 public long GetMarkupVisibility();
 public void SetMarkupVisibility (long eSpyAuthenticMarkupVisibility);
 public SpyAuthenticRange GoTo(long eKind, long nCount, long nFrom);
 public void Print(boolean bWithPreview, boolean bPromptUser);
 public boolean Undo();
 public boolean Redo();
 public void UpdateXMLInstanceEntities();

// Since version 2004R4
public String GetAsXMLString();
public void SetAsXMLString(String i_strXML);
public SpyXMLData GetXMLDataRoot();
public boolean IsUndoEnabled ();
public boolean IsRedoEnabled ();

}

5.19.3 SpyDocEditSelection

public class SpyDocEditSelection
{
public void ReleaseInstance();
public SpyXMLData GetEnd();
public long GetEndTextPosition();
public SpyXMLData GetStart();
public long GetStartTextPosition();

}

5.19.4 SpyDocEditView

public class SpyDocEditView
{

798 Using the XMLSpy API with Java Authentic

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

public void ReleaseInstance();
public void ApplyTextState(String sElementName);
public SpyDocEditSelection GetCurrentSelection();
public void EditClear();
public void EditCopy();
public void EditCut();
public void EditPaste();
public void EditRedo();
public void EditSelectAll();
public void EditUndo();
public SpyXMLData GetNextVisible(SpyXMLData oElement);
public SpyXMLData GetPreviousVisible(SpyXMLData oElement);
public boolean GetIsEditClearEnabled ();
public boolean GetIsEditCopyEnabled ();
public boolean GetIsEditCutEnabled ();
public boolean GetIsEditPasteEnabled ();
public boolean GetIsEditRedoEnabled ();
public boolean GetIsEditUndoEnabled ();
public boolean GetIsRowAppendEnabled ();
public boolean GetIsRowDeleteEnabled ();
public boolean GetIsRowDuplicateEnabled();
public boolean GetIsRowInsertEnabled();
public boolean GetIsRowMoveDownEnabled();
public boolean GetIsRowMoveUpEnabled();
public boolean IsTextStateApplied(String sElementName);
public boolean IsTextStateEnabled(String sElementName);
public void LoadXML(String sXML);
public void MarkUpView(long nKind);
public void RowAppend();
public void RowDelete();
public void RowDuplicate();
public void RowInsert();
public void RowMoveDown();
public void RowMoveUp();
public String SaveXML();
public void SelectionMoveTabOrder(boolean bForward, boolean bTag);
public boolean SelectionSet(SpyXMLData oStart, long nStartPos,SpyXMLData
oEndElement, long nEndPos);
public SpyXMLData GetXMLRoot();
public String[] GetAllowedElements(long nAction, SpyXMLData oStartPtr,
SpyXMLData oEndPtr);

}

© 2007 Altova GmbH

Predefined constants 799Using the XMLSpy API with Java

Programmers' Reference

5.20 Predefined constants

This section lists all classes that define the predefined constants used by the Java interface.

5.20.1 SPYAuthenticActions

public class SPYAuthenticActions
{

public final static long
spyAuthenticInsertAt

= 0;

public final static long spyAuthenticApply= 1;
public final static long
spyAuthenticClearSurr

= 2;

public final static long
spyAuthenticAppend

= 3;

public final static long
spyAuthenticInsertBefore

= 4;

public final static long
spyAuthenticRemove

= 5;

}

5.20.2 SPYAuthenticDocumentPosition

public class SPYAuthenticDocumentPosition
{

public final static long
spyAuthenticDocumentBegin

= 0;

public final static long
spyAuthenticDocumentEnd

= 1;

public final static long
spyAuthenticRangeBegin

= 2;

public final static long
spyAuthenticRangeEnd

= 3;

}

5.20.3 SPYAuthenticElementKind

public class SPYAuthenticElementKind
{

public final static long
spyAuthenticChar

= 0;

public final static long
spyAuthenticWord

= 1;

public final static long
spyAuthenticLine

= 3;

public final static long
spyAuthenticParagraph

= 4;

public final static long
spyAuthenticTag

= 6;

public final static long
spyAuthenticDocument

= 8;

public final static long
spyAuthenticTable

= 9;

800 Using the XMLSpy API with Java Predefined constants

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

public final static long
spyAuthenticTableRow

= 10;

public final static long
spyAuthenticTableColumn

= 11;

}

5.20.4 SPYAuthenticMarkupVisibility

public class SPYAuthenticMarkupVisibility
{

public final static long
spyAuthenticMarkupHidden

= 0;

public final static long
spyAuthenticMarkupSmall

= 1;

public final static long
spyAuthenticMarkupLarge

= 2;

public final static long
spyAuthenticMarkupMixed

= 3;

}

5.20.5 SPYDatabaseKind

public class SPYLoading
{

public final static long
spyDB_Access

= 0;

public final static long
spyDB_SQLServer

= 1;

public final static long
spyDB_Oracle

= 2;

public final static long
spyDB_Sybase

= 3;

public final static long
spyDB_MySQL

= 4;

public final static long spyDB_DB2 = 5;
public final static long
spyDB_Other

= 6;

public final static long
spyDB_Unspecified

= 7;

}

5.20.6 SPYDialogAction

public class SPYDialogAction
{

public final static long
spyDialogOK

= 0;

public final static long
spyDialogCancel

= 1;

public final static long
spyDialogUserInput

= 2;

}

© 2007 Altova GmbH

Predefined constants 801Using the XMLSpy API with Java

Programmers' Reference

5.20.7 SPYDOMType

public class SPYDOMType
{

public final static long
spyDOMType_msxml4

= 0;

public final static long
spyDOMType_xerces

= 1;

}

5.20.8 SPYDTDSchemaFormat

public class SPYDTDSchemaFormat
{

public final static long spyDTD = 0;
public final static long spyDCD = 1;
public final static long spyXMLData = 2;
public final static long spyBizTalk = 3;
public final static long spyW3C = 4;

}

5.20.9 SPYEncodingByteOrder

public class SPYEncodingByteOrder
{

public final static long spyNONE = 0;
public final static long
spyLITTLE_ENDIAN

= 1;

public final static long
spyBIG_ENDIAN

= 2;

}

5.20.10 SPYExportNamespace

public class SPYExportNamespace
{

public final static long spyNoNamespace = 0;
public final static long spyReplaceColonWithUnderscore = 1;

}

5.20.11 SPYFrequentElements

public class SPYFrequentElements
{

public final static long
spyGlobalElements

= 0;

public final static long
spyGlobalComplexType

= 1;

}

802 Using the XMLSpy API with Java Predefined constants

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

5.20.12 SPYLibType

public class SPYLibType
{

public final static long
spyLibType_static

= 0;

public final static long
spyLibType_dll

= 1;

}

5.20.13 SPYLoading

public class SPYLoading
{

public final static long
spyUseCacheProxy

= 0;

public final static long
spyReload

= 1;

}

5.20.14 SPYNameDateTimeFormat

public class SPYNumberDateTimeFormat
{

public final static long
spySystemLocale

= 0;

public final static long
spySchemaCompatible

= 1;

}

5.20.15 SPYProgrammingLanguage

public class SPYLoading
{

public final static long spyUndefinedLanguage = -1;
public final static long spyJava = 0;
public final static long spyCpp = 1;
public final static long spyCSharp = 2;

}

5.20.16 SPYProjectItemTypes

public class SPYProjectItemTypes
{

public final static long
spyUnknownItem

= 0;

public final static long
spyFileItem

= 1;

public final static long
spyFolderItem

= 2;

public final static long
spyURLItem

= 3;

}

© 2007 Altova GmbH

Predefined constants 803Using the XMLSpy API with Java

Programmers' Reference

5.20.17 SPYProjectType

public class SPYProjectType
{

public final static long
spyVisualStudioProject

= 0;

public final static long
spyVisualStudio2003Project

= 1;

public final static long
spyBorlandProject

= 2;

public final static long
spyMonoMakefile

= 3;

}

5.20.18 SPYSchemaDefKind

public class SPYSchemaDefKind
{

public final static long spyKindElement = 0;
public final static long
spyKindComplexType

= 1;

public final static long
spyKindSimpleType

= 2;

public final static long spyKindGroup = 3;
public final static long spyKindModel = 4;
public final static long spyKindAny = 5;
public final static long spyKindAttr = 6;
public final static long
spyKindAttrGroup

= 7;

public final static long spyKindAttrAny = 8;
public final static long
spyKindIdentityUnique

= 9;

public final static long
spyKindIdentityKey

= 10;

public final static long
spyKindIdentityKeyRef

= 11;

public final static long
spyKindIdentitySelector

= 12;

public final static long
spyKindIdentityField

= 13;

public final static long spyKindNotation = 14;
public final static long spyKindInclude = 15;
public final static long spyKindImport = 16;
public final static long spyKindRedefine = 17;
public final static long spyKindFacet = 18;
public final static long spyKindSchema = 19;
public final static long spyKindCount = 20;

}

5.20.19 SPYSchemaDocumentationFormat

public class SPYSchemaDocumentationFormat
{

public final static long
spySchemaDoc_HTML

= 0;

804 Using the XMLSpy API with Java Predefined constants

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

public final static long
spySchemaDoc_MSWord

= 1;

}

5.20.20 SPYTextDelimiters

public class SPYTextDelimiters
{

public final static long
spyTabulator

= 0;

public final static long
spySemicolon

= 1;

public final static long spyComma = 2;
public final static long spySpace = 3;

}

5.20.21 SPYTextEnclosing

public class SPYTextEnclosing
{

public final static long
spyNoEnclosing

= 0;

public final static long
spySingleQuote

= 1;

public final static long
spyDoubleQuote

= 2;

}

5.20.22 SPYTypeDetection

public class SPYTypeDetection
{

public final static long
spyBestPossible

= 0;

public final static long
spyNumbersOnly

= 1;

public final static long
spyNoDetection

= 2;

}

5.20.23 SPYURLTypes

public class SPYURLTypes
{

public final static long
spyURLTypeAuto

= (-1);

public final static long
spyURLTypeXML

= 0;

public final static long
spyURLTypeDTD

= 1;

}

© 2007 Altova GmbH

Predefined constants 805Using the XMLSpy API with Java

Programmers' Reference

5.20.24 SpyViewModes

public class SPYViewModes
{

public final static long
spyViewGrid

= 0;

public final static long
spyViewText

= 1;

public final static long
spyViewBrowser

= 2;

public final static long
spyViewSchema

= 3;

public final static long
spyViewContent

= 4;

}

5.20.25 SPYWhitespaceComparison

public class SPYWhitespaceComparison
{

public final static long
spyCompareAsIs

= 0;

public final static long
spyCompareNormalized

= 1;

public final static long
spyStripAll

= 2;

}

5.20.26 SPYXMLDataKind

public class SPYXMLDataKind
{

public final static long
spyXMLDataXMLDocStruct

= 0;

public final static long
spyXMLDataXMLEntityDocStruct

= 1;

public final static long
spyXMLDataDTDDocStruct

= 2;

public final static long
spyXMLDataXML

= 3;

public final static long
spyXMLDataElement

= 4;

public final static long
spyXMLDataAttr

= 5;

public final static long
spyXMLDataText

= 6;

public final static long
spyXMLDataCData

= 7;

public final static long
spyXMLDataComment

= 8;

public final static long
spyXMLDataPI

= 9;

public final static long
spyXMLDataDefDoctype

= 10;

public final static long
spyXMLDataDefExternalID

= 11;

806 Using the XMLSpy API with Java Predefined constants

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

public final static long
spyXMLDataDefElement

= 12;

public final static long
spyXMLDataDefAttlist

= 13;

public final static long
spyXMLDataDefEntity

= 14;

public final static long
spyXMLDataDefNotation

= 15;

public final static long
spyXMLDataKindsCount

= 16;

}

© 2007 Altova GmbH

 807XMLSpy Integration

Programmers' Reference

6 XMLSpy Integration

XMLSpyControl is a control that provides a means of integration of the XMLSpy user interface
and the functionality described in this section into most kinds of applications. ActiveX technology
was chosen so as to allow integration using any of a wide variety of languages; this enables
C++, C#, VisualBasic, or HTML to be used for integration. All components are full OLE Controls,
which makes integration as simple as possible. Two different levels of integration are provided,
thus enabling the integration to be adapted to a wide range of needs.

For a successful integration you have to consider the following main design factors:

 What technology or programming language can the hosting application use to integrate
the XMLSpyControl?

 Should the integrated UI look exactly like XMLSpy with all its menus, toolbars, and
windows, or will a subset of these elements—like allowing only one document and a
restricted set of commands—be more effective?

 How deep will the integration be? Should the XMLSpy user interface be used as is? Are
user interface extensions and/or restrictions required? Can some frequently used tasks
be automated?

The sections, Integration at the Application Level and Integration at Document Level, both of
which have examples in various programming languages, will help you to make the right
decisions quickly. The section, Object Reference, describes all COM objects that can be used
for integration, together with their properties and methods.

For automation tasks, the XMLSpy Automation Interface is accessible from the XMLSpyControl
as well.

808 XMLSpy Integration Integration at the Application Level

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

6.1 Integration at the Application Level

Integration at application level is simple and straightforward. It allows you to embed the
complete interface of XMLSpy into a window of your application. Since you get the whole user
interface of XMLSpy, you get all menus, toolbars, the status bar, document windows, and helper
windows. Customization of the application's user interface is restricted to what XMLSpy
provides. This includes rearrangement and resizing of helper windows and customization of
menus and toolbars.

The only ActiveX control you need to integrate is XMLSpyControl. Its property
IntegrationLevel defaults to application-level. You may use Appearance and
BorderStyle to configure the appearance of the control's wrapper window. Do not instantiate
or access XMLSpyControlDocument or XMLSpyControlPlaceHolder ActiveX controls
when integrating at application-level.

If you have any initialization to do or if you want to automate some behaviour of XMLSpy, use
the properties, methods, and events described for XMLSpyControl. Consider using
XMLSpyControl.Application for more complex access to XMLSpy functionality.

In this section is an example (Example: HTML) showing how the XMLSpy application can be
embedded in an HTML page. For usage with other programming languages, or more
sophisticated access, see the Examples of integration at document-level.

6.1.1 Example: HTML

This example shows a simple integration of the XMLSpy control at application-level into a HTML
page. The integration is described in the following sections:

 Instantiate a XMLSpyControl in HTML code.
 Implement buttons to load documents and automate code-generation tasks.
 Define actions for some application events.

The code for this example is available at the following location in your XMLSpy installation:
Examples\ActiveX\HTML\XMLSpyActiveX_ApplicationLevel.htm.

Instantiate the Control

The HTML Object tag is used to create an instance of the XMLSpyControl. The Classid is
that of XMLSpyControl. Width and height specify the window size. No additional parameters are
necessary, since application-level is the default.

<OBJECT id="objXMLSpyControl"
 Classid="clsid:a258bba2-3835-4c16-8590-72b44f52c471"
 width="1000"
 height="700"
 VIEWASTEXT>
</OBJECT>

Add Button to Open Default Document

As a simple example of how to automate some tasks, we add a button to the page:

<input type="button" value="Open Marketing Expenses"
onclick="BtnOpenMEFile()">

© 2007 Altova GmbH

Integration at the Application Level 809XMLSpy Integration

Programmers' Reference

When clicked, a predefined document will be opened in the XMLSpyControl. We use a method
to locate the file relative to the XMLSpyControl so the example can run on different installations.

<SCRIPT ID=Javahandlers LANGUAGE=javascript>
// ---------------------------------
// open a pre-defined document
function BtnOpenMEFile()
{
var pos = objXMLSpyControl.BaseHref.indexOf("ActiveX");

if(pos > 7)
{
path = objXMLSpyControl.BaseHref.substr(7, pos - 7); // remove

file protocol

objXMLSpyControl.Open(path + "OrgChart.xml ");
}
else
{

alert("Unable to locate OrgChart.xml at: " + objXMLSpyControl.BaseHref);
}

}
</SCRIPT>

Add Buttons for Code Generation

For direct access, we want to have a button that will validate the current document. The method
is similar to that used in the previous section.

First comes the button:

<input type="button" value="Validate" onclick="BtnValidate()">

Then we provide the script that will validate the current document.

<SCRIPT ID=Javahandlers LANGUAGE=javascript>
// --
// check validity of current document.
// if validation fails, show validation result in alert box .
function BtnValidate()
{

// get top-level object of automation interface
var objApp = objXMLSpyControl.Application;

// get the active document
var objDocument = objApp.ActiveDocument;

if (objDocument == null)
alert("no active document found");

else
{

// define as arrays to support their usage as return parameters
var errorText = new Array(1);
var errorPos = new Array(1);
var badData = new Array(1);

var valid = objDocument.IsValid(errorText, errorPos, badData);

if (! valid)
{

 // compose the error description
 var text = errorText;

810 XMLSpy Integration Integration at the Application Level

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

 // access that XMLData object only if filled in
 if (badData[0] != null)

 text += "(" + badData[0].Name + "/" +
badData[0].TextValue + ")";

 alert("Validation error[" + errorPos + "]: " + text);
}
else

alert("Docuent is valid"); }
}
</SCRIPT>

Connect to Custom Events

The example implements two event callbacks for XMLSpyControl custom events to show the
principle:

<!-- --- -->
<!-- custom event 'OnDocumentOpened" of XMLSpyControl object -->
<SCRIPT FOR="objXMLSpyControl" event="OnDocumentOpened(objDocument)"
LANGUAGE="javascript">

// alert("Document '" + objDocument.Name + "' opened!");
</SCRIPT>

<!-- --- -->
<!-- custom event 'OnDocumentClosed" of XMLSpyControl object -->
<SCRIPT FOR="objXMLSpyControl" event="OnDocumentClosed(objDocument)"
LANGUAGE="javascript">

// alert("Document '" + objDocument.Name + "' closed!");
</SCRIPT>

© 2007 Altova GmbH

Integration at Document Level 811XMLSpy Integration

Programmers' Reference

6.2 Integration at Document Level

Integration at document level gives you freedom over instantiation and placement of the
following parts of the XMLSpy user interface:

 Editing windows for XMLSpy
 XMLSpy entry helper windows
 XMLSpy validator output window
 XMLSpy project window
 XMLSpy XPath profiler window
 XMLSpy XPath dialog window
 XMLSpy XSLT/XQuery debugger windows
 XMLSpy SOAP debugger window

If necessary, a replacement for the menus and toolbars of XMLSpy must be provided by your
application.

You will need to instantiate and access multiple ActiveX controls, depending on which user
interface parts you want to re-use. All these controls are contained in the XMLSpyControl OCX.

 Use XMLSpyControl to set the integration level and access application wide
functionality.

 Use XMLSpyControlDocument to create any number of editor windows. It may be
sufficient to create only one window and re-use it, depending on your needs.

 Optionally Use XMLSpyControlPlaceholder to embed XMLSpy entry helper windows,
validator output or other windows mentioned above.

 Access run-time information about commands, menus, and toolbars available in
XMLSpyControl to seamlessly integrate these commands into your application's menus
and toolbars. See Use Commands for more information.

If you want to automate some behaviour of XMLSpy use the properties, methods, and events
described for the XMLSpyControl, XMLSpyControlDocument and XMLSpyControlPlaceHolder.
Consider using XMLSpyControl.Application, XMLSpyControlDocument.Document and
XMLSpyControlPlaceHolder.Project for more complex access to XMLSpy functionality.
However, to open a document always use XMLSpyControlDocument.Open or
XMLSpyControlDocument.New on the appropriate document control. To open a project always
use XMLSpyControlPlaceHolder.OpenProject on a placeholder control embedding a XMLSpy
project window.

See Examples on how to instantiate and access the necessary controls in different
programming environments.

6.2.1 Use XMLSpyControl

To integrate at document level, instantiate a XMLSpyControl first. Set the property
IntegrationLevel to ICActiveXIntegrationOnDocumentLevel (= 1) . Set the window size of the
embedding window to 0x0 to hide any user interface behind the control. You may use
Appearance and BorderStyle to configure the appearance of the control's wrapper window.

Avoid using the method Open since this might lead to unexpected results. Use the
corresponding open methods of XMLSpyControlDocument and
XMLSpyControlPlaceHolder, instead.

See Query XMLSpy Commands for a description of how to integrate XMLSpy commands into
your application. Send commands to XMLSpy via the method Exec. Query if a command is
currently enabled or disabled using the method QueryStatus.

812 XMLSpy Integration Integration at Document Level

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

6.2.2 Use XMLSpyControlDocument

An instance of the XMLSpyControlDocument ActiveX control allows you to embed one
XMLSpy document editing window into your application. You can use any number of instances
you need.

Use the method Open to load any other existing file.

The control does not supports a read-only mode. The value of the property ReadOnly is
ignored.

Use Path and Save or methods and properties accessible via the property Document to
access document functionality.

6.2.3 Use XMLSpyControlPlaceHolder

Instances of XMLSpyControlPlaceHolder ActiveX controls allow you to selectively embed the
additional helper windows of XMLSpy into your application. The property
PlaceholderWindowID selects the XMLSpy helper window to be embedded. Use only one
XMLSpyControlPlaceHolder for each window identifier. See
Enumerations.XMLSpyControlPlaceholderWindow for valid window identifiers.

For placeholder controls that select the XMLSpy project window, additional methods are
available. Use OpenProject to load a XMLSpy project. Use the property Project and the
methods and properties from the XMLSpy automation interface to perform any other project
related operations.

6.2.4 Query XMLSpy Commands

When integrating at document-level, no menu or toolbar from XMLSpy is available to your
application. Instead, you can query all the commands and the structure of the application menu
at runtime. Use the property XMLSpyControl.CommandsStructure to access this
information. Professional applications will need to integrate this menu in a sophisticated manner
into their own menu structure. Your installation of XMLSpy even provides you with command
label images used within XMLSpy. See the folder Examples\ActiveX\Images of your
XMLSpy installation for icons in GIF format. The file names correspond to the labels of
commands.

6.2.5 Examples

This section contains examples of XMLSpy document-level integration using different container
environments and programming languages. Source code for all examples is available in the
folder Examples\ActiveX of your XMLSpy installation.

C#

The C# example shows how to integrate the XMLSpyControl in a common desktop application
created with C# using Visual Studio .NET 2002. The following topics are covered:

 Integration of a XMLSpyControl Document control to embed a XMLSpy document editing
window.
 Usage of a XMLSpyControlPlaceholder controls to embed the XMLSpy XPath dialog

© 2007 Altova GmbH

Integration at Document Level 813XMLSpy Integration

Programmers' Reference

window.
 Opening and closing of XMLSpy documents via the main menu.

Please note that the example application is already complete. There is no need to change
anything if you want to run and see it working. The following steps describe what general
actions and considerations must be taken in order to create a project such as this.

Introduction

Adding the XMLSpy components to the Toolbox
Before you take a look at the sample project please add the assemblies to the .NET IDE
Toolbox. The XMLSpy Installer will have already installed the assemblies in the .NET Global
Assembly Cache (GAC). If you open the Toolbox dialog under Tools | Add/Remove Toolbox
Items the controls will appear as AxXMLSpyControl, AxXMLSpyControlDocument and
AxXMLSpyControlPlaceholder on the .NET Framework Components tab. Check all to
make them available to the IDE.

Now you can open the XPathDialog.sln file in the ActiveX\C#\XPathDialog folder to
load the project.

Placing the XMLSpyControl

It is necessary to have one XMLSpyControl instance to set the integration level and to manage
the Document and Placeholder controls of the XMLSpy library. The control is accessible via the
General section of the Toolbox helper window in the IDE. To add it you need to select the
component in the Toolbox window and drag a rectangle wherever you want to have it in the
destination window. If you have an application which does not open a window on startup you
can use a simple invisible Form with the control on it which is created manually in the code.

The example project adds this instance to the main MdiContainer MDIMain. If you open
MDIMain in the Design View from the Solution Explorer you will see a light blue rectangle at the
top-left side in the client area of the Frame window. Selecting this rectangle will show you the
properties of the XMLSpyControl. It is important to set the IntegrationLevel property to
ICActiveXIntegrationOnDocumentLevel in order to turn on the Document and
Placeholder support of the XMLSpy library. You can set the Visible flag to False to avoid any
confusion about the control for the user.

Adding the Document Control

Document editing window on the MDI Frame
The example project uses one Document control show and edit one XMLSpy document in the
main MDI Frame. It is added via the Toolbox window by dragging a rectangle on the destination
Form.The Document control also has the Anchor and Dock properties set in order to react on
resizing of the Frame window.

Adding the Placeholder Control

Placeholders on the MDI Frame
The example project uses one Placeholder control to embed the XPath Dialog window into the
main MDI Frame. It is added via the Toolbox window by dragging a rectangle on the destination
Form. To set the type of the Placeholder which should be displayed one has to set the
PlaceholderWindowID property. This property can also be changed during runtime in the

814 XMLSpy Integration Integration at Document Level

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

code of the application. The Placeholder control would change its content immediately. The
Placeholder also has the Anchor properties set in order to react on resizing of the Frame
window.

Retrieving Command Information

The XMLSpyControl gives access to all commands of XMLSpy through its CommandsStructure
property. The example project does not use this information but it is easy to use the Commands
and Command interfaces to dynamically build a menu in the MDI Frame window.

The code to add the commands would be placed into the MDIMain method of the
XMLSpyApplication class in the file MDIMain.cs:

public MDIMain()
{

.

.

.
XMLSpyLib.Commands objCommands;
objCommands = axXMLSpyControl.CommandsStructure;

long nCount = objCommands.Count;

for(long idx = 0;idx < nCount;idx++)
{

XMLSpyLib.Command objCommand;
objCommand = objCommands[(int)idx];

// We are looking for the Menu with the name IDR_XMLSPY. This menu
contains
// the complete main menu of XMLSpy.

if(objCommand.Label == "IDR_XMLSPY")
{

InsertMenuStructure(mainMenu.MenuItems, 1, objCommand, 0, 0,
false);

}
}
.
.
.

}

mainMenu is the name of the menu object of the MDI Frame window created in the Visual
Studio IDE. InsertMenuStructure takes the XMLSpy menu from the IDR_XMLSPY
command object and adds the XMLSpy menu structure to the already existing menu of the
sample project. No commands from the File, Project, or Window menu are added.

The new commands are instances of the class CustomMenuItem, which is defined in
CustomMenuItem.cs. This class has an additional member to save the XMLSpy command
ID, which is taken to execute the command using Exec on selecting the menu item. This code
from InsertMenuStructure creates the new command:

CustomMenuItem newMenuItem = new CustomMenuItem();

if(objCommand.IsSeparator)
newMenuItem.Text = "-";

else
{

newMenuItem.Text = strLabel;

© 2007 Altova GmbH

Integration at Document Level 815XMLSpy Integration

Programmers' Reference

newMenuItem.m_XMLSpyCmdID = (int)objCommand.ID;
newMenuItem.Click += new EventHandler(AltovaMenuItem_Click);

}

You can see that all commands get the same event handler AltovaMenuItem_Click which does
the processing of the command:

private void AltovaMenuItem_Click(object sender, EventArgs e)
{

if(sender.GetType() ==
System.Type.GetType("XMLSpyApplication.CustomMenuItem"))
{

CustomMenuItemcustomItem = (CustomMenuItem)sender;

ProcessCommand(customItem.m_XMLSpyCmdID);
}

}

private void ProcessCommand(int nID)
{

XMLSpyDoc docXMLSpy = GetCurrentXMLSpyDoc();

if(docXMLSpy != null)
docXMLSpy.axXMLSpyControlDoc.Exec(nID);

else
axXMLSpyControl.Exec(nID);

}

ProcessCommand delegates the execution either to the XMLSpyControl itself or to any active
XMLSpy document loaded in a XMLSpyControlDocument control. This is necessary because
the XMLSpyControl has no way to know which document is currently active in the hosting
application.

Testing the Example

After adding the assemblies to the Toolbox (see Introduction), you can run the sample project
with F5 without the need to change anything in the code. The main MDI Frame window is
created and contains an editing window with an empty XML document and a XPath Dialog
window of XMLSpy at the bottom. Use File | Open to open the file OrgChart.xml, which is in
the XMLSpy examples folder. The file is loaded and displayed.

After you load the document, you can try using the XPath dialog.

HTML

This example shows an integration of the XMLSpy control at document-level into a HTML page.
The following topics are covered:

 Instantiate a XMLSpyControl ActiveX control object in HTML code
 Instantiate a XMLSpyControlDocument ActiveX control to allow editing a XMLSpy file
 Instantiate one XMLSpyControlPlaceHolder to alternatively host one of the XMLSpy

entry helper windows
 Instantiate one XMLSpyControlPlaceHolder ActiveX control to show the XMLSpy

validation output window
 Create a simple customer toolbar for some heavy-used XMLSpy commands
 Add some more buttons that use the COM automation interface of XMLSpy

816 XMLSpy Integration Integration at Document Level

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

 Use event handlers to update command buttons

This example is available in its entirety in the file XMLSpyActiveX_ApplicationLevel.htm
within the Examples\ActiveX\HTML\ folder of your XMLSpy installation.

Instantiate the XMLSpyControl

The HTML OBJECT tag is used to create an instance of the XMLSpyControl. The Classid is that
of XMLSpyControl. Width and height are set to 0 since we use this control as manager control
without use for its user interface. The integration level is specified as a parameter within the
OBJECT tag.

<OBJECT id="objXMLSpyX"
 Classid="clsid:a258bba2-3835-4c16-8590-72b44f52c471"
 width="0"
 height="0"
 VIEWASTEXT>
 <PARAM NAME="IntegrationLevel" VALUE="1">
</OBJECT>

Create Editor window

The HTML OBJECT tag is used to embed an editing window for XMLSpy documents.

<OBJECT id="objDoc1"
 Classid="clsid:DFBB0871-DAFE-4502-BB66-08CEB7DF5255"
 width="600"
 height="500"
 VIEWASTEXT>
</OBJECT>

Create Project Window

The HTML OBJECT tag is used to create a XMLSpyControlPlaceHolder window. The first
additional custom parameter defines the placeholder to show the XMLSpy project window. The
second parameter loads one of the example projects delivered coming with your XMLSpy
installation.

<OBJECT id="objProjectWindow"
 Classid="clsid:FDEC3B04-05F2-427d-988C-F03A85DE53C2"
 width="200"
 height="200"
 VIEWASTEXT>
 <PARAM name="PlaceholderWindowID" value="3">
 <PARAM name="FileName" value="Examples/Examples.mfp">

</OBJECT>

Create Placeholder for XMLSpy Helper Windows

The HTML OBJECT tag is used to instantiate a XMLSpyControlPlaceHolder ActiveX control that
can host the different XMLSpy helper window. Initially, no helper window is shown.

<OBJECT id="objEHWindow"
 Classid="clsid:135DEEF4-6DF0-47c2-8F8C-F145F5F3F672"

© 2007 Altova GmbH

Integration at Document Level 817XMLSpy Integration

Programmers' Reference

 width="200"
 height="200"
 VIEWASTEXT>
 <PARAM name="PlaceholderWindowID" value="0">
</OBJECT>

Three buttons allow us to switch the actual window that will be shown. The JavaScript execute
on-button-click sets the property PlaceHolderWindowID to the corresponding value defined in
XMLSpyControlPlaceholderWindow.

<input type="button" value="EH - Elements" onclick="BtnHelperWindow(0)">
<input type="button" value="EH - Attributes" onclick="BtnHelperWindow(1)">
<input type="button" value="EH - Entities" onclick="BtnHelperWindow(2)">

<SCRIPT ID="Javahandlers" LANGUAGE="javascript">
//
--
// specify which of the helper windows shall be shown in the placeholder
control.
function BtnHelperWindow(i_ePlaceholderWindowID)
{

objEHWindow.PlaceholderWindowID = i_ePlaceholderWindowID;
}
</SCRIPT>

Create a Custom Toolbar

The custom toolbar consists of buttons with images of XMLSpy commands. The command ID
numbers can be found in Command Table
.
<button id="btnWellFormed" title="Check Well-formedness"
onclick="BtnDoCommand(34049)">

</button>
<button id="btnValidate" title="Validate" onclick="BtnDoCommand(34174)">

</button>

On clicking one of these buttons the corresponding command Id is sent to the manager control.

<SCRIPT ID="Javahandlers" LANGUAGE="javascript">
// ---
// perform any command specified by cmdID.
// command routing includes application, active document and view.
function BtnDoCommand(cmdID)
{

objXMLSpyX.Exec(cmdID);
msgtext.innerText = "Command " + cmdID + " performed.";

}
</SCRIPT>

Create More Buttons

In the example, we add some more buttons to show some automation code.

<input type="button" value="New File" onclick="BtnNewFile(objDoc1)">
<input type="button" value="Save File" onclick="BtnSaveFile(objDoc1)">
<input type="text" title="Path" id="strPath" width="150">

818 XMLSpy Integration Integration at Document Level

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

<input type="button" value="Open OrgChart.xml" onclick="BtnOpenFile(objDoc1,
'OrgChart.xml')">
<input type="button" value="Open OrgChart.xsd" onclick="BtnOpenFile(objDoc1,
'OrgChart.xsd')">

The corresponding JavaScript looks like this:

<SCRIPT ID="Javahandlers" LANGUAGE="javascript">
// ---
// open a document in the specified document control window.
function BtnOpenFile(objDocCtrl, strFileName)
{

// do not use XMLSpyX.Application.OpenDocument(...) to open a document,
// since then XMLSpyControl wouldn't know a control window to show
// the document in. Instead:

var pos = objXMLSpyX.BaseHref.indexOf("ActiveX");

if(pos > 7)
{

path = objXMLSpyX.BaseHref.substr(7, pos - 7); // remove
file protocol

objDocCtrl.Open(path + strFileName);
objDocCtrl.setActive();

}
else
{

alert("Unable to locate " + strFileName + " at: " +
objXMLSpyX.BaseHref);

}
}

// ---
// open a new empty document in the specified document control window.
function BtnNewFile(objDocCtrl)
{

objDocCtrl.Open("");
objDocCtrl.setActive();

}

// ---
// Saves the current file in the specified document control window.
function BtnSaveFile(objDocCtrl)
{

if(objDocCtrl.Path.length > 0)
objDocCtrl.SaveDocument();

else
{

if(strPath.value.length > 0)
{

objDocCtrl.Path = strPath.value;
objDocCtrl.Save();

}
else
{

alert("Please set path for the document first!");
strPath.focus();

}
}

objDocCtrl.setActive();
}

// --
// check validity of current document.

© 2007 Altova GmbH

Integration at Document Level 819XMLSpy Integration

Programmers' Reference

// if validation fails, show validation result in alert box .
function BtnValidate()
{

// get top-level object of automation interface
var objApp = objXMLSpyControl.Application;

// get the active document
var objDocument = objApp.ActiveDocument;

if (objDocument == null)
alert("no active document found");

else
{

// define as arrays to support their usage as return parameters
var errorText = new Array(1);
var errorPos = new Array(1);
var badData = new Array(1);

var valid = objDocument.IsValid(errorText, errorPos, badData);

if (! valid)
{

 // compose the error description
 var text = errorText;

 // access that XMLData object only if filled in
 if (badData[0] != null)

 text += "(" + badData[0].Name + "/" +
badData[0].TextValue + ")";

 alert("Validation error[" + errorPos + "]: " + text);
}
else

alert("Docuent is valid");
}

}
</SCRIPT>

Create Event Handler to Update Button Status

Availability of a command may vary with every mouseclick or keystroke. The custom event
OnUpdateCmdUI of XMLSpyControl gives us an opportunity to update the enabled/disabled
state of buttons associated with XMLSpy commands. The method
XMLSpyControl.QueryStatus is used to query whether a command is enabled or not.

<SCRIPT FOR="objXMLSpyX" event="OnUpdateCmdUI()" LANGUAGE="javascript">
if (document.readyState == "complete") // 'complete'
{

// update status of buttons
btnWellFormed.disabled = ! (objDoc1.QueryStatus(34049) & 0x02);

// not enabled
btnValidate.disabled = ! (objDoc1.QueryStatus(34174) & 0x02);

// not enabled
}

</SCRIPT>

820 XMLSpy Integration Command Table

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

6.3 Command Table

Tables in this section list the names and identifiers of all commands that are available within
XMLSpy. Every sub-section lists the commands from the corresponding top-level menu of
XMLSpy. The left-most column shows the command's menu text to make it easier for you to
identify the functionality behind the command. The last sub-section is a collection of those
commands that are not accessible via the main menu.

Depending on the edition of XMLSpy you have installed, some of these commands might not be
supported. See Query XMLSpy Commands on how to query the current resource structure and
command availability. The same topics shows how to use the same command icons that are
used by XMLSpy if you are not already integrating on application-level.

Use the command identifiers with XMLSpyControl.QueryStatus or
XMLSpyControlDocument.QueryStatus to check the current status of a command. Use
XMLSpyControl.Exec or XMLSpyControlDocument.Exec to execute a command.

File Menu
Edit Menu
Project Menu
XML menu
DTD/Schema Menu
Schema Design Menu
XSL/XQuery Menu
Authentic Menu
Convert Menu
View Menu
Browser Menu
WSDL Menu
SOAPMenu
Tools Menu
Window Menu
Help Menu

6.3.1 File Menu

Commands from the File menu:

Menu Text Command Name ID

New... ID_FILE_NEW 57600

Open... ID_FILE_OPEN 57601

Open URL... IDC_OPEN_URL 34097

Reload IDC_FILE_RELOAD 34065

Encoding... IDC_ENCODING 34061

Close ID_FILE_CLOSE 57602

Close All IDC_CLOSE_ALL 34050

Save ID_FILE_SAVE 57603

Save As... ID_FILE_SAVE_AS 57604

Save to URL... ID_FILE_SAVE_TO_URL 34209

Save All ID_FILE_SAVE_ALL 34208

Send by Mail... ID_FILE_SEND_MAIL 57612

© 2007 Altova GmbH

Command Table 821XMLSpy Integration

Programmers' Reference

Print... IDC_PRINT 34103

Print Preview IDC_PRINT_PREVIEW 34104

Print Setup... ID_FILE_PRINT_SETUP 57606

Recent File ID_FILE_MRU_FILE1 57616

Exit ID_APP_EXIT 57665

6.3.2 Edit Menu

Commands from the Edit menu:

Menu Text Command Name ID

Undo ID_EDIT_UNDO 57643

Redo ID_EDIT_REDO 57644

Cut ID_EDIT_CUT 57635

Copy ID_EDIT_COPY 57634

Paste ID_EDIT_PASTE 57637

Delete ID_EDIT_CLEAR 57632

Copy as XML-Text IDC_COPY_AS_XML_TEXT 33443

Copy as Structured text IDC_COPY_AS_STRUCTURED_TEXT 33442

Copy XPath IDC_COPY_XPATH 33444

Pretty-Print XML Text IDC_PRETTY_PRINT 34101

Select All ID_EDIT_SELECT_ALL 57642

Find... ID_EDIT_FIND 57636

Find next ID_EDIT_REPEAT 57640

Replace... ID_EDIT_REPLACE 57641

Find in files... IDC_FIND_IN_FILES 34000

Insert/Remove Bookmark IDC_TOGGLE_BOOKMARK 34162

Remove All Bookmarks IDC_REMOVEALLBOOKMARKS 34132

Goto Next Bookmark IDC_GOTONEXTBOOKMARK 34070

Goto Previous Bookmark IDC_GOTOPREVBOOKMARK 34071

6.3.3 Project Menu

Commands from the Project menu:

Menu Text Command Name ID

New Project IDC_PROJECT_NEW 34122

Open Project... IDC_PROJECT_OPEN 34123

Reload Project IDC_PROJECT_RELOAD 34126

Close Project IDC_PROJECT_CLOSE 34113

822 XMLSpy Integration Command Table

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Save Project IDC_PROJECT_SAVE 34127

Source Control/Open Project... IDC_SCC_OPEN_PROJECT 34140

Source Control/Enable Source Code Control IDC_SCC_ENABLE 34137

Source Control/Get latest version... IDC_SCC_GET 34138

Source Control/Check Out... IDC_SCC_CHECK_OUT 34135

Source Control/Check In... IDC_SCC_CHECK_IN 34134

Source Control/Undo Check Out... IDC_SCC_UNDO_CHECK_OUT 34145

Source Control/Add to Source Control... IDC_SCC_ADD 34133

Source Control/Remove from Source Control... IDC_SCC_REMOVE 34143

Source Control/Show History... IDC_SCC_HISTORY 34139

Source Control/Show Differences... IDC_SCC_DIFF 34136

Source Control/Properties... IDC_SCC_PROPERTIES 34141

Source Control/Refresh Status... IDC_SCC_REFRESH 34142

Source Control/Run Native Interface... IDC_SCC_RUN 34144

Add Files to Project... IDC_PROJECT_ADD_FILES 34109

Add URL to Project... IDC_PROJECT_ADD_URL 34112

Add Active File to Project IDC_PROJECT_ADD_ACTIVE 34106

Add Active and Related Files to Project IDC_PROJECT_ADD_RELATED 34111

Add Project Folder to Project... IDC_PROJECT_ADD_FOLDER 34110

Add External Folder to Project... IDC_PROJECT_ADD_EXT_FOLDER 34107

Add External Web Folder to Project... IDC_PROJECT_ADD_EXT_URL_FOLDER 34108

Project Properties... IDC_PROJECT_PROPERTIES 34124

Recent Project IDC_RECENT_PROJECT_ID 34265

6.3.4 XML menu

Commands from the XML menu:

Menu Text Command Name ID

Insert/Attribute IDC_INSERT_ATTRIBUTE 33449

Insert/Element IDC_INSERT_STRUCT 33459

Insert/Text IDC_INSERT_TEXT 33460

Insert/CData IDC_INSERT_CDATA 33450

Insert/Comment IDC_INSERT_COMMENT 33451

Insert/XML IDC_INSERT_XML 33461

Insert/Processing Instruction IDC_INSERT_PI 33458

Insert/DOCTYPE IDC_INSERT_DEF_DOCTYPE 33453

Insert/ExternalID IDC_INSERT_DEF_EXTERNAL_ID 33456

Insert/ELEMENT IDC_INSERT_DEF_ELEMENT 33454

Insert/ATTLIST IDC_INSERT_DEF_ATTLIST 33452

Insert/ENTITY IDC_INSERT_DEF_ENTITY 33455

© 2007 Altova GmbH

Command Table 823XMLSpy Integration

Programmers' Reference

Insert/NOTATION IDC_INSERT_DEF_NOTATION 33457

Append/Attribute IDC_APPEND_ATTRIBUTE 33415

Append/Element IDC_APPEND_STRUCT 33425

Append/Text IDC_APPEND_TEXT 33426

Append/CData IDC_APPEND_CDATA 33416

Append/Comment IDC_APPEND_COMMENT 33417

Append/XML IDC_APPEND_XML 33427

Append/Processing Instruction IDC_APPEND_PI 33424

Append/DOCTYPE IDC_APPEND_DEF_DOCTYPE 33419

Append/ExternalID IDC_APPEND_DEF_EXTERNAL_ID 33422

Append/ELEMENT IDC_APPEND_DEF_ELEMENT 33420

Append/ATTLIST IDC_APPEND_DEF_ATTLIST 33418

Append/ENTITY IDC_APPEND_DEF_ENTITY 33421

Append/NOTATION IDC_APPEND_DEF_NOTATION 33423

Add child/Attribute IDC_ADD_CHILD_ATTRIBUTE 33402

Add child/Element IDC_ADD_CHILD_STRUCT 33412

Add child/Text IDC_ADD_CHILD_TEXT 33413

Add child/CData IDC_ADD_CHILD_CDATA 33403

Add child/Comment IDC_ADD_CHILD_COMMENT 33404

Add child/XML IDC_ADD_CHILD_XML 33414

Add child/Processing Instruction IDC_ADD_CHILD_PI 33411

Add child/DOCTYPE IDC_ADD_CHILD_DEF_DOCTYPE 33406

Add child/ExternalID IDC_ADD_CHILD_DEF_EXTERNAL_ID 33409

Add child/ELEMENT IDC_ADD_CHILD_DEF_ELEMENT 33407

Add child/ATTLIST IDC_ADD_CHILD_DEF_ATTLIST 33405

Add child/ENTITY IDC_ADD_CHILD_DEF_ENTITY 33408

Add child/NOTATION IDC_ADD_CHILD_DEF_NOTATION 33410

Convert to/Attribute IDC_CONVERT_TO_ATTRIBUTE 33429

Convert to/Element IDC_CONVERT_TO_STRUCT 33439

Convert to/Text IDC_CONVERT_TO_TEXT 33440

Convert to/CData IDC_CONVERT_TO_CDATA 33430

Convert to/Comment IDC_CONVERT_TO_COMMENT 33431

Convert to/XML IDC_CONVERT_TO_XML 33441

Convert to/Processing Instruction IDC_CONVERT_TO_PI 33438

Convert to/DOCTYPE IDC_CONVERT_TO_DEF_DOCTYPE 33433

Convert to/ExternalID IDC_CONVERT_TO_DEF_EXTERNAL_ID 33436

Convert to/ELEMENT IDC_CONVERT_TO_DEF_ELEMENT 33434

Convert to/ATTLIST IDC_CONVERT_TO_DEF_ATTLIST 33432

Convert to/ENTITY IDC_CONVERT_TO_DEF_ENTITY 33435

Convert to/NOTATION IDC_CONVERT_TO_DEF_NOTATION 33437

824 XMLSpy Integration Command Table

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Table/Display as Table IDC_GRID_VIEW_AS_TABLE 34075

Table/Insert Row IDC_TABLE_INSERT_ROW 34158

Table/Append Row IDC_TABLE_APPEND_ROW 34157

Table/Ascending Sort IDC_TABLE_SORT_ASC 33464

Table/Descending Sort IDC_TABLE_SORT_DESC 33465

Move left IDC_MOVE_LEFT 34091

Move right IDC_MOVE_RIGHT 34092

Enclose in Element IDC_ENCLOSE_IN_ELEMENT 33446

Evaluate XPath... IDC_EVALUATE_XPATH 34007

Check well-formedness IDC_CHECK_WELL_FORM 34049

Validate IDC_VALIDATE 34174

Update Entry Helpers IDC_UPDATE_ELEMENT_CHOICE 34173

Namespace prefix... IDC_NAMESPACE 33462

6.3.5 DTD/Schema Menu

Commands from the DTD/Schema menu:

Menu Text Command Name ID

Assign DTD... IDC_ASSIGN_DTD 34032

Assign Schema... IDC_ASSIGN_SCHEMA 34033

Include another DTD... IDC_INCLUDE_DTD 34084

Go to DTD IDC_GOTO_DTD 34072

Go to Schema IDC_GOTO_SCHEMA 34074

Go to Definition IDC_GOTO_DEFINITION 33447

Generate DTD/Schema... IDC_GENERATE_DTD_SCHEMA 34068

Convert DTD/Schema... IDC_CONVERT_DTD_SCHEMA 34052

Convert to UML... IDC_CONVERT_SCHEMA_TO_UML 34008

Map to other DTD/Schema or DB in
MapForce...

IDC_DTD_OPENIN_MAPFORCE 34056

Design HTML/PDF Output in
StyleVision...

IDC_DTD_OPENIN_STYLEVISION 34057

Generate Sample XML File... IDC_GENERATE_XML_FROM_SCHEMA 34069

Generate Program Code... IDC_GENERATE_CODE_FROM_SCHEMA 34067

Flush memory cache IDC_FLUSH_CACHED_FILES 34066

6.3.6 Schema Design Menu

Commands from the Schema Design menu:

Menu Text Command Name ID

Schema Settings IDC_SCHEMA_NAMESPACES 3357
1

Save Diagram... IDC_SCHEMA_SAVE_DIAGRAM 3358
1

© 2007 Altova GmbH

Command Table 825XMLSpy Integration

Programmers' Reference

Generate Documentation IDC_SCHEMA_DOCUMENTATION 3414
6

Configure view IDC_SCHEMA_VIEW_CONFIG 3359
3

Zoom IDC_SCHEMA_ZOOM 3415
0

Display All Globals IDC_SCHEMA_MODE_GLOBALS 3414
7

Display Diagram IDC_SCHEMA_MODE_DIAGRAM 3357
0

Enable Oracle Schema Extensions IDC_SCHEMA_ORACLE_EXTENSIONS 3357
7

Oracle Schema Settings... IDC_SCHEMA_ORACLE_SCHEMA_SETTING
S

3357
8

Enable Microsoft SQL Server Schema
Extensions

IDC_SCHEMA_SQLSERVER_EXTENSIONS 3358
8

Named Schema Relationships... IDC_SCHEMA_SQLSERVER_GLOBAL_RELA
TIONSHIPS

3358
9

Unnamed Element Relationships... IDC_SCHEMA_SQLSERVER_LOCAL_RELATI
ONSHIPS

3359
0

Enable Tamino Schema Extensions IDC_SCHEMA_TAMINO_EXTENSIONS 3359
1

Tamino Schema Properties... IDC_SCHEMA_TAMINO_GLOBAL_SETTINGS 3414
9

Connect to SchemaAgent Server... IDC_SCHEMA_SCHEMAAGENT_SERVER_C
ONNECT

3358
2

Disconnect from SchemaAgent Server IDC_SCHEMA_SCHEMAAGENT_SERVER_DI
SCONNECT

3358
3

Show in SchemaAgent/Schema only IDC_SCHEMAAGENT_SHOW 3350
4

Show in SchemaAgent/Schema and all directly
referenced

IDC_SCHEMAAGENT_SHOW_RELATED 3350
7

Show in SchemaAgent/Schema and all
referenced

IDC_SCHEMAAGENT_SHOW_ALL 3350
5

Show in SchemaAgent/Schema and all linked IDC_SCHEMAAGENT_SHOW_ALL_REACHA
BLE

3350
6

Extended Validation IDC_SCHEMA_EXTVALID_MENU 3353
9

6.3.7 XSL/XQuery Menu

Commands from the XSL/XQuery menu:

Menu Text Command Name ID

XSL Transformation IDC_TRANSFORM_XSL 3300
6

XSL:FO Transformation IDC_TRANSFORM_XSLFO 3300
7

XSL Parameters/XQuery
Variables...

IDC_TRANSFORM_XSL_PARAMS 3300
8

XQuery Execution IDC_TRANSFORM_XQUERY 3417
0

Enable XSLT 2 / XQuery
profiling....

IDC_PROFILING_OPTIONS 3410
5

826 XMLSpy Integration Command Table

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Assign XSL... IDC_ASSIGN_XSL 3300
1

Assign XSL:FO... IDC_ASSIGN_XSLFO 3300
2

Assign sample XML file... IDC_ASSIGN_SAMPLE_XML 3300
0

Go to XSL IDC_GOTO_XSL 3300
4

Start Debugger/Go ID_PROCESS_XSL 3421
2

Stop Debugger ID_XSLT_DEBUGGER_STOP 3301
7

Restart Debugger ID_XSLT_DEBUGGER_RESTART 3301
3

End Debugger Session ID_XSLT_DEBUGGER_END_SESSION 3301
1

Step Into ID_XSLT_DEBUGGER_STEP 3301
4

Step Out ID_XSLT_DEBUGGER_STEP_OUT 3301
5

Step Over ID_XSLT_DEBUGGER_STEP_OVER 3301
6

Show Current Execution Node ID_XSLT_DEBUGGER_GO_TO_CURRENT_EXECUTION_
NODES

3301
2

Insert/Remove Breakpoint IDC_TOGGLE_BREAKPOINT 3424
6

Insert/Remove Tracepoint IDC_TOGGLE_TRACEPOINT 3424
8

Enable/Disable Breakpoint IDC_ENABLE_BREAKPOINT 3424
5

Enable/Disable Tracepoint IDC_ENABLE_TRACEPOINT 3424
7

Breakpoints/Tracepoints... ID_XSLTDEBUGGER_BREAKPOINTS 3300
9

Debug Windows/Call Stack ID_XSL_DEBUGWINDOWS_CALLSTACK 3423
8

Debug Windows/XPath-Watch ID_XSL_DEBUGWINDOWS_WATCH 3424
4

Debug Windows/Context ID_XSL_DEBUGWINDOWS_CONTEXT 3423
9

Debug Windows/Variables ID_XSL_DEBUGWINDOWS_VARIABLE 3424
3

Debug Windows/Messages ID_XSL_DEBUGWINDOWS_MESSAGES 3424
0

Debug Windows/Templates ID_XSL_DEBUGWINDOWS_TEMPLATES 3424
1

Debug Windows/Info ID_XSLXQUERY_DEBUGWINDOWS_INFO 3423
7

Debug Windows/Trace ID_XSL_DEBUGWINDOWS_TRACES 3424
2

XSLT/XQuery Settings... ID_XSLTDEBUGGER_SETTINGS 3301
0

© 2007 Altova GmbH

Command Table 827XMLSpy Integration

Programmers' Reference

6.3.8 Authentic Menu

Commands from the Authentic menu:

Menu Text Command Name ID

New Document... IDC_AUTHENTIC_NEW_FILE 34036

Edit Database Data... IDC_AUTHENTIC_EDIT_DB 34035

Assign a StyleVision Stylesheet... IDC_ASSIGN_SPS 34034

Edit StyleVision Stylesheet IDC_EDIT_SPS 34060

Define XML Entities... IDC_DEFINE_ENTITIES 32805

Hide markup IDC_MARKUP_HIDE 34087

Show Small markup IDC_MARKUP_SMALL 34090

Show Large markup IDC_MARKUP_LARGE 34088

Show Mixed markup IDC_MARKUP_MIX 34089

Append row IDC_ROW_APPEND 32806

Insert row IDC_ROW_INSERT 32809

Duplicate row IDC_ROW_DUPLICATE 32808

Move row Up IDC_ROW_MOVE_UP 32811

Move row Down IDC_ROW_MOVE_DOWN 32810

Delete row IDC_ROW_DELETE 32807

6.3.9 Convert Menu

Commands from the Convert menu:

Menu Text Command Name ID

Import Text file... IDC_IMPORT_TEXT 34082

Import Database data... IDC_IMPORT_DATABASE 34080

Import Microsoft Word document... IDC_IMPORT_WORD 34083

Create XML Schema from DB Structure IDC_CREATE_DB_SCHEMA 34054

DB Import based on XML Schema IDC_IMPORT_DB_SCHEMA 34081

Create DB Structure from XML Schema IDC_CREATE_DB_BASED_ON_SCHEMA 34053

Export to Text files... IDC_EXPORT_TEXTFILE 34064

Export to a Database... IDC_EXPORT_DB 34003

Tamino/Search ... IDC_TAMINO_XQUERY 34161

Tamino/List Schema ... ID_TAMINO_GETSCHEMA 34229

Tamino/Generate Sample XML File... IDC_GENERATE_XML_FROM_SCHEMA 34069

Tamino/Add Document IDC_TAMINO_ADDFILE 34159

Tamino/Delete Document ID_TAMINO_DELETE_FILE 34228

Tamino/Get Active Document IDC_TAMINO_GETFILE 34160

Tamino/Refresh ID_TAMINO_REFRESH_DOC 34230

Tamino/Save to Tamino ... IDC_SCHEMA_TAMINO_DEFINE 34148

828 XMLSpy Integration Command Table

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Tamino/Tamino Schema Properties... IDC_SCHEMA_TAMINO_GLOBAL_SETTING
S

34149

Oracle XML DB/Search... ID_CONVERT_ORACLEXMLDB_QUERY 34207

Oracle XML DB/List Schemas... ID_ORACLEXMLDB_LISTSCHEMAS 34211

Oracle XML DB/Add Schema... ID_CONVERT_ORACLEXMLDB_ADDSCHE
MA

34204

Oracle XML DB/Browse Oracle XML
Documents...

ID_CONVERT_ORACLEXMLDB_BROWSE 34205

Oracle XML DB/Properties... ID_CONVERT_ORACLEXMLDB_PROPERTI
ES

34206

6.3.10 View Menu

Commands from the View menu:

Menu Text Command Name ID

Text view IDC_VIEW_TEXT 34180

Enhanced Grid view IDC_VIEW_GRID 34178

Schema/WSDL Design view IDC_VIEW_SCHEMA 34179

Authentic view IDC_VIEW_CONTENT 34177

Browser view IDC_VIEW_BROWSER 34176

Expand + IDC_SEL_EXPAND 34152

Collapse - IDC_SEL_COLLAPSE 34151

Expand fully IDC_SEL_EXPAND_ALL 33463

Collapse unselected IDC_COLLAPSE_UNSELECTED 33428

Optimal widths IDC_OPTIMAL_WIDTHS 34099

Word Wrap IDC_WORD_WRAP 34181

Go to line/char IDC_GOTO_LINE 34073

Go to File IDC_GOTO_FILE 33448

Line Numbers Margin IDC_TOGGLE_NUMLINEMARGIN 34168

Bookmarks Margin IDC_TOGGLE_BOOKMARKMARGIN 34163

Source Folding Margin IDC_TOGGLE_FOLDINGMARGIN 34166

Indentation Guides IDC_TOGGLE_INDENTGUIDES 34167

6.3.11 Browser Menu

Commands from the Browser menu:

Menu Text Command Name ID

Back IDC_BROWSER_BACK 34039

Forward IDC_BROWSER_FORWARD 34045

Stop IDC_BROWSER_STOP 34047

Refresh IDC_BROWSER_REFRESH 34046

Fonts/Largest IDC_BROWSER_FONT_LARGEST 34041

Fonts/Larger IDC_BROWSER_FONT_LARGE 34040

© 2007 Altova GmbH

Command Table 829XMLSpy Integration

Programmers' Reference

Fonts/Medium IDC_BROWSER_FONT_MEDIUM 34042

Fonts/Smaller IDC_BROWSER_FONT_SMALL 34043

Fonts/Smallest IDC_BROWSER_FONT_SMALLEST 34044

Separate window IDC_BROWSER_USE_OWN_FRAME 34048

6.3.12 WSDL Menu

Commands from the WSDL menu:

Menu Text Command Name ID

Messages/Insert message ID_WSDL_MESSAGES_ADDNEWMESSAGE 3371
5

Messages/Delete message ID_WSDL_MESSAGES_DELETESELECTEDMESSAGE 3371
7

Messages/Add message part
(parameter)

ID_WSDL_MESSAGES_ADDMESSAGEPART 3371
4

Messages/Delete message part
(parameter)

ID_WSDL_MESSAGES_DELETEMESSAGEPART 3371
6

Operations/Insert Operation ID_WSDL_OPERATIONS_INSERTOPERATION 3372
5

Operations/Delete operation ID_WSDL_OPERATIONS_DELETEOPERATION 3372
4

Operations/Add input element ID_WSDL_OPERATIONS_ADDINPUTFUNCTION 3371
9

Operations/Add output element ID_WSDL_OPERATIONS_ADDOUTPUTFUNCTION 3372
1

Operations/Add fault element ID_WSDL_OPERATIONS_ADDFAULTFUNCTION 3371
8

Operations/Delete input/output/fault
element

ID_WSDL_OPERATIONS_DELETEINPUTOUTPUTFUNC
TION

3372
3

Operations/Add new message to
intput/output/fault element

ID_WSDL_OPERATIONS_ADDNEWMESSAGETOTHISE
LEMENT

3372
0

Operations/empty operation ID_WSDL_OPERATIONS_APPENDAOPERATIONTOTHI
SPORTTYPE

3372
2

PortType/Insert portType ID_WSDL_PORTTYPE_INSERTAPORTTYPE 3372
7

PortType/Delete PortType ID_WSDL_PORTTYPE_DELETETHISPORTTYPE 3372
6

Binding/Insert binding ID_WSDL_BINDING_NEWBINDING 3371
3

Binding/Delete binding ID_WSDL_BINDING_DELETEBINDING 3371
1

Binding/Append Child/soap:body ID_WSDL_BINDING_APPENDEXTENSIBILITY_SOAPBO
DY

3370
6

Binding/Append Child/soap:header ID_WSDL_BINDING_APPENDEXTENSIBILITY_SOAPHE
ADER

3370
8

Binding/Append
Child/soap:headerfault

ID_WSDL_BINDING_APPENDEXTENSIBILITY_SOAPHE
ADERFAULT

3370
9

Binding/Append Child/soap:fault ID_WSDL_BINDING_APPENDEXTENSIBILITY_SOAPFA
ULT

3370
7

Binding/Append Child/mime:content ID_WSDL_BINDING_APPENDEXTENSIBILITY_MIMECO
NTENT

3370
2

830 XMLSpy Integration Command Table

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Binding/Append
Child/mime:multipartrelated

ID_WSDL_BINDING_APPENDEXTENSIBILITY_MIMEMUL
TIPARTRELATED

3370
4

Binding/Append Child/mime:part ID_WSDL_BINDING_APPENDEXTENSIBILITY_MIMEPAR
T

3370
5

Binding/Append
Child/mime:mimeXml

ID_WSDL_BINDING_APPENDEXTENSIBILITY_MIMEMIM
EXML

3370
3

Binding/Append
Child/http:urlencoded

ID_WSDL_BINDING_APPENDEXTENSIBILITY_HTTPURL
ENCODED

3370
0

Binding/Append
Child/http:urlreplacement

ID_WSDL_BINDING_APPENDEXTENSIBILITY_HTTPURL
REPLACEMENT

3370
1

Binding/Delete extensibility element ID_WSDL_BINDING_DELETEEXTESIBILITY 3371
2

Service/Insert service ID_WSDL_SERVICE_INSERTSERVICE 3373
1

Service/Delete service ID_WSDL_SERVICE_DELETETHISSERVICE 3372
9

Service/Insert port ID_WSDL_SERVICE_INSERTNEWPORT 3373
0

Service/Delete port ID_WSDL_SERVICE_DELETETHISPORT 3372
8

Types/New schema ID_WSDL_TYPES_NEWSCHEMA 3373
3

Types/Edit schema(s) in Schema
View

ID_WSDL_TYPES_EDITTHISSCHEMA 3373
2

Save Diagram... IDC_WSDL_SAVE_DIAGRAM 3400
1

Generate Documentation... ID_WSDL_GENERATEDOCUMENTATION 3423
3

Reparse WSDL document IDC_WSDL_REPARSE 3377
4

6.3.13 SOAPMenu

Commands from the SOAP menu:

Menu Text Command Name ID

Create new SOAP request ID_SOAP_GENERATESOAPMESSAGE 34224

Send request to server ID_SOAP_SENDREQUESTTOSERVER 34225

Change SOAP request parameters ID_SOAP_SOAPREQUESTSETTINGS 34227

Soap Debugger Session ID_SOAP_SOAPDEBUGGER 34226

Go ID_SOAPDEBUGGER_BUTTONPLAY 34221

Single Step ID_SOAPDEBUGGER_SINGLESTEP 34222

Break on next Request ID_SOAPDEBUGGER_BREAKONNEXTREQUEST 34219

Break on next Response ID_SOAPDEBUGGER_BREAKONNEXTRESPONSE 34220

Stop the proxy server ID_SOAPDEBUGGER_STOPSERVER 34223

Soap Debugger Options ID_SOAPDEBUGGEROPTIONS 34218

6.3.14 Tools Menu

Commands from the Tools menu:

© 2007 Altova GmbH

Command Table 831XMLSpy Integration

Programmers' Reference

Menu Text Command Name ID

Spelling... IDC_SPELL_CHECK 34154

Spelling options... IDC_SPELL_OPTIONS 34155

Switch to Scripting environment... ID_WINDOW_SWITCHTOVBA 34231

Show macros... ID_WINDOW_VBAMACROS 34232

Project/Assign Scripts to Project ID_SCRIPTINGPRJ_ASSIGN 34214

Project/Unassign Scripts from Project ID_SCRIPTINGPRJ_UNASSIGN 34215

Project/Project Scripts active ID_SCRIPTINGPRJ_ACTIVE 34213

Compare open file with... ID_XMLDIFF_CHOOSE_FILES 34235

Compare directories... ID_XMLDIFF_CHOOSE_DIRECTORIES 34234

Compare options... ID_XMLDIFF_SETTINGS 34236

Customize... IDC_CUSTOMIZE 34055

Options... IDC_SETTINGS 33300

<placeholder> ID_SCRIPTING_MACROITEMS 34249

6.3.15 Window Menu

Commands from the Window menu:

Menu Text Command Name ID

Cascade ID_WINDOW_CASCADE 57650

Tile horizontally ID_WINDOW_TILE_HORZ 57651

Tile vertically ID_WINDOW_TILE_VERT 57652

Project window IDC_PROJECT_WINDOW 34128

Info window IDC_INFO_WINDOW 34085

Entry Helpers IDC_ENTRY_HELPERS 34062

Output windows IDC_OUTPUT_DIALOGBARS 34004

Project and Entry Helpers IDC_PROJECT_ENTRYHELPERS 34006

All on/off IDC_ALL_BARS 34031

6.3.16 Help Menu

Commands from the Help menu:

Menu Text Command Name ID

Table of Contents... IDC_HELP_CONTENTS 34076

Index... IDC_HELP_INDEX 34077

Search... IDC_HELP_SEARCH 34079

Keyboard Map... IDC_HELP_KEYMAPDLG 34078

Software Activation... IDC_ACTIVATION 34005

Order Form... IDC_OPEN_ORDER_PAGE 34094

Registration... IDC_REGISTRATION 34131

Check for Updates... IDC_CHECK_FOR_UPDATES 34275

832 XMLSpy Integration Command Table

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Support Center... IDC_OPEN_SUPPORT_PAGE 34096

FAQ on the Web... IDC_SHOW_FAQ 34153

Download Components and Free
Tools...

IDC_OPEN_COMPONENTS_PAGE 34093

XMLSpy on the Internet.. IDC_OPEN_XML_SPY_HOME 34098

XMLSpy Training... ID_HELP_XMLSPYTRAINING 34210

About XMLSpy... ID_APP_ABOUT 57664

© 2007 Altova GmbH

Accessing XMLSpy API 833XMLSpy Integration

Programmers' Reference

6.4 Accessing XMLSpy API

The focus of this documentation is the ActiveX controls and interfaces required to integrate the
XMLSpy user interface into your application. To allow you to automate or control the
functionality of the integrated components, the following properties give you access to the
XMLSpy automation interface (XMLSpy API):

 XMLSpyControl.Application
 XMLSpyControlDocument.Document
 XMLSpyControlPlaceHolder.Project

Some restrictions apply to the usage of the XMLSpy automation interface when integrating
XMLSpyControl at document-level. See Integration at document level for details.

834 XMLSpy Integration Object Reference

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

6.5 Object Reference

Objects:
Command
Commands
XMLSpyControl
XMLSpyControlDocument
XMLSpyControlPlaceHolder

To give access to standard XMLSpy functionality, objects of the XMLSpy automation interface
can be accessed as well. See XMLSpyControl.Application,
XMLSpyControlDocument.Document and XMLSpyControlPlaceHolder.Project for more
information.

6.5.1 Command

Properties:
ID
Label
IsSeparator
ToolTip
StatusText
Accelerator
SubCommands

Description:
Each Command object can be one of three possible types:

 Command: ID is set to a value greater 0 and Label is set to the command name.
IsSeparator is false and the SubCommands collection is empty.

 Separator: IsSeparator is true. ID is 0 and Label is not set. The SubCommands
collection is empty.

 (Sub) Menu: The SubCommands collection contains Command objects and Label is
the name of the menu. ID is set to 0 and IsSeparator is false.

Accelerator

Property: Label as string

Description:
For command objects that are children of the ALL_COMMANDS collection, this is the
accelerator key defined for the command. If the command has no accelerator key assigned, this
property returns the empty string.

The string representation of the accelerator key has the following format:

[ALT+][CTRL+][SHIFT+]key

Where key is converted using the Windows Platform SDK function GetKeyNameText.

ID

Property: ID as long

© 2007 Altova GmbH

Object Reference 835XMLSpy Integration

Programmers' Reference

Description:
ID is 0 for separators and menus.
For commands, this is the ID which can be used with Exec and QueryStatus.

IsSeparator

Property: IsSeparator as boolean

Description:
True if the command is a separator.

Label

Property: Label as string

Description:
Label is empty for separators.
For command objects that are children of the ALL_COMMANDS collection, this is a unique
name. Command icons are stored in files with this name. See Query Commands for more
information.

For command objects that are children of menus, the label property holds the command's menu
text.
For sub-menus, this property holds the menu text.

StatusText

Property: Label as string

Description:
For command objects that are children of the ALL_COMMANDS collection, this is the text
shown in the status bar when the command is selected.

SubCommands

Property: SubCommands as Commands

Description:
The SubCommands collection holds any sub-commands if this command is actually a menu or
submenu.

ToolTip

Property: ToolTip as string

Description:
For command objects that are children of the ALL_COMMANDS collection, this is the text
shown as tool-tip.

6.5.2 Commands

Properties:
Count

836 XMLSpy Integration Object Reference

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Item

Description:
Collection of Command objects to get access to command labels and IDs of the XMLSpyControl.
Those commands can be executed with the Exec method and their status can be queried with
QueryStatus.

Count

Property: Count as long

Description:
Number of Command objects on this level of the collection.

Item

Property: Item (n as long) as Command

Description:
Gets the command with the index n in this collection. Index is 1-based.

6.5.3 XMLSpyControl

Properties:
IntegrationLevel
Appearance
Application
BorderStyle
CommandsList
CommandsStructure (deprecated)
EnableUserPrompts
MainMenu
Toolbars

Methods:
Open
Exec
QueryStatus

Events:
OnUpdateCmdUI
OnOpenedOrFocused
OnCloseEditingWindow
OnFileChangedAlert
OnContextChanged
OnDocumentOpened
OnValidationWindowUpdated

This object is a complete ActiveX control and should only be visible if the XMLSpy library is
used in the Application Level mode.

CLSID: a258bba2-3835-4c16-8590-72b44f52c471
ProgID: Altova.XMLSpyControl

© 2007 Altova GmbH

Object Reference 837XMLSpy Integration

Programmers' Reference

Properties

The following properties are defined:

IntegrationLevel
EnableUserPrompts
Appearance
BorderStyle

Command related properties:
CommandsList
MainMenu
Toolbars
CommandsStructure (deprecated)

Access to XMLSpyAPI:
Application

Appearance

Property: Appearance as short

Dispatch Id: -520

Description:
A value not equal to 0 displays a client edge around the control. Default value is 0.

Application

Property: Application as Application

Dispatch Id: 1

Description:
The Application property gives access to the Application object of the complete XMLSpy
automation server API. The property is read-only.

BorderStyle

Property: BorderStyle as short

Dispatch Id: -504

Description:
A value of 1 displays the control with a thin border. Default value is 0.

CommandsList

Property: CommandList as Commands (read-only)

Dispatch Id: 1004

Description:

838 XMLSpy Integration Object Reference

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

This property returns a flat list of all commands defined available with XMLSpyControl. For more
information see C# Sample.

CommandsStructure (deprecated)

Property: CommandsStructure as Commands (deprecated)

Dispatch Id: 3

Remark:
This property is deprecated. Instead, use CommandsList, MainMenu, Toolbars.

Description:
The CommandsStructure collection contains all commands of the XMLSpyControl as
Command objects. At the first level of the collection two special Command objects with the
following labels are accessible:

 IDR_XMLSPY: This object holds all commands as hierarchical menu structure.

 ALL_COMMANDS: This object holds all commands in a flat list.

Sample:
C# code to access the first level of the collection.

Commands objCommands;
objCommands = axXMLSpyControl.CommandsStructure;

long nCount = objCommands.Count;

for(long idx = 0;idx < nCount;idx++)
{

CommandobjCommand;
objCommand = objCommands[(int)idx];

// We are looking for the Menu with the name IDR_XMLSPY. This
menu should contain
// the complete main menu of XMLSpy.

if(objCommand.Label == "IDR_XMLSPY")
{

// read menu structure here...
}

if(objCommand.Label == "ALL_COMMANDS")
{

// read all commands here...
}

}

EnableUserPrompts

Property: EnableUserPrompts as boolean

Dispatch Id: 1006

© 2007 Altova GmbH

Object Reference 839XMLSpy Integration

Programmers' Reference

Description:
Setting this property to false, disables user prompts in the control. The default value is true.

IntegrationLevel

Property: IntegrationLevel as ICActiveXIntegrationLevel

Dispatch Id: 1000

Description:
The IntegrationLevel property determines the operation mode of the control. See also
Integration at the application level and Integration at document level for more information.

Note: It is important to set this property immediately after the creation of the XMLSpyControl
object.

MainMenu

Property: MainMenu as C om m and (read-only)

Dispatch Id: 1003

Description:
This property gives access to the description of the XMLSpyControl main menu. For more
information see C# Sample.

Toolbars

Property: Toolbars as Com m ands (read-only)

Dispatch Id: 1005

Description:
This property returns a list of all toolbar descriptions that describe all toolbars available with
XMLSpyControl. For more information see C# Sample.

Methods

The following methods are defined:

Open
Exec
QueryStatus

Exec

Method: Exec (nCmdID as long) as boolean

Dispatch Id: 6

Description:

840 XMLSpy Integration Object Reference

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Exec calls the XMLSpy command with the ID nCmdID. If the command can be executed, the
method returns true. See also CommandsStructure to get a list of all available commands
and QueryStatus to retrieve the status of any command.

Open

Method: Open (strFilePath as string) as boolean

Dispatch Id: 5

Description:
The result of the method depends on the extension passed in the argument strFilePath. If
the file extension is .mfd, a new document is opened. If the file extension is .mfp, the
corresponding project is opened. If a different file extension is passed into the method, the
control tries to load the file as a new component into the active document.

Do not use this method to load documents or projects when using the control in document-level
integration mode. Instead, use XMLSpyControlDocument.Open and
XMLSpyControlPlaceHolder.OpenProject.

QueryStatus

Method: QueryStatus (nCmdID as long) as long

Dispatch Id: 7

Description:
QueryStatus returns the enabled/disabled and checked/unchecked status of the command
specified by nCmdID. The status is returned as a bit mask.

Bit Value Name Meaning

0 1 Supported Set if the command is supported.
1 2 Enabled Set if the command is enabled (can be

executed).
2 4 Checked Set if the command is checked.

This means that if QueryStatus returns 0 the command ID is not recognized as a valid
XMLSpy command. If QueryStatus returns a value of 1 or 5, the command is disabled.

Events

The XMLSpyControl ActiveX control provides the following connection point events:

OnUpdateCmdUI
OnOpenedOrFocused
OnCloseEditingWindow
OnFileChangedAlert
OnContextChanged

OnDocumentOpened
OnValidationWindowUpdated

© 2007 Altova GmbH

Object Reference 841XMLSpy Integration

Programmers' Reference

OnCloseEditingWindow

Event: OnCloseEditingWindow (i_strFilePath as String) as boolean

Dispatch Id: 1002

Description:
This event is triggered when XMLSpy needs to close an already open document. As an answer
to this event, clients should close the editor window associated with i_strFilePath. Returning true
from this event indicates that the client has closed the document. Clients can return false if no
specific handling is required and XMLSpyControl should try to close the editor and destroy the
associated document control.

OnContextChanged

Event: OnContextChanged (i_strContextName as String, i_bActive as bool) as bool

Dispatch Id: 1004

Description:
This event is triggered when XMLSpy activates or de-actives one of the following operational
contexts:

 XSLT Profiling - "XSLTProfiling" is passed as the context name

 XSLT / XQuery debugging - "DebuggingXSLT" is passed as the context name

 SOAP debugging - "DebuggingSOAP" is passed as the context name

OnDocumentOpened

Event: OnDocumentOpened (objDocument as Document)

Dispatch Id: 1

Description:
This event is triggered whenever a document is opened. The argument objDocument is a
Document object from the XMLSpy automation interface and can be used to query for more
details about the document, or perform additional operations. When integrating on
document-level, it is often better to use the event
XMLSpyControlDocument.OnDocumentOpened instead.

OnFileChangedAlert

Event: OnFileChangedAlert (i_strFilePath as String) as bool

Dispatch Id: 1001

Description:
This event is triggered when a file loaded with XMLSpyControl, is changed on the harddisk by
another application. Clients should return true, if they handled the event, or false, if XMLSpy
should handle it in its customary way, i.e. prompting the user for reload.

OnLicenseProblem

Event: OnLicenseProblem (i_strLicenseProblemText as String)

842 XMLSpy Integration Object Reference

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Dispatch Id: 1005

Description:
This event is triggered when XMLSpyControl detects that no valid license is available for this
control. In case of restricted user licenses this can happen some time after the control has been
initialized. Integrators should use this event to disable access to this control's functionality. After
returning from this event, the control will block access to its functionality (e.g. show empty
windows in its controls and return errors on requests).

OnOpenedOrFocused

Event: OnOpenedOrFocused (i_strFilePath as String, i_bOpenWithThisControl as
bool)

Dispatch Id: 1000

Description:
When integrating at application level, this event informs clients that a document has been
opened, or made active by XMLSpy.

When integrating at document level, this event instructs the client to open the file
i_strFilePath in a document window. If the file is already open, the corresponding
document window should be made the active window.

if i_bOpenWithThisControl is true, the document must be opened with XMLSpyControl,
since internal access is required. Otherwise, the file can be opened with different editors.

OnUpdateCmdUI

Event: OnUpdateCmdUI ()

Dispatch Id: 1003

Description:
Called frequently to give integrators a good opportunity to check status of XMLSpy commands
using XMLSpyControl.QueryStatus. Do not perform long operations in this callback.

OnValidationWindowUpdated

Event: OnValidationWindowUpdated ()

Dispatch Id: 3

Description:
This event is triggered whenever the validation output window, is updated with new information.

6.5.4 XMLSpyControlDocument

Properties:
Appearance
BorderStyle
Document
IsModified
Path
ReadOnly

© 2007 Altova GmbH

Object Reference 843XMLSpy Integration

Programmers' Reference

Methods:
Exec
New
Open
QueryStatus
Reload
Save
SaveAs

Events:
OnDocumentOpened
OnDocumentClosed
OnModifiedFlagChanged
OnContextChanged
OnFileChangedAlert
OnActivate

If the XMLSpyControl is integrated in the Document Level mode each document is displayed in
an own object of type XMLSpyControlDocument. The XMLSpyControlDocument contains
only one document at the time but can be reused to display different files one after another.

This object is a complete ActiveX control.

CLSID: 52A552E6-2AB8-4e3e-B545-BE998233DDA0
ProgID: Altova.XMLSpyControlDocument

Properties

The following properties are defined:

ReadOnly
IsModified
Path
Appearance
BorderStyle

Access to XMLSpyAPI:
Document

Appearance

Property: Appearance as short

Dispatch Id: -520

Description:
A value not equal to 0 displays a client edge around the document control. Default value is 0.

BorderStyle

Property: BorderStyle as short

Dispatch Id: -504

Description:
A value of 1 displays the control with a thin border. Default value is 0.

844 XMLSpy Integration Object Reference

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Document

Property: Document as Document

Dispatch Id: 1

Description:
The Document property gives access to the Document object of the XMLSpy automation
server API. This interface provides additional functionalities which can be used with the
document loaded in the control. The property is read-only.

IsModified

Property: IsModified as boolean (read-only)

Dispatch Id: 1006

Description:
IsModified is true if the document content has changed since the last open, reload or save
operation. It is false, otherwise.

Path

Property: Path as string

Dispatch Id: 1005

Description:
Sets or gets the full path name of the document loaded into the control.

ReadOnly

Property: ReadOnly as boolean

Dispatch Id: 1007

Description:
Using this property you can turn on and off the read-only mode of the document. If ReadOnly
is true it is not possible to do any modifications.

Methods

The following methods are defined:

Document handling:
New
Open
Reload
Save
SaveAs

© 2007 Altova GmbH

Object Reference 845XMLSpy Integration

Programmers' Reference

Command Handling:
Exec
QueryStatus

Exec

Method: Exec (nCmdID as long) as boolean

Dispatch Id: 8

Description:
Exec calls the XMLSpy command with the ID nCmdID. If the command can be executed, the
method returns true. The client should call the Exec method of the document control if there is
currently an active document available in the application.

See also CommandsStructure to get a list of all available commands and QueryStatus to
retrieve the status of any command.

New

Method: New () as boolean

Dispatch Id: 1000

Description:
This method initializes a new document inside the control..

Open

Method: Open (strFileName as string) as boolean

Dispatch Id: 1001

Description:
Open loads the file strFileName as the new document into the control.

QueryStatus

Method: QueryStatus (nCmdID as long) as long

Dispatch Id: 9

Description:
QueryStatus returns the enabled/disabled and checked/unchecked status of the command
specified by nCmdID. The status is returned as a bit mask.

Bit Value Name Meaning

0 1 Supported Set if the command is supported.

846 XMLSpy Integration Object Reference

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

1 2 Enabled Set if the command is enabled (can be
executed).

2 4 Checked Set if the command is checked.

This means that if QueryStatus returns 0 the command ID is not recognized as a valid
XMLSpy command. If QueryStatus returns a value of 1 or 5 the command is disabled. The
client should call the QueryStatus method of the document control if there is currently an
active document available in the application.

Reload

Method: Reload () as boolean

Dispatch Id: 1002

Description:
Reload updates the document content from the file system.

Save

Method: Save () as boolean

Dispatch Id: 1003

Description:
Save saves the current document at the location Path.

SaveAs

Method: OpenDocument (strFileName as string) as boolean

Dispatch Id: 1004

Description:
SaveAs sets Path to strFileName and then saves the document to this location.

Events

The XMLSpyControlDocument ActiveX control provides following connection point events:

OnDocumentOpened
OnDocumentClosed
OnModifiedFlagChanged
OnContextChanged
OnFileChangedAlert
OnActivate
OnSetEditorTitle

OnActivate

Event: OnActivate ()

Dispatch Id: 1005

© 2007 Altova GmbH

Object Reference 847XMLSpy Integration

Programmers' Reference

Description:
This event is triggered when the document control is activated, has the focus, and is ready for
user input.

OnContextChanged

Event: OnContextChanged (i_strContextName as String, i_bActive as bool) as bool

Dispatch Id: 1004

Description:
This event is triggered when this document is shown in a different XMLSpy view. The following
values are passed:

 Grid view - "View_0" is passed as the context name

 Text view - "View_1" is passed as the context name

 Browser view - "View_2" is passed as the context name

 Schema view - "View_3" is passed as the context name

 Authentic view - "View_4" is passed as the context name

 WSDL view - "View_5" is passed as the context name

OnDocumentClosed

Event: OnDocumentClosed (objDocument as Document)

Dispatch Id: 1001

Description:
This event is triggered whenever the document loaded into this control is closed. The argument
objDocument is a Document object from the XMLSpy automation interface and should be
used with care.

OnDocumentOpened

Event: OnDocumentOpened (objDocument as Document)

Dispatch Id: 1000

Description:
This event is triggered whenever a document is opened in this control. The argument
objDocument is a Document object from the XMLSpy automation interface, and can be used
to query for more details about the document, or perform additional operations.

OnDocumentSaveAs

Event: OnContextDocumentSaveAs (i_strFileName as String)

Dispatch Id: 1007

Description:
This event is triggered when this document gets internally saved under a new name.

848 XMLSpy Integration Object Reference

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

OnFileChangedAlert

Event: OnFileChangedAlert () as bool

Dispatch Id: 1003

Description:
This event is triggered when the file loaded into this document control, is changed on the
harddisk by another application. Clients should return true, if they handled the event, or false, if
XMLSpy should handle it in its customary way, i.e. prompting the user for reload.

OnModifiedFlagChanged

Event: OnModifiedFlagChanged (i_bIsModified as boolean)

Dispatch Id: 1002

Description:
This event gets triggered whenever the document changes between modified and unmodified
state. The parameter i_bIsModifed is true if the document contents differs from the original
content, and false, otherwise.

OnSetEditorTitle

Event: OnSetEditorTitle ()

Dispatch Id: 1006

Description:
This event is being raised when the contained document is being internally renamed.

6.5.5 XMLSpyControlPlaceHolder

Properties available for all kinds of placeholder windows:
PlaceholderWindowID

Properties for project placeholder window:
Project

Methods for project placeholder window:
OpenProject
CloseProject

The XMLSpyControlPlaceHolder control is used to show the additional XMLSpy windows
like Overview, Library or Project window. It is used like any other ActiveX control and can be
placed anywhere in the client application.

CLSID: 135DEEF4-6DF0-47c2-8F8C-F145F5F3F672
ProgID: Altova.XMLSpyControlPlaceHolder

© 2007 Altova GmbH

Object Reference 849XMLSpy Integration

Programmers' Reference

Properties

The following properties are defined:

PlaceholderWindowID

Access to XMLSpyAPI:
Project

Label

Property: Label as String (read-only)

Dispatch Id: 1001

Description:
This property gives access to the title of the placeholder. The property is read-only.

PlaceholderWindowID

Property: PlaceholderWindowID as XMLSpyControlPlaceholderWindow

Dispatch Id: 1

Description:
Using this property the object knows which XMLSpy window should be displayed in the client
area of the control. The PlaceholderWindowID can be set at any time to any valid value of
the XMLSpyControlPlaceholderWindow enumeration. The control changes its state
immediately and shows the new XMLSpy window.

Project

Property: Project as Project (read-only)

Dispatch Id: 2

Description:
The Project property gives access to the Project object of the XMLSpy automation server
API. This interface provides additional functionalities which can be used with the project loaded
into the control. The property will return a valid project interface only if the placeholder window
has PlaceholderWindowID with a value of XMLSpyXProjectWindow (=3). The property
is read-only.

Methods

The following method is defined:

OpenProject
CloseProject

850 XMLSpy Integration Object Reference

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

OpenProject

Method: OpenProject (strFileName as string) as boolean

Dispatch Id: 3

Description:
OpenProject loads the file strFileName as the new project into the control. The method will
fail if the placeholder window has a PlaceholderWindowID different to
XMLSpyXProjectWindow (=3).

CloseProject

Method: CloseProject ()

Dispatch Id: 4

Description:
CloseProject closes the project loaded the control. The method will fail if the placeholder
window has a PlaceholderWindowID different to XMLSpyXProjectWindow (=3).

Events

The XMLSpyControlPlaceholder ActiveX control provides following connection point events:

OnModifiedFlagChanged

OnModifiedFlagChanged

Event: OnModifiedFlagChanged (i_bIsModified as boolean)

Dispatch Id: 1

Description:
This event gets triggered only for placeholder controls with a PlaceholderWindowID of
XMLSpyXProjectWindow (=3). The event is fired whenever the project content changes
between modified and unmodified state. The parameter i_bIsModifed is true if the project
contents differs from the original content, and false, otherwise.

6.5.6 Enumerations

The following enumerations are defined:

ICActiveXIntegrationLevel
XMLSpyControlPlaceholderWindow

ICActiveXIntegrationLevel

Possible values for the IntegrationLevel property of the XMLSpyControl.

ICActiveXIntegrationOnApplicationLevel = 0

© 2007 Altova GmbH

Object Reference 851XMLSpy Integration

Programmers' Reference

ICActiveXIntegrationOnDocumentLevel = 1

XMLSpyControlPlaceholderWindow

This enumeration contains the list of the supported additional XMLSpy windows.

XMLSpyControlNoToolWnd = -1,
XMLSpyControlEntryHelperTopToolWnd = 0,
XMLSpyControlEntryHelperMiddleToolWnd = 1,
XMLSpyControlEntryHelperBottomToolWnd = 2,
XMLSpyControlValidatorOutputToolWnd = 3,
XMLSpyControlProjectWindowToolWnd = 4,
XMLSpyControlXSLTDebuggerContextToolWnd = 5,
XMLSpyControlXSLTDebuggerCallstackToolWnd = 6,
XMLSpyControlXSLTDebuggerVariableToolWnd = 7,
XMLSpyControlXSLTDebuggerWatchToolWnd = 8,
XMLSpyControlXSLTDebuggerTemplateToolWnd = 9,
XMLSpyControlXSLTDebuggerInfoToolWnd = 10,
XMLSpyControlXSLTDebuggerMessageToolWnd = 11,
XMLSpyControlXSLTDebuggerTraceToolWnd = 12,
XMLSpyControlSOAPDebuggerToolWnd = 13,
XMLSpyControlXPathProfilerListToolWnd = 14,
XMLSpyControlXPathProfilerTreeToolWnd = 15,
XMLSpyControlXPathDialogToolWnd = 16

Appendices

Altova XMLSpy 2007 Professional Edition

854

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Appendices

These appendices contain technical information about XMLSpy and important licensing
information. Each appendix contains sub-sections as given below:

Technical Data

 OS and memory requirements
 Altova XML Parser
 Altova XSLT and XQuery Engines
 Unicode support
 Internet usage
 License metering

License Information

 Electronic software distribution
 Copyrights
 End User License Agreement

© 2007 Altova GmbH

 855Engine Information

Appendices

1 Engine Information

This section contains information about implementation-specific features of the Altova XSLT 1.0
Engine, Altova XSLT 2.0 Engine, and Altova XQuery 1.0 Engine.

856 Engine Information XSLT 1.0 Engine: Implementation Information

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

1.1 XSLT 1.0 Engine: Implementation Information

The Altova XSLT 1.0 Engine is built into Altova's XMLSpy, StyleVision, Authentic, and
MapForce XML products. It is also available in the free AltovaXML package. The Altova XSLT
1.0 Engine implements and conforms to the World Wide Web Consortium's XSLT 1.0
Recommendation of 16 November 1999 and XPath 1.0 Recommendation of 16 November 1999
. Limitations and implementation-specific behavior are listed below.

Limitations

 The xsl:preserve-space and xsl:strip-space elements are not supported.

 When the method attribute of xsl:output is set to HTML, or if HTML output is
selected by default, then special characters in the XML or XSLT file are inserted in the
HTML document directly as special characters; they are not inserted as HTML
character references in the output. For instance, the character (the decimal
character reference for a non-breaking space) is not inserted as in the HTML
code, but directly as a non-breaking space.

Implementation's handling of whitespace-only nodes in source XML document
The XML data (and, consequently, the XML Infoset) that is passed to the Altova XSLT 1.0
Engine is stripped of boundary-whitespace-only text nodes. (A boundary-whitespace-only text
node is a child whitespace-only text node that occurs between two elements within an element
of mixed content.) This stripping may have an effect on the value returned by the
fn:position(), fn:last(), and fn:count() functions.

For any node selection that selects text nodes also, boundary-whitespace-only text nodes would
typically also be included in the selection. However, since the XML Infoset used by the Altova
engines has boundary-whitespace-only text nodes stripped from it, these nodes are not present
in the XML Infoset. As a result, the size of the selection and the numbering of nodes in the
selection will be different than that for a selection which included these text nodes. The
fn:position(), fn:last(), and fn:count() functions, therefore, could produce results
that are different from those produced by some other processors.

A situation in which boundary-whitespace-only text nodes are evaluated as siblings of other
elements arises most commonly when xsl:apply-templates is used to apply templates.
When the fn:position(), fn:last(), and fn:count() functions are used in patterns with
a name test (for example, para[3], which is short for para[position()=3]),
boundary-whitespace-only nodes are irrelevant since only the named elements (para in the
above example) are selected. (Note, however, that boundary-whitespace-only nodes are
relevant in patterns that use the wildcard, for example, *[10].)

Note: If a boundary-whitespace-only text node is required in the output, then insert the required
whitespace within one of the two adjoining child elements. For example, the XML fragment:

<para>This is bold <i>italic</>.</para>

when processed with the XSLT template

<xsl:template match="para">
<xsl:apply-templates/>

</xsl:template>

will produce:

This is bolditalic.

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath

© 2007 Altova GmbH

XSLT 1.0 Engine: Implementation Information 857Engine Information

Appendices

To get a space between bold and italic in the output, insert a space character within either
the or <i> elements in the XML source. For example:

<para>This is bold <i> italic</>.</para> or
<para>This is bold <i>italic</>.</para> or
<para>This is bold<i> italic</>.</para>

When such an XML fragment is processed with the same XSLT template given above, it will
produce:

This is bold italic.

858 Engine Information XSLT 2.0 Engine: Implementation Information

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

1.2 XSLT 2.0 Engine: Implementation Information

The Altova XSLT 2.0 Engine is built into Altova's XMLSpy, StyleVision, Authentic, and
MapForce XML products. It is also available in the free AltovaXML package. This section
describes the engine's implementation-specific aspects of behavior. It starts with a section
giving general information about the engine, and then goes on to list the implementation-specific
behavior of XSLT 2.0 functions.

For information about implementation-specific behavior of XPath 2.0 functions, see the section,
XPath 2.0 and XQuery 1.0 Functions.

1.2.1 General Information

The Altova XSLT 2.0 Engine conforms to the World Wide Web Consortium's (W3C's) XSLT
2.0 Recommendation of 23 January 2007. Note the following general information about the
engine.

Backwards Compatibility
The Altova XSLT 2.0 Engine is backwards compatible. The only time the backwards
compatibility of the XSLT 2.0 Engine comes into play is when using the XSLT 2.0 Engine of
Altova XML to process an XSLT 1.0 stylesheet. Note that there could be differences in the
outputs produced by the XSLT 1.0 Engine and the backwards-compatible XSLT 2.0 Engine.

In all other Altova products, the backwards-compatibility issue never arises. This is because
these products automatically select the appropriate engine for the transformation. For example,
consider that in XMLSpy you specify that a certain XML document be processed with an XSLT
1.0 stylesheet. When the transformation command is invoked, XMLSpy automatically selects
the XSLT 1.0 Engine of XMLSpy to carry out the transformation.

Note: The stylesheet version is specified in the version attribute of the stylesheet or
transform element of the stylesheet.

Namespaces
Your XSLT 2.0 stylesheet should declare the following namespaces in order for you to be able
to use the type constructors and functions available in XSLT 2.0. The prefixes given below are
conventionally used; you could use alternative prefixes if you wish.

Namespace Name Prefix Namespace URI

XML Schema types xs: http://www.w3.org/2001/XMLSchema

XPath 2.0 functions fn: http://www.w3.org/2005/xpath-functions

Typically, these namespaces will be declared on the xsl:stylesheet or xsl:transform
element, as shown in the following listing:

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fn="http://www.w3.org/2005/xpath-functions"
...

</xsl:stylesheet>

The following points should be noted:

http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/2007/REC-xslt20-20070123/

© 2007 Altova GmbH

XSLT 2.0 Engine: Implementation Information 859Engine Information

Appendices

 The Altova XSLT 2.0 Engine uses the XPath 2.0 and XQuery 1.0 Functions namespace
(listed in the table above) as its default functions namespace. So you can use XPath
2.0 and XSLT 2.0 functions in your stylesheet without any prefix. If you declare the
XPath 2.0 Functions namespace in your stylesheet with a prefix, then you can
additionally use the prefix assigned in the declaration.

 When using type constructors and types from the XML Schema namespace, the prefix
used in the namespace declaration must be used when calling the type constructor (for
example, xs:date).

 With the CRs of 23 January 2007, the untypedAtomic and duration datatypes (
dayTimeDuration and yearMonthDuration), which were formerly in the XPath
Datatypes namespace (typically prefixed xdt:) have been moved to the XML Schema
namespace.

 Some XPath 2.0 functions have the same name as XML Schema datatypes. For
example, for the XPath functions fn:string and fn:boolean there exist XML
Schema datatypes with the same local names: xs:string and xs:boolean. So if
you were to use the XPath expression string('Hello'), the expression evaluates
as fn:string('Hello')—not as xs:string('Hello').

Schema-awareness
The Altova XSLT 2.0 Engine is schema-aware.

Whitespace in XML document
By default, the Altova XSLT 2.0 Engine strips all boundary whitespace from
boundary-whitespace-only nodes in the source XML document. The removal of this whitespace
affects the values that the fn:position(), fn:last(), fn:count(), and
fn:deep-equal() functions return. For more details, see Whitespace-only Nodes in XML
Document in the XPath 2.0 and XQuery 1.0 Functions section.

Note: If a boundary-whitespace-only text node is required in the output, then insert the required
whitespace within one of the two adjoining child elements. For example, the XML fragment:

<para>This is bold <i>italic</>.</para>

when processed with the XSLT template

<xsl:template match="para">
<xsl:apply-templates/>

</xsl:template>

will produce:

This is bolditalic.

To get a space between bold and italic in the output, insert a space character within either
the or <i> elements in the XML source. For example:

<para>This is bold <i> italic</>.</para> or
<para>This is bold <i>italic</>.</para> or
<para>This is bold<i> italic</>.</para>

When such an XML fragment is processed with the same XSLT template given above, it will
produce:

This is bold italic.

XSLT 2.0 elements and functions

860 Engine Information XSLT 2.0 Engine: Implementation Information

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

Limitations and implementation-specific behavior of XSLT 2.0 elements and functions are listed
in the section XSLT 2.0 Elements and Functions.

XPath 2.0 functions
Implementation-specific behavior of XPath 2.0 functions is listed in the section XPath 2.0 and
XQuery 1.0 Functions.

1.2.2 XSLT 2.0 Elements and Functions

Limitations
The xsl:preserve-space and xsl:strip-space elements are not supported.

Implementation-specific behavior
Given below is a description of how the Altova XSLT 2.0 Engine handles
implementation-specific aspects of the behavior of certain XSLT 2.0 functions.

function-available
The function tests for the availability of XSLT 2.0 functions, not for the availability of XPath 2.0
functions.

unparsed-text
The href attribute accepts (i) relative paths for files in the base-uri folder, and (ii) absolute
paths with or without the file:// protocol.

© 2007 Altova GmbH

XQuery 1.0 Engine: Implementation Information 861Engine Information

Appendices

1.3 XQuery 1.0 Engine: Implementation Information

The Altova XQuery 1.0 Engine is built into Altova's XMLSpy and MapForce XML products. It is
also available in the free AltovaXML package. This section provides information about
implementation-defined aspects of behavior.

Standards conformance
The Altova XQuery 1.0 Engine conforms to the World Wide Web Consortium's (W3C's) XQuery
1.0 Recommendation of 23 January 2007. The XQuery standard gives implementations
discretion about how to implement many features. Given below is a list explaining how the
Altova XQuery 1.0 Engine implements these features.

Schema awareness
The Altova XQuery 1.0 Engine is schema-aware.

Encoding
The UTF-8 and UTF-16 character encodings are supported.

Namespaces
The following namespace URIs and their associated bindings are pre-defined.

Namespace Name Prefix Namespace URI

XML Schema types xs: http://www.w3.org/2001/XMLSchema

Schema instance xsi: http://www.w3.org/2001/XMLSchema-instance

Built-in functions fn: http://www.w3.org/2005/xpath-functions

Local functions local: http://www.w3.org/2005/xquery-local-functions

The following points should be noted:

 The Altova XQuery 1.0 Engine recognizes the prefixes listed above as being bound to
the corresponding namespaces.

 Since the built-in functions namespace listed above is the default functions namespace
in XQuery, the fn: prefix does not need to be used when built-in functions are invoked
(for example, string("Hello") will call the fn:string function). However, the
prefix fn: can be used to call a built-in function without having to declare the
namespace in the query prolog (for example: fn:string("Hello")).

 You can change the default functions namespace by declaring the default
function namespace expression in the query prolog.

 When using types from the XML Schema namespace, the prefix xs: may be used
without having to explicitly declare the namespaces and bind these prefixes to them in
the query prolog. (Example: xs:date and xs:yearMonthDuration.) If you wish to
use some other prefix for the XML Schema namespace, this must be explicitly declared
in the query prolog. (Example: declare namespace alt =
"http://www.w3.org/2001/XMLSchema"; alt:date("2004-10-04").)

 Note that the untypedAtomic, dayTimeDuration, and yearMonthDuration datatypes
have been moved, with the CRs of 23 January 2007, from the XPath Datatypes
namespace to the XML Schema namespace, so: xs:yearMonthDuration.

If namespaces for functions, type constructors, node tests, etc are wrongly assigned, an error is

http://www.w3.org/TR/2007/REC-xquery-20070123/
http://www.w3.org/TR/2007/REC-xquery-20070123/

862 Engine Information XQuery 1.0 Engine: Implementation Information

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

reported. Note, however, that some functions have the same name as schema datatypes, e.g.
fn:string and fn:boolean. (Both xs:string and xs:boolean are defined.) The
namespace prefix determines whether the function or type constructor is used.

XML source document and validation
XML documents used in executing an XQuery document with the Altova XQuery 1.0 Engine
must be well-formed. However, they do not need to be valid according to an XML Schema. If
the file is not valid, the invalid file is loaded without schema information. If the XML file is
associated with an external schema and is valid according to it, then post-schema validation
information is generated for the XML data and will be used for query evaluation.

Static and dynamic type checking
The static analysis phase checks aspects of the query such as syntax, whether external
references (e.g. for modules) exist, whether invoked functions and variables are defined, and so
on. No type checking is done in the static analysis phase. If an error is detected in the static
analysis phase, it is reported and the execution is stopped.

Dynamic type checking is carried out at run-time, when the query is actually executed. If a type
is incompatible with the requirement of an operation, an error is reported. For example, the
expression xs:string("1") + 1 returns an error because the addition operation cannot be
carried out on an operand of type xs:string.

Library Modules
Library modules store functions and variables so they can be reused. The Altova XQuery 1.0
Engine supports modules that are stored in a single external XQuery file. Such a module file
must contain a module declaration in its prolog, which associates a target namespace. Here is
an example module:

module namespace libns="urn:module-library";
declare variable $libns:company := "Altova";
declare function libns: webaddress() { "http://www.altova.com" };

All functions and variables declared in the module belong to the namespace associated with the
module. The module is used by importing it into an XQuery file with the import module
statement in the query prolog. The import module statement only imports functions and
variables declared directly in the library module file. As follows:

import module namespace modlib = "urn:module-library" at
"modulefilename.xq";

if ($modlib:company = "Altova")
then modlib:webaddress()
else error("No match found.")

External functions
External functions are not supported, i.e. in those expressions using the external keyword, as
in:

declare function hoo($param as xs:integer) as xs:string external;

Collations
The default collation is the Unicode codepoint collation. No other collation is currently
supported. Comparisons, including the fn:max function, are based on this collation.

© 2007 Altova GmbH

XQuery 1.0 Engine: Implementation Information 863Engine Information

Appendices

Character normalization
No character normalization form is supported.

Precision of numeric types

 The xs:integer datatype is arbitrary-precision, i.e. it can represent any number of
digits.

 The xs:decimal datatype has a limit of 20 digits after the decimal point.

 The xs:float and xs:double datatypes have limited-precision of 15 digits.

XQuery Instructions Support
The Pragma instruction is not supported. If encountered, it is ignored and the fallback
expression is evaluated.

XQuery Functions Support
For information about implementation-specific behavior of XQuery 1.0 functions, see the
section, XPath 2.0 and XQuery 1.0 Functions.

864 Engine Information XPath 2.0 and XQuery 1.0 Functions

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

1.4 XPath 2.0 and XQuery 1.0 Functions

XPath 2.0 and XQuery 1.0 functions are evaluated by:

 the Altova XPath 2.0 Engine, which (i) is a component of the Altova XSLT 2.0 Engine,
and (ii) is used in the XPath Evaluator of Altova's XMLSpy product to evaluate XPath
expressions with respect to the XML document that is active in the XMLSpy interface.

 the Altova XQuery 1.0 Engine.

This section describes how XPath 2.0 and XQuery 1.0 functions are handled by the Altova
XPath 2.0 Engine and Altova XQuery 1.0 Engine. Only those functions are listed, for which the
behavior is implementation-specific, or where the behavior of an individual function is different in
any of the three environments in which these functions are used (that is, in XSLT 2.0, in XQuery
1.0, and in the XPath Evaluator of XMLSpy). Note that this section does not describe how to use
these functions. For more information about the usage of functions, see the World Wide Web
Consortium's (W3C's) XQuery 1.0 and XPath 2.0 Functions and Operators Recommendation
of 23 January 2007.

1.4.1 General Information

Standards conformance

 The Altova XPath 2.0 Engine implements the World Wide Web Consortium's (W3C's)
XPath 2.0 Recommendation of 23 January 2007. The Altova XQuery 1.0 Engine
implements the World Wide Web Consortium's (W3C's) XQuery 1.0 Recommendation
of 23 January 2007. The XPath 2.0 and XQuery 1.0 functions support in these two
engines is compliant with the XQuery 1.0 and XPath 2.0 Functions and Operators
Recommendation of 23 January 2007.

 The Altova XPath 2.0 Engine conforms to the rules of XML 1.0 (Fourth Edition) and
XML Namespaces (1.0).

Default functions namespace
The default functions namespace has been set to comply with that specified in the standard.
Functions can therefore be called without a prefix.

Boundary-whitespace-only nodes in source XML document
The XML data (and, consequently, the XML Infoset) that is passed to the Altova XPath 2.0
Engine and Altova XQuery 1.0 Engine is stripped of boundary-whitespace-only text nodes. (A
boundary-whitespace-only text node is a child whitespace-only text node that occurs between
two elements within an element of mixed content.) This stripping has an effect on the value
returned by the fn:position(), fn:last(), fn:count(), and fn:deep-equal()
functions.

For any node selection that selects text nodes also, boundary-whitespace-only text nodes would
typically also be included in the selection. However, since the XML Infoset used by the Altova
engines has boundary-whitespace-only text nodes stripped from it, these nodes are not present
in the XML Infoset. As a result, the size of the selection and the numbering of nodes in the
selection will be different than that for a selection which included these text nodes. The
fn:position(), fn:last(), fn:count(), and fn:deep-equal() functions, therefore,
could produce results that are different from those produced by some other processors.

A situation in which boundary-whitespace-only text nodes are evaluated as siblings of other
elements arises most commonly when xsl:apply-templates is used to apply templates.
When the fn:position(), fn:last(), and fn:count() functions are used in patterns with

http://www.w3.org/TR/2007/REC-xpath-functions-20070123/
http://www.w3.org/TR/2007/REC-xpath20-20070123/
http://www.w3.org/TR/2007/REC-xquery-20070123/
http://www.w3.org/TR/2007/REC-xpath-functions-20070123/
http://www.w3.org/TR/2007/REC-xpath-functions-20070123/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/REC-xml-names/

© 2007 Altova GmbH

XPath 2.0 and XQuery 1.0 Functions 865Engine Information

Appendices

a name test (for example, para[3], which is short for para[position()=3]),
boundary-whitespace-only nodes are irrelevant since only the named elements (para in the
above example) are selected. (Note, however, that boundary-whitespace-only nodes are
relevant in patterns that use the wildcard, for example, *[10].)

Numeric notation
On output, when an xs:double is converted to a string, scientific notation (for example,
1.0E12) is used when the absolute value is less than 0.000001 or greater than 1,000,000.
Otherwise decimal or integer notation is used.

Precision of xs:decimal
The precision refers to the number of digits in the number, and a minimum of 18 digits is
required by the specification. For division operations that produce a result of type xs:decimal,
the precision is 19 digits after the decimal point with no rounding.

Implicit timezone
When two date, time, or dateTime values need to be compared, the timezone of the values
being compared need to be known. When the timezone is not explicitly given in such a value,
the implicit timezone is used. The implicit timezone is taken from the system clock, and its value
can be checked with the fn:implicit-timezone() function.

Collations
Only the Unicode codepoint collation is supported. No other collations can be used. String
comparisons, including for the fn:max and fn:min functions, are based on this collation.

Namespace axis
The namespace axis is deprecated in XPath 2.0. Use of the namespace axis is, however,
supported. To access namespace information with XPath 2.0 mechanisms, use the
fn:in-scope-prefixes(), fn:namespace-uri() and
fn:namespace-uri-for-prefix() functions.

Static typing extensions
The optional static type checking feature is not supported.

1.4.2 Functions Support

The table below lists (in alphabetical order) the implementation-specific behavior of certain
functions. The following general points should be noted:

 In general, when a function expects a sequence of one item as an argument, and a
sequence of more than one item is submitted, then an error is returned.

 All string comparisons are done using the Unicode codepoint collation.
 Results that are QNames are serialized in the form [prefix:]localname.

Function Name Notes

866 Engine Information XPath 2.0 and XQuery 1.0 Functions

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

base-uri If external entities are used in the source XML document and if
a node in the external entity is specified as the input node
argument of the base-uri() function, it is still the base URI of
the including XML document that is used—not the base URI of
the external entity.

 The base URI of a node in the XML document can be modified
using the xml:base attribute.

collection The collection() function is a mapping of form (string,
nodes), currently called available collections and left
empty by the external environment. The function therefore
returns either (i) the empty sequence (when called with no
argument or with an empty sequence), or (ii) an error (when
called with a non-empty argument).

count See note on whitespace in the General Information section.

Function Name Notes

current-date,
current-dateTi
me,
current-time

 The current date and time is taken from the system clock.
 The timezone is taken from the implicit timezone provided by

the evaluation context; the implicit timezone is taken from the
system clock.

 The timezone is always specified in the result.

deep-equal See note on whitespace in the General Information section.

doc An error is raised only if no XML file is available at the specified
location or if the file is not well-formed. The file is validated if a
schema is available. If the file is not valid, the invalid file is
loaded without schema information.

id In a well-formed but invalid document that contains two or more
elements having the same ID value, the first element in
document order is returned.

in-scope-prefi
xes

 Only default namespaces may be undeclared in the XML
document. However, even when a default namespace is
undeclared on an element node, the prefix for the default
namespace, which is the zero-length string, is returned for that
node.

last See note on whitespace in the General Information section.

lower-case The ASCII character set only is supported.

normalize-unic
ode

 Not supported.

© 2007 Altova GmbH

XPath 2.0 and XQuery 1.0 Functions 867Engine Information

Appendices

position See note on whitespace in the General Information section.

Function Name Notes

resolve-uri If the second, optional argument is omitted, the URI to be
resolved (the first argument) is resolved against the base URI
from the static context, which is the URI of the XSLT stylesheet
or the base URI given in the prolog of the XQuery document.

 The relative URI (the first argument) is appended after the last
"/" in the path notation of the base URI notation.

 If the value of the first argument is the zero-length string, the
base URI from the static context is returned, and this URI
includes the file name of the document from which the base URI
of the static context is derived (e.g. the XSLT or XML file).

static-base-ur
i

 The base URI from the static context is the base URI of the
XSLT stylesheet or the base URI specified in the prolog of the
XQuery document.

 When using XPath Evaluator in the XMLSpy IDE, the base URI
from the static context is the URI of the active XML document.

upper-case The ASCII character set only is supported.

868 Datatypes in DB-Generated XML Schemas

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

2 Datatypes in DB-Generated XML Schemas

When an XML Schema is generated from a database (DB), the datatypes specific to that DB
are converted to XML Schema datatypes. The mappings of DB datatypes to XML Schema
datatypes for commonly used DBs are given in this Appendix. Select from the list below.

 MS Access
 MS SQL Server
 MySQL
 Oracle
 ODBC
 ADO
 Sybase

© 2007 Altova GmbH

MS Access 869Datatypes in DB-Generated XML Schemas

Appendices

2.1 MS Access

When an XML Schema is generated from an MS Access database (DB), the MS Access DB
datatypes are converted to XML Schema datatypes as listed in the table below.

MS Access Datatype XML Schema Datatype

G UID xs:ID

char xs:string

varchar xs:string

m em o xs:string

bit xs:boolean

Number(single) xs:float

Number(double) xs:double

Decimal xs:decimal

Currency xs:decimal

Date/Time xs:dateTime

Number(Long Integer) xs:integer

Number(Integer) xs:short

Number(Byte) xs:byte

OLE Object xs:base64Binary

870 Datatypes in DB-Generated XML Schemas MS SQL Server

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

2.2 MS SQL Server

When an XML Schema is generated from an MS SQL Server database (DB), the MS SQL
Server DB datatypes are converted to XML Schema datatypes as listed in the table below.

MS SQL Server Datatype XML Schema Datatype

uniqueidentifier xs:ID

char xs:string

nchar xs:string

varchar xs:string

nvarchar xs:string

text xs:string

ntext xs:string

sysnam e xs:string

bit xs:boolean

real xs:float

float xs:double

decimal xs:decimal

m oney xs:decimal

smallmoney xs:decimal

datetime xs:dateTime

smalldatetime xs:dateTime

binary xs:base64Binary

varbinary xs:base64Binary

im age xs:base64Binary

integer xs:integer

smallint xs:short

bigint xs:long

tinyint xs:byte

© 2007 Altova GmbH

MySQL 871Datatypes in DB-Generated XML Schemas

Appendices

2.3 MySQL

When an XML Schema is generated from a MySQL database (DB), the MySQL DB datatypes
are converted to XML Schema datatypes as listed in the table below.

My SQL Datatype XML Schema Datatype

char xs:string

varchar xs:string

text xs:string

tinytext xs:string

mediumtext xs:string

longtext xs:string

tinyint(1) xs:boolean

float xs:float

double xs:double

decimal xs:decimal

datetime xs:dateTime

blob xs:base64Binary

tinyblob xs:base64Binary

m edium blob xs:base64Binary

longblob xs:base64Binary

smallint xs:short

bigint xs:long

tinyint xs:byte

872 Datatypes in DB-Generated XML Schemas Oracle

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

2.4 Oracle

When an XML Schema is generated from an Oracle database (DB), the Oracle DB datatypes
are converted to XML Schema datatypes as listed in the table below.

Oracle Datatype XML Schema Datatype

R O W ID xs:ID

C H A R xs:string

N C H A R xs:string

VAR C H AR 2 xs:string

N VAR C H AR 2 xs:string

C LO B xs:string

N C LO B xs:string

NUMBER (with check constraint
applied)*

xs:boolean

N U M B E R xs:decimal

FLO AT xs:double

D ATE xs:dateTime

INTERVAL YEAR TO M O NTH xs:gYearMonth

BLO B xs:base64Binary

* If a check constraint is applied to a column of datatype NUMBER, and the check
constraint checks for the values 0 or 1, then the NUMBER datatype for this column will be
converted to an XML Schema datatype of xs:boolean. This mechanism is useful for
generating an xs:boolean datatype in the generated XML Schema.

© 2007 Altova GmbH

ODBC 873Datatypes in DB-Generated XML Schemas

Appendices

2.5 ODBC

When an XML Schema is generated from an ODBC database (DB), the ODBC DB datatypes
are converted to XML Schema datatypes as listed in the table below.

ODBC Datatype XML Schema Datatype

SQ L_G UID xs:ID

SQ L_C H AR xs:string

SQ L_VAR C H AR xs:string

SQ L_LO N G VAR C H AR xs:string

SQL_BIT xs:boolean

SQ L_REAL xs:float

SQ L_D O U BLE xs:double

SQ L_DECIM AL xs:decimal

SQ L_TIM ESTAM P xs:dateTime

SQ L_D ATE xs:date

SQ L_BINARY xs:base64Binary

SQ L_VARBINARY xs:base64Binary

SQ L_LO NG VARBINARY xs:base64Binary

SQ L_INTEG ER xs:integer

SQ L_SM ALLINT xs:short

SQL_BIGINT xs:long

SQL_TINYINT xs:byte

874 Datatypes in DB-Generated XML Schemas ADO

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

2.6 ADO

When an XML Schema is generated from an ADO database (DB), the ADO DB datatypes are
converted to XML Schema datatypes as listed in the table below.

ADO Datatype XML Schema Datatype

adG UID xs:ID

adChar xs:string

adW Char xs:string

adVarChar xs:string

adW VarChar xs:string

adLongVarChar xs:string

adW LongVarChar xs:string

adVarW Char xs:string

adBoolean xs:boolean

adSingle xs:float

adDouble xs:double

adNum eric xs:decimal

adCurrency xs:decimal

adDBTim eStam p xs:dateTime

adDate xs:date

adBinary xs:base64Binary

adVarBinary xs:base64Binary

adLongVarBinary xs:base64Binary

adInteger xs:Integer

adUnsignedInt xs:unsignedInt

adSmallInt xs:short

adUnsignedSmallInt xs:unsignedShort

adBigInt xs:long

adUnsignedBigInt xs:unsignedLong

adTinyInt xs:byte

adUnsignedTinyInt xs:unsignedByte

© 2007 Altova GmbH

Sybase 875Datatypes in DB-Generated XML Schemas

Appendices

2.7 Sybase

When an XML Schema is generated from a Sybase database (DB), the Sybase DB datatypes
are converted to XML Schema datatypes as listed in the table below.

Sybase Datatype XML Schema Datatype

char xs:string

nchar xs:string

varchar xs:string

nvarchar xs:string

text xs:string

sysname-varchar(30) xs:string

bit xs:boolean

real xs:float

float xs:float

double xs:double

decimal xs:decimal

m oney xs:decimal

smallmoney xs:decimal

datetime xs:dateTime

smalldatetime xs:dateTime

timestamp xs:dateTime

binary<=255 xs:base64Binary

varbinary<=255 xs:base64Binary

im age xs:base64Binary

integer xs:integer

smallint xs:short

tinyint xs:byte

876 Datatypes in DBs Generated from XML Schemas

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

3 Datatypes in DBs Generated from XML Schemas

When a DB structure is created from an XML Schema, the datatypes specific to that DB are
generated from XML Schema datatypes. The mappings of XML Schema datatypes to DB
datatypes for commonly used DBs are given in this Appendix. Select from the list below.

 MS Access
 MS SQL Server
 MySQL
 Oracle

© 2007 Altova GmbH

MS Access 877Datatypes in DBs Generated from XML Schemas

Appendices

3.1 MS Access

When an MS Access database (DB) is created from an XML Schema, the XML Schema
datatypes are converted to MS Access datatypes as listed in the table below.

XML Schema Datatype MS Access Datatype

xs:ID G UID

xs:string If no facets varchar (255)

Size = either length or maxLength

If Size <= 255 varchar (n)

else m em o

xs:normalizedString Same as xs:string

xs:token Same as xs:string

xs:Nam e Same as xs:string

xs:NCNam e Same as xs:string

xs:anyURI Same as xs:string

xs:QNam e Same as xs:string

xs:NOTATION Same as xs:string

xs:boolean bit

xs:float Number (single)

xs:double Number (double)

xs:decimal Decimal

xs:duration Date/Time

xs:dateTime Date/Time

xs:time Date/Time

xs:date Date/Time

xs:gYearMonth Date/Time

xs:gYear Date/Time

xs:gMonthDay Date/Time

xs:gDay Date/Time

xs:gMonth Date/Time

xs:hexBinary If no facets varbinary (255)

Size = either length or maxLength

If Size <= 8000 varbinary

878 Datatypes in DBs Generated from XML Schemas MS Access

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

else image (OLE Object)

xs:base64Binary Same as xs:hexBinary

xs:integer Number (Long Integer)

xs:int Number (Long Integer)

xs:negativeInteger Number (Long Integer); value constraint

xs:positiveInteger Number (Long Integer); value constraint

xs:nonNegativeInteger Number (Long Integer); value constraint

xs:nonPositiveInteger Number (Long Integer); value constraint

xs:unsignedInt Number (Long Integer)

xs:short -- no equivalent --

xs:unsignedShort -- no equivalent --

xs:long -- no equivalent --

xs:unsignedLong -- no equivalent --

xs:byte Number (Byte)

xs:unsignedByte Number (Byte)

© 2007 Altova GmbH

MS SQL Server 879Datatypes in DBs Generated from XML Schemas

Appendices

3.2 MS SQL Server

When an XML Schema is generated from an MS SQL Server database (DB), the MS SQL
Server DB datatypes are converted to XML Schema datatypes as listed in the table below.

XML Schema Datatype MS SQL Server Datatype

ID uniqueidentifier

xs:string If no facets

{ if UNICODE nvarchar (255)

else varchar (255) }

else

{ if UNICODE

(Size = either length or maxLength)

If Size <= 4000

if FacetLengthIsSet then nChar

else nVarChar

if Size <= 1073741823 then nText }

else

{ if NON-UNICODE

(Size = either length or maxLength)

If Size <= 8000

if FacetLengthIsSet then char

else varchar

if Size <= 2147483647 then text }

xs:normalizedString Same as xs:string

xs:token Same as xs:string

xs:Nam e Same as xs:string

xs:NCNam e Same as xs:string

xs:anyURi Same as xs:string

xs:QNam e Same as xs:string

xs:NOTATION Same as xs:string

xs:boolean bit

xs:float real

xs:double float

880 Datatypes in DBs Generated from XML Schemas MS SQL Server

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

xs:decimal decimal

xs:duration datetime

xs:dateTime datetime

xs:time datetime

xs:date datetime

xs:gYearMonth datetime

xs:gYear datetime

xs:gMonthDay datetime

xs:gDay datetime

xs:gMonth datetime

xs:hexBinary If no facets varbinary (255)

(Size = either length or maxLength

If Size <= 8000

if FacetLengthIsSet then binary

else varbinary

if Size <= 2147483647 then image

xs:base64Binary Same as xs:hexBinary

xs:integer int

xs:int int

xs:negativeInteger Int (constrained to {...,-2,-1})

xs:positiveInteger Int (constrained to {1,2,...})

xs:nonNegativeInteger int (constrained to {0,1,2,...})

xs:nonPositiveInteger int (constrained to {...,-2,-1,0})

xs:unsignedInt int (additional constraints)

xs:short smallint

xs:unsignedShort smallint (additional constraints)

xs:long bigint

xs:unsignedLong bigint (additional constraints)

xs:byte tinyint

xs:unsignedByte tinyint (additional constraints)

© 2007 Altova GmbH

MySQL 881Datatypes in DBs Generated from XML Schemas

Appendices

3.3 MySQL

When an XML Schema is generated from a MySQL database (DB), the MySQL DB datatypes
are converted to XML Schema datatypes as listed in the table below.

XML Schema Datatype MySQL Datatype

xs:ID varchar(255)

xs:string If no facets then varchar (255)

else if facet length is set and <= 255
then char

else if facet maxLength set and <= 255
then varchar

else if maxLength is set and <= 65545
then text

else if maxlength is set and <= 16777215
then mediumtext

else if maxlength is set and <= 429496295
then longtext

xs:normalizedString Same as xs:string

xs:token Same as xs:string

xs:Nam e Same as xs:string

xs:NCNam e Same as xs:string

xs:anyURI Same as xs:string

xs:QNam e Same as xs:string

xs:NOTATION Same as xs:string

xs:boolean tinyint(1)

xs:float float

xs:double double

xs:decimal decimal

xs:duration timestamp

xs:dateTime datetime

xs:time time

xs:date date

xs:gYearMonth timestamp(4)

xs:gYear year(4)

xs:gMonthDay timestamp(8); constraints to check month, day

882 Datatypes in DBs Generated from XML Schemas MySQL

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

xs:gDay timestamp(8); constraints to check day

xs:gMonth timestamp(8); constraints to check month

xs:hexBinary If no facets then blob (255)

else if facet length is set and <= 255
then blob

else if facet maxLength is set and <= 255
then tinyblob

else if maxlength is set and <= 65545
then blob

else if maxlength is set and <= 16777215
then m edium blob

else if maxlength is set and <= 429496295
then longblob

xs:base64Binary Same as xs:hexBinary

xs:integer Integer

xs:int int

xs:negativeInteger Integer (constrained to {...,-2,-1})

xs:positiveInteger Integer (constrained to {1,2,...})

xs:nonNegativeInteger Integer (constrained to {0,1,2,...})

xs:nonPositiveInteger Integer (constrained to {...,-2,-1,0})

xs:unsignedInt Int (additional constraints)

xs:short Smallint

xs:unsignedShort Smallint (additional constraints)

xs:long Bigint

xs:unsignedLong Bigint (additional constraints)

xs:byte Tinyint

xs:unsignedByte Tinyint (additional constraints)

© 2007 Altova GmbH

Oracle 883Datatypes in DBs Generated from XML Schemas

Appendices

3.4 Oracle

When an XML Schema is generated from an Oracle database (DB), the Oracle DB datatypes
are converted to XML Schema datatypes as listed in the table below.

XML Schema Datatype Oracle Datatype

xs:ID R O W ID

xs:string If no facets

if UNICODE then NVARCHAR2 (255)

else VARCHAR2 (255)

else if UNICODE

(Size = either length or maxLength)

If Size <= 2000 then NCHAR

if Size <= 4000 then NVARHCAR2

if Size <= 4 Gigabytes then NCLOB

else if NON-UNICODE

(Size = either length or maxLength)

If Size <= 2000 then CHAR

if Size <= 4000 then VARCHAR2

if Size <= 4 Gigabytes then CLOB

xs:normalizedString Same as xs:string

xs:token Same as xs:string

xs:Nam e Same as xs:string

xs:NCNam e Same as xs:string

xs:anyURI Same as xs:string

xs:QNam e Same as xs:string

xs:NOTATION Same as xs:string

xs:boolean NUMBER with constraint Boolean

xs:float FLO AT

xs:double FLO AT

xs:decimal N U M BE R

xs:duration TIM ESTAM P

xs:dateTime TIM ESTAM P

xs:time D ATE

884 Datatypes in DBs Generated from XML Schemas Oracle

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

xs:date D ATE

xs:gYearMonth INTERVAL YEAR TO M O NTH

xs:gYear D ATE

xs:gMonthDay D ATE

xs:gDay D ATE

xs:gMonth D ATE

xs:hexBinary if no facets then RAW (255)

(Size = either length or maxLength)

If Size <= 2000 then RAW (X)

else Size <= 2 Gigabytes then LONG RAW (X)

if Size <= 4 Gigabytes then BLOB (X)

xs:base64Binary BLO B

xs:integer N U M BE R

xs:int N U M BE R

xs:negativeInteger NUMBER (constrained to {...,-2,-1})

xs:positiveInteger NUMBER (constrained to {1,2,...})

xs:nonNegativeInteger NUMBER (constrained to {0,1,2,...})

xs:nonPositiveInteger NUMBER (constrained to {...,-2,-1,0})

xs:unsignedInt NUMBER (additional constraints)

xs:short N U M BE R

xs:unsignedShort NUMBER (additional constraints)

xs:long N U M BE R

xs:unsignedLong NUMBER (additional constraints)

xs:byte BLO B

xs:unsignedByte BLOB (additional constraints)

© 2007 Altova GmbH

 885Technical Data

Appendices

4 Technical Data

This section contains useful background information on the technical aspects of your software.
It is organized into the following sections:

 OS and Memory Requirements
 Altova XML Parser
 Altova XSLT and XQuery Engines
 Unicode Support
 Internet Usage

886 Technical Data OS and Memory Requirements

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

4.1 OS and Memory Requirements

Operating System
This software application is a 32-bit Windows application that runs on Windows 2000 and
Windows XP.

Memory
Since the software is written in C++ it does not require the overhead of a Java Runtime
Environment and typically requires less memory than comparable Java-based applications.
However, each document is loaded fully into memory so as to parse it completely and to
improve viewing and editing speed. The memory requirement increases with the size of the
document.

Memory requirements are also influenced by the unlimited Undo history. When repeatedly
cutting and pasting large selections in large documents, available memory can rapidly be
depleted.

© 2007 Altova GmbH

Altova XML Parser 887Technical Data

Appendices

4.2 Altova XML Parser

When opening any XML document, the application uses its built-in validating parser (the Altova
XML Parser) to check for well-formedness, validate the document against a schema (if
specified), and build trees and Infosets. The Altova XML Parser is also used to provide
intelligent editing help while you edit documents and to dynamically display any validation error
that may occur.

The built-in Altova XML Parser implements the Final Recommendation of the W3C's XML
Schema specification. New developments recommended by the W3C's XML Schema Working
Group are continuously being incorporated in the Altova Parser, so that Altova products give
you a state-of-the-art development environment.

888 Technical Data Altova XSLT and XQuery Engines

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

4.3 Altova XSLT and XQuery Engines

Altova products use the Altova XSLT 1.0 Engine, Altova XSLT 2.0 Engine, and Altova XQuery
1.0 Engines. Documentation about implementation-specific behavior for each engine is in the
section Engine Information, in Appendix 1 of the product documentation, should that engine be
used in the product.

These three engines are also available in the AltovaXML package, which can be downloaded
from the Altova website free of charge. Documentation for using the engines is available with
the AltovaXML package.

http://www.altova.com/download_components.html

© 2007 Altova GmbH

Unicode Support 889Technical Data

Appendices

4.4 Unicode Support

Unicode is the new 16-bit character-set standard defined by the Unicode Consortium that
provides a unique number for every character,

 no matter what the platform,
 no matter what the program,
 no matter what the language.

Fundamentally, computers just deal with numbers. They store letters and other characters by
assigning a number for each one. Before Unicode was invented, there were hundreds of
different encoding systems for assigning these numbers. No single encoding could contain
enough characters: for example, the European Union alone requires several different encodings
to cover all its languages. Even for a single language like English, no single encoding was
adequate for all the letters, punctuation, and technical symbols in common use.

These encoding systems used to conflict with one another. That is, two encodings used the
same number for two different characters, or different numbers for the same character. Any
given computer (especially servers) needs to support many different encodings; yet whenever
data is passed between different encodings or platforms, that data always runs the risk of
corruption.

Unicode is changing all that!
Unicode provides a unique number for every character, no matter what the platform, no matter
what the program, and no matter what the language. The Unicode Standard has been adopted
by such industry leaders as Apple, HP, IBM, JustSystem, Microsoft, Oracle, SAP, Sun, Base
and many others.

Unicode is required by modern standards such as XML, Java, ECMAScript (JavaScript), LDAP,
CORBA 3.0, WML, etc., and is the official way to implement ISO/IEC 10646. It is supported in
many operating systems, all modern browsers, and many other products. The emergence of the
Unicode Standard, and the availability of tools supporting it, are among the most significant
recent global software technology trends.

Incorporating Unicode into client-server or multi-tiered applications and web sites offers
significant cost savings over the use of legacy character sets. Unicode enables a single
software product or a single web site to be targeted across multiple platforms, languages and
countries without re-engineering. It allows data to be transported through many different
systems without corruption.

4.4.1 Windows 2000 and Windows XP

Altova's XML products provide full Unicode support. To edit an XML document, you will also
need a font that supports the Unicode characters being used by that document.

Please note that most fonts only contain a very specific subset of the entire Unicode range and
are therefore typically targeted at the corresponding writing system. Consequently you may
encounter XML documents that contain "unprintable" characters, because the font you have
selected does not contain the required glyphs. Therefore it can sometimes be very useful to
have a font that covers the entire Unicode range - especially when editing XML documents from
all over the world.

The most universal font we have encountered is a typeface called Arial Unicode MS that has
been created by Agfa Monotype for Microsoft. This font contains over 50,000 glyphs and covers
the entire set of characters specified by the Unicode 2.1 standard. It needs 23MB and is
included with Microsoft Office 2000.

http://www.unicode.org

890 Technical Data Unicode Support

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

We highly recommend that you install this font on your system and use it with the application if
you are often editing documents in different writing systems. This font is not installed with the
"Typical" setting of the Microsoft Office setup program, but you can choose the Custom Setup
option to install this font.

In the /Examples folder in your application folder you will also find a new XHTML file called
Unicode-UTF8.html that contains the sentence "When the world wants to talk, it speaks
Unicode" in many different languages ("Wenn die Welt miteinander spricht, spricht sie

Unicode") and writing-systems () - this line has been
adopted from the 10th Unicode conference in 1997 and is a beautiful illustration of the
importance of Unicode for the XML standard. Opening this file will give you a quick impression
on what is possible with Unicode and what writing systems are supported by the fonts available
on your PC installation.

4.4.2 Right-to-Left Writing Systems

Please note that even under Windows NT 4.0 any text from a right-to-left writing-system (such
as Hebrew or Arabic) is not rendered correctly except in those countries that actually use
right-to-left writing-systems. This is due to the fact that only the Hebrew and Arabic versions of
Windows NT contains support for rendering and editing right-to-left text on the operating system
layer.

© 2007 Altova GmbH

Internet Usage 891Technical Data

Appendices

4.5 Internet Usage

Altova applications will initiate Internet connections on your behalf in the following situations:

 If you click the "Request evaluation key-code" in the Registration dialog (Help |
Software Activation), the three fields in the registration dialog box are transferred to
our web server by means of a regular http (port 80) connection and the free evaluation
key-code is sent back to the customer via regular SMTP e-mail.

 If you use the Open URL... dialog box to open a document directly from a URL (File |
Open URL), that document is retrieved through a http (port 80) connection. (This
functionality is available in XMLSpy and Authentic Desktop.)

 If you open an XML document that refers to an XML Schema or DTD and the document
is specified through a URL, it is also retrieved through a http (port 80) connection once
you validate the XML document. This may also happen automatically upon opening a
document if you have instructed the application to automatically validate files upon
opening in the File tab of the Options dialog (Tools | Options). (This functionality is
available in XMLSpy and Authentic Desktop.)

 If you are using the Send by Mail... command (File | Send by Mail) in XMLSpy, the
current selection or file is sent by means of any MAPI-compliant mail program installed
on the user's PC.

892 License Information

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

5 License Information

This section contains:

 Information about the distribution of this software product
 Information about the copyrights related to this software product
 The End User License Agreement governing the use of this software product

Please read this information carefully. It is binding upon you since you agreed to these terms
when you installed this software product.

© 2007 Altova GmbH

Electronic Software Distribution 893License Information

Appendices

5.1 Electronic Software Distribution

This product is available through electronic software distribution, a distribution method that
provides the following unique benefits:

 You can evaluate the software free-of-charge before making a purchasing decision.
 Once you decide to buy the software, you can place your order online at the Altova

website and immediately get a fully licensed product within minutes.
 When you place an online order, you always get the latest version of our software.
 The product package includes a comprehensive integrated onscreen help system. The

latest version of the user manual is available at www.altova.com (i) in HTML format for
online browsing, and (ii) in PDF format for download (and to print if you prefer to have
the documentation on paper).

30-day evaluation period
After downloading this product, you can evaluate it for a period of up to 30 days free of charge.
About 20 days into this evaluation period, the software will start to remind you that it has not yet
been licensed. The reminder message will be displayed once each time you start the
application. If you would like to continue using the program after the 30-day evaluation period,
you have to purchase an End User License Agreement, which is delivered in the form of a
key-code that you enter into the Software Activation dialog to unlock the product. You can
purchase your license at the online shop at the Altova website.

Distributing the product
If you wish to share the product with others, please make sure that you distribute only the
installation program, which is a convenient package that will install the application together with
all sample files and the onscreen help. Any person that receives the product from you is also
automatically entitled to a 30-day evaluation period. After the expiration of this period, any other
user must also purchase a license in order to be able to continue using the product.

For further details, please refer to the End User License Agreement at the end of this section.

http://www.altova.com/
http://www.altova.com/
http://www.altova.com/support_help.html
http://www.altova.com/

894 License Information License Metering

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

5.2 License Metering

Your Altova product has a built-in license metering module that helps you avoid any
unintentional violation of the End User License Agreement. Your product is licensed either as a
single-user or multi-user installation, and the license-metering module makes sure that no more
than the licensed number of users use the application concurrently.

This license-metering technology uses your local area network (LAN) to communicate between
instances of the application running on different computers.

Single license
When the application starts up, it sends a short broadcast datagram to find any other instance
of the product running on another computer in the same network segment. If it doesn't get any
response, it will open a port for listening to other instances of the application. Other than that, it
will not attempt to communicate over a network. If you are not connected to a LAN, or are using
dial-up connections to connect to the Internet, the application will not generate any network
traffic at all.

Multi license
If more than one instance of the application is used within the same LAN, these instances will
briefly communicate with each other on startup. These instances exchange key-codes in order
to ensure that the number of concurrent licenses purchased is not accidentally violated. This is
the same kind of license metering technology that is common in the Unix world and with a
number of database development tools. It allows Altova customers to purchase
reasonably-priced concurrent-use multi-user licenses.

Please note that your Altova product at no time attempts to send any information out of your
LAN or over the Internet. We have also designed the applications so that they send few and
small network packets so as to not put a burden on your network. The TCP/IP ports (2799)
used by your Altova product are officially registered with the IANA (see
http://www.isi.edu/in-notes/iana/assignments/port-numbers for details) and our license-metering
module is tested and proven technology.

If you are using a firewall, you may notice communications on port 2799 between the computers
that are running Altova products. You are, of course, free to block such traffic between different
groups in your organization, as long as you can ensure by other means, that your license
agreement is not violated.

You will also notice that, if you are online, your Altova product contains many useful functions;
these are unrelated to the license-metering technology.

http://www.isi.edu/in-notes/iana/assignments/port-numbers

© 2007 Altova GmbH

Copyright 895License Information

Appendices

5.3 Copyright

All title and copyrights in this software product (including but not limited to images, photographs,
animations, video, audio, music, text, and applets incorporated in the product), in the
accompanying printed materials, and in any copies of these printed materials are owned by
Altova GmbH or the respective supplier. This software product is protected by copyright laws
and international treaty provisions.

 This software product ©1998-2007 Altova GmbH. All rights reserved.
 The Sentry Spelling-Checker Engine © 2000 Wintertree Software Inc.
 STLport © 1999, 2000 Boris Fomitchev, © 1994 Hewlett-Packard Company, © 1996,

1997 Silicon Graphics Computer Systems, Inc, © 1997 Moscow Center for SPARC
Technology.

 Scintilla © 1998–2002 Neil Hodgson <neilh@scintilla.org>.

 "ANTLR Copyright © 1989-2005 by Terence Parr (www.antlr.org)"

All other names or trademarks are the property of their respective owners.

896 License Information Altova End User License Agreement

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

5.4 Altova End User License Agreement

THIS IS A LEGAL DOCUMENT -- RETAIN FOR YOUR RECORDS

ALTOVA® END USER LICENSE AGREEMENT

Licensor:

Altova GmbH
Rudolfsplatz 13a/9
A-1010 Wien
Austria

Important - Read Carefully. Notice to User:
This End User License Agreement (“Software License Agreement”) is a legal document

between you and Altova GmbH (“Altova”). It is important that you read this document before
using the Altova-provided software (“Software”) and any accompanying documentation, including,
without limitation printed materials, ‘online’ files, or electronic documentation (“Documentation”).
By clicking the “I accept” and “Next” buttons below, or by installing, or otherwise using the
Software, you agree to be bound by the terms of this Software License Agreement as well as the
Altova Privacy Policy (“Privacy Policy”) including, without limitation, the warranty disclaimers,
limitation of liability, data use and termination provisions below, whether or not you decide to
purchase the Software. You agree that this agreement is enforceable like any written agreement
negotiated and signed by you. If you do not agree, you are not licensed to use the Software, and you
must destroy any downloaded copies of the Software in your possession or control. Please go to our Web
site at http://www.altova.com/eula to download and print a copy of this Software License Agreement for
your files and http://www.altova.com/privacy to review the privacy policy.

1. SOFTWARE LICENSE
(a) License Grant. Upon your acceptance of this Software License Agreement Altova
grants you a non-exclusive, non-transferable (except as provided below), limited license to
install and use a copy of the Software on your compatible computer, up to the Permitted Number
of computers. The Permitted Number of computers shall be delineated at such time as you elect
to purchase the Software. During the evaluation period, hereinafter defined, only a single user
may install and use the software on one computer. If you have licensed the Software as part of a
suite of Altova software products (collectively, the “Suite”) and have not installed each product
individually, then the Software License Agreement governs your use of all of the software
included in the Suite. If you have licensed SchemaAgent, then the terms and conditions of this
Software License Agreement apply to your use of the SchemaAgent server software
(“SchemaAgent Server”) included therein, as applicable and you are licensed to use
SchemaAgent Server solely in connection with your use of Altova Software and solely for the
purposes described in the accompanying documentation. In addition, if you have licensed
XMLSpy Enterprise Edition or MapForce Enterprise Edition, or UModel, your license to
install and use a copy of the Software as provided herein permits you to generate source code
based on (i) Altova Library modules that are included in the Software (such generated code
hereinafter referred to as the “Restricted Source Code”) and (ii) schemas or mappings that you
create or provide (such code as may be generated from your schema or mapping source
materials hereinafter referred to as the “Unrestricted Source Code”). In addition to the rights
granted herein, Altova grants you a non-exclusive, non-transferable, limited license to compile
into executable form the complete generated code comprised of the combination of the
Restricted Source Code and the Unrestricted Source Code, and to use, copy, distribute or license
that executable. You may not distribute or redistribute, sublicense, sell, or transfer to a third
party the Restricted Source Code, unless said third party already has a license to the Restricted
Source Code through their separate license agreement with Altova or other agreement with

http://www.altova.com/privacy

© 2007 Altova GmbH

Altova End User License Agreement 897License Information

Appendices

Altova. Altova reserves all other rights in and to the Software. With respect to the feature(s) of
UModel that permit reverse-engineering of your own source code or other source code that you
have lawfully obtained, such use by you does not constitute a violation of this Agreement.
Except as otherwise permitted in Section 1(h) reverse engineering of the Software is strictly
prohibited as further detailed therein.
 (b) Server Use. You may install one copy of the Software on your computer file server for
the purpose of downloading and installing the Software onto other computers within your
internal network up to the Permitted Number of computers. If you have licensed SchemaAgent,
then you may install SchemaAgent Server on any server computer or workstation and use it in
connection with your Software. No other network use is permitted, including without limitation
using the Software either directly or through commands, data or instructions from or to a
computer not part of your internal network, for Internet or Web-hosting services or by any user
not licensed to use this copy of the Software through a valid license from Altova. If you have
purchased Concurrent User Licenses as defined in Section 1(c) you may install a copy of the
Software on a terminal server within your internal network for the sole and exclusive purpose of
permitting individual users within your organization to access and use the Software through a
terminal server session from another computer on the network provided that the total number of
user that access or use the Software on such network or terminal server does not exceed the
Permitted Number. Altova makes no warranties or representations about the performance of
Altova software in a terminal server environment and the foregoing are expressly excluded from
the limited warranty in Section 5 hereof and technical support is not available with respect to
issues arising from use in such an environment.
(c) Concurrent Use. If you have licensed a “Concurrent-User” version of the Software,
you may install the Software on any compatible computers, up to ten (10) times the Permitted
Number of users, provided that only the Permitted Number of users actually use the Software at
the same time. The Permitted Number of concurrent users shall be delineated at such time as you
elect to purchase the Software licenses.
(d) Backup and Archival Copies. You may make one backup and one archival copy of
the Software, provided your backup and archival copies are not installed or used on any
computer and further provided that all such copies shall bear the original and unmodified
copyright, patent and other intellectual property markings that appear on or in the Software. You
may not transfer the rights to a backup or archival copy unless you transfer all rights in the
Software as provided under Section 3.
(e) Home Use. You, as the primary user of the computer on which the Software is
installed, may also install the Software on one of your home computers for your use. However,
the Software may not be used on your home computer at the same time as the Software is being
used on the primary computer.
(f) Key Codes, Upgrades and Updates. Prior to your purchase and as part of the
registration for the thirty (30) -day evaluation period, as applicable, you will receive an
evaluation key code. You will receive a purchase key code when you elect to purchase the
Software from either Altova GMBH or an authorized reseller. The purchase key code will
enable you to activate the Software beyond the initial evaluation period. You may not re-license,
reproduce or distribute any key code except with the express written permission of Altova. If the
Software that you have licensed is an upgrade or an update, then the update replaces all or part
of the Software previously licensed. The update or upgrade and the associated license keys does
not constitute the granting of a second license to the Software in that you may not use the
upgrade or update in addition to the Software that it is replacing. You agree that use of the
upgrade of update terminates your license to use the Software or portion thereof replaced.
(g) Title. Title to the Software is not transferred to you. Ownership of all copies of the
Software and of copies made by you is vested in Altova, subject to the rights of use granted to
you in this Software License Agreement. As between you and Altova, documents, files,
stylesheets, generated program code (including the Unrestricted Source Code) and schemas
that are authored or created by you via your utilization of the Software, in accordance with its
Documentation and the terms of this Software License Agreement, are your property.
 (h) Reverse Engineering. Except and to the limited extent as may be otherwise
specifically provided by applicable law in the European Union, you may not reverse engineer,

898 License Information Altova End User License Agreement

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

decompile, disassemble or otherwise attempt to discover the source code, underlying ideas,
underlying user interface techniques or algorithms of the Software by any means whatsoever,
directly or indirectly, or disclose any of the foregoing, except to the extent you may be expressly
permitted to decompile under applicable law in the European Union, if it is essential to do so in
order to achieve operability of the Software with another software program, and you have first
requested Altova to provide the information necessary to achieve such operability and Altova
has not made such information available. Altova has the right to impose reasonable conditions
and to request a reasonable fee before providing such information. Any information supplied by
Altova or obtained by you, as permitted hereunder, may only be used by you for the purpose
described herein and may not be disclosed to any third party or used to create any software
which is substantially similar to the expression of the Software. Requests for information from
users in the European Union with respect to the above should be directed to the Altova
Customer Support Department.
(i) Other Restrictions. You may not loan, rent, lease, sublicense, distribute or otherwise
transfer all or any portion of the Software to third parties except to the limited extent set forth in
Section 3 or otherwise expressly provided. You may not copy the Software except as expressly
set forth above, and any copies that you are permitted to make pursuant to this Software License
Agreement must contain the same copyright, patent and other intellectual property markings that
appear on or in the Software. You may not modify, adapt or translate the Software. You may
not, directly or indirectly, encumber or suffer to exist any lien or security interest on the
Software; knowingly take any action that would cause the Software to be placed in the public
domain; or use the Software in any computer environment not specified in this Software License
Agreement. You will comply with applicable law and Altova’s instructions regarding the use of
the Software. You agree to notify your employees and agents who may have access to the
Software of the restrictions contained in this Software License Agreement and to ensure their
compliance with these restrictions. YOU AGREE THAT YOU ARE SOLELY RESPONSIBLE
FOR THE ACCURACY AND ADEQUACY OF THE SOFTWARE FOR YOUR INTENDED
USE AND YOU WILL INDEMNIFY AND HOLD HARMLESS ALTOVA FROM ANY 3RD
PARTY SUIT TO THE EXTENT BASED UPON THE ACCURACY AND ADEQUACY OF
THE SOFTWARE IN YOUR USE. WITHOUT LIMITATION, THE SOFTWARE IS NOT
INTENDED FOR USE IN THE OPERATION OF NUCLEAR FACILITIES, AIRCRAFT
NAVIGATION, COMMUNICATION SYSTEMS OR AIR TRAFFIC CONTROL EQUIPMENT,
WHERE THE FAILURE OF THE SOFTWARE COULD LEAD TO DEATH, PERSONAL
INJURY OR SEVERE PHYSICAL OR ENVIRONMENTAL DAMAGE.

2. INTELLECTUAL PROPERTY RIGHTS
Acknowledgement of Altova's Rights. You acknowledge that the Software and any copies that
you are authorized by Altova to make are the intellectual property of and are owned by Altova
and its suppliers. The structure, organization and code of the Software are the valuable trade
secrets and confidential information of Altova and its suppliers. The Software is protected by
copyright, including without limitation by United States Copyright Law, international treaty
provisions and applicable laws in the country in which it is being used. You acknowledge that
Altova retains the ownership of all patents, copyrights, trade secrets, trademarks and other
intellectual property rights pertaining to the Software, and that Altova’s ownership rights extend
to any images, photographs, animations, videos, audio, music, text and “applets” incorporated
into the Software and all accompanying printed materials. You will take no actions which
adversely affect Altova’s intellectual property rights in the Software. Trademarks shall be used
in accordance with accepted trademark practice, including identification of trademark owners’
names. Trademarks may only be used to identify printed output produced by the Software, and
such use of any trademark does not give you any right of ownership in that trademark. XMLSpy,
Authentic, StyleVision, MapForce, Markup Your Mind, Axad, Nanonull, and Altova are
trademarks of Altova GmbH (registered in numerous countries). Unicode and the Unicode Logo
are trademarks of Unicode, Inc. Windows, Windows 95, Windows 98, Windows NT, Windows
2000 and Windows XP are trademarks of Microsoft. W3C, CSS, DOM, MathML, RDF,
XHTML, XML and XSL are trademarks (registered in numerous countries) of the World Wide
Web Consortium (W3C); marks of the W3C are registered and held by its host institutions, MIT,

© 2007 Altova GmbH

Altova End User License Agreement 899License Information

Appendices

INRIA and Keio. Except as expressly stated above, this Software License Agreement does not
grant you any intellectual property rights in the Software. Notifications of claimed copyright
infringement should be sent to Altova’s copyright agent as further provided on the Altova Web
Site.

3. LIMITED TRANSFER RIGHTS
Notwithstanding the foregoing, you may transfer all your rights to use the Software to another
person or legal entity provided that: (a) you also transfer each of this Software License
Agreement, the Software and all other software or hardware bundled or pre-installed with the
Software, including all copies, updates and prior versions, and all copies of font software
converted into other formats, to such person or entity; (b) you retain no copies, including
backups and copies stored on a computer; (c) the receiving party secures a personalized key
code from Altova; and (d) the receiving party accepts the terms and conditions of this Software
License Agreement and any other terms and conditions upon which you legally purchased a
license to the Software. Notwithstanding the foregoing, you may not transfer education,
pre-release, or not-for-resale copies of the Software.

4. PRE-RELEASE AND EVALUATION PRODUCT ADDITIONAL TERMS
If the product you have received with this license is pre-commercial release or beta Software
(“Pre-release Software”), then this Section applies. In addition, this section applies to all
evaluation and/or demonstration copies of Altova software (“Evaluation Software”) and
continues in effect until you purchase a license. To the extent that any provision in this section is
in conflict with any other term or condition in this Software License Agreement, this section
shall supersede such other term(s) and condition(s) with respect to the Pre-release and/or
Evaluation Software, but only to the extent necessary to resolve the conflict. You acknowledge
that the Pre-release Software is a pre-release version, does not represent final product from
Altova, and may contain bugs, errors and other problems that could cause system or other
failures and data loss. CONSEQUENTLY, THE PRE-RELEASE AND/OR EVALUATION
SOFTWARE IS PROVIDED TO YOU “AS-IS” WITH NO WARRANTIES FOR USE OR
PERFORMANCE, AND ALTOVA DISCLAIMS ANY WARRANTY OR LIABILITY
OBLIGATIONS TO YOU OF ANY KIND, WHETHER EXPRESS OR IMPLIED. WHERE
LEGALLY LIABILITY CANNOT BE EXCLUDED FOR PRE-RELEASE AND/OR
EVALUATION SOFTWARE, BUT IT MAY BE LIMITED, ALTOVA’S LIABILITY AND
THAT OF ITS SUPPLIERS SHALL BE LIMITED TO THE SUM OF FIFTY DOLLARS
(USD $50) IN TOTAL. If the Evaluation Software has a time-out feature, then the software will
cease operation after the conclusion of the designated evaluation period. Upon such expiration
date, your license will expire unless otherwise extended. Access to any files created with the
Evaluation Software is entirely at your risk. You acknowledge that Altova has not promised or
guaranteed to you that Pre-release Software will be announced or made available to anyone in
the future, that Altova has no express or implied obligation to you to announce or introduce the
Pre-release Software, and that Altova may not introduce a product similar to or compatible with
the Pre-release Software. Accordingly, you acknowledge that any research or development that
you perform regarding the Pre-release Software or any product associated with the Pre-release
Software is done entirely at your own risk. During the term of this Software License Agreement,
if requested by Altova, you will provide feedback to Altova regarding testing and use of the
Pre-release Software, including error or bug reports. If you have been provided the Pre-release
Software pursuant to a separate written agreement, your use of the Software is governed by such
agreement. You may not sublicense, lease, loan, rent, distribute or otherwise transfer the
Pre-release Software. Upon receipt of a later unreleased version of the Pre-release Software or
release by Altova of a publicly released commercial version of the Software, whether as a
stand-alone product or as part of a larger product, you agree to return or destroy all earlier
Pre-release Software received from Altova and to abide by the terms of the license agreement
for any such later versions of the Pre-release Software.

900 License Information Altova End User License Agreement

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

5. LIMITED WARRANTY AND LIMITATION OF LIABILITY
(a) Limited Warranty and Customer Remedies. Altova warrants to the person or entity
that first purchases a license for use of the Software pursuant to the terms of this Software
License Agreement that (i) the Software will perform substantially in accordance with any
accompanying Documentation for a period of ninety (90) days from the date of receipt, and (ii)
any support services provided by Altova shall be substantially as described in Section 6 of this
agreement. Some states and jurisdictions do not allow limitations on duration of an implied
warranty, so the above limitation may not apply to you. To the extent allowed by applicable law,
implied warranties on the Software, if any, are limited to ninety (90) days. Altova’s and its
suppliers’ entire liability and your exclusive remedy shall be, at Altova’s option, either (i) return
of the price paid, if any, or (ii) repair or replacement of the Software that does not meet Altova’s
Limited Warranty and which is returned to Altova with a copy of your receipt. This Limited
Warranty is void if failure of the Software has resulted from accident, abuse, misapplication,
abnormal use, Trojan horse, virus, or any other malicious external code. Any replacement
Software will be warranted for the remainder of the original warranty period or thirty (30) days,
whichever is longer. This limited warranty does not apply to Evaluation and/or Pre-release
Software.
 (b) No Other Warranties and Disclaimer. THE FOREGOING LIMITED WARRANTY
AND REMEDIES STATE THE SOLE AND EXCLUSIVE REMEDIES FOR ALTOVA OR
ITS SUPPLIER’S BREACH OF WARRANTY. ALTOVA AND ITS SUPPLIERS DO NOT
AND CANNOT WARRANT THE PERFORMANCE OR RESULTS YOU MAY OBTAIN BY
USING THE SOFTWARE. EXCEPT FOR THE FOREGOING LIMITED WARRANTY, AND
FOR ANY WARRANTY, CONDITION, REPRESENTATION OR TERM TO THE EXTENT
WHICH THE SAME CANNOT OR MAY NOT BE EXCLUDED OR LIMITED BY LAW
APPLICABLE TO YOU IN YOUR JURISDICTION, ALTOVA AND ITS SUPPLIERS
MAKE NO WARRANTIES, CONDITIONS, REPRESENTATIONS OR TERMS, EXPRESS
OR IMPLIED, WHETHER BY STATUTE, COMMON LAW, CUSTOM, USAGE OR
OTHERWISE AS TO ANY OTHER MATTERS. TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW, ALTOVA AND ITS SUPPLIERS DISCLAIM ALL
OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, SATISFACTORY
QUALITY, INFORMATIONAL CONTENT OR ACCURACY, QUIET ENJOYMENT, TITLE
AND NON-INFRINGEMENT, WITH REGARD TO THE SOFTWARE, AND THE
PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES. THIS LIMITED
WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS. YOU MAY HAVE OTHERS,
WHICH VARY FROM STATE/JURISDICTION TO STATE/JURISDICTION.
 (c) Limitation Of Liability. TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW EVEN IF A REMEDY FAILS ITS ESSENTIAL PURPOSE, IN NO
EVENT SHALL ALTOVA OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WHATSOEVER
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER
PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE
SOFTWARE OR THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES,
EVEN IF ALTOVA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
IN ANY CASE, ALTOVA’S ENTIRE LIABILITY UNDER ANY PROVISION OF THIS
SOFTWARE LICENSE AGREEMENT SHALL BE LIMITED TO THE AMOUNT
ACTUALLY PAID BY YOU FOR THE SOFTWARE PRODUCT. Because some states and
jurisdictions do not allow the exclusion or limitation of liability, the above limitation may not
apply to you. In such states and jurisdictions, Altova’s liability shall be limited to the greatest
extent permitted by law and the limitations or exclusions of warranties and liability contained
herein do not prejudice applicable statutory consumer rights of person acquiring goods otherwise
than in the course of business. The disclaimer and limited liability above are fundamental to this
Software License Agreement between Altova and you.
 (d) Infringement Claims. Altova will indemnify and hold you harmless and will defend or

© 2007 Altova GmbH

Altova End User License Agreement 901License Information

Appendices

settle any claim, suit or proceeding brought against you by a third party that is based upon a
claim that the content contained in the Software infringes a copyright or violates an intellectual
or proprietary right protected by United States or European Union law (“Claim”), but only to the
extent the Claim arises directly out of the use of the Software and subject to the limitations set
forth in Section 5 of this Agreement except as otherwise expressly provided. You must notify
Altova in writing of any Claim within ten (10) business days after you first receive notice of the
Claim, and you shall provide to Altova at no cost with such assistance and cooperation as Altova
may reasonably request from time to time in connection with the defense of the Claim. Altova
shall have sole control over any Claim (including, without limitation, the selection of counsel
and the right to settle on your behalf on any terms Altova deems desirable in the sole exercise of
its discretion). You may, at your sole cost, retain separate counsel and participate in the defense
or settlement negotiations. Altova shall pay actual damages, costs, and attorney fees awarded
against you (or payable by you pursuant to a settlement agreement) in connection with a Claim to
the extent such direct damages and costs are not reimbursed to you by insurance or a third party,
to an aggregate maximum equal to the purchase price of the Software. If the Software or its use
becomes the subject of a Claim or its use is enjoined, or if in the opinion of Altova’s legal
counsel the Software is likely to become the subject of a Claim, Altova shall attempt to resolve
the Claim by using commercially reasonable efforts to modify the Software or obtain a license to
continue using the Software. If in the opinion of Altova’s legal counsel the Claim, the injunction
or potential Claim cannot be resolved through reasonable modification or licensing, Altova, at its
own election, may terminate this Software License Agreement without penalty, and will refund
to you on a pro rata basis any fees paid in advance by you to Altova. THE FOREGOING
CONSTITUTES ALTOVA’S SOLE AND EXCLUSIVE LIABILITY FOR INTELLECTUAL
PROPERTY INFRINGEMENT. This indemnity does not apply to infringements that would not
be such, except for customer-supplied elements.

6. SUPPORT AND MAINTENANCE
Altova offers multiple optional “Support & Maintenance Package(s)” (“SMP”) for the version of
Software product edition that you have licensed, which you may elect to purchase in addition to
your Software license. The Support Period, hereinafter defined, covered by such SMP shall be
delineated at such time as you elect to purchase a SMP. Your rights with respect to support and
maintenance as well as your upgrade eligibility depend on your decision to purchase SMP and
the level of SMP that you have purchased:
(a) If you have not purchased SMP, you will receive the Software AS IS and will not
receive any maintenance releases or updates. However, Altova, at its option and in its sole
discretion on a case by case basis, may decide to offer maintenance releases to you as a courtesy,
but these maintenance releases will not include any new features in excess of the feature set at
the time of your purchase of the Software. In addition, Altova will provide free technical support
to you for thirty (30) days after the date of your purchase (the “Support Period” for the purposes
of this paragraph a), and Altova, in its sole discretion on a case by case basis, may also provide
free courtesy technical support during your thirty (30)-day evaluation period. Technical support
is provided via a Web-based support form only, and there is no guaranteed response time.
(b) If you have purchased SMP, then solely for the duration of its delineated Support
Period, you are eligible to receive the version of the Software edition that you have licensed
and all maintenance releases and updates for that edition that are released during your Support
Period. For the duration of your SMP’s Support Period, you will also be eligible to receive
upgrades to the comparable edition of the next version of the Software that succeeds the
Software edition that you have licensed for applicable upgrades released during your Support
Period. The specific upgrade edition that you are eligible to receive based on your Support
Period is further detailed in the SMP that you have purchased. Software that is introduced as
separate product is not included in SMP. Maintenance releases, updates and upgrades may or
may not include additional features. In addition, Altova will provide Priority Technical Support
to you for the duration of the Support Period. Priority Technical Support is provided via a
Web-based support form only, and Altova will make commercially reasonable efforts to respond
via e-mail to all requests within forty-eight (48) hours during Altova’s business hours (MO-FR,
8am UTC – 10pm UTC, Austrian and US holidays excluded) and to make reasonable efforts to

902 License Information Altova End User License Agreement

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

provide work-arounds to errors reported in the Software.

During the Support Period you may also report any Software problem or error to Altova. If
Altova determines that a reported reproducible material error in the Software exists and
significantly impairs the usability and utility of the Software, Altova agrees to use reasonable
commercial efforts to correct or provide a usable work-around solution in an upcoming
maintenance release or update, which is made available at certain times at Altova’s sole

discretion.
If Altova, in its discretion, requests written verification of an error or malfunction discovered by
you or requests supporting example files that exhibit the Software problem, you shall promptly
provide such verification or files, by email, telecopy, or overnight mail, setting forth in
reasonable detail the respects in which the Software fails to perform. You shall use reasonable
efforts to cooperate in diagnosis or study of errors. Altova may include error corrections in
maintenance releases, updates, or new major releases of the Software. Altova is not obligated to
fix errors that are immaterial. Immaterial errors are those that do not significantly impact use of
the Software. Whether or not you have purchased the Support & Maintenance Package,
technical support only covers issues or questions resulting directly out of the operation of the
Software and Altova will not provide you with generic consultation, assistance, or advice under
any circumstances.
Updating Software may require the updating of software not covered by this Software License
Agreement before installation. Updates of the operating system and application software not
specifically covered by this Software License Agreement are your responsibility and will not be
provided by Altova under this Software License Agreement. Altova’s obligations under this
Section 6 are contingent upon your proper use of the Software and your compliance with the
terms and conditions of this Software License Agreement at all times. Altova shall be under no
obligation to provide the above technical support if, in Altova’s opinion, the Software has failed
due to the following conditions: (i) damage caused by the relocation of the software to another
location or CPU; (ii) alterations, modifications or attempts to change the Software without
Altova’s written approval; (iii) causes external to the Software, such as natural disasters, the
failure or fluctuation of electrical power, or computer equipment failure; (iv) your failure to
maintain the Software at Altova’s specified release level; or (v) use of the Software with other
software without Altova’s prior written approval. It will be your sole responsibility to: (i)
comply with all Altova-specified operating and troubleshooting procedures and then notify
Altova immediately of Software malfunction and provide Altova with complete information
thereof; (ii) provide for the security of your confidential information; (iii) establish and maintain
backup systems and procedures necessary to reconstruct lost or altered files, data or programs.

7. SOFTWARE ACTIVATION, UPDATES AND LICENSE METERING
(a) License Metering. Altova has a built-in license metering module that helps you to
avoid any unintentional violation of this Software License Agreement. Altova may use your
internal network for license metering between installed versions of the Software.
(b) Software Activation. Altova’s Software may use your internal network and
Internet connection for the purpose of transmitting license-related data at the time of
installation, registration, use, or update to an Altova-operated license server and
validating the authenticity of the license-related data in order to protect Altova against
unlicensed or illegal use of the Software and to improve customer service. Activation is
based on the exchange of license related data between your computer and the Altova
license server. You agree that Altova may use these measures and you agree to follow any
applicable requirements.
(c) LiveUpdate. Altova provides a new LiveUpdate notification service to you, which is
free of charge. Altova may use your internal network and Internet connection for the purpose of
transmitting license-related data to an Altova-operated LiveUpdate server to validate your
license at appropriate intervals and determine if there is any update available for you.
(d) Use of Data. The terms and conditions of the Privacy Policy are set out in full at
http://www.altova.com/privacy and are incorporated by reference into this Software License
Agreement. By your acceptance of the terms of this Software License Agreement or use of the

http://www.altova.com/privacy

© 2007 Altova GmbH

Altova End User License Agreement 903License Information

Appendices

Software, you authorize the collection, use and disclosure of information collected by Altova for
the purposes provided for in this Software License Agreement and/or the Privacy Policy as
revised from time to time. European users understand and consent to the processing of personal
information in the United States for the purposes described herein. Altova has the right in its
sole discretion to amend this provision of the Software License Agreement and/or Privacy
Policy at any time. You are encouraged to review the terms of the Privacy Policy as posted on
the Altova Web site from time to time.

8. TERM AND TERMINATION
This Software License Agreement may be terminated (a) by your giving Altova written notice of
termination; or (b) by Altova, at its option, giving you written notice of termination if you
commit a breach of this Software License Agreement and fail to cure such breach within ten (10)
days after notice from Altova or (c) at the request of an authorized Altova reseller in the event
that you fail to make your license payment or other monies due and payable.. In addition the
Software License Agreement governing your use of a previous version that you have upgraded
or updated of the Software is terminated upon your acceptance of the terms and conditions of the
Software License Agreement accompanying such upgrade or update. Upon any termination of
the Software License Agreement, you must cease all use of the Software that it governs, destroy
all copies then in your possession or control and take such other actions as Altova may
reasonably request to ensure that no copies of the Software remain in your possession or control.
The terms and conditions set forth in Sections 1(g), (h), (i), 2, 5(b), (c), 9, 10 and 11 survive
termination as applicable.

9. RESTRICTED RIGHTS NOTICE AND EXPORT RESTRICTIONS
The Software was developed entirely at private expense and is commercial computer software
provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the U.S.
Government or a U.S. Government contractor or subcontractor is subject to the restrictions set
forth in this Agreement and as provided in FAR 12.211 and 12.212 (48 C.F.R. §12.211 and
12.212) or DFARS 227. 7202 (48 C.F.R. §227-7202) as applicable. Consistent with the above as
applicable, Commercial Computer Software and Commercial Computer Documentation licensed
to U.S. government end users only as commercial items and only with those rights as are granted
to all other end users under the terms and conditions set forth in this Software License
Agreement. Manufacturer is Altova GmbH, Rudolfsplatz, 13a/9, A-1010 Vienna, Austria/EU.
You may not use or otherwise export or re-export the Software or Documentation except as
authorized by United States law and the laws of the jurisdiction in which the Software was
obtained. In particular, but without limitation, the Software or Documentation may not be
exported or re-exported (i) into (or to a national or resident of) any U.S. embargoed country or
(ii) to anyone on the U.S. Treasury Department's list of Specially Designated Nationals or the
U.S. Department of Commerce's Table of Denial Orders. By using the Software, you represent
and warrant that you are not located in, under control of, or a national or resident of any such
country or on any such list.

10. THIRD PARTY SOFTWARE
The Software may contain third party software which requires notices and/or additional terms
and conditions. Such required third party software notices and/or additional terms and
conditions are located Our Website at http://www.altova.com/legal_3rdparty.html and are made
a part of and incorporated by reference into this Agreement. By accepting this Agreement, you
are also accepting the additional terms and conditions, if any, set forth therein.

11. GENERAL PROVISIONS
If you are located in the European Union and are using the Software in the European Union and
not in the United States, then this Software License Agreement will be governed by and
construed in accordance with the laws of the Republic of Austria (excluding its conflict of laws
principles and the U.N. Convention on Contracts for the International Sale of Goods) and you

904 License Information Altova End User License Agreement

© 2007 Altova GmbHAltova XMLSpy 2007 Professional Edition

expressly agree that exclusive jurisdiction for any claim or dispute with Altova or relating in any
way to your use of the Software resides in the Handelsgericht, Wien (Commercial Court,
Vienna)� and you further agree and expressly consent to the exercise of personal jurisdiction in
the Handelsgericht, Wien (Commercial Court, Vienna) in connection with any such dispute or
claim.
If you are located in the United States or are using the Software in the United States then this
Software License Agreement will be governed by and construed in accordance with the laws of
the Commonwealth of Massachusetts, USA (excluding its conflict of laws principles and the
U.N. Convention on Contracts for the International Sale of Goods) and you expressly agree that
exclusive jurisdiction for any claim or dispute with Altova or relating in any way to your use of
the Software resides in the federal or state courts of Massachusetts and you further agree and
expressly consent to the exercise of personal jurisdiction in the federal or state courts of
Massachusetts in connection with any such dispute or claim.
 If you are located outside of the European Union or the United States and are not using the
Software in the United States, then this Software License Agreement will be governed by and
construed in accordance with the laws of the Republic of Austria (excluding its conflict of laws
principles and the U.N. Convention on Contracts for the International Sale of Goods) and you
expressly agree that exclusive jurisdiction for any claim or dispute with Altova or relating in any
way to your use of the Software resides in the Handelsgericht, Wien (Commercial Court,
Vienna)� and you further agree and expressly consent to the exercise of personal jurisdiction in
the Handelsgericht Wien (Commercial Court, Vienna) in connection with any such dispute or
claim. This Software License Agreement will not be governed by the conflict of law rules of any
jurisdiction or the United Nations Convention on Contracts for the International Sale of Goods,
the application of which is expressly excluded.
This Software License Agreement contains the entire agreement and understanding of the parties
with respect to the subject matter hereof, and supersedes all prior written and oral
understandings of the parties with respect to the subject matter hereof. Any notice or other
communication given under this Software License Agreement shall be in writing and shall have
been properly given by either of us to the other if sent by certified or registered mail, return
receipt requested, or by overnight courier to the address shown on Altova’s Web site for Altova
and the address shown in Altova’s records for you, or such other address as the parties may
designate by notice given in the manner set forth above. This Software License Agreement will
bind and inure to the benefit of the parties and our respective heirs, personal and legal
representatives, affiliates, successors and permitted assigns. The failure of either of us at any
time to require performance of any provision hereof shall in no manner affect such party’s right
at a later time to enforce the same or any other term of this Software License Agreement. This
Software License Agreement may be amended only by a document in writing signed by both of
us. In the event of a breach or threatened breach of this Software License Agreement by either
party, the other shall have all applicable equitable as well as legal remedies. Each party is duly
authorized and empowered to enter into and perform this Software License Agreement. If, for
any reason, any provision of this Software License Agreement is held invalid or otherwise
unenforceable, such invalidity or unenforceability shall not affect the remainder of this Software
License Agreement, and this Software License Agreement shall continue in full force and effect
to the fullest extent allowed by law. The parties knowingly and expressly consent to the
foregoing terms and conditions.

Last updated: 2006-09-05

© 2007 Altova GmbH

Index 905

Index

.

.NET,

and SOAP Debugger, 202

and XSLT Debugger, 199

differences to XMLSPY standalone, 196

integration of XMLSPY with, 195

A
Activate project scripts, 434

Activating the software, 472

ActiveX controls,

support, 514

Add,

project to source control, 276

to source control, 276

Add Child command,

in Grid View, 298

Add schema,

Oracle XML Db, 397

ADO,

conversion of datatypes in XML Schema generation from
DB, 874

ADO Connections, 361

Altova,

product family, 8

Altova Engines,

in Altova products, 888

Altova XML Parser,

about, 887

Altova XSLT 1.0 Engine,

limitations and implementation-specific behavior, 856

Altova XSLT 2.0 Engine,

general information about, 858

information about, 858

API,

accessing, 833

documentation, 528

JAVA, 773

JAVA Classpath, 773

overview, 529

Append,

row (Document Editor), 355

Append command,

in Grid View, 294

Application,

ActiveDocument, 553

AddMacroMenuItem, 554

Application, 554

ClearMacroMenu, 554

CurrentProject, 554

Dialogs, 555

Documents, 555

GetDatabaseImportElementList, 555

GetDatabaseSettings, 556

GetDatabaseTables, 556

GetExportSettings, 557

GetTextImportElementList, 557

GetTextImportExportSettings, 558

ImportFromDatabase, 558

ImportFromSchema, 559

ImportFromText, 560

ImportFromWord, 561

NewProject, 561

OnBeforeOpenDocument, 551

OnBeforeOpenProject, 552

OnDocumentOpened, 552

OnProjectOpened, 553

OpenProject, 561

Parent, 562

Quit, 562

ReloadSettings, 562

RunMacro, 563

ScriptingEnvironment, 563

ShowApplication, 563

ShowForm, 564

URLDelete, 564

URLMakeDirectory, 565

WarningNumber, 565

WarningText, 565

Application-level,

integration of XMLSpy, 808

Apply, 454

Assign,

script to project, 434

shortcut to a command, 443

Assigning,

scripting projects, 480

Index

© 2007 Altova GmbH

906

Assigning StyleVision Power Stylesheet to XML file,
353

ATL,

plug-in sample files, 518

atomization of nodes,

in XPath 2.0 and XQuery 1.0 evaluation, 864

ATTLIST declaration,

add as child in Grid View, 301

appending in Grid View, 298

convert to in Grid View, 303

inserting in Grid View, 294

Attribute,

add as child in Grid View, 299

appending in Grid View, 295

convert to in Grid View, 302

in schema definitions, 43

inserting in Grid View, 291

toggle in Content model view, 43

Attribute preview, 459

Attribute values,

entering in Authentic View, 87

AttributeFormDefault,

settings in Schema Design View, 323

Attributes,

defining for a schema component in Schema View, 132

Attributes entry helper,

in Authentic View, 171

Authentic menu, 351

dynamic table editing, 167

markup display, 167

Authentic View,

adding nodes, 82

applying elements, 82

Attributes entry helper, 171

CDATA sections in, 85

changing view to, 167

clearing elements, 82

context menu, 80

context menus, 171, 175

data entry devices in, 85

displaying markup tags, 80

document display, 169

editing DB data in, 352

editing dynamic tables, 167

Elements entry helper, 171

entering attribute values, 87

entering data in, 85

Entities entry helper, 171

entities in, 85

entry helpers, 80

entry helpers in, 166, 171

formatting text in, 167

inserting entities in, 87

inserting nodes, 82

interface, 164

main window in, 166, 169

markup display in, 167, 169

menu bar in, 166

opening an XML document in, 79

opening new XML file in, 351

overview of GUI, 166

printing an XML document from, 88

project window in, 166

removing nodes, 82

special characters in, 85

SPS Tables, 177

status bar in, 166

switching to, 422

tables (SPS and XML), 177

tables in, 82

toolbar icons, 167

toolbar in, 166

tutorial, 78

usage of important features, 177

usage of XML tables, 178

XML table icons, 181

XML tables, 178

XPath to selected node, 166

Authentic View template, 79

AuthenticDataTransfer,

dropEffect, 566

getData, 567

ownDrag, 567

type, 567

AuthenticRange,

AppendRow, 569

Application, 569

CanPerformAction, 570

CanPerformActionWith, 570

Close, 571

CollapsToBegin, 571

CollapsToEnd, 571

Copy, 571

Cut, 572

Delete, 572

DeleteRow, 572

© 2007 Altova GmbH

Index 907

AuthenticRange,

DuplicateRow, 573

ExpandTo, 573

FirstTextPosition, 573

FirstXMLData, 574

FirstXMLDataOffset, 575

GetElementAttributeNames, 576

GetElementAttributeValue, 576

GetElementHierarchy, 577

GetEntityNames, 577

Goto, 577

GotoNext, 578

GotoNextCursorPosition, 578

GotoPrevious, 579

GotoPreviousCursorPosition, 579

HasElementAttribute, 580

InsertEntity, 580

InsertRow, 581

IsCopyEnabled, 581

IsCutEnabled, 581

IsDeleteEnabled, 582

IsEmpty, 582

IsEqual, 582

IsFirstRow, 582

IsInDynamicTable, 583

IsLastRow, 583

IsPasteEnabled, 583

IsTextStateApplied, 583

LastTextPosition, 584

LastXMLData, 584

LastXMLDataOffset, 585

MoveBegin, 586

MoveEnd, 586

MoveRowDown, 587

MoveRowUp, 587

Parent, 587

Paste, 588

PerformAction, 588

Select, 589

SelectNext, 589

SelectPrevious, 590

SetElementAttributeValue, 590

SetFromRange, 591

Text, 592

AuthenticView, 605

Application, 601

AsXMLString, 601

DocumentBegin, 601

DocumentEnd, 601

Event, 602

Goto, 602

IsRedoEnabled, 603

IsUndoEnabled, 603

MarkupVisibility, 603

OnBeforeCopy, 593

OnBeforeCut, 594

OnBeforeDelete, 594

OnBeforeDrop, 595

OnBeforePaste, 596

OnDragOver, 596

OnKeyboardEvent, 597

OnMouseEvent, 599

OnSelectionChanged, 600

Parent, 603

Print, 604

Redo, 604

Selection, 604

Undo, 605

WholeDocument, 606

XMLDataRoot, 606

Auto-complete,

text view enable/disable, 458

Auto-completion,

in Text View, 101

Auto-completion in SQL scripts, 373

Automatic validation, 456

B
Background Information, 885

backwards compatibility,

of XSLT 2.0 Engine, 858

Big-endian, 464

Bookmark, 471

Bookmarks,

in Text View, 91

inserting and removing, 266

navigation, 266

removing all, 266

Bookmarks in SQL scripts, 373

Bookmarks Margin,

in Text View, 424

Breakpoint,

dialog box, 349

Index

© 2007 Altova GmbH

908

Breakpoints,

using in XSLT/XQuery Debugger, 234

Breakpoints dialog, 221

Browse,

Oracle XML Db, 399

Browser, 459

View, 422

Browser menu, 426

Browser pane,

in Database Query window, 369

Browser View, 426

back, 426

description of, 194

font size, 426

forward, 426

refresh content, 426

separate window, 426

stop loading page, 426

C
C#,

integration of XMLSpy, 812, 813, 814, 815

Call Stack Window,

in XSLT/XQuery Debugger, 230

Carriage return key,

see Enter key, 193

Cascade,

Window, 468

Catalog,

Oasis XML, 308

CDATA,

add as child in Grid View, 299

appending in Grid View, 296

convert to in Grid View, 302

inserting in Grid View, 292

Changing view,

to Authentic View, 167

Chapters, 471

Character,

position, 423

character entities,

in HTML output of XSLT transformation, 856

character normalization,

in XQuery document, 861

Character-Set,

encoding, 464

Check,

spelling checker, 427

Check In, 274

Check Out, 274

Class,

JAVA, 773

Class ID,

in XMLSpy integration, 808

ClassPath statement, 773

Code page, 460

CodeGeneratorDlg,

Application, 607

CPPSettings_DOMType, 607

CPPSettings_LibraryType, 608

CPPSettings_UseMFC, 608

CSharpSettings_ProjectType, 609

OutputPath, 609

OutputPathDialogAction, 609

OutputResultDialogAction, 610

Parent, 610

ProgrammingLanguage, 610

PropertySheetDialogAction, 610

TemplateFileName, 611

Collapse,

expand child nodes (Text view), 424

unselected, 423

Collapsing elements,

in Text View, 91

collations,

in XPath 2.0, 864

in XQuery document, 861

Color, 460, 461

tab, 462

table, 462

COM-API,

documentation, 528

Command,

add to toolbar/menu, 441

context menu, 448

delete from menu, 448

reset menu, 448

Commands,

listing in key map, 472

Comment,

add as child in Grid View, 300

appending in Grid View, 296

convert to in Grid View, 302

© 2007 Altova GmbH

Index 909

Comment,

inserting in Grid View, 292

Comments in SQL scripts, 373

Compare source files, 279

Comparing directories, 436

Comparing files, 434

options, 438

Complex type,

extending definition, 33

in schema definitions, 33

Component definition,

reusing, 33

Component Navigator,

description of, 127

Components,

listing in GUI, 127

Compositor,

for sequences, 23

in Schema View, 135

Configure,

XMLSPY UI, 515

Configure view,

dialog for Content Model View, 327

Connecting to data source, 357, 358, 361, 365

Connecting to SchemaAgent Server, 150, 336

Connection Wizard, 358

Content Model,

creating a basic model, 23

save diagram, 325

toggle attributes, 43

Content Model View, 20

broad description of, 127

configuring, 327

detailed description of, 135

Content models,

of schema components, 135

Context menu,

commands, 448

for customization, 452

Context menus,

in Authentic View, 171, 175

Context Window,

in XSLT/XQuery Debugger, 229

Convert,

database data to XML, 403

database schema to XML Schema, 407

MS Word data to XML, 407

Oracle XML Db, 395

schema to DB structure, 412

text file to XML, 401

Convert menu, 401

Convert To command,

in Grid View, 301

Copy,

as XML text, 256

XML as structured text, 257

Copy command, 256

Copy XPath, 259

Copyright information, 474, 892

count() function,

in XPath 1.0, 856

count() function in XPath 2.0,

see fn:count(), 864

CR&LF, 454

Create,

DB based on schema, 412

XML file in Eclipse, 207

CSS,

auto-completion, 114

document outline, 114

properties, 114

syntax coloring, 114

CSV file,

import as XML, 401

Custom dictionary, 427

CustomCatalog, 308

Customize,

context menu, 448

Customize context menu, 452

macros, 450

menu, 448

toolbar/menu commands, 441

Cut command, 256

CVS, 269

D
Data,

exporting to and importing from external applications, 122

Database,

ADO connections, 361

connecting to, 357

Connection Wizard, 358

create DB based on schema, 412

Index

© 2007 Altova GmbH

910

Database,

editing records of, 376

Existing connections, 360

export of XML data to, 418

import data as XML, 403

import structure as XML Schema, 407

ODBC connections, 365

Oracle XML Db, 395

Database Query,

Browser pane in DB Query window, 369

Connecting to DB for query, 368

creating the query, 375

Editing results, 376

Messages pane, 376

Results of, 376

Database Query window, 367

Database/Table View,

how to use, 66

in Enhanced Grid View, 122

DatabaseConnection,

ADOConnection, 612

AsAttributes, 612

CreateMissingTables, 613

CreateNew, 613

DatabaseKind, 613

ExcludeKeys, 613

File, 614

IncludeEmptyElements, 614

NumberDateTimeFormat, 614

ODBCConnection, 615

SQLSelect, 615

TextFieldLen, 615

Databases,

editing in Authentic View, 352

see also DB, 183

Datatypes,

conversion of DB to XML Schema, 868

for DBs generated from XML Schemas, 876

in XPath 2.0 and XQuery 1.0, 864

see also XML Schema datatypes, 869

Date Picker,

using in Authentic View, 190

Dates,

changing manually, 190

DB,

creating queries, 184

datatype conversion for XML Schema, 868

datatypes from XML Schema, 876

editing in Authentic View, 183, 188

filtering display in Authentic View, 184

navigating tables in Authentic View, 184

parameters in DB queries, 184

queries in Authentic View, 183

DB XML,

assigning XML Schemas to, for IBM DB2, 379

db2-fn:sqlquery, 110

db2-fn:xmlcolumn, 110

DBUri,

query database using, 395

Debugger,

breakpoints/tracepoints dialog box, 349

debug windows, 350

enable/disable breakpoint, 349

enable/disable tracepoint, 349

end session, 347

insert/remove breakpoint, 348

insert/remove tracepoint, 349

restart XSLT Debugger, 347

settings, 350

show curr. exec. nodes, 348

start XSLT Debugger, 347

step into, 348

step out, 348

step over, 348

stop XSLT Debugger, 347

XSLTin Eclipse, 213

Debugger windows,

arrangement, 232

deep-equal() function in XPath 2.0,

see fn:deep-equal(), 864

Default,

encoding, 464

menu, 448

Default editor, 456

default functions namespace,

for XPath 2.0 and XQueyr 1.0 expressions, 864

in XSLT 2.0 stylesheets, 858

Default view,

setting in Main Window, 456

Delete,

Application.URLDelete, 564

command from context menu, 448

command from Edit Menu, 256

command from toolbar, 441

icon from toolbar, 441

row (Document Editor), 356

© 2007 Altova GmbH

Index 911

Delete,

shortcut, 443

toolbar, 442

Deriving a type, 144

Details Entry Helper, 23

Dialogs,

Application, 616

CodeGeneratorDlg, 616

DTDSchemaGeneratorDlg, 617

FileSelectionDlg, 616

GenerateSampleXMLDlg, 617

Parent, 617

SchemaDocumentationDlg, 617

Dictionary,

adding custom, 427

modifying existing, 427

spelling checker, 427

directories,

comparing two, 436

creating with Application.URLMakeDirectory, 565

Disable,

breakpoint - XSLT debugger, 349

tracepoint - XSLT debugger, 349

Disable source control, 273

Disconnect XMLSpy from SchemaAgent, 337

Discussion forums,

for XML problems, 8

Display all globals, 331

Display diagram, 332

Display Settings, 462

Distribution,

of Altova's software products, 892, 893, 895

DocEditEvent (obsolete),

altKey (obsolete), 717

altLeft (obsolete), 718

button (obsolete), 719

cancelBubble (obsolete), 720

clientX (obsolete), 721

clientY (obsolete), 722

ctrlKey (obsolete), 723

ctrlLeft (obsolete), 724

dataTransfer (obsolete), 725

fromElement (obsolete), 726

keyCode (obsolete), 726

propertyName (obsolete), 727

repeat (obsolete), 727

returnValue (obsolete), 727

shiftKey (obsolete), 728

shiftLeft (obsolete), 729

srcElement (obsolete), 730

type (obsolete), 731

DocEditView (obsolete),

ApplyTextState (obsolete), 737

CurrentSelection (obsolete), 738

EditClear (obsolete), 738

EditCopy (obsolete), 739

EditCut (obsolete), 739

EditPaste (obsolete), 740

EditRedo (obsolete), 740

EditSelectAll (obsolete), 741

EditUndo (obsolete), 741

event (obsolete), 742

GetAllowedElements (obsolete), 742

GetNextVisible (obsolete), 745

GetPreviousVisible (obsolete), 746

IsEditClearEnabled (obsolete), 747

IsEditCopyEnabled (obsolete), 747

IsEditCutEnabled (obsolete), 748

IsEditPasteEnabled (obsolete), 748

IsEditRedoEnabled (obsolete), 749

IsEditUndoEnabled (obsolete), 749

IsRowAppendEnabled (obsolete), 750

IsRowDeleteEnabled (obsolete), 750

IsRowDuplicateEnabled (obsolete), 751

IsRowInsertEnabled (obsolete), 751

IsRowMoveDOwnEnabled (obsolete), 752

IsRowMoveUpEnabled (obsolete), 752

IsTextStateApplied (obsolete), 753

IsTextStateEnabled (obsolete), 753

LoadXML (obsolete), 754

RowAppend (obsolete), 756

RowDelete (obsolete), 756

RowDuplicate (obsolete), 757

RowInsert (obsolete), 757

RowMoveDown (obsolete), 758

RowMoveUp (obsolete), 758

SaveXML (obsolete), 759

SelectionMoveTabOrder (obsolete), 760

SelectionSet (obsolete), 761

XMLRoot (obsolete), 762

Dockable window, 468

DOCTYPE declaration,

add as child in Grid View, 300

appending in Grid View, 296

convert to in Grid View, 303

inserting in Grid View, 292

Index

© 2007 Altova GmbH

912

Document,

add instance to Oracle XML Db, 400

Application, 623

AssignDTD, 623

AssignSchema, 623

AssignXSL, 623

AssignXSLFO, 624

AuthenticView, 624

browse Oracle XML Db, 399

Close, 625

ConvertDTDOrSchema, 625

CreateChild, 626

CreateSchemaDiagram, 626

CurrentViewMode, 627

DataRoot, 627

DocEditView, 627

Encoding, 627

EndChanges, 628

ExecuteXQuery, 628

ExportToDatabase, 628

ExportToText, 629

FullName, 630

GenerateDTDOrSchema, 630, 631

GenerateProgramCode, 631

GenerateSampleXML, 632

GenerateSchemaDocumentation, 632

GetExportElementList, 633

GetPathName, 633

GridView, 633

IsModified, 634

IsValid, 634

IsWellFormed, 635

Name, 636

OnBeforeCloseDocument, 621

OnBeforeSaveDocument, 620

OnBeforeValidate, 621

OnCloseDocument, 622

OnViewActivation, 622

Path, 636

RootElement, 636

Save, 637

SaveAs, 637

Saved, 637

SaveInString, 637

SaveToURL, 638

SetActiveDocument, 638

SetEncoding, 639

SetExternalIsValid, 640

SetPathName, 640

Spelling checker, 427

StartChanges, 640

SwitchViewMode, 641

Title, 641

TransformXSL, 642

TransformXSLFO, 642

UpdateViews, 642

UpdateXMLData, 642

XQuery, 628

Documentation,

for Altova products, 8

for schema, 48

of XML Schema files, 325

Document-level,

examples of integration of XMLSpy, 812

integration of XMLSpy, 811, 812

Documents,

Count, 643

Item, 644

NewFile, 644

NewFileFromText, 644

OpenFile, 645

OpenURL, 645

OpenURLDialog, 646

Download source control project, 270

Draw menu,

in Scripting Environment, 510

DTD,

assigning to XML document, 313

Attlist declaration in, 294, 298, 301, 303

converting to UML, 319

converting to XML Schema, 316

Element declaration in, 293, 297, 301, 303

Entity declaration in, 294, 298, 301, 303

generate outline XML file from, 320

generating from XML document, 315

go to definition in from XML document, 314

go to from XML document, 314

including entities, 314

menu commands related to, 313

Notation declaration in, 294, 298, 301, 303

reference from XML to external DTD, 293

DTD/Schema menu, 313

DTDs, 454, 456

DTDSchemaGeneratorDlg,

Application, 647

AttributeTypeDefinition, 647

© 2007 Altova GmbH

Index 913

DTDSchemaGeneratorDlg,

DTDSchemaFormat, 647

FrequentElements, 647

GlobalAttributes, 647

MaxEnumLength, 648

MergeAllEqualNamed, 648

OnlyStringEnums, 648

OutputPath, 648

OutputPathDialogAction, 649

Parent, 649

ResolveEntities, 649

TypeDetection, 649

ValueList, 649

Duplicate,

row (Document Editor), 356

Dynamic (SPS) tables in Authentic View,

usage of, 177

Dynamic tables,

editing, 167

E
Eclipse,

and XMLSpy, 204

and XSLT Debugger, 213

create XML file, 207

differences to XMLSpy, 212

importing files, 209

starting and defining a project, 205

Edit,

macro button, 452

Edit menu, 255

in Scripting Environment, 505

Edited with XMLSPY, 454

Editing database records, 376

Editing documents,

in Grid View, 120

Element,

add as child in Grid View, 299

appending in Grid View, 295

convert to in Grid View, 302

inserting in Grid View, 291

making optional, 30

restricting content, 30

ELEMENT declaration,

add as child in Grid View, 301

appending in Grid View, 297

convert to in Grid View, 303

ELEMENT declaration in DTD,

inserting in Grid View, 293

element type,

specifying in XML document, 54

ElementFormDefault,

settings in Schema Design View, 323

ElementList,

Count, 650

Item, 650

RemoveElement, 650

ElementListItem,

ElementKind, 651

FieldCount, 651

Name, 651

RecordCount, 651

Elements entry helper,

in Authentic View, 171

E-mail,

sending files with, 251

Empty elements, 456

Enable breakpoint - XSLT debugger, 349

Enable source control, 273

Enable tracepoint - XSLT debugger, 349

Enclose in Element command, 306

encoding,

default, 464

in XQuery document, 861

of files, 249

End,

debugger session, 347

End User License Agreement, 892, 896

Engine information, 855

Enhanced Grid View, 421

description, 117

see Grid View, 56

Enter key,

effects of using, 193

Entities,

defining in Authentic View, 191

inserting in Authentic View, 87

Entities entry helper,

in Authentic View, 171

ENTITY declaration,

add as child in Grid View, 301

appending in Grid View, 298

convert to in Grid View, 303

Index

© 2007 Altova GmbH

914

ENTITY declaration,

inserting in Grid View, 294

Entry Helper, 18

Details, 23

in Grid View, 64

Entry helpers, 15

for XQuery, 105

Grid View, 117

in Schema View, 127

in Text View, 92

toggling display on and off, 469

updating, 311

Entry-Helper, 469

Enumeration,

defining for attributes, 43

Enumerations,

in XMLSpyControl, 850

SPYAttributeTypeDefinition, 764

SPYAuthenticActions, 764

SPYAuthenticDocumentPosition, 764

SpyAuthenticElementActions, 764

SPYAuthenticElementKind, 765

SPYAuthenticMarkupVisibility, 765

SPYDatabaseKind, 765

SPYDialogAction, 765

SPYDOMType, 766

SPYDTDSchemaFormat, 766

SPYEncodingByteOrder, 766

SPYExportNamespace, 766

SPYFrequentElements, 766

SPYKeyEvent, 767

SPYLibType, 767

SPYLoading, 767

SPYMouseEvent, 767

SPYNumberDateTimeFormat, 768

SPYProgrammingLanguage, 768

SPYProjectItemTypes, 768

SPYProjectType, 769

SPYSampleXMLGenerationOptimization, 769

SPYSampleXMLGenerationSchemaOrDTDAssignment,
769

SPYSchemaDefKind, 769

SPYSchemaDocumentationFormat, 770

SPYTextDelimiters, 770

SPYTextEnclosing, 770

SPYTypeDetection, 770

SPYURLTapes, 771

SPYViewModes, 771

SPYVirtualKeyMask, 771

SPYXMLDataKind, 772

Evaluation key,

for your Altova software, 472

Evaluation period,

of Altova's software products, 892, 893, 895

Event, 551, 552, 553, 593, 594, 595, 596, 597, 599, 600,
620, 621, 622, 670, 671, 672

Event Handlers,

in Scripting Environment, 493

invoking, 481

Events, 533

Example files,

tutorial, 18

Exit application, 254

Expand,

collapse child nodes (Text view), 424

fully, 423

Expanding elements,

in Text View, 91

Explorer, 456

Exporting XML data to database, 418

Exporting XML data to text files, 415

ExportSettings,

CreateKeys, 652

ElementList, 652

EntitiesToText, 653

ExportAllElements, 653

FromAttributes, 653

FromSingleSubElements, 653

FromTextValues, 653

IndependentPrimaryKey, 654

Namespace, 654

SubLevelLimit, 654

Extended validation, 157

in SchemaAgent, 338

external functions,

in XQuery document, 861

External ID declaration,

add as child in Grid View, 300

appending in Grid View, 297

convert to in Grid View, 303

inserting in Grid View, 293

External parsed entites, 456

External XSL processor, 465

© 2007 Altova GmbH

Index 915

F
FAQs,

at Altova website, 8

Favorites, 471

Fetch file,

source control, 273

File,

closing, 249

closing all, 249

creating new, 243

default encoding, 464

encoding, 249

importing into Eclipse, 209

opening, 246

opening from URL, 247

opening options, 454

printing options, 252

save all, 251

saving, 249

saving as, 250

saving to URL, 250

sending by e-mail, 251

tab, 454

File extensions,

for XQuery files, 104

File menu, 243

in Scripting Environment, 505

File path,

inserting, 259

File types, 456

Files,

comparing two, 434

comparison options, 438

most recently used, 254

FileSelectionDlg,

Application, 655

DialogAction, 655

FullName, 655

Parent, 656

Find,

and replace text in document, 263

text in document, 260

Find in Files command, 264

Find in Files output window, 95

Find Next command, 262

fn:base-uri in XPath 2.0,

support in Altova Engines, 865

fn:collection in XPath 2.0,

support in Altova Engines, 865

fn:count() in XPath 2.0,

and whitespace, 864

fn:current-date in XPath 2.0,

support in Altova Engines, 865

fn:current-dateTime in XPath 2.0,

support in Altova Engines, 865

fn:current-time in XPath 2.0,

support in Altova Engines, 865

fn:data in XPath 2.0,

support in Altova Engines, 865

fn:deep-equal() in XPath 2.0,

and whitespace, 864

fn:id in XPath 2.0,

support in Altova Engines, 865

fn:idref in XPath 2.0,

support in Altova Engines, 865

fn:index-of in XPath 2.0,

support in Altova Engines, 865

fn:in-scope-prefixes in XPath 2.0,

support in Altova Engines, 865

fn:last() in XPath 2.0,

and whitespace, 864

fn:lower-case in XPath 2.0,

support in Altova Engines, 865

fn:normalize-unicode in XPath 2.0,

support in Altova Engines, 865

fn:position() in XPath 2.0,

and whitespace, 864

fn:resolve-uri in XPath 2.0,

support in Altova Engines, 865

fn:static-base-uri in XPath 2.0,

support in Altova Engines, 865

fn:upper-case in XPath 2.0,

support in Altova Engines, 865

Folder,

importing files into Eclipse, 209

Font,

schema, 460

Schema Documentation, 460

Font size,

in Browser View, 426

Form Editor,

description of, 488

Index

© 2007 Altova GmbH

916

Form Objects,

in Scripting Environment, 487

Forms,

creating in Scripting Environment, 495

designing with Form Editor, 488

in scripting projects, 480

running in application, 481

Forums,

for discussion of XML problems, 8

Full-text,

search, 471

functions,

see under XSLT 2.0 functions, 860

XPath 2.0 and XQuery 1.0, 864

G
Generate,

DB structure based on schema, 412

Generate Sample XML, 764, 769

GenerateSampleXMLDlg,

Application, 666

FillWithSampleData, 668

NonMandatoryAttributes, 667

NonMandatoryElements, 667

Parent, 667

RepeatCount, 667

TakeFirstChoice, 667

Get latest version, 273

Global,

settings, 454

Global components,

creating in Schema Overview, 132

listing in GUI, 127

Global element,

using in XML Schema, 41

Go to File, 424

Go to line/char, 423

Grammar, 456

Graphics formats,

in Authentic View, 192

Gray bar, 422

Grid fonts, 460

Grid view, 421, 422

and Table View, 66

appending elements and attributes, 64

Database/Table View, 122

data-entry in, 56

description, 117

editing, 306

editing in, 120

Entry Helpers, 117

switching to Table View, 304

using Entry Helpers, 64

GridView,

CurrentFocus, 672

Deselect, 672

IsVisible, 673

OnBeforeDrag, 670

OnBeforeDrop, 670

OnBeforeStartEditing, 671

OnEditingFinished, 671

OnFocusChanged, 672

Select, 673

SetFocus, 673

GUI,

overview, 12

H
Help,

contents, 471

index, 471

key map, 472

search, 471

Help menu, 471

Help system, 471

Hide, 468, 469

markup, 355

Hide markup, 167, 169

Hotkey, 443

HTML,

integration of XMLSpy, 815, 816, 817, 819

HTML example,

of XMLSpyControl integration, 808, 809, 810

I
IBM DB2,

assigning XML Schemas to XML file, 379

© 2007 Altova GmbH

Index 917

IBM DB2,

schema management and assignment, 378

Icon,

add to toolbar/menu, 441

show large, 452

Identity constraint,

toggle in Content model view, 43

Identity constraints,

defining for a schema component in Schema View, 132

Image formats,

in Authentic View, 192

implementation-specific behavior,

of XSLT 2.0 functions, 860

implicit timezone,

and XPath 2.0 functions, 864

Import,

database data as XML, 403

database data based on XML Schema, 411

database structure as XML Schema, 407

MS Word document as XML, 407

text file as XML, 401

Indentation,

in Text View, 91, 259

Index,

help, 471

Info,

window, 18

Info Window, 14, 468, 469

in XSLT/XQuery Debugger, 231

Information Windows,

arranging, 232

Insert,

breakpoint - XSLT debugger, 348

row (Document Editor), 356

tracepoint - XSLT debugger, 349

Insert command,

in Grid View, 290

Insert file path, 259

Integrating,

XMLSpy in applications, 807

Intelligent Editing, 458

in Text View, 101

Internet, 473, 474

Internet usage,

in Altova products, 891

J
JAVA,

API, 773

ClassPath, 773

K
Key map, 472

Keyboard shortcut, 443

Key-codes,

for your Altova software, 472

L
Large markup,

show, 355

last() function,

in XPath 1.0, 856

last() function in XPath 2.0,

see fn:last(), 864

Layers,

in design of Forms with Form Editor, 488

Layout menu,

in Scripting Environment, 507

Layout of Forms,

in Form Editor, 488

Legal information, 892

library modules,

in XQuery document, 861

License, 896

information about, 892

License metering,

in Altova products, 894

Licenses,

for your Altova software, 472

Line,

go to, 423

Line length,

word wrap in text view, 423

Line-breaks, 454

Line-numbering,

Index

© 2007 Altova GmbH

918

Line-numbering,

in Text View, 91

List schema,

Oracle XML Db, 396

Little-endian, 464

loading, 645

Local project, 270

M
Macro,

add to menu/toolbar, 450

edit button, 452

Macros,

creating in Scripting Environment, 500

how to call, 502

running in application, 481

Main Window, 14, 18

in Scripting Environment, 486

MainCatalog, 308

MapForce, 320

Markup,

hide, 355

in Authentic View, 167, 169

show large, 355

show mixed, 355

show small, 355

Maximum cell width, 459

Memory,

storage of schema information, 322

Memory requirements, 886

Menu,

add macro to, 450

add/delete command, 441

Authentic, 351

Convert, 401

customize, 448

Default/XMLSPY, 448

delete commands from, 448

DTD/Schema, 313

Edit, 255

File, 243

Help, 471

Project, 267

Schema Design, 323

Tools, 427

View, 421

Window, 468

XML, 290

XSL/XQuery, 339

Menu Bar, 15

Menu Browser, 426

Messages Window,

in XSLT/XQuery Debugger, 231

MIME, 456

Mixed markup,

show, 355

Modules,

in Scripting Environment, 486

in scripting projects, 480

Mostly recently used files,

list of, 254

Move down,

row (Document Editor), 356

Move Left command, 306

Move Right command, 306

Move up,

row (Document Editor), 356

MS Access,

conversion of datatypes in XML Schema generation from
DB, 869

datatypes from XML Schema, 877

MS SQL Server,

conversion of datatypes in XML Schema generation from
DB, 870

datatypes from XML Schema, 879

schema extensions, 333

schema settings, 334, 335

MS Visual Source Safe, 269

MSXML, 465

Multi-user, 454

MySQL,

conversion of datatypes in XML Schema generation from
DB, 871

datatypes from XML Schema, 881

N
Named schema relationships,

MS SQL Server schema settings, 334

Namespace,

in schemas, 22

Namespace Prefix,

© 2007 Altova GmbH

Index 919

Namespace Prefix,

inserting in Grid View, 312

namespaces,

in XQuery document, 861

in XSLT 2.0 stylesheet, 858

settings in Schema Design View, 323

Navigation,

shortcuts in schema design, 46

New file,

creating, 243

New XML document,

creating, 52

Node,

show curr. exec. node, 348

Non-XML files, 456

NOTATION declaration,

add as child in Grid View, 301

appending in Grid View, 298

convert to in Grid View, 303

inserting in Grid View, 294

O
OASIS,

XML catalog, 308

Object Locator,

in Database Query window, 369

Occurrences,

number of, 23

ODBC,

conversion of datatypes in XML Schema generation from
DB, 873

ODBC Connections, 365

Online Help,

for Altova products, 8

Open,

file, 246

Open Project,

source control, 270

Opening file,

from URL, 247

Opening options,

file, 454

Optimal Widths, 423, 459

Optional element,

making, 30

Oracle,

conversion of datatypes in XML Schema generation from
DB, 872

datatypes from XML Schema, 883

schema extensions, 332

schema settings, 333

Oracle XML Db, 395

add schema, 397

Adding document instances, 400

Browse database, 399

DBUri statements, 395

list schema, 396

open schema, 396

properties, 399

search database, 395

Ordering Altova software, 472

OS,

for Altova products, 886

Output formatting, 454

Output windows, 16, 94

toggling display on and off, 469

Overview, 18

of XMLSpy API, 529

P
Parameters,

in DB queries, 184

passing to stylesheet via interface, 342

Parent, 636

Parser,

built into Altova products, 887

XSLT, 465

Paste command, 256

Perspective,

XMLSpy in Eclipse, 215

Platforms,

for Altova products, 886

Plug-in,

ATL sample files, 518

registration, 513

User interface configuration, 515

XMLSPY, 512

Position,

Character, 423

Line, 423

Index

© 2007 Altova GmbH

920

position() function,

in XPath 1.0, 856

position() function in XPath 2.0,

see fn:position(), 864

Presentation, 459

Pretty-print,

in Text View, 259

Print preview, 253

Print setup, 253

Printing,

from Authentic View, 88

Printing options, 252

PRJ files,

for Scripting Environment, 480

Processing Instruction,

add as child in Grid View, 300

appending in Grid View, 296

convert to in Grid View, 303

inserting in Grid View, 292

Program settings, 454

Programmers' Reference, 476

Programming points,

in Scripting Environment, 504

Project,

add to source control, 276

assign script to, 434

defining in Eclipse, 205

properties, 287

remove from source control, 277

scripting, 434

scripts active, 434

unassign scripts from, 434

window, 18

Project management in XMLSpy, 75

Project menu, 267

in Scripting Environment, 506

Project open,

source control, 270

Project Window, 13, 468, 469

in Scripting Environment, 484

toggling display on and off, 469

Projects,

adding active files to, 282

adding external folders to, 282

adding external Web folders to, 285

adding files to, 281

adding folders to, 282

adding related files to, 282

adding URL to, 281

closing, 269

creating new, 268

most recently used, 289

opening, 268

overview, 267

reloading, 268

saving, 269

Projects in XMLSpy,

benefits of, 75

how to create, 76

Properties,

Oracle XML Db, 399

source control, 280

Property Sheet,

in Form Editor, 488

Provider,

select, 270

source control, 269

PUBLIC,

identifier - catalog, 308

PVCS Version Manager, 269

Q
QName serialization,

when returned by XPath 2.0 functions, 865

Queries,

for DB display in Authentic View, 184

Query,

Oracle XML Db, 395

see under Database Query window, 367

see under Query Database, 367

see under XQuery, 367

Query Database command, 367

Query pane,

in Database Query window, 373

R
Redo command, 256

Refresh status,

source control, 281

Regions in SQL scripts, 373

© 2007 Altova GmbH

Index 921

Register,

plug-in, 513

schema - Oracle XML Db, 397

Registering your Altova software, 472

Registry,

settings, 454

Regular expressions, 264

in search string, 260

Reject source edits, 275

Release notes,

XMLSpy API, 477

Reload, 454

Reloading,

changed files, 248

Remove,

breakpoint - XSLT debugger, 348

from source control, 277

tracepoint - XSLT debugger, 349

Repeated elements, 458

Replace, 95

text, 260

text in document, 263

text in multiple files, 264

Repositories, 269

Reset,

menu commands, 448

shortcut, 443

toolbar & menu commands, 442

Restart,

XSLT debugger, 347

Return key,

see Enter key, 193

RichEdit 3.0, 461

Right-to-left writing systems, 890

Row,

append (Document Editor), 355

delete (Document Editor), 356

duplicate (Document Editor), 356

insert (Document Editor), 356

move down (Document Editor), 356

move up, 356

Row in Grid View,

appending, 305

inserting, 305

Run native interface, 281

S
save, 638

Saving files,

encoding of, 249

schema, 559

also see XML Schema, 19, 313

assigning to DB XML, 379

converting to UML, 319

create DB based on schema, 412

Design view, 421

documentation, 48

Documentation font, 460

management and assignment in IBM DB2 databases, 378

open schema from database, 396

register in Oracle XML Db, 397

settings, 454

Schema Design menu, 323

Schema Design View,

description of, 127

Display all globals, 331

Display diagram, 332

zoom feature, 331

Schema fonts, 460

Schema Overview, 20

broad description of, 127

detailed description of, 132

schema validation of XML document,

for XQuery, 861

Schema View,

configuring the view, 28

Entry Helpers in, 127

Schema/WSDL Design View,

description of, 126

SchemaAgent,

connect to server from XMLSpy, 336

disconnect from server, 337

display schemas in, 337

extended validation, 338

opening schemas from XMLSpy, 157

working with, 152, 153, 157

SchemaAgent in XMLSpy, 149

SchemaAgent Server,

connecting to, 150

schema-awareness,

Index

© 2007 Altova GmbH

922

schema-awareness,

of XPath 2.0 and XQuery Engines, 864

SchemaDocumentationDlg,

AllDetails, 674

Application, 674

IncludeAll, 675

IncludeAttributeGroups, 676

IncludeComplexTypes, 676

IncludeGlobalElements, 676

IncludeGroups, 677

IncludeIndex, 677

IncludeLocalElements, 677

IncludeRedefines, 678

IncludeSimpleTypes, 678

OptionsDialogAction, 679

OutputFile, 679

OutputFileDialogAction, 679

OutputFormat, 680

Parent, 680

ShowAnnotations, 680

ShowAttributes, 681

ShowChildren, 681

ShowConstraints, 682

ShowDiagram, 681

ShowEnumerations, 681

ShowNamespace, 682

ShowPatterns, 682

ShowProgressBar, 683

ShowProperties, 683

ShowResult, 683

ShowSingleFacets, 683

ShowSourceCode, 684

ShowType, 684

ShowUsedBy, 684

Schemas,

creating in Schema View, 126, 127

in memory, 322

Script editing,

in Form Editor, 488

Script language, 466

Scripting, 466

Assign script to project, 434

project, 434

Project scripts active, 434

Show macros, 433

Swtich to scripting environment, 433

Unassign scripts from Project, 434

Scripting Environment,

documentation, 479

Form Editor, 488

Form Objects, 487

how to use, 493

launching, 484

Main Window, 486

programming points, 504

Project Window, 484

settings, 483

Scripting Environment. GUI description, 484

Scripting projects, 480

Search,

help, 471

query Oracle XML Db, 395

see Find, 263

Select All command, 259

Sequence compositor,

using, 23

Settings, 454

scripting, 466

XSLT Debugger, 350

Settings for file comparison, 438

Shortcut, 443

assigning/deleting, 443

show in tooltip, 452

Show, 468, 469

Show curr. exec. nodes,

XSLT debugger, 348

Show differences, 279

Show history, 278

Show large markup, 167, 169

Show macros,

scripting, 433

Show mixed markup, 167, 169

Show small arkup, 167, 169

Side-by-side, 459

Simple type,

in schema definitions, 33

Size, 461

Small markup,

show, 355

Smart Restrictions, 144

SOAP Debugger,

in Visual Studio .NET, 202

Software product license, 896

Source control, 269

add to source control, 276

Check In, 274

© 2007 Altova GmbH

Index 923

Source control, 269

Check Out, 274

enable, 273

get latest version, 273

open project, 270

properties, 280

refresh status, 281

remove from, 277

run native interface, 281

show differences, 279

show history, 278

Undo Check out, 275

Source-folding,

in Text View, 91

Spelling checker, 427

custom dictionary, 427

Spelling options, 429

Splash screen, 459

SPP file locations, 267

SPS,

assigning to new XML file, 243

SPS file,

assigning to XML file, 353

SPS tables,

editing dynamic tables, 167

SPS tables in Authentic View,

usage of, 177

SpyProject,

CloseProject, 685

ProjectFile, 685

RootItems, 685

SaveProject, 686

SaveProjectAs, 686

SpyProjectItem,

ChildItems, 686

FileExtensions, 687

ItemType, 687

Name, 687

Open, 687

ParentItem, 687

Path, 688

ValidateWith, 688

XMLForXSLTransformation, 688

XSLForXMLTransformation, 688

XSLTransformationFileExtension, 688

XSLTransformationFolder, 688

SpyProjectItems,

AddFile, 689

AddFolder, 689

AddURL, 689

Count, 690

Item, 690

RemoveItem, 690

SQL Editor,

creating query in, 375

description of, 373

in Database Query window, 373

Start,

Eclipse, 205

XSLT debugger, 347

Start group,

add (context menu), 452

StarTeam, 269

Static (SPS) tables in Authentic View,

usage of, 177

Step into,

XSLT debugger, 348

Step out,

XSLT debugger, 348

Step over,

XSLT debugger, 348

Stop,

XSLT debugger, 347

Structured text, 458

Studio,

XMLSPY integration in Visual Studio .NET, 195

Style, 460, 461

Stylesheet PI, 346

StyleVision, 320

for editing StyleVision Power Stylesheet, 353

StyleVision Power Stylesheet,

assigning to XML file, 353

editing in StyleVision, 353

Support,

for Altova products, 8

Support Center, 473

Switch,

to scripting environment, 433

Sybase,

conversion of datatypes in XML Schema generation from
DB, 875

Syntax coloring,

for XQuery, 106

Syntax-coloring, 456, 459

Index

© 2007 Altova GmbH

924

T
Tab characters, 454

Tab sequence,

in Forms, 488

Table,

build automatically, 456

colors, 462

Table command,

in Grid View, 304

Table of contents, 471

Table View, 458

and switching to Grid View, 304

append row, 305

how to use, 66

in Enhanced Grid View, 122

insert row, 305

sorting columns, 305

Tables,

editing dynamic (SPS) tables, 167

exporting to and importing from external applications, 122

in Authentic View, 82

Tables in Authentic View,

icons for editing XML tables, 181

usage of, 177

using SPS (static and dynamic) tables, 177

using XML tables, 178

Tamino,

schema extensions, 335

schema settings, 336

Tamino in XMLSPY,

description of, 380

Technical Information, 885

Technical Support, 473

for Altova products, 8

Template files,

for new documents, 243

Template folder, 18

Template XML File,

in Authentic View, 79

Templates,

of XML documents in Authentic View, 351

Templates Window,

in XSLT/XQuery Debugger, 231

terminate, 562

Text,

add as child in Grid View, 299

appending in Grid View, 295

convert to in Grid View, 302

expand/collapse nodes, 424

find and replace, 263

finding in document, 260

font, 461

inserting in Grid View, 291

pretty-printing, 259

Text file,

export of XML data to, 415

import as XML, 401

Text view, 421

auto-complete enable/disable, 458

Bookmarks Margin, 424

description of, 90

editing in, 56

entry helpers in, 92

intelligent editing in, 101

schema fonts, 460

TextImportExportSettings,

DestinationFolder, 691

EnclosingCharacter, 691

Encoding, 691

EncodingByteOrder, 692

FieldDelimiter, 692

FileExtension, 692

HeaderRow, 692

ImportFile, 692

Tile,

horizontally, 468

vertically, 468

Toggle, 468, 469

Toolbar, 15

activate/deactivate, 442

add command to, 441

add macro to, 450

create new, 442

reset toolbar & menu commands, 442

show large icons, 452

Tools menu, 427

Tooltip,

show, 452

show shortcuts in, 452

Topic,

view on TOC, 471

Trace window, 237

© 2007 Altova GmbH

Index 925

Trace window, 237

in XSLT/XQuery Debugger, 232

Tracepoint,

dialog box, 349

Tracepoints,

using in XSLT/XQuery Debugger, 237

Transformation,

see XSLT transformation, 341

Troubleshooting,

online help and support, 8

Turn off automatic validation, 456

Tutorial,

example files, 18

goals, 18

type,

extension in XML document, 54

U
UCS-2, 464

UML,

converting schemas to, 319

Unassign,

scripts from project, 434

Undo Check out, 275

Undo command, 101, 255

Unicode,

support in Altova products, 889

Unicode support,

in Altova products, 889, 890

Unnamed element relationships,

MS SQL Server schema settings, 335

Unselected, 423

Update Entry Helpers command, 311

URL, 564, 565, 638, 645, 646

opening file from, 247

saving file to, 250

sending by e-mail, 251

User interface,

configure using plug-in, 515

overview, 12

User Manual, 3, 6

User manuals,

for Altova products, 8

User Reference, 242

UTF-16, 464

V
Validate,

output window of, 94

Validating,

XML documents, 60

Validation, 308

assigning DTD to XML document, 313

assigning XML Schema to XML document, 313

of related schemas using SchemaAgent, 157

Validator,

in Altova products, 887

Variables Window,

in XSLT/XQuery Debugger, 229

Version changes,

XMLSpy API, 477

Version Number, 474

View,

Browser view, 422

Collapse, 422, 423

Enhance Grid view, 421

Expand, 422, 423

Go to File, 424

Go to line/char, 423

Optimal widths, 423

Schema Design view, 421

Text view, 421

XMLSpy in Eclipse, 215

View menu, 421

in Scripting Environment, 505

Visual Studio .Net,

and SOAP Debugger, 202

and XMLSPY, 195

and XMLSPY differences, 196

and XSLT Debugger, 199

W
Watch for changes, 454

Web Server, 473, 474

Well-formedness check, 307

for XML document, 60

whitespace handling,

Index

© 2007 Altova GmbH

926

whitespace handling,

and XPath 2.0 functions, 864

whitespace in XML document,

handling by Altova XSLT 2.0 Engine, 858

whitespace nodes in XML document,

and handling by XSLT 1.0 Engine, 856

Window,

Cascade, 468

Entry-Helper, 469

Info, 468, 469

Open, 469

Project, 468, 469

Tile horizontally, 468

Tile vertically, 468

Window menu, 468

in Scripting Environment, 511

Windows,

overview, 18

support for Altova products, 886

Word document,

import as XML, 407

Word wrap,

enable/disable, 423

Workbench,

Eclipse, 205

Working directory,

source control, 270

Wrap,

word wrap enable/disable, 423

WSDL Design View,

description of, 160

Details entry helper, 161

entry helpers, 161

file viewing in, 160

functionality, 160

importing into WSDL document, 161

Overview entry helper, 161

X
XML,

add doc. instance to database, 400

copying as structured text, 257

create in Eclipse, 207

importing into Eclipse, 209

Oasis catalog, 308

spelling checker, 427

XML data,

exporting to database, 418

exporting to text file, 415

XML Diff,

comparing directories, 436

comparing files, 434, 438

XML document,

assigning to XSLT stylesheet, 346

browse Oracle XML Db, 399

creating new, 52

editing in Text View, 56

opening in Authentic View, 79

XML document creation,

tutorial, 51

XML documents,

checking validity of, 60

XML file,

generate from DTD or XML Schema, 320

XML Import,

based on schema, 411

XML menu, 290

XML Parser,

about, 887

XML prolog,

add as child in Grid View, 300

appending in Grid View, 296

convert to in Grid View, 303

inserting in Grid View, 292

XML Schema,

adding components, 23

adding elements with, 27

also see Schema, 313

assigning to DB XML, 379

assigning to XML document, 313

configuring Content Model View, 327

configuring the view, 28

content model diagram, 325

converting to DTD, 316

creating a basic schema, 19

creating a new file, 20

defining namespaces in, 22

generate outline XML file from, 320

generating documentation of, 325

generating from XML document, 315

go to definition in from XML document, 314

go to from XML document, 314

management and assignment in IBM DB2 databases, 378

© 2007 Altova GmbH

Index 927

XML Schema,

menu commands related to, 313

modifying while editing XML document, 70

MS SQL Server extensions, 333

MS SQL Server schema settings, 334, 335

namespaces settings in Schema Design View, 323

navigation in design view, 46

Oracle extensions, 332

Oracle schema settings, 333

settings in Schema Design View, 323

Tamino extensions, 335

Tamino schema settings, 336

tutorial, 19

XML Schema datatypes,

converted to MS Access datatypes, 877

converted to MS SQL Server datatypes, 879

converted to MySQL datatypes, 881

converted to Oracle datatypes, 883

in generation of XML Schema from ADO DB, 874

in generation of XML Schema from MS Access DB, 869

in generation of XML Schema from MS SQL Server DB,
870

in generation of XML Schema from MySQL DB, 871

in generation of XML Schema from ODBC DB, 873

in generation of XML Schema from Oracle DB, 872

in generation of XML Schema from Sybase DB, 875

XML schema definitions,

advanced, 33

XML tables in Authentic View,

icons for editing, 181

usage of, 178

XML text,

copying, 256

XML-Conformance, 456

XMLData,

AppendChild, 708

EraseAllChildren, 709

EraseCurrentChild, 710

GetChild, 710

GetChildKind, 711

GetCurrentChild, 711

GetFirstChild, 711

GetNextChild, 712

HasChildren, 713

HasChildrenKind, 713

InsertChild, 714

IsSameNode, 714

Kind, 714

MayHaveChildren, 714

Name, 715

Parent, 715

TextValue, 715

XMLSpy, 242, 474

and Eclipse, 204

and Eclipse XSLT debugger, 213

differences to Eclipse, 212

Eclipse views and perspectives, 215

general introduction to, 7

integration, 807

plug-in registration, 513

XMLSpy API,

accessing, 833

documentation, 528

overview, 529

release notes, 477

XMLSpy integration,

example of, 808, 809, 810

XMLSPY plug-in, 512

XMLSpy Professional Edition,

User Manual, 3

XMLSpyCommand,

in XMLSpyControl, 834

XMLSpyCommands,

in XMLSpyControl, 835

XMLSpyControl,

documentation of, 807

example of integration at application level, 808, 809, 810

examples of integration at document level, 812

in XMLSpyControl, 836

integration at application level, 808

integration at document level, 811, 812

integration using C#, 812, 813, 814, 815

integration using HTML, 815, 816, 817, 819

object reference, 834

XMLSpyControlDocument,

in XMLSpyControl, 842

XMLSpyControlPlaceHolder,

in XMLSpyControl, 848

XMLSpyDocumentEditor,

MarkUpView, 754

XMLSpyLib, 528

Application, 550

AuthenticDataTransfer, 566

AuthenticRange, 567

AuthenticSelection (obsolete), 732

AuthenticView, 592

Index

© 2007 Altova GmbH

928

XMLSpyLib, 528

CodeGeneratorDlg, 606

DatabaseConnection, 611

Dialogs, 615

DocEditEvent (obsolete), 716

DocEditView (obsolete), 735

Document, 618

Documents, 643

DTDSchemaGeneratorDlg, 646

ElementList, 650

ElementListItem, 651

ExportSettings, 652

FileSelectionDlg, 654

GenerateSampleXMLDlg, 666

GridView, 670

ProjectItem, 686

SchemaDocumentationDlg, 673

SpyProject, 685

SpyProjectItems, 689

TextImportExportSettings, 690

XMLData, 707

XML-Text, 458

XPath,

copying, 259

XPath 1.0,

in XPath Evaluator, 307

XPath 2.0,

in XPath Evaluator, 307

XPath 2.0 functions,

general information about, 864

implementation information, 864

see under fn: for specific functions, 864

XPath Evaluator,

usage, 307

XPath expression evaluation, 97

XPath functions support,

see under fn: for individual functions, 865

XPaths,

setting for tracepoints, 237

XPath-Watch Window,

in XSLT/XQuery Debugger, 230

XQuery,

DB support, 110

document validation, 109

editing in Text View, 104

engine information, 855

entry helpers, 105

execution, 109

for querying XML databases, 110

functions for IBM DB2, 110

intelligent editing features, 108

opening file, 104

passing variables to the XQuery document, 342

syntax coloring, 106

XQuery 1.0 Engine,

information about, 861

XQuery 1.0 functions,

general information about, 864

implementation information, 864

see under fn: for specific functions, 864

XQuery Debugger,

see XSLT/XQuery Debugger, 217

XQuery Execution, 345

XQuery files,

setting file extensions in XMLSpy, 104

XQuery processor,

in Altova products, 888

xs:QName,

also see QName, 865

xsi:type,

usage, 54

XSL,

see XSLT, 347

XSL transformation,

see XSLT, 72

XSL/XQuery menu, 339

xsl:preserve-space, 856

xsl:strip-space, 856

XSLT, 423

engine information, 855

modifying in XMLSpy, 74

processor, 465

XSLT 1.0 Engine,

limitations and implementation-specific behavior, 856

XSLT 2.0 Engine,

general information about, 858

information about, 858

XSLT 2.0 functions,

implementation-specific behavior of, 860

see under fn: for specific functions, 860

XSLT 2.0 stylesheet,

namespace declarations in, 858

XSLT Debugger,

breakpoints/tracepoints dialog box, 349

debug windows, 350

enable/disable breakpoint, 349

© 2007 Altova GmbH

Index 929

XSLT Debugger,

enable/disable tracepoint, 349

end debugger session, 347

in Visual Studio .NET, 199

insert/remove breakpoint, 348

insert/remove tracepoint, 349

restart debugger, 347

settings, 350

show curr. exec. nodes, 348

start debugger, 347

step into, 348

step out, 348

step over, 348

stop debugger, 347

XSLT parameters,

passing to stylesheet via interface, 342

XSLT processors,

in Altova products, 888

XSLT stylesheet,

assigning to XML document, 346

assigning XML document to, 346

opening, 347

XSLT stylesheet for FO,

assigning to XML document, 346

XSLT transformation, 340

assigning XSLT file, 73

in XMLSpy, 73

to FO, 341

to PDF, 341

tutorial, 72

XSLT/XQuery Debugger,

breakpoints usage, 234

Call Stack Window, 230

Context window, 229

description of interface, 219

description of mechanism, 219

features and usage, 217

Info Window, 231

information windows, 228

Messages Window, 231

settings, 224

starting a session, 226

Templates Window, 231

toolbar icons, 221

Trace Window, 232

tracepoints usage, 237

Variables Window, 229

XPath-Watch Window, 230

XSLT/XQuery debugging,

files used, 217

Z
Zoom,

in Text View, 101

Zoom feature,

in Schema Design View, 331

	Welcome to XMLSpy Professional Edition
	User Manual
	Introduction
	Altova's XML Products
	XMLSpy's Main Features
	User Interface
	Project Window
	Info Window
	Main Window
	Entry Helpers
	Menu Bar and Toolbar
	Output Windows

	Tutorials
	XMLSpy Tutorial
	The XMLSpy interface
	Creating a basic XML Schema
	Creating a new XML Schema file
	Defining namespaces
	Defining a content model
	Adding elements with drag-and-drop
	Configuring the Content Model View
	Completing the basic schema

	Advanced XML Schema definitions
	Working with Complex Types and Simple Types
	Referencing global elements
	Attributes and attribute enumerations

	Schema navigation and documentation
	Schema navigation
	Schema documentation

	Creating an XML document
	Creating a new XML file
	Specifying the type of an element
	Entering data in Grid View
	Entering data in Text View
	Validating the document
	Appending elements and attributes in Grid View
	Editing in Database/Table View
	Modifying the schema

	Using XSLT to transform XML
	Assigning an XSL file
	Transforming the XML file
	Modifying the XSL file

	Project management
	Benefits of projects
	Building a project

	That's it !

	Authentic View Tutorial
	Opening an XML Document in Authentic View
	The Authentic View Interface
	Node Operations
	Entering Data in Authentic View
	Entering Attribute Values
	Adding Entities
	Printing the Document

	Text View
	Visual Editing Guides in Text View
	Entry Helpers in Text View
	Output Windows
	Validation
	Find in Files
	XPath Evaluation

	Editing XML Documents
	Editing XQuery Documents
	Opening an XQuery Document
	XQuery Entry Helpers
	XQuery Syntax Coloring
	XQuery Intelligent Editing
	Validation and Execution of XQuery Documents
	XQuery And XML Databases

	Editing CSS Documents

	Enhanced Grid View
	Editing in Grid View
	Database/Table View

	Schema/WSDL Design View
	Schema Design View
	Schema Overview
	Content Model View
	Smart Restrictions
	Working with SchemaAgent
	Connecting to SchemaAgent Server
	Opening Schemas Found in the Search Path
	Using Schema Constructs
	Viewing Schemas in SchemaAgent
	Extended Validation

	WSDL Design View
	Entry Helpers

	Authentic View
	Interface
	Overview of the GUI
	Authentic View Toolbar Icons
	Authentic View Main Window
	Authentic View Entry Helpers
	Authentic View Context Menus

	Editing in Authentic View
	Tables in Authentic View
	SPS Tables
	XML Tables
	XML Table Editing Icons

	Editing a DB
	Navigating a DB Table
	DB Queries
	Modifying a DB Table

	Working with Dates
	Date Picker
	Text Entry

	Defining Entities
	Images in Authentic View
	Keystrokes in Authentic View

	Browser View
	XMLSpy in MS Visual Studio .NET
	How the .NET and Standalone Versions Differ
	Visual Studio .NET and XSLT Debugger
	Visual Studio .NET and SOAP Debugger

	XMLSpy in Eclipse Platform
	Starting Eclipse and using the XMLSpy Plug-in
	Creating XML files in Eclipse
	Importing XML files into folders
	Differences between Eclipse and standalone versions
	Eclipse Platform and XSLT Debugger
	Eclipse views and perspectives

	XSLT and XQuery Debugger
	Mechanism and Interface
	Commands and Toolbar Icons
	Settings
	Starting a Debugging Session
	Information Windows
	Context Window
	Variables Window
	XPath-Watch Window
	Call Stack Window
	Messages Window
	Templates Window
	Info Window
	Trace Window
	Arranging the Information Windows

	Breakpoints
	Tracepoints

	User Reference
	File Menu
	New...
	Open...
	Open URL...
	Reload
	Encoding
	Close
	Close All
	Save
	Save As...
	Save to URL...
	Save All
	Send by Mail...
	Print...
	Print Preview
	Print Setup...
	Most Recently Used Files
	Exit

	Edit Menu
	Undo
	Redo
	Cut
	Copy
	Paste
	Delete
	Copy as XML-Text
	Copy as Structured Text
	Insert File Path
	Copy XPath
	Pretty-Print XML Text
	Select All
	Find...
	Find Next
	Replace
	Find in Files
	Insert/Remove Bookmark
	Remove All Bookmarks
	Goto Next Bookmark
	Goto Previous Bookmark

	Project Menu
	New Project
	Open Project
	Reload Project
	Close Project
	Save Project
	Source control
	Open Project
	Enable Source Code Control
	Get Latest Version
	Check Out
	Check In
	Undo Check Out...
	Add to Source Control
	Remove from Source Control
	Show History
	Show Differences
	Properties
	Refresh Status
	Run Native Interface

	Add Files to Project
	Add URL to Project
	Add Active File to Project
	Add Active And Related Files to Project
	Add Project Folder to Project
	Add External Folder to Project
	Add External Web Folder to Project
	Project Properties
	Most Recently Used Projects

	XML Menu
	Insert
	Insert Attribute
	Insert Element
	Insert Text
	Insert CDATA
	Insert Comment
	Insert XML
	Insert Processing Instruction
	Insert DOCTYPE
	Insert ExternalID
	Insert ELEMENT
	Insert ATTLIST
	Insert ENTITY
	Insert NOTATION

	Append
	Append Attribute
	Append Element
	Append Text
	Append CDATA
	Append Comment
	Append XML
	Append Processing Instruction
	Append DOCTYPE
	Append ExternalID
	Append ELEMENT
	Append ATTLIST
	Append ENTITY
	Append NOTATION

	Add Child
	Add Child Attribute
	Add Child Element
	Add Child Text
	Add Child CDATA
	Add Child Comment
	Add Child XML
	Add Child Processing Instruction
	Add Child DOCTYPE
	Add Child ExternalID
	Add Child ELEMENT
	Add Child ATTLIST
	Add Child ENTITY
	Add Child NOTATION

	Convert To
	Convert To Attribute
	Convert To Element
	Convert To Text
	Convert To CDATA
	Convert To Comment
	Convert To XML
	Convert To Processing Instruction
	Convert To DOCTYPE
	Convert To ExternalID
	Convert To ELEMENT
	Convert To ATTLIST
	Convert To ENTITY
	Convert To NOTATION

	Table
	Display as Table
	Insert Row
	Append Row
	Ascending Sort
	Descending Sort

	Move Left
	Move Right
	Enclose in Element
	Evaluate XPath
	Check Well-Formedness
	Validate
	Update Entry-Helpers
	Namespace Prefix.

	DTD/Schema Menu
	Assign DTD
	Assign Schema
	Include another DTD
	Go to DTD
	Go to Schema
	Go to Definition
	Generate DTD/Schema
	Convert DTD/Schema
	Convert to UML
	Map to other DTD/Schema or DB in MapForce...
	Design HTML/PDF Output in StyleVision...
	Generate Sample XML File
	Flush Memory Cache

	Schema Design Menu
	Schema Settings
	Save Diagram
	Generate Documentation
	Configure View
	Zoom
	Display All Globals
	Display Diagram
	Enable Oracle Schema Extensions
	Oracle Schema Settings
	Enable Microsoft SQL Server Schema Extensions
	Named Schema Relationships
	Unnamed Element Relationships
	Enable Tamino Schema Extensions
	Tamino Schema Properties
	Connect to SchemaAgent Server
	Disconnect from SchemaAgent Server
	Show in SchemaAgent
	Extended Validation

	XSL/XQuery Menu
	XSL Transformation
	XSL:FO Transformation
	XSL Parameters/XQuery Variables
	XQuery Execution
	Assign XSL
	Assign XSL:FO
	Assign Sample XML file
	Go to XSL
	Start Debugger/Go
	Stop Debugger
	Restart Debugger
	End Debugger Session
	Step Into
	Step Out
	Step Over
	Show Current Execution Node
	Insert/Remove Breakpoint
	Insert/Remove Tracepoint
	Enable/Disable Breakpoint
	Enable/Disable Tracepoint
	Breakpoints/Tracepoints
	Debug Windows
	XSLT/XQuery Settings

	Authentic Menu
	New Document
	Edit Database Data
	Assign a StyleVision Stylesheet
	Edit StyleVision Stylesheet
	Define XML Entities
	Hide Markup
	Show Small Markup
	Show Large Markup
	Show Mixed Markup
	Append Row
	Insert Row
	Duplicate Row
	Move Row Up
	Move Row Down
	Delete Row

	DB Menu
	Connecting to a Data Source
	Connection Wizard
	Existing Connections
	ADO Connections
	ODBC Connections

	Query Database
	Data Sources
	Browser Pane: Viewing the DB Objects
	Query Pane: Description and Features
	Query Pane: Working with Queries
	Results and Messages

	IBM DB2
	Assign XML Schema

	Tamino
	Installing Tamino
	Installing WebDAV
	Tamino Schema Extensions
	Creating, Saving, and Listing Tamino Schemas
	Adding Legacy Schemas to Tamino
	Tamino Schema Definition Limitations

	Editing Tamino Schemas
	Creating XML Files Based on Tamino Schemas
	Querying and Retrieving Tamino Data

	Oracle XML DB
	Search...
	List schemas
	Add Schema
	Browse Oracle XML documents
	Properties
	Adding XML document instances

	Convert Menu
	Import Text File
	Import Database Data
	Import Microsoft Word Document
	Create XML Schema from DB Structure
	DB Import Based on XML Schema
	Create DB Structure from XML Schema
	Export to Text Files
	Export to a Database

	View Menu
	Text View
	Enhanced Grid View
	Schema/WSDL Design View
	Authentic View
	Browser View
	Expand
	Collapse
	Expand Fully
	Collapse Unselected
	Optimal Widths
	Word Wrap
	Go to Line/Char
	Go to File
	Line Numbers Margin
	Bookmarks Margin
	Source Folding Margin
	Indentation Guides

	Browser Menu
	Back
	Forward
	Stop
	Refresh
	Fonts
	Separate Window

	Tools Menu
	Spelling
	Spelling Options
	Switch to Scripting Environment
	Show Macros
	Project
	Assign Script to Project
	Unassign Scripts from Project
	Project Scripts Active

	Comparisons
	Compare Open File With
	Compare Directories
	Compare Options

	Customize
	Commands
	Toolbars
	Keyboard
	Menu
	Macros
	Plug-Ins
	Options
	Customize Context Menu

	Options
	File
	File Types
	Editing
	View
	Grid Fonts
	Schema Fonts
	Text Fonts
	Colors
	Encoding
	XSL
	Scripting

	Window Menu
	Cascade
	Tile Horizontally
	Tile Vertically
	Project Window
	Info Window
	Entry Helpers
	Output Windows
	Project and Entry Helpers
	All On/Off
	Currently Open Window List

	Help Menu
	Table of Contents
	Index
	Search
	Keyboard Map
	Activation, Order Form, Registration, Updates
	Support Center, FAQ, Downloads
	On the Internet
	About

	Programmers' Reference
	Release Notes
	Scripting
	Overview
	Scripting projects
	Running Forms, Event Handlers, and Macros
	Scripting Options

	The Scripting Environment GUI
	Project Window
	Main Window
	Form Object Bar
	The Form Editor

	Using the Scripting Environment
	Creating an Event Handler
	Creating a Form
	Writing a Macro
	Calling macros
	Programming points to note

	Menus
	File
	Edit
	View
	Project
	Layout
	Draw
	Window

	XMLSpy Plugins
	Registration of IDE PlugIns
	ActiveX Controls
	Configuration XML
	ATL sample files
	Interface description (IDL)
	Class definition
	Implementation

	IXMLSpyPlugIn
	OnCommand
	OnUpdateCommand
	OnEvent
	GetUIModifications
	GetDescription

	The XMLSpy API
	Overview
	Object model
	Simple document access
	Error handling
	Events
	Import and export of data
	Using XMLData to modify document structure
	The DOM and XMLData
	Obsolete Authentic View Row operations
	Obsolete Authentic View Editing operations

	Usage Examples
	JScript: Bubble Sort Dynamic Tables
	VBScript: Using object-level events

	Interfaces
	Application
	Events
	OnBeforeOpenDocument
	OnBeforeOpenProject
	OnDocumentOpened
	OnProjectOpened

	ActiveDocument
	AddMacroMenuItem
	Application
	ClearMacroMenu
	CurrentProject
	Dialogs
	Documents
	FindInFiles
	GetDatabaseImportElementList
	GetDatabaseSettings
	GetDatabaseTables
	GetExportSettings
	GetTextImportElementList
	GetTextImportExportSettings
	ImportFromDatabase
	ImportFromSchema
	ImportFromText
	ImportFromWord
	NewProject
	OpenProject
	Parent
	Quit
	ReloadSettings
	RunMacro
	ScriptingEnvironment
	ShowApplication
	ShowFindInFiles
	ShowForm
	URLDelete
	URLMakeDirectory
	Visible
	WarningNumber
	WarningText

	AuthenticDataTransfer
	dropEffect
	getData
	ownDrag
	type

	AuthenticRange
	AppendRow
	Application
	CanPerformAction
	CanPerformActionWith
	Clone
	CollapsToBegin
	CollapsToEnd
	Copy
	Cut
	Delete
	DeleteRow
	DuplicateRow
	ExpandTo
	FirstTextPosition
	FirstXMLData
	FirstXMLDataOffset
	GetElementAttributeNames
	GetElementAttributeValue
	GetElementHierarchy
	GetEntityNames
	Goto
	GotoNext
	GotoNextCursorPosition
	GotoPrevious
	GotoPreviousCursorPosition
	HasElementAttribute
	InsertEntity
	InsertRow
	IsCopyEnabled
	IsCutEnabled
	IsDeleteEnabled
	IsEmpty
	IsEqual
	IsFirstRow
	IsInDynamicTable
	IsLastRow
	IsPasteEnabled
	IsTextStateApplied
	LastTextPosition
	LastXMLData
	LastXMLDataOffset
	MoveBegin
	MoveEnd
	MoveRowDown
	MoveRowUp
	Parent
	Paste
	PerformAction
	Select
	SelectNext
	SelectPrevious
	SetElementAttributeValue
	SetFromRange
	Text

	AuthenticView
	Events
	OnBeforeCopy
	OnBeforeCut
	OnBeforeDelete
	OnBeforeDrop
	OnBeforePaste
	OnDragOver
	OnKeyboardEvent
	OnMouseEvent
	OnSelectionChanged

	Application
	AsXMLString
	DocumentBegin
	DocumentEnd
	Event
	Goto
	IsRedoEnabled
	IsUndoEnabled
	MarkupVisibility
	Parent
	Print
	Redo
	Selection
	Undo
	UpdateXMLInstanceEntities
	WholeDocument
	XMLDataRoot

	CodeGeneratorDlg
	Application
	CompatibilityMode
	CPPSettings_DOMType
	CPPSettings_GenerateVC6ProjectFile
	CPPSettings_GenerateVSProjectFile
	CPPSettings_LibraryType
	CPPSettings_UseMFC
	CSharpSettings_ProjectType
	OutputPath
	OutputPathDialogAction
	OutputResultDialogAction
	Parent
	ProgrammingLanguage
	PropertySheetDialogAction
	TemplateFileName

	DatabaseConnection
	ADOConnection
	AsAttributes
	CommentIncluded
	CreateMissingTables
	CreateNew
	DatabaseKind
	ExcludeKeys
	File
	IncludeEmptyElements
	NullReplacement
	NumberDateTimeFormat
	ODBCConnection
	SQLSelect
	TextFieldLen

	Dialogs
	Application
	CodeGeneratorDlg
	FileSelectionDlg
	Parent
	SchemaDocumentationDlg
	GenerateSampleXMLDlg
	DTDSchemaGeneratorDlg
	FindInFilesDlg
	WSDLDocumentationDlg

	Document
	Events
	OnBeforeSaveDocument
	OnBeforeCloseDocument
	OnBeforeValidate
	OnCloseDocument
	OnViewActivation

	Application
	AssignDTD
	AssignSchema
	AssignXSL
	AssignXSLFO
	AuthenticView
	Close
	ConvertDTDOrSchema
	ConvertDTDOrSchemaEx
	CreateChild
	CreateSchemaDiagram
	CurrentViewMode
	DataRoot
	DocEditView
	Encoding
	EndChanges
	ExecuteXQuery
	ExportToDatabase
	ExportToText
	FullName
	GenerateDTDOrSchema
	GenerateDTDOrSchemaEx
	GenerateProgramCode
	GenerateSampleXML
	GenerateSchemaDocumentation
	GenerateWSDLDocumentation
	GetExportElementList
	GetPathName (obsolete)
	GridView
	IsModified
	IsValid
	IsWellFormed
	Name
	Parent
	Path
	RootElement
	Save
	SaveAs
	Saved
	SaveInString
	SaveToURL
	SetActiveDocument
	SetEncoding (obsolete)
	SetExternalIsValid
	SetPathName (obsolete)
	StartChanges
	Suggestions
	SwitchViewMode
	TextView
	Title
	TransformXSL
	TransformXSLFO
	UpdateViews
	UpdateXMLData

	Documents
	Count
	Item
	NewFile
	NewFileFromText
	OpenFile
	OpenURL
	OpenURLDialog

	DTDSchemaGeneratorDlg
	Application
	AttributeTypeDefinition
	DTDSchemaFormat
	FrequentElements
	GlobalAttributes
	MaxEnumLength
	MergeAllEqualNamed
	OnlyStringEnums
	OutputPath
	OutputPathDialogAction
	Parent
	ResolveEntities
	TypeDetection
	ValueList

	ElementList
	Count
	Item
	RemoveElement

	ElementListItem
	ElementKind
	FieldCount
	Name
	RecordCount

	ExportSettings
	CreateKeys
	ElementList
	EntitiesToText
	ExportAllElements
	ExportCompleteXML
	FromAttributes
	FromSingleSubElements
	FromTextValues
	IndependentPrimaryKey
	Namespace
	StartFromElement
	SubLevelLimit

	FileSelectionDlg
	Application
	DialogAction
	FullName
	Parent

	FindInFilesDlg
	AdvancedXMLSearch
	Application
	DoReplace
	FileExtension
	Find
	IncludeSubfolders
	MatchCase
	MatchWholeWord
	Parent
	RegularExpression
	Replace
	ReplaceOnDisk
	SearchInProjectFilesDoExternal
	SearchLocation
	ShowResult
	StartFolder
	XMLAttributeContents
	XMLAttributeNames
	XMLCData
	XMLComments
	XMLElementContents
	XMLElementNames
	XMLPI
	XMLRest

	FindInFilesResult
	Application
	Count
	Document
	Item
	Parent
	Path

	FindInFilesResultMatch
	Application
	Length
	Line
	LineText
	Parent
	Position
	Replaced

	FindInFilesResults
	Application
	Count
	Item
	Parent

	GenerateSampleXMLDlg
	Application
	Parent
	NonMandatoryAttributes
	NonMandatoryElements - obsolete
	TakeFirstChoice - obsolete
	RepeatCount
	FillWithSampleData - obsolete
	FillElementsWithSampleData
	FillAttributesWithSampleData
	ContentOfNillableElementsIsNonMandatory
	TryToUseNonAbstractTypes
	Optimization
	SchemaOrDTDAssignment
	LocalNameOfRootElement
	NamespaceURIOfRootElement
	OptionsDialogAction

	GridView
	Events
	OnBeforeDrag
	OnBeforeDrop
	OnBeforeStartEditing
	OnEditingFinished
	OnFocusChanged

	CurrentFocus
	Deselect
	IsVisible
	Select
	SetFocus

	SchemaDocumentationDlg
	AllDetails
	Application
	DiagramFormat
	EmbedDiagrams
	IncludeAll
	IncludeAttributeGroups
	IncludeComplexTypes
	IncludeGlobalAttributes
	IncludeGlobalElements
	IncludeGroups
	IncludeIndex
	IncludeLocalAttributes
	IncludeLocalElements
	IncludeRedefines
	IncludeReferencedSchemas
	IncludeSimpleTypes
	MultipleOutputFiles
	OptionsDialogAction
	OutputFile
	OutputFileDialogAction
	OutputFormat
	Parent
	ShowAnnotations
	ShowAttributes
	ShowChildren
	ShowDiagram
	ShowEnumerations
	ShowIdentityConstraints
	ShowNamespace
	ShowPatterns
	ShowProgressBar
	ShowProperties
	ShowResult
	ShowSingleFacets
	ShowSourceCode
	ShowType
	ShowUsedBy

	SpyProject
	CloseProject
	ProjectFile
	RootItems
	SaveProject
	SaveProjectAs

	SpyProjectItem
	ChildItems
	FileExtensions
	ItemType
	Name
	Open
	ParentItem
	Path
	ValidateWith
	XMLForXSLTransformation
	XSLForXMLTransformation
	XSLTransformationFileExtension
	XSLTransformationFolder

	SpyProjectItems
	AddFile
	AddFolder
	AddURL
	Count
	Item
	RemoveItem

	TextImportExportSettings
	CommentIncluded
	DestinationFolder
	EnclosingCharacter
	Encoding
	EncodingByteOrder
	FieldDelimiter
	FileExtension
	HeaderRow
	ImportFile
	RemoveDelimiter
	RemoveNewline

	TextView
	Events
	OnBeforeShowSuggestions
	OnChar

	Application
	GetRangeText
	GoToLineChar
	Length
	LineCount
	LineFromPosition
	LineLength
	MoveCaret
	Parent
	PositionFromLine
	ReplaceText
	SelectionEnd
	SelectionStart
	SelectText
	SelText
	Text

	WSDLDocumentationDlg
	AllDetails
	Application
	DiagramFormat
	EmbedDiagrams
	IncludeAll
	IncludeBinding
	IncludeImportedWSDLFiles
	IncludeMessages
	IncludeOverview
	IncludePortType
	IncludeService
	IncludeTypes
	MultipleOutputFiles
	OptionsDialogAction
	OutputFile
	OutputFileDialogAction
	OutputFormat
	Parent
	ShowBindingDiagram
	ShowExtensibility
	ShowMessageParts
	ShowPort
	ShowPortTypeDiagram
	ShowPortTypeOperations
	ShowProgressBar
	ShowResult
	ShowServiceDiagram
	ShowSourceCode
	ShowTypesDiagram
	ShowUsedBy

	XMLData
	AppendChild
	CountChildren
	CountChildrenKind
	EraseAllChildren
	EraseCurrentChild
	GetChild
	GetChildKind
	GetCurrentChild
	GetFirstChild
	GetNextChild
	HasChildrenKind
	HasChildren
	InsertChild
	IsSameNode
	Kind
	MayHaveChildren
	Name
	Parent
	TextValue

	Interfaces (obsolete)
	AuthenticEvent (obsolete)
	altKey (obsolete)
	altLeft (obsolete)
	button (obsolete)
	cancelBubble (obsolete)
	clientX (obsolete)
	clientY (obsolete)
	ctrlKey (obsolete)
	ctrlLeft (obsolete)
	dataTransfer (obsolete)
	fromElement (obsolete)
	keyCode (obsolete)
	propertyName (obsolete)
	repeat (obsolete)
	returnValue (obsolete)
	shiftKey (obsolete)
	shiftLeft (obsolete)
	srcElement (obsolete)
	type (obsolete)

	AuthenticSelection (obsolete)
	End (obsolete)
	EndTextPosition (obsolete)
	Start (obsolete)
	StartTextPosition (obsolete)

	OldAuthentictView (obsolete)
	ApplyTextState (obsolete)
	CurrentSelection (obsolete)
	EditClear (obsolete)
	EditCopy (obsolete)
	EditCut (obsolete)
	EditPaste (obsolete)
	EditRedo (obsolete)
	EditSelectAll (obsolete)
	EditUndo (obsolete)
	event (obsolete)
	GetAllowedElements (obsolete)
	GetNextVisible (obsolete)
	GetPreviousVisible (obsolete)
	IsEditClearEnabled (obsolete)
	IsEditCopyEnabled (obsolete)
	IsEditCutEnabled (obsolete)
	IsEditPasteEnabled (obsolete)
	IsEditRedoEnabled (obsolete)
	IsEditUndoEnabled (obsolete)
	IsRowAppendEnabled (obsolete)
	IsRowDeleteEnabled (obsolete)
	IsRowDuplicateEnabled (obsolete)
	IsRowInsertEnabled (obsolete)
	IsRowMoveDownEnabled (obsolete)
	IsRowMoveUpEnabled (obsolete)
	IsTextStateApplied (obsolete)
	IsTextStateEnabled (obsolete)
	LoadXML (obsolete)
	MarkUpView (obsolete)
	RowAppend (obsolete)
	RowDelete (obsolete)
	RowDuplicate (obsolete)
	RowInsert (obsolete)
	RowMoveDown (obsolete)
	RowMoveUp (obsolete)
	SaveXML (obsolete)
	SelectionMoveTabOrder (obsolete)
	SelectionSet (obsolete)
	XMLRoot (obsolete)

	Enumerations
	SPYAttributeTypeDefinition
	SPYAuthenticActions
	SPYAuthenticDocumentPosition
	SPYAuthenticElementActions
	SPYAuthenticElementKind
	SPYAuthenticMarkupVisibility
	SPYDatabaseKind
	SPYDialogAction
	SPYDOMType
	SPYDTDSchemaFormat
	SPYEncodingByteOrder
	SPYExportNamespace
	SPYFindInFilesSearchLocation
	SPYFrequentElements
	SPYImageKind
	SPYKeyEvent
	SPYLibType
	SPYLoading
	SPYMouseEvent
	SPYNumberDateTimeFormat
	SPYProgrammingLanguage
	SPYProjectItemTypes
	SPYProjectType
	SPYSampleXMLGenerationOptimization
	SPYSampleXMLGenerationSchemaOrDTDAssignment
	SPYSchemaDefKind
	SPYSchemaDocumentationFormat
	SPYTextDelimiters
	SPYTextEnclosing
	SPYTypeDetection
	SPYURLTypes
	SPYViewModes
	SPYVirtualKeyMask
	SPYXMLDataKind

	Using the XMLSpy API with Java
	Sample source code
	SpyApplication
	SpyCodeGeneratorDlg
	SpyDatabaseConnection
	SpyDialogs
	SpyDoc
	SpyDocuments
	SpyElementList
	SpyElementListItem
	SpyExportSettings
	SpyFileSelectionDlg
	SpyGridView
	SpyProject
	SpyProjectItem
	SpyProjectItems
	SpySchemaDocumentationDlg
	SpyTextImportExportSettings
	SpyXMLData
	Authentic
	SpyAuthenticRange
	SpyAuthenticView
	SpyDocEditSelection
	SpyDocEditView

	Predefined constants
	SPYAuthenticActions
	SPYAuthenticDocumentPosition
	SPYAuthenticElementKind
	SPYAuthenticMarkupVisibility
	SPYDatabaseKind
	SPYDialogAction
	SPYDOMType
	SPYDTDSchemaFormat
	SPYEncodingByteOrder
	SPYExportNamespace
	SPYFrequentElements
	SPYLibType
	SPYLoading
	SPYNameDateTimeFormat
	SPYProgrammingLanguage
	SPYProjectItemTypes
	SPYProjectType
	SPYSchemaDefKind
	SPYSchemaDocumentationFormat
	SPYTextDelimiters
	SPYTextEnclosing
	SPYTypeDetection
	SPYURLTypes
	SpyViewModes
	SPYWhitespaceComparison
	SPYXMLDataKind

	XMLSpy Integration
	Integration at the Application Level
	Example: HTML
	Instantiate the Control
	Add Button to Open Default Document
	Add Buttons for Code Generation
	Connect to Custom Events

	Integration at Document Level
	Use XMLSpyControl
	Use XMLSpyControlDocument
	Use XMLSpyControlPlaceHolder
	Query XMLSpy Commands
	Examples
	C#
	Introduction
	Placing the XMLSpyControl
	Adding the Document Control
	Adding the Placeholder Control
	Retrieving Command Information
	Testing the Example

	HTML
	Instantiate the XMLSpyControl
	Create Editor window
	Create Project Window
	Create Placeholder for XMLSpy Helper Windows
	Create a Custom Toolbar
	Create More Buttons
	Create Event Handler to Update Button Status

	Command Table
	File Menu
	Edit Menu
	Project Menu
	XML menu
	DTD/Schema Menu
	Schema Design Menu
	XSL/XQuery Menu
	Authentic Menu
	Convert Menu
	View Menu
	Browser Menu
	WSDL Menu
	SOAPMenu
	Tools Menu
	Window Menu
	Help Menu

	Accessing XMLSpy API
	Object Reference
	Command
	Accelerator
	ID
	IsSeparator
	Label
	StatusText
	SubCommands
	ToolTip

	Commands
	Count
	Item

	XMLSpyControl
	Properties
	Appearance
	Application
	BorderStyle
	CommandsList
	CommandsStructure (deprecated)
	EnableUserPrompts
	IntegrationLevel
	MainMenu
	Toolbars

	Methods
	Exec
	Open
	QueryStatus

	Events
	OnCloseEditingWindow
	OnContextChanged
	OnDocumentOpened
	OnFileChangedAlert
	OnLicenseProblem
	OnOpenedOrFocused
	OnUpdateCmdUI
	OnValidationWindowUpdated

	XMLSpyControlDocument
	Properties
	Appearance
	BorderStyle
	Document
	IsModified
	Path
	ReadOnly

	Methods
	Exec
	New
	Open
	QueryStatus
	Reload
	Save
	SaveAs

	Events
	OnActivate
	OnContextChanged
	OnDocumentClosed
	OnDocumentOpened
	OnDocumentSaveAs
	OnFileChangedAlert
	OnModifiedFlagChanged
	OnSetEditorTitle

	XMLSpyControlPlaceHolder
	Properties
	Label
	PlaceholderWindowID
	Project

	Methods
	OpenProject
	CloseProject

	Events
	OnModifiedFlagChanged

	Enumerations
	ICActiveXIntegrationLevel
	XMLSpyControlPlaceholderWindow

	Appendices
	Engine Information
	XSLT 1.0 Engine: Implementation Information
	XSLT 2.0 Engine: Implementation Information
	General Information
	XSLT 2.0 Elements and Functions

	XQuery 1.0 Engine: Implementation Information
	XPath 2.0 and XQuery 1.0 Functions
	General Information
	Functions Support

	Datatypes in DB-Generated XML Schemas
	MS Access
	MS SQL Server
	MySQL
	Oracle
	ODBC
	ADO
	Sybase

	Datatypes in DBs Generated from XML Schemas
	MS Access
	MS SQL Server
	MySQL
	Oracle

	Technical Data
	OS and Memory Requirements
	Altova XML Parser
	Altova XSLT and XQuery Engines
	Unicode Support
	Windows 2000 and Windows XP
	Right-to-Left Writing Systems

	Internet Usage

	License Information
	Electronic Software Distribution
	License Metering
	Copyright
	Altova End User License Agreement

