MapForce Offers Dynamic Access to Node Names


There are situations, especially when encountering loosely structured data, where you may want to map and transform structural components of a data stream along with content. MapForce 2017 includes a new feature to dynamically access node names of XML elements, attributes, or text file columns such as the contents of CSV files, to target components.

Dynamic access to node names allows creation on the fly of target elements and attributes whose names do not need to be known beforehand or specifically identified in the data mapping. This feature lets you create much more generic, flexible, and reusable mappings that require less manual intervention if data models evolve.

News about Dynamic Access to Node Names in MapForce 2017

Read more…

Tags: , , ,

Faster EDI Data Translation


Electronic Data Interchange (EDI) standards accelerate commerce worldwide by allowing companies and other organizations – even those in different regions, using different languages and currencies – to send and receive unambiguous information. Some EDI communication protocols and message formats still in wide use today were developed over 30 years ago, when telecommunication systems were slower and data storage was more expensive.

119647393_700px

Read more…

Tags: , , ,

XBRL Data Mapping: WIP Taxonomy


The usefulness of the XBRL standard reaches far beyond SEC requirements for filing financial statements. Organizations such as XBRL.US and XBRL International are working to develop XBRL taxonomies and accompanying software solutions for countless other practical applications where standardizing data submission results in increased accuracy and productivity for all involved – for report filing, data analysis, and beyond.

One such project is the Work in Progress (WIP) Taxonomy created by XBRL.US for the surety industry. The new taxonomy helps save time and increase accuracy for report submission, and at the same time enables new opportunities for data analysis and decision making.

Construction-site-surety

Read more…

Tags: , ,

Data Mapping REST Web Services


MapForce 2016 Release 2 includes expanded functionality for Web Services data mapping, providing robust support for REST Web services. MapForce accepts XML or JSON as the Web service response, allows definition of parameters, and supports custom HTTP headers. Users may define the Web service interface manually or by importing settings from a WADL file or a URL. Manual definition of REST Web Service Settings lets developers create settings based on a template URL. This is a convenient step when developers test and refine REST calls in a Web browser window, since the URL can be copied from the browser to become the template.

REST Web Services can be a pipeline of information for a data mapping project

Read more…

Tags: , , , ,

Using Google Cloud SQL


Google recently announced their next generation of managed MySQL offerings on Cloud SQL, so we wanted to take it for a spin and create a cloud-based SQL database that we could then utilize as the back-end for mobile apps, or even for advanced data analytics from our desktop.

According to Google, the two principal goals of the second generation of Cloud SQL were better performance and scalability per dollar. It seems that they succeeded in these goals: the second generation Cloud SQL is more than seven times faster than the first. And it scales to 10TB of data, 15,000 IOPS, and 104GB of RAM per instance — well beyond the first generation. So it looks like the ideal, scalable cloud-based database back-end for mobile apps.

Data n the cloud

Read more…

Tags: , , , , ,

Applying Data Mapping Patterns


Altova MapForce includes powerful mapping components that correspond to design patterns for data transformation requirements. Analyzing a data mapping challenge up front and following a few straightforward guidelines can uncover data mapping patterns that help simplify creation of the mapping design and lead to an optimal solution. The MapForce Examples project provides sample mapping files and data sets that illustrate many common data mapping patterns. Reviewing these examples and executing them with the MapForce Built-in Execution Engine is another good way to help select the best pattern for your own project.

shutterstock_240957604

Read more…

Tags: , ,

Interactive Debugger for Data Integration Projects


MapForce 2016 introduces a revolutionary data mapping debugger that lets developers working on data integration projects examine data mapping output step by step to diagnose and perfect projects of any complexity. The MapForce data mapping debugger gives users deep insight into the exact inner workings of data integration and ETL projects in a way that was never before possible.

The debugger works with all MapForce data mappings for any combination of XML, XBRL, JSON, databases, flat files, EDI, Excel, or Web services data, including chained mappings, mappings with multiple input or output components, and mappings that include user-defined functions.

Data Mapping Debugger

The MapForce data mapping debugger supports breakpoints and conditional breakpoints, and includes multiple manual stepping options to manually debug a data mapping or continue execution after a breakpoint is reached, allowing users to see as much detail as they need.
Read more…

Tags: , ,