
Altova UModel 2023 Basic Edition

User & Reference Manual

All rights reserved. No parts of this work may be reproduced in any form or by any
means - graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems - without the written permission of the
publisher.

Products that are referred to in this document may be either trademarks and/or
registered trademarks of the respective owners. The publisher and the author make no
claim to these trademarks.

While every precaution has been taken in the preparation of this document, the
publisher and the author assume no responsibility for errors or omissions, or for
damages resulting from the use of information contained in this document or from the
use of programs and source code that may accompany it. In no event shall the publisher
and the author be liable for any loss of profit or any other commercial damage caused or
alleged to have been caused directly or indirectly by this document.

Published: 2022

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition
User & Reference Manual

3Altova UModel 2023 Basic Edition

Table of Contents

1 Introduction 10

.. 111.1 Support Notes

2 UModel Tutorial 14

.. 152.1 Getting Started

.. 182.2 Use Cases

.. 272.3 Class Diagrams

.. 362.3.1 Creating Derived Classes

.. 422.4 Object Diagrams

.. 492.5 Component Diagrams

.. 552.6 Deployment Diagrams

.. 602.7 Forward Engineering (from Model to Code)

.. 692.8 Reverse Engineering (from Code to Model)

3 UModel Graphical User Interface 77

.. 793.1 Model Tree Window

.. 833.2 Diagram Tree Window

.. 843.3 Favorites Window

.. 853.4 Properties Window

.. 863.5 Styles Window

.. 873.6 Hierarchy Window

.. 893.7 Overview Window

.. 903.8 Documentation Window

.. 913.9 Messages Window

.. 933.10 Diagram Window

.. 943.11 Diagram Pane

Altova UModel 2023 Basic Edition4

4 UModel Command Line Interface 96

.. 1014.1 Creating, Loading, and Saving Projects in Batch Mode

5 How to Model... 103

.. 1045.1 Elements

.. 1045.1.1 Creating Elements

.. 1055.1.2 Inserting Elements from the Model into a Diagram

.. 1075.1.3 Renaming, Moving, and Copying Elements

.. 1085.1.4 Deleting Elements

.. 1095.1.5 Converting Elements

.. 1095.1.6 Finding and Replacing Text

.. 1115.1.7 Checking Where and If Elements Are Used

.. 1125.1.8 Constraining Elements

.. 1135.1.9 Hyperlinking Elements

.. 1165.1.10 Documenting Elements

.. 1175.1.11 Changing the Style of Elements

.. 1195.2 Diagrams

.. 1195.2.1 Creating Diagrams

.. 1205.2.2 Generating Diagrams

.. 1225.2.3 Opening Diagrams

.. 1235.2.4 Deleting Diagrams

.. 1235.2.5 Changing the Style of Diagrams

.. 1255.2.6 Aligning and Resizing Modeling Elements

.. 1275.2.7 Type Autocompletion in Classes

.. 1295.2.8 Zooming into/out of Diagrams

.. 1305.3 Relationships

.. 1305.3.1 Creating Relationships

.. 1315.3.2 Changing the Style of Lines and Relationships

.. 1335.3.3 Viewing Element Relationships

.. 1335.3.4 Associations

.. 1365.3.5 Collection Associations

.. 1395.3.6 Containment

5Altova UModel 2023 Basic Edition

.. 1405.4 Stereotypes and Tagged Values

.. 1415.4.1 Tagged Values

.. 1425.4.2 Applying Stereotypes

.. 1445.4.3 Showing or Hiding Tagged Values

6 Projects and Code Engineering 147

.. 1486.1 Managing UModel Projects

.. 1486.1.1 Creating, Opening, and Saving Projects

.. 1496.1.2 Opening Projects from a URL

.. 1536.1.3 Moving Projects to a New Directory

.. 1546.1.4 Applying UModel Profiles

.. 1556.1.5 Splitting UModel Projects

.. 1586.1.6 Including Subprojects

.. 1606.1.7 Sharing Packages and Diagrams

.. 1636.1.8 Tips for Enhancing Performance

.. 1646.2 Generating Program Code

.. 1646.2.1 Setting a Package as Namespace Root

.. 1656.2.2 Adding a Code Engineering Component

.. 1676.2.3 Checking Project Syntax

.. 1696.2.4 Code Generation Options

.. 1716.2.5 Example: Generate C# Code

.. 1766.2.6 Example: Generate Java Code

.. 1846.2.7 SPL Templates

.. 1866.3 Importing Source Code

.. 1886.3.1 Code Import Options

.. 1906.3.2 Example: Import a C# Project

.. 1986.4 Importing Java, C# and VB.NET Binaries

.. 1996.4.1 Adding Custom Java Runtimes

.. 1996.4.2 Import Binary Options

.. 2036.4.3 Example: Import .NET Assemblies

.. 2056.4.4 Example: Import Java .class Files

.. 2116.5 Synchronizing the Model and Source Code

.. 2126.5.1 Synchronization Tips

.. 2146.5.2 Refactoring Code and Synchronization

Altova UModel 2023 Basic Edition6

.. 2156.5.3 Code Synchronization Settings

.. 2186.6 UModel Element Mappings

.. 2186.6.1 C# Mappings

.. 2386.6.2 VB.NET Mappings

.. 2526.6.3 Java Mappings

.. 2586.6.4 XML Schema Mappings

.. 2686.7 Merging UModel Projects

.. 2686.7.1 3-Way Project Merge

.. 2706.7.2 Example: Manual 3-Way Project Merge

.. 2736.8 UML Templates

.. 2746.8.1 Template Signatures

.. 2756.8.2 Template Binding

.. 2756.8.3 Template Usage in Operations and Properties

7 Generating UML Documentation 277

.. 2817.1 Documentation Generation Options

.. 2867.2 Customizing Output with StyleVision

8 UML Diagrams 288

.. 2898.1 Behavioral Diagrams

.. 2898.1.1 Activity Diagram

.. 3068.1.2 State Machine Diagram

.. 3298.1.3 Protocol State Machine

.. 3348.1.4 Use Case Diagram

.. 3348.1.5 Communication Diagram

.. 3388.1.6 Interaction Overview Diagram

.. 3438.1.7 Sequence Diagram

.. 3708.1.8 Timing Diagram

.. 3798.2 Structural Diagrams

.. 3798.2.1 Class Diagram

.. 3938.2.2 Composite Structure Diagram

.. 3968.2.3 Component Diagram

.. 3968.2.4 Deployment Diagram

7Altova UModel 2023 Basic Edition

.. 3978.2.5 Object Diagram

.. 3978.2.6 Package Diagram

.. 4038.2.7 Profile Diagram

.. 4168.3 Additional Diagrams

.. 4168.3.1 XML Schema Diagrams

9 XMI - XML Metadata Interchange 434

10 Source Control 436

.. 43810.1 Setting Up Source Control

.. 43910.2 Supported Source Control Systems

.. 44110.3 Source Control Commands

.. 44110.3.1 Open from Source Control

.. 44410.3.2 Enable Source Control

.. 44510.3.3 Get Latest Version

.. 44510.3.4 Get

.. 44610.3.5 Get Folder(s)

.. 44710.3.6 Check Out

.. 44910.3.7 Check In

.. 44910.3.8 Undo Check Out...

.. 45110.3.9 Add to Source Control

.. 45310.3.10 Remove from Source Control

.. 45410.3.11 Share from Source Control

.. 45510.3.12 Show History

.. 45710.3.13 Show Differences

.. 45810.3.14 Show Properties

.. 45910.3.15 Refresh Status

.. 45910.3.16 Source Control Manager

.. 45910.3.17 Change Source Control

.. 46110.4 Source Control with Git

.. 46210.4.1 Enabling Git Source Control with GIT SCC Plug-in

.. 46210.4.2 Adding a Project to Git Source Control

.. 46410.4.3 Cloning a Project from Git Source Control

Altova UModel 2023 Basic Edition8

11 UModel Diagram icons 466

.. 46711.1 Activity Diagram

.. 46911.2 Class Diagram

.. 47011.3 Communication diagram

.. 47111.4 Composite Structure Diagram

.. 47211.5 Component Diagram

.. 47311.6 Deployment Diagram

.. 47411.7 Interaction Overview diagram

.. 47511.8 Object Diagram

.. 47611.9 Package diagram

.. 47711.10 Profile Diagram

.. 47811.11 Protocol State Machine

.. 47911.12 Sequence Diagram

.. 48011.13 State Machine Diagram

.. 48111.14 Timing Diagram

.. 48211.15 Use Case diagram

.. 48311.16 XML Schema diagram

12 Menu Reference 484

.. 48512.1 File

.. 48712.2 Edit

.. 48912.3 Project

.. 49212.4 Layout

.. 49312.5 View

.. 49412.6 Tools

.. 49412.6.1 User-defined Tools

.. 49412.6.2 Customize

.. 50312.6.3 Restore Toolbars and Windows

.. 50412.6.4 Options

.. 51312.7 Window

.. 51512.8 Help

9Altova UModel 2023 Basic Edition

13 SPL Reference 520

.. 52113.1 Basic SPL structure

.. 52213.2 Variables

.. 53113.3 Operators

.. 53213.4 Conditions

.. 53313.5 Collections and foreach

.. 53513.6 Subroutines

.. 53513.6.1 Subroutine declaration

.. 53613.6.2 Subroutine invocation

14 License Information 537

.. 53814.1 Electronic Software Distribution

.. 53914.2 Software Activation and License Metering

.. 54114.3 Altova End-User License Agreement

Index 542

10 Introduction

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

1 Introduction

Altova website: UML tool

Altova UModel 2023 Basic Edition is a UML modeling application with a rich visual interface and superior
usability features to help level the UML learning curve. UModel includes many high-end functions to empower
users with the most practical aspects of the UML 2.5 specification. UModel is a 32/64-bit Windows application
that runs on Windows 7 SP1 with Platform Update, Windows 8, Windows 10, Windows 11, and Windows
Server 2008 R2 SP1 with Platform Update or newer. 64-bit support is available for the Enterprise and
Professional editions. For an overview of UModel capabilities, see Support Notes .

UML®, OMG™, Object Management Group™, and Unified Modeling Language™ are either registered
trademarks or trademarks of Object Management Group, Inc. in the United States and/or other countries.

Last updated: 7 October 2022

11

https://www.altova.com/umodel

© 2016-2022 Altova GmbH

Support Notes 11Introduction

Altova UModel 2023 Basic Edition

1.1 Support Notes

UModel is a 32/64-bit Windows application that runs on the following operating systems:

· Windows Server 2008 R2 SP1 with Platform Update or newer
· Windows 7 SP1 with Platform Update, Windows 8, Windows 10, Windows 11

64-bit support is available for the Enterprise and Professional editions.

UML diagrams
UModel supports all fourteen diagrams of the UML 2.5.1 specification, and additional specialized diagram
types.

Structural Behavioral Additional

Class Diagrams Activity Diagram XML Schema Diagrams

Component Diagram Communication Diagram BPMN (Business Process
Modeling Notation) 1.0 / 2.0
Diagrams (UModel Enterprise and
Professional editions)

Composite Structure Diagram Interaction Overview Diagram SysML 1.2, 1.3, 1.4, 1.5, 1.6
Diagrams (UModel Enterprise and
Professional editions)

Deployment Diagram Sequence Diagram Database Diagrams (UModel
Enterprise and Professional
editions)

Object Diagram State Diagrams (State Machine
and Protocol State Machine)

Package Diagram Timing Diagram

Profile Diagram Use Case Diagram

UModel has been designed to allow complete flexibility during the modeling process:

· UModel diagrams can be created in any order, and at any time; there is no need to follow a prescribed
sequence during modeling.

· The syntax coloring in diagrams is customizable. For example, you can customize modeling elements
and their properties (font, color, borders, etc.) in a hierarchical fashion at the project, node/line,
element family and element level, see Changing the Style of Elements .

· The unlimited levels of Undo/Redo track not only content changes, but also all style changes made to
any model element.

· Modeling elements support hyperlinks, see Hyperlinking Elements .

Code engineering and import of binaries
UModel supports code generation and reverse engineering of program code written in the following languages:

117

113

12 Introduction Support Notes

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Language Code engineering Import of binaries

C# 1.2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 7.1, 7.2,

7.3, 8.0, 9.01, 10

Same language versions as for code

engineering2

C++ (UModel Enterprise
Edition)

C++98, C++11 and C++14, C++17, C+
+20

Only partial support for C++20:
modules are not supported.

Not applicable

Java 1.4, 5.0 (1.5), 6 (1.6), 7 (1.7), 8 (1.8), 9
(1.9), 10, 11, 12, 13, 14, 15, 16, 17, 18,
19

Same language versions as for code

engineering3

Visual Basic .NET 7.1 or newer Same language versions as for code
engineering

XML Schemas4 1.0 Not applicable

Databases5 (UModel
Enterprise and
Professional editions)

Not applicable

Table footnotes:

1. If you import binary files compiled from C# 9.0 code, note that any records will be imported as classes.
This limitation is due to the fact that records are marked as classes in the assembly, which makes it
impossible to distinguish them from classes.

2. C# code engineering and import of binaries include support for .NET Framework, .NET Core, .NET 5,
and .NET 6. Note that .NET Framework, .NET Core, .NET 5 or .NET 6 must be installed, as applicable.
Binaries of other .NET implementations which are not mentioned are likely to be imported as well. See
also Importing Java, C# and VB.NET Binaries .

3. It is also possible to import binaries targeting Java Virtual Machines other than Oracle JDK, such as
OpenJDK, SapMachine, Liberica JDK, and others, see Adding Custom Java Runtimes .

4. In the case of XML Schemas, code engineering means that you can import a schema (or multiple
schemas from a directory) into UModel, view or modify the model, and write the changes back to the
schema file. When you synchronize data from the model to a schema file, the schema file is always
overwritten by the model. See also XML Schema Diagrams .

5. In the case of databases, code engineering means that you can (i) model a database in UModel with
the option to update the database through a script generated from the model, or (ii) import an existing
database structure into a model, make changes to it, and then deploy a script generated from the
model to the database. Some database object types are not supported for modeling.

General notes:

· You can synchronize the code and model at the project, package, or even class level. UModel does
not require that pseudo-code, or comments in the generated code be present, in order to accomplish
round-trip engineering.

· A single project can support Java, C#, or VB.NET code simultaneously.
· UModel supports the use of UML templates and their mapping to or from Java, C# and Visual Basic

generics.

198

199

416

© 2016-2022 Altova GmbH

Support Notes 13Introduction

Altova UModel 2023 Basic Edition

· While importing source code, you can optionally generate Class and Package diagrams. Once
the source code is imported into the model, you can also generate Sequence diagrams.

· You can generate program code from Sequence diagrams and from State Machine diagrams
· UModel projects can be split up into multiple sub-projects allowing several developers to

simultaneously edit different parts of a single project. You can then reintegrate the changes back into a
common model. You can also merge UModel projects, as a 2-way or as a 3-way merge, see Merging
UModel Projects .

· Code generation in UModel is based on Spy Programming Language (SPL) templates and is
customizable.

UML documentation generation
You can generate documentation from UModel projects in HTML, RTF, Microsoft Word 2000 or later formats.
Various options are available that let you configure the level of detail of generated documentation, the look and
feel, and other preferences. Generating documentation in PDF format and deep customization of document
generation templates is possible with Altova StyleVision (https://www.altova.com/stylevision). For more
information, see Generating UML Documentation .

Interoperability
UModel also provides support for importing or exporting projects to or from XML Metadata Interchange (XMI)
format, see XMI - XML Metadata Interchange .

391 400

358

364 318

268

277

434

https://www.altova.com/stylevision

14 UModel Tutorial

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

2 UModel Tutorial

This tutorial shows you how to create various UML diagrams with UModel, while acquainting you with the
graphical user interface. You will also learn how to generate code from a UML model (forward engineering) as
well as how to import existing code into a UML model (reverse engineering). With respect to code engineering,
you will also learn how to perform full round-trip engineering (either model->code->model or code->model-
>code). This tutorial assumes basic knowledge of the UML.

The tutorial is organized into sections as shown below. In the initial sections of this tutorial you will be working
with a sample project pre-installed with UModel. If you would like to quickly create a new modelling project from
scratch with UModel, you can skip directly to Forward Engineering (from Model to Code) .

· Getting Started
· Use Cases
· Class Diagrams
· Creating Derived Classes
· Object Diagrams
· Component Diagrams
· Deployment Diagrams
· Forward Engineering (from Model to Code)
· Reverse Engineering (from Code to Model)

This tutorial makes use of the following sample UModel project files available in the directory C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples\Tutorial:

BankView-start.ump This is the UModel project file that constitutes the initial state of the tutorial
sample. Several model diagrams as well as classes, objects, and other model
elements exist in this project. By working through the tutorial, you will be adding
new elements or diagrams, or editing existing ones, using UModel.

Note: This project is deliberately incomplete, so validation errors and warnings
will be shown if you check the project syntax using the Project | Check Project
Syntax menu command. The tutorial shows you how to resolve these issues.

BankView-finish.ump This is the UModel project file that constitutes final state of the tutorial sample.

Note: All UModel example files are initially available in the directory C:\ProgramData\Altova\UModel2023.
When any user starts the application for the first time, the example files are copied to C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples. Therefore, do not move,
edit, or delete the example files in the initial directory.

60

15

18

27

36

42

49

55

60

69

© 2016-2022 Altova GmbH

Getting Started 15UModel Tutorial

Altova UModel 2023 Basic Edition

2.1 Getting Started

When you start UModel for the first time after installation, it opens a default empty project "NewProject1". On
subsequent runs, UModel will open the last project that was loaded. To create, open, and save UModel projects
(.ump files), use the standard Windows commands available in the File menu or in the toolbar.

UModel Graphical User Interface

Note the major parts of the user interface: multiple helper windows on the left hand side and the main diagram
window to the right. Two default packages are visible in the Model Tree window, "Root" and "Component View".
These two packages cannot be deleted or renamed in a project.

The helper windows in the upper-left area are as follows:

· The Model Tree window contains and displays all modeling elements of your UModel project.
Elements can be directly manipulated in this window using the standard editing keys as well as drag
and drop.

· The Diagram Tree window allows your quick access to the modeling diagrams of you project wherever
they may be in the project structure. Diagrams are grouped according to their diagram type.

16 UModel Tutorial Getting Started

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

· The Favorites window is a user-definable repository of modeling elements. Any type of modeling
element can be placed in this window using the "Add to Favorites" command of the context menu.

The helper windows in the middle-left area are as follows:

· The Properties window displays the properties of the currently selected element in the Model Tree
window or in the Diagram window. Element properties can defined or updated in this window.

· The Styles window displays attributes of diagrams, or elements that are displayed in the Diagram view.
These style attributes fall into two general groups: Formatting and display settings.

· The Hierarchy window displays all relations of the currently selected modeling item, in two different
views. The modeling element can be selected in a modeling diagram, the Model Tree, or in the
Favorites window.

The helper windows in the lower-left area are as follows:

· The Overview window which displays an outline view of the currently active diagram.
· The Documentation window which allows you to document your classes on a per-class basis.

In this tutorial, you will be working mostly within the Model Tree and Diagram Tree windows, as well as the
main diagram window. For further information about the graphical user interface elements, see UModel User
Interface .

To open the tutorial project:

1. Select the menu option File | Open and navigate to the ...\UModelExamples\Tutorial folder of
UModel. Note that you can also open a *.ump file through a URL, please see Switch to URL for
more information.

2. Open the BankView-start.ump project file. The project file is now loaded into UModel. Several
predefined packages are now visible under the Root package. Note that the main window is empty at
the moment.

77

485

© 2016-2022 Altova GmbH

Getting Started 17UModel Tutorial

Altova UModel 2023 Basic Edition

BankView-start.ump project

18 UModel Tutorial Use Cases

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

2.2 Use Cases

This tutorial section shows you how to create a Use Case diagram, while acquainting you with the basics of the
UModel graphical user interface. Specifically, it illustrates the following tasks:

· Add a new package to the project
· Add a new use case diagram to the project
· Add use case elements to the diagram, and define the dependencies amongst them
· Align and adjust the size of elements in the diagram
· Change the style of all diagrams in a UModel project.

To proceed, run UModel and open the BankView-start.ump project (see also Opening the Tutorial Project).

Adding a new package to a project
As you already know from UML, a package is a container for organizing classes and other UML elements,
including use cases. Let's begin by creating a package that will store a new use case diagram. Note that
UModel does not require that a specific diagram must reside in a specific package; however, you might want to
organize diagrams into packages for better organization and consistency.

1. Right-click the Root package in the Model Tree window, and select New Element | Package.
2. Enter the name of the new package (in this example, "Use Case View"), and press Enter.

Adding a Use Case diagram to a package
1. Right-click the previously created "Use Case View" package.
2. Select New Diagram | UseCase Diagram.

15

© 2016-2022 Altova GmbH

Use Cases 19UModel Tutorial

Altova UModel 2023 Basic Edition

A Use Case diagram has now been added to the package in the Model Tree window, and a new
Diagram window has been created as well. A default name has been provided automatically.

3. Double-click the diagram name in the Model Tree window, change it to "Overview Account Balance",
and press Enter to confirm.

Adding Use Case elements to the Use Case diagram
1. Right-click in the newly created diagram and select New | Actor. The actor element is inserted at the

click position.

20 UModel Tutorial Use Cases

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

2. Click the Use Case toolbar button and then click inside the diagram window to insert the
element. A "UseCase1" element is inserted. Note that the element, and its name, are currently
selected, and that its properties are visible in the Properties window.

3. Change the title to "get account balance", press Enter to confirm. Double-click the title if it is
deselected. Note that the use case is automatically resized to adjust to the text length.

Note: To create a multi-line use case name, press Enter while holding the Ctrl key pressed.

Manipulating UModel elements: handles and compartments
When selected, model elements in a diagram display various connection handles and other items used to
manipulate them. Handles can be used to create relationships between elements, or show or hide certain
compartments from the element, as shown below.

1. Double-click the "Actor1" text of the Actor element, change the name to "Standard User" and press
Enter to confirm.

2. Place the mouse cursor over the handle to the right of the actor. A tooltip containing "Association"
appears.

© 2016-2022 Altova GmbH

Use Cases 21UModel Tutorial

Altova UModel 2023 Basic Edition

3. Click the handle, drag the Association line to the right, and drop it on the "get account balance" use
case. An association has now been created between the actor and the use case. The association
properties are also visible in the Properties window. The new association has been added to Model
Tree under the Relations item of the Use Case View package.

4. Click the use case and drag it to the right to reposition it. The association properties are visible on the
association object.

5. Click the use case to select it, then click the collapse icon on the left edge of the ellipse.

The "extension points" compartment is now hidden.

22 UModel Tutorial Use Cases

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

A blue dot next to an element in the Model Tree window signifies that the element is visible in the
current diagram. For example, in the image below, three elements are currently visible in the diagram
and thus have a blue dot in the Model Tree:

Resizing the actor adjusts the text field, which can also be multi-line. To insert a line break into the
text, press Enter while holding the Ctrl key pressed.

To finish up the Use Case diagram:

1. Click the Use Case toolbar button and simultaneously hold down the Ctrl key.
2. Click at two different vertical positions in the diagram to add two more use cases, then release the Ctrl

key.
3. Name the first use case "get account balance sum" and the second, "generate monthly revenue

report".
4. Click the collapse icon of each use case to hide the extensions compartment.
5. Click the actor and use the association handle to create an association between "Standard User" and

"get account balance sum".

© 2016-2022 Altova GmbH

Use Cases 23UModel Tutorial

Altova UModel 2023 Basic Edition

To create an "Include" dependency between use cases (creating a subcase):

· Click the Include handle of the "get account balance sum" use case, at the bottom of the ellipse, and
drop the dependency on "get account balance". An "include" dependency is created, and the include
stereotype is displayed on the dotted arrow.

24 UModel Tutorial Use Cases

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Inserting user-defined (customized) actors
The actor in the "generate monthly revenue report" use case is not a person, but an automated batch job run by
a bank computer. The instructions below show to add a new actor to the diagram, and also use a custom
image for it.

1. Click the Actor toolbar button to insert an actor in the diagram.
2. Rename the actor to "Bank".

3. In the Properties window, click Browse next to "icon file name" entry, and browse for the Bank-
PC.bmp file available in the same folder as the project.

4. Clear the Absolute Path check box to make the path relative. Select Preview to display a preview of
the selected file in the dialog box.

5. Click OK to confirm the settings and insert the new actor. Move the new "Bank" actor to the right of the
lowest use case.

6. Click the Association toolbar button and drag from the "Bank" actor to the "generate monthly
revenue report" use case. This is an alternative method of creating an association.

Note: The background color used to make the bitmap transparent has the RGB values 82.82.82.

© 2016-2022 Altova GmbH

Use Cases 25UModel Tutorial

Altova UModel 2023 Basic Edition

Aligning and adjusting the size of diagram elements
When dragging components in a diagram, guide lines appear allowing you to align an element to any other
element in the diagram. You can enable or disable this option as follows:

1. On the Tools menu, click Options.
2. Click the View tab.
3. In the Alignment group, select the Enable snap lines check box.

You can also align and adjust the size of multiple elements, as follows:

1. Create a selection marquee by dragging on the diagram background, making sure that you encompass
all three use cases starting from the top. Alternatively, to select multiple elements, click elements
while holding the Ctrl key pressed. Note that the last use case to be marked, is shown in a dashed
outline in the diagram, as well as in the Overview window.

All use cases are selected, with the lowest being the basis for the following adjustments.

2. Click the Make same size toolbar button.

3. To line up all the ovals, click the Center Horizontally toolbar button.

26 UModel Tutorial Use Cases

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Change the style of diagrams in a project
By default, all diagrams of the tutorial project have a gradient background color, and a background grid is also
visible. The appearance of diagrams in a project is configurable. For example, to change the background color
of all diagrams, do the following:

1. In the Properties window, click Styles.
2. Under Project Styles, identify the setting Diag. Background Color.

3. Change the value from "gradient" to a color of your choice.

To enable or disable the diagram background grid:

· Change the setting Diag. Show Grid from "true" to "false". (Alternatively, if a diagram is currently

open, click the Show Grid toolbar button.)

© 2016-2022 Altova GmbH

Class Diagrams 27UModel Tutorial

Altova UModel 2023 Basic Edition

2.3 Class Diagrams

This tutorial section illustrates the following tasks:

· Add an abstract class to an existing class diagram
· Add class properties and operations, and define parameters as well as their direction and type
· Add a return type to an operation
· Change icons to UML conformant symbols
· Delete and hide class properties and operations
· Create a composite association between two classes.

To proceed, run UModel and open the BankView-start.ump project (see also Opening the Tutorial Project
).

Adding an abstract class
The diagram to which the abstract class will be added is called "BankView Main" and can be opened as
follows:

1. In the Diagram Tree window, expand the "Class Diagrams" package to display all class diagrams
contained in the project.

2. Do one of the following:

· Double-click the "BankView Main" diagram icon.
· Right-click the diagram, and select Open diagram from the context menu.

15

28 UModel Tutorial Class Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Note: It is also possible to open the diagram from the Model Tree window. First, locate the diagram under
the package "Root | Design-phase | BankView | com | altova | bankview", and then use either of the
methods above to open it.

Two concrete classes with a composite association between them are visible in the class diagram.

"BankView Main" diagram

The new abstract class can be added as follows:

1. Click the Class toolbar button, and then click to the right of the Bank class to insert the new
class.

2. Double-click the name of the new class and change it to Account.

3. In the Properties window, select the abstract check box to make the class abstract. The class title is
now displayed in italic, which is the identifying characteristic of abstract classes.

© 2016-2022 Altova GmbH

Class Diagrams 29UModel Tutorial

Altova UModel 2023 Basic Edition

4. In the code file name text box, enter "Account.java" to define the Java class.

Adding properties to a class
1. Right-click the "Account" class and select New | Property, or press F7. A default property Property1

is inserted with stereotype identifiers << >>.

2. Change the property name to balance, and then enter a colon (:) character. A drop-down list
containing all valid types is displayed.

3. Type "f", and press Enter to insert the return type "float". Note that drop-down lists are case sensitive.

30 UModel Tutorial Class Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

4. Continue on the same line by appending "=0" to define the default value.
5. Using the same method as above, create a new property id of type String.

Adding operations to a class
1. Right-click the Account class and select New | Operation, or press F8.
2. Enter "Account()" as operation name. Notice that the stereotype has changed to <<constructor>>,

since the operation name is the same as the class name.

3. Using the same method as above, add two more operations, namely, getBalance():float and
getId():String.

© 2016-2022 Altova GmbH

Class Diagrams 31UModel Tutorial

Altova UModel 2023 Basic Edition

Let's now add a new operation which takes a parameter. We will also specify the parameter direction and type.

1. Press F8 to create another operation, collectAccountInfo().
2. Place the mouse cursor within the brackets and start typing "i". A drop-down list opens, allowing you

to select the parameter direction: in, inout, or out.

3. Select "in" from the drop-down list, enter a space, and continue editing on the same line.
4. Enter "bankAPI" as parameter name and then a colon (:). A drop-down list opens, allowing you to

select the parameter type.

32 UModel Tutorial Class Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

5. Select IBankAPI from the drop-down list.

Adding a return type to an operation
So far, the operation parameter has been added, but it does not have a return type yet. To add a return type:

1. Place the mouse cursor after the close parenthesis character ")" and enter a colon (:). A drop-down
list opens, allowing you to select a return type.

2. Press the "b" key and select boolean as data type.

© 2016-2022 Altova GmbH

Class Diagrams 33UModel Tutorial

Altova UModel 2023 Basic Edition

To specify an operation's visibility (for example, "private", "protected", "public"), click the icon preceding the
operation name, and select the required value, for example:

The visibility "package" is applicable for Java. In C#, use "package" to specify visibility as "internal". For
information about how UModel elements map to constructs in each language, see UModel Element
Mappings .

Changing icons to UML conformant symbols
The visibility icons can be changed to UML conformant symbols if necessary, as follows:

1. In the Styles window, select Project Styles from the top drop-down list.
2. Scroll down to the Show Visibility setting, and select UML Style.

Deleting and hiding class properties and operations from a Class diagram
Press F8 to add a dummy operation Operation1 to the Account class.

To delete the dummy operation, select it and then press Delete. (Alternatively, right-click it and select Delete
from the context menu). A message box appears asking if you want to delete the element from the project.
Click Yes to delete Operation1 from the class diagram as well as from the project.

To delete the operation from the class in the diagram, but not from the project, press the Ctrl+Delete. This
hides the operation from the diagram, although it continues to exist in the project. Classes with hidden
members are displayed with an ellipsis (...) character, as shown below:

218

34 UModel Tutorial Class Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

A class with hidden operations

To unhide the operation, double-click the ellipsis at the bottom of the class. A dialog box appears where you
can choose the elements that should be visible on the diagram, for example:

"Visible elements" dialog box

It is possible to configure UModel not to display a message box when you attempt to delete an object from the
diagram, as follows:

1. On the Tools menu, click Options.
2. Click the Editing tab.
3. Under Ask before deleting from project, clear the in diagrams check box.

© 2016-2022 Altova GmbH

Class Diagrams 35UModel Tutorial

Altova UModel 2023 Basic Edition

Creating a composition association between the Bank and Account classes

1. Click the Composition toolbar button, and then drag from the Bank class to the Account class.
The class is highlighted when the association can be made. A new property (Property1:Account) is
created in the Bank class, and a composite association arrow joins the two classes.

2. Double click the new Property1 property in the Bank class and change it to "accounts", being sure
not to delete the Account type definition (displayed in teal/green).

3. Press the End keyboard key to place the text cursor at the end of the line.
4. Enter the open square bracket character ([) and select asterisk (*) from the dropdown list. This

defines the multiplicity, namely, the fact that a bank can have many accounts.

Notice that the multiplicity range previously added to the diagram is also visible in the Properties
window:

36 UModel Tutorial Class Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

2.3.1 Creating Derived Classes

This tutorial section illustrates the following tasks:

· Add a new class diagram to the project
· Add existing classes to a diagram
· Add a new class to a diagram
· Create derived classes from an abstract class, using generalizations.

Note: It is assumed you have already followed the previous tutorial section, Class Diagrams , to create the
abstract class Account.

Creating a new Class Diagram
1. In the Model Tree window, right-click the bankview package (under Root | Design-phase |

BankView | com | altova), and select New Diagram | Class Diagram.
2. Double-click the new "ClassDiagram1" entry, rename it to "Account Hierarchy", and press Enter to

confirm. The new "Account Hierarchy" diagram is now visible in the working area.

Adding existing classes to a diagram
1. In the Model Tree window, click the Account class in the bankview package (under com | altova |

bankview), and drag it into the diagram.

27

© 2016-2022 Altova GmbH

Class Diagrams 37UModel Tutorial

Altova UModel 2023 Basic Edition

2. Click the CheckingAccount class (of the same package) and drag it into the diagram. Place the class
below and to the left of the Account class.

3. Use the same method to insert the CreditCardAccount class. Place it to the right of the
CheckingAccount class.

38 UModel Tutorial Class Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Adding a new class
The third derived class, SavingsAccount, will be added manually to the diagram.

1. Right-click the diagram and select New | Class. A new class is automatically added to the correct
package (bankview) which contains the current class diagram "Account Hierarchy".

2. Double-click the class name and change it to SavingsAccount.
3. Create the class structure as illustrated below. To add properties and operations, use the methods

illustrated in the previous tutorial section, Class Diagrams .

3. In the Properties window, in the "code file name" text box, enter "SavingsAccount.java" to define the
Java code class.

27

© 2016-2022 Altova GmbH

Class Diagrams 39UModel Tutorial

Altova UModel 2023 Basic Edition

Properties and operations can be directly copied or moved from one class to another:

· Within a class in the current diagram
· Between different classes of the same diagram
· In the Model Tree window
· Between different UML diagrams, by dropping the copied data onto a different diagram.

This can be achieved using drag and drop, as well as the standard Copy/Paste keyboard shortcuts (Ctrl + C,
Ctrl + V), see also Renaming, Moving, and Copying Elements . For the scope of this example, you can
quickly copy the collectAccountInfo() operation from the Account class to the new SavingsAccount class,
as follows:

1. In the Model Tree window, expand the Account class.
2. Right-click the collectAccountInfo operation and select Copy.
3. Right-click the SavingsAccount class and select Paste.

The operation is copied into the SavingsAccount class, which is automatically expanded to display the new
operation.

107

40 UModel Tutorial Class Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

The new operation is now also visible in the SavingsAccount class in the class diagram.

Creating derived classes using generalization/specialization
At this point, the class diagram contains the abstract class, Account, as well as three specific classes.

© 2016-2022 Altova GmbH

Class Diagrams 41UModel Tutorial

Altova UModel 2023 Basic Edition

We will now create a generalization/specialization relationship between Account and the specific classes (that
is, create three derived concrete classes).

1. Click the Generalization toolbar button and hold down the Ctrl key.
2. Drag from CreditCardAccount class and drop on the Account class.
3. Drag from the CheckingAccount class and drop on the arrowhead of the previously created

generalization.
4. Drag from the SavingsAccount class and drop on the arrowhead of the previously created

generalization: release the Ctrl key at this point.

Generalization arrows are created between the three subclasses and the Account superclass.

42 UModel Tutorial Object Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

2.4 Object Diagrams

This tutorial section illustrates the following tasks:

· Combine class and object diagrams into one diagram
· Create objects/instances and define the relationships between them
· Format association/links
· Enter real-life data into objects/instances

To proceed, run UModel and open the BankView-start.ump project (see also Opening the Tutorial Project).
The project includes a predefined object diagram "Sample Accounts", which will be used to illustrate the tasks
above.

Combining objects and classes into one diagram
In the Model Tree window, navigate to the following path: Root | Design-phase | BankView | com | altova |
bankview. Then double-click the icon next to the "Sample Accounts" diagram.

"Sample Accounts" diagram

15

© 2016-2022 Altova GmbH

Object Diagrams 43UModel Tutorial

Altova UModel 2023 Basic Edition

This object diagram combines both classes and instances of them (objects). Specifically, AltovaBank:Bank is
the object/instance of the Bank class, while John's checking: CheckingAccount is an instance of the class
CheckingAccount class (not yet added to the diagram).

Let's now add the missing Account class to the diagram, by dragging it from the Model Tree into the diagram.
Notice that the composite association between Bank and Account is displayed automatically (this association
was defined in one of the previous tutorial sections, see Class Diagrams).

Adding a new object/instance (Approach 1)
Let's now add a new object to the diagram, called John's Credit. This object will instantiate the
CreditCardAccount class.

1. Click the InstanceSpecification toolbar button, and then click inside the diagram, below the
object John's Checking: Checking Account.

2. Change the name of the new instance to John's Credit, and press Enter.

3. Select the new instance to display its properties in the Properties window.
4. In the Properties window, next to "classifier", select CreditCardAccount from the drop-down list.

27

44 UModel Tutorial Object Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

The instance has now changed appearance to display all properties of the class. Double-click any
property to enter a value, for example:

To show or hide specific nodes, right-click the instance and select Show/hide node content (Ctrl+Shift+H)
from the context menu.

Adding a new object/instance (Approach 2)
We will now add a new instance of the class SavingsAccount, this time using a different approach:

1. In the Model Tree window, right-click the bankview package, and select New element |
InstanceSpecification.

2. Rename the new instance to John's Saving, and press Enter to confirm. The new object is added to
the package and sorted accordingly.

© 2016-2022 Altova GmbH

Object Diagrams 45UModel Tutorial

Altova UModel 2023 Basic Edition

3. While the object is still selected in the Model Tree window, select SavingsAccount next to
"classifier" in the Properties window.

4. Drag the object John's Saving from the Model Tree window into the diagram, placing it below the
object John's Credit.

46 UModel Tutorial Object Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Creating links between objects
Links are the instances of class associations, and describe the relationships between objects/instances at a
fixed moment in time.

1. Click the existing link (association) between the object AltovaBank: Bank and the object John's
Checking: CheckingAccount.

2. In the Properties window, next to "classifier", select the entry Account - Bank. The link now changes
to a composite association, in accordance with the class definitions.

3. Click the InstanceSpecification toolbar button, and position the cursor over the object John's
Credit: CreditAccount. The cursor now appears as a + sign.

4. Drag from the object John's Credit: CreditAccount to AltovaBank: Bank to create a link between
the two.

5. In the Properties window, next to "classifier", select the entry Account - Bank.
6. Finally, using the methods outlined above, create a link between the object AltovaBank: Bank and the

object John's Saving: SavingsAccount.

Note that changes made to the association type in any class diagram are automatically updated in the object
diagram.

© 2016-2022 Altova GmbH

Object Diagrams 47UModel Tutorial

Altova UModel 2023 Basic Edition

Formatting association/link lines in a diagram
To format links between objects, place the cursor on the line and drag to the desired position. To reposition the
line both horizontally and vertically, drag the corner waypoint, as illustrated below.

Links in an object diagram

Entering sample data into objects
The instance value of an attribute/property in an object is called a slot. To describe the state of an object,
double-click the slots and enter sample instance data after the "=" character, for example:

48 UModel Tutorial Object Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Object slots can also be filled from the Properties window, by selecting the object and entering the appropriate
text next to "value", for example:

© 2016-2022 Altova GmbH

Component Diagrams 49UModel Tutorial

Altova UModel 2023 Basic Edition

2.5 Component Diagrams

This tutorial section illustrates the following tasks:

· Create realization dependencies between classes and components
· Change the appearance of lines used in the diagram
· Add usage dependencies to an interface
· Use "ball-and-socket" interface notation

To proceed, run UModel and open the BankView-start.ump project (see also Opening the Tutorial Project).
The project includes several predefined object diagrams which will be used to illustrate the tasks above. It is
assumed you have already followed the tutorial section Creating Derived Classes to create the class
SavingsAccount.

Creating realization dependencies between classes and components
In the Diagram Tree window, expand "Component Diagrams", and double-click the "BankView realization"
diagram icon. This diagram already contains the BankView component and several classes connected to it with
dependencies of type "ComponentRealization". The text "from bankview" inside each class indicates the name
of the package where the class belongs.

"BankView realization" diagram

Let's now add a new class to the diagram and also create a realization dependency between the new class and
the BankView component.

15

36

50 UModel Tutorial Component Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

1. In the Model Tree window, locate the SavingsAccount class in the bankview package. If this class is
missing, follow the tutorial section Creating Derived Classes to create it first.

2. Drag the SavingsAccount class from the Model Tree into the diagram.

By default, the class is displayed with all compartments expanded. Click the collapse/expand icons to the left
of the class to show or hide properties and operations.

To create a realization dependency between the class and the component, do one of the following:

· Click the Realization toolbar button and drag from the SavingsAccount class to the BankView
component.

· Move the cursor over the "ComponentRealization" handle of the class and drag to the BankView
component.

The realization dependency between SavingsAccount and BankView has now been created.

36

© 2016-2022 Altova GmbH

Component Diagrams 51UModel Tutorial

Altova UModel 2023 Basic Edition

To give a name to the new dependency line (for example, "Realization5"), first select the line, and then start
typing its name directly. Alternatively, select the line, and then edit the Name property in the Properties
window.

Changing the appearance of diagram lines
Let's now change the line appearance from "curved" to "direct line", as follows:

1. Select the line created previously (that is, the one between SavingsAccount and BankView).

2. Click the Direct Line toolbar button.

Adding usage dependencies to an interface
1. In the Model Tree window, navigate to Root | Design-phase and double-click the icon next to the

"Overview" diagram. The "Overview" component diagram is opened and displays the currently defined
system dependencies between components and interfaces.

52 UModel Tutorial Component Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

2. In the Model Tree window, navigate to Root | Component View | BankView and drag the BankView
GUI package into the diagram.

3. Also drag the BankView package into the diagram.

4. Click the Usage toolbar button and drag from the BankView GUI package to the IBankAPI
Interface.

5. Repeat the previous step for the package BankView.

© 2016-2022 Altova GmbH

Component Diagrams 53UModel Tutorial

Altova UModel 2023 Basic Edition

As illustrated below, both packages now have a usage dependency to the interface. Namely, the IBankAPI
interface is required by the packages BankView and BankView GUI. As for the package Bank API Client, it
provides the interface.

Using "ball-and-socket" notation
Optionally, it is possible to convert the current diagram notation to "ball-and-socket" style notation, as follows:

· Select the interface, and then click the Toggle Interface Notation button in its lower-right corner.

54 UModel Tutorial Component Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

The diagram has now changed to "ball-and-socket" notation.

To switch back to the previous notation style, select the interface, and then click the Toggle interface
notation button again.

© 2016-2022 Altova GmbH

Deployment Diagrams 55UModel Tutorial

Altova UModel 2023 Basic Edition

2.6 Deployment Diagrams

This tutorial section illustrates the following tasks:

· Add a dependency between two artifacts in a Deployment diagram
· Add elements to a Deployment diagram
· Embed artifacts into a node in a Deployment diagram
· Creating artifact elements (for example, properties, operations, nested artifacts)

To proceed, run UModel and open the BankView-start.ump project (see also Opening the Tutorial Project
).

Adding a dependency between two artifacts in a Deployment diagram
In the Diagram Tree window, under "Deployment Diagrams", double-click the icon next to the "Artifacts"
diagram to open it. As illustrated below, this diagram shows the manifestation of the Bank API client and the
BankView components, to their respective compiled Java .jar files.

"Artifacts" diagram

These manifestations were created using a technique similar to other relationships previously illustrated in this
tutorial, as follows:

1. Click the Manifestation toolbar button.
2. Move the mouse cursor over the artifact and drag into the component.

Using the same technique, let's also add a dependency between the two .jar files, as follows:

1. Click the Dependency toolbar button.
2. Move the cursor over the BankView.jar artifact and drag into the BankAPI.jar artifact.
3. Select the dependency line and type "Dependency2".

15

56 UModel Tutorial Deployment Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Adding elements to a Deployment diagram
In the Diagram Tree window, under "Deployment Diagrams", double-click the icon next to the "Deployment"
diagram to open it. This diagram is deliberately incomplete and consists of a single node, which represents a
home PC. In the following steps, we will be adding more elements to this diagram.

"Deployment" diagram

Assuming that the goal is to illustrate a TCP/IP connection between the home PC and a bank, let's add the
required elements:

1. Click the Node toolbar button, and click right of the Home PC node to insert it.
2. Rename the node to "Bank", and drag one of its edges to enlarge it.

© 2016-2022 Altova GmbH

Deployment Diagrams 57UModel Tutorial

Altova UModel 2023 Basic Edition

3. Click the Dependency toolbar button, and then drag from the "Home PC" node to the "Bank"
node. This creates a dependency between the two nodes.

4. Select the dependency line and enter "TCP/IP" as name of the new dependency. (Alternatively, edit the
Name property in the Properties window).

Embedding artifacts
In the Model Tree window, expand the "Deployment View" package, and then drag all of the following artifacts
into the diagram: BankAddresses.ini, BankAPI.jar, and BankView.jar. The project is preconfigured to
include deploy dependencies between these artifacts and the "Home PC" node, so all these dependencies are
now visible in the diagram:

58 UModel Tutorial Deployment Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

You can also embed the artifacts into the "Home PC" node, by dragging each of the artifacts into it. Notice that
the deploy dependencies are no longer visible on the diagram, although they continue to exist logically.

Artifacts embedded into the node can also have dependencies between them. To illustrate this:

1. Click the Dependency toolbar button and, holding the Ctrl key pressed, drag from the
"BankView.jar" artifact into the "BankAddresses.ini".

2. While holding the Ctrl key pressed, drag from the "BankView.jar" artifact into the "BankAPI.jar"
artifact.

© 2016-2022 Altova GmbH

Deployment Diagrams 59UModel Tutorial

Altova UModel 2023 Basic Edition

Note: Dragging an artifact out of a node onto the diagram always creates a deployment dependency
automatically.

Creating artifact elements (properties, operations, nested artifacts)
In UML, artifacts can be composed of properties, operations, and other elements, including nested artifacts. To
create such nested elements, right-click the artifact in the Model Tree window and select the appropriate
action from the context menu (for example, New Element | Operation, or New Element | Property). The new
element will appear nested below the selected artifact in the Model Tree window.

60 UModel Tutorial Forward Engineering (from Model to Code)

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

2.7 Forward Engineering (from Model to Code)

This example illustrates how to create a new UModel project and generate program code from it (a process
known as "forward engineering"). For the sake of simplicity, the project will be very simple, consisting of only
one class. You will also learn how to prepare the project for code generation and check that the project uses
the correct syntax. After generating program code, you will modify it outside UModel, by adding a new method
to the class. Finally, you will learn how to merge the code changes back into the original UModel project (a
process known as "reverse engineering").

The code generation language used in this tutorial is Java; however, similar instructions are applicable for other
code generation languages.

Creating a new UModel project
You can create a new UModel project as follows:

· On the File menu, click New. (Alternatively, press Ctrl+N, or click the New toolbar button.)

At this stage, the project contains only the default "Root" and "Component View" packages. These two
packages cannot be deleted or renamed. "Root" is the top grouping level for all other packages and elements in
the project. "Component View" is required for code engineering; it typically stores one or more UML
components that will be realized by the classes or interfaces of your project; however, we didn't create any
classes yet. Therefore, let's first design the structure of our program, as follows:

1. Right-click the "Root" package in the Model Tree window and select New Element | Package from
the context menu. Rename the new package to "src".

2. Right-click "src" and select New Element | Package from the context menu. Rename the new
package to "com"

3. Right-click "com" and select New Element | Package from the context menu. Rename the new
package to "nanonull".

4. Right-click "nanonull" and select New Element | Class from the context menu. Rename the new class
to "MyClass".

Preparing the project for code generation
To generate code from a UModel model, the following requirements must be met:

© 2016-2022 Altova GmbH

Forward Engineering (from Model to Code) 61UModel Tutorial

Altova UModel 2023 Basic Edition

· A Java, C#, or VB.NET namespace root package must be defined.
· A component must exist which is realized by all classes or interfaces for which code must be

generated.
· The component must have a physical location (directory) assigned to it. Code will be generated in this

directory.
· The component must have the property use for code engineering enabled.

All of these requirements are explained in more detail below. Note that you can always check if the project
meets all code generation requirements, by validating it:

· On the Project menu, click Check Project Syntax. (Alternatively, press F11.)

If you validate the project at this stage, the Messages window displays a validation error ("No Namespace Root
found! Please use the context menu in the Model Tree to define a Package as Namespace Root"). To resolve
this, let's assign the package "src" to be the namespace root:

· Right-click the "src" package and select Code Engineering | Set As Java Namespace Root from
the context menu.

· When prompted that the UModel Java Profile will be included, click OK.

Notice the package icon has now changed to , which signifies that this package is a Java namespace root.
Additionally, a Java Profile has been added to the project.

The actual namespace can be defined as follows:

1. Select the package "com" in the Model Tree window.

62 UModel Tutorial Forward Engineering (from Model to Code)

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

2. In the Properties window, enable the <<namespace>> property.

3. Repeat the step above for the "nanonull" package.

Notice that the icon of both "com" and "nanonull" packages has now changed to , which indicates these are
now namespaces.

Another requirement for code generation is that a component must be realized by at least a class or an
interface. In UML, a component is a piece of the system. In UModel, the component lets you specify the code
generation directory and other settings; otherwise, code generation would not be possible. If you validate the
project at this stage, a warning message is displayed in the Messages window: "MyClass has no
ComponentRealization to a Component - no code will be generated". To solve this, a component must be
added to the project, as follows:

1. Right-click "Component View" in the Model Tree window, and select New Element | Component from
the context menu.

2. Rename the new Component to "nanonull".

3. In the Properties window, change the directory property to a directory where code should be
generated (in this example, "src\com\nanonull"). Notice that the property use for code engineering
is enabled, which is another prerequisite for code generation.

© 2016-2022 Altova GmbH

Forward Engineering (from Model to Code) 63UModel Tutorial

Altova UModel 2023 Basic Edition

4. Save the UModel project to a directory and give it a descriptive name (in this example, C:
\UModelDemo\Tutorial.ump).

Note: The code generation path can be absolute or relative to the .ump project. If it is relative as in this
example, a path such as src\com\nanonull would create all the directories in the same directory
where the UModel project was saved.

We have deliberately chosen to generate code to a path which includes the namespace name; otherwise,
warnings would occur. By default, UModel displays project validation warnings if the component is configured to
generate Java code to a directory which does not have the same name as the namespace name. In this
example, the component "nanonull" has the path "C:\UModelDemo\src\com\nanonull", so no validation
warnings will occur. If you want to enforce a similar check for C# or VB.NET, or if you want to disable the
namespace validation check for Java, do the following:

1. On the Tools menu, click Options.
2. Click the Code Engineering tab.
3. Select the relevant check box under Use namespace for code file path.

The component realization relationship can be created as follows:

· In the Model Tree window, drag from the MyClass created previously and drop onto component
nanonull.

64 UModel Tutorial Forward Engineering (from Model to Code)

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

The component is now realized by the project's only class MyClass. Note that the approach above is just one of
the ways to create the component realization. Another way is to create it from a component diagram, as
illustrated in the tutorial section Component Diagrams .

Next, it is recommended that the classes or interfaces which take part in code generation have a file name.
Otherwise, UModel will generate the corresponding file with a default file name and the Messages window will
display a warning ("code file name not set - a default name will be generated"). To remove this warning:

1. Select the class MyClass in the Model Tree window.
2. In the Properties window, change the property code file name to the desired file name (in this

example, MyClass.java).

Including the JDK types
Although this step is optional, it is recommended that you include the Java Development Kit (JDK) language
types, as a subproject of your current UModel project. Otherwise, the JDK types will not be available when you

49

© 2016-2022 Altova GmbH

Forward Engineering (from Model to Code) 65UModel Tutorial

Altova UModel 2023 Basic Edition

create the classes or interfaces. This can be done as follows (the instructions are similar for C# and VB.NET):

1. On the Project menu, click Include Subproject.
2. Click the Java tab and select the Java JDK 9 (types only) project.

3. When prompted to include by reference or as a copy, select Include by reference.

Generating code
Now that all prerequisites have been met, code can be generated as follows:

66 UModel Tutorial Forward Engineering (from Model to Code)

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

1. On the Project menu, click Merge Program Code from UModel Project. (Alternatively, press F12.)
Note that this command will be called Overwrite Program Code from UModel Project if the
Overwrite Code according to Model option was selected previously on the "Synchronization
Settings" dialog box illustrated below.

2. Leave the default synchronization settings as is, and click OK. A project syntax check takes place
automatically, and the Messages window informs you of the result:

Modifying code outside of UModel
Generating program code is just the first step to developing your software application or system. In a real life
scenario, the code would go through many modifications before it becomes a full-featured program. For the
scope of this example, open the generated file MyClass.java in a text editor and add a new method to the
class, as shown below. The MyClass.java file should look as follows:

package com.nanonull;

© 2016-2022 Altova GmbH

Forward Engineering (from Model to Code) 67UModel Tutorial

Altova UModel 2023 Basic Edition

public class MyClass{

 public float sum(float num1, float num2){

 return num1 + num2;

 }
}

MyClass.java

Merging code changes back into the model
You can now merge the code changes back into the model, as follows:

1. On the Project menu, click Merge UModel Project from Program Code (Alternatively, press Ctrl +
F12).

2. Leave the default synchronization settings as is, and click OK. A code syntax check takes place
automatically, and the Messages window informs you of the result:

The operation sum (which has been reverse engineered from code) is now visible in the Model Tree window.

68 UModel Tutorial Forward Engineering (from Model to Code)

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Reverse Engineering (from Code to Model) 69UModel Tutorial

Altova UModel 2023 Basic Edition

2.8 Reverse Engineering (from Code to Model)

This tutorial section illustrates how to import existing program code from a directory into a new UModel project
(reverse engineering). You will also add a new class into the model, prepare it for code generation, and then
merge changes back into the Java code (forward engineering). Although this tutorial illustrates importing Java
code, the process is similar if you would like to import existing C# or VB.NET code.

Note: The sample Java code used in this tutorial is available as a ZIP archive at the following path: C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples\OrgChart.zip. Please
unzip the archive to the same directory before starting the tutorial.

Importing existing code from a directory
1. On the File menu, click New.
2. On the Project menu, click Import Source Directory.
3. Select the language of the source code (in this example, Java).

4. Click the Browse button , select the OrgChart directory unzipped previously, and click Next. Notice
the Enable diagram generation check box is selected, which instructs UModel to generate Class
Diagrams and Package Diagrams from the source code.

5. Select the Generate diagram per package option. This instructs UModel to create a new diagram
for each package. The diagram styling options can be changed later if necessary.

379 397

70 UModel Tutorial Reverse Engineering (from Code to Model)

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

6. Click Next to continue. This dialog box allows you to define the package dependency generation
settings.

© 2016-2022 Altova GmbH

Reverse Engineering (from Code to Model) 71UModel Tutorial

Altova UModel 2023 Basic Edition

7. Click Finish. When prompted, save the new model to a directory on your system. The data is parsed,
and a new package called "OrgChart" is created.

8. Expand the new package and keep expanding the sub packages until you get to the OrgChart
package (com | OrgChart). Double-click the "Content of OrgChart" diagram icon:

72 UModel Tutorial Reverse Engineering (from Code to Model)

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

The "Content of OrgChart" diagram is now displayed in the main pane.

© 2016-2022 Altova GmbH

Reverse Engineering (from Code to Model) 73UModel Tutorial

Altova UModel 2023 Basic Edition

Adding a new class to the OrgChart diagram
At this stage, you have fully reverse engineered some existing Java code and created a model out of it, which
also includes several automatically generated diagrams. We will now go one step further, and extend the model
to include a new class.

1. Right-click inside the "Content of OrgChart" diagram, and then select New | Class from the context
menu.

2. Click the header of the new class, and enter CompanyType as the name of the new class.

74 UModel Tutorial Reverse Engineering (from Code to Model)

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

3. Add new operations to the class using the F8 shortcut key. For the purpose of this example, add the
following operations: CompanyType(), getCompanyType():String, setCompanyType():String.

Note: Since the class name is CompanyType, the operation CompanyType() is automatically assigned the
<<constructor>> stereotype.

Making the new class available for code generation
Now that the model has been extended with a new class, you will most likely want to update the underlying
code accordingly, in order to keep both in sync. However, if you press F11 to check the project syntax at this
stage, a warning is displayed in the Messages window: 'CompanyType' has no Component Realization to a
Component - ComponentRealization to Component 'OrgChart' will be generated. The reason is that the new
class requires realization to a component before code can be generated from it, as explained in Round-Trip
Engineering (Model-Code-Model) . In some cases (including this example), UModel can generate the
required realization automatically; however, you can also define the realization dependency manually, as
follows:

1. While the CompanyType class is selected in the diagram, locate the property "code file name" in the
Properties window and enter "CompanyType.java" as file name.

2. Click the new CompanyType class in the Model Tree, drag upwards and drop onto the OrgChart
component below the Component View package. A notification appears when the mouse pointer is over
a component.

60

© 2016-2022 Altova GmbH

Reverse Engineering (from Code to Model) 75UModel Tutorial

Altova UModel 2023 Basic Edition

This method creates a relation of type "ComponentRealization" between a class and a component. An
alternative way to do this is to draw the relation in a component diagram, see Component Diagrams
. Expand the Relations item below OrgChart to see the newly created relation.

Merging program code from a package
In UModel, you can generate code at package level, component level, or for the entire project, see also
Synchronizing the Model and Source Code . In this example, we will generate code at component level, as
follows:

49

211

76 UModel Tutorial Reverse Engineering (from Code to Model)

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

1. In the Model Tree window, locate the OrgChart component in the "Component View".
2. Right-click the OrgChart component, and select Code Engineering | Merge Program code from

UModel Component from the context menu.

 The messages window displays the syntax checks being performed and status of the synchronization
process.

 When the process completes, the new CompanyType.java class has been added to the folder ...
\OrgChart\com\OrgChart\.

All method bodies and changes to the code will either be commented out or deleted depending on
the setting in the "When deleting code" group, in the Synchronization settings dialog box.

You have now completed a full round-trip code engineering cycle with UModel.

© 2016-2022 Altova GmbH

 77UModel Graphical User Interface

Altova UModel 2023 Basic Edition

3 UModel Graphical User Interface

The UModel graphical user interface consists of the main diagram pane, as well as several smaller helper
windows where you can enter or view data. The diagram pane serves as a parent container for any diagram
windows that are open. To cycle through all open diagram windows, press Ctrl+Tab.

UModel graphical user interface

By default, the helper windows on the left side are docked in groups of three, and the Messages window
appears below the diagram pane. You can, however, move and dock or undock any window as necessary. All
windows can be searched using the Find combo box in the Main toolbar, or by pressing Ctrl+F. See also
Finding and Replacing Text .

To dock or undock a window:

· Right-click its title bar, and select Docking (or Floating, respectively) from the context menu.

109

78 UModel Graphical User Interface

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

To move a window:

1. Click the window's title bar and drag to a new position. Several docking helpers appear.

2. Drag the window over a top, right, left, or bottom handle to dock it to the new position.

To reset all toolbars and windows to their default state:

· On the Tools menu, click Restore toolbars and Windows.

This chapter provides reference information about the parts that make up the UModel graphical user interface,
as follows:

· Model Tree Window
· Diagram Tree Window
· Favorites Window
· Properties Window
· Styles Window
· Hierarchy Window
· Overview Window
· Documentation Window
· Messages Window
· Diagram Window
· Diagram Pane

79

83

84

85

86

87

89

90

91

93

94

© 2016-2022 Altova GmbH

Model Tree Window 79UModel Graphical User Interface

Altova UModel 2023 Basic Edition

3.1 Model Tree Window

The Model Tree window enables you to view and manipulate all items (packages, classes, diagrams,
relationships, and so on) in the UModel project.

Model Tree window

When you create a new UModel project, two packages are available by default, the "Root" and "Component
View" packages. These two packages are the only ones that cannot be renamed or deleted. The "Root"
package serves as starting point for modeling all other elements, while the "Component View" package is
required for code engineering.

You can create additional packages, classes, diagrams, and their hierarchy either from this window or directly
from a diagram, see Creating Elements . For additional operations that you can take against items in the
Model Tree, see the How to Model... chapter.

Note: UModel includes several example projects that you can explore in order to learn the modeling basics
and the graphical user interface. These can be found at the following path: C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples.

Showing, hiding, and sorting items in the Model Tree
To configure what should be displayed in the Model Tree window, as well as the sorting options, right-click
inside the window, and then select the required menu option. To view all actions that can be taken against
items displayed in the Model Tree window, right-click the item and observe the context menu options.

Collapsing and expanding items in the Model Tree
To expand items (for example, packages) in the Model Tree window:

· Press the * (asterisk) key to expand the current item and all child items
· Press the + (plus) key to expand the current item only.

To collapse the packages, press the - (dash) keyboard key. To collapse all items, click the "Root" package
and press - (dash). Note that you can use both the standard keyboard keys and the numeric keypad keys to
achieve this.

104

103

80 UModel Graphical User Interface Model Tree Window

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Identifying active diagram items
When a diagram is open in the Diagram pane, the Model Tree window shows some items with a light-blue dot
at their base. These are items that are displayed in the active diagram (like "BankView" and "Java Profile" in
the example below):

Icon reference
The Model Tree window may display a large number of icons which correspond to elements and diagrams in
your project, the code engineering packages, as well as the imported profiles or subprojects. Specifically, it
may display the following package types:

Icon Description

Standard UML Package

Java namespace root package. Used to generate or reverse engineer Java code

C# namespace root package. Used to generate or reverse engineer C# code

Visual Basic namespace root package. Used to generate or reverse engineer VB.NET code

XML Schema namespace root package. Used to generate XML schemas from the model, or import
them into the model, see XML Schema Diagrams .

A namespace package (a package with the <<namespace>> stereotype applied to it)

A UML profile

416

© 2016-2022 Altova GmbH

Model Tree Window 81UModel Graphical User Interface

Altova UModel 2023 Basic Edition

The diagrams that can appear in the Model Tree window are listed below.

Icon Description

Activity Diagram

Class Diagram

Communication Diagram

Component Diagram

Composite Structure Diagram

Deployment Diagram

Interaction Overview Diagram

Object Diagram

Package Diagram

Profile Diagram

Protocol State Machine Diagram

Sequence Diagram

State Machine Diagram

Timing Diagram

Use Case Diagram

XML Schema Diagram

Below are some examples of UML modeling elements that can appear in the Model Tree window. For more
information about UML elements and the diagram types where they occur, see the UML Diagrams chapter.

Icon Description

Class

Property

Operation

Parameter

Actor

Use Case

Component

288

82 UModel Graphical User Interface Model Tree Window

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Icon Description

Node

Artifact

Interface

Class Instance (Object)

Class instance slot

Relations

Constraints

© 2016-2022 Altova GmbH

Diagram Tree Window 83UModel Graphical User Interface

Altova UModel 2023 Basic Edition

3.2 Diagram Tree Window

The Diagram Tree window displays any diagrams contained in the current UModel project.

Diagram Tree window

Diagrams in this window can be shown either as an alphabetical list, or grouped by type. To change the display
option, right-click in the window, and select or clear the Group by Diagram type option.

For instructions about creating, opening, and generating diagrams, including how to model their content, refer
to the How to Model... chapter. For specific information about each diagram type, refer to the UML
Diagrams chapter.

103

288

84 UModel Graphical User Interface Favorites Window

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

3.3 Favorites Window

The Favorites window displays any modeling elements or diagrams that you have added as favorites.
"Favorites" represent a personal, custom-picked list of modeling elements or diagrams that you can use for
quick access, for example.

Favorites window

By default, the contents of the Favorites window are automatically saved when you save the project. You can
change this option from the Tools | Options menu, File tab. The relevant option name is Load and save with
project file | Favorites.

Items in the Favorites window are not copies or clones; they represent the actual elements or diagrams. Most
actions that you take in the Model Tree window are also applicable in the Favorites window, including adding or
deleting elements. For more information, see the How to Model... chapter.103

© 2016-2022 Altova GmbH

Properties Window 85UModel Graphical User Interface

Altova UModel 2023 Basic Edition

3.4 Properties Window

The Properties window shows information about an item that is currently selected (in focus). The "in focus"
element can be an element selected in the Model Tree window (or other windows), an element selected on the
diagram, or even a diagram itself.

The Properties window also enables you to change the properties of the currently selected element or
relationship. The available properties depend on the kind of the element that is selected. There are properties
which are read-only and grayed out (such as "element kind") and properties that you can modify (for example,
"name").

If an operation or property takes a parameter, you can quickly jump to the respective parameter type in the
Model Tree window, directly from the Properties window. To do this, right-click the "type" property of the
parameter in the Properties window and select Select in Model Tree from the context menu. The same is
applicable for return parameters.

Properties window

Changing a property of an element from the Properties window is immediately reflected in the diagram.
Likewise, making a change in the diagram (for example, changing the visibility of an operation from public to
private) affects the applicable property in the Properties window.

Properties that are enclosed within guillemets represent stereotypes (for example, «final»). You can add
custom stereotypes to the project, in which case they would appear as properties in the Properties window, in
addition to the default ones. For more information, see Example: Creating and Applying Stereotypes .408

86 UModel Graphical User Interface Styles Window

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

3.5 Styles Window

The Styles window enables you to view or change the visual appearance of diagrams or elements that are
currently selected (in focus). The style attributes fall into two general groups:

· Formatting settings (for example, font size, weight, color, etc)
· Display settings (for example, show background color, grid, visibility settings, etc).

Styles window

Changing a property from the Styles window is immediately reflected in the user interface. Likewise, making a

style change in another place (for example, setting the visibility of the diagram grid using the Show Grid
 toolbar button) affects the applicable property in the Styles window.

The Styles window has a dropdown list in the upper part, which enables you to select the level at which the
style change is to be applied (for example, at individual element level, or at project level). For more information,
see:

· Changing the Style of Elements
· Changing the Style of Diagrams
· Changing the Style of Lines and Relationships

117

123

131

© 2016-2022 Altova GmbH

Hierarchy Window 87UModel Graphical User Interface

Altova UModel 2023 Basic Edition

3.6 Hierarchy Window

The Hierarchy window displays all relations of the currently selected modeling item, in two different views. The
modeling element can be selected in a diagram, in the Model Tree window, or in the Favorites window.

Items in the Hierarchy window can be displayed in two views:

· Tree view
· Graph view

To switch between views, click the Show tree view or Show graph view buttons in the upper-left
corner of the window.

The tree view shows multiple relations of the currently selected element, as a tree. Click the buttons at the top

of the window to select types of relations that are to be shown. In the image below, only generalizations

 and associations are selected to be shown.

Hierarchy window (tree view)

The graph view shows a single set of relations in a hierarchical overview, as a diagram. In this view, only one of

the relation buttons can be active at any one time. In the image below, the Show Generalizations button
is currently active.

88 UModel Graphical User Interface Hierarchy Window

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Hierarchy window (graph view)

In the graph view, you can generate diagrams that include the elements visible in the window. To do this, right-
click inside the window, and select Create diagram as this graph from the context menu.

Settings pertaining to Hierarchy window can be changed using the menu option Tools | Options | View, in the
Hierarchy group in the lower section of the dialog box.

The Hierarchy window is navigable: double-click one of the element icons, inside the window, to display the
relations of that element. This applies both in the tree view and in the graph view.

© 2016-2022 Altova GmbH

Overview Window 89UModel Graphical User Interface

Altova UModel 2023 Basic Edition

3.7 Overview Window

The Overview window displays an outline view of the currently active diagram. This is especially handy when
you need to scroll very large diagrams. To scroll the diagram, click and drag the red rectangle.

Overview window

See also Zooming into/out of Diagrams .129

90 UModel Graphical User Interface Documentation Window

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

3.8 Documentation Window

The Documentation window enables you to document any of the UML elements available in the Model Tree
window. To add documentation to an element, first click the element, and then enter text in the Documentation
window. This window supports the standard editing shortcuts, including Select All (Ctrl+A), Cut (Ctrl+X),
Copy (Ctrl+C) and Paste (Ctrl+V).

Documentation window

Text inside the Documentation window can be spell-checked. To do this, right-click inside the window, and
select Documentation Spelling from the context menu.

Documentation text can also be exported as comments in the generated source code, or imported from source
code comments during reverse engineering. For more information, see Documenting Elements .116

© 2016-2022 Altova GmbH

Messages Window 91UModel Graphical User Interface

Altova UModel 2023 Basic Edition

3.9 Messages Window

The Messages window displays any of the following message types: information messages, warnings, and
errors. Such messages may occur when you check the project syntax (see Checking Project Syntax), or
when you perform code engineering tasks. For more information about code engineering, see Generating
Program Code and Importing Source Code .

Messages window

The table below lists possible message types and their icons.

Icon Description

none Indicates an information message.

Indicates a warning message. Warnings are less critical than errors, but they may still
prevent code from being imported or generated.

Indicates an error message. When an error occurs, code generation or import fails.

The buttons available at the top of the Messages window enable you to take the following actions:

Icon Description

Filter messages by severity: information messages, and warnings. Select Check All to
include all severity levels (this is the default behavior). Select Uncheck All to remove all
severity levels from the filter.

Jump to the next error.

Jump to the previous error.

Jump to the next warning.

167

164 186

92 UModel Graphical User Interface Messages Window

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Icon Description

Jump to the previous warning.

Jump to the next line.

Jump to the previous line.

Copy the selected line to the clipboard.

Copy the selected line to the clipboard, including any lines nested under it.

Copy the full contents of the Messages window to the clipboard.

Clear the Messages window.

© 2016-2022 Altova GmbH

Diagram Window 93UModel Graphical User Interface

Altova UModel 2023 Basic Edition

3.10 Diagram Window

Whenever you create a new diagram, or open an existing one, a new Diagram window is loaded in the Diagram
Pane . The diagram window provides the canvas (drawing area) where you design UML diagrams. Various
modeling commands are available when you right-click either the diagram canvas itself, or any element on it.

Importantly, the toolbar buttons and the context menu commands in UModel change based on the type of
diagram that is currently active (in focus). For example, if you click inside a Class diagram, the toolbar buttons
will include only elements applicable to class diagrams. To view the diagram type, click inside an empty area in
the diagram, and observe the "element kind" property displayed in the Properties window . The diagram type
can also be distinguished by the icon accompanying the diagram, see Creating Diagrams .

Diagram window

For information about creating new diagrams, opening existing ones, and manipulating elements inside the
diagram, see the How to Model... chapter.

94

85

119

103

94 UModel Graphical User Interface Diagram Pane

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

3.11 Diagram Pane

The diagram pane hosts all diagram windows that are currently open. For information about creating new
diagrams, opening existing ones, and manipulating elements inside the diagram, see the How to Model...
chapter.

The image below illustrates the diagram pane with four diagram windows open and positioned using the
Window | Cascade menu command.

Diagram pane

Several commands applicable to the current diagram window are available when you right-click the
corresponding window tab at the lower area of the diagram pane.

To apply miscellaneous commands to windows inside the diagram pane, use the commands available in the
Window menu. Several window manipulation commands are also available on the Window dialog box (to open
this dialog box, select the menu command Window | Windows).

103

© 2016-2022 Altova GmbH

Diagram Pane 95UModel Graphical User Interface

Altova UModel 2023 Basic Edition

Windows dialog box

To select multiple windows on the dialog box above, hold down the Ctrl key pressed and click the
corresponding entries.

To cycle through all open diagram windows, press Ctrl+Tab.

96 UModel Command Line Interface

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

4 UModel Command Line Interface

In addition to the graphical user interface, UModel also has a command line interface. To open the command
line interface, run the UModelBatch.exe file available in the C:\Program Files\Altova\UModel2023 directory.
If you run UModel 32-bit on a 64-bit operating system, the path is C:\Program Files (x86)
\Altova\UModel2023.

The command line parameter syntax is shown below, and can be displayed in the command prompt window by
entering: umodelbatch /?

Note: If the path or file name contains spaces, enclose it in quotes, for example: "C:\Program Files\...
\MyProject.ump".

usage: UModelBatch.exe [project] [options]

/? or /help ... display this help information

project ... project file (*.ump)
/new[=file] ... create/save/save as new project, see Creating, Loading, and Saving
Projects in Batch Mode
/set ... set options permanent
/gui ... display UModel user interface

commands (executed in given order):
/chk ... check project syntax
/isd=path ... import source directory
/isp=file ... import source project file
 (*.project,*.xml,*.jpx,*.csproj,*.csdproj,*.vcxproj,*.vbproj,*.vbdproj
,*.sln,*.bdsproj)
/ibt=list ... import binary types (specify binary[typenames] list)
 (';'=separator, '*'=all types, '#' before assembly names)
/ixd=path ... import XML schema directory
/ixs=file ... import XML schema file (*.xsd)
/m2c ... update program code from model (export/forward engineer)
/c2m ... update model from program code (import/reverse engineer)
/ixf=file ... import XMI file
/exf=file ... export to XMI file
/inc=file ... include file
/mrg=file ... merge file
/doc=file ... write documentation to specified file
/lue[=cpri] ... list all elements not used on any diagram (i.e. unused)
/ldg ... list all diagrams
/lcl ... list all classes
/lsp ... list all shared packages
/lip ... list all included packages

options for save as new project:
/npad=opt ... adjust relative file paths (Yes | No | MakeAbsolute)

options for import commands:
/iclg=lang ... code language (Java1.4 | Java5.0 | Java6.0 | Java7.0 | Java8.0 |
Java9.0 |

101

© 2016-2022 Altova GmbH

 97UModel Command Line Interface

Altova UModel 2023 Basic Edition

 Java10.0 | Java11.0 | Java12.0 | Java13.0 | Java14.0 |
Java15.0 |
 C#1.2 | C#2.0 | C#3.0 | C#4.0 | C#5.0 | C#6.0 | C#7.0 |
C#7.1 | C#7.2 | C#7.3 | C#8.0 | C#9.0 |
 VB7.1 | VB8.0 | VB9.0 |
 C++98 | C++11 | C++14 | C++17)
/ipsd[=0|1] ... process sub directories (recursive)
/irpf[=0|1] ... import relative to UModel project file
/ijdc[=0|1] ... JavaDocs as Java comments
/icdc[=0|1] ... DocComments as C# comments
/icds[=lst] ... C# defined symbols
/ivdc[=0|1] ... DocComments as VB comments
/ivds[=lst] ... VB defined symbols (custom constants)
/icppdm[=lst] ... C++ defined macros
/icpphi[=0|1] ... read only C++ header files
/icpphc[=0|1] ... treat .h files a .cpp files
/icppms[=0|1] ... enable C++ Microsoft Compiler compatibility
/icppmv[=ver] ... MSVC version to use (1900 | 1800 | 1700 | 1600 | 1500 | 1400 | 1310
| 1300 | 1200)
/icppsy[=0|1] ... auto detect C++ system include files
/icppid[=lst] ... list of C++ include directories to use
/icppsd[=lst] ... list of C++ system include directories to use
/icppag[=arg] ... Additional C++ arguments for the compiler
/imrg[=0|1] ... synchronize merged
/iudf[=0|1] ... use directory filter
/iflt[=lst] ... directory filter (presets /iudf)

options for import binary types (after /iclg):
/ibrt=vers ... runtime version
/ibpv=path ... override of PATH variable for searching native code libraries
/ibro[=0|1] ... use reflection context only
/ibua[=0|1] ... use add referenced types with package filter
/ibar[=flt] ... add referenced types package filter (presets /ibua)
/ibot[=0|1] ... import only types
/ibuv[=0|1] ... use minimum visibility filter
/ibmv[=key] ... keyword of required minimum visibility (presets /ibuv)
/ibsa[=0|1] ... suppress attribute sections / annotation modifiers
/iboa[=0|1] ... create only one attribute per attribute section
/ibss[=0|1] ... suppress 'Attribute' suffix on attribute type names

options for diagram generation:
/dgen[=0|1] ... generate diagrams
/dopn[=0|1] ... open generated diagrams
/dsac[=0|1] ... show attributes compartment
/dsoc[=0|1] ... show operations compartment
/dscc[=0|1] ... show nested classifiers compartment
/dstv[=0|1] ... show tagged values
/dudp[=0|1] ... use .NET property compartment
/dspd[=0|1] ... show .NET property compartment

options for export commands:
/ejdc[=0|1] ... Java comments as JavaDocs
/ecdc[=0|1] ... C# comments as DocComments
/evdc[=0|1] ... VB comments as DocComments
/espl[=0|1] ... use user defined SPL templates

98 UModel Command Line Interface

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

/ecod[=0|1] ... comment out deleted
/emrg[=0|1] ... synchronize merged
/egfn[=0|1] ... generate missing file names
/eusc[=0|1] ... use syntax check

options for XMI export:
/exid[=0|1] ... export UUIDs
/exex[=0|1] ... export UModel specific extensions
/exdg[=0|1] ... export diagrams (presets /exex)

 /exuv[=ver] ... UML version (UML2.0 | UML2.1.2 | UML2.2 | UML2.3 | UML2.4 | UML2.5 |
UML2.5.1)

options for merge file:
/mcan=file ... common ancestor file

options for documentation generation:
/doof=fmt ... output format (HTML | RTF | MSWORD | PDF)
/dsps=file ... SPS design file

Example 1: Import Java source code and preserve settings
The following command imports source code and creates a new project file. Notice that the project path
contains spaces and is enclosed in quotes.

"C:\Program Files\Altova\UModel2023\UModelBatch.exe" /new="C:\My
Projects\Fred.ump" /isd="X:TestCases\UModel\Fred" /set /gui /iclg=Java8.0 /ipsd=1 /ijdc=1
/dgen=1 /dopn=1 /dmax=5 /chk

The meaning of all options is as follows:

/new Specifies that the newly-created project file should be called "Fred.ump" in C:\My Projects

/isd Specifies that the source directory should be X:\TestCases\UModel\Fred

/set Specifies that any options used in the command line tool will be saved in the registry
(When subsequently starting UModel, these settings become the default settings).

/gui Display the UModel graphical user interface during batch processing.

/iclg UModel will import the code as Java 8.0.

/ipsd=1 Recursively process all subdirectories of the root directory specified in the /isd parameter.

/ijdc=1 Create JavaDoc from comments where appropriate.

/dgen=1 Generate diagrams.

/dopn=1 Open generated diagrams.

/chk Perform a syntax check.

© 2016-2022 Altova GmbH

 99UModel Command Line Interface

Altova UModel 2023 Basic Edition

Example 2: Synchronize code from the model
The following command updates code from an existing project file ("C:\UModel\Fred.ump").

"C:\Program Files\Altova\UModel2023\UModelBatch.exe" "C:
\UModel\Fred.ump" /m2c /ejdc=1 /ecod=1 /emrg=1 /egfn=1 /eusc=1

The meaning of all options is the same as in the previous examples, plus:

/m2c Update the code from the model.

/ejdc Comments in the project model should be generated as JavaDoc.

/ecod=1 Comment out any deleted code.

/emrg=1 Synchronize the merged code.

/egfn=1 Generate any missing file names in the project.

/eusc=1 Use the syntax check.

Example 3: Import Java binaries into the model
Let's assume that some Java binary .class files exist in the C:\JavaProject\bin directory, and you want to
import these binaries into UModel. To do this, run the following command:

"<C:\Program Files\Altova\UModel2023\UModelBatch.exe>" /new="C:
\JavaProject\Result.ump" /ibt=*C:
\JavaProject\bin /iclg=Java8.0 /ibrt=JDK1.8.0_144 /dgen=1 /chk

The options used are as follows:

/new Creates a new UModel project at the specified path.

/ibt Instructs UModel to import binary types. The asterisk before the path indicates that all
binary types at that path must be imported.

/iclg Specifies the code generation language ("Java8.0", in this example).

/ibrt Specifies the runtime environment ("JDK1.8.0_144" in this example). This is the same value
that appears on the "Import Binary Types" dialog box in the "Runtime" drop-down list, see
Importing Java, C# and VB.NET Binaries . You can also use a value like "jdk-10.0.1" as
set in the JAVA_HOME environment variable.

For C#, you can use the value /ibrt:any or otherwise values as they appear in the GUI in
the "Runtime" drop-down list, making sure to omit any spaces. Examples:

/ibrt:any
/ibrt:.NET5
/ibrt:.NETFramework4.8(v4.8.3752)

198

100 UModel Command Line Interface

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

The option "any" is the same as selecting "any (use disassembler)" from the "Runtime"
drop-down list and is the recommended option.

/dgen=1 Generate diagrams.

/chk Perform a syntax check after import.

© 2016-2022 Altova GmbH

Creating, Loading, and Saving Projects in Batch Mode 101UModel Command Line Interface

Altova UModel 2023 Basic Edition

4.1 Creating, Loading, and Saving Projects in Batch Mode

When you run UModelBatch.exe with a command like UModelBatch MyProject.ump, you can use the
following parameters:

/new This parameter defines the path and file name of the new UModel project file (*.ump) to create.
It can also be used to load an existing project and save it under a different name, for example:

UmodelBatch.exe MyFile.ump /new=MyBackupFile.ump

/set This parameter overwrites the current default settings in the registry with the options you
specify.

/gui This parameter displays the UModel graphical user interface (GUI) during the batch process.

The examples below illustrate how to create, load, or save projects in full batch mode (in other words, the /gui
parameter is not set).

new
UModelBatch /new=xxx.ump (options)
creates a new project, executes options, xxx.ump is always saved (regardless of options)

auto save
UModelBatch xxx.ump (options)
loads project xxx.ump, executes options, xxx.ump is saved only if document has changed (like /ibt)

save
UModelBatch xxx.ump (options) /new
loads project xxx.ump, executes options, xxx.ump is always saved (regardless of options)

save as
UModelBatch xxx.ump (options) /new=yyy.ump
loads project xxx.ump, executes options, always saves xxx.ump as yyy.ump (regardless of options)

The examples below illustrate how to create, load, or save projects in batch mode with UModel user interface
visible (the /gui parameter is set).

new
UModelBatch /gui /new (options)
creates a new project, executes options, nothing saved, the GUI is left open

save new
UModelBatch /gui /new=xxx.ump (options)
creates a new project, executes options, xxx.ump saved, the GUI is left open

user mode
UModelBatch /gui xxx.ump (options)
loads project xxx.ump, executes options, nothing saved, the GUI is left open

save

102 UModel Command Line Interface Creating, Loading, and Saving Projects in Batch Mode

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

UModelBatch /gui xxx.ump (options) /new
loads project xxx.ump, executes options, xxx.ump is saved, the GUI is left open

save as
UModelBatch /gui xxx.ump (options) /new=yyy.ump
loads project xxx.ump, executes options, xxx.ump is saved as yyy.ump, the GUI is left open

 The project will be saved successfully provided that no critical errors occur while executing the options.

© 2016-2022 Altova GmbH

 103How to Model...

Altova UModel 2023 Basic Edition

5 How to Model...

Altova website: UML modeling

This chapter provides instructions for creating and manipulating UML elements, diagrams, and relationships
from the UModel graphical user interface. It is intended as a "how to" guide to modeling with UModel. The
enclosed instructions are generic across UModel and not specific to a particular element or diagram type,
unless explicitly mentioned. For information applicable to (and grouped by) each diagram type, refer to the UML
Diagrams chapter.

The information in this chapter is organized into the following categories: Elements, Diagrams, Relationships,
and Stereotypes.

Elements Diagrams Relationships Stereotypes

Creating Elements Creating Diagrams Creating
Relationships

Stereotypes and Tagged
Values

Inserting Elements from
the Model into a
Diagram

Generating Diagrams Changing the Style of
Lines and
Relationships

Tagged Values

Renaming, Moving, and
Copying Elements

Opening Diagrams Viewing Element
Relationships

Applying Stereotypes

Deleting Elements Deleting Diagrams Associations Showing or Hiding
Tagged Values

Converting Elements Changing the Style of
Diagrams

Collection
Associations

Finding and Replacing
Text

Aligning and Resizing
Modeling Elements

Containment

Checking Where and If
Elements Are Used

Type Autocompletion in
Classes

Constraining
Elements

Zooming into/out of
Diagrams

Hyperlinking
Elements

Documenting
Elements

Changing the Style of
Elements

Note: UModel includes several example projects that you can explore in order to learn the modeling basics
and the graphical user interface. These can be found at the following path: C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples.

288

104 119

130 140

105

120

131

141

107

122

133

142

108 123 133

144

109

123 136

109 125

139

111 127

112 129

113

116

117

https://www.altova.com/umodel

104 How to Model... Elements

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

5.1 Elements

5.1.1 Creating Elements

With UModel, new elements can be created as follows:

· From the Model Tree window. With this approach, elements are added to the model only, and you
can insert them later into diagrams if necessary.

· From any diagram window. Any elements added to a diagram are also automatically added to the
model as well. Should you need to delete an element later, you can choose whether it should be
removed from the diagram only, or deleted from the model as well.

To add elements from the Model Tree window:

· In the Model Tree window (or Favorites window), right-click the element (for example, package)
under which you want the new element to appear, and select New Element | <Element Name> from
the context menu. For example, to add a new package under the "Root" package, right-click the
"Root" package, and select New Element | Package.

To add elements from the Diagram window:

1. Create a new diagram (see Creating Diagrams) or open an existing one (see Opening Diagrams
).

2. Do one of the following:
a. Right-click inside the diagram and select New | <Element Name> from the context menu.
b. Click the toolbar button of the element you wish to add, and then click inside the diagram. To

insert multiple elements of the same type, hold down the Ctrl key before clicking inside the
diagram.

Packages
As you model elements, you will likely need to work with packages more often than with other elements. Each

entry marked with a folder symbol in the Model Tree window represents a UML package. Packages in
UModel serve as containers for all other UML modeling elements (including diagrams, classes, and so on) and
have the following behavior:

· They can be created at any position in the Model Tree.
· They can be moved or copied to other packages (as well as into valid model diagrams), see Renaming,

Moving, and Copying Elements .
· They can be used as source or target elements when code is generated or synchronized with the

model, see Forward Engineering (from Model to Code) and Reverse Engineering (from Code to
Model) .

When you create a new UModel project, two packages are available by default, the "Root" and "Component
View" packages. These two packages are the only ones that cannot be renamed or deleted. The "Root"
package serves as starting point for modeling all other elements, while the "Component View" package is
required for code engineering.

79

79 84

119 122

107

60

69

© 2016-2022 Altova GmbH

Elements 105How to Model...

Altova UModel 2023 Basic Edition

Default UModel packages

5.1.2 Inserting Elements from the Model into a Diagram

Elements present in the model can be inserted into a diagram either individually or as a group. To select
multiple elements from the Model Tree window, hold down the Ctrl key while clicking each item. There are two
ways to insert elements into a diagram: drag left, and drag right.

· Drag left (holding down the left mouse button and releasing it in the diagram) inserts elements
immediately at the cursor position. In this case, any associations, dependencies etc. that exist
between the currently inserted elements and the new one, are automatically displayed.

· Drag right (holding down the right mouse button and releasing it in the diagram) opens a context
menu from which you can select the specific associations, generalizations you want to display.

For example, let's suppose that you want to create a new class diagram from a class that already exists in the
model. To illustrate this scenario, open the sample project Bank_MultiLanguage.ump available at the
following path: C:\Users\<username>\Documents\Altova\UModel2023\UModelExamples. Assuming that
you want to replicate the "Account Hierarchy" diagram in a new class diagram, do the following:

1. Right-click the bankview package and select New Diagram | Class Diagram.
2. Locate the abstract Account class in the model tree, and use drag right to place it in the new

diagram. For this example, we would like to display the class together with its derived classes. To
achieve this, select Insert with Generalization Hierarchy (specific) from the context menu.

106 How to Model... Elements

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

3. Select or clear the check boxes for specific items you want to appear in the diagram.

4. Click OK. The Account class, together with its three subclasses, is inserted into the diagram. The
Generalization arrows are also automatically displayed. To automatically arrange the classes inside
the diagram, run the menu command Layout | Autolayout All | Hierarchic.

If you had selected the Insert command instead of Insert with Generalization Hierarchy (specific), the
class would have been added to the diagram without any derived classes. Note that you can still display the
generalization hierarchy later, as follows:

· Right-click the Account class in the diagram and select Show | Generalization hierarchy from the
context menu. As a result, the derived classes are inserted into the diagram as well.

© 2016-2022 Altova GmbH

Elements 107How to Model...

Altova UModel 2023 Basic Edition

5.1.3 Renaming, Moving, and Copying Elements

You can cut, copy, rename and move elements in the Model Tree window and inside diagrams of the same
type. These actions may also be possible across diagrams of different type if applicable. You can also copy or
move elements from the Model Tree window into a diagram, provided that the diagram is allowed to contain the
corresponding element according to the UML specification.

To rename an element:

· Double-click the element name and edit it.
· Alternatively, click the element and press F2.

The procedures above apply regardless of the window in which the element is displayed, including the Model
Tree window, Properties window, and the Diagram window.

The "Root" and "Component View" packages are displayed at all times in the Model Tree window and
cannot be renamed or deleted.

To copy or move elements:

· Use the standard Windows commands Cut, Copy, or Paste. These commands can be triggered from
keyboard shortcuts (Ctrl+X, Ctrl+C, Ctrl+V, respectively), from the corresponding toolbar buttons, as
well as from the Edit menu.

· Alternatively, drag an element to a destination package (or element). Dragging an element moves it.
Holding down the Ctrl key and dragging an element creates a copy of it.

For example, in a diagram, you can move a class member to another class by dragging it from the source
class to the destination class. To copy the class member rather than moving it, first select it, and then drag it
to the destination class while holding down the Ctrl key.

If you paste a class into the same package, the new class is created with a sequential number appended to
the end, for example, "MyClass1". Likewise, if you paste a property inside the same class, the new property is
created with a sequential number appended to the end, for example, "MyProperty1". The same applies for other
class members, such as operations and enumerations. The same logic is also applicable when you paste
elements in the same diagram, provided that the diagram belongs to the same package as the elements that
are being pasted.

If you paste a class into a different package, the new class will have the same name as the original class. The
same logic applies when you copy class members (such as properties, operations, and so on) to a different
class.

By default, any element that is pasted into a diagram is automatically added to the model as well (and thus is
visible in the Model Tree window). However, you can also copy and paste an element into the current diagram
only, without adding it to the model. To do this, first copy the element, right-click on the diagram, and then
select Paste in Diagram only from the context menu. The Paste in Diagram only command also appears
when you drag an existing item into the same diagram while holding the Ctrl key pressed.

79

108 How to Model... Elements

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

In the example above, Paste will create the new class in the diagram and add it to the model as well, while
Paste in Diagram only will only display a second view of it on the diagram. Note that copies created using the
second approach are merely additional views of the original element and link to it; they are not standalone
copies. (For example, renaming a property in the duplicated class will automatically apply the same change to
the original class.)

5.1.4 Deleting Elements

Elements can be deleted in one of the following ways:

· From the Model Tree window. Use this approach if the element should be deleted from the project as
well as any diagrams where it is present.

· Directly from diagrams where they occur. In this case, you can choose whether the element should be
removed from the diagram only, or deleted from the model (project) as well.

To delete elements from the project and all related diagrams (approach 1):

1. In the Model Tree window, click the element you want to delete. Hold the Ctrl key down to select
multiple elements.

2. Press Delete.

To delete elements from the project and all related diagrams (approach 2):

1. Open a diagram and click the element you want to delete. Hold the Ctrl key down to select multiple
elements.

2. Press Delete. A dialog box appears asking to confirm that you want to delete the element both from
the project and the diagram.

3. Click Yes. The element is deleted both from the diagram and the project.

To delete elements from the diagram but not from the project:

1. Open a diagram and click the element(s) you want to remove. Hold the Ctrl key down to select
multiple elements.

2. Hold down the Ctrl key and press Delete. The elements are deleted from the diagram but still kept in
the project.

Before you delete elements from a project, you may want to check if they are used in any diagrams.

© 2016-2022 Altova GmbH

Elements 109How to Model...

Altova UModel 2023 Basic Edition

· Right-click an element in the Model Tree, and then select Show element in all diagrams from the
context menu.

Likewise, when a diagram is open, you can quickly select an element in the Model Tree, as follows:

· Right-click the element on the diagram, and select Select in Model Tree from the context menu.
· Alternatively, click the element on the diagram and press F4.

5.1.5 Converting Elements

Some of the elements support quick conversion to some other element kind. This action may be useful, for
example, if you started designing a class but would like to change it later to an interface, or vice versa. More
specifically, the following kinds of elements support conversion to any other item in the list:

· Class
· Interface
· Enumeration
· PrimitiveType
· DataType

You can convert the element kinds listed above either from the Diagram window or from the Model Tree .

To convert elements:

1. Open a diagram that includes classes, interfaces, enumerations, primitive types or data types (for
example, a class diagram). Alternatively, locate any of these element kinds in the Model Tree.

2. Right-click the element of interest (for example, a class) and select Convert To | <element kind>
from the context menu.

After conversion, the name of the element is preserved. If possible, the data associated with the element is also
preserved. For example, a conversion from interface to class or from class to interface preserves data such as
properties or operations. However, a conversion from a class or interface to an enumeration will result in data
loss. In such cases, if necessary, you can restore the previous state of the element by running the Undo
(Ctrl+Z) command.

5.1.6 Finding and Replacing Text

You can search for modeling elements, diagrams, text, and so on, inside any of following windows:

· Diagram window
· Model Tree window
· Diagram Tree window
· Favorites window
· Documentation window
· Messages window

The search scope is applicable to the window where the cursor is currently placed. Therefore, if you want to
search for text inside a diagram, for example, click inside the diagram first. Likewise, if you want to search for
an item in the UModel project, click inside the Model Tree window first.

83 79

110 How to Model... Elements

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

To search for text or elements:

1. Click inside the window where you want to find text.
2. Do one of the following:

a. Type the search text in the text box of the main toolbar, and then click Find Next or press F3.
To go to the previous occurrence, press Shift+F3.

b. On Edit menu, click Find (or press Ctrl+F).

Find and replace
You can also find and replace text (for example, in order to quickly rename modeling elements). When the
element is found, it is highlighted in the diagram as well as in the Model Tree. Search and replace works in the
following windows:

· Diagram window
· Model Tree window
· Diagram Tree window
· Favorites window
· Documentation window

To find and replace text:

1. Click inside the window where you want to find/replace text.
2. Do one of the following:

c. Click the Replace toolbar button.
d. On the Edit menu, click Replace (or press Ctrl+H).

© 2016-2022 Altova GmbH

Elements 111How to Model...

Altova UModel 2023 Basic Edition

5.1.7 Checking Where and If Elements Are Used

While navigating the elements in the Model Tree, you might want to see where, or if, the element is actually
present in a model diagram. To find where elements are used, do one of the following:

· Right-click the element in the Model Tree window, and select Show element in all diagrams (or, if a
diagram is currently open, Show element in active diagram).

You can also find elements not used in any diagram either for the entire project, or for individual packages.

To find unused elements in the entire project:

· On the Project menu, click List elements not used in any diagram.

To find unused elements for a specific package:

· Right-click the package you would like to inspect, and select List elements not used in any
diagram.

A list of unused elements appears in the Messages window. Note that the unused elements are displayed for
the currently selected package and its subpackages. Items inside parentheses are elements which have been
configured to appear in the unused list, from Tools | Options | View tab.

112 How to Model... Elements

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Click the element name in the Messages window to locate it in the Model Tree.

5.1.8 Constraining Elements

Constraints can be defined for most model elements in UModel. Note that constraints are not checked by the
syntax checker, because they are not part of the code generation process.

To constrain an element (from the Model Tree):

1. Right-click the element you want to constrain, and select New Element | Constraints | Constraint.
2. Enter the name of constraint and press Enter.
3. Type the constraint text in the "specification" field of the Properties window (for example, name length

> 10).

To constrain an element (from a diagram):

1. Double-click the specific element to be able to edit it.
1. Type "#", and then type the constraint text inside curly braces, for example, #{interestRate >=0}.

© 2016-2022 Altova GmbH

Elements 113How to Model...

Altova UModel 2023 Basic Edition

To assign constraints to multiple modeling elements:

1. Select a constraint in the Model Tree window.
2. Right-click the "constrained elements" property the Properties window, and select Add element to

constrained elements.

3. Select the specific element you want to assign the current constraint to. Hold down the Ctrl key to
select multiple elements.

The "constrained elements" field contains the names of the modeling elements it has been assigned to. For
example, in the image above, Constraint1 has been assigned to the following properties: interestRate,
interestRateOnBalance, interestRateOnCashAdvance.

5.1.9 Hyperlinking Elements

You can manually create hyperlinks between most modeling elements (except lines) and any of the following:

· Other elements (either on the diagram or in the Model Tree)
· Diagrams
· Files external to the project (for example, PDF, Word, or Excel documents, graphics files, and so on)
· Web pages

114 How to Model... Elements

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

A single element can have one or more hyperlinks of any of the kinds mentioned above. In a diagram, elements
that contain hyperlinks can be easily recognized by the hyperlink icon that is visible next to them (either in
the right or left corner). To open the hyperlink target, right-click the hyperlink icon on the element and select
the target. If there is only one hyperlink defined, you can also click and access the target directly.

Class containing hyperlinks

Tip: As you navigate through the UModel graphical user interface, either with or without hyperlinks, you can

easily go back and forward between views by clicking the Back or Forward toolbar
buttons, respectively.

You can automatically generate hyperlinks between dependent packages and diagrams when importing source
code or binary files into a model, provided that you selected the specific settings on the import dialog box. For
more information, see Importing Source Code and Importing Java, C# and VB.NET Binaries . Also, when
you generate UML documentation from the project, you can choose whether to include hyperlinks in the
generated output, see Generating UML documentation .

You can create hyperlinks not only from elements that appear in the diagram or in the Model Tree window, but
also from text within notes, as well as text in the Documentation window, as shown in the instructions below.

To create a hyperlink from an element:

1. Right-click an element on a diagram or in the Model Tree window, and select Hyperlinks | Insert/Edit
Hyperlinks from the context menu.

2. Click Add, and select a hyperlink kind (element, diagram, file, or a Web link).

186 198

277

© 2016-2022 Altova GmbH

Elements 115How to Model...

Altova UModel 2023 Basic Edition

3. Do one of the following:
· To create a diagram or hyperlink, select the target element or diagram when prompted.
· To create a file hyperlink, click the Ellipsis button and browse for the target file.

· To create a Web link, type the target address in the "Address" column of the dialog box, for
example:

4. Optionally, enter a custom link name in the "User defined name" column. If defined, this custom name
will be displayed in the UModel's graphical interface instead of the target path (or address).

To create a hyperlink inside a note:

· Select some text inside the note, right-click it and then select Insert/Edit Hyperlinks from the context
menu. The same instructions apply for text in the Documentation window.

116 How to Model... Elements

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

To change or remove a hyperlink:

· Right-click the hyperlink icon on the element (or the hyperlinked text), and use the appropriate
command in the "Edit Hyperlinks" dialog box.

5.1.10 Documenting Elements

You can add documentation comments to modeling elements as follows:

· Click the element (either in the diagram or in the Model Tree window).
· Enter text in the Documentation window.

Any documentation text will be saved together with the project.

When an element is selected, its documentation is visible at all times in the Documentation window, if
available. You can also display documentation as a comment on the diagram, as follows:

· Right-click the element on the diagram, and select Show | Annotating Comments from the context
menu.

Documentation hyperlinks
To create a hyperlink inside the Documentation window, select some text inside the window, right-click it and
then select Insert/Edit Hyperlinks from the context menu. The hyperlink target can be a Web site, a diagram,
a file, or another element, see also Hyperlinking Elements .

Documentation window

Code generation and documentation comments
If you generate code from class diagrams, any comments applied to classes and their members (in class
diagrams) can be exported to the generated code as well. To do this, select the check box Write
Documentation as Java Docs (for Java) or Write Documentation as DocComments (for C#, VB.NET)
before generating program code, see also Code Generation Options .

113

169

© 2016-2022 Altova GmbH

Elements 117How to Model...

Altova UModel 2023 Basic Edition

Likewise, if you reverse engineer program code into a model, the code comments can be imported into the
model. To do this, select the check box JavaDocs as Documentation (for Java) or DocComments as
Documentation (for C#, VB.NET) before reverse engineering program code, see also Code Import Options .

For information about how comments in program code (or XML schemas) map to UModel comments, refer to
the mapping tables for each language:

· C# Mappings
· VB.NET Mappings
· Java Mappings
· XML Schema Mappings

5.1.11 Changing the Style of Elements

You can change the appearance (style) of modeling elements, including their color, font size, font weight,
background color, line thickness, and others. The appearance of elements can be changed at various levels:
globally for all elements in the project, selectively for all elements of the same family (for example, classes), or
for each individual element. For information about changing the style of the diagram itself, see Changing the
Style of Diagrams .

If you would like to use custom images instead of conventional element representations in diagrams, this is
possible by extending your project with custom profiles and stereotypes. For more information, see Example:
Customizing Icons and Styles .

To change the appearance of elements:

1. Click the element on a diagram.
2. Notice the dropdown list at the top of the Styles Window and do one of the following as applicable:

a. To edit the properties of the current element only, select "Element Styles" from the list.

b. To edit the properties of all elements of the same kind (for example, classes), select "Element
Family Styles" from the list.

c. To edit the properties of all elements globally at the project level, select "Project Styles".
d. To edit the properties of all lines in the project, including association, dependency, and realization

lines, select "Line Styles". (This value is only visible if the currently selected element is a line.)
e. To edit the properties of all elements that are not lines (the so-called "nodes") across the project,

select "Node Styles". (This value is only visible if the currently selected element is not a line.)

188

218

238

252

258

123

413

118 How to Model... Elements

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

3. Change the value of the required property (for example, "Fill Color").

A more specific style overrides a more generic style. That is, styles applied at individual element level
override those applied at element family level. Likewise, styles applied at element family level override
those applied at project level.

When a style is overridden, a small red triangle appears in the upper-right corner of the overridden property.
Move the cursor over the triangle to display a tooltip with information about style precedence.

Overridden element style

© 2016-2022 Altova GmbH

Diagrams 119How to Model...

Altova UModel 2023 Basic Edition

5.2 Diagrams

5.2.1 Creating Diagrams

Diagrams represent visually how modeling elements interact, what is their structure, dependencies, hierarchy,
and so on. Diagrams must belong to a package in the project, and therefore must be created under an existing
package in the Model Tree window. You can move diagrams from one package to another at any time, by
dragging them into a destination package.

To create a new diagram:

1. Right-click a package in the Model Tree window .
2. Select New Diagram | <Diagram Kind>.

You can also create a new diagram from the Diagram Tree window , as follows:

1. Right-click the root node ("Diagrams") in the Diagram Tree window.
2. Select a package where the diagram should belong, and click OK.

When the diagram window is active, the toolbars display only modeling elements applicable to the current
diagram kind. The diagram kind is displayed in the Properties window after you click an empty area of the
diagram. In addition to this, the following icons depict the diagram kind.

Icon Description

Activity Diagram

Class Diagram

Communication Diagram

Component Diagram

Composite Structure Diagram

Deployment Diagram

Interaction Overview Diagram

Object Diagram

Package Diagram

Profile Diagram

Protocol State Machine Diagram

Sequence Diagram

State Machine Diagram

79

83

120 How to Model... Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Icon Description

Timing Diagram

Use Case Diagram

XML Schema Diagram

5.2.2 Generating Diagrams

In addition to creating diagrams from scratch, you can also generate certain diagrams automatically from
existing modeling elements or from program code. This topic shows you how to generate diagrams from
existing modeling elements. For information about how to generate diagrams from source code, see:

· Generating Class Diagrams
· Generating Sequence Diagrams from Source Code
· Generating Package Diagrams While Importing Code or Binaries

To generate diagrams from existing elements, right-click an element (for example, package) in the Model Tree,
and then select Show in new diagram | <option> from the context menu. Below are some examples:

To create a diagram which shows the contents of an existing package:

· Right-click a package in the Model Tree window and select Show in new Diagram | Content from
the context menu.

To create a diagram which shows the dependencies of an existing package:

· Right-click a package in the Model Tree window and select Show in new Diagram | Package
dependencies from the context menu.

To create a diagram which shows the generalization hierarchy of a class:

1. In the Model Tree window, right-click a class which has generalization relationships to or from other
classes (for example, class Account from the sample project C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples\Bank_CSharp.ump).

391

358

400

© 2016-2022 Altova GmbH

Diagrams 121How to Model...

Altova UModel 2023 Basic Edition

2. Select Show in new diagram | Generalization hierarchy from the context menu. A dialog box
appears where you can adjust the preferences for the diagram to be created, including the diagram
type. Notice the text "N diagram-items", which displays the number of items that are to be added to
the diagram. In the example below, the chosen diagram type is "Class Diagram" and there will be four
diagram items (classes) on the diagram: the Account class and three classes derived from it.

3. Click OK. The diagram is generated according to the selected options and opens in the Diagram
window, for example:

122 How to Model... Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

5.2.3 Opening Diagrams

If the UModel project contains diagrams, these are displayed in the Diagram Tree window.

Diagram Tree window

Note: By default, diagrams are grouped by type in the Diagram Tree window. To display only diagrams
(without parent groups), right-click inside the window and clear the Group by diagram type context
menu option.

Diagrams are also displayed in the Model Tree window under the packages where they belong, for example:

© 2016-2022 Altova GmbH

Diagrams 123How to Model...

Altova UModel 2023 Basic Edition

To open an existing diagram:

· Double-click the diagram icon in the Model Tree window (or in the Diagram Tree window, or in the
Favorites window).

· Right-click the diagram, and select Open diagram from the context menu.

5.2.4 Deleting Diagrams

UModel diagrams can be deleted in one of the following ways:

· In the Model Tree window (or Diagram Tree window, or Favorites window), right-click the diagram, and
then select Delete from the context menu.

· Click the diagram in any of the windows mentioned above, and then press Delete.

Deleting a diagram does not remove any elements from the project except the diagram itself. To check if
elements are used in any diagrams, right-click the package you would like to inspect, and select List
elements not used in any diagram, see also Checking Where and If Elements Are Used .

For information about deleting elements from a diagram or from a project, see Deleting Elements .

5.2.5 Changing the Style of Diagrams

You can change the appearance (style) of a diagram, including the background color, grid visibility, grid size
and color, as well as the appearance of the diagram heading. You can either change the style of individual
diagrams in the project, or apply the same properties to all diagrams in the project. For information about
changing the style of elements inside a diagram, see Changing the Style of Elements .

111

108

117

124 How to Model... Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

The size of diagrams is defined by elements and their placement. To enlarge the diagram size, drag an element
to one of the diagram edges and the size will adjust accordingly.

To change the appearance of diagrams:

1. Open a diagram (see Opening Diagrams).
2. Notice the dropdown list at the top of the Style Window and do one of the following as applicable:

a. To edit the properties of the current diagram only, select "Diagram Styles" from the list. This value
is selected by default if you click anywhere where the diagram background is empty (that is, when
you do not click any diagram elements).

b. To apply changes to all diagrams in the project, select "Project Styles". In this case, scroll down
to the end of the Styles window until you find the styles applicable to diagrams (that is, the ones
that begin with "Diag.").

3. Change the value of the required property (for example, "Diagram Background Color").

Styles applied at diagram level override those applied at project level.

When a style is overridden, a small red triangle appears in the upper-right corner of the overridden property.
Move the cursor over the triangle to display a tooltip with information about style precedence.

122

© 2016-2022 Altova GmbH

Diagrams 125How to Model...

Altova UModel 2023 Basic Edition

Overridden diagram style

The following diagram-specific properties are available as toolbar buttons. Changing the property in the Styles
window will update the state of the toolbar button, and vice versa.

Show grid Shows or hides the diagram grid.

Show diagram
heading

Shows or hides the diagram heading.

Snap to grid When enabled, this property makes all elements adhere to the grid. When
disabled, elements are positioned regardless of the grid pattern.

5.2.6 Aligning and Resizing Modeling Elements

You can change the size of elements on the diagram as follows:

1. Click an element on the diagram. A set of black dots appear at the element's edges.

2. Drag any of the black dots into the direction where you want the element to grow.

To reset the element size to its default boundaries, do one of the following:

· Click the Enable Autosize icon at the lower-right corner of the element.

126 How to Model... Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

· Right-click an element on the diagram, and select Autosize from the context menu.
· Select one or more elements. On the Layout menu, click Autosize.

When at least two modeling elements are selected on the diagram, they can be aligned in relation to each
other (for example, both can be aligned to have the same horizontal or vertical position, or even size). The
commands which align or resize elements are available in the Layout menu and in the Layout toolbar.

Layout toolbar

When you select several elements, the element that was selected last serves as a template for the
subsequent align or resize commands. For example, if you select three class elements and run the Make
same width command, then all three will be made as wide as the last class you selected. The element
that was selected last always appears with a dashed border.

The commands specific to element alignment and resizing are as follows:

Icon Command Notes

Align left

Align right

Align top

Align bottom

Center vertically

Center horizontally

Space across This command is available when three or more elements are
selected. It distributes the horizontal space evenly between
selected elements.

Space down This command is available when three or more elements are
selected. It distributes the vertical space evenly between selected
elements.

Line up horizontally This command repositions all selected elements on the diagram
so that they are arranged horizontally one after the other.

© 2016-2022 Altova GmbH

Diagrams 127How to Model...

Altova UModel 2023 Basic Edition

Icon Command Notes

Line up vertically This command repositions all selected elements on the diagram
so that they are arranged vertically one after the other.

Make same width

Make same height

Make same size

You can also automatically layout all elements in the diagram, as follows:

· On the Layout menu, click Autolayout All and choose one of the following options: Force Directed,
Hierarchic, or Block.

Force Directed Displays the modeling elements from a centric viewpoint.

Hierarchic Displays elements according to their hierarchical relationships. For example, a
superclass will be placed above any of its derived classes.

The hierarchical layout options can be customized from the Tools | Options
menu, View tab, Autolayout Hierarchic group.

Block Displays elements grouped by element size in rectangular fashion.

5.2.7 Type Autocompletion in Classes

When you add operations and attributes to a class, autocompletion of data types is enabled by default in
UModel. This makes it possible to specify the data type of the operation or property directly on the diagram, for
example:

1. Right-click a class, and select New | Operation from the context menu.
2. Type the name of the operation after the double angle brackets << >>, and then type the colon (:)

character.
3. An autocompletion window is automatically opened.

128 How to Model... Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Autocompletion window

The autocompletion window has the following features:

· Clicking a column name sorts the window by that attribute in ascending or descending order.
· The window can resized by dragging the bottom-right corner.
· The window contents can be filtered by clicking the respective filters (categories) at the bottom of the

window: Class, Interface, PrimitiveType, DataType, Enumeration, Class Template, Interface Template,
DataType Template.

To enable only one of the filters at a time:

· Click the Single mode button . The image above shows the autocompletion window in "multi-
mode", that is, all filters are enabled. The single mode button is not enabled.

To select or clear all filters simultaneously:

· Click the Set All Categories or Clear All Categories buttons, respectively.

To disable autocompletion:

1. On the Tools menu, click Options, and then click the Diagram Editing tab.
2. Clear the Enable automatic entry helper check box.

To trigger autocompletion on demand (when it is disabled):

1. Make sure that the cursor is inside an attribute or operation of a class, after the colon (:) character.
2. Press Ctrl+Space.

© 2016-2022 Altova GmbH

Diagrams 129How to Model...

Altova UModel 2023 Basic Edition

5.2.8 Zooming into/out of Diagrams

To zoom into or out of a diagram, do one of the following:

· Run the menu command View | Zoom In (Ctrl+Shift+I) or View | Zoom out (Ctrl+Shift+O).
· Select a predefined percentage value from the Zoom toolbar.

· Hold down the Ctrl key while rotating the mouse wheel.

To fit the diagram area to the visible window:

· Run the menu command View | Fit to window (or click the Fit to window toolbar button).

130 How to Model... Relationships

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

5.3 Relationships

5.3.1 Creating Relationships

A relationship typically needs two elements, so your diagram must already contain the elements between
which you want to add relationships. You can create relationships as follows:

1. By using a toolbar button that depicts the relationship you need (for example, Association).
2. By using handles that appear when you click on any element on the diagram.

Creating relationships using toolbar buttons
When a diagram window is active in UModel's main pane (in focus), the toolbar displays all the elements and
relationships supported by that diagram. For example, a Class diagram provides toolbar buttons for all

supported relationships, including Association , Collection Association , Aggregation , Composition

, Realization , Generalization , and others. Likewise, a Use Case diagram provides toolbar buttons for

Associations , Generalizations , as well as Include and Extend relationships.

The instructions below illustrate how to create an association relationship between an actor and a use case.
Use the same approach for other relationships you might need.

1. Click an element on the diagram (actor "Standard User", in the image below).

2. Click the toolbar button corresponding to the relationship you need (Association , in this example).
3. Move the mouse over "Standard User" and drag onto a target element ("get account balance" use

case). Note that the target element is highlighted in green color and accepts the relationship only when
it is meaningful according to UML specifications.

Association in a Use Case diagram

Creating relationships using handles
When you click an element on a diagram, several handles may appears to the left, right, top, or bottom of the
element. The handles appear only for elements which support relationships. Each handle corresponds to a
relationship kind. For example, class elements have the following handles:

© 2016-2022 Altova GmbH

Relationships 131How to Model...

Altova UModel 2023 Basic Edition

· InterfaceRealization
· Generalization
· Association
· Collection Association

To view the relationship kind that each handle creates, move the mouse over the handle. For example, in the
image below, the selected top handle can be used to create a Generalization relationship.

To create the relationship, click the handle and drag the cursor over a destination element. This creates the
corresponding relationship (Generalization, in this case).

Generalization relationship between two classes

5.3.2 Changing the Style of Lines and Relationships

You can change the thickness, color, and bending style of lines from the Styles window. You can also add text
(labels) to relationships, reposition labels, and hide/show labels on the diagram either individually for each
relationship or in batch.

Note: In the instructions below, it is important to distinguish between "lines" (any line on the diagram) and
"relationships" such as association, generalization, composition, and so on. All relationships are lines,
but the opposite is not true. For example, a comment or note link is just a line, not a relationship.

To change line properties:

1. Click a line on the diagram.
2. In the Styles window, set the required property (for example, "Line Thickness").

132 How to Model... Relationships

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

The values available for the "Line Style" property are also available as commands under the Layout | Line
Style menu, and as toolbar buttons. If you change this property, the corresponding toolbar button will become
enabled, and vice versa.

Orthogonal line A line with this style will only bend at straight angles.

Direct line A line with this style will make a direct connection between two elements,
without any waypoints.

Custom line A line with this style can bend at any angle. To move the line, drag any
waypoint (small black dots) on the line. To create new waypoints, click in
between two existing waypoints, and drag the line. To delete waypoints,
drag a waypoint directly on the top of an existing one.

Line styles, just like other element styles, can be set for each individual line, or at a more generic level
(project level, for example). The more specific style overrides the generic one. When a style is overridden,
this is indicated by a red triangle next to the affected property in the Styles window, see also Changing the
Style of Elements .

To add label text to a relationship:

· Click a relationship on the diagram, and start typing.

To move the label text:

· Click the label, and the drag it to some other position on the diagram.
· To move the label back to the default position, right-click the relationship, and select Text Labels |

Reposition Text Labels from the context menu.

117

© 2016-2022 Altova GmbH

Relationships 133How to Model...

Altova UModel 2023 Basic Edition

· To reposition multiple labels simultaneously, select one or more relationships on the diagram, and then
run the menu command Layout | Reposition Text Labels.

To show or hide the label text:

· Right-click the relationship, and select Text Labels | Show/Hide all Text Labels from the context
menu.

5.3.3 Viewing Element Relationships

By default, the relationships of an element are visible in the Model Tree window under that specific element. For
example, the CheckingAccount class illustrated below has a Generalization relationship with the Account
class:

Relationship in the Model Tree window

Note: To hide relationships from the Model Tree window, right-click inside the window and clear the Show
Relations in Tree option.

To show the relationships of an element on the diagram, right-click the element on the diagram, and select
Show | <relationship kind> from the context menu.

5.3.4 Associations

An association is a conceptual connection between two elements. You can create association relationships
like any other relationship in UModel, see Creating Relationships .

When you create an association between two classes, a new attribute is automatically inserted in the
originating class. For example, creating an association between Car and Engine classes adds a property of
type Engine to the Car class.

130

134 How to Model... Relationships

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

When a class is added to a diagram, its associations are shown automatically on the diagram, provided that
the following conditions are met:

· The option Automatically create Associations is enabled from Tools | Options | Diagram Editing
tab.

· The attribute's type is set (in the image above, Property1 is of type Engine)
· The class of the referenced "type" is also present in the current diagram (in the image above, the class

Engine).

You can also explicitly show the class properties of any class as associations on the diagram. To do this,
right-click a class property, and select one of the following commands:

· Show | <Property> as Association
· Show | All Properties as Associations

When you click an association on the diagram, its properties can be changed, if necessary, from the
Properties window.

It is important to note the properties listed below. Modifying these properties changes the appearance of the
association on the diagram, or adds various informative text labels. For information about showing or hiding text
labels, or changing the appearance of the relationship (such as color or line thickness), see Changing the Style
of Lines and Relationships .

131

© 2016-2022 Altova GmbH

Relationships 135How to Model...

Altova UModel 2023 Basic Edition

Property Purpose

A: name The name of the member on end A of the relationship. In the car example above, it
is Property1.

A: aggregation Enables you to change the type of association on end A. Changing this property
will also change the representation of the association on the diagram. Valid
values:

none Denotes a normal association

shared Changes the association into an aggregation

composite Changes the association into a composition

A: memberEndKind Attributes participating in a relationship can belong either to a class or to the
association. This property specifies who owns this end of the relationship and
whether this end of the relationship is navigable. ("Navigable" means that the end
has an "arrow" ending). Valid values:

memberEnd Member on this end belongs to the class.

ownedEnd Member on this end belongs to the association

navigableOwnedEnd Member on this end belongs to the association and
this end becomes navigable.

Setting both A and B ends to ownedEnd makes the association bi-directional.

A: multiplicity Multiplicity specifies the number of objects at this end of the relationship. For
example, if a car has four wheels, multiplicity would be 1 on one end and 4 on the
other end of the relationship.

The same set of attributes are available for end B of the relationship.

If enabled, the property Show Assoc. Ownership in the Styles window displays ownership dots for the
selected relationship. By default, this property is set to False. The following is an example of a class where
Show Assoc. Ownership is set to True:

136 How to Model... Relationships

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Creating reflexive associations
Associations can be created using the same class as both the source and target. This is a so-called "self link",
or reflexive association. It may describe, for example, the ability of an object to send a message to itself, for

recursive calls. To create a self link, click the association toolbar button , then drag from the element,
dropping somewhere else on the same element.

Creating association qualifiers
Associations can be optionally decorated with association qualifiers. Qualifiers are attributes of an association.
In the example below, the association qualifier isbn specifies that a book can be retrieved from the list of books
by this attribute. To add a qualifier:

1. Create an association between two classes.
2. Right-click the association and select New | Qualifier.

To rename or delete association qualifiers, use the same steps as for all other elements, see Renaming,
Moving, and Copying Elements and Deleting Elements .

5.3.5 Collection Associations

A collection association relationship is suitable to illustrate that a class property is a collection of some
kind. For example, in the diagram below, the property colors of the class ColorBox is a list of colors. This
type is defined in this case as an enumeration; however, it may also be another class or even an interface.

107 108

© 2016-2022 Altova GmbH

Relationships 137How to Model...

Altova UModel 2023 Basic Edition

Before you can create collection associations, the UModel project must contain the collection templates for the
project language you want to use (such as Java, C#, or VB.NET). Otherwise, a tooltip with the text "No
collections defined for this language" appears when you attempt to create the collection association.

If your project is UML only (without support for a specific code engineering language), you can define collection
templates from the menu Tools | Options | Diagram Editing | Collection Templates | UML tab.

If your project already contains a language namespace (such as Java, C#, VB.NET), the collection templates
are predefined from the profile of that language. Additional templates can be added from the menu Tools |
Options | Diagram Editing | Collection Templates.

To create a collection association (between two classes, for example):

1. Add two classes to the diagram.

2. Click the Collection Association toolbar button.
3. Drag from the first class and drop it onto the second class. The collection templates defined for the

project appear in the context menu, and you can select the required one.

Collection associations and code engineering
If you import program code into the model, collection associations are created automatically by default, based
on predefined collection templates. To enable or disable this option:

1. On the Tools menu, click Options.
2. Click the Diagram Editing tab.
3. Select or clear, as necessary, the check box Resolve collections.

138 How to Model... Relationships

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

The collection associations are resolved by default based on a list of built-in collection templates. To view or
modify the built-in collection templates, click Collection Templates.

To insert custom collection types, use the Append, Insert, or Delete buttons available in the dialog box
below. The column Par.Pos. denotes the position of the parameter which contains the value type of the
collection.

© 2016-2022 Altova GmbH

Relationships 139How to Model...

Altova UModel 2023 Basic Edition

Collection Templates dialog box

To reset the collection templates to their default values, click Set default.

5.3.6 Containment

A containment line is used to show, for example, parent-child relationships between two classes or two
packages.

To illustrate containment between two classes:

1. Click the Containment toolbar button (in a class or package diagram).
2. Drag from the class that is to be "contained", and drop on the container class.

Note that the contained class, Engine in this case, is now visible in a compartment of Car. This also places
the contained class in the same namespace as the container class.

140 How to Model... Stereotypes and Tagged Values

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

5.4 Stereotypes and Tagged Values

A stereotype is an extension mechanism; it is intended as a flexible way to extend an existing UML element
and capture some aspect of it that standard UML doesn't. Stereotypes applied to an element signify that that
element has some special use. The UModel built-in profiles (C#, Java, VB.NET, and so on) contain all the
stereotypes required to model projects in the respective languages. However, you can also create your own
profiles (and their respective stereotypes), see Creating and Applying Custom Profiles .

When you import source code or binaries into the model, UModel applies stereotypes to elements
automatically, based on the structure of the original code. For example, if annotations modifiers exist in the
imported Java source code, the corresponding elements in the model get the «annotations» stereotype. For
information about how various language constructs map to UModel elements and become stereotypes in the
model, see UModel Element Mappings .

You can also apply stereotypes to elements manually, while modeling them. For example, you can apply the
«attributes» stereotype to a C# class, which would indicate that the class must be decorated with attributes
in generated code. To specify the attribute values in the generated code, you can add so-called "tagged values"
in UModel, as shown in Applying Stereotypes . Stereotypes are also used extensively in XML schema
modeling, to model elements such as simple types, complex types, facets, and so on.

Across the UModel graphical interface, stereotypes are displayed enclosed within guillemets (for example,
«static»). All stereotypes included into the built-in UModel profiles appear in the Properties window when you
click an element. For example, clicking a Java class in the Model Tree would display in the Properties window
only class stereotypes applicable to the Java profile (in this example, «annotations», «static», «strictfp»).

In class diagrams, stereotypes are visible above the name of the class. For example, the class below has the
«attributes» stereotype applied to it.

404

218

142

© 2016-2022 Altova GmbH

Stereotypes and Tagged Values 141How to Model...

Altova UModel 2023 Basic Edition

In case of methods or properties, stereotypes are displayed inline, like the «constructor» stereotype applied
to the Account() method in the class above.

5.4.1 Tagged Values

Stereotypes may have attributes (tagged values) associated with them. Tagged values are name-value pairs
that provide extra information related to the stereotype where they belong. For example, the class illustrated
below has the stereotype «attributes» applied to it. Notice that the «attributes» stereotype has tagged
values associated with it: a key (name) called "sections" and a value called "Serializable".

Tagged values

A stereotype may have multiple pairs of tagged values. Also, a value can be selected from a set of enumeration
values.

You can change how tagged values are displayed on the diagram, or hide them altogether, see Showing or
Hiding Tagged Values . For information about changing a stereotype's tagged values, see Applying
Stereotypes . For an example that illustrates how to create stereotypes with tagged values, see Example:
Creating and Applying Stereotypes .

144

142

408

142 How to Model... Stereotypes and Tagged Values

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

5.4.2 Applying Stereotypes

By applying a stereotype to an element, you indicate that the element has some specific use. In case of code
languages supported in UModel (such as C#, VB.NET, Java), you typically apply stereotypes in order to
comply with the grammar of that language. For example, a Java class may have the «static» stereotype
applied to it.

Before you can apply stereotypes, the corresponding profile must be applied to your package(s) first. This
is done automatically by UModel if you right-click a package and select the Code Engineering | Set as
{language} namespace root command. For more information, see Applying UModel Profiles .

If you created custom profiles, these must be applied manually to the package, see Creating and Applying
Custom Profiles .

To apply a stereotype to an element:

1. Click the element in the Model Tree window. If the element can be extended by any stereotypes, they
appear as properties in the Properties window, enclosed within guillemets ("«" and "»").

2. Select the stereotype's check box in the Properties window (for example, «static»).

You can also apply stereotypes while designing elements inside a class diagram. To do this, click a property of
a class and start typing text inside the "<< and ">>" characters.

Some stereotypes are associated with a list of name-value pairs referred in UML as "tagged values". To apply a
stereotype with tagged values to an element, select the stereotype's check box in the Properties window (in
this example, «attributes»). This adds an indented entry where you can select the required value from a
predefined list.

154

404

© 2016-2022 Altova GmbH

Stereotypes and Tagged Values 143How to Model...

Altova UModel 2023 Basic Edition

Tagged values

You can also add multiple values to the same key. To do this, right-click the idented entry, and select Add
Tagged Value | <name> from the context menu.

Alternatively, you can add tagged values directly from the diagram, by right-clicking a value, and selecting New
| Tagged Value from the context menu.

144 How to Model... Stereotypes and Tagged Values

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

5.4.3 Showing or Hiding Tagged Values

When an element has tagged values, you can view all the respective tagged values either in a standalone box,
or inline, as a compartment. You can also hide tagged values completely. To choose how tagged values should
be displayed, right-click the element on the diagram, and select Tagged Values | <display option>. For
example, to display all tagged values outside of the class, right-click the class on the diagram, and select
Tagged Values | all. To hide all tagged values of a class, right-click the class on the diagram, and select
Tagged Values | none.

Tagged values displayed outside a class

Toggle compact mode
When some values in a tagged values box are empty, you can hide only the empty values, as follows:

1. Select a tagged values box on the diagram (one that has both empty and non-empty values).

2. Click the Toggle compact mode handle in the bottom-right corner of the box.

When the handle is in expanded state , the empty values are shown as well. When the handle is in

collapsed state , the empty values are hidden.

Changing the display of tagged values globally
You can change the display of tag values either individually for each element as shown above, or globally at
project level.

© 2016-2022 Altova GmbH

Stereotypes and Tagged Values 145How to Model...

Altova UModel 2023 Basic Edition

To change tag values at project level:

1. Select Project Styles from the list at the top of the Styles Window .
2. Scroll down until to the Show Tagged Values property and select the required option from the list (for

example, all, hide empty).

For information about changing styles at various levels, see Changing the Style of Elements .

Possible display options
The possible options for controlling the display of tagged values are listed in the table below. These options are
similar when you change tagged values globally or for individual elements.

None Hides all tagged values.

All Displays the tagged values of an element (for
example, a class) as well as those of elements
owned by the class, such as attributes and
operations.

All, hide empty Displays only those tagged values where a value
exists.

Element Displays the tagged values of an element (for
example, a class) but not those of owned attributes,
operations, and so on.

Element, hide empty Displays only those tagged values of an element
where a value exists.

86

117

146 How to Model... Stereotypes and Tagged Values

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

In compartment Displays the tagged values in a separate
compartment. For example, the class illustrated
below has an «attributes» compartment that contains
tagged values.

In compartment, hide empty Displays only those tagged values where a value
exists, in a compartment.

In compartment, compact Same as above.

© 2016-2022 Altova GmbH

 147Projects and Code Engineering

Altova UModel 2023 Basic Edition

6 Projects and Code Engineering

This chapter provides information about creating UModel modeling projects (either new, or by importing data
from source code or binaries). It also describes various operations applicable to code engineering with UModel,
namely:

· Forward engineering (generating code from a UModel project)
· Reverse engineering (importing source code into a UModel project)
· Roundtrip engineering (that is, synchronizing the model and code in either direction, as and when

necessary)

The menu commands applicable to code engineering are available in the Project menu. For example, the menu
command Project | Import Source Project enables you to import C#, or VB.NET Visual Studio solutions, or
Java code, and generate UModel diagrams based on it. When no project solution is available, use the menu
command Project | Import Source Directory, see Importing Source Code (Reverse Engineering) . Java,
C#, and VB.NET binaries can also be imported, provided that a few basic prerequisites are met, see Importing
Java, C# and VB.NET Binaries .

The code engineering operations above are applicable not only to programming languages but also to
databases and XML Schema. For example, you could use the menu command Project | Import XML
Schema File to reverse engineer an existing XML schema and automatically generate a class diagram based
on it.

For the list of mappings between UModel elements and elements in each supported language profile (including
databases and XML Schema), see UModel Element Mappings .

186

198

218

148 Projects and Code Engineering Managing UModel Projects

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

6.1 Managing UModel Projects

A UModel project acts as a container for UML modeling elements, diagrams, and various project-related
settings that you may define. UModel projects are saved as files with .ump (UModel Project File) extension.

UModel does not force you to follow any predetermined modeling sequence. You can add any type of model
element: UML diagram, package, actor etc., to the project in any sequence (and in any position). All model
elements can be inserted, renamed, and deleted in the Model Tree window itself, you are not even forced to
create them as part of a diagram.

6.1.1 Creating, Opening, and Saving Projects

When you start UModel for the first time, a new project is open automatically. On subsequent runs, UModel will
open the most recent project you worked with.

Note: UModel includes several example projects that you can explore in order to learn the modeling basics
and the graphical user interface. These can be found at the following path: C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples.

To create a new project:

· On the File menu, click New (or click the New toolbar button).

A new project with the default name NewProject1 is created. Also, the following packages are automatically
added to the project and visible in the Model Tree window.

· Root
· Component View

These two packages have special use and are the only ones that cannot be renamed, or deleted, as explained
in the tutorial, see Forward Engineering (from Model to Code) .

Once the project is created, you can add modeling elements to it, such as UML packages and diagrams, see
Creating Elements and Creating Diagrams .

To add a new package:

1. Right-click the package under which you want the new package to appear (either Root or Component
View in a new project).

2. Select New Element | Package from the context menu.

Be aware that packages, as well as other modeling elements, can also be added from UML diagrams, in which
case they will appear in the Model Tree window automatically.

To add a new diagram:

· Right-click a package in the Model Tree, and select New Diagram.

60

104 119

© 2016-2022 Altova GmbH

Managing UModel Projects 149Projects and Code Engineering

Altova UModel 2023 Basic Edition

To add elements to a diagram:

o Do one of the following:

§ Right-click the diagram, and select New Element | <Element Kind> from the context menu.
§ Drag the desired element from the toolbar.

For a worked example of how to create a project and generate program code from it, see Forward Engineering
(from Model to Code) .

To open an existing project:

· On the File menu, click Open, and browse for the .ump project file.

Note: By default, UModel registers any changes made externally to the .ump project file or included file(s),
and displays a dialog box asking you to reload the project. This functionality can be disabled from the
Tools | Options | File tab.

To save a project:

· On the File menu, click Save (or Save as).

All project relevant data is stored in the UModel project file, which has the extension *.ump (UModel Project
File).

Note: The *.ump file is an XML file format which can be optionally "prettified" on saving. Pretty-printing can be
enabled from the Tools | Options | File tab.

6.1.2 Opening Projects from a URL

In addition to opening local project files, you can also open files from a URL. The supported protocols are
HTTP, HTTPS, and FTP. Note that files loaded from URLs cannot be saved back to their original location (in
other words, access to the file is read-only), unless they are checked out from a Microsoft® SharePoint®
Server, as shown below.

To open a file from a URL:

1. On the Open dialog box, click Switch to URL.

60

150 Projects and Code Engineering Managing UModel Projects

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

2. Enter the URL of the file in the File URL text box, and click Open.

© 2016-2022 Altova GmbH

Managing UModel Projects 151Projects and Code Engineering

Altova UModel 2023 Basic Edition

If the server requires password authentication, you will be prompted to enter the user name and password. If
you want the user name and password to be remembered next time you start UModel, enter them in the Open
dialog box and select the Remember password between application starts check box.

If the file you are loading is not likely to change, select the Use cache/proxy option to cache data and speed
up loading the file. Otherwise, if you want the file to be reloaded each time when you open UModel, select
Reload.

For servers with Web Distributed Authoring and Versioning (WebDAV) support, you can browse files after
entering the server URL in the Server URL text box and clicking Browse.

Note: The Browse function is only available on servers which support WebDAV and on Microsoft SharePoint
Servers.

If the server is a Microsoft® SharePoint® Server, select the This is a Microsoft® SharePoint® Server check
box. Doing so displays the check-in or check-out state of the file in the preview area.

152 Projects and Code Engineering Managing UModel Projects

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

The state of the file can be one of the following:

Checked in. Available for check-out.

Checked out by another user. Not available for check-out.

Checked out locally. Can be edited and checked-in.

To be able to modify the file in UModel, right-click the file and select Check Out. When a file is checked out
from Microsoft® SharePoint®, saving the file in UModel sends the changes back to the server. To check in the
file back to the server, right-click the file in the dialog box above, and select Check In from the context menu
(alternatively, log on to the server and perform this operation directly from the browser). To discard the changes
made to the file since it was checked out, right-click the file, and select Undo Check Out (or perform this
operation from the browser).

Note the following:

· When a file is already checked out by another user, it is not available for check out.
· If you check out a file in one Altova application, you cannot check it out in another Altova application.

The file is considered to be already checked out to you.

© 2016-2022 Altova GmbH

Managing UModel Projects 153Projects and Code Engineering

Altova UModel 2023 Basic Edition

6.1.3 Moving Projects to a New Directory

UModel projects and generated code can be easily moved to a different directory (or a different computer) and
be resynchronized there. There are two ways to do this:

· Select the menu option File | Save As..., and click Yes when prompted to adjust the file paths to the
new project location.

· Copy the UModel project (*.ump) to a new location, and then adjust the code generation paths for each
component involved in code generation.

For an example of the second approach, open the following sample project: C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamplesBank_Multilanguage.ump.

1. Locate the BankView component in the Model Tree.

2. In the Properties window, locate the directory property and update it to the new path.

154 Projects and Code Engineering Managing UModel Projects

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

3. Re-synchronize the model and code.

6.1.4 Applying UModel Profiles

By default, whenever you start a new modeling project in UModel, the project is unaware of the business
application or code engineering language that you are going to need. Therefore, to tailor your UML project to a
domain or language, you must apply a profile to it.

One must distinguish between two types of profiles:

· Profiles built into UModel (these include C#, VB.NET, Java, and so on).
· Custom profiles that you can create to extend UML to your specific domain or needs.

You can add any of the built-in profiles to your project by selecting the menu command Project | Include
Subproject. In addition, UModel prompts you to apply a built-in profile whenever you take an action that
requires that specific profile. For example, when you right-click some new package and select the Code
engineering | Set as Java Namespace Root context menu option, you are prompted to apply the Java profile
to it.

To view the full list of UModel built-in profiles or add them to your model manually, select the menu command
Project | Include Subproject. See also Including Subprojects . 158

© 2016-2022 Altova GmbH

Managing UModel Projects 155Projects and Code Engineering

Altova UModel 2023 Basic Edition

For instructions about creating custom profiles in order to extend or adapt UML, see Creating and Applying
Custom Profiles .

6.1.5 Splitting UModel Projects

You can split UModel projects into multiple subprojects and thus allow several developers to simultaneously
edit different parts of a single project. Subprojects are like standard UModel project files and have the same
*.ump extension. Each individual subproject can be added to a source control system. The top-level project is
called the main project.

You can create a subproject from nearly any package in the main project. You can choose whether the
subproject should be editable from within the main project, or be read-only. In the latter case, the subproject is
editable only if you open it as a standalone project.

Subprojects can be structured in any way that you wish, in a flat or hierarchical structure, or a combination of
both. This makes it theoretically possible to split off every package of a main project into subproject files.

In the Model Tree Window , subprojects appear with the respective .ump file name displayed to the right,
enclosed within square brackets. For example, the project illustrated below includes several subprojects (this is
the Bank_MultiLanguage.ump from the C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples directory).

During the code-engineering process, all subordinate components of a subproject are considered. There is no
difference between a single project file or one that consists of multiple editable subprojects. This also applies to
UML diagrams—they can also be edited at the main, or subproject, level.

404

79

156 Projects and Code Engineering Managing UModel Projects

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Note: You can also share packages and UML diagrams they might contain, between different projects. For
more information, see Sharing Packages and Diagrams .

Creating subprojects
To create a subproject, right-click a package, and select the command Subproject | Create new Subproject
from the context menu.

Next, click Browse and select the directory where the subproject should be saved.

Select Editable to be able to edit the subproject from the main project. (Selecting Read-only makes it
uneditable in the main project.)

Note: You can change the file path of the subproject at any time by right clicking the subproject and
selecting Subproject | Edit File Path.

Opening and editing subprojects
You can open a subproject as a standalone UModel project, directly from the main project. For this to be
successful, there should not be any unresolved references to other elements. UModel automatically performs
checks when creating a subproject from the "main" project, and whenever a file is saved.

To open a subproject as a standalone UModel project, right-click the subproject package in the main project
and select Subproject | Open as Project. This starts another instance of UModel and opens the subproject
as a "main" project. Any unresolved references are shown in the Messages window.

Reusing subprojects
Subprojects that have been split off from a main project can be used in any other main project(s).

1. Open a project and select the menu command Project | Include Subproject.
2. Click the Browse button and select the *.ump file that you want to include.

160

© 2016-2022 Altova GmbH

Managing UModel Projects 157Projects and Code Engineering

Altova UModel 2023 Basic Edition

3. Choose how the file is to be included; by reference or as copy.

Saving projects
When you save the main project file, all editable subproject files are also saved. You should therefore not
create/add data (components) outside of the shared/subproject structure, if the subproject is defined as
"editable" in a main project file. If data exists outside of the subproject structure, a warning message will be
displayed in the Messages window.

Saving subproject files
When saving subprojects (from the main project level), all references to sibling, as well as child subprojects,
are considered and saved. For example, if two sibling subprojects, "sub1" and "sub2", exist and "sub1" uses
elements from "sub2", then "sub1" is saved in such a way that it automatically saves references to "sub2" as
well.

If "sub1" was opened as a "main" project, then it is considered as a self contained project and can be edited
without any reference to the actual main project.

Reintegrating subprojects into the main project
You can copy previously defined subprojects back into the main project again. If the subproject does not
contain any diagrams then the reintegration will be immediate. If diagrams exist, a dialog box will open.

1. Right-click the subproject and select Subproject | Include as Copy. This opens the "Include
Subproject" dialog box, which allows you to define the diagrams styles you want to use when including
the subproject.

158 Projects and Code Engineering Managing UModel Projects

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

2. Select the style option that you want to use, and then click OK.

6.1.6 Including Subprojects

When you want to generate code from a model, or import source code into a model, a profile project applicable
to that specific language (for example, C#, Java, VB.NET) must be included in your UModel project.

To include a UModel project as a subproject of another UModel project, select the menu command Project |
Include Subproject. As illustrated below, several .ump subprojects (language profiles required for code
engineering) are available on the Basic tab. In addition, several .ump subprojects containing C#, Java, and
VB.NET types, organized by version, are available in tabs with the same name.

In order for all types to be recognized correctly during code engineering, make sure to include both the
language profile (for example, the C# profile) and the types project of the corresponding language version
(for example, .NET 5 for C# 9.0). Otherwise, an "Unknown Externals" package will be created in the
project which will include all unrecognized types.

© 2016-2022 Altova GmbH

Managing UModel Projects 159Projects and Code Engineering

Altova UModel 2023 Basic Edition

Include Subproject dialog box

The tabs and UModel projects (.ump files) available on the "Include Subproject" dialog box are configurable.
Namely, UModel reads this information from the following path relative to the "Program Files" folder on your
operating system: \Altova\UModel2023\UModelInclude. Note that the project files available on the Basic tab
exist directly under the UModelInclude folder, while projects in each of the Java, VB, and C# tabs exist as
subfolders of the UModelInclude folder.

To view all currently imported projects:

· Select the menu option Project | Open Subproject Individually. The context menu displays the
currently included subprojects.

To create a custom tab on the "Include Subproject" dialog box:

· Navigate to the \Altova\UModel2023\UModelInclude folder (relative to your "Program Files"), and
create your custom folder in it, for example \UModelInclude\myfolder. The name you give to the
folder determines the name of the tab on the "Include Subproject" dialog box.

· Copy to your custom folder any .ump files that you want to make available on the corresponding tab.

160 Projects and Code Engineering Managing UModel Projects

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

To create descriptive text for each UModel project file:

· Create a text file using the same name as the *.ump file and place in the same folder. For example,
the MyModel.ump file requires a descriptive file called MyModel.txt. Please make sure that the
encoding of this text file is UTF-8.

To remove an included project:

1. Click the included package in the Model Tree view and press the Delete key.
2. When prompted, click OK to delete the included file from the project.

To delete or remove a project from the "Include Subproject" dialog box:

· Delete or remove the (MyModel).ump file from the respective folder.

6.1.7 Sharing Packages and Diagrams

You can share packages (and UML diagrams they might contain) between different UModel projects. Packages
can be included in other UModel projects by reference, or as a copy.

Also note that subproject files can be split off a main, or subproject, file at any time. The subproject files can be
included as editable or read-only from the main project; each package is shared and saved as a subproject file.
Subprojects can be added to a source control system, see Teamwork support for UModel projects .

Notes
· In order to be shareable, a package must not contain links to external elements (elements outside

of the shared scope).
· When creating UModel project files, do not use one project file as a "template/copy" for another

project file into which you intend to share a package. This will cause conflicts due to the fact that
every element should be globally unique (see uuid) and this will not be the case, as two
projects will have elements that have identical uuids.

To share a package between projects:

· Right-click a package in the Model Tree window and select Subproject | Share package. A "shared"
icon appears below the shared package in the Model Tree. This package can now be included in any
other UModel project.

155

435

© 2016-2022 Altova GmbH

Managing UModel Projects 161Projects and Code Engineering

Altova UModel 2023 Basic Edition

To include/import a shared folder in a project:

1. Open the project which should contain the shared package (an empty project in this example).

2. Select the menu item Project | Include Subproject...
3. Click Browse, select the project that contains the shared package, and click Open. The "Include

Subproject" dialog box allows you to choose between including the package/project by reference, or as
a copy.

4. Select the required option ("Include by reference", in this example) and click OK.

162 Projects and Code Engineering Managing UModel Projects

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

The "Deployment View" package is now visible in the new package. The packages' source project is displayed
in parenthesis (SharedPackage.ump, in this example).

Notes:

· When you include a source project which contains subprojects, all subprojects of the source project
will also be included into the target project.

· Shared folders that have been included by reference can be changed to "Include by copy" at any time,
by right-clicking the folder and selecting Subproject | Include as a Copy.

Resolving links to external elements
Attempting to share a package which has links to external elements causes a warning dialog box to appear.
For example, the following message appears if you attempt to share the "Deployment View" package of the
sample project C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples\Tutorial\BankView-start.ump.

Click Yes to share the package despite of the errors; otherwise, click No. The Messages window provides
information about each of the external links.

© 2016-2022 Altova GmbH

Managing UModel Projects 163Projects and Code Engineering

Altova UModel 2023 Basic Edition

Click an entry in the Messages window to display the relevant element in the Model Tree window.

6.1.8 Tips for Enhancing Performance

Some modeling projects can become quite large, in which case there are a few ways you can enhance the
modeling performance:

· Make sure that you are using the latest driver for your specific graphics card (resolve this before
addressing the following tips)

· Disable syntax coloring (from the Styles window, set the property Use Syntax Coloring to false).
· Disable "gradient" as a background color for diagrams, use a solid color (from the Styles window, set

the property Diagram background color to a solid color, for example, white).
· Deactivate automatic completion (go to Tools | Options | Diagram Editing and clear the check box

Enable automatic entry helper).

164 Projects and Code Engineering Generating Program Code

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

6.2 Generating Program Code

After you design the model of your application in UModel (for example, one or more class diagrams), you might
want to quickly generate a prototype project which includes all defined interfaces, classes, operations, and so
on, in your language of choice. UModel enables you to generate C#, VB.NET, or Java program code from a
model, based on UML elements found in your UModel project (such as interfaces, classes, operations, and so
on). This process is also known as "forward engineering". The generated code will create all objects exactly as
they were defined in the model, so that you can proceed to their actual implementation.

Code generation is also applicable to XML schemas and databases*. For example, you could design an XML
schema or a database with UModel and then generate the corresponding file (or SQL script, in case of
databases) from the model. To achieve this, consult the mapping tables to find out which schema or database
elements map to UModel elements, see UModel Element Mappings .

* Engineering databases requires UModel Enterprise or Professional editions.

Prerequisites
In order for code generation to be possible, the UModel project must meet the following minimum requirements:

· One of the packages in your project must be designated as namespace root. The namespace root can
be a C#, Java, VB.NET, XSD, or Database namespace. This package must contain all classes and
interfaces from which code is to be generated. For more information, see Setting a Package as
Namespace Root .

· A code engineering component must be added to the project. This component must be realized by all
the classes or interfaces from which code is to be generated. For more information, see Adding a Code
Engineering Component . .

In addition to this, it is recommended that you include one of the built-in UModel subprojects corresponding to
the language (or the language version) you want to use, see Including Subprojects . For example, if your
application must target a specific version of C#, Java, or VB.NET, this would enable you to use the
corresponding data types while designing your UML classes, interfaces, and so on.

For a worked example of how to create a project from scratch and generate code from it, see Example:
Generate Java Code .

6.2.1 Setting a Package as Namespace Root

In order to generate program code from your UModel project, a package in your model must be designated as
namespace root.

To set a package as namespace root:

· Right-click a package in the Model Tree Window and select Code Engineering | Set as <...>
Namespace Root from the context menu, where <...> is one of the following: C#, Java, VB.NET,
XSD.

218

164

165

158

176

79

© 2016-2022 Altova GmbH

Generating Program Code 165Projects and Code Engineering

Altova UModel 2023 Basic Edition

When you set a package as namespace root, UModel informs you that the UML profile of the corresponding
language will also be added to the project and applied to the selected package. Click OK to confirm when
prompted by a dialog box such as the one below.

6.2.2 Adding a Code Engineering Component

In order to generate program code, your UModel project must contain a code engineering component that
specifies all the code generation details (for example, which classes from the project should be included in
code generation, and what should be the target generation directory). As illustrated in the instructions below,
the component must meet the following criteria for successful code generation:

· The component must have a physical location (directory) assigned to it. Code will be generated in this
directory.

· The classes or interfaces that take part in code engineering must be realized by the component.
· The component must have the property use for code engineering enabled.

To add a component which realizes the desired classes or interfaces:

1. Right-click a package in the Model Tree and select New Element | Component from the context
menu. This adds a new Component to the model.

2. In the model tree, click the class or interface that must be realized by the component, and then drag
and drop the cursor onto the component (in this example, Class1 from Package1 was dragged onto
Component1). This automatically creates a ComponentRealization relation in the Model Tree.

166 Projects and Code Engineering Generating Program Code

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

There is also an alternative approach to do this, by creating a Component diagram and then drawing a
ComponentRealization relation between the component and the classes or interfaces. For more information,
see Component Diagrams .

To prepare a component for code engineering:

1. Select the component in the Model Tree (it is assumed that this component is already realized by at
least one class or interface, as explained above).

2. In the Properties window, locate the directory property and set it to the path where you want to
generate code.

3. In the Properties window, select the check box use for code engineering.

For example, in the image below, the component Component1 from package Component View is configured
to generate Java 8.0 code into the directory C:\codegen:

49

© 2016-2022 Altova GmbH

Generating Program Code 167Projects and Code Engineering

Altova UModel 2023 Basic Edition

6.2.3 Checking Project Syntax

It is important to check the syntax of the project before generating code from the model. This will inform you of
any problems which prevent code from being generated. Project syntax can be checked from the menu
command Project | Check Project Syntax (alternatively, press F11). A syntax check will also be performed
automatically before code is updated from the model. The results (errors, warnings, and information messages)
are reported in the Messages window.

When a syntax check is performed, the project file is checked on multiple levels as detailed in the tables
below. Note the following:

· For information about solving common syntax errors, see the Code generation prerequisites .
· For components, the checks below are performed only if the use for code engineering property is

enabled for the component in the Properties window.
· For classes, interfaces, and enumerations, the checks below are performed only if the class, interface,

enumeration is contained in a code language namespace. In other words, it must be under a package
which has been defined as namespace root.

164

168 Projects and Code Engineering Generating Program Code

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

· Constraints on model elements are not checked, as they are not part of the code generation process,
see Constraining Elements .

Level Checks if... Error severity if check fails

Project ...at least one namespace root package exists. Error

Component

...project file or directory is set. Error

...this component has a ComponentRealization relation
with at least one class or interface.

Error

Class ...code file name is set.

Note: This check is not applicable for nested classes.

Error if the option Generate
missing code file names is
not set in Tools | Options |
Code Engineering tab.
Warning if the option is set.

...type for operation parameter is set. Error

...type for properties is set. Error

...operation return type is set. Error

...duplicate operations (names + parameter types) exist. Error

...a ComponentRealization relation exists to a
component.

Note: This check is not applicable for nested classes.

Warning

...name is valid (no forbidden characters, name is not a
keyword)

Error

...multiple inheritance occurs Error

Class
operation

...name is valid (no forbidden characters, name is not a
keyword)

Error

...a return parameter exists. Error

Class
operation
parameter

...name is valid (no forbidden characters, name is not a
keyword)

Error

...type is valid Error

Interface ...code file name is set. Error if the option Generate
missing code file names is
not set in Tools | Options |
Code Engineering tab.
Warning if the option is set.

...interface is contained in a code language namespace. Error

...type for properties are set. Error

112

© 2016-2022 Altova GmbH

Generating Program Code 169Projects and Code Engineering

Altova UModel 2023 Basic Edition

Level Checks if... Error severity if check fails

...type for operation parameters are set Error

...operation return type is set Error

...duplicate operations (names + parameter types) Error

...interfaces are involved in a ComponentRealization Warning

...name is valid (no forbidden characters, name is not a
keyword)

Error

Interface
operation

...name is valid (no forbidden characters, name is not a
keyword)

Error

Interface
operation
parameter

...name is valid (no forbidden characters, name is not a
keyword)

Error

Interface
properties

...name is valid (no forbidden characters, name is not a
keyword)

Error

Package ...name is valid (no forbidden characters, name is not a
keyword)

Note: This check is applicable if the package is inside a
namespace root package and has the <<namespace>>
stereotype applied to it from the Properties window.

Error

Enumeration ...a ComponentRealization relation exists to a
component.

Warning

6.2.4 Code Generation Options

When generating program code into a UModel project, you may want to set or change the options listed below.
These options are available when you run the menu command Project | Project Settings and are saved
together with the project.

170 Projects and Code Engineering Generating Program Code

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

The options are grouped into tabs as follows.

Tab Options

Java Select the check box Write Documentation as JavaDocs to convert the
documentation of UModel elements to equivalent JavaDocs-style documentation in
generated code.

C# Select the check box Write Documentation as DocComments to convert the
documentation of UModel elements to comments in generated C# code.

VB Select the check box Write Documentation as DocComments to convert the
documentation of UModel elements to comments in generated VB.NET code.

SPL Templates If you want to force UModel to read SPL templates from a custom path other than
the default one, the custom path must be entered here. See also SPL
Templates .

In addition to the settings above, there are a few other settings which affect code generation. To access them,
run the menu command Tools | Options, and then click the Code Engineering tab. The settings applicable to
generating code from a model are grouped under Update Program Code from UModel Project. Note that
these settings are local (they will only affect the current installation of UModel and will not be saved with the
project).

184

© 2016-2022 Altova GmbH

Generating Program Code 171Projects and Code Engineering

Altova UModel 2023 Basic Edition

6.2.5 Example: Generate C# Code

This example shows you how to generate C# code with UModel. You will first create a sample C# namespace
that contains a couple of classes, configure the project for code generation, and then generate the actual code.

In this example, the target platform is .NET Standard 2.0 for C# 7.1. This is possible thanks to a profile built
into UModel that defines all the types of .NET Standard 2.0 for C# 7.1. UModel also includes built-in profiles for
specific .NET Framework versions. For details, see Including Subprojects .

Create a new project and its structure
The first step is to create an empty project that has two default packages (Root and Component View): Click
New in the File menu or in the toolbar. Next, right-click the Root package and create a few more packages, as
illustrated below. If you are new to the UModel graphical user interface, see the UModel Tutorial and How to
Model sections to get started.

In this example, the Design View package acts as a container for the design part of your model (e.g., classes
and class diagrams), while the SampleNamespace package acts as a namespace for all classes that are to be
created. In general, you can organize your packages differently.

Code engineering
The next step is to set C# for our package. Right-click the Design View package and select Code
Engineering | Set as C# Namespace Root from the context menu. UModel will inform you that the C# profile
will be applied to the package. Click OK. The C# profile built into UModel has just been included in the project
(see screenshot below).

158

14

103

172 Projects and Code Engineering Generating Program Code

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Set SampleNamespace as namespace
Next, click the SampleNamespace package and select the <<namespace>> check box in the Properties

window. This applies the namespace stereotype to the package, and its icon changes to . You can now
create classes under this namespace.

Include a subproject
So far, the model includes the C# profile, which contains the data types applicable to C#. However, the model
does not yet include the types specific to .NET Standard 2.0 (these are available in a separate UModel profile).
To add this profile to the project, do the following:

1. Go to the Project menu and select Include Subproject.
2. Switch to the C# tab and select .NET Standard 2.0 for C# 7.1 (types only).
3. Select Include by reference in the Include Subproject dialog and click OK.

The additional profile has been added to the project (see below).

Create C# classes
The next step is to create classes, which you can do directly in the Model Tree pane or from a class diagram.
For this example, we have chosen the second option. Follow the steps below:

1. Open the Diagram Tree pane.
2. Right-click Class Diagrams and select New Diagram | Class Diagram.

This example assumes that all your classes must be generated under the SampleNamespace namespace.
Therefore, when prompted to select an owner for the diagram, select the SampleNamespace package. If you
choose a different package, any elements that you add to the diagram will belong to the same package as the
diagram (which may or may not be the intended goal).

Create classes and their structure
Next, create classes, types, and other elements required in your model. For our example, you can create a
simple diagram that contains an Artist class and a MusicStore class (see screenshot below). Follow the
instructions below:

1. Right-click inside the pkg SampleNamespace window and select New | Class.
2. Name this class Artist.

© 2016-2022 Altova GmbH

Generating Program Code 173Projects and Code Engineering

Altova UModel 2023 Basic Edition

3. Right-click inside the Artist box and create two properties: ID of type int and Name of type string.
4. Create the second class called MusicStore.
5. Create a property called LastUpdated of type DateTime.
6. Create an operation and type its name and definition as shown below.

For more information about designing classes and their members, see the Class Diagrams and How to
Model sections.

About auto-implemented C# properties
In UModel, you can see whether C# properties have been auto-implemented. The auto-implementation option
becomes available after the property check box has been selected (for CreateTestArtist() in our example)
in the Properties window (see screenshots below).

Add documentation (optional)
Optionally, click the MusicStore class in the diagram and add some documentation by typing the text in the
Documentation window (see screenshot below). This lets you generate code comments for this class.

27

103

90

174 Projects and Code Engineering Generating Program Code

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Configure the project for code engineering
In the next step, we need to define code engineering settings. Take the steps below:

1. Save the project to a directory.

2. Then right-click the Component View package in the Model Tree pane and add a new Component
(that is, a software component) to it.

3. Click the new software component and set the following properties in the Properties window (see
screenshot below):

· Set the code language of the component to C# 7.1, for example.
· Select the code generation directory (C:\codegen in our example).

· Select the use for code engineering check box.

Create a ComponentRealization relationship

Next, create a ComponentRealization relationship between the classes from which C# code must be
generated. This can be done as follows: In the Model Tree pane, click the class to be realized by the
component (Artist in this example), then drag and drop it into the code engineering component (Component1)
(see screenshot below). Take the same step for the MusicStore class.

© 2016-2022 Altova GmbH

Generating Program Code 175Projects and Code Engineering

Altova UModel 2023 Basic Edition

Note: In case you forget to create a ComponentRealization relationship for a class, UModel still
generates the corresponding code file, even though warnings will be issued in the Messages window.
This setting is configurable from Tools | Options | Code Engineering tab (the Generate missing
ComponentRealizations check box).

Generate C# code
The final step is to generate the actual C# code. Take the steps below:

1. Go to the Project menu and click Merge Program Code from UModel Project. A dialog box
appears where you can adjust whether changes in code should be merged with those in the code or
overwrite them (if applicable). For the scope of this example, you can select Overwrite since a new
project is getting generated.

2. To include the class documentation as comments in the generated code, click Project | Project
Settings and select the Write Documentation as DocComments check box. For more information,
see Code Generation Options .

3. Click OK. The Messages window displays the code engineering result (see below).

If you have added any documentation to the MusicStore class, notice that it appears as code comments in the
generated code:

using System;

using System.Collections.Generic;

namespace SampleNamespace

{
 /// This class models a music store. It contains methods to manage assets such as

music tracks or artists.

 public class MusicStore

 {
 public DateTime LastUpdated;

 public List<Artist> CreateTestArtists()

 {
 // TODO add implementation

 }
 }

}

169

176 Projects and Code Engineering Generating Program Code

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

6.2.6 Example: Generate Java Code

This example illustrates how to create a new UModel project and generate program code from it (a process
known as "forward engineering"). For the sake of simplicity, the project will be very simple, consisting of only
one class. You will also learn how to prepare the project for code generation and check that the project uses
the correct syntax. After generating program code, you will modify it outside UModel, by adding a new method
to the class. Finally, you will learn how to merge the code changes back into the original UModel project (a
process known as "reverse engineering").

The code generation language used in this tutorial is Java; however, similar instructions are applicable for other
code generation languages.

Creating a new UModel project
You can create a new UModel project as follows:

· On the File menu, click New. (Alternatively, press Ctrl+N, or click the New toolbar button.)

At this stage, the project contains only the default "Root" and "Component View" packages. These two
packages cannot be deleted or renamed. "Root" is the top grouping level for all other packages and elements in
the project. "Component View" is required for code engineering; it typically stores one or more UML
components that will be realized by the classes or interfaces of your project; however, we didn't create any
classes yet. Therefore, let's first design the structure of our program, as follows:

1. Right-click the "Root" package in the Model Tree window and select New Element | Package from
the context menu. Rename the new package to "src".

2. Right-click "src" and select New Element | Package from the context menu. Rename the new
package to "com"

3. Right-click "com" and select New Element | Package from the context menu. Rename the new
package to "nanonull".

4. Right-click "nanonull" and select New Element | Class from the context menu. Rename the new class
to "MyClass".

Preparing the project for code generation
To generate code from a UModel model, the following requirements must be met:

© 2016-2022 Altova GmbH

Generating Program Code 177Projects and Code Engineering

Altova UModel 2023 Basic Edition

· A Java, C#, or VB.NET namespace root package must be defined.
· A component must exist which is realized by all classes or interfaces for which code must be

generated.
· The component must have a physical location (directory) assigned to it. Code will be generated in this

directory.
· The component must have the property use for code engineering enabled.

All of these requirements are explained in more detail below. Note that you can always check if the project
meets all code generation requirements, by validating it:

· On the Project menu, click Check Project Syntax. (Alternatively, press F11.)

If you validate the project at this stage, the Messages window displays a validation error ("No Namespace Root
found! Please use the context menu in the Model Tree to define a Package as Namespace Root"). To resolve
this, let's assign the package "src" to be the namespace root:

· Right-click the "src" package and select Code Engineering | Set As Java Namespace Root from
the context menu.

· When prompted that the UModel Java Profile will be included, click OK.

Notice the package icon has now changed to , which signifies that this package is a Java namespace root.
Additionally, a Java Profile has been added to the project.

The actual namespace can be defined as follows:

1. Select the package "com" in the Model Tree window.

178 Projects and Code Engineering Generating Program Code

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

2. In the Properties window, enable the <<namespace>> property.

3. Repeat the step above for the "nanonull" package.

Notice that the icon of both "com" and "nanonull" packages has now changed to , which indicates these are
now namespaces.

Another requirement for code generation is that a component must be realized by at least a class or an
interface. In UML, a component is a piece of the system. In UModel, the component lets you specify the code
generation directory and other settings; otherwise, code generation would not be possible. If you validate the
project at this stage, a warning message is displayed in the Messages window: "MyClass has no
ComponentRealization to a Component - no code will be generated". To solve this, a component must be
added to the project, as follows:

1. Right-click "Component View" in the Model Tree window, and select New Element | Component from
the context menu.

2. Rename the new Component to "nanonull".

3. In the Properties window, change the directory property to a directory where code should be
generated (in this example, "src\com\nanonull"). Notice that the property use for code engineering
is enabled, which is another prerequisite for code generation.

© 2016-2022 Altova GmbH

Generating Program Code 179Projects and Code Engineering

Altova UModel 2023 Basic Edition

4. Save the UModel project to a directory and give it a descriptive name (in this example, C:
\UModelDemo\Tutorial.ump).

Note: The code generation path can be absolute or relative to the .ump project. If it is relative as in this
example, a path such as src\com\nanonull would create all the directories in the same directory
where the UModel project was saved.

We have deliberately chosen to generate code to a path which includes the namespace name; otherwise,
warnings would occur. By default, UModel displays project validation warnings if the component is configured to
generate Java code to a directory which does not have the same name as the namespace name. In this
example, the component "nanonull" has the path "C:\UModelDemo\src\com\nanonull", so no validation
warnings will occur. If you want to enforce a similar check for C# or VB.NET, or if you want to disable the
namespace validation check for Java, do the following:

1. On the Tools menu, click Options.
2. Click the Code Engineering tab.
3. Select the relevant check box under Use namespace for code file path.

The component realization relationship can be created as follows:

· In the Model Tree window, drag from the MyClass created previously and drop onto component
nanonull.

180 Projects and Code Engineering Generating Program Code

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

The component is now realized by the project's only class MyClass. Note that the approach above is just one of
the ways to create the component realization. Another way is to create it from a component diagram, as
illustrated in the tutorial section Component Diagrams .

Next, it is recommended that the classes or interfaces which take part in code generation have a file name.
Otherwise, UModel will generate the corresponding file with a default file name and the Messages window will
display a warning ("code file name not set - a default name will be generated"). To remove this warning:

1. Select the class MyClass in the Model Tree window.
2. In the Properties window, change the property code file name to the desired file name (in this

example, MyClass.java).

Including the JDK types
Although this step is optional, it is recommended that you include the Java Development Kit (JDK) language
types, as a subproject of your current UModel project. Otherwise, the JDK types will not be available when you

49

© 2016-2022 Altova GmbH

Generating Program Code 181Projects and Code Engineering

Altova UModel 2023 Basic Edition

create the classes or interfaces. This can be done as follows (the instructions are similar for C# and VB.NET):

1. On the Project menu, click Include Subproject.
2. Click the Java tab and select the Java JDK 9 (types only) project.

3. When prompted to include by reference or as a copy, select Include by reference.

Generating code
Now that all prerequisites have been met, code can be generated as follows:

182 Projects and Code Engineering Generating Program Code

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

1. On the Project menu, click Merge Program Code from UModel Project. (Alternatively, press F12.)
Note that this command will be called Overwrite Program Code from UModel Project if the
Overwrite Code according to Model option was selected previously on the "Synchronization
Settings" dialog box illustrated below.

2. Leave the default synchronization settings as is, and click OK. A project syntax check takes place
automatically, and the Messages window informs you of the result:

Modifying code outside of UModel
Generating program code is just the first step to developing your software application or system. In a real life
scenario, the code would go through many modifications before it becomes a full-featured program. For the
scope of this example, open the generated file MyClass.java in a text editor and add a new method to the
class, as shown below. The MyClass.java file should look as follows:

package com.nanonull;

© 2016-2022 Altova GmbH

Generating Program Code 183Projects and Code Engineering

Altova UModel 2023 Basic Edition

public class MyClass{

 public float sum(float num1, float num2){

 return num1 + num2;

 }
}

MyClass.java

Merging code changes back into the model
You can now merge the code changes back into the model, as follows:

1. On the Project menu, click Merge UModel Project from Program Code (Alternatively, press Ctrl +
F12).

2. Leave the default synchronization settings as is, and click OK. A code syntax check takes place
automatically, and the Messages window informs you of the result:

The operation sum (which has been reverse engineered from code) is now visible in the Model Tree window.

184 Projects and Code Engineering Generating Program Code

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

6.2.7 SPL Templates

When generating C#, Java, or VB.NET code, as well as XSD schemas, UModel uses a templating language
called SPL (Spy Programming Language). The SPL templates dictate the syntax of the generated code files. It
is possible to customize the SPL templates, for example, in order to slightly change the syntax of the
generated code. Editing SPL templates is meaningful only for languages supported by UModel. If you want to
create completely new SPL templates for other languages, it would be possible to generate new code but it
would not be possible to update existing code (since the language syntax would be unknown to UModel).

The default SPL templates are available in the UModelSPL directory relative to the program installation
directory.

Do not modify the existing default SPL templates, since these directly affect the default code generation.
Should you need to customize code generation, create custom templates instead, as shown below.

SPL templates are only used when new code is generated (that is, when new classes, operations etc have
been added to the model, and then code generation takes place). Any existing code is not affected by the SPL
templates.

For an introduction to SPL, see SPL Reference .

To modify the provided SPL templates:

1. Locate the provided SPL templates in the UModel installation directory ("Program Files"), for
example: ...\UModel2023\UModelSPL\Java\Default.

520

© 2016-2022 Altova GmbH

Generating Program Code 185Projects and Code Engineering

Altova UModel 2023 Basic Edition

2. Copy the SPL files you want to modify into the parent directory. For example, if you want to modify
the appearance of a Java class in generated code, copy the Class.spl file from ...
\UModel2023\UModelSPL\Java\Default to ...\UModel2023\UModelSPL\Java.

3. Make the changes to the .spl file(s) and save them.

To use the custom SPL templates:

1. Select the menu option Project | Synchronization settings.
2. Select the User-defined override default check box in the SPL templates group.

186 Projects and Code Engineering Importing Source Code

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

6.3 Importing Source Code

Existing Java, C#, and VB.NET program code can be imported into UModel (a process also known as "reverse
engineering"). The following project types can be imported into UModel:

· Java projects (Eclipse .project files, NetBeans project.xml files, and JBuilder .jpx files)
· C# and VB.NET projects (Visual Studio .sln, .csproj, .csdprj, .vbproj, .vbp as well as Borland .bdsproj

project files)

In addition to importing source code from a source project, it is also possible to import code from a source
directory. Importing from a source directory works in a similar way, and is particularly useful when your code
doesn't use any of the project types listed above. For an example of importing a source directory, see Reverse
Engineering (from Code to Model) .

It is possible to import source code either into a new, empty UModel project or into an existing UModel project.
During the import, you can specify whether the imported elements should overwrite those in the model (if any),
or be merged into the model. Optionally, Class and Package diagrams can be generated automatically as you
import code.

The import wizard includes various import options specific to each platform (Java, .NET). For example, if the
imported Java/C#/VB.NET code contains comments, these can be optionally converted to UModel
documentation. For a complete list of options, see Code Import Options .

Once your C#, VB.NET, or Java code has been imported into UModel, it is possible to modify the model (for
example, add new classes, or rename properties and operations), and optionally synchronize it back with the
original code, thus achieving full round-trip engineering, see Synchronizing the Model and Source Code .

Prerequisites
UModel includes several built-in sub-projects that were created specifically for code engineering and which
include the data types applicable to each supported language and platform. Before attempting to import source
code into a UModel project, it is recommended to include the built-in UModel subproject applicable to the
corresponding programming language and platform, see Including Subprojects . Otherwise, certain data
types will not be recognized and will be placed after import into a separate package called "Unknown
externals".

To include a subproject with the required language data types:

1. On the Project menu, click Include Subproject.
2. Click the tab applicable to the source language and platform (for example, Java 8.0, C# 6.0, VB 9.0),

and then click OK.

69

188

211

158

© 2016-2022 Altova GmbH

Importing Source Code 187Projects and Code Engineering

Altova UModel 2023 Basic Edition

Note the following:

· When you include a data type subproject for a particular language, UModel also automatically adds the
profile of that language to your project. The profile subproject (.ump) contains only the most basic
types and is different from the data type subproject (also .ump) which contains more extensive type
definitions.

· If you perform the import without including a data type subproject, the import operation will take place
nonetheless, and UModel will also automatically include the profile of that language to the project.
However, any unknown types will be placed into the "Unknown externals" package. To solve this, make
sure to include the data types subproject for the required language and platform, as explained above.

Importing source code from a project
1. On the Project menu, click Import Source Project. (Alternatively, if you would like to import code

from an existing directory, select Import Source Directory.)
2. Select the language version of the source project (for example, Java 8.0, C# 6.0).

3. Click Browse and select the source project file.
4. Set or change the required import options, see also Code Import Options (note that these options

depend on the language selected in step 2).
5. Click Finish to complete the wizard.

For a step-by-step example, see Example: Import a C# Project .

188

190

188 Projects and Code Engineering Importing Source Code

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

6.3.1 Code Import Options

When importing program code into a UModel project, you may need to set or change the options listed below.
These options are available on the dialog box which appears when you run the menu command Project |
Import Source Project or Project | Import Source Directory.

Import Source Project dialog box

Most of the options on the dialog box above can also be changed at any time later, see Code Synchronization
Settings .

The following options are applicable to all project types, regardless of the language or platform:

Option Description

Import project relative to UModel
project file

By default, this option is selected, which means that a relative path
dependency will be established between the UModel project and
the imported source code project.

After source code is imported, a UML component is generated
automatically in the UModel project (it is available in the Model
Tree, as a child of "Component View"). This component realizes

215

© 2016-2022 Altova GmbH

Importing Source Code 189Projects and Code Engineering

Altova UModel 2023 Basic Edition

Option Description

the interfaces or classes to be engineered; it also specifies the
code engineering options, including the path to the source project
or directory. This will be a relative path if Import project relative
to UModel project file is selected; otherwise, it will be an
absolute path.

Merge Code into Model / Overwrite
Model according to Code

If Merge... is selected, potential name conflicts (such as package
or class names) will be resolved by appending a number to the
element that is being imported.

If Overwrite... is selected, and if there are name conflicts, the
imported element will take precedence over (overwrite) the one
existing in the project.

Enable diagram generation Optionally, select this check box if you want to generate Class and
Package diagrams from the imported classes. When this check
box is selected, the import wizard includes additional steps which
enable you to customize the look of the generated diagrams.

The following options are applicable only to C# and VB.NET projects:

Option Description

DocComments as
Documentation

Select this check box to convert comments found in the C# code into
UModel element documentation (see also Documentation).

Resolve aliases This check box is enabled by default. If your C# or VB.NET code contains
namespace or class aliases like in the code listing below, it is
recommended to keep this check box selected. Otherwise, associations
and dependencies involving aliased classes and namespaces in your code
may not be detected automatically by UModel during the import (and thus
would not be present in the model).

using Q = System.Collections.Generic.Queue<String>;

Q myQueue;

Example of an alias in C# code

During the source code import, any potentially conflicting aliases are added
to the "Unknown externals" package of the UModel project if their use is
unclear.

When you update the code back from the model (round-trip engineering),
aliases will be retained as they exist in the generated code.

The Resolve aliases option can be changed at any time later, see Code
Synchronization Settings . If you enable this option after (not before) the
import operation, UModel prompts you to update the project from the code
again, since the option also has consequences for forward engineering.

90

215

190 Projects and Code Engineering Importing Source Code

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Option Description

Defined symbols If your C# or VB.NET code includes symbols that are defined through
preprocessor directives such as #if, #endif, you can instruct UModel to
take them into account while reverse engineering code.

#if DEBUG
 static void DisplayMessage()
 {
 Console.WriteLine("Please wait...");
 }
#endif

Example of a conditional compilation symbol in C# code

For example, if you reverse engineer the code above, the method
DisplayMessage() will only be imported into the model if you specified the
DEBUG symbol.

To specify conditional compilation symbols, enter them in the "Defined
symbols" text box, delimited by a semicolon.

During the reverse engineering process, UModel outputs all symbols used
in the source code in the Messages window.

The following option is applicable only to Java projects:

Option Description

JavaDocs as Documentation Select this check box to convert JavaDocs-style comments found in the
code into UModel element documentation (see also Documentation).

Note: Only comments applicable for Java classes, interfaces, operations,
and properties are converted.

6.3.2 Example: Import a C# Project

This example illustrates how to import into UModel a sample C# solution created with Visual Studio. The
source solution is available as a .zip archive at the following path: C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples\Tutorial\Anagram_CSharp.zip. It
is not necessary to compile the solution with Visual Studio before importing it; however, make sure to unzip the
Anagram_CSharp.zip archive to a folder of your choice before proceeding to the steps below.

Our goal in this example is to reverse engineer the C# solution and create a UModel project from it. As we
import code, we will opt to generate class and package diagrams automatically.

Step 1: Create a new project
It is possible to import source code either into existing or new UModel projects. For the scope of this example,
we will be importing code into a new UModel project.

90

© 2016-2022 Altova GmbH

Importing Source Code 191Projects and Code Engineering

Altova UModel 2023 Basic Edition

· On the File menu, click New (Alternatively, press Ctrl + N or click the New toolbar button).

Step 2: Include the C# language types
The source project was written in C# with Visual Studio 2015, so we will include a built-in UModel project that
contains the C# 6.0 language types (since the C# language version corresponding to Visual Studio 2015 is
6.0). Earlier versions of C# are also likely to work with our C# example solution.

1. On the Project menu, click Include Subproject.
2. Click the C# tab.

3. Select the project Microsoft .NET 4.6 for C# 6.0 (types only).ump, and click OK.
4. When prompted to select the kind of include (by reference or as a copy), leave the default option as is.

192 Projects and Code Engineering Importing Source Code

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

As a result, both the C# language types and the C# language profile are included and visible in the Model Tree:

Step 3: Import the C# solution
1. On the Project menu, click Import Source Project.

© 2016-2022 Altova GmbH

Importing Source Code 193Projects and Code Engineering

Altova UModel 2023 Basic Edition

2. Select C# 6.0 as language.

3. Click Browse next to Project file and browse for the solution .sln file.
4. Select the DocComments as Documentation check box (this will import the code comments found

on operations or properties into the model).
5. Since we are importing code into a new UModel project, select the option Overwrite Model

according to Code (the other option Merge Code into Model is preferable when you import into an
existing project).

6. Click Next.
7. Select the diagram generation options as shown below, and click Next. (These options are applicable

to Class diagrams generated automatically on code import.)

194 Projects and Code Engineering Importing Source Code

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

8. Select the diagram generation options as shown below, and click Finish. (These options are applicable
to Package diagrams generated automatically on code import.)

© 2016-2022 Altova GmbH

Importing Source Code 195Projects and Code Engineering

Altova UModel 2023 Basic Edition

9. Enter a name and select a destination folder for the new UModel project, and click Save (by default,
this dialog box displays the same folder as the solution you are importing).

196 Projects and Code Engineering Importing Source Code

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

The progress of the reverse engineering operation is shown in the Messages window.

Also, when code import completes, all generated diagrams are opened automatically since this option was
selected before code generation. All generated diagrams are available in the Diagram Tree:

© 2016-2022 Altova GmbH

Importing Source Code 197Projects and Code Engineering

Altova UModel 2023 Basic Edition

Since we opted to generate documentation from the source code, the imported documentation is visible in the
Documentation window if you click, for example, the Create operation of the Anagram class:

Note: The documentation is added only if the option DocComments as Documentation was selected while
importing the C# solution (see "Step 3: Import the C# Solution" above).

198 Projects and Code Engineering Importing Java, C# and VB.NET Binaries

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

6.4 Importing Java, C# and VB.NET Binaries

UModel supports the import of C# , Java and VB.NET binaries. This is extremely useful when working with
binaries from a third party, or if the original source code has become unavailable. Note the following:

· To import Java binary files, a supported version of the Java Runtime Environment (JRE) or
Development Kit (JDK) must be installed. Type import is supported for Java .class files or .jar class
archives adhering to the Java Virtual Machine Specification. This includes Java Virtual Machines such
as OpenJDK, SapMachine, Liberica JDK, and others, see Adding Custom Java Runtimes .

· To import C# or VB.NET binary files, .NET Framework, .NET Core, .NET 5, or .NET 6 must be
installed, as applicable. For best results, select the any (use disassembler) option on the import
dialog box. After import, any unrecognized types will be placed in the "Unknown externals" package.
To prevent (or decrease the number of) unknown externals, apply the UModel profile specific to the
version of your code engineering language (for example, ".NET 5 for C# 9.0") before the import. See
also Applying UModel Profiles .

· The import of obfuscated binaries is not supported.

The table below lists the available approaches for importing binary types into a UModel project.

C#, VB.NET Java

Import assembly file (.dll, .exe) Import class file archive (.jar, .zip)

Import assembly from Global Assembly Cache
(GAC)

Import class file (.class) from a package root folder

Import assembly from Visual Studio .NET
References

Import class archives from class path

Import class archives from Java runtime (only for Java
versions up to and including Java 8)

You can import binary files by running the Project | Import Binary Types menu command. Optionally, you
can have UModel generate class and package diagrams from the imported types. For examples, see Example:
Import .NET GAC Assemblies and Example: Import Java .class Files .

In addition, you can import binary files from the command line (see UModel Command Line Interface).

When importing binary files into a UModel project, you can specify various import options, including:

· You can import any referencing types, in addition to the types defined in the binary file. In addition, you
can restrict importing referencing types to specific Java packages and .NET namespaces.

· You can skip type members while importing. For example, you can import classes and interfaces
without their properties and methods.

· You can import types according to their accessibility modifiers (such as private or public). For
example, you can import only public classes and skip private, protected, and internal classes.

For reference to all options, see Import Binary Options .

11

199

154

203 205

96

199

© 2016-2022 Altova GmbH

Importing Java, C# and VB.NET Binaries 199Projects and Code Engineering

Altova UModel 2023 Basic Edition

6.4.1 Adding Custom Java Runtimes

By default, UModel detects JDKs and JREs if they are installed on the local machine. Consequently, these
appear in the list of Java runtimes when you start the binary import wizard. This is the case for JDKs and JREs
released by Oracle, which come with an installer and register themselves in the system when installed.
However, other Java Virtual Machine distributions that do not have an installer must be added manually into
UModel. The latter include Oracle OpenJDK, SapMachine, and others.

To add custom Java runtimes to UModel:

1. On the Project menu, click Import Binary Types.
2. Select Java as language.
3. Expand the Runtime drop-down list, and click Edit user Java runtime locations.
4. Click Append and browse for the directory of the respective JDK.

5. Click OK.

The selected runtime now appears in the Runtime list, and you can select it whenever you need to import
binary files targeting that runtime.

Note that these settings affect only the import of binary files. For information about adding a Java Virtual
Machine path to be used for JDBC connectivity and Java code generation and import, see Java Virtual Machine
Settings .

6.4.2 Import Binary Options

When you run the menu command Project | Import Binary Types, one of the wizard steps prompts you to
specify the binary import options. The options you can set are described below. Note that the dialog box
options may be slightly different, depending on whether you are importing .NET or Java binaries.

509

200 Projects and Code Engineering Importing Java, C# and VB.NET Binaries

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Import Binary Options dialog box

Automatic type inclusion
.NET or Java binaries may reference various external assemblies or packages. Select the option add all
referenced types... if you would like to import all types referenced by the types included in the binary file.

To import referenced types only for specific Java packages or .NET namespaces, enter those packages or
namespaces in the adjacent text box. To separate multiple packages or namespaces, use the comma, semi-
colon, or space characters.

For example, let's assume that the source .NET .dll file references types from System.Reflection and
System.Data namespaces. If you would like to import types from the System.Reflection namespace but not
from the System.Data namespace, select the option add all referenced types, optionally restricted to the
following packages and enter "System.Reflection" in the text box.

Content restriction
Select the option import only types to skip members such as fields, operations, properties, and so on.

Select the option import only elements with visibility greater than or equal to to import types and type
members according to their visibility. The table below lists visibility of types, beginning with types with least

© 2016-2022 Altova GmbH

Importing Java, C# and VB.NET Binaries 201Projects and Code Engineering

Altova UModel 2023 Basic Edition

visibility. For example, selecting "private" will import all types, whereas selecting "public" will import only public
types and type members.

Note: If the check box is not selected, all types will be imported, regardless of their visibility.

.NET Java

private private

internal package (default visibility when
no explicit modifier exists)

protected protected

public public

The option suppress attribute sections is applicable for .NET binaries. By default, UModel imports the C# or
VB.NET attributes detected in the binary. Select the suppress attribute sections option if you don't want to
import attributes. Otherwise, members that were decorated with attributes in the original source code will have
the <<attributes>> stereotype applied to them after you import the binary into the model. If attributes are
imported, you can display them on the diagram as tagged values, by right-clicking the class on the diagram
and selecting Tagged Values | All from the context menu. For more information, see Stereotypes and Tagged
Values .

The option suppress annotation modifiers is applicable for Java binaries. By default, UModel imports Java
annotations detected in the binary, provided that their retention policy was defined as RUNTIME (not CLASS or
SOURCE). If you don't want to import annotations, select the suppress annotation modifiers option. If
annotations are imported, members that had annotations in the original source have the <<annotations>>
stereotype, and annotations appear as tagged values, as illustrated below.

Attribute section styles
These options are applicable to .NET binaries only. As previously mentioned, if types or type members in the
original source code were decorated with attributes, these are imported as tagged values in UModel.

The option create only one attribute per attribute section is best illustrated by an example. Let's assume
that the original C# source code defined a method with two attributes:

using System;
using System.Diagnostics;

namespace MyNamespace

140

202 Projects and Code Engineering Importing Java, C# and VB.NET Binaries

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

{
 class Program
 {
 [Conditional("VERBOSE"), Conditional("TERSE")]
 static void reportHeader()
 {
 Console.WriteLine("This is the header");
 }

 static void Main(string[] args)
 {
 reportHeader();
 }
 }
}

If the option create only one attribute per attribute section is enabled upon importing from the binary file,
then each attribute would appear on a separate line inside the "Tagged Values" element :

Otherwise, attributes would appear as comma-separated:

Finally, the option suppress 'Attribute' suffix on attribute type names removes the 'Attribute' suffix of an
attribute type. For example, if this option is selected, an attribute type defined in the original code as
System.Xml.Serialization.XmlTypeAttribute would be imported as
System.Xml.Serialization.XmlType.

© 2016-2022 Altova GmbH

Importing Java, C# and VB.NET Binaries 203Projects and Code Engineering

Altova UModel 2023 Basic Edition

6.4.3 Example: Import .NET Assemblies

This example shows you how to import binary types from the .NET Global Assembly Cache (GAC) into a
UModel C# project. The instructions are similar if you want to import binary types from a standalone .dll or
.exe file. To find out out how to import Java .class files, see the next topic .
To import binary files from the .NET Global Assembly Cache:

1. Go the Project menu and click Import Binary Types (see screenshot below).

2. Choose the target language of the UModel project (C#, VB.NET, Java). In this example, C# is selected,
since we are importing a .NET GAC assembly.

3. If you would like to set a specific language version for the imported UModel project, select it from the
adjacent text box. In this example, C# 7.3 is selected.

4. Optionally, select a .NET runtime version from the Runtime drop-down list. The default option is any
(use disassembler). In this case, UModel will choose a reflection API that is most appropriate for the
imported binary.

5. If you import binary types into a new project, select either Merge Code into Model or Overwrite
Model according to Code.

6. Optionally, to generate class diagrams and package diagrams from the imported binary types, select
the Enable diagram generation check box. If you select this option, more diagram generation
options will be available in the next steps. See Generating Class Diagrams and Generating
Package Diagrams .

7. Click Next.

205

391

400

204 Projects and Code Engineering Importing Java, C# and VB.NET Binaries

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

8. Click Add | Assembly from Global Cache (GAC) (see screenshot below). Note that the option
Assembly from Global Cache (GAC) is only available for .NET Framework 2.x-4.x. The GAC is not
relevant to .NET Core, .NET 5 and later versions. For more information, see the Microsoft
documentation. In order to import assembly files for .NET Core, .NET 5 and .NET 6, you will need to
extract the required files from the GAC. Then click Add | Assembly File (DLL/EXE), select the
assembly files manually and add them to the project.

9. Select an assembly from the dialog box. In this example, the EventViewer assembly is selected (see
screenshot below).

10. Select the types you would like to import and click Next. For more information about other options of
the Import Binary Selection dialog box, see the notes below.

11. Select the import options as applicable. For more information, see Import Binary Options .
12. If you enabled diagram generation in Step 6, click Next and configure the options applicable to diagram

generation. Otherwise, click Finish.

UModel performs the conversion and displays a progress log in the Messages window. If the conversion of
binary types is not possible, the error text may provide additional information. For example, the binary file you
are trying to import is targeting a runtime newer than the one selected in the Import Binary Types dialog box.
In this case, select a newer runtime version and try again.

Notes:

· The text box Override of PATH variable... in the Import Binary Selection dialog box is applicable
only to Java. Optionally, paste here any Java class paths that must be queried in addition to those read
from the CLASSPATH environment variable. Alternatively, click Add and browse for the required folders.

· The check box use 'reflection only' context... in the Import Binary Selection dialog box is
applicable only when you import a C# or VB.NET binary. This is useful when importing a library which
has dependencies that cannot be resolved or loaded. Selecting this check box will not execute any
static initializer code, which might cause errors when importing.

199

https://docs.microsoft.com/en-us/dotnet/core/compatibility/core-libraries/5.0/global-assembly-cache-apis-obsolete
https://docs.microsoft.com/en-us/dotnet/core/compatibility/core-libraries/5.0/global-assembly-cache-apis-obsolete
https://docs.microsoft.com/en-us/archive/blogs/akukreja/get-dll-out-of-the-gac

© 2016-2022 Altova GmbH

Importing Java, C# and VB.NET Binaries 205Projects and Code Engineering

Altova UModel 2023 Basic Edition

6.4.4 Example: Import Java .class Files

This example shows you how to import compiled Java .class files into UModel. In this example, the source
Java .class files originate from a tutorial Java project that was created with UModel, but you can also use other
.class files as an alternative.

Compiling UModel-generated Java code (optional)
This section shows you how to compile a demo UModel-generated Java project with Eclipse. Note that this
step is purely optional, the goal here is to obtain some compiled .class files. You can skip it if you already have
readily available Java .class files. In this example, Eclipse is chosen as compilation environment for
convenience; however, you can use the Java command line or some other Java development environment to
achieve the same result.

1. If you haven't done that already, create a simple Java project with UModel, as shown in Example:
Generate Java Code . This is a very simple example consisting of a Java package with only one
class. When you complete the example, the directory C:\UModelDemo\src will contain the required
Java source code.

2. Run Eclipse. On the File menu, click Import.

3. Select Projects from Folder or Archive, and click Next.

4. Enter C:\UModelDemo as directory, and click Finish.

176

206 Projects and Code Engineering Importing Java, C# and VB.NET Binaries

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

5. Right-click the com.nanonull package in Eclipse's Package Explorer and select New | Class from
the context menu.

6. Enter a class name ("MainClass", in this example), and select the public static void main... check
box.

7. On the Run menu, click Run.

You have now finished compiling the UModel-generated Java project. The compiled .class files should now be
available in the bin sub-directory of your project's directory.

Finally, take note of the Java version used for compilation—this is important if you intend to import binary types
later. By default, if you did not modify your Eclipse project properties, it is likely that it was compiled with the
default Java version available to Eclipse. To view the default Java version, do the following in Eclipse:

© 2016-2022 Altova GmbH

Importing Java, C# and VB.NET Binaries 207Projects and Code Engineering

Altova UModel 2023 Basic Edition

1. On the Window menu, click Preferences.
2. Click Java, and then click Installed JREs.

Importing Java .class files
If you already have binary .class files such as the ones compiled previously, you can now proceed to importing
them into UModel.

1. Create a new UModel project, or open an existing one. In this example, we are importing binary types
into a new project.

2. If your project does not contain the Java JDK types already, do the following:

a. On the Project menu, click Include subproject.
b. Click the Java tab and select Java JDK (types only).
c. Select Include by reference when prompted.

Note: This is an optional step which normally prevents the "Unknown externals" package from appearing in
the project after the import is complete.

3. On the Project menu, click Import Binary Types.
4. Select Java as language, and the Java version in which the Java code was compiled (for example,

11.0).
5. Select the Java runtime to be used by UModel for extracting information from the binary files (the so-

called "reflection"). The runtime version must be equal or newer than the Java version selected in the
previous step.

208 Projects and Code Engineering Importing Java, C# and VB.NET Binaries

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Note: The Runtime drop-down list contains only Java JDKs and JREs detected automatically. If your JDK or
JRE is not listed, select the entry Edit user java runtime locations and browse for the directory
where the respective distribution is installed on your machine, see Adding Custom Java Runtimes .

6. If you import binary types into a new project, select either Merge Code into Model or Overwrite
Model according to Code. Otherwise, select Merge code into Model.

7. Optionally, to generate class diagrams and package diagrams from the imported binary types, select
the Enable diagram generation check box. If you select this option, more diagram generation
options are available in subsequent steps, see also Generating Class Diagrams and Generating
Package Diagrams .

8. Click Next.

199

391

400

© 2016-2022 Altova GmbH

Importing Java, C# and VB.NET Binaries 209Projects and Code Engineering

Altova UModel 2023 Basic Edition

9. In this example, we are importing Java .class files from a package root. Select Add | Class File
Package Root Folder. and browse for the C:\UModelDemo\bin directory. If this directory does not
exist, make sure to compile the project first, as shown in the first part of this tutorial.

10. Select the classes to be imported, and click Next.

210 Projects and Code Engineering Importing Java, C# and VB.NET Binaries

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

11. Select the import options as applicable, see Import Binary Options .
12. If you enabled diagram generation in an earlier step, click Next and configure the options applicable to

diagram generation. Otherwise, click Finish.

UModel performs the conversion and displays a progress log in the Messages window. If the conversion of
binary types is not possible, the error text may provide additional information. For example, the binary file you
are trying to import is targeting a runtime newer than the one selected in the Import Binary Types dialog box.
In this case, select a newer runtime version and try again.

199

© 2016-2022 Altova GmbH

Synchronizing the Model and Source Code 211Projects and Code Engineering

Altova UModel 2023 Basic Edition

6.5 Synchronizing the Model and Source Code

You can synchronize the model and code in either direction, and at different levels (for example, project,
package or class).

When UModel (Enterprise or Professional) runs as an Eclipse or Visual Studio plug-in, synchronization
between model and code takes place automatically. Manual synchronization is possible at the project
level; the option to update individual classes or packages is not available.

When you right-click an element in the Model Tree (for example, a class), the context menu displays the code
synchronization or merging commands under the Code Engineering menu item:

· Merge Program Code from UModel ***
· Merge UModel *** from Program Code

*** is a Project, Package, Component, Class, and so on, depending on your current selection.

Depending on the settings you have defined from Project | Synchronization Settings, the alternative name of
these two commands may be:

· Overwrite Program Code from UModel ***
· Overwrite UModel *** from Program Code

To update the entire project (but not classes, packages, or other local elements), you can also use the
following commands on the Project menu of UModel:

· Merge (or Overwrite) Program Code from UModel Project
· Merge (or Overwrite) UModel Project from Program Code

For convenience, any of the commands listed above will be generically referred to as "code synchronization
commands" further in this topic.

To synchronize at the project or Root package level, do one of the following:

· Right-click the Root package in the Model Tree, and select the required code synchronization
command.

· On the Project menu, click the required code synchronization command.

To synchronize at package level:

1. Use Shift, or Ctrl + Click to select the package(s) you want to merge.
2. Right-click the selection, and select the required code synchronization command.

212 Projects and Code Engineering Synchronizing the Model and Source Code

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

To synchronize at class level:

1. Use Shift, or Ctrl + Click to select the classes(s) you want to merge.
2. Right-click the selection, and click the required code synchronization command.

To avoid undesired results when synchronizing the model and code, consider the following scenarios:

On the Project menu, click Overwrite
UModel Project from Program Code.

· This checks all directories (project files) of all different code
languages you have defined in your project.

· New files are identified and added to the project.
· An entry "Collecting source files in (...)" appears in the

Messages window.

Right-click a class or interface in the Model
Tree and select Code Engineering |
Overwrite UModel Class from Program
Code.

· This updates only the selected class (interface) of your
project.

· If the source code contains classes that are new or
modified classes since the last synchronization, those
changes will not be added to the model.

Right-click a Component in the Model Tree
(within the Component View package) and
select Code Engineering | Overwrite
UModel Component from Program Code.

· This updates the corresponding directory (or project file)
only.

· New files in the directory (project file) are identified and
added to the project.

· An entry "Collecting source files in (...)" appears in the
Message window.

Note: When synchronizing code, you might be prompted to update your UModel project before
synchronization. This occurs when you open UModel projects created before the latest release. Click
Yes to update your project to the latest release format, and save your project file. The notification
message will not occur once this has been done.

6.5.1 Synchronization Tips

Renaming of classifiers and reverse engineering
The process described below applies to the standalone application as well as to the plug-in versions (Visual
Studio or Eclipse) when reverse engineering or automatic synchronization takes place.

Renaming a classifier in the code window of your programming application causes it to be deleted and re-
inserted as new classifier in the Model Tree.

The new classifier is only re-inserted in those modeling diagrams that are automatically created during the
reverse-engineering process, or when generating a diagram using the Show in new Diagram | Content
option. The new classifier is inserted at a default position on the diagram, that will likely differ from the previous
location.

See also Refactoring code and synchronization .214

© 2016-2022 Altova GmbH

Synchronizing the Model and Source Code 213Projects and Code Engineering

Altova UModel 2023 Basic Edition

Automatic generation of ComponentRealizations
UModel is capable of automatically generating ComponentRealizations during the code engineering process.
ComponentRealizations are only generated where it is absolutely clear to which component a class should be
assigned:

· Only one Visual Studio project file exists in the .ump project.
· Multiple Visual Studio projects exist but their classes are completely separate in the model.

To enable automatic generation of ComponentRealizations:

1. Open the menu item Tool | Options.
2. Click the Code Engineering tab and activate the Generate missing ComponentRealizations

option.

Automatic ComponentRealizations are created for a Classifier that can be assigned one (and only one)
Component

· without any ComponentRealizations, or
· contained in a code language namespace.

The way the Component is found differs for the two cases.

Component representing a code project file (property "projectfile" set)

· if there is ONE Component having/realizing classifiers in the containing package
· if there is ONE Component having/realizing classifiers in a subpackage of the containing package (top

down)
· if there is ONE Component having/realizing classifiers in one of the parent packages (bottom up)
· if there is ONE Component having/realizing classifiers in a subpackage of one of the parent packages

(top down)

Component representing a directory (property "directory" set)

· if there is ONE Component having/realizing classifiers in the containing package
· if there is ONE Component having/realizing classifiers in one of the parent packages (bottom up)

Notes:

· The option "Code Engineering | Generate missing ComponentRealizations" has to be set.
· As soon as ONE viable Component is found during one of the above steps, this Component is used

and the remaining steps are ignored.

Error/Warnings:

· If no viable Component was found, a warning is generated (message log)
· If more than one viable Component was found, an error is generated (message log)

214 Projects and Code Engineering Synchronizing the Model and Source Code

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

6.5.2 Refactoring Code and Synchronization

When refactoring code, it is often the case that class names are changed or updated in the code. If it detects
that new types have been added or renamed during reverse engineering, UModel (version 2009 or later) displays
a dialog box. The new types are listed in the "Name in code" column while the assumed original type name is
listed in the "Name in model" column. UModel attempts to determine the original name by relying on
namespace, class content, base classes and other data.

If a class was renamed, select the previous class name using the combo box in the "Name in model" column,
e.g. C1. This ensures that all related data are retained and the code engineering process remains accurate.

Changing class names in the model and regenerating code
Having created a model and generated code from it, it is possible that you might want to make changes to the
model again before going through the synchronization process.

E.g. You decide that you want to change the class names before generating code the second time round. As
you previously assigned a file name to each class, in the "code file name" field of the Properties window, the
new class and file name would now be out of sync.

UModel prompts if you want the code file name to agree with the new class name, when you start the
synchronization process. Note that you also have the option to change the class constructors as well.

Round-trip engineering and relationships between modeling elements
When updating model from code, associations between modeling elements are automatically displayed, if the
option Diagram Editing | Automatically create Associations has been activated in the Tools | Options

© 2016-2022 Altova GmbH

Synchronizing the Model and Source Code 215Projects and Code Engineering

Altova UModel 2023 Basic Edition

dialog box. Associations are displayed for those elements where the attributes type is set, and the referenced
"type" modeling element is in the same diagram.

InterfaceRealizations as well as Generalizations are all automatically shown in the diagram when
updating model from code.

6.5.3 Code Synchronization Settings

The code synchronization settings are relevant in the following scenarios:

· When program code is generated from the model (that is, when either the command Project | Merge
Program Code from UModel Project or the command Project | Overwrite Program code from
UModel Project is run)

· When source code is imported into the model (that is, when either the command Project | Merge
UModel Project from Program Code or the command Project | Overwrite UModel Project from
Program Code is run)

· When automatic synchronization takes place in either direction (this applies to UModel Enterprise and
Professional Editions when UModel runs as a Visual Studio or Eclipse plug-in).

To change the code synchronization settings:

· On the Project menu, click Synchronization Settings.

Synchronization Settings dialog box

By default, the Synchronization Settings dialog box will be displayed automatically every time when you initiate
any of the code synchronization commands. To disable this behaviour, clear the check box Always show
dialog when synchronizing.

216 Projects and Code Engineering Synchronizing the Model and Source Code

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

The available options are grouped into two tabs:

· Code from Model (options in this tab are applicable when program code is generated from the model)
· Model from Code (options in this tab are applicable when program code is imported into the model).

Option Description

SPL templates This option is applicable only when generating program code. Select the check box
User-defined override default check box if you have created custom Spy
Programming Language (SPL) templates that should override the default ones
supplied with UModel (see also SPL Templates).

When deleting code This option is applicable only when generating program code. Select whether
program code should be deleted or commented out during synchronization
(assuming the relevant objects no longer exist in the model).

Synchronization This option is applicable both when generating and importing program code. It lets
you specify whether changes should be merged as opposed to being overwritten.
Assuming that code has been generated once from a model, and changes have
since been made to both model and code, for example:

· A new class X has been added in UModel
· A new class Y has been added to the external code,

Merge Model into Code means that:

· The newly added class Y in the external code is retained
· The newly added class X, from UModel, is added to the code.

Overwrite Code according to Model means that:

· The newly added class Y in the external code is deleted (or commented
out, depending on the current settings)

· The newly added class X, from UModel, is added to the code.

Merge Code into Model means that:

· The newly added class X in UModel is retained
· The newly added class Y, from the external code, is added to the model

Overwrite Model according to Code means that:

· The newly added class X in UModel is deleted (or commented out,
depending on the current settings)

· The newly added class Y, from the external code, is added to the model.

Project settings Opens the Project Settings dialog box, where you can modify the code engineering
settings applicable to each language. For reference to all settings, see Code Import
Options and Code Generation Options , respectively.

184

188 169

© 2016-2022 Altova GmbH

Synchronizing the Model and Source Code 217Projects and Code Engineering

Altova UModel 2023 Basic Edition

Option Description

The Project Settings dialog box can also be triggered from the menu command
Project | Project Settings. Note that the project settings in this dialog box are
global (they are saved together with the project and are applicable on any
workstation where the UModel project is open) whereas the options you define from
Tools | Options are local (they are applicable only to the current installation of
UModel).

218 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

6.6 UModel Element Mappings

This section illustrates how UModel elements map to elements (constructs) in various programming languages
(C#, Java, VB.NET), as well as to databases and XML schemas. The mappings are grouped by language, and
are applicable when importing code into model, or when generating code from model.

· C# Mappings
· VB.NET Mappings
· Java Mappings
· XML Schema Mappings

6.6.1 C# Mappings

The table below shows the one-to-one correspondence between:

· UModel elements and C# code elements, when outputting model to code
· C# code elements and UModel model elements, when inputting code into model

C# Project

C# UModel

Project projectfile projectfile Component

directory directory

C# Namespace

C# UModel

Namespace name name Package <<namespace>>

C# Class

C# UModel

Class name name Class

modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

sealed leaf

218

238

252

258

© 2016-2022 Altova GmbH

UModel Element Mappings 219Projects and Code Engineering

Altova UModel 2023 Basic Edition

C# UModel

abstract abstract

static <<static>>

unsafe <<unsafe>>

partial <<partial>>

new <<new >>

filename code file name

associated projectfile/directory ComponentRealization

base types Generalization, InterfaceRealization(s)

attribute sections <<attributes>>

doc comments Comment(->Documentation)

Field name name Property

modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

static static

readonly readonly

volatile <<volatile>>

unsafe <<unsafe>>

new <<new >>

type type

type dimensions multiplicity

type pointer type modifier

nullable <<nullable>>

default value default

attribute sections <<attributes>>

doc comments Comment(->Documentation)

Constant name name Property

<<const>>
modifiers internal visibility package

220 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

C# UModel

protected internal protected <<internal>>

public public

protected protected

private private

new <<new >>

type type

type dimensions multiplicity

type pointer type modifier

nullable <<nullable>>

default value default

attribute sections <<attributes>>

doc comments Comment(->Documentation)

Method name name Operation

modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

static static

abstract abstract

sealed leaf

override <<override>>

partial <<partial>>

virtual <<virtual>>

new <<new >>

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

implemented interfaces implements

type direction return Parameter

© 2016-2022 Altova GmbH

UModel Element Mappings 221Projects and Code Engineering

Altova UModel 2023 Basic Edition

C# UModel

Parameter name name

modifiers ref direction inout

out out

params varArgList

type type

type dimensions multiplicity

type pointer type modifier

this <<this>>

nullable <<nullable>>

Type

Parameter

name name Template

Parameter
constraint constraining classifier

predefine

d

constraint

struct <<ValueTypeConstraint

>>

class <<ReferenceTypeConst

raint>>

new () <<ConstructorConstrain

t>>

attribute sections <<attributes>>

Construct

or

name name Operation

<<constru

ctor>>modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

static static

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

Parameter name name Parameter

modifiers ref direction inout

out out

222 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

C# UModel

params varArgList

type type

type dimensions multiplicity

type pointer type modifier

nullable <<nullable>>

Destructor name name Operation

<<destruc

tor>>modifiers private visibility private

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

Property name name Operation

<<propert

y>>modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

static static

abstract abstract

sealed leaf

override <<override>>

virtual <<virtual>>

new <<new >>

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

type dimensions multiplicity

nullable <<nullable>>

Get

Accessor

modifiers internal visibility internal <<GetAcc

essor>>

© 2016-2022 Altova GmbH

UModel Element Mappings 223Projects and Code Engineering

Altova UModel 2023 Basic Edition

C# UModel

protected

internal

protected

internal

protected protected

private private

Set

Accessor

modifiers internal visibility internal <<SetAcc

essor>>
protected

internal

protected

internal

protected protected

private private

Operator name name Operation

<<operato

r>>modifiers public visibility public

static static

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

Parameter name name

modifier params varArgList

type type

type dimensions multiplicity

type pointer type modifier

nullable <<nullable>>

Indexer name (="this") name (="this") Operation

<<indexer

>>modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

static static

abstract abstract

sealed leaf

224 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

C# UModel

override <<override>>

virtual <<virtual>>

new <<new >>

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

Parameter name name

modifier params varArgList

type type

type dimensions multiplicity

type pointer type modifier

nullable <<nullable>>

Get

Accessor

modifiers internal visibility internal <<GetAcc

essor>>
protected

internal

protected

internal

protected protected

private private

Set

Accessor

modifiers internal visibility internal <<SetAcc

essor>>
protected

internal

protected

internal

protected protected

private private

Event name name Operation

<<event>>
modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

static static

abstract abstract

© 2016-2022 Altova GmbH

UModel Element Mappings 225Projects and Code Engineering

Altova UModel 2023 Basic Edition

C# UModel

sealed leaf

override <<override>>

virtual <<virtual>>

new <<new >>

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

type dimensions multiplicity

nullable <<nullable>>

Add Accessor <<AddRemoveAccessor>>

Remove Accessor

Type

Parameter

name name Template

Parameter
constraint constraining classifier

predefine

d

constraint

struct <<ValueTypeConstraint>>

class <<ReferenceTypeConstraint>>

new () <<ConstructorConstraint>>

attribute sections <<attributes>>

C# Struct

C# UModel

Struct name name Class

<<struct>

>modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

unsafe <<unsafe>>

partial <<partial>>

new <<new >>

226 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

C# UModel

filename code file name

associated projectfile/directory ComponentRealization

base types InterfaceRealization(s)

attribute sections <<attributes>>

doc comments Comment(->Documentation)

Field name name Property

modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

static static

readonly readonly

volatile <<volatile>>

unsafe <<unsafe>>

new <<new >>

type type

type dimensions multiplicity

type pointer type modifier

nullable <<nullable>>

default value default

attribute sections <<attributes>>

doc comments Comment(->Documentation)

Constant name name Property

<<const>>
modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

new <<new >>

© 2016-2022 Altova GmbH

UModel Element Mappings 227Projects and Code Engineering

Altova UModel 2023 Basic Edition

C# UModel

type type

type dimensions multiplicity

type pointer type modifier

nullable <<nullable>>

default value default

attribute sections <<attributes>>

doc comments Comment(->Documentation)

Fixedsize

Buffer

name name Property

<<fixed>>
modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

unsafe <<unsafe>>

new <<new >>

type type

type pointer type modifier

nullable <<nullable>>

buffer size default

attribute sections <<attributes>>

doc comments Comment(->Documentation)

Method name name Operation

modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

static static

abstract abstract

sealed leaf

228 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

C# UModel

override <<override>>

partial <<partial>>

virtual <<virtual>>

new <<new >>

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

implemented interfaces implements

type direction return Parameter

Parameter name name

modifiers ref direction inout

out out

params varArgList

type type

type dimensions multiplicity

type pointer type modifier

this <<this>>

nullable <<nullable>>

Type

Parameter

name name Template

Parameter
constraint constraining classifier

predefine

d

constraint

struct <<ValueTypeConstraint

>>

class <<ReferenceTypeConst

raint>>

new () <<ConstructorConstrain

t>>

attribute sections <<attributes>>

Construct

or

name name Operation

<<constru

ctor>>modifiers internal visibility package

protected internal protected <<internal>>

public public

© 2016-2022 Altova GmbH

UModel Element Mappings 229Projects and Code Engineering

Altova UModel 2023 Basic Edition

C# UModel

protected protected

private private

static static

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

Parameter name name Parameter

modifiers ref direction inout

out out

params varArgList

type type

type dimensions multiplicity

type pointer type modifier

nullable <<nullable>>

Destructor name name Operation

<<destruc

tor>>modifiers private visibility private

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

Property name name Operation

<<propert

y>>modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

static static

abstract abstract

sealed leaf

override <<override>>

virtual <<virtual>>

230 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

C# UModel

new <<new >>

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

type dimensions multiplicity

nullable <<nullable>>

Get

Accessor

modifiers internal visibility internal <<GetAcc

essor>>
protected

internal

protected

internal

protected protected

private private

Set

Accessor

modifiers internal visibility internal <<SetAcc

essor>>
protected

internal

protected

internal

protected protected

private private

Operator name name Operation

<<operato

r>>modifiers public visibility public

static static

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

Parameter name name

modifier params varArgList

type type

type dimensions multiplicity

type pointer type modifier

nullable <<nullable>>

© 2016-2022 Altova GmbH

UModel Element Mappings 231Projects and Code Engineering

Altova UModel 2023 Basic Edition

C# UModel

Indexer name (="this") name (="this") Operation

<<indexer

>>modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

static static

abstract abstract

sealed leaf

override <<override>>

virtual <<virtual>>

new <<new >>

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

Parameter name name

modifier params varArgList

type type

type dimensions multiplicity

type pointer type modifier

nullable <<nullable>>

Get

Accessor

modifiers internal visibility internal <<GetAcc

essor>>
protected

internal

protected

internal

protected protected

private private

Set

Accessor

modifiers internal visibility internal <<SetAcc

essor>>
protected

internal

protected

internal

protected protected

232 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

C# UModel

private private

Event name name Operation

<<event>>
modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

static static

abstract abstract

sealed leaf

override <<override>>

virtual <<virtual>>

new <<new >>

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

type dimensions multiplicity

nullable <<nullable>>

Add Accessor <<AddRemoveAccessor>>

Remove Accessor

Type

Parameter

name name Template

Parameter
constraint constraining classifier

predefine

d

constraint

struct <<ValueTypeConstraint>>

class <<ReferenceTypeConstraint>>

new () <<ConstructorConstraint>>

attribute

sections

<<attributes>>

© 2016-2022 Altova GmbH

UModel Element Mappings 233Projects and Code Engineering

Altova UModel 2023 Basic Edition

C# Interface

C# UModel

Interface name name Interface

modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

unsafe <<unsafe>>

partial <<partial>>

new <<new >>

filename code file name

associated projectfile/directory ComponentRealization

base types Generalization(s)

attribute sections <<attributes>>

doc comments Comment(->Documentation)

Method name name Operation

modifiers public visibility public

new <<new >>

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

Parameter name name

modifiers ref direction inout

out out

params varArgList

type type

type dimensions multiplicity

type pointer type modifier

234 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

C# UModel

this <<this>>

nullable <<nullable>>

Type

Parameter

name name Template

Parameter
constraint constraining classifier

predefine

d

constraint

struct <<ValueTypeConstraint

>>

class <<ReferenceTypeConst

raint>>

new () <<ConstructorConstrain

t>>

attribute sections <<attributes>>

Property name name Operation

<<propert

y>>modifiers public visibility public

new <<new >>

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

type dimensions multiplicity

nullable <<nullable>>

Get

Accessor

modifiers internal visibility internal <<GetAcc

essor>>
protected

internal

protected

internal

protected protected

private private

Set

Accessor

modifiers internal visibility internal <<SetAcc

essor>>
protected

internal

protected

internal

protected protected

private private

Indexer name (="this") name (="this") Operation

<<indexer

>>modifiers public visibility public

© 2016-2022 Altova GmbH

UModel Element Mappings 235Projects and Code Engineering

Altova UModel 2023 Basic Edition

C# UModel

new <<new >>

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

Parameter name name

modifier params varArgList

type type

type dimensions multiplicity

type pointer type modifier

nullable <<nullable>>

Get

Accessor

modifiers internal visibility internal <<GetAcc

essor>>
protected

internal

protected

internal

protected protected

private private

Set

Accessor

modifiers internal visibility internal <<SetAcc

essor>>
protected

internal

protected

internal

protected protected

private private

Event name name Operation

<<event>>
modifiers public visibility public

new <<new >>

unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

type dimensions multiplicity

nullable <<nullable>>

Add Accessor <<AddRemoveAccessor>>

236 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

C# UModel

Remove Accessor

Type

Parameter

name name Template

Parameter
constraint constraining classifier

predefine

d

constraint

struct <<ValueTypeConstraint>>

class <<ReferenceTypeConstraint>>

new () <<ConstructorConstraint>>

attribute sections <<attributes>>

C# Delegate

C# UModel

Delegate name name Class

<<delegat

e>>modifiers internal visibility package

protected internal protected <<internal>>

public public

protected protected

private private

unsafe <<unsafe>>

new <<new >>

filename code file name

associated projectfile/directory ComponentRealization

attribute sections <<attributes>>

doc comments Comment(->Documentation)

type direction return Parameter Operation

Parameter name name

modifiers ref direction inout

out out

params varArgList

type type

type dimensions multiplicity

type pointer type modifier

© 2016-2022 Altova GmbH

UModel Element Mappings 237Projects and Code Engineering

Altova UModel 2023 Basic Edition

C# UModel

nullable <<nullable>>

Type

Parameter

name name Template

Parameter

constraint constraini

ng

classifier

predefine

d

constraint

struct <<ValueTypeConstraint

>>

class <<ReferenceTypeConst

raint>>

new () <<ConstructorConstrain

t>>

attribute

sections

<<attribute

s>>

C# Enum

C# UModel

Enum name name Enumeration

modifiers internal visibility package

protected internal protected

<<internal>>

public public

protected protected

private private

new <<new >>

filename code file name

associated projectfile/directory ComponentRealization

base type type <<BaseType>>

attribute sections <<attributes>>

doc comments Comment(-

>Documentation)

Enum Constant name name Enumeration Literal

default value default

attribute sections <<attributes>>

238 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

C# UModel

doc comments Comment(-

>Documentation)

C# Parameterized Type

C# UModel

Parameterized Type Anonymous Bound Element

6.6.2 VB.NET Mappings

The table below shows the one-to-one correspondence between:

· UModel elements and VB.NET code elements, when outputting model to code
· VB.NET code elements and UModel model elements, when inputting code into model

VB.NET UModel

Project projectfile projectfile Componen

t
directory directory

Namespac

e

name name Package

<<namesp

ace>>

Class name name Class

modifiers Friend visibility package

Protected Friend protected <<Friend>>

Public public

Protected protected

Private private

NotInheritable leaf

MustInherit abstract

Partial <<Partial>>

Shadow s <<Shadow s>>

filename code file name

associated projectfile/directory ComponentRealization

base types Generalization, InterfaceRealization(s)

© 2016-2022 Altova GmbH

UModel Element Mappings 239Projects and Code Engineering

Altova UModel 2023 Basic Edition

VB.NET UModel

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

Field name name Property

modifiers Friend visibility package

Protected Friend protected <<Friend>>

Public public

Protected protected

Private private

Shared static

ReadOnly readonly

Shadow s <<Shadow s>>

type type

type dimensions multiplicity

nullable <<Nullable>>

default value default

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

Constant name name Property

<<Const>

>modifiers Friend visibility package

Protected Friend protected <<Friend>>

Public public

Protected protected

Private private

Shadow s <<Shadow s>>

type type

type dimensions multiplicity

nullable <<Nullable>>

default value default

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

240 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

VB.NET UModel

Method name name Operation

modifiers Friend visibility package

Protected Friend protected <<Friend>>

Public public

Protected protected

Private private

Shared static

MustOverride abstract

NotOverridable leaf

Overrides <<Overrides>>

Overridable <<Overridable>>

Partial <<Partial>>

Shadow s <<Shadow s>>

Overloads <<Overloads>>

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

implemented interfaces implements

type (function) direction return Parameter

Parameter name name

modifiers ByRef direction inout

ByVal in

ParamArr

ay

varArgList

Optional default

type type

type dimensions multiplicity

nullable <<Nullable>>

Type

Parameter

name name Template

Parameter
constraint constraining classifier

predefine

d

Structure <<ValueTypeConstraint

>>

© 2016-2022 Altova GmbH

UModel Element Mappings 241Projects and Code Engineering

Altova UModel 2023 Basic Edition

VB.NET UModel

constraint Class <<ReferenceTypeConst

raint>>

New <<ConstructorConstrain

t>>

attribute sections <<Attributes>>

Construct

or

name name Operation

<<Constru

ctor>>modifiers Friend visibility package

Protected Friend protected <<Friend>>

Public public

Protected protected

Private private

Shared static

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

Parameter name name Parameter

modifiers ByRef direction inout

ByVal in

ParamArr

ay

varArgList

Optional default

type type

type dimensions multiplicity

nullable <<Nullable>>

Property name name Operation

<<Propert

y>>modifiers Friend visibility package

Protected Friend protected <<Friend>>

Public public

Protected protected

Private private

Default <<Property>> (Default <= IsDefault)

Shared static

242 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

VB.NET UModel

MustOverride abstract

NotOverridable leaf

Overrides <<Overrides>>

Overridable <<Overridable>>

Shadow s <<Shadow s>>

Overloads <<Overloads>>

ReadOnly <<GetAccessor>> (w ithout

<<SetAccessor>>)

WriteOnly <<SetAccessor>> (w ithout

<<GetAccessor>>)

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

type dimensions multiplicity

nullable <<Nullable>>

Get

Accessor

modifiers Friend visibility Friend <<GetAcc

essor>>
Protected

Friend

Protected

Friend

Protected Protected

Private Private

Set

Accessor

modifiers Friend visibility Friend <<SetAcc

essor>>
Protected

Friend

Protected

Friend

Protected Protected

Private Private

Operator name name Operation

<<Operato

r>>modifiers Public visibility Public

Shared static

Narrow ing name <= Narrow ing

Widening name <= Widening

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

© 2016-2022 Altova GmbH

UModel Element Mappings 243Projects and Code Engineering

Altova UModel 2023 Basic Edition

VB.NET UModel

type direction return Parameter

Parameter name name

modifier ByVal direction in

type type

type dimensions multiplicity

nullable <<Nullable>>

Event name name Operation

<<Event>>
modifiers Friend visibility package

Protected Friend protected <<Friend>>

Public public

Protected protected

Private private

Shared static

MustOverride abstract

NotOverridable leaf

Overrides <<Overrides>>

Overridable <<Overridable>>

Shadow s <<Shadow s>>

Overloads <<Overloads>>

kind w ithout specifying a

delegate type

<<Event>> (Type <= Simple)

w ith specifying a

delegate type

<<Event>> (Type <= Regular)

w ith custom accessors <<Event>> (Type <= Custom)

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

type dimensions multiplicity

nullable <<Nullable>>

Type

Parameter

name name Template

Parameter
constraint constraining classifier

244 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

VB.NET UModel

predefine

d

constraint

Structure <<ValueTypeConstraint>>

Class <<ReferenceTypeConstraint>>

New <<ConstructorConstraint>>

attribute sections <<Attributes>>

Structure name name Class

<<Structur

e>>modifiers Friend visibility package

Protected Friend protected <<Friend>>

Public public

Protected protected

Private private

Partial <<Partial>>

Shadow s <<Shadow s>>

filename code file name

associated projectfile/directory ComponentRealization

base types InterfaceRealization(s)

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

Field name name Property

modifiers Friend visibility package

Public public

Private private

Shared static

ReadOnly readonly

Shadow s <<Shadow s>>

type type

type dimensions multiplicity

nullable <<Nullable>>

default value default

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

© 2016-2022 Altova GmbH

UModel Element Mappings 245Projects and Code Engineering

Altova UModel 2023 Basic Edition

VB.NET UModel

Constant name name Property

<<Const>

>modifiers Friend visibility package

Public public

Private private

Shadow s <<Shadow s>>

type type

type dimensions multiplicity

nullable <<Nullable>>

default value default

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

Method name name Operation

modifiers Friend visibility package

Public public

Private private

Shared static

MustOverride abstract

NotOverridable leaf

Overrides <<Overrides>>

Overridable <<Overridable>>

Partial <<Partial>>

Shadow s <<Shadow s>>

Overloads <<Overloads>>

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

implemented interfaces implements

type (function) direction return Parameter

Parameter name name

modifiers ByRef direction inout

ByVal in

246 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

VB.NET UModel

ParamArr

ay

varArgList

Optional default

type type

type dimensions multiplicity

nullable <<Nullable>>

Type

Parameter

name name Template

Parameter
constraint constraining classifier

predefine

d

constraint

Structure <<ValueTypeConstraint

>>

Class <<ReferenceTypeConst

raint>>

New <<ConstructorConstrain

t>>

attribute sections <<Attributes>>

Construct

or

name name Operation

<<Constru

ctor>>modifiers Friend visibility package

Public public

Private private

Shared static

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

Parameter name name Parameter

modifiers ByRef direction inout

ByVal in

ParamArr

ay

varArgList

Optional default

type type

type dimensions multiplicity

nullable <<Nullable>>

Property name name Operation

<<Propert

© 2016-2022 Altova GmbH

UModel Element Mappings 247Projects and Code Engineering

Altova UModel 2023 Basic Edition

VB.NET UModel

y>>modifiers Friend visibility package

Public public

Private private

Shared static

Default <<Property>> (Default <= IsDefault)

MustOverride abstract

NotOverridable leaf

Overrides <<Overrides>>

Overridable <<Overridable>>

Shadow s <<Shadow s>>

Overloads <<Overloads>>

ReadOnly <<GetAccessor>> (w ithout

<<SetAccessor>>)

WriteOnly <<SetAccessor>> (w ithout

<<GetAccessor>>)

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

type dimensions multiplicity

nullable <<Nullable>>

Get

Accessor

modifiers Friend visibility Friend <<GetAcc

essor>>
Private Private

Set

Accessor

modifiers Friend visibility Friend <<SetAcc

essor>>
Private Private

Operator name name Operation

<<Operato

r>>modifiers Public visibility Public

Shared static

Narrow ing name <= Narrow ing

Widening name <= Widening

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

248 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

VB.NET UModel

type direction return Parameter

Parameter name name

modifier ByVal direction in

type type

type dimensions multiplicity

nullable <<Nullable>>

Event name name Operation

<<Event>>
modifiers Friend visibility package

Public public

Private private

Shared static

MustOverride abstract

NotOverridable leaf

Overrides <<Overrides>>

Overridable <<Overridable>>

Shadow s <<Shadow s>>

Overloads <<Overloads>>

kind w ithout specifying a

delegate type

<<Event>> (Type <= Simple)

w ith specifying a

delegate type

<<Event>> (Type <= Regular)

w ith custom accessors <<Event>> (Type <= Custom)

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

type dimensions multiplicity

nullable <<Nullable>>

Type

Parameter

name name Template

Parameter
constraint constraining classifier

predefine

d

constraint

Structure <<ValueTypeConstraint>>

Class <<ReferenceTypeConstraint>>

© 2016-2022 Altova GmbH

UModel Element Mappings 249Projects and Code Engineering

Altova UModel 2023 Basic Edition

VB.NET UModel

New <<ConstructorConstraint>>

attribute sections <<Attributes>>

Interface name name Interface

modifiers Friend visibility package

Protected Friend protected <<Friend>>

Public public

Protected protected

Private private

Shadow s <<Shadow s>>

filename code file name

associated projectfile/directory ComponentRealization

base types Generalization(s)

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

Method name name Operation

modifiers Public visibility public

Shadow s <<Shadow s>>

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

type (function) direction return Parameter

Parameter name name

modifiers ByRef direction inout

ByVal in

ParamArr

ay

varArgList

Optional default

type type

type dimensions multiplicity

nullable <<Nullable>>

Type

Parameter

name name Template

Parameter

250 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

VB.NET UModel

constraint constraining classifier

predefine

d

constraint

Structure <<ValueTypeConstraint

>>

Class <<ReferenceTypeConst

raint>>

New <<ConstructorConstrain

t>>

attribute sections <<Attributes>>

Property name name Operation

<<Propert

y>>modifiers Public visibility public

Default <<Property>> (Default <= IsDefault)

Shadow s <<Shadow s>>

ReadOnly <<GetAccessor>> (w ithout

<<SetAccessor>>)

WriteOnly <<SetAccessor>> (w ithout

<<GetAccessor>>)

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

type dimensions multiplicity

nullable <<Nullable>>

Event name name Operation

<<Event>>
modifiers Public visibility public

Shadow s <<Shadow s>>

kind w ithout specifying a

delegate type

<<Event>> (Type <= Simple)

w ith specifying a

delegate type

<<Event>> (Type <= Regular)

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

type direction return Parameter

type dimensions multiplicity

nullable <<Nullable>>

© 2016-2022 Altova GmbH

UModel Element Mappings 251Projects and Code Engineering

Altova UModel 2023 Basic Edition

VB.NET UModel

Type

Parameter

name name Template

Parameter
constraint constraining classifier

predefine

d

constraint

Structure <<ValueTypeConstraint>>

Class <<ReferenceTypeConstraint>>

New <<ConstructorConstraint>>

attribute sections <<Attributes>>

Delegate name name Class

<<Delegat

e>>modifiers Friend visibility package

Protected Friend protected <<Friend>>

Public public

Protected protected

Private private

Shadow s <<Shadow s>>

filename code file name

associated projectfile/directory ComponentRealization

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

type direction return Parameter Operation

Parameter name name

modifiers ByRef direction inout

ByVal in

type type

type dimensions multiplicity

nullable <<Nullable>>

Type

Parameter

name name Template

Parameter
constraint constraining classifier

predefine

d

constraint

struct <<ValueTypeConstraint>>

class <<ReferenceTypeConstraint>>

new () <<ConstructorConstraint>>

attribute sections <<Attributes>>

252 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

VB.NET UModel

Enum name name Enumerati

on
modifiers Friend visibility package

Protected Friend protected <<Friend>>

Public public

Protected protected

Private private

Shadow s <<Shadow s>>

filename code file name

associated projectfile/directory ComponentRealization

base type type <<BaseTy

pe>>

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

Enum

Constant

name name Enumerati

on Literal
default value default

attribute sections

doc comments

<<Attributes>>

Comment(->Documentation)

Parameterized Type Anonymous Bound Element

6.6.3 Java Mappings

The table below shows the one-to-one correspondence between:

· UModel elements and Java code elements, when outputting model to code
· Java code elements and UModel model elements, when inputting code into model

 Java UModel

Project projectfile projectfile Componen

t
directory directory

Package name name Package

<<namesp

ace>>

Class name name Class

© 2016-2022 Altova GmbH

UModel Element Mappings 253Projects and Code Engineering

Altova UModel 2023 Basic Edition

 Java UModel

modifiers package visibility package

public public

protected protected

private private

abstract abstract

strictfp <<strictfp>>

final <<final>>

filename code file name

associated projectfile/directory ComponentRealization

extends clause Generalization

implements clause InterfaceRealization(s)

java docs Comment(->Documentation)

Field name name Property

modifiers package visibility package

public public

protected protected

private private

static static

transient <<transient>>

volatile <<volatile>>

final <<final>>

type type

type dimensions multiplicity

default value default

java docs Comment(->Documentation)

Method name name Operation

modifiers package visibility package

public public

protected protected

private private

254 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

 Java UModel

static static

abstract abstract

final <<final>>

native <<native>>

strictfp <<strictfp>>

synchronized <<synchronized>>

throw s clause raised exceptions

java docs Comment(->Documentation)

type direction return Parameter

Parameter name name

modifier final <<final>>

... varArgList

type type

type dimensions multiplicity

Type

Parameter

name name Template

Parameter
bound constraining classifier

Construct

or

name name Operation

<<constru

ctor>>modifiers public visibility public

protected protected

private private

throw s clause raised exceptions

java docs Comment(->Documentation)

Parameter name name Parameter

modifier final <<final>>

... varArgList

type type

type dimensions multiplicity

Type

Parameter

name name Template

Parameter
bound constraining classifier

© 2016-2022 Altova GmbH

UModel Element Mappings 255Projects and Code Engineering

Altova UModel 2023 Basic Edition

 Java UModel

Type

Parameter

name name Template

Parameter
bound constraining classifier

Interface name name Interface

modifiers package visibility package

public public

protected protected

private private

abstract abstract

strictfp <<strictfp>>

filename code file name

associated projectfile/directory ComponentRealization

extends clause Generalization(s)

java docs Comment(->Documentation)

Field name name Property

modifiers public visibility public

static static

final <<final>>

type type

type dimensions multiplicity

default value default

java docs Comment(->Documentation)

Method name name Operation

modifiers public visibility public

abstract abstract

throw s clause raised exceptions

java docs Comment(->Documentation)

type direction return Parameter

Parameter name name

modifier final <<final>>

... varArgList

256 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

 Java UModel

type type

type dimensions multiplicity

Type

Parameter

name name Template

Parameter
bound constraining classifier

Type

Parameter

name name Template

Parameter

bound constraining classifier

Enum name name Enumerati

on
modifiers package visibility package

public public

protected protected

private private

filename code file name

associated projectfile/directory ComponentRealization

java docs Comment(->Documentation)

Enum

Constant

name name Enumerati

on Literal

Field name name Property

modifiers package visibility package

public public

protected protected

private private

static static

transient <<transient>>

volatile <<volatile>>

final <<final>>

type type

type dimensions multiplicity

default value default

java docs Comment(->Documentation)

Method name name Operation

© 2016-2022 Altova GmbH

UModel Element Mappings 257Projects and Code Engineering

Altova UModel 2023 Basic Edition

 Java UModel

modifiers package visibility package

public public

protected protected

private private

static static

abstract abstract

final <<final>>

native <<native>>

strictfp <<strictfp>>

synchronized <<synchronized>>

throw s clause raised exceptions

java docs Comment(->Documentation)

type direction return Parameter

Parameter name name

modifier final <<final>>

... varArgList

type type

type dimensions multiplicity

Type

Parameter

name name Template

Parameter
bound constraining classifier

Construct

or

name name Operation

<<constru

ctor>>modifiers public visibility public

protected protected

private private

throw s clause raised exceptions

java docs Comment(->Documentation)

Parameter name name Parameter

modifier final <<final>>

... varArgList

type type

258 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

 Java UModel

type dimensions multiplicity

Type

Parameter

name name Template

Parameter
bound constraining classifier

Parameterized Type Anonymous Bound Element

Annotation <<annotations> modifiers

6.6.4 XML Schema Mappings

The table below shows the one-to-one correspondence between:

· UModel elements and XML Schema elements, when outputting model to code
· XML Schema elements and UModel model elements, when inputting code into model

Legend:

 XSD UModel

file path projectfile Componen

t

schema target namespace name Package

<<namesp

ace>>

attributeFormDefault attributeFormDefault Class

<<schema

>>blockDefault blockDefault

elementFormDefault elementFormDefault

finalDefault finalDefault

version version

xml:lang xml:lang

xmlns xmlns

annotation source source

appinfo Comment

<<appinfo

© 2016-2022 Altova GmbH

UModel Element Mappings 259Projects and Code Engineering

Altova UModel 2023 Basic Edition

 XSD UModel

>>

document

ation

xml:lang xml:lang Comment

<<docume

ntation>>

attributeGr

oup

name name Class

<<attribute

Group>>annotation appinfo Comment

<<appinfo

>>

document

ation

Comment

<<docume

ntation>>

attribute name name Property

<<attribute

>>form form

use use

ref type

type

default default

fixed fixed

attributeGr

oup

ref type Property

<<attribute

Group>>

anyAttribu

te

namespace namespace Property

<<anyAttri

bute>>processContents processContents

attribute name name Class

<<attribute

>>form form

use use

type type Property

default default

fixed fixed

annotation appinfo Comment

<<appinfo

>>

documentation Comment

<<docume

ntation>>

260 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

 XSD UModel

simpleType name (= name of Class

+

"_anonymousType[n]")

DataType

<<simpleT

ype>>

element name name Class

<<element

>>abstract abstract

block block

final final

form form

nillable nillable

type type Property

default default

fixed fixed

substitutionGroup general Generaliz

ation

<<substitu

tion>>

annotation appinfo Comment

<<appinfo

>>

document

ation

Comment

<<docume

ntation>>

simpleTyp

e

name (= name of Class

+

"_anonymousType[n]")

DataType

<<simpleT

ype>>

complexT

ype

name (= name of Class

+

"_anonymousType[n]")

Class

<<comple

xType>>

group name name Class

<<group>

>annotation appinfo Comment

<<appinfo

>>

document

ation

Comment

<<docume

ntation>>

all name (= "_all") Property

name (= "mg"_ + "all") Class

<<all>>

© 2016-2022 Altova GmbH

UModel Element Mappings 261Projects and Code Engineering

Altova UModel 2023 Basic Edition

 XSD UModel

annotation appinfo Comment

<<appinfo

>>

document

ation

Comment

<<docume

ntation>>

element name name Property

<<element

>>ref type

type

choice name (= "_choice") Property

name (= "mg"_ +

"choice")

Class

<<choice>

>
annotation appinfo Comment

<<appinfo

>>

document

ation

Comment

<<docume

ntation>>

element name name Property

<<element

>>ref type

type

group Property

<<group>

>

any namespac

e

namespac

e

Property

<<any>>

processC

ontents

processC

ontents

choice Property

Class

<<choice>

>

sequence Property

Class

<<sequen

ce>>

sequence name (= "_sequence") Property

262 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

 XSD UModel

name (= "mg"_ +

"sequence")

Class

<<sequen

ce>>
annotation appinfo Comment

<<appinfo

>>

document

ation

Comment

<<docume

ntation>>

element name name Property

<<element

>>ref type

type

group Property

<<group>

>

any namespac

e

namespac

e

Property

<<any>>

processC

ontents

processC

ontents

choice Property

Class

<<choice>

>

sequence Property

Class

<<sequen

ce>>

notation name name DataType

<<notation

>>system system

public public

annotation appinfo Comment

<<appinfo

>>

document

ation

Comment

<<docume

ntation>>

complexT

ype

name name Class

<<comple

xType>>abstract abstract

block block

© 2016-2022 Altova GmbH

UModel Element Mappings 263Projects and Code Engineering

Altova UModel 2023 Basic Edition

 XSD UModel

final final

mixed mixed

annotation source source

appinfo Comment

<<appinfo

>>

document

ation

xml:lang xml:lang Comment

<<docume

ntation>>

group name (= "_ref[n]") Property

<<group>

>

maxOccurs multiplicity

minOccurs

ref type

all name (= "mg"_ + "all") Class

<<all>>

name (= "_all") Property

maxOccurs multiplicity

minOccurs

choice name (= "mg"_ +

"choice[n]")

Class

<<choice>

>

name (= "_choice[n]") Property

maxOccurs multiplicity

minOccurs

sequence name (= "mg"_ +

"sequence[n]")

Class

<<sequen

ce>>

name (=

"_sequence[n]")

Property

maxOccurs multiplicity

minOccurs

attribute name name Property

<<attribute

>>ref type

264 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

 XSD UModel

type

attributeGr

oup

ref

type

Property

<<attribute

Group>>

anyAttribu

te

namespace namespace Property

<<anyAttri

bute>>processContents processContents

complexC

ontent

restriction

base general

Generaliz

ation

<<restricti

on>>

extension Generaliz

ation

<<extensi

on>>

simpleTyp

e

name name DataType

<<simpleT

ype>>

Enumerati

on

<<simpleT

ype>>

final final

annotation source source

appinfo Comment

<<appinfo

>>

document

ation

xml:lang xml:lang Comment

<<docume

ntation>>

list

itemType name (=

"_itemTyp

e")

Property

<<itemTyp

e>>

<<list>>

simpleType DataType

<<simpleType>>

union memberTy

pes

name (=

"memberT

ype[n]")

Property

<<member

Type>>

<<union>>

simpleTyp

e

DataType

<<simpleType>>

minExclusi

ve

value value <<minExcl

usive>>
fixed fixed

minInclusi

ve

value value <<minInclu

sive>>
fixed fixed

maxExclu

sive

value value <<maxExc

lusive>>

© 2016-2022 Altova GmbH

UModel Element Mappings 265Projects and Code Engineering

Altova UModel 2023 Basic Edition

 XSD UModel

fixed fixed

maxInclusi

ve

value value <<maxIncl

usive>>
fixed fixed

totalDigits value value <<totalDigi

ts>>
fixed fixed

fractionDi

gits

value value <<fraction

Digits>>
fixed fixed

length value value <<length>

>
fixed fixed

minLength value value <<minLen

gth>>
fixed fixed

maxLengt

h

value value <<maxLen

gth>>
fixed fixed

w hitespac

e

value value <<w hitesp

ace>>
fixed fixed

pattern value value <<w hitesp

ace>>

enumerati

on

value name Enumerati

onLiteral

simpleTyp

e

DataType

<<simpleT

ype>>

restriction base general Generaliz

ation

<<restricti

on>>

complexT

ype

simpleCon

tent

name name DataType

<<comple

xType>>

<<simpleC

ontent>>

annotation source source

appinfo Comment

<<appinfo

>>

document

ation

xml:lang xml:lang Comment

<<docume

ntation>>

266 Projects and Code Engineering UModel Element Mappings

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

 XSD UModel

minExclusi

ve

value value <<minExcl

usive>>
fixed fixed

minInclusi

ve

value value <<minInclu

sive>>
fixed fixed

maxExclu

sive

value value <<maxExc

lusive>>
fixed fixed

maxInclusi

ve

value value <<maxIncl

usive>>

fixed fixed

totalDigits value value <<totalDigi

ts>>

fixed fixed

fractionDi

gits

value value <<fraction

Digits>>

fixed fixed

length value value <<length>

>

fixed fixed

minLength value value <<minLen

gth>>

fixed fixed

maxLengt

h

value value <<maxLen

gth>>

fixed fixed

w hitespac

e

value value <<w hitesp

ace>>

fixed fixed

pattern value value <<w hitesp

ace>>

attribute name name Property

<<attribute

>>ref type

type

attributeGr

oup

ref type Property

<<attribute

Group>>

anyAttribu

te

namespac

e

namespac

e

Property

<<anyAttri

bute>>

© 2016-2022 Altova GmbH

UModel Element Mappings 267Projects and Code Engineering

Altova UModel 2023 Basic Edition

 XSD UModel

processC

ontents

processC

ontents

simpleTyp

e

DataType

<<simpleT

ype>>

restriction base general Generaliz

ation

<<restricti

on>>

extension base general Generaliz

ation

<<extensi

on>>

import schemaLocation schemaLocation ElementIm

port

<<import>

>

namespace namespace

include schemaLocation schemaLocation ElementIm

port

<<include

>>

redefine schemaLocation schemaLocation ElementIm

port

<<redefin

e>>

simpleTyp

e

<<redefine>>

DataType

<<simpleT

ype>>

complexT

ype

Class

<<comple

xType>>

attributeGr

oup

Class

<<attribute

Group>>

group Class

<<group>

>

268 Projects and Code Engineering Merging UModel Projects

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

6.7 Merging UModel Projects

It is possible to perform a two-way or three-way project merge in UModel. Both operations merge different
UModel project files into a common UModel *.ump model. This option is useful if multiple persons are working
on the same project at the same time, or you just want to consolidate your work into one model.

To merge two UML projects:

1. Open the UML file that is to be the target of the merge process, i.e. the file into which the second
model will be merged - the merged project file.

2. Select the menu option Project | Merge Project....
3. Select the second UML project that is to be merged into the first one. The Messages window reports

on the merge process, and logs the relevant details.

Note: Clicking on one of the entries in the Messages window displays that modeling element in the Model
Tree.

Merging results:

· New modeling elements i.e. those that do not exist in the source, are added to the merged model.
· Differences in the same modeling elements; the elements from the second model take precedence,

e.g. there can only be one default value of an attribute, the default value of the second file is used.
· Diagram differences: UModel first checks to see if there are differences between diagrams of the two

models. If there are, then the new/different diagram is added to the merged model (with a running
number suffix, activity1 etc.) and the original diagram is retained. If there are no differences, then
identical diagrams(s) are ignored, and nothing is changed. You can then decide which of the diagrams
you want to keep or delete, you can of course keep both of them if you want.

· The whole merge process can be undone step-by-step by clicking the Undo toolbar button, or pressing
Ctrl+Z.

· Clicking an entry in the message window displays that element in the Model Tree.
· The file name of the merged file (the first file you opened) is retained.

6.7.1 3-Way Project Merge

UModel supports the merging of multiple UModel projects that have been simultaneously edited by different
developers, in a 3-way project merge. The 3-way project merge works with top-level UModel projects, i.e. main
projects that may contain subprojects, it does not support individual file merging, when these files have
unresolved references to other files.

© 2016-2022 Altova GmbH

Merging UModel Projects 269Projects and Code Engineering

Altova UModel 2023 Basic Edition

When merging main projects, any editable subprojects are automatically merged as well. There is no need for a
separate subproject merging process. For an example, see Example: Manual 3-Way Project Merge . Note
the following:

· The whole merge process can be undone step-by-step by clicking the Undo toolbar button, or pressing
Ctrl+Z.

· Clicking an entry in the message window displays that element in the Model Tree.
· The file name of the merged file, the first file you opened, is retained.

Merging results
In the following text, "source" means the initial/first project file you open before starting the merge process.

· New modeling elements in the second file i.e. that do not exist in the source, are added to the merged
model.

· New modeling elements in the source file i.e. that do not exist in the second file, remain in the merged
model.

· Deleted modeling elements from the second file i.e. those that still exist in the source, are removed
from the merged model.

· Deleted modeling elements from the source file i.e. that still exist in the second file, remain deleted
from the merged model.

Differences to the same modeling elements:

· If a property (e.g. the visibility of a class) is changed in either the source, or second file, the updated
value is used in the merged model.

· If a property (e.g. the visibility of a class) is changed in both source and second file, the value of the
second file is used (and a warning is shown in the messages window).

Moved elements:

· If an element is moved in the source, or second file, then the element is moved in the merged model.
· If an element is moved (to different parents) in both the source and second file, a prompt appears, and

you have to manually select the parent element in the merged model.

Diagram differences:

UModel first checks to see if there are differences between diagrams of the two models. If yes, then the
new/different diagram is added to the merged model (with a running number suffix, activity1 etc.) and the
original diagram is retained. If there are no differences, then identical diagrams(s) are ignored, and nothing is
changed. You can then decide which of the diagrams you want to keep or delete, you can of course keep both
of them if you want.

Source control systems support for 3-way merging
When checking in/out project files, UModel automatically generates "Common ancestor" (or snapshot) files
which are then used for the 3-way merge process. This enables a much finer merge result than the normal 2-
way merge.

The specific source control system you use, determines if the automatic snapshot 3-way merge process is
supported by UModel. A manual 3-way merge is however, always possible.

270

270 Projects and Code Engineering Merging UModel Projects

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

· Source control systems that perform automatic file merging without user intervention, will probably not
support an automatic 3-way merge.

· Source control systems that prompt you to choose between Replace or Merge, when a project file has
been changed, will generally support a 3-way merge. After the source control plug-in has replaced the
file, selecting the Replace command activates the UModel file alert which then allows you to do a 3-
way merge. UModel must be used for the check in/out process.

· Main projects as well as subprojects can be placed under source control. Changing data in a
subproject automatically prompts you if the subproject(s) should be checked out.

· Each check in/out action, creates a Common ancestor, or a snapshot, file which is then used during
the 3-way project merge process.

Note: Snapshot files are automatically created and used only with the standalone versions of UModel, i.e.
these functions are not available in the Eclipse or Visual Studio plug-in versions.

Example
User A edits a UModel project file and changes the name of a class in the BankView Main diagram. User B
opens the same project file and changes the visibility of the same class.

As snapshot files are created for each user, the snapshot editing history allows the individual changes to be
merged into the project. Both the name and visibility changes are merged into the project file during the 3-way
merge process.

6.7.2 Example: Manual 3-Way Project Merge

This example illustrates a simple 3-way project merge. Let's suppose that two users, Tom and Alice, created
their own copies of a UModel project and made changes to them. There are now three versions of the same
project: the original one, Tom's copy, and Alice's copy. In the context of 3-way merging, the original project
represents the "common ancestor file".

For the scope of this example, let's assume that the common ancestor file is Bank_CSharp.ump project,
available in the folder C:\Users\<username>\Documents\Altova\UModel2023\UModelExamples. The copies
of Tom and Alice must be created manually. Therefore, let's first create two copies of the Bank_Csharp.ump
project in child folders below the ...\UModelExamples folder. Let's call the child folders Alice and Tom; the
project name can remain as is.

Use the File | Save Project As command to create the copies of Tom and Alice. When prompted to
adjust the relative paths, click Yes. This way you will avoid introducing syntax errors in the project
copies.

The goal of the example is to show how Alice should merge changes not only from the original
Bank_CSharp.ump, but also from Tom's project into a new merged model (a so-called "3-way merge").

Step 1: Prepare Tom's project
Tom opens the Bank_CSharp.ump project file in folder Tom, opens the "BankView Main" diagram, and
makes changes to the BankView class.

1. Operation CollectAccountInfos():bool is deleted from the BankView class.

© 2016-2022 Altova GmbH

Merging UModel Projects 271Projects and Code Engineering

Altova UModel 2023 Basic Edition

2. The visibility of the CollectBankAddressInfos():bool operation is changed from "protected" to
"public".

3. The project is then saved.

Step 2: Prepare Alice's project
Alice opens the Bank_CSharp.ump project file in folder Alice, opens the "BankView Main" diagram, and
makes changes to the Bank class.

1. The operations CollectAccountInfos and GetBalanceOfAccounts are both changed from "public" to
"protected".

2. The project is then saved.

Step 3: Perform the 3-way merge
Alice now starts a 3-way project merge:

1. Open Alice's project from Alice folder.

272 Projects and Code Engineering Merging UModel Projects

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

2. On the Project menu, click Merge Project (3-way), and select the project file changed by Tom from
Tom folder.

3. You are now prompted to open the common ancestor file. Select the original Bank_CSharp.ump
project file from the ...\UModelExamples folder.

The 3-way merge process is started and you return to the project file from which you started the 3-way merge
process, i.e. from the project file in the Alice folder. The Messages window shows you the merge process in
detail.

The outcome of the 3-way merge is as follows:

· The changes made to the project by Tom are replicated in Alice's project.
· The changes made to the project by Alice are retained in the project file.

Note: The project file in the Alice folder should now be used as the common ancestor file for future 3-way
merges between the project files in folders Tom and Alice.

© 2016-2022 Altova GmbH

UML Templates 273Projects and Code Engineering

Altova UModel 2023 Basic Edition

6.8 UML Templates

UModel supports the use of UML templates and their mapping to or from Java, C# and Visual Basic generics.

· Templates are "potential" model elements with unbound formal parameters.
· These parameterized model elements, describe a group of model elements of a particular type:

classifiers, or operations.
· Templates cannot be used directly as types, the parameters have to be bound.
· Instantiate means binding the template parameters to actual values.

· Actual values for parameters are expressions.

· The binding between a template and model element, produces a new model element (a bound element)
based on the template.

· If multiple constraining classifiers exist in C#, then the template parameters can be directly edited in
the Properties tab, when the template parameter is selected.

Template signature display in UModel:

· Class template called MyVector, with formal template parameter "T", visible in the dashed rectangle.
· Formal parameters without type info (T) are implicitly classifiers: Class, Datatype, Enumeration,

PrimitiveType, Interface. All other parameter types must be shown explicitly e.g. Integer.
· Property myArray with unbounded number of elements of type T.

Right clicking the template and selecting Show | Bound elements, displays the actual bound
elements.

Template binding display:

· A bound named template intvector
· Template of type, MyVector, where
· Parameter T is substituted/replaced by int.
· "Substituted by" is shown by - >.

Template use in properties/operations:

An anonymous template binding:
· Property MyFloatVector of type MyVector<T->float>

Templates can also be defined when defining properties or operations. The autocomplete function helps you
with the correct syntax when doing this.

274 Projects and Code Engineering UML Templates

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

· Operation1 returns a vector of floats.

6.8.1 Template Signatures

A Template signature is a string that specifies the formal template parameters. A template is a parameterized
element that is used to generate new model elements by substituting/binding the formal parameters to actual
parameters (values).

Formal template parameter
T
Template with a single untyped formal parameter
(stores elements of type T)

Multiple formal template parameters
KeyType:DateType, ValueType

Parameter substitution
T>aBaseClass

The parameter substitution must be of type "aBaseClass", or derived from it.

Default values for template parameters
T=aDefaultValue

Substituting classifiers
T>{contract}aBaseClass

allowsSubstitutable is true
Parameter must be a classifier that may be substituted for the classifier designated by the classifier
name.

Constraining template parameters
T:Interface>anInterface

When constraining to anything other than a class, (interface, data type), the constraint is displayed
after the colon ":" character. E.g. T is constrained to an interface (T:Interface) which must be of type
"anInterface" (>anInterface).

Using wildcards in template signatures
T>vector<T->?<aBaseClass>

Template parameter T must be of type "vector" which contains objects which are a supertype of
aBaseClass.

© 2016-2022 Altova GmbH

UML Templates 275Projects and Code Engineering

Altova UModel 2023 Basic Edition

Extending template parameters
T>Comparable<T->T>

6.8.2 Template Binding

Template binding involves the substitution of the formal parameters by actual values, i.e. the template is
instantiated. UModel automatically generates anonymously bound classes, when this binding occurs. Bindings
can be defined in the class name field as shown below.

Substituting/binding formal parameters
vector <T->int>

Create bindings using the class name
a_float_vector:vector<T->float>

Binding multiple templates simultaneously
Class5:vector<T->int, map<KeyType->int, ValueType<T->int>

Using wildcards ? as parameters (Java 5.0)
vector<T->?>

Constraining wildcards - upper bounds (UModel extension)
vector<T->?>aBaseClass>

Constraining wildcards - lower bounds (UModel extension)
vector<T->?<aDerivedClass>

6.8.3 Template Usage in Operations and Properties

Operation returning a bound template
Class1
Operation1():vector<T->int>

Parameter T is bound to "int". Operation1 returns a vector of ints.

Class containing a template operation
Class1
Operation1<T>(in T):T

Using wildcards
Class1
Property1:vector<T->?>

This class contains a generic vector of unspecified type (? is the wildcard).

276 Projects and Code Engineering UML Templates

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Typed properties can be displayed as associations as follows:

· Right click a property and select Show | PropertyX as Association, or
· Drag a property onto the diagram background.

© 2016-2022 Altova GmbH

 277Generating UML Documentation

Altova UModel 2023 Basic Edition

7 Generating UML Documentation

Altova website: UML project documentation

Run the Project | Generate Documentation menu command to generate detailed documentation about your
UML project in HTML, Microsoft Word, RTF or PDF format. The documentation generated by this command
can be freely altered and used; permission from Altova to do so is not required.

Notes
· To generate documentation in PDF format or to customize the generated documentation, Altova

StyleVision (https://www.altova.com/stylevision) must be installed and licensed.
· To generate documentation in Microsoft Word format, Microsoft Word 2000 or later is required.

Documentation is generated for the modeling elements you select in the Generate Documentation dialog box.
You can either use the fixed design, or specify a custom StyleVision Power Stylesheet (SPS). Using a
StyleVision Power Stylesheet enables you to customize the output of the generated documentation, see
Customizing Output with StyleVision .

You can also create partial documentation of modeling elements. To do this, right-click an element (or multiple
elements using Ctrl+Click) in the Model Tree and select Generate Documentation. The element can be a
folder, class, interface, and so on. The documentation options are the same in both cases.

Related elements are hyperlinked in the generated output, enabling you to navigate from component to
component. All manually created hyperlinks also appear in the documentation.

If your project contains UModel profiles (such as C#, Java, VB.NET, and so on), the generated documentation
will include these if the Included subprojects option is enabled in the Include tab, see Documentation
Generation Options .

To generate documentation:

1. Open a project (for example, C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples\Bank_Java.ump).

2. On the Project menu, click Generate Documentation.

286

281

https://www.altova.com/umodel#proj_docs
https://www.altova.com/stylevision

278 Generating UML Documentation

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

3. Select an output format (HTML, Word, RTF, PDF).
4. Optionally, customize the generation options, see Documentation Generation Options .
5. Click OK and choose a target output folder.

The following image shows a fragment of UModel fixed-design documentation generated from the
Bank_Java.ump project file.

281

© 2016-2022 Altova GmbH

 279Generating UML Documentation

Altova UModel 2023 Basic Edition

As illustrated above, the generated documentation includes an index of diagrams and elements (with links) at
the top of the HTML file.

The image below shows a fragment of the generated documentation for the Account class. Note that the
individual members in class diagrams are also hyperlinked to their definitions. For example, clicking a property
or operation takes you to its definition. The hierarchy classes, as well as all underlined text, are also
hyperlinked.

280 Generating UML Documentation

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Documentation Generation Options 281Generating UML Documentation

Altova UModel 2023 Basic Edition

7.1 Documentation Generation Options

When generating documentation from UModel projects, you can set various options as described below. The
options are organized by the tab in which they appear in the "Generate Documentation" dialog box.

Main tab
The Main tab includes the general documentation generation options.

Documentation Design:

· Select Use fixed design... to use the UModel built-in documentation design.
· Select Use user-defined... to generate documentation formatted with the help of a custom StyleVision

Power Stylesheet (.sps file) created in StyleVision. Note: This option requires Altova StyleVision to be
installed, see also Customizing Output with StyleVision .

· Click Browse to browse for a predefined stylesheet file.
· Click Edit to launch StyleVision and open the selected stylesheet file in a StyleVision window.

Output format:

286

282 Generating UML Documentation Documentation Generation Options

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

· The output format can be one of the following: HTML, Microsoft Word, RTF, or PDF. Microsoft Word
documents are created with the .doc file extension when generated using a fixed design, and with a
.docx file extension when generated using a StyleVision Power Stylesheet. The PDF output format
requires Altova StyleVision to be installed.

· Split output to multiple files generates an output file for each modeling element (class, interface,
diagram, and so on). Clear this check box to generate one global file with all modeling elements.

· Select the Embed CSS in HTML check box to embed the generated CSS code in the HTML
documentation. Clear this check box to keep the CSS file external.

· The Embed diagrams option is enabled for the Microsoft Word and RTF output options. When this
check box is selected, diagrams are embedded in the generated file. Diagrams are created as .png
files, which are displayed in the result file via object links.

· Create folder for diagrams generates a subfolder below the selected output folder, that will contain
all diagrams.

· The Show result file after generation option is enabled for all output formats. When this check box
is selected, the main generated file is displayed in the default browser (for HTML files), in Microsoft
Word (for Word files), or in the default application (for .pdf or .rtf files).

· The Generate links to local files option allows you to specify if the generated links are to be
absolute, or relative, to the output file.

Include tab
This tab allows you to select which diagrams and modeling elements are to appear in the documentation.

© 2016-2022 Altova GmbH

Documentation Generation Options 283Generating UML Documentation

Altova UModel 2023 Basic Edition

To prevent subprojects or profiles from being documented, clear the Included subprojects check box. Be
aware that, if this check box is not selected, any elements or diagrams that are in subprojects will not be
included in generated documentation. Select the Predefined subprojects check box to include UModel built-
in profiles such as C# or Java profiles. Note, however, that generating documentation from predefined projects
takes a very long time. Unknown externals refers to elements whose kind could not be identified—this
usually happens after you import source code into UModel without first including the built-in subprojects for that
language or language version, see Including Subprojects for more information.

Details tab
This tab allows you to select the element details that are to appear in the documentation.

· If you intend to import XML tags text in your documentation, clear the as HTML option under the
Documentation option.

· The up and down fields allow you to define the nesting depth shown above or below the current class
in the hierarchy diagram.

· The expand each element only once option allows only one of the same classifiers to be expanded
in the same image or diagram.

158

284 Generating UML Documentation Documentation Generation Options

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Fonts tab
This tab allows you to customize the font settings for the various headers and text content.

© 2016-2022 Altova GmbH

Documentation Generation Options 285Generating UML Documentation

Altova UModel 2023 Basic Edition

286 Generating UML Documentation Customizing Output with StyleVision

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

7.2 Customizing Output with StyleVision

You can customize the design of UModel-generated documentation with the help of StyleVision Power
Stylesheet (.sps) files. Such files are created in Altova StyleVision (https://www.altova.com/stylevision). The
advantage of using an .sps file is that you have complete control over the design of the documentation. In
addition, PDF output is available if an .sps file is used.

To generate documentation with .sps files, Altova StyleVision must be installed and licensed.

UModel includes a predefined .sps file, which is available at the following path: C:
\users\<username\Documents\UModel2023\Documentation\UModel\UModelDocumentation.sps. To
format the generated documentation using a custom .sps file, select this option while generating
documentation, for example:

You can begin the customization by creating a copy of the default UModelDocumentation.sps and editing it
in StyleVision. For example, you can change the existing formatting or add links and images to the design.

Any StyleVision Power Stylesheet is based on an XML Schema. In case of stylesheets that control the design
of UModel-generated documentation, this schema is available at the following path: C:
\users\<username\Documents\UModel2023\Documentation\UModel\UModelDocumentation.xsd. Note
that the UModelDocumentation.xsd file references the Documentation.xsd file located in the folder above it.

When you author custom .sps files in StyleVision for UModel documentation, the UModelDocumentation.xsd
file must be used as a schema. The image below illustrates the Design Overview window of StyleVison after
you open the UModelDocumentation.sps file. Notice that it uses the UModelDocumentation.xsd schema
file, and a working XML required to preview the design. The working XML file is available in the SampleData
subfolder relative to the schema file.

https://www.altova.com/stylevision

© 2016-2022 Altova GmbH

Customizing Output with StyleVision 287Generating UML Documentation

Altova UModel 2023 Basic Edition

For instructions about how to edit .sps files, refer to the StyleVision documentation
(https://www.altova.com/documentation).

https://www.altova.com/documentation

288 UML Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

8 UML Diagrams

Altova website: UML diagrams

There are two major groups of UML diagrams, Structural diagrams, which show the static view of the model,
and Behavioral diagrams, which show the dynamic view. UModel supports all fourteen diagrams of the UML 2.5
specification, as well as Additional diagrams.

· Behavioral diagrams include Activity, State machine, Protocol State Machine and Use Case
diagrams; as well as the Interaction, Communication, Interaction Overview, Sequence, and Timing
diagrams.

· Structural diagrams include: Class, Composite Structure, Component, Deployment, Object, and
Package diagrams.

· Additional diagrams XML schema diagrams.

Note: The Ctrl+Enter keys can be used to create multi-line labels for most of the modeling diagrams, e.g.
Lifeline labels in sequence diagrams, timing diagrams; guard conditions, state names, activity names
etc.

289

379

416

https://www.altova.com/umodel/uml-diagrams

© 2016-2022 Altova GmbH

Behavioral Diagrams 289UML Diagrams

Altova UModel 2023 Basic Edition

8.1 Behavioral Diagrams

These diagrams depict behavioral features of a system or business process, and include a subset of diagrams
which emphasize object interactions.

 Activity Diagram

 State Machine Diagram

 Protocol State Machine Diagram

 Use Case Diagram

A subset of the Behavioral diagrams are those that depict the object interactions, namely:

 Communication Diagram

 Interaction Overview Diagram

 Sequence Diagram

 Timing Diagram

8.1.1 Activity Diagram

Altova website: UML Activity diagrams

Activity diagrams are useful for modeling real-world workflows of business processes, and display which
actions need to take place and what the behavioral dependencies are. The Activity diagram describes the
specific sequencing of activities and supports both conditional and parallel processing. The Activity diagram is
a variant of the State diagram, with the states being activities.

The Activity diagram shown below is available in the Bank_MultiLanguage.ump sample, in the ...
\UModelExamples folder supplied with UModel.

334

370

https://www.altova.com/umodel/activity-diagrams

290 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

8.1.1.1 Inserting Activity Diagram elements

To add elements to the diagram:

1. Click the element's toolbar button in the Activity Diagram toolbar.

© 2016-2022 Altova GmbH

Behavioral Diagrams 291UML Diagrams

Altova UModel 2023 Basic Edition

2. Click in the Activity Diagram to insert the element.

To insert multiple elements of the selected type, hold down the Ctrl key and click in the diagram window.

Dragging existing elements into the activity diagram
Most elements occurring in other activity diagrams can be inserted into an existing activity diagram.

1. Locate the element you want to insert in the Model Tree Window (you can use the search function
text box, or press Ctrl+F to search for any element).

2. Drag the element(s) into the activity diagram.

Inserting an action (CallBehavior)

1. Click the Action (CallBehavior) toolbar button, and click in the Activity diagram to insert it.
2. Enter the name of the Action, e.g. "Validate References", and press Enter to confirm.

Note: Use Ctrl+Enter to create a multi-line name.

Inserting an action (CallOperation) and selecting a specific operation

1. Click the Action (CallOperation) icon in the icon bar, and click in the Activity diagram to insert
it.

2. Enter the name of the Action, e.g. "collectAccountInfo", and press Enter to confirm.
3. Click the Browse button to the right of the operation field in the Properties tab. This opens the "Select

Operation" dialog box in which you can select the specific operation.

79

292 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

4. Navigate to the specific operation that you want to insert, and click OK to confirm.

In this example, the operation "collectAccountInfos" is in the BankView class.

© 2016-2022 Altova GmbH

Behavioral Diagrams 293UML Diagrams

Altova UModel 2023 Basic Edition

8.1.1.2 Creating branches and merges

A branch has a single incoming flow and multiple outgoing guarded flows. Only one of the outgoing flows can
be traversed, so the guards should be mutually exclusive.

In this example the (BankView) references are to be validated:

· branch1 has the guard "reference missing", which transitions to the abort activity
· branch2 has the guard "valid", which transitions to the collectAccountInfos activity.

Creating a branch (alternate flow)

1. Click the DecisionNode icon in the title bar, and insert it in the Activity diagram.

2. Click the ActivityFinalNode icon which represents the abort activity, and insert it into the
Activity diagram.

3. Click the "Validate References" activity to select it, then click the right-hand handle, ControlFlow, and
drag the resulting connector onto the "DecisionNode" element. The element is highlighted when you
can drop the connector.

4. Click the "DecisionNode" element, click the right-hand connector, ControlFlow, and drop it on the
"collectAccountInfos" action. Please see "Inserting an Action (CallOperation " for more information.291

294 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

5. Enter the guard condition "valid", in the guard field of the Properties tab.

6. Click the DecisionNode element and drag from the right-hand handle, ControlFlow, and drop it on the
"ActivityFinalNode" element. The guard condition on this transition is automatically defined as "else".
Double click the guard condition in the diagram to change it e.g. "reference missing".

Note: UModel does not validate, or check, the number of Control/Object Flows in a diagram.

© 2016-2022 Altova GmbH

Behavioral Diagrams 295UML Diagrams

Altova UModel 2023 Basic Edition

Creating a merge

1. Click the MergeNode icon in the icon bar, then click in the Activity diagram to insert it.

2. Click the ControlFlow (ObjectFlow) handles of the actions that are to be merged, and drop the arrow(s)
on the "MergeNode" symbol.

8.1.1.3 Activity Diagram elements

 Action (CallBehavior)
Inserts a CallBehaviorAction element which directly invokes a specific behavior. Selecting an existing
behavior using the behavior combo box, e.g. HandleDisplayException, displays a rake symbol within the
element.

 Action (CallOperation)
Inserts a CallOperationAction which indirectly invokes a specific behavior as a method. Please see "Inserting
an action (CallOperation) " for more information.

291

296 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

 Action (OpaqueAction)
A type of action used to specify implementation information. Can be used as a placeholder until you decide
which specific action type you want to use.

 Action (ValueSpecificationAction)
A type of action that evaluates(/generates) a specific value at the output pin. (Defined by the specific properties,
e.g. upperBound.)

 AcceptEventAction
Inserts the Accept Event action which waits for the occurrence of an event which meets specific conditions.

 AcceptEventAction (TimeEvent)
Inserts an AcceptEventAction, triggered by a time event, which specifies an instant of time by an expression
e.g. 1 sec. since last update.

 SendSignalAction
Inserts the SendSignalAction, which creates a signal from its inputs and transmits the signal to the target
object, where it may cause the execution of an activity.

© 2016-2022 Altova GmbH

Behavioral Diagrams 297UML Diagrams

Altova UModel 2023 Basic Edition

 DecisionNode
Inserts a Decision Node which has a single incoming transition and multiple outgoing guarded transitions.
Please see "Creating a branch " for more information.

 MergeNode
Inserts a Merge Node which merges multiple alternate transitions defined by the Decision Node. The Merge
Node does not synchronize concurrent processes, but selects one of the processes.

 InitialNode
The beginning of the activity process. An activity can have more than one initial node.

 ActivityFinalNode
The end of the activity process. An activity can have more that one final node, all flows in the activity stop when
the "first" final node is encountered.

293

298 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

 FlowFinalNode
Inserts the Flow Final Node, which terminates a flow. The termination does not affect any other flows in the
activity.

 ForkNode
Inserts a vertical Fork node. Used to divide flows into multiple concurrent flows.

 ForkNode (Horizontal)
Inserts a horizontal Fork node. Used to divide flows into multiple concurrent flows.

 JoinNode
Inserts a vertical Fork node. A Join node synchronizes multiple flows defined by the Fork node.

 Join Node (horizontal)
Inserts a horizontal Fork node. A Join node synchronizes multiple flows defined by the Fork node.

 InputPin
Inserts an input pin onto a Call Behavior, or Call Operation action. Input pins supply input values that are used
by an action. A default name, "argument", is automatically assigned to an input pin.

The input pin symbol can only be placed onto those activity elements where the mouse pointer changes to the

hand symbol . Dragging the symbol repositions it on the element border.

 OutputPin
Inserts an output pin action. Output pins contain output values produced by an action. A name corresponding
to the UML property of that action e.g. result, is automatically assigned to the output pin.

© 2016-2022 Altova GmbH

Behavioral Diagrams 299UML Diagrams

Altova UModel 2023 Basic Edition

The output pin symbol can only be placed onto those activity elements where the mouse pointer changes to

the hand symbol . Dragging the symbol repositions it on the element border.

Exception Pin
An OutputPin can be changed to an Exception pin by clicking the pin and selecting "isExceptionPin" from the
Properties pane.

 ValuePin
Inserts a Value Pin which is an input pin that provides a value to an action, that does not come from an
incoming object flow. It is displayed as an input pin symbol, and has the same properties as an input pin.

 ObjectNode
Inserts an object node which is an abstract activity node that defines object flow in an activity. Object nodes
can only contain values at runtime that conform to the type of the object node.

 CentralBufferNode
Inserts a Central Buffer Node which acts as a buffer for multiple in- and out flows from other object nodes.

 DataStoreNode
Inserts a Data Store Node which is a special "Central Buffer Node" used to store persistent (i.e. non transient)
data.

 ActivityPartition (horizontal)
Inserts a horizontal Activity Partition, which is a type of activity group used to identify actions that have some
characteristic in common. This often corresponds to organizational units in a business model.

300 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Double clicking a label allows you to edit it directly; pressing Enter orients the text correctly.

Please note that Activity Partitions are the UML 2.0 update to the "swimlane" functionality of previous UML
versions.

· Elements placed within a ActivityPartition become part of it when the boundary is highlighted.
· Objects within an ActivityPartition can be individually selected using Ctrl+Click, or by dragging the

marquee inside the boundary.
· Click the ActivityPartition boundary, or title, and drag to reposition it.

 ActivityPartition (vertical)
Inserts a vertical Activity Partition, which is a type of activity group used to identify actions that have some
characteristic in common. This often corresponds to organizational units in a business model.

 ActivityPartition (2 Dimensional)
Inserts a two dimensional Activity Partition, which is a type of activity group used to identify actions that have
some characteristic in common. Both axes have editable labels.

© 2016-2022 Altova GmbH

Behavioral Diagrams 301UML Diagrams

Altova UModel 2023 Basic Edition

To remove the Dim1, Dim2 dimension labels:

1. Click the dimension label you want to remove e.g. Dim1
2. Double click in the Dim1 entry in the Properties tab, delete the Dim1 entry, and press Enter to confirm.

Note that Activity Partitions can be nested:

1. Right click the label where you want to insert a new partition.
2. Select New | ActivityPartition.

302 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

 ControlFlow
A Control Flow is an edge, i.e. an arrowed line, that connects two activities/behaviours, and starts an activity
after the previous one has been completed.

 ObjectFlow
A Object Flow is an edge, i.e. an arrowed line, that connects two actions/object nodes, and starts an activity
after the previous one has been completed. Objects or data can be passed along an Object Flow.

 ExceptionHandler
An Exception Handler is an element that specifies what action is to be executed if a specified exception occurs
during the execution of the protected node.

© 2016-2022 Altova GmbH

Behavioral Diagrams 303UML Diagrams

Altova UModel 2023 Basic Edition

An Exception Handler can only be dropped on an Input Pin of an Action.

 Activity
Inserts an Activity into the activity diagram.

 ActivityParameterNode
Inserts an Activity Parameter node onto an activity. Clicking anywhere in the activity places the parameter node
on the activity boundary.

304 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

 StructuredActivityNode
Inserts a Structured Activity Node which is a structured part of the activity, that is not shared with any other
structured node.

 ExpansionRegion
An expansion region is a region of an activity having explicit input and outputs (using ExpansionNodes). Each
input is a collection of values.

© 2016-2022 Altova GmbH

Behavioral Diagrams 305UML Diagrams

Altova UModel 2023 Basic Edition

The expansion region mode is displayed as a keyword, and can be changed by clicking the "mode" combo box
in the Properties tab. Available settings are:parallel, iterative, or stream.

 ExpansionNode
Inserts an Expansion Node onto an Expansion Region. Expansion nodes are input and output nodes for the
Expansion Region, where each input/output is a collection of values. The arrows into, or out of, the expansion
region, determine the specific type of expansion node.

 InterruptableActivityRegion
An interruptible region contains activity nodes. When a control flow leaves an interruptible region all flows and
behaviors in the region are terminated.

To add an interrupting edge:

1. Make sure that an Action element is present in the InterruptableActivityRegion, as well as an outgoing
Control Flow to another action:

2. Right click the Control Flow arrow, and select New | InterruptingEdge.

306 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Note: You can also add an InterrupingEdge by clicking the InterruptableActivityRegion, right clicking in the
Properties window, and selecting Add InterruptingEdge from the pop-up menu.

8.1.2 State Machine Diagram

The State Machine Diagram models the behavior of a system by describing the various states an object may
be in, and the transitions between those states. They are generally used to describe the behavior of an object
spanning several use cases.

Two types of processes can achieve this:

1. Actions, which are associated to transitions, are short-term processes that cannot be interrupted (for
example, internal error /notify admin in the diagram below)

2. State Activities (behaviors), which are associated to states, are longer-term processes that may be
interrupted by other events (for example, listen for incoming connections, in the diagram below).

A state machine can have any number of State Machine Diagrams (or State Diagrams) in UModel.

© 2016-2022 Altova GmbH

Behavioral Diagrams 307UML Diagrams

Altova UModel 2023 Basic Edition

Sample State Machine diagram

The State machine diagram illustrated above is available in the following sample UModel project: C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples\Bank_MultiLanguage.ump.

8.1.2.1 Inserting state machine diagram elements

To insert state machine diagram elements:

1. Click the specific state machine diagram icon in the State Machine Diagram toolbar.

308 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

2. Click in the State Diagram to insert the element. To insert multiple elements of the selected type, hold
down the Ctrl key and click in the diagram window.

Dragging existing elements into the state machine diagram
Most elements occurring in other state machine diagrams can be inserted into an existing state machine.

1. Locate the element you want to insert in the Model Tree tab (you can use the search function text
box, or press Ctrl+F to search for any element).

2. Drag the element(s) into the state diagram.

8.1.2.2 Creating states, activities and transitions

To add a simple state:

1. Click the State toolbar icon () , and then click inside the diagram.
2. Enter the name of the state and press Enter to confirm.

To add an activity to a state:

· Right-click the state element, select New, and then one of the entries from the context menu.

The Entry, Exit, and Do activities are associated with one of the following possible behaviors: "Activity",
"Interaction", and "StateMachine". Therefore, the options available in the context menu are:

· Do: Activity
· Do: Interaction
· Do: StateMachine
· Entry: Activity
· Entry: Interaction

© 2016-2022 Altova GmbH

Behavioral Diagrams 309UML Diagrams

Altova UModel 2023 Basic Edition

· Entry: StateMachine
· Exit: Activity
· Exit: Interaction
· Exit: StateMachine

These options originate in the UML specification. Namely, each of these internal actions are behaviors, and, in
the UML specification, three classes derive from the "Behavior" class: Activity, StateMachine, and Interaction.
In the generated code, it does not make a difference which particular behavior (Activity, StateMachine, or
Interaction) has been selected.

You can select one action from the Do, Entry and Exit action categories. Activities are placed in their own
compartment in the state element, though not in a separate region. The type of activity that you select is used
as a prefix for the activity e.g. entry / store current time.

To delete an activity:

· Click the respective activity in the state element and press the Del key.

To create a transition between two states:

1. Click the Transition handle of the source state (on the right of the element).
2. Drag-and-drop the transition arrow onto the target state.

310 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

The Transition properties are now visible in the Properties tab. Clicking the "kind" combo box, allows
you to define the transition type: external, internal or local.

Transitions can have an event trigger, a guard condition and an action in the form eventTrigger [guard
condition] /activity.

To automatically create operations from transitions:

Activating the "Toggle automatic creation of operations in target by typing operation names" icon ,
automatically creates the corresponding operation in the referenced class, when creating a transition and
entering a name e.g. myOperation().

Note: Operations can only be created automatically when the state machine is inside a class or interface.

To automatically create operations from activities:

1. Right click the State and select the specific action/activity, e.g. New | Entry:Activity.
2. Enter the name of the activity making sure to finish with the open/close brackets "()", e.g. entry /

OnEntryCooler().

© 2016-2022 Altova GmbH

Behavioral Diagrams 311UML Diagrams

Altova UModel 2023 Basic Edition

The new element is also visible in the Model Tree. Scrolling down the Model Tree, you will notice that
the OnEntryCooler operation has been added to the parent class AirConditionController.

Note: Operations are automatically added for: Do:Activity, Entry:Activity, Exit:Activity, as well as guard
condition activities and effects (on transitions).

312 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

To create a transition trigger:

1. Right-click a previously created transition (arrow).
2. Select New | Trigger.

An "a" character appears in the transition label above the transition arrow, if it is the first trigger in the
state diagram. Triggers are assigned default values of the form alphabetic letter, source state -> target
state.

3. Double-click the new character and enter the transition properties in the form eventTrigger [guard
condition] / activity.

Transition property syntax
The text entered before the square brackets is the trigger; the text between brackets is the guard
condition, and the text after the slash—the activity. Manipulating this string automatically creates
or deletes the respective elements in the Model Tree.

Note: To see the individual transition properties, right-click the transition (arrow) and select "Select in Model
Tree". The event, activity and constraint elements are all shown below the selected transition.

Adding an Activity diagram to a transition
UModel has the unique capability of allowing you to add an Activity diagram to a transition, to describe the
transition in more detail.

1. Right-click a transition arrow in the diagram, and select New | Activity Diagram. This inserts an
Activity diagram window into the diagram at the position of the transition arrow.

2. Click the inserted window to make it active. You can now use the scroll bars to scroll within the
window.

© 2016-2022 Altova GmbH

Behavioral Diagrams 313UML Diagrams

Altova UModel 2023 Basic Edition

3. Double-click the Action window to switch into the Activity diagram and further define the transition, e.g.
change the Action name to "Database logon". Note that a new Activity Diagram tab has now been
added to the project. You can add any activity modeling elements to the diagram, please see "Activity
Diagram " for more information.

4. Click the State Machine Diagram tab to switch back to see the updated transition.

289

314 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

5. Drag the Activity window to reposition it in the diagram, and click the resize handle if necessary.

Dragging the Activity window between the two states displays the transition in and out of the activity.

© 2016-2022 Altova GmbH

Behavioral Diagrams 315UML Diagrams

Altova UModel 2023 Basic Edition

8.1.2.3 Composite states

 Composite state
This type of state contains a second compartment comprised of a single region. Any number of states may be
placed within this region.

To add a region to a composite state:

· Right-click the composite state and select New | Region from the context menu. A new region is
added to the state. Regions are divided by dashed lines.

To delete a region:

· Click the region you want to delete in the composite state and press the Del key.

Deleting a region of an orthogonal state reverts it back to a composite state; deleting the last region of a
composite state changes it back to a simple state.

To place a state within a composite state:

· Click the state element you want to insert (e.g. Logging in User), and drop it into the region
compartment of the composite state.

The region compartment is highlighted when you can drop the element. The inserted element is now
part of the region, and appears as a child element of the region in the Model Tree pane.

316 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Moving the composite state moves all contained states along with it.

 Orthogonal state
This type of state contains a second compartment comprised of two or more regions, where the separate
regions indicate concurrency.

Right clicking a state and selecting New | Region allows you add new regions.

To show/hide region names:

· Click the Styles tab, scroll to the "Show region names on states" entry, and select true/false.

 Submachine state
This state is used to hide details of a state machine. This state does not have any regions but is associated to
a separate state machine.

To define a submachine state:

1. Having selected a state, click the submachine combo box in the Properties tab. A list containing the
currently defined state machines appears.

2. Select the state machine that you want this submachine to reference.

© 2016-2022 Altova GmbH

Behavioral Diagrams 317UML Diagrams

Altova UModel 2023 Basic Edition

A hyperlink icon automatically appears in the submachine. Clicking it opens the referenced state
machine, "BankServer" in this case.

To add entry / exit points to a submachine state:

· The state which the point is connected to, must itself reference a submachine State Machine (visible in
the Properties tab).

· This submachine must contain one or more Entry and Exit points

1. Click the ConnectionPointReference icon in the title bar, then click the submachine state that
you want to add the entry/exit point to.

2. Right-click in the Properties tab and select Add entry. Please note that another Entry, or Exit Point
has to exist elsewhere in the diagram to enable this pop-up menu.

This adds an EntryPoint row to the Properties tab, and changes the appearance of the
ConnectionPointReference element.

318 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

3. Use the same method to insert an ExitPoint, by selecting "Add exit" from the context menu.

8.1.2.4 Generating code from State Machine diagrams

UModel can generate executable code from State Machine diagrams (C#, Java, VB.NET). Almost all of the
State Machine diagram elements and features are supported:

· State
· CompositeState, with any hierarchical level
· OrthogonalState, with any number of regions
· Region
· InitialState
· FinalState
· Transition
· Guard
· Trigger
· Call-Event
· Fork
· Join
· Choice
· Junction
· DeepHistory
· ShallowHistory
· Entry/exit/do actions
· Effects

State Machine code generation is integrated into the "normal" round-trip engineering process. This means that
State Machine code can be automatically updated on every forward-engineering process.

© 2016-2022 Altova GmbH

Behavioral Diagrams 319UML Diagrams

Altova UModel 2023 Basic Edition

The screenshot above shows the AirCondition State Machine diagram which is available in the ..
\StateMachineCodeGeneration directory under ...\UModelExamples. A separate directory exists for each
of the code generation languages supported by UModel.

Each directory contains an AirCondition and Complex folder, which contains the respective UModel project,
programming language project files, as well as the generated source files. The Complex.ump project file
contains almost all of the modeling elements and functionality that UModel supports when generating code
from State Machine diagrams.

Each directory also contains a test application, e.g. TestSTMAirCondition.sln for C#, allowing you to work with
the generated source files immediately.

320 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

To generate code from a State Machine diagram:

· Right-click in the State Machine diagram and select "Generate State Machine code", or
· Select the menu option Project | Generate State Machine Code

The default settings are shown above. Click OK to generate the code.

© 2016-2022 Altova GmbH

Behavioral Diagrams 321UML Diagrams

Altova UModel 2023 Basic Edition

State Machine code is automatically updated when you start the forward engineering process. You can
however change this setting by clicking on the State Machine diagram background and clicking the "Automatic
Update Code" check box.

Changes should not be made manually in the generated code, as these changes are not reflected in the State
Machine diagram during the reverse-engineering process.

Clicking the icon of the Automatic Update field, opens the Generate State Machine Code dialog box,
allowing you to change the code generation settings.

To perform a syntax check on a State Machine diagram:

· Right-click the diagram and selecting Check State Machine Syntax from the context menu.

8.1.2.5 Working with state machine code

The parent class of the state machine (i.e. the "controller class", or "context class") is the one, and only,
"interface" between the state machine user and the state machine implementation.

The controller class provides methods which can be used from "outside" to change the states (e.g. after
external events occur).

The state machine implementation however, calls controller class methods ("callbacks") to inform the state
machine user about state changes (OnEntry, OnExit, ...), transition effects, and the possibility to override and
implement methods for conditions (guards).

UModel can automatically create simple operations (without any parameter) for entry/exit/do behaviors,
transition effects, ... when the corresponding option is turned on (also see Creating states, activities and
transitions). These methods can be changed to whatever you want in UModel (add parameters, set them as
abstract, etc.).

A state machine (i.e. its controller class) can be instantiated several times. All instances work independently of
each other.

· The UML State machine execution is designed for the "Run-to-completion execution model".
· UML state machines assume that processing of each event is completed before the next event is

processed.

308

322 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

· This also means no entry/exit/do action or transition effect may directly trigger a new transition/state
change.

Initialization
· Every region of a state machine has to have an initial state.
· The code generated by UModel automatically initializes all regions of the state machine (or when the

Initialize() method of the controller class is called).

· If OnEntry events are not wanted during initialization, you can call the Initialize() method manually

and ignore OnEntry events during the startup.

Getting the current state(s)
UModel supports composite states as well as orthogonal states, so there is not just one current state—every
region (in any hierarchy level) can have one current state.

The AirCondition.ump example shows how to walk through the regions to the current state(s):

TreeNode rootNode = m_CurrentStateTree.Nodes.Add(m_STM.getRootState().getName());
UpdateCurrentStateTree(m_STM.getRootState(), rootNode);

private void UpdateCurrentStateTree(AirCondition.AirConditionController.IState state,

TreeNode node)
{
 foreach (AirCondition.AirConditionController.IRegion r in state.getRegions())

 {
 TreeNode childNode = node.Nodes.Add(r.getName() + " : " +
r.getCurrentState().getName());
 UpdateCurrentStateTree(r.getCurrentState(), childNode);
 }
}

Example 1 - a simple transition

The corresponding operation is automatically generated in UModel

Generated method in code:

private class CTestStateMachine : IState

{
 …

© 2016-2022 Altova GmbH

Behavioral Diagrams 323UML Diagrams

Altova UModel 2023 Basic Edition

 public bool MyEvent1()

 {
 …
 }
}

Notes:

· The state machine user should call the generated method "MyEvent1" when the corresponding event
occurs (outside the state machine).

· The return parameter of these event-methods provides information about whether the event caused a
state change (i.e. if it had any effect on the state machine) or not. For example, if "State1" is active
and event "MyEvent1()" occurs, the current state changes to "State2" and "MyEvent1()" returns true. If
"State2" is active and "MyEvent1()" occurs, nothing changes in the state machine and MyEvent1()
returns false.

Example 2 - a simple transition with an effect

The corresponding operation is automatically generated in UModel

Generated method in code:

private class CTestStateMachine : IState

{
 …
 // Override to handle entry/exit/do actions, transition effects,...:

 public virtual void OnState1State2Effect() {}

}

Notes:

· "OnState1State2Effect()" will be called by the state machine implementation, whenever the transition
between "State1" and "State2" is fired.

· To react to this effect, "OnState1State2Effect()" should be overridden in a derived class of
"CTestStateMachine".

· "CTestStateMachine:: OnState1State2Effect()" can also be set to abstract, and you will get compiler
errors until the method is overridden.

324 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

· When "OnState1State2Effect()" is not abstract, and the "Generate debug messages" option is active,
UModel will generate following debug output:

// Override to handle entry/exit/do actions, transition effects,...:

public virtual void OnState1State2Effect() {OnDebugMessage("ACTION:

OnState1State2Effect");}

Example 3 - a simple transition with an effect and parameter

The corresponding operation is automatically generated in UModel

Generated method in code:

private class CTestStateMachine : IState

{
 …
 // Additional defined operations of the controller class:

 public virtual void OnState1State2Effect(String text)

 {
 }
}

Notes:

· To effect operations (automatically created by UModel) parameters can be added manually (UModel
cannot know the required type).

· In this sample, the parameter "text:String" has been added to the Effect method in TestController. A
proper argument has to be specified when calling this method (here: "1 => 2").

· Another possibility would be: e.g. to call static methods ("MyStatic.OnState1State2Effect("1 => 2")"),
or methods of singletons ("getSingleton().OnState1State2Effect("1 => 2")").

© 2016-2022 Altova GmbH

Behavioral Diagrams 325UML Diagrams

Altova UModel 2023 Basic Edition

Example 4 - entry/exit/do actions

The corresponding operations are automatically generated in UModel

Generated method in code:

private class CTestStateMachine : IState

{
 …
 // Override to handle entry/exit/do actions, transition effects,...:

 public virtual void OnExitState3() {}

 public virtual void OnEntryState4() {}

 public virtual void OnDoState4() {}

}

Notes:

· States can have entry/exit/do behaviors. UModel automatically creates the corresponding operations to
handle them.

· When "MyEvent2()" occurs in the sample above, the state machine implementation calls
"OnExitState3()". If "MyEvent2" would have an Effect, it would be subsequently called, then
"OnEntryState4" and "OnDoState4" would be called.

· Normally, these methods should be overridden. When they are not abstract and the "Generate debug
messages" option is active, UModel provides default debug output as described in Example 2.

· These methods can also have parameters as shown in Example 3.

Example 5 - guards
Transitions can have guards, which determine if the transition really can fire.

326 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

The corresponding operation is automatically generated in UModel

Generated method in code:

private class CTestStateMachine : IState

{
 …
 // Additional defined operations of the controller class:

 public virtual bool CanGoState6()

 {
 return true; // Override!

 }
}

Notes:

· If "State5" is the active state and "MyEvent2" occurs, the state machine implementation will call
"CanGoState6" and, depending on its result, the transition will fire or not.

· Normally, these methods should be overridden. When they are not abstract and the "Generate debug
messages" option is active, UModel provides default debug output as described in Example 2.

· These methods also can have parameters as shown in Example 3.
· Multiple transitions with the same event, but having different guards, are possible. The order in which

the different guards are polled is undefined. If a transition does not have a guard, or the guard is "else",
it will be considered as the last (i.e., only when all other transition guards return false, will this one will
fire). For example, in the diagram below, it is undefined whether CanGoState6() or CanGoState7() is
called first. The third transition will only fire if CanGoState6() and CanGoState7() return false.

© 2016-2022 Altova GmbH

Behavioral Diagrams 327UML Diagrams

Altova UModel 2023 Basic Edition

Additional constructs and functionality can be found in the AirCondition.ump and Complex.ump samples.

8.1.2.6 State Machine Diagram elements

 InitialState (pseudostate)
The beginning of the process.

 FinalState
The end of the sequence of processes.

 EntryPoint (pseudostate)
The entry point of a state machine or composite state.

 ExitPoint (pseudostate)
The exit point of a state machine or composite state.

 Choice
This represents a dynamic conditional branch, where mutually exclusive guard triggers are evaluated (OR
operation).

 Junction (pseudostate)
This represents an end to the OR operation defined by the Choice element.

 Terminate (pseudostate)
The halting of the execution of the state machine.

328 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

 Fork (pseudostate)
Inserts a vertical Fork bar. Used to divide sequences into concurrent subsequences.

 Fork horizontal (pseudostate)
Inserts a horizontal Fork bar. Used to divide sequences into concurrent subsequences.

 Join (pseudostate)
Joins/merges previously defined subsequences. All activities have to be completed before progress can
continue.

 Join horizontal (pseudostate)
Joins/merges previously defined subsequences. All activities have to be completed before progress can
continue.

 DeepHistory
A pseudostate that restores the previously active state within a composite state.

 ShallowHistory
A pseudostate that restores the initial state of a composite state. All pseudostate elements can be changed to
a different "type", by changing the kind combo box entry in the Properties tab.

© 2016-2022 Altova GmbH

Behavioral Diagrams 329UML Diagrams

Altova UModel 2023 Basic Edition

 ConnectionPointReference
A connection point reference represents a usage (as part of a submachine state) of an entry/exit point defined
in the state machine reference by the submachine state.

To add Entry or Exit points to a connection point reference:

· The state which the point is connected to, must itself reference a submachine State Machine (visible in
the Properties tab).

· This submachine must contain one or more Entry and Exit points

 Transition
A direct relationship between two states. An object in the first state performs one or more actions and then
enters the second state depending on an event and the fulfillment of any guard conditions. Transitions have an
event trigger, guard condition(s), an action (behavior), and a target state. The supported event subelements are:

· ReceiveSignalEvent
· SignalEvent
· SendSignalEvent
· ReceiveOperationEvent
· SendOperationEvent
· ChangeEvent.

 Toggle automatic creation of operations in target by typing operation names
Activating the "Toggle automatic creation of operations in target by typing operation names" icon, automatically
creates the corresponding operation in the referenced class, when creating a transition and entering a name
myOperation().

Note: Operations can only be created automatically when the state machine is inside a class or interface.

8.1.3 Protocol State Machine

Altova website: UML Protocol State Machine diagrams

Protocol State Machines are used to show a sequence of events that an object responds to, without having to
show the specific behavior. The required sequence of events, and the resulting changes in the state of the
object, are modeled in this diagram.

Protocol State Machines are most often used to describe complex protocols, e.g. database access through a
specific interface, or communication protocols such as TCP/IP.

Protocol State Machines are created in the same way as State Machine diagrams, but have fewer modeling
elements. Protocol-Transitions between states can have pre- or post conditions which define what must be true
for a transition to another state to occur, or what the resulting state must be, once the transition has taken
place.

https://www.altova.com/umodel/state-machine-diagrams

330 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

8.1.3.1 Inserting Protocol State Machine elements

Using the toolbar icons:

1. Click the Protocol State Machine icon in the toolbar.
2. Click in the Protocol State Machine Diagram to insert the element. To insert multiple elements of the

selected type, hold down the Ctrl key and click in the diagram window.

© 2016-2022 Altova GmbH

Behavioral Diagrams 331UML Diagrams

Altova UModel 2023 Basic Edition

Dragging existing elements into the Protocol State Machine diagram
Most elements occurring in other Protocol State Machine diagrams, can be inserted into an existing diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search function text
box, or press Ctrl+F to search for any element).

2. Drag the element(s) into the Protocol State Machine diagram.

To insert a simple state:

1. Click the State icon in the icon bar and click in the Protocol State Machine diagram to insert it.
2. Enter the name of the state and press Enter to confirm. Simple states do not have any regions or any

other type of substructure.

To create a Protocol Transition between two states:

1. Click the Transition handle of the source state (on the right of the element), or use the Protocol
Transition icon in the icon bar.

2. Drag-and-drop the transition arrow onto the target state. The text cursor is automatically set for you to
enter the pre and/or post condition. Please make sure to use the square brackets [] and slash
character when entering the conditions directly.

Entering the pre/post conditions in the Properties window automatically inserts the square brackets
and slash character into the diagram.

For information about how to create and insert composite state elements and submachine states, see
Composite states 315

332 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

8.1.3.2 Protocol State Machine Diagram elements

 State
A simple state element with one compartment.

 Composite state
This type of state contains a second compartment comprised of a single region. Any number of states may be
placed within this region.

 Orthogonal state
This type of state contains a second compartment comprised of two or more regions, where the separate
regions indicate concurrency. Right clicking a state and selecting New | Region allows you add new regions.

 Submachine state
This state is used to hide details of a state machine. This state does not have any regions but is associated to
a separate state machine.

 InitialState (pseudostate)
The beginning of the process.

 FinalState
The end of the sequence of processes.

 EntryPoint (pseudostate)
The entry point of a state machine or composite state.

 ExitPoint (pseudostate)
The exit point of a state machine or composite state.

 Choice
This represents a dynamic conditional branch, where mutually exclusive guard triggers are evaluated (OR
operation).

© 2016-2022 Altova GmbH

Behavioral Diagrams 333UML Diagrams

Altova UModel 2023 Basic Edition

 Junction (pseudostate)
This represents an end to the OR operation defined by the Choice element.

 Terminate (pseudostate)
The halting of the execution of the state machine.

 Fork (pseudostate)
Inserts a vertical Fork bar. Used to divide sequences into concurrent subsequences.

 Fork horizontal (pseudostate)
Inserts a horizontal Fork bar. Used to divide sequences into concurrent subsequences.

 Join (pseudostate)
Joins/merges previously defined subsequences. All activities have to be completed before progress can
continue.

 Join horizontal (pseudostate)
Joins/merges previously defined subsequences. All activities have to be completed before progress can
continue.

 ConnectionPointReference
A connection point reference represents a usage (as part of a submachine state) of an entry/exit point defined
in the state machine reference by the submachine state.

To add Entry or Exit points to a connection point reference:

· The state which the point is connected to, must itself reference a submachine State Machine (visible in
the Properties tab).

· This submachine must contain one or more Entry and Exit points

 Protocol Transition
A direct relationship between two states. An object in the first state performs one or more operations and then
enters the second state depending on an event and the fulfillment of any pre- or post conditions.

Please see Inserting Protocol State Machine elements for more information.331

334 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

8.1.4 Use Case Diagram

Please see the Use Cases section in the tutorial for more information on how to add use case elements to
the diagram.

8.1.5 Communication Diagram

Altova website: UML Communication diagrams

Communication diagrams display the interactions i.e. message flows, between objects at run-time, and show
the relationships between the interacting objects. Basically, they model the dynamic behavior of use cases.

Communication diagrams are designed in the same way as sequence diagrams, except that the notation is laid
out in a different format. Message numbering is used to indicate message sequence and nesting.

UModel allows you to generate Communication diagrams from Sequence diagrams and vice versa, in one
simple action see "Generating Sequence diagrams " for more information.

18

337

https://www.altova.com/umodel/communication-diagrams

© 2016-2022 Altova GmbH

Behavioral Diagrams 335UML Diagrams

Altova UModel 2023 Basic Edition

8.1.5.1 Inserting Communication Diagam elements

Using the toolbar icons:

1. Click the specific communication icon in the Communication Diagram toolbar.

2. Click in the Communication diagram to insert the element. To insert multiple elements of the selected
type, hold down the Ctrl key and click in the diagram window.

Dragging existing elements into the Communication Diagram
Elements occurring in other diagrams, e.g. classes, can be inserted into a Communication diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search function text
box, or press Ctrl+F to search for any element).

2. Drag the element(s) into the Communication diagram.

Lifeline
The lifeline element is an individual participant in an interaction. UModel allows you to insert other elements into
the sequence diagram, e.g. classes. Each of these elements then appear as a new lifeline. You can redefine
the lifeline colors/gradient using the "Header Gradient" combo boxes in the Styles tab.

To create a multiline lifeline, press Ctrl+Enter to create a new line.

336 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

To insert a Communication lifeline:

1. Click the Lifeline icon in the title bar, then click in the Communication diagram to insert it.

2. Enter the lifeline name to change it from the default name, Lifeline1, if necessary.

Messages
A Message is a modeling element that defines a specific kind of communication in an interaction. A
communication can be e.g. raising a signal, invoking an Operation, creating or destroying an instance. The
message specifies the type of communication as well as the sender and the receiver.

 Message (Call)

 Message (Reply)

 Message (Creation)

 Message (Destruction)

To insert a message:

1. Click the specific message icon in the toolbar.
2. Drag and drop the message line onto the receiver objects.

Lifelines are highlighted when the message can be dropped.

© 2016-2022 Altova GmbH

Behavioral Diagrams 337UML Diagrams

Altova UModel 2023 Basic Edition

Note: Holding down the Ctrl key allows you to insert a message with each click.

To insert additional messages:

1. Right-click an existing communication link and select New | Message.

· The direction in which you drag the arrow defines the message direction. Reply messages can point in
either direction.

· Having clicked a message icon and holding down Ctrl allows you to insert multiple messages by
repeatedly clicking and dragging in the diagram tab.

Message numbering
The Communication diagram uses the decimal numbering notation, which makes it easy to see the hierarchical
structure of the messages in the diagram. The sequence is a dot-separated list of sequence numbers followed
by a colon and the message name.

Generating Sequence diagrams from Communication diagrams
UModel allows you to generate Communication diagrams from Sequence diagrams and vice versa, in one
simple action:

· Right-click anywhere in a Communication diagram and select Generate Sequence Diagram from the
context menu.

338 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

8.1.6 Interaction Overview Diagram

Altova website: UML Interaction Overview diagrams

Interaction Overview Diagrams are a variant of Activity diagrams and give an overview of the interaction between
other interaction diagrams such as Sequence, Activity, Communication, or Timing diagrams. The method of
constructing a diagram is similar to that of Activity diagram and uses the same modeling elements: start/end
points, forks, joins etc.

https://www.altova.com/umodel/interaction-overview-diagrams

© 2016-2022 Altova GmbH

Behavioral Diagrams 339UML Diagrams

Altova UModel 2023 Basic Edition

Two types of interaction elements are used instead of activity elements: Interaction elements and Interaction
use elements.

Interaction elements are displayed as iconized versions of a Sequence, Communication, Timing, or Interaction
Overview diagram, enclosed in a frame with the "SD" keyword displayed in the top-left frame title space.

Interaction occurrence elements are references to existing Interaction diagrams with "Ref" enclosed in the
frame's title space, and the occurrence's name in the frame.

8.1.6.1 Inserting Interaction Overview elements

Using the toolbar icons
1. Click the specific icon in the Interaction Overview Diagram toolbar.

340 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

2. Click in the diagram to insert the element. To insert multiple elements of the selected type, hold down
the Ctrl key and click in the diagram window.

Dragging existing elements into the Interaction Overview Diagram
Elements occurring in other diagrams, e.g. Sequence, Activity, Communication, or Timing diagrams can be
inserted into a Interaction Overview diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search function text box,
or press Ctrl+F, to search for any element).

2. Drag the element(s) into the diagram.

Inserting an Interaction element

1. Click the CallBehaviorAction (Interaction) icon in the icon bar, and click in the Interaction
Overview diagram to insert it.

The Collect Account Information sequence diagram is automatically inserted if you are using the
Bank_Multilanguage.ump example file from the ...\UModelExamples folder. The first sequence
diagram, found in the model tree, is selected by default.

2. To change the default interaction element: Click the behavior/diagram combo box in the Properties
tab. A list of all the possible elements that can be inserted is presented.

© 2016-2022 Altova GmbH

Behavioral Diagrams 341UML Diagrams

Altova UModel 2023 Basic Edition

3. Click the element you want to insert to e.g. Connect to BankAPI.

As this is also a sequence diagram, the Interaction element appears as an iconized version of the
sequence diagram.
If you select <ref> BankAPI, then the Interaction element occurrence is displayed.

342 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Inserting an Interaction element occurrence

1. Click the CallBehaviorAction (InteractionUse) icon in the icon bar, and click in the Interaction
Overview diagram to insert it.

Collect Account Information is automatically inserted as a Interaction occurrence element, if you are
using the Bank_Multilanguage.ump example file from the ...\UModelExamples folder. The first
existing sequence diagram is selected per default.

2. To change the Interaction element, double-click the behavior combo box in the Properties tab. A list
of all the possible elements that can be inserted is presented.

3. Select the occurrence you want to insert.

Note: All elements inserted using this method appear in the form shown in the screenshot above i.e. with
"ref" in the frame's title space.

 DecisionNode
Inserts a Decision Node which has a single incoming transition and multiple outgoing guarded transitions.
Please see "Creating a branch " for more information.

 MergeNode
Inserts a Merge Node which merges multiple alternate transitions defined by the Decision Node. The Merge
Node does not synchronize concurrent processes, but selects one of the processes.

 InitialNode
The beginning of the activity process. An interaction can have more than one initial node.

 ActivityFinalNode
The end of the interaction process. An interaction can have more that one final node, all flows stop when the
"first" final node is encountered.

293

© 2016-2022 Altova GmbH

Behavioral Diagrams 343UML Diagrams

Altova UModel 2023 Basic Edition

 ForkNode
Inserts a vertical Fork node. Used to divide flows into multiple concurrent flows.

 ForkNode (Horizontal)
Inserts a horizontal Fork node. Used to divide flows into multiple concurrent flows.

 JoinNode
Inserts a vertical Fork node. A Join node synchronizes multiple flows defined by the Fork node.

 Join Node (horizontal)
Inserts a horizontal Fork node. A Join node synchronizes multiple flows defined by the Fork node.

 AddDurationConstraint
A Duration defines a ValueSpecification that denotes a duration in time between a start and endpoint. A
duration is often an expression representing the number of clock ticks, which may elapse during this duration.

 ControlFlow
A Control Flow is an edge, i.e. an arrowed line, that connects two behaviours, and starts an interaction after the
previous one has been completed.

8.1.7 Sequence Diagram

Altova website: UML Sequence diagrams

UModel supports the standard Sequence diagram defined by UML, and allows easy manipulation of objects
and messages to model use case scenarios. The sequence diagrams shown in the following sections are
available in the Bank_Java.ump, Bank_CSharp.ump and Bank_MultiLanguage.ump samples, in the ...
\UModelExamples folder supplied with UModel.

You can model sequence diagrams manually, or, alternatively, generate them from reverse-engineered source
code, as described in Generating Sequence Diagrams from Source Code .

358

https://www.altova.com/umodel/sequence-diagrams.html

344 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

8.1.7.1 Inserting Sequence Diagram Elements

A sequence diagram models runtime dynamic object interactions, using messages. Sequence diagrams are
generally used to explain individual use case scenarios.

© 2016-2022 Altova GmbH

Behavioral Diagrams 345UML Diagrams

Altova UModel 2023 Basic Edition

· Lifelines are the horizontally aligned boxes at the top of the diagram, together with a dashed vertical
line representing the object's life during the interaction. Messages are shown as arrows between the
lifelines of two or more objects.

· Messages are sent between sender and receiver objects, and are shown as labeled arrows. Messages
can have a sequence number and various other optional attributes: argument list etc. Conditional,
optional, and alternative messages are all supported.

See also:

· Lifeline
· Combined Fragment
· Interaction Use
· Gate
· State Invariant
· Messages

Sequence diagram and other UModel elements, can be inserted into a sequence diagram using several
methods.

346

348

351

351

352

352

346 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Using the toolbar icons
1. Click the specific sequence diagram icon in the Sequence Diagram toolbar.
2. Click in the Sequence diagram to insert the element. To insert multiple elements of the selected type,

hold down the Ctrl key and click in the diagram window.

Dragging existing elements into the sequence diagram
Most classifier types, as well as elements occurring in other sequence diagrams, can be inserted into an
existing sequence diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search function text
box, or press Ctrl+F to search for any element).

2. Drag the element(s) into the sequence diagram.

8.1.7.1.1 Lifeline

The lifeline element is an individual participant in an interaction. UModel also allows you to insert other
elements into the sequence diagram, e.g. classes and actors. Each of these elements appear as a new lifeline
once they have been dragged into the diagram pane from the Model Tree tab.

The "lifeline" label appears in a bar at the top of the sequence diagram. Labels can be repositioned and resized
in the bar, with changes taking immediate effect in the diagram tab. You can also redefine the label
colors/gradient using the "Header Gradient" combo boxes in the Styles tab.

To create a multiline lifeline, press Ctrl+Enter to create a new line.

Most classifier types can be inserted into the sequence diagram. The "represents" field in the Properties tab
displays the element type that is acting as the lifeline. Dragging typed properties onto a sequence diagram
also creates a lifeline.

© 2016-2022 Altova GmbH

Behavioral Diagrams 347UML Diagrams

Altova UModel 2023 Basic Edition

Execution Specification (Object activation)
An execution specification (activation) is displayed as a box (rectangle) on the object lifeline. An activation is
the execution of a procedure and the time needed for any nested procedures to execute. Activation boxes are
automatically created when a message is created between two lifelines.

A recursive, or self message (one that calls a different method in the same class) creates stacked activation
boxes.

To display/hide activation boxes:

· Click the Styles tab and scroll to the bottom of the list.

The "Show Execution Specifications" combo box allows you to show/hide the activation boxes in the
sequence diagram.

Lifeline attributes
The destruction check box allows you to add a destruction marker, or stop, to the lifeline without having to use
a destruction message.

The selector field allows you to enter an expression that specifies the particular part represented by the lifeline,
if the ConnectableElement is multivalued, i.e. has a multiplicity greater than one.

Goto lifeline element
Right clicking a lifeline allows you to select Goto XXX, where XXX is the specific lifeline type that you clicked.
The element will then be visible in the Model Tree window.

348 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

8.1.7.1.2 Combined Fragment

Combined fragments are subunits, or sections of an interaction. The interaction operator visible in the
pentagon at top left, defines the specific kind of combined fragment. The constraint thus defines the specific
fragment, e.g. loop fragment, alternative fragment etc. used in the interaction.

The combined fragment icons in the icon bar allow you to insert a specific combined fragment: seq, alt or loop.
Clicking the interactionOperator combo box also allows you to define the specific interaction fragment.

© 2016-2022 Altova GmbH

Behavioral Diagrams 349UML Diagrams

Altova UModel 2023 Basic Edition

InteractionOperators

Weak
sequencing seq

The combined fragment represents weak sequencing between the
behaviours of the operands.

Alternatives
 alt

Only one of the defined operands will be chosen, the operand must have
a guard expression that evaluates to true.

If one of the operands uses the guard "else", then this operand is
executed if all other guards return false. The guard expression can be
entered immediately upon insertion, will appear between the two square
brackets.

The InteractionConstraint is actually the guard expression between the
square brackets.

Option
 opt

Option represents a choice where either the sole operand is executed, or
nothing happens.

Break
 break

The break operator is chosen when the guard is true, the rest of the
enclosing fragment is ignored.

Parallel par Indicates that the combined fragment represents a parallel merge of
operands.

Strict
sequencing

 strict The combined fragment represents a strict sequencing between the
behaviours of the operands.

350 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Loop
 loop The loop operand will be repeated by the number of times defined in the

guard expression.

Having selected this operand, you can directly edit the expression (in the
loop pentagon) by double clicking.

Critical Region critical The combined fragment represents a critical region. The sequence(s)
may not be interrupted/interleaved by any other processes.

Negative neg Defines that the fragment is invalid, and all others are considered to be
valid.

Assert assert Designates the valid combined fragment, and its sequences. Often used
in combination with consider, or ignore operands.

Ignore ignore Defines which messages should be ignored in the interaction. Often used
in combination with assert, or consider operands.

Consider consider Defines which messages should be considered in the interaction.

Adding InteractionOperands to a combined fragment
1. Right-click the combined fragment and select New | InteractionOperand. The text cursor is

automatically set for you to enter the guard condition.
2. Enter the guard condition for the InteractionOperand e.g. !passwordOK and press Enter to confirm.

Use Ctrl+Enter to create a multi-line InteractionOperand.

3. Use the same method to add the second interaction operand with the guard condition "else". Dashed
lines separate the individual operands in the fragment.

Deleting InteractionOperands
1. Double-click the guard expression in the combined fragment element, of the diagram (not in the

Properties tab).
2. Delete the guard expression completely, and press Enter to confirm. The guard expression/interaction

operand is removed and the combined fragment is automatically resized.

© 2016-2022 Altova GmbH

Behavioral Diagrams 351UML Diagrams

Altova UModel 2023 Basic Edition

8.1.7.1.3 Interaction Use

The InteractionUse element is a reference to an interaction element. This element allows you to share
portions of an interaction between several other interactions.

Clicking the "refersTo" combo box, allows you to select the interaction that you want to refer to. The name of
the interaction use you select appears in the element.

Note: You can also drag an existing Interaction Use element from the Model Tree into the diagram tab.

8.1.7.1.4 Gate

A gate is a connection point which allows messages to be transmitted into, and out of, interaction
fragments. Gates are connected using messages.

1. Insert the gate element into the diagram.
2. Create a new message and drag from the gate to a lifeline, or drag from a lifeline and drop onto a gate.

This connects the two elements. The square representing the gate is now smaller.

352 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

8.1.7.1.5 State Invariant

A StateInvariant is a condition, or constraint applied to a lifeline. The condition must be fulfilled for the
lifeline to exist.

To define a StateInvariant:

1. Click the State invariant icon, then click a lifeline, or an object activation to insert it.
2. Enter the condition/constraint you want to apply, e.g. accountAmount > 0, and press Enter to

confirm.

8.1.7.1.6 Messages

Messages are sent between sender and receiver lifelines, and are shown as labeled arrows. Messages can
have a sequence number and various other optional attributes: argument list etc. Messages are displayed from
top to bottom, i.e. the vertical axis is the time component of the sequence diagram.

· A call is a synchronous, or asynchronous communication which invokes an operation that allows
control to return to the sender object. A call arrow points to the top of the activation that the call
initiates.

© 2016-2022 Altova GmbH

Behavioral Diagrams 353UML Diagrams

Altova UModel 2023 Basic Edition

· Recursion, or calls to another operation of the same object, are shown by the stacking of activation
boxes (Execution Specifications).

To insert a message:

1. Click the specific message icon in the Sequence Diagram toolbar.
2. Click the lifeline, or activation box of the sender object.
3. Drag and drop the message line onto the receiver objects lifeline or activation box. Object lifelines are

highlighted when the message can be dropped.

· The direction in which you drag the arrow defines the message direction. Reply messages can point in
either direction.

· Activation box(es) are automatically created, or adjusted in size, on the sender/receiver objects. You
can also manually size them by dragging the sizing handles.

· Depending on the message numbering settings you have enabled, the numbering sequence is updated.
· Having clicked a message icon and holding down Ctrl key, allows you to insert multiple messages by

repeatedly clicking and dragging in the diagram tab.

To delete a message:

1. Click the specific message to select it.
2. Press the Del. key to delete it from the model, or right click it and select "Delete from diagram". The

message numbering and activation boxes of the remaining objects are updated.

"Go to operation" for call messages:
The operations referenced by call messages can be found in sequence and communication diagrams.

1. Right-click a call message and select "Go to Operation".

The display changes and the connect operation is displayed in the Model Tree tab.

354 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Note: Static operation names are shown as underlined in sequence diagrams.

To position dependent messages:

· Click the respective message and drag vertically to reposition it.

The default action when repositioning messages is to move all dependent messages related to the active one.
Using Ctrl+Click allows you to select multiple messages.

To position messages individually:

1. Click the Toggle dependent message movement icon to deselect it.
2. Click the message you want to move and drag to move it.

Only the selected message moves during dragging. You can position the message anywhere in the vertical
axis between the object lifelines.

To automatically create reply messages:

1. Click the "Toggle automatic creation of replies for messages" icon .
2. Create a new message between two lifelines. A reply message is automatically inserted for you.

Message numbering
UModel supports different methods of message numbering: nested, simple and none.

© 2016-2022 Altova GmbH

Behavioral Diagrams 355UML Diagrams

Altova UModel 2023 Basic Edition

· None removes all message numbering.

· Simple assigns a numerical sequence to all messages from top to bottom i.e. in the order that
they occur on the time axis.

· Nested uses the decimal notation, which makes it easy to see the hierarchical structure of the
messages in the diagram. The sequence is a dot-separated list of sequence numbers followed by a
colon and the message name.

There are two methods of selecting the numbering scheme:

· Click the respective icon in the icon bar.
· Use the Styles tab to select the scheme.

To select the numbering scheme using the Styles tab:

1. Click the Styles tab and scroll down to the Show Message Numbering field.
2. Click the combo box and select the numbering option you want to use. The numbering option you

select is immediately displayed in the sequence diagram.

Note: The numbering scheme might not always correctly number all messages, if ambiguous traces exist. If
this happens, adding return messages will probably clear up any inconsistencies.

Message replies
Message reply icons are available to create reply messages, and are displayed as dashed arrows.

Reply messages are also generally implied by the bottom of the activation box when activation boxes are
present. If activation boxes have been disabled (Styles tab | Show Execution Specifics=false), then reply
arrows should be used for clarity.

Activating the "toggle reply messages" icon, automatically creates syntactically correct reply messages
when creating a call message between lifelines/activations boxes.

356 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Creating objects with messages

1. Messages can create new objects. This is achieved using the Message Creation icon .
2. Drag the message arrow to the lifeline of an existing object to create that object. This type of message

ends in the middle of an object rectangle, and often repositions the object box vertically.

Sending messages to specific class methods/operations in sequence diagrams
Having inserted a class from the Model Tree into a sequence diagram, you can then create a message from a
lifeline to a specific method of the receiver class (lifeline) using UModel's syntax help and autocompletion
functions.

1. Create a message between two lifelines, the receiving object being a class lifeline (Bank). As soon as
you drop the message arrow, the message name is automatically highlighted.

2. Enter a character using the keyboard e.g. "b". A pop-up window containing a list of the existing class
methods is opened.

3. Select an operation from the list, and press Enter to confirm e.g. collectAccountInfos.
4. Press the space bar and press Enter to select the parenthesis character that is automatically

supplied. A syntax helper now appears, allowing you to enter the parameter correctly.

© 2016-2022 Altova GmbH

Behavioral Diagrams 357UML Diagrams

Altova UModel 2023 Basic Edition

Creating operations in referenced classes

Activating the Toggle automatic creation of operations in target by typing operation names icon,
automatically creates the corresponding operation in the referenced class, when creating a message and
entering a name e.g. myOperation().

Note: Operations can only be created automatically when the lifeline references a class or interface.

Message icons

 Message (Call)

 Message (Reply)

 Message (Creation)

 Message (Destruction)

 Asynchronous Message (Call)

 Asynchronous Message (Reply)

 Asynchronous Message (Destruction)

 Toggle dependent message movement

 Toggle automatic creation of replies for messages

 Toggle automatic creation of operations in target by typing operation names

358 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

8.1.7.2 Generate Sequence Diagrams from Source Code

This example shows you how to generate a Sequence diagram from a method. The project containing this
method will be reverse-engineered from Java source code. You can find the Java source code at the following
path: C:\Users\<user>\Documents\Altova\UModel2023\UModelExamples\OrgChart.zip. First, unzip the
OrgChart.zip archive to the same location (for example, right-click the archive in Windows Explorer and select
Extract All).

1. On the Project menu, click Import Source Directory, and select the directory unzipped previously.
2. Go through the wizard steps to import the source code as a Java project. For more information about

this step, see Reverse Engineering (from Code to Model) .
3. Having imported the code, right-click the main method of the OrgChartTest class in the Model Tree

and select Generate Sequence Diagram from Code... from the context menu.

This opens the Sequence Diagram Generation dialog box in which you define the generation settings.

69

© 2016-2022 Altova GmbH

Behavioral Diagrams 359UML Diagrams

Altova UModel 2023 Basic Edition

4. Select the presentation and layout options, and then click OK to generate the diagram. The settings
shown above produce the sequence diagram below.

360 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Sequence diagram generation options
The table below lists the generation options pertaining to Sequence diagrams.

Option Purpose

Diagram owner You can set this option when generating a diagram
for the first time. For existing diagrams, this
information is read-only.

© 2016-2022 Altova GmbH

Behavioral Diagrams 361UML Diagrams

Altova UModel 2023 Basic Edition

Option Purpose

Click the Ellipsis button to select the owner package
of the diagram. Otherwise, the option [autoselect]
places the diagram in the default package.

Automatically update diagram when model is updated
from code

When you perform reverse engineering (from code to
model), sequence diagrams are re-generated
automatically in the model, provided that you have
selected the option Automatically update diagram
when model is updated from code when
generating the diagram for the first time.

For existing diagrams, you can change this option as
follows:

1. Select the Sequence diagram in the Model
Tree or in the Diagram Tree.

2. In the Properties window, select the update
on reverse engineering check box.

If you select the use for forward engineering
check box, the synchronization from model to code
will generate code based on the sequence diagram,
when you perform forward engineering (from model to
code), see also Generate Code from Sequence
Diagram .

If the two "engineering" check boxes are missing, it
is likely that this diagram is just a fragment of a
bigger diagram, or perhaps you have created the
diagram from a non reverse-engineered operation.

Show code in notes Select this check box to generate the diagram with
notes (callouts) that contain program code.

Also show code of messages displayed directly
below

Even when it is possible to show a piece of code as
UML Message on the diagram, this option still
displays the code of that message as a note.

364

362 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Option Purpose

Use special color for non-displayable invocations Assigns a color of your choice to non-displayable
invocations.

Show empty Combined Fragments Keeps the Combined Fragment blocks on the
diagram, even if they don't contain anything.

Shown unknown invocations When selected, this option also displays messages
for operations or constructors which could not be
resolved (that is, not found in the model).

Split into smaller diagrams where appropriate Automatically splits sequence diagrams into smaller
sub-diagrams, and automatically generates
hyperlinks between them for easy navigation.

Maximum invocation depth Defines the call depth to be used in the diagram. For
example, if method1() calls method2() which calls
method3(), and the invocation depth is set to 2, then
only method2 is shown, and method3 is no longer
shown.

Type names to ignore Lets you define a comma delimited list of types that
should not appear in the sequence diagram when it is
generated.

Operation names to ignore Lets you define a comma delimited list of operations
that should not appear in the generated sequence
diagram. Adding the operation names to the list
causes the complete operation to be ignored.
Prepending a "+" character to the operation in the list
(for example, +InitComponent) causes the
operation calls to be shown in the diagram, but
without their content.

Use dedicated Lifeline for static calls If there are static methods calls, and if there is
already an instance of that object on the diagram,
messages are normally drawn to that existing lifeline.
With this option enabled, the diagram generator uses
a dedicated new lifeline just for static method calls
for that classifier.

8.1.7.2.1 Generate Multiple Sequence Diagrams

You can also create multiple sequence diagram models from multiple operations, as follows:

1. Select the menu option Project | Generate Sequence diagrams from Code.

348

© 2016-2022 Altova GmbH

Behavioral Diagrams 363UML Diagrams

Altova UModel 2023 Basic Edition

2. Select the operations that you want to generate a sequence diagram for and click OK. (Use the Select
All Public and Select All buttons where necessary.)

3. Optionally, select the Include Getters and Setters check box to generate sequence diagrams for
C#/VB.NET getters and setters.

4. Click OK. This opens a dialog box where you can specify the sequence diagram generation options
.

5. Click OK. A sequence diagram is generated for each selected operation, and UModel automatically
opens it.

Creating multiple Sequence diagrams will likely take longer if your project is large. Note that only the first
10 diagrams will be opened automatically by UModel; all the rest will be generated without being opened.

8.1.7.2.2 Generate Sequence Diagrams from Getters/Setters

You can also generate a sequence diagram from getter/setter properties (in C#, VB .NET), as follows:

1. Right-click an Operation with a GetAccessor/SetAccessor stereotype.

360

364 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

2. Select Generate Sequence Diagram from Code (Getter/Setter) from the context menu. This opens
a dialog box where you can specify the sequence diagram generation options .

3. Click OK to generate the Sequence Diagram.

8.1.7.3 Generate Code from Sequence Diagram

UModel can create code from a sequence diagram which is linked to at least one operation. Code generation
from sequence diagrams is available for:

· VB.NET, C# and Java
· UModel standalone, Eclipse, and Visual Studio editions
· All three UModel editions

Creating code from Sequence diagrams is possible by either:

· Starting from a reverse engineered operation, see Generating Sequence Diagrams from source
code ,

· By creating a new sequence diagram from scratch, which is linked to an operation, by right-clicking
the operation (in the Model Tree) and selecting Create sequence diagram for code .

When using a reverse engineered sequence diagram as basis, ensure that the option "Show code in
notes" is selected when reverse engineering the code, so you do not lose any code when you start the
forward-engineering process again. This is due to the fact that UML is not able to display all the language
features of VB.NET, Java and C# on the sequence diagram, and those code sections are therefore shown
as code notes.

360

358

367

© 2016-2022 Altova GmbH

Behavioral Diagrams 365UML Diagrams

Altova UModel 2023 Basic Edition

To add plain text as code when creating a sequence diagram:

1. Attach a note to a sequence diagram lifeline.
2. Type in the code which should be written into the final source code. Click the Is Code check box (in

the Properties pane) for that note, to make it accessible.

See Adding code to sequence diagrams for an example.

If a Sequence Diagram is to be used for code engineering automatically every time code engineering is started:

1. Select the diagram in the Model Tree or Diagram Tree window.
2. Select the Use for forward engineering check box in the Properties window.

Old code will always be lost when forward engineering code from a sequence diagram, because it will be
overwritten with the new code.

To generate code using the Project menu:

1. Select the menu option Project | Generate Code from Sequence Diagrams. You are now prompted
to select the specific Sequence Diagram(s). Clicking the "Select All" button selects all the Sequence
Diagrams in the UModel project.

2. Click OK to generate the code. The Messages window shows the status of the code generation
process.

367

366 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

To generate code using the Model Tree:

· Right click a Sequence Diagram and select Generate Code from Sequence diagram.

To generate a Sequence Diagram containing code of an operation:

1. Click into the empty space of the Sequence Diagram, that contains code of an operation.
2. Select Generate Code from Sequence diagram.

This command starts the forward-engineering process at this point.

© 2016-2022 Altova GmbH

Behavioral Diagrams 367UML Diagrams

Altova UModel 2023 Basic Edition

To create a Sequence diagram for code (engineering):

· In the Model Tree, right-click an operation and select Create Sequence diagram for code.

You will then be prompted if you want to use the new diagram for forward engineering.

The result is a new Sequence Diagram containing the lifeline of that class.

8.1.7.3.1 Adding code to sequence diagrams

Program code can be generated from new, and reverse-engineered sequence diagrams, but only for a sequence
diagram linked to the "main operation".

When reverse-engineering code, standard sequence diagram elements, e.g. CombinedFragments, are
"mapped/assigned" to coding elements (e.g. "if" statements, loops, etc.).

368 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

For those programming statements that have no corresponding sequence diagram elements, e.g. "i = i+1",
UModel makes use of "code" notes to add code to diagrams. These notes must then be linked to the lifeline.

Note that UModel does not check, or parse, these code fragments. It is up to you to make sure that the code
fragments are correct and will compile.

To add code to a sequence diagram:

1. Click the Note icon then click the model element where you want to insert it, e.g.
CombinedFragment.

2. Enter the code fragment, e.g. return.
3. Click the Node Link handle of the inserted note and drop the cursor on the lifeline.
4. Activate the "Is Code" check box in the Properties tab to include this code fragment when generating

code.

When selecting a note on a sequence diagram, which can be used for code generation, the property "is code"
is available in the Properties window. Clicking the check box, allows you to switch between "ordinary" notes
and code generation notes.

Ordinary notes:

Code generation notes
 - shown with a darker dog-ear

Code updates occur automatically on every forward engineering process if the "Use for forward engineering"
check box is active. If changes were made to the sequence diagram, the code of the operation is always
overwritten.

The sequence diagram shown below was generated by right clicking the OnCommand operation and selecting
Generate sequence diagram from code. The C# code of this example is available in the C:
\Users\<user>\Documents\Altova\UModel2023\UModelExamples\IDEPlugIn\Styles\ folder. Use the option
Project | Import Source Project, to import the project.

© 2016-2022 Altova GmbH

Behavioral Diagrams 369UML Diagrams

Altova UModel 2023 Basic Edition

The code shown below is generated from the sequence diagram.

Public void OnCommand(int nID, object pUModel)

{
 //Generated by UModel. This code will be overwritten when you re-run code generation.

 if (!m_bPlugINVersionOK)

 {
 return;

 }

370 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

 if (nID == 3 || nID == 6)

 {
 OnSetStyles((IApplication)pUModel, "red");
 }

 if (nID == 4 || nID == 7)

 {
 OnSetStyles((IApplication)pUModel, "green");
 }
 GC.Collect();

}

8.1.8 Timing Diagram

Altova website: UML Timing diagrams

Timing diagrams depict the changes in state, or condition, of one or more interacting objects over a given period
of time. States, or conditions, are displayed as timelines responding to message events, where a lifeline
represents a Classifier Instance or Classifier Role.

A Timing diagram is a special form of a sequence diagram. The difference is that the axes are reversed i.e. time
increases from left to right, and lifelines are shown in separate vertically stacked compartments.

Timing diagrams are generally used when designing embedded software or real-time systems.

There are two different types of timing diagram: one containing the State/Condition timeline as shown above,
and the other, the General value lifeline, shown below.

https://www.altova.com/umodel/timing-diagrams

© 2016-2022 Altova GmbH

Behavioral Diagrams 371UML Diagrams

Altova UModel 2023 Basic Edition

8.1.8.1 Inserting Timing Diagram elements

Using the toolbar icons
1. Click the specific timing icon in the Timing Diagram toolbar.

2. Click in the Timing Diagram to insert the element. To insert multiple elements of the selected type,
hold down the Ctrl key and click in the diagram window.

Dragging existing elements into the timing machine diagram
Elements occurring in other diagrams, e.g. classes, can be inserted into an Timing Diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search function text
box, or press Ctrl+F to search for any element).

2. Drag the element(s) into the state diagram.

8.1.8.2 Lifeline

The lifeline element is an individual participant in an interaction, and is available in two different
representations:

1. State/Condition lifeline

2. General Value lifeline

To create a multiline lifeline, press Ctrl+Enter to create a new line.

372 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

To insert a State Condition (StateInvariant) lifeline and define state changes:

1. Click the Lifeline (State/Condition) icon in the title bar, then click in the Timing Diagram to
insert it.

2. Enter the lifeline name to change it from the default name, Lifeline1, if necessary.
3. Place the mouse cursor over a section of one of the timelines and click left. This selects the line.
4. Move the mouse pointer to the position you want a state change to occur, and click again. Note that

you will actually see the double headed arrow when you do this. A red box appears at the click
position and divides the line at this point.

5. Move the cursor to the right hand side of the line and drag the line upwards.

Note that lines can only be moved between existing states of the current lifeline.

Any number of state changes can be defined per lifeline. Once the red box appears on a line, clicking
anywhere else in the diagram deletes it.

To add a new state to the lifeline:

· Right-click the lifeline and select New | State/Condition (StateInvariant). A new State e.g. State3 is
added to the lifeline.

© 2016-2022 Altova GmbH

Behavioral Diagrams 373UML Diagrams

Altova UModel 2023 Basic Edition

To move a state within a lifeline:

1. Click the state label that you want to move.
2. Drag it to a different position in the lifeline.

To delete a state from a lifeline:

· Click the state and press the Del. key, or alternatively, right click and select Delete.

To switch between timing diagram types:

· Click the "toggle notation" icon at the bottom right of the lifeline.

This changes the display to the General Value lifeline, the cross-over point represents a state/value
change.

Note: Clicking the Lifeline (General Value) icon inserts the lifeline as shown above. You can switch
between the two representations at any time.

To add a new state to the General value lifeline:

1. Right-click the lifeline and select New | State/Condition (StateInvariant).
2. Edit the new name e.g. State3, and press Enter to confirm.

A new State is added to the lifeline.

374 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Grouping lifelines
Placing or stacking lifelines automatically positions them correctly and preserves any tick marks that might
have been added. Messages can also be created between separate lifelines by dragging the respective
message object.

8.1.8.3 Tick Mark

 The TickMark is used to insert the tick marks of a timing ruler scale onto a lifeline.

To insert a TickMark:

1. Click the tick mark icon and click on the lifeline to insert it.

2. Insert multiple tick marks by holding down the Ctrl key and repeatedly clicking at different positions on
the lifeline border.

3. Enter the tick mark label in the field provided for it. Drag tick marks to reposition them on the lifeline.

© 2016-2022 Altova GmbH

Behavioral Diagrams 375UML Diagrams

Altova UModel 2023 Basic Edition

To evenly space tick marks on a lifeline:

1. Use the marquee, by dragging in the main window, to mark the individual tick marks.

2. Click the Space Across icon in the icon bar.

8.1.8.4 Event/Stimulus

The Event/Stimulus ExecutionEvent is used to show the change in state of an object caused by the
respective event or stimulus. The received events are annotated to show the event causing the change in
condition or state.

To insert an Event/Stimulus:

1. Click the Event/Stimulus icon, then click the specific position in the timeline where the state change
takes place.

2. Enter a name for the event, in this example the event is "Code".

Note that the event properties are visible in the Properties tab.

376 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

8.1.8.5 DurationConstraint

A DurationConstraint defines a ValueSpecification that denotes a duration in time between a start and
endpoint. A duration is often an expression representing the number of clock ticks, which may elapse during
this duration.

To insert an DurationConstraint:

1. Click the DurationConstraint icon, then click the specific position on the lifeline where the constraint
is to be displayed. The default minimum and maximum values, "d..t", are automatically supplied.
These values can be edited by double clicking the time constraint, or by editing the values in the
Properties window.

2. Use the handles to resize the object if necessary.

To change the orientation of the DurationConstraint:

· Click the "Flip" icon to orient the constraint vertically.

© 2016-2022 Altova GmbH

Behavioral Diagrams 377UML Diagrams

Altova UModel 2023 Basic Edition

8.1.8.6 TimeConstraint

A TimeConstraint is generally shown as graphical association between a TimeInterval and the construct
that it constrains. Typically, this is graphical association between an EventOccurrence and a TimeInterval.

To insert a TimeConstraint:

· Click the TimeConstraint icon, then click the specific position on the lifeline where the constraint is to
be displayed.

The default minimum and maximum values are automatically supplied, "d..t" respectively. These values
can be edited by double clicking the time constraint, or by editing the values in the Properties window.

8.1.8.7 Message

A Message is a modeling element that defines a specific kind of communication in an Interaction. A
communication can be e.g. raising a signal, invoking an Operation, creating or destroying an Instance. The
Message specifies the type of communication defined by the dispatching ExecutionSpecification, as well as
the sender and the receiver.

Use the following toolbar buttons to add specific message types:

 Message (Call)

 Message (Reply)

378 UML Diagrams Behavioral Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

 Async message (Call)

Messages are sent between sender and receiver timelines, and are shown as labeled arrows.

To insert a message:

1. Click the specific message icon in the toolbar.
2. Click anywhere on the timeline sender object e.g. Idle.
3. Drag and drop the message line onto the receiver objects timeline e.g. NoCard. Lifelines are

highlighted when the message can be dropped.

Notes:

· The direction in which you drag the arrow defines the message direction. Reply messages can point in
either direction.

· Having clicked a message icon and holding down Ctrl key, allows you to insert multiple messages by
repeatedly clicking and dragging in the diagram tab.

To delete a message:

1. Click the specific message to select it.
2. Press the Del key to delete it from the model, or right click it and select "Delete from diagram".

© 2016-2022 Altova GmbH

Structural Diagrams 379UML Diagrams

Altova UModel 2023 Basic Edition

8.2 Structural Diagrams

These diagrams depict the structural elements that make up a system or function. Both the static, e.g. Class
diagram, and dynamic, e.g. Object diagram, relationships are presented.

 Class Diagram

 Component Diagram

 Composite Structure Diagram

 Deployment Diagram

 Object Diagram

 Package Diagram

 Profile Diagram

8.2.1 Class Diagram

This section includes tasks and concepts applicable to Class Diagrams, as follows:

· Customizing Class Diagrams
· Overriding Base Class Operations and Implementing Interface Operations
· Creating Getter and Setter Methods
· Ball and Socket Notation
· Adding Raised Exceptions to Methods of a Class
· Adding Receptions to a Class
· Generating Class Diagrams

For a basic introduction to Class Diagrams, see Class Diagrams in the tutorial section of this
documentation.

8.2.1.1 Customizing Class Diagrams

Expanding / hiding class compartments in a UML diagram
There are several methods of expanding the various compartments of class diagrams.

· Click on the + or - buttons of the currently active class to expand/collapse the specific compartment.

· Use the marquee (drag on the diagram background) to mark multiple classes, then click the
expand/hide button. You can also use Ctrl+Click to select multiple classes.

· Press Ctrl+A to select all classes, then click the expand/collapse button, on one of the classes, to
expand/collapse the respective compartments.

Expanding / collapsing class compartments in the Model Tree
In the Model Tree classes are subelements of packages and you can affect either the packages or the classes.

· Click the package / class you want to expand and:

§ Press the * key to expand the current package/class and all sub-elements

§ Press the + key to open the current package/class.

403

379

386

386

388

389

390

391

27

380 UML Diagrams Structural Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

To collapse the packages/classes, press the - keyboard key.

Note that you can use the standard keyboard keys, or the numeric keypad keys to achieve this.

Changing the visibility type icons

Clicking the visibility icon to the left of an operation , or property , opens a drop-down list enabling you to
change the visibility status. You can also change the type of visibility symbols that you want to see.

· Click a class in the diagram window, click the Styles tab and scroll down the list until you find the
Show Visibility entry.

You can choose between the UModel type shown above, or the UML conformant symbols shown
below.

Showing or hiding node content (class attributes, operations, slots)
In class diagrams, you can show or hide specific members of a class, such as attributes or operations. You
can show or hide not only individual members but also multiple members of the same type according to their
visibility. For example, you can hide only those class attributes that have private visibility. Showing or hiding is
also supported for object slots (InstanceSpecifications) in Object diagrams.

To show or hide class members or object slots:

1. Right-click a class (for example, SavingsAccount from the example Bank_MultiLanguage.ump
project) and select Show/Hide Node content from the context menu.

2. Select or clear the check box next to the members you want to show or hide, respectively.

© 2016-2022 Altova GmbH

Structural Diagrams 381UML Diagrams

Altova UModel 2023 Basic Edition

To show or hide multiple members based on their visibility, use the check boxes in the Element Styles group.
For example, clearing the protected check box in the Show Attributes group hides all protected attributes of
the class.

Note: Tagged values of hidden elements are also hidden when you select the hide option.

After you confirm your preferences with OK and close the dialog box, any hidden members on the diagram are
replaced by the ellipsis ... symbol. To open the dialog box again, double-click the ellipsis.

The When new elements are added and not hidden by Element Styles option allows you to define what
will be made visible when new elements are added to the class. This applies not only to elements added
manually in the diagram or in the Model Tree, but also to those added automatically during the code
engineering process. The valid values for this option are as follows:

Show elements When a new member is added to the class, show it on the
diagram. Nevertheless, if any of the options set under
"Element styles" dictate that the element must be hidden,
hide it.

382 UML Diagrams Structural Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Hide elements (except those added to this
node)

Here, the term "node" refers to the current instance of the
class on the diagram. (Recall that the same class can be
added multiple times on the same diagram, see
Renaming, Moving, and Copying Elements .)

When two or more instances of the same class exist on
the diagram, and when a new member is added to this
instance of the class, then hide the member in all
instances of the class but show it for the current instance.

For an example of how the options above are useful, open the Bank_MultiLanguage.ump example project,
and find the "Hierarchy of Account" class diagram.

Next, create a new instance of the SavingsAccount class, as follows:

1. Right-click the SavingsAccount class in the diagram and select Copy.
2. Right-click an empty area in the same diagram and select Paste in this diagram only from the

context menu.

There are now two instances of the SavingsAccount class on the diagram.

Next, set different visibility options in each of the instances:

1. Right-click the left instance of the class, select Show/Hide Node content, and then select the Show
elements option.

2. Right-click the right instance of the class, select Show/Hide Node content, and then select the Hide
elements (except those added to this node) option.

Next, add a new property to the left instance (select the class and press F7). As illustrated below, the new
property (Property1) is visible in the left instance but not visible in the right instance. This happens because
the right-side instance of the class has the the Hide elements (except those added to this node) option
enabled.

107

© 2016-2022 Altova GmbH

Structural Diagrams 383UML Diagrams

Altova UModel 2023 Basic Edition

Finally, add a new property to the right-side instance of the class. As illustrated below, the new property
(Property2) is visible in both instances. This happens because the left-side instance is configured to show new
elements, while the right-side instance is the current instance where the property is added, so the new property
is shown unconditionally.

Showing or hiding .NET compartments
To display .NET properties in their own compartment, select the "Show .NET properties in own compartment"
option in the Styles tab.

384 UML Diagrams Structural Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Showing .NET properties as associations
To display .NET properties as associations, right-click a C# property as shown below, and select Show | All
.NET Properties as Associations from the context menu.

Changing the syntax coloring of operations/properties
UModel automatically enables syntax coloring, but lets you customize it to suit your needs. The default
settings are shown below.

© 2016-2022 Altova GmbH

Structural Diagrams 385UML Diagrams

Altova UModel 2023 Basic Edition

To change the default syntax coloring options (shown below):

1. Switch to the Styles tab and scroll the SC prefixed entries.
2. Change one of the "SC color" entries e.g. "SC Type" to "red".

To disable syntax coloring:

1. Switch to the Styles tab and change the Use Syntax Coloring entry to false.
2. Use the Attribute Color, or Operation Color entries in the Styles tab to customize these items in

the class.

386 UML Diagrams Structural Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

8.2.1.2 Overriding Base Class Operations and Implementing Interface
Operations

UModel gives you the ability to override the base-class operations, or implement interface operations of a class.
This can be done from the Model Tree, Favorites tab, or in Class diagrams.

1. Right-click one of the derived classes in the class diagram, e.g. CheckingAccount, and select
Override/Implement Operations. This opens the dialog box shown below.

2. Select the Operations that you want to override and confirm with OK. The "Select undefined..." buttons
select those method types in the window at left.

Note: When the dialog box is opened, operations of base classes and implemented interfaces that have the
same signature as existing operations, are automatically checked (i.e. active).

8.2.1.3 Creating Getter and Setter Methods

During the modeling process it is often necessary to create get/set methods for existing attributes. UModel
supplies you with two separate methods to achieve this:

· Drag and drop an attribute into the operation compartment
· Use the context menu to open a dialog box allowing you to manage get/set methods

© 2016-2022 Altova GmbH

Structural Diagrams 387UML Diagrams

Altova UModel 2023 Basic Edition

To create getter/setter methods using drag and drop:

· Drag an attribute from the Attribute compartment and drop it in the Operations compartment.

A pop-up menu appears at this point allowing you to decide what type of get/set method you want to
create.

Selecting the first item creates a get and set method for interestRate:float.

To create getter/setter methods using the context menu:

1. Right-click the class title, e.g. SavingsAccount, and select the context menu option Create
Getter/Setter Operations. The Create Getters/Setters dialog box opens displaying all attributes
available in the currently active class.

388 UML Diagrams Structural Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

2. Use the buttons to select the items as a group, or click the getter/setter check boxes individually.

Note: You can also right-click a single attribute and use the same method to create an operation for it.

8.2.1.4 Ball and Socket Notation

UModel supports the ball and socket notation of UML. Classes that require an interface display a "socket" and
the interface name, while classes that implement an interface display the "ball".

In the shots shown above, Class2 realizes Interface1, which is used by classes 1, 3, and 4. The usage icons
were used to create the usage relationship between the classes and the interface.

To switch between the standard and ball-and-socket view:

· Click the Toggle Interface notation icon at the base of the interface element.

© 2016-2022 Altova GmbH

Structural Diagrams 389UML Diagrams

Altova UModel 2023 Basic Edition

8.2.1.5 Adding Raised Exceptions to Methods of a Class

To add raised Exceptions to methods of a class:

1. Click the method of the class you want to add the raised exception to in the Model Tree window, e.g.
getBalance of the Account class.

2. Right-click the Properties window and select Add Raised Exception from the pop-up menu. This adds
the raised exceptions field to the Properties window, and automatically selects the first entry in the
list.

3. Select an entry from the list, or enter your own into the field.

390 UML Diagrams Structural Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

8.2.1.6 Adding Receptions to a Class

In addition to operations and properties, you can add Reception elements to a class.

To add a Reception to a class:

· Right-click the class on the diagram and select New | Reception from the context menu.

Receptions appear in a separate compartment on the Class diagram, similar to properties and operations, for
example:

Receptions share the same styles as operations. This means that, whenever you change the style of
operations, the changes affect Receptions also. For more information, see Changing the Style of Elements .117

© 2016-2022 Altova GmbH

Structural Diagrams 391UML Diagrams

Altova UModel 2023 Basic Edition

8.2.1.7 Generating Class Diagrams

As an alternative to designing class diagrams directly in UModel, you can generate them automatically when
importing source code or binaries into UModel projects (see Importing Source Code and Importing Java, C#
and VB.NET Binaries). When following the import wizard, make sure that:

1) The Enable diagram generation check box is selected on the "Import Source Project", "Import Binary
Types", or "Import Source Directory" dialog box.

Import Source Project dialog box

2) The Generate single diagram and/or the Generate diagram per package options are selected on the
"Content Diagram Generation" dialog box.

186

198

392 UML Diagrams Structural Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Content Diagram Generation dialog box

Once the import operation is finished, any generated class diagrams are available under "Class Diagrams" in
the Diagram Tree.

© 2016-2022 Altova GmbH

Structural Diagrams 393UML Diagrams

Altova UModel 2023 Basic Edition

Diagram Tree

8.2.2 Composite Structure Diagram

Altova website: UML Composite Structure diagrams

The Composite Structure Diagram has been added in UML 2.0 and is used to show the internal structure,
including parts, ports and connectors, of a structured classifier, or collaboration.

https://www.altova.com/umodel/composite-structure-diagrams

394 UML Diagrams Structural Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

8.2.2.1 Inserting Composite Structure Diagram elements

Using the toolbar icons
1. Click the specific Composite Structure diagram icon in the toolbar.

2. Click in the Composite Structure diagram to insert the element. To insert multiple elements of the
selected type, hold down the Ctrl key and click in the diagram window.

Dragging existing elements into the Composite Structure diagram
Most elements occurring in other Composite Structure diagrams, can be inserted into an existing Composite
Structure diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search function text box,
or press Ctrl+F to search for any element).

2. Drag the element(s) into the Composite Structure diagram.

© 2016-2022 Altova GmbH

Structural Diagrams 395UML Diagrams

Altova UModel 2023 Basic Edition

 Collaboration
Inserts a collaboration element which is a kind of classifier/instance that communicates with other instances to
produce the behavior of the system.

 CollaborationUse
Inserts a Collaboration use element which represents one specific use of a collaboration involving specific
classes or instances playing the role of the collaboration. A collaboration use is shown as a dashed ellipse
containing the name of the occurrence, a colon, and the name of the collaboration type.

When creating dependencies between collaboration use elements, the "type" field must be filled to be able to
create the role binding, and the target collaboration must have at least one part/role.

 Part (Property)
Inserts a part element which represents a set of one or more instances that a containing classifier owns. A Part
can be added to collaborations and classes.

 Port
Inserts a port element which defines the interaction point between a classifier and its environment, and can be
added on parts with a defined type.

 Class
Inserts a Class element, which is the actual classifier that occurs in that particular use of the collaboration.

 Connector
Inserts a Connector element which can be used to connect two or more instances of a part, or a port. The
connector defines the relationship between the objects and identifies the communication between the roles.

 Dependency (Role Binding)
Inserts the Dependency element, which indicates which connectable element of the classifier or operation,
plays which role in the collaboration.

396 UML Diagrams Structural Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

8.2.3 Component Diagram

Please see the Component Diagrams section in the tutorial for more information on how to add component
elements to the diagram.

8.2.4 Deployment Diagram

Please see the Deployment Diagrams section in the tutorial for more information on how to add nodes and
artifacts to the diagram.

49

55

© 2016-2022 Altova GmbH

Structural Diagrams 397UML Diagrams

Altova UModel 2023 Basic Edition

8.2.5 Object Diagram

Please see the Object Diagrams section in the tutorial for more information on how to add new
objects/instances to the diagram.

8.2.6 Package Diagram

Package diagrams display the organization of packages and their elements, as well as their corresponding
namespaces. UModel additionally allows you to create a hyperlink and navigate to the respective package
content.

Packages are depicted as folders and can be used on any of the UML diagrams, although they are mainly used
on use-case and class diagrams.

42

398 UML Diagrams Structural Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Automatic Package Dependency diagram generation
You can generate a package dependency diagram for any package that already exists in the Model Tree.

Dependency links between packages are created if there are any references between the modeling elements of
those packages. E.g. Dependencies between classes, derived classes, or if attributes have types that are
defined in a different package.

To generate a package dependency diagram:

1. Right click a package in the Model Tree, e.g. altova, and select Show in new Diagram | Package
Dependencies.... This opens the New Package Dependency Diagram dialog box.

2. Select the specific options you need and click OK to confirm.

© 2016-2022 Altova GmbH

Structural Diagrams 399UML Diagrams

Altova UModel 2023 Basic Edition

A new diagram is generated and displays the package dependencies of the altova package.

8.2.6.1 Inserting Package Diagram elements

Using the toolbar icons
1. Click the specific icon in the Package Diagram toolbar.

2. Click in the diagram to insert the element. To insert multiple elements of the selected type, hold down
the Ctrl key and click in the diagram window.

Dragging existing elements into the Package Diagram
Elements occurring in other diagrams, e.g. other packages, can be inserted into a Package diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search function text box,
or press Ctrl+F to search for any element).

2. Drag the element(s) into the diagram.

 Package
Inserts the package element into the diagram. Packages are used to group elements and also to provide a
namespace for the grouped elements. Being a namespace, a package can import individual elements of other
packages, or all elements of other packages. Packages can also be merged with other packages.

 Profile
Inserts the Profile element, which is a specific type of package that can be applied to other packages.

The Profiles package is used to extend the UML meta model. The primary extension construct is the
Stereotype, which is itself part of the profile. Profiles must always be related to a reference meta model such
as UML, they cannot exist on their own.

400 UML Diagrams Structural Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

 Dependency
Inserts the Dependency element, which indicates a supplier/client relationship between modeling elements, in
this case packages, or profiles.

 PackageImport
Inserts an <<import>> relationship which shows that the elements of the included package will be imported into
the including package. The namespace of the including package gains access to the included namespace; the
namespace of the included package is not affected.

Note: Elements defined as "private" within a package, cannot be merged or imported.

 PackageMerge
Inserts a <<merge>> relationship which shows that the elements of the merged (source) package will be
imported into the merging (target) package, including any imported contents of the merged (source) package.

If the same element exists in the target package then these elements' definitions will be expanded by those
from the target package. Updated or added elements are indicated by a generalization relationship back to the
source package.

Note: Elements defined as "private" within a package, cannot be merged or imported.

 ProfileApplication
Inserts a Profile Application which shows which profiles have been applied to a package. This is a type of
package import that states that a Profile is applied to a Package.

The Profile extends the package it has been applied to. Applying a profile, using the ProfileApplication icon,
means that all stereotypes that are part of it, are also available to the package.

Profile names are shown as dashed arrows from the package to the applied profile, along with the <<apply>>
keyword.

8.2.6.2 Generating Package Diagrams

You can instruct UModel to generate package diagrams when importing source code or binaries into the
UModel project (see Importing Source Code and Importing Java, C# and VB.NET Binaries). When
following the import wizard, make sure that:

1) The Enable diagram generation check box is selected on the "Import Source Project", "Import Binary
Types", or "Import Source Directory" dialog box.

186 198

© 2016-2022 Altova GmbH

Structural Diagrams 401UML Diagrams

Altova UModel 2023 Basic Edition

Import Source Project dialog box

2) The Generate diagram option is selected on the "Package Dependency Diagram Generation" dialog box.

402 UML Diagrams Structural Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Package Dependency Diagram Generation dialog box

Once the import operation is finished, any generated package diagrams are available under "Package
Diagrams" in the Diagram Tree.

© 2016-2022 Altova GmbH

Structural Diagrams 403UML Diagrams

Altova UModel 2023 Basic Edition

Diagram Tree

8.2.7 Profile Diagram

Altova website: UML profile diagrams

In UML, profiles are a way to extend UML to a specific platform or domain. Unlike a package, a profile is in the
meta-model and consists of "meta" building blocks that extend or constrain something. This is possible with
the help of the following extension mechanisms included into a profile: stereotypes, tagged values, and
constraints.

In UModel, the profile diagram is where you can conveniently create your own stereotypes, tagged values and
constraints bundled as a custom profile. Profiles enable you to extend or adapt UML to your specific domain or
customize the appearance of elements in your modeling projects. For example, you may want to define custom
styles or add custom icons for UML elements such as classes, interfaces, and so on.

Importantly, the profile diagram is where you can apply a profile to a package. For example, the profile diagram
below illustrates a ProfileApplication relationship between the package BankView and the Java profile built
into UModel. You can find this diagram in the following sample project: C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples\BankView_Java.ump; it is called
"Apply Java Profile".

https://www.altova.com/umodel/profile-diagrams

404 UML Diagrams Structural Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Profile diagram

The applied Java profile means that any class or interface that is part of the BankView package (or will be
added to this package in future) must look like a Java class or interface and all its members must exhibit
behavior specific to that language. For example:

· All Java data types that exist in the profile are available for selection from a drop-down list when you
design a class in a class diagram, see also Class Diagrams .

· All Java-specific stereotypes defined in the profile, such as «annotations», «final», «static»,
«strictfp», and so on, are visible as properties in the Properties window when you select an element.

This chapter describes how you can extend UModel projects by means of custom profiles and stereotypes. For
information about using the UModel built-in profiles, see Applying UModel Profiles and Stereotypes and
Tagged Values .

8.2.7.1 Creating and Applying Custom Profiles

The instructions below show you how to create a custom UModel profile and apply it to a package. This is
typically required if you need to create and apply stereotypes beyond those included in the default UModel
profiles. For information about applying the default UModel profiles, see Applying UModel Profiles .

To create a custom profile:

1. Right-click the package where you would like to create the new profile, (for example, "Root"), and
select New element | Profile from the context menu.

2. Create all the elements that should be part of this profile, such as stereotypes, data types, and so on.
You can do this either in the Model Tree window or from a profile diagram. For example, to create a
new stereotype in the model, right-click the profile and select New element | Stereotype from the
context menu. See also Creating Stereotypes .

3. Optionally, create a profile diagram (right-click the profile and select New diagram | Profile diagram
from the context menu). To add all the required elements to the diagram, use the standard UModel
menu commands and toolbars, see How to Model... .

If you would like to create the profile from a profile diagram, make sure that the diagram is owned by

27

154

140

154

405

103

© 2016-2022 Altova GmbH

Structural Diagrams 405UML Diagrams

Altova UModel 2023 Basic Edition

(created under) a profile, or by a package inside a profile.

In addition, if you would like to reuse the profile across multiple UModel projects, do the following:

1. Share any packages that you want to make reusable. (Right-click the package or the profile itself, and
select Subproject | Share package from the context menu.)

2. Save the project to a directory from where you can later include it as a subproject, see Including
Subprojects .

So far, you have created a profile but have not added (or applied) it to any package. By applying a profile to a
package, you make all of the extension mechanisms of that profile (such as stereotypes, data types, and so
on) available to elements of the package.

To apply a custom profile to a package:

1. Create a new UModel project, or open an existing one.
2. Do one of the following:

a. Create your custom profile in the existing project, as shown above.
b. Include a custom profile from an existing project using the menu command Project | Include

Subproject. Note that either the entire profile or its packages under must be shared in order to be
reusable, see Sharing Packages and Diagrams .

3. Right-click the profile and select New diagram | Profile diagram from the context menu.
4. Add some package(s) and the custom profile to the diagram.

5. Draw a ProfileApplication relationship from the package to the profile. For example, the profile
diagram below illustrates a ProfileApplication relationship between the package BankView and the
Java profile built into UModel. As illustrated below, profile applications are shown as dashed arrows
from the package to the applied profile, along with the <<apply>> keyword.

8.2.7.2 Creating Stereotypes

When you model projects using any of the UModel built-in profiles (such as C#, Java, VB.NET, XML schema,
and so on), you shouldn't typically need to create any custom stereotypes. Instead, you can just apply the
existing stereotypes to your model's elements, as described in Applying Stereotypes .

158

160

142

406 UML Diagrams Structural Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

However, if you would like to add custom icons to elements or customize their appearance based on the
applied stereotype, this can be achieved by creating custom stereotypes. Note the following prerequisites:

· Stereotypes must be owned by a profile or a package inside a profile. Therefore, in order to create a
stereotype, you must create a profile first (or a package inside an existing profile).

· After creating the profile, you must apply it to the package where you need to use the custom
stereotypes, as described in Creating and Applying Profiles .

Once you have created a profile, you can start adding stereotypes to it. This can be done either directly in the
Model Tree window, or from a profile diagram. If you would like to create stereotypes from a profile diagram,
make sure that the diagram is owned by (created under) a profile, or by a package inside a profile, as shown
below.

To create a stereotype:

1. If you haven't done so already, create a profile, see Creating and Applying Custom Profiles .
2. Optionally, right-click the profile and select New diagram | Profile diagram from the context menu.

This creates a new profile diagram under the current profile—it will help you visualize in one place all
the stereotypes, data types, and other elements that you will subsequently add to the profile.

3. Right-click the profile in the Model Tree window, and select New element | Stereotype from the
context menu.

404

404

© 2016-2022 Altova GmbH

Structural Diagrams 407UML Diagrams

Altova UModel 2023 Basic Edition

4. Optionally, set the stereotype properties in the Properties window. For example, if you set the
stereotype's metaclass to "Class", the stereotype will apply to classes only. Likewise, you can set a

custom icon for the stereotype by clicking the Ellipsis button next to icon file name.

Notes
· If the image path is relative, it must be relative to the UModel project's folder.
· To use custom icons with transparent background, set their background color to RGB value

82,82,82.
· To display stereotypes for association relationships, set the Show MemberEnd stereotypes

property to "true" in the Styles window.

Adding stereotype attributes (properties)
The stereotype created above is very simple and does not have any attributes (properties) associated with it. It
is, however, possible to add properties to a stereotype. Such properties will become tagged values when this
stereotype is applied to some element in future.

To add attributes (properties) to a stereotype:

1. Click the stereotype in the Model Tree window or on the diagram.
2. Do one of the following

a. Right-click the stereotype and select New | Property from the context menu.
b. Press F7.

408 UML Diagrams Structural Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

You can set the data type of each property from the Properties window, by selecting a value from the type list.
Any data type previously defined in the same profile as the stereotype is available for selection. If the profile
doesn't contain any data types yet, you can define one by right-clicking the profile diagram, and selecting New
| Data type from the context menu.

To set the default value of a property, enter that value in the default field of the Properties window. For
example, the stereotype property illustrated below has "0" as default value:

The data type of a stereotype attribute (property) can also be an enumeration, see Example: Creating and
Applying Stereotypes .

8.2.7.3 Example: Creating and Applying Stereotypes

This example provides a step-by-step demo of the stereotype creation process. It shows you how to achieve
the following goals:

· Create a stereotype
· Create stereotype attributes (properties) that become tagged values when applied to an element
· Define a stereotype attribute as an enumeration
· Set a default value for a stereotype attribute
· Apply the stereotype to elements in the model.

The example is accompanied by a sample project file called StereotypesDemo.ump, available at the following
path: C:\Users\<username>\Documents\Altova\UModel2023\UModelExamples\Tutorial. If you follow the
instructions below literally, you will create a similar project.

408

© 2016-2022 Altova GmbH

Structural Diagrams 409UML Diagrams

Altova UModel 2023 Basic Edition

Create a new profile
As mentioned above, a stereotype must be owned by a profile; therefore, let's first create a profile.

1. Create a new UModel project.
2. Right-click the "Root" package and add a new profile by selecting New element | Profile from the

context menu.
3. Rename the new profile to "DemoProfile".

Create a stereotype
For the scope of this tutorial, you will create a stereotype with two attributes: "Usability" and "IsObsolete". The
"IsObsolete" attribute will be defined as an enumeration. The enumeration will consist of two values, "Yes" and
"No", where "No" is the default value.

1. Right-click the profile and select New element | Stereotype from the context menu. A new
stereotype has been added to the profile.

2. Rename the new stereotype to "Info".
3. Right-click the stereotype and select New element | Property from the context menu. This adds a

new property.
4. Rename the new property to "Usability".

5. Repeat the steps above to create a new property called "IsObsolete".

410 UML Diagrams Structural Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

6. Right-click the "DemoProfile" and select New Element | Enumeration from the context menu.
Rename the enumeration to "YesNoEnum".

7. Right-click the enumeration and select New Element | EnumerationLiteral from the context menu.
Rename the enumeration literal to "Yes".

8. Repeat the step above and create an enumeration literal called "No".

9. Click the "IsObsolete" property and change its type to YesNoEnum. Also, set the default property to
"No"

© 2016-2022 Altova GmbH

Structural Diagrams 411UML Diagrams

Altova UModel 2023 Basic Edition

Create a new package
In order to illustrate how the custom stereotype can be used, let's create a simple package containing only one
class.

1. Right-click the "Root" package and add a new package by selecting New element | Package from
the context menu.

2. Rename the new package to "DemoPackage".
3. Add a class to the package (in this example, "DemoClass".

Apply the profile to a package
As you recall from Step 1, the stereotype was created inside a profile. In this step, we apply the profile to a
package, so that the stereotype becomes "visible" to the package.

1. Right-click the "DemoProfile" in the Model Tree window and select New diagram | Profile diagram
from the context menu.

2. Drag both the "DemoPackage" package and the "DemoProfile" profile from the Model Tree window into
the diagram.

3. Click the ProfileApplication toolbar button, and draw a ProfileApplication relationship from the
package to the profile.

412 UML Diagrams Structural Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Apply the stereotype to classes
You can now apply the stereotype to a class.

1. Right-click the "DemoPackage" and select New diagram | Class diagram from the context menu.
2. Drag the class "DemoClass" onto the diagram.
3. Click the class and select the «Info» stereotype in the Properties window. Notice that the

"IsObsolete" property is pre-filled with its default value.

4. Enter a value for the "Usability" property ("75%", in this example).

The class on the diagram now has a "Tagged values" section which displays the stereotype attributes and their
values. You can change these values either from the Properties window, or directly from the diagram.

© 2016-2022 Altova GmbH

Structural Diagrams 413UML Diagrams

Altova UModel 2023 Basic Edition

8.2.7.4 Example: Customizing Icons and Styles

This example shows you how to customize the appearance of a class in UModel with the help of stereotypes.
After following this example, you will learn how to add custom icons to elements and change the style of all
elements that use the same stereotype.

The class that will be customized in this example is in the StereotypesDemo.ump project, available at the
following path: C:\Users\<username>\Documents\Altova\UModel2023\UModelExamples\Tutorial. This is a
simple demo project which includes a custom profile under which we will create the stereotype. For an example
that shows you how to create profiles and stereotypes from scratch, see Example: Creating and Applying
Stereotypes .

Let's first create the stereotype to be used for styling:

1. Open the StereotypesDemo.ump project.
2. Right-click the "DemoProfile" profile in the model tree, and select New Element | Stereotype from the

context menu.
3. Rename the stereotype to "StylingStereotype".

To add a custom image to the stereotype, click the stereotype, and then click the Ellipsis button next to
icon file name property in the Properties window. Select the following sample image: C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples\Tutorial\class.bmp.

408

414 UML Diagrams Structural Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Next, click the Styles tab of the Properties window. Select Styles of Elements with this Stereotype from the
top list, and change the Header Font Size property to "16".

Finally, apply the stereotype to a class.

1. Open the class diagram "ClassDiagram1". You will find this diagram under the "DemoPackage" in the
Model Tree view.

2. Click the "DemoClass" class, and then select the «StylingStereotype» check box in the Properties
window.

© 2016-2022 Altova GmbH

Structural Diagrams 415UML Diagrams

Altova UModel 2023 Basic Edition

The appearance of the class on the diagram is now changed according to the applied stereotype:

Remarks
The demo project contains a profile diagram, "ProfileDiagram1". In this diagram, notice that the "DemoProfile"

is applied to the "DemoPackage" with a ProfileApplication relationship. This makes the stereotype
available to the package, see also Creating and Applying Custom Profiles .

You have now learned how to change the appearance of elements using stereotypes. You can use the same
technique in other projects. Just keep in mind that the profile where you create the stereotype must be applied
to the target package, as shown above.

404

416 UML Diagrams Additional Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

8.3 Additional Diagrams

The additional diagram kinds supported by UModel Basic Edition are as follows:

 XML Schema diagrams

8.3.1 XML Schema Diagrams

Altova website: XML Schemas in UML

UModel supports the import and generation of W3C XML schemas as well as their forward and reverse
engineering. In case of XML Schemas, "forward and reverse engineering" means that you can import a schema
(or multiple schemas from a directory) into UModel, view or modify the model, and write the changes back to
the schema file. When you synchronize data from the model to a schema file, the schema file is always
overwritten by the model.

Note: The XML Schema must be valid before it can be imported into UModel. XML Schemas are not validated
when you create or import them in UModel, or when you run a project syntax check. Nevertheless,
UModel checks whether the XML schema is well-formed when importing it.

XML Schema diagrams display schema components in UML notation. For example, simple types are shown in
UModel as data types with the «simpleType» stereotype. Complex types are shown as classes with the
«complexType» stereotype. Various schema details are represented as Tagged Values , while schema
annotations are represented as comments. For a mapping table that illustrates how all the XML schema
components map to UModel elements, see XML Schema Mappings .

Example XML Schema diagram

416

141

258

https://www.altova.com/umodel#xml_uml

© 2016-2022 Altova GmbH

Additional Diagrams 417UML Diagrams

Altova UModel 2023 Basic Edition

8.3.1.1 Importing XML Schemas

You can import either a single schema file into UModel, or all schemas from a directory. If a schema includes
or imports other schemas, these are imported into the model as well.

To import a single XML Schema:

1. Select the menu command Project | Import XML Schema file.
2. Click Browse and select the source schema to import. For the scope of this example, you can use

the following schema: C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples\Tutorial\OrgChart.xsd.

3. To generate diagrams from the schema, make sure that the Enable diagram generation check box
is selected and click Next.

418 UML Diagrams Additional Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

4. To create a separate diagram for each global component in the schema like in this example, select the
Generate diagrams for XSD globals option. To open all generated diagrams after import, select
Open diagrams. Options from the "Style" group let you define the compartments that appear by
default in diagrams for each schema component. The Show schema details as tagged values
option displays the schema details as Tagged Values .

5. Click Next. To generate a Package dependency diagram like the one in this example, select the
Generate Diagram check box.

141

© 2016-2022 Altova GmbH

Additional Diagrams 419UML Diagrams

Altova UModel 2023 Basic Edition

6. Click Finish.

Once UModel completes importing the schema, a new package called All Schemas is created and set
automatically as the "XSD Namespace Root". The OrgChart.xsd schema used in this example imports types
from another namespace, more specifically, from the ipo.xsd schema. Consequently, both schemas appear in
the Model Tree window after import, under their respective namespaces:

420 UML Diagrams Additional Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

If you have selected the Generate diagrams for XSD globals check box, all XSD global components
generate an XML Schema diagram, and the diagrams appear under the respective namespace packages, like
the "Address (complexType)" diagram in the image above.

To import multiple XML Schemas:

1. Select the menu command Project | Import XML Schema directory.

© 2016-2022 Altova GmbH

Additional Diagrams 421UML Diagrams

Altova UModel 2023 Basic Edition

2. To import schemas from all subdirectories of the selected directory, select the Process all
subdirectories check box. The rest of the import process is the same as described above for a single
XML schema.

Changing the display of tagged values
After importing an XML schema, certain schema details may appear as tagged values on the diagram, if you
have selected the Show Schema Details as Tagged Values option during the import.

422 UML Diagrams Additional Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

You can configure whether such details are to be shown or hidden from the diagram. To do this, right-click the
element and select Tagged Values | <option> from the context menu. You can configure the display of
tagged values not only individually for each element, but also globally at project level. For more information, see
Showing or Hiding Tagged Values .

8.3.1.2 Modeling XML Schemas

New XML Schema projects in UModel have the structure illustrated below. This structure is created
automatically the first time when you add an XML Schema diagram to a new UModel project.

The "Root" and "Component View" packages are common to any UModel Project and cannot be deleted.
"Root" is the topmost level under which any other packages are added, and "Component View" is used for code
engineering (in this case, importing or generating schema files).

The "XSDNamespaceRoot" package includes all the namespaces used by your schema(s). To turn a package
into an XSD Namespace Root, right-click it and select Code Engineering | Set as XSD Namespace Root
from the context menu. If you import an existing XML schema into the project, this package is called "All
schemas" by default.

The "XSDTargetnamespace" package is an XML Schema namespace. Multiple such namespaces may exist
under the same XSD Namespace Root. To turn a package into a namespace, first select the package, and
then select the «namespace» property (stereotype) in the Properties window.

"XSDSchema" is a schema, or, in UML terms, a class with the «schema» property (stereotype) selected in the
Properties window.

XMLSchemaDiagram1 is the actual diagram that describes the schema's model. You can create XML
Schema diagrams under an XSD Namespace Root, under an XML Schema Namespace, or under an XML
Schema. In the example project illustrated above, the diagram is created under the XML schema.

The XSD Profile enables all the types and structures required to work with XML Schema in the project. If your
project does not have this profile, you will be prompted to include it whenever you create a new XML Schema
diagram. You can also add the XSD profile to a project explicitly, see Applying UModel Profiles .

144

154

© 2016-2022 Altova GmbH

Additional Diagrams 423UML Diagrams

Altova UModel 2023 Basic Edition

Creating XML Schema diagrams
To create a new XML schema diagram:

1. Do one of the following:
a. Right-click a package in the Model Tree Window and select XML Schema Diagram from the

context menu.
b. Right-click "Diagrams" or "XML Schema Diagrams" in the Diagram Tree Window and select

New Diagram | XML Schema diagram from the context menu. A dialog box opens asking you
to select the owner of the diagram. Select a package where the diagram should be stored, and
click OK.

2. If the current UModel project does not include the XSD profile, a dialog box opens asking you to
include it. Click OK to include the XSD profile into the current project, see also Applying UModel
Profiles .

Adding new XML Schema elements
To add XML schema elements to a diagram:

· Click a specific toolbar button, and then click inside the XML Schema diagram.

To insert multiple elements of the same type, hold down the Ctrl key and click multiple times in the diagram.

As stated above, XML Schema diagrams can be created at various levels in the project's structure. If the
diagram is at a level which does not allow placing a particular element, certain toolbar buttons are not
meaningful and they show a tooltip with information instead of adding the element.

The table below lists all the toolbar buttons and their purpose.

XSD Target Namespace Adds an XSD target namespace. Clicking this button is
meaningful if the diagram was created directly under an XSD
Namespace Root.

XSD Schema Adds an XML Schema Definition (XSD). Clicking this button is
meaningful if the diagram was created under an XSD target
namespace.

Element (global) Adds a global element to the diagram. When you add an
element, a property with the same name as the element is
automatically generated in the attributes compartment. Set the
property type to set the element's type.

Group Adds a named model group to the diagram.

Complex Type Adds a global complex type to the diagram. In UML terms, this
is a class that has the «global» and «complexType»

79

83

154

424 UML Diagrams Additional Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

stereotypes applied.

Complex Type with Simple
Content

Adds a global complex type with simple content. In UML terms,
this is a data type that has the «global», «complexType», and
«simpleContent» stereotypes applied.

Simple Type Adds a global simple type.

List Adds a list type.

Union Adds a union type.

Enumeration Adds an enumeration.

Attribute Adds an attribute.

Attribute group Adds an attribute group.

Notation Adds a notation type.

Import Adds an import relationship.

Include Adds an include relationship.

Redefine Adds a redefine relationship.

Restriction Adds a restriction relationship.

Extension Adds an extension relationship.

Substitution Adds a substitution relationship.

 Comment Adds a comment. Comments are converted to annotations when
you generate the schema file from the model. You can specify
the annotation type by selecting the required stereotype from the
Properties window.

Note Adds an explanatory note.

Note link Links a note to some other element on the diagram.

For step-by-step schema modeling instructions, see Example: Create and Generate an XML Schema .

8.3.1.3 Example: Create and Generate an XML Schema

This example shows you how to model a new XML Schema with UModel, step by step. After modeling the
schema visually using UML, you will generate the schema file. More specifically, you will learn how to create
and generate the product.xsd schema listed below.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.altova.com/umodel"

xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:prod="http://www.altova.com/umodel">

 <xs:simpleType name="SizeType">

424

© 2016-2022 Altova GmbH

Additional Diagrams 425UML Diagrams

Altova UModel 2023 Basic Edition

 <xs:restriction base="xs:integer">

 <xs:maxInclusive value="10"/>

 <xs:minInclusive value="1"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="ProductType">

 <xs:sequence>

 <xs:element name="number" type="xs:integer">

 </xs:element>

 <xs:element name="size" type="prod:SizeType">

 </xs:element>

 </xs:sequence>

 <xs:attribute name="createdAt" type="xs:date">

 </xs:attribute>

 </xs:complexType>

 <xs:element name="product" type="prod:ProductType">

 </xs:element>

</xs:schema>

product.xsd

As shown above, the product.xsd schema has two namespace declarations:

1. The default XML Schema namespace http://www.w3.org/2001/XMLSchema mapped to the "xs"
prefix.

2. The secondary namespace http://www.altova.com/umodel mapped to the "prod" prefix, which is
also the target namespace.

Also, the XML schema has a global product element, a complex type ProductType and a simple type
SizeType.

Declaring namespaces and file encoding
To proceed, create a new UModel project. Right-click the Root package, and select New Diagram | XML
Schema Diagram from the context menu. When prompted to include the UModel XSD Profile, click OK.

426 UML Diagrams Additional Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

In the Model Tree Window , rename "XMLSchemaDiagram1" to "MainDiagram". This is the diagram where
most schema components will be created, except for namespace declarations.

Next, rename "XSDTargetNamespace" to "http://www.altova.com/umodel" (recall that this is the required target
namespace). This declares the target namespace of the new schema.

The two "xmlns" namespaces and the UTF-8 encoding can be set as follows:

1. Select the XSDSchema schema in the Model Tree.
2. In the Properties window, right-click the xmlns property and select Add Tagged Value | xlmns.
3. Edit the xmlns and encoding properties as shown below.

Optionally, you can quickly generate a new XML Schema diagram at namespace level that presents the same
information visually, as follows:

1. In the Model Tree, right-click the namespace "http://www.altova.com/umodel" and select New
Diagram | XML Schema diagram from the context menu.

79

© 2016-2022 Altova GmbH

Additional Diagrams 427UML Diagrams

Altova UModel 2023 Basic Edition

2. When a message box with the following text appears: "Do you want to add the 'XML Schema Diagram'
to a new 'XSD Schema'?", click No.

3. Drag the XML Schema from the Model Tree into the diagram.

As shown above, the namespace and encoding are stored as Tagged Values and can be edited from the
diagram window as well.

Add a simple type
The following steps create the SizeType simple type to the XML schema. This is a type that restricts the base
xs:integer type; therefore, we will add the base type to the diagram as well, and create a restriction
relationship.

1. Double-click the MainDiagram in the Model Tree to open it.

2. Click the XSD Simple Type toolbar button, and then click inside the diagram.
3. Rename the newly added simple type to SizeType.

4. Click inside the Model Tree and press Ctrl+F. The Find dialog box appears. Start typing "integer" and
locate the integer type from the "XSDDataTypes" package of the "XSD Profile".

5. Drag the integer type into the diagram.

141

428 UML Diagrams Additional Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

6. Click the Restriction toolbar button and drag the cursor from SizeType to integer. This creates
the restriction relationship; see also Creating Relationships .

7. To define the minInclusive and maxInclusive values, select the simple type and edit the properties
with the same name in the Properties window.

130

© 2016-2022 Altova GmbH

Additional Diagrams 429UML Diagrams

Altova UModel 2023 Basic Edition

Add a complex type
The following steps add the ProductType complex type to the XML schema. All these steps take place in the
MainDiagram as well.

1. Click the XSD Complex Type toolbar button, and then click inside the diagram.
2. Rename the complex type to ProductType.
3. Right-click the complex type and select New | XSD Sequence from the context menu.

4. Drag the «sequence» class away from the complex type and into the diagram.

5. Right-click the sequence and select New | XSD Element (local).
6. Change the element's name to number and set the type to integer. The integer type is a base XML

Schema type from the XSD Profile. For instructions about setting an element's type, see Type
Autocompletion in Classes .

7. Using the same steps as above, create the element size of type SizeType. Note that SizeType is the
simple type created previously.

127

430 UML Diagrams Additional Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

8. Right-click the complex type on the diagram and select New | XSD Attribute (local) from the context
window.

9. Change the attribute's name to createdAt and the type to date.

Add an element
Now that all the required types of the schema have been defined, you can add a product element of type
ProductType, as follows:

1. Click the XSD Element (global) toolbar button, and then click inside the diagram. Notice that a
class with the «element» stereotype and a single property is added.

2. Rename the property to product and change its type to ProductType.

Completed design
The steps above conclude the design part of the schema. By now, your full schema design should look as
follows:

© 2016-2022 Altova GmbH

Additional Diagrams 431UML Diagrams

Altova UModel 2023 Basic Edition

Enable code engineering
To make it possible to generate a schema file from the model, let's now add a code engineering component
that provides the schema generation details. The code engineering component is similar to other UModel
project kinds, see also Adding a Code Engineering Component .

Right-click the "Component View" package in the Model Tree and add a new element of type Component.
Make sure to change the component's properties as shown below:

1. The use for code engineering property must be enabled.
2. The code language property of the code engineering component must be set to "XSD 1.0".
3. The project file property of the code engineering component must point to the schema file that is to

be generated (in this example, product.xsd).

165

432 UML Diagrams Additional Diagrams

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Note: If a project file property is missing, enter product.xsd in the directory property and press Enter. A
message box should now appear asking you to refer to a project file instead. Click Yes to confirm.

Finally, the XML Schema must be realized by the code engineering component, as described in Adding a Code
Engineering Component . For the scope of this example, the quickest way to create the
ComponentRealization relationship is as follows:

· In the Model Tree, drag the XSDSchema schema over the code engineering component
(Component1) and drop it when a tooltip appears such as the one below:

You can now generate the schema file. To do this, either press F12 or select the Project | Overwrite
Program Code from UModel project menu command. Note that merging is not supported in case of XML
Schemas; therefore, the dialog box shows a message in red to state this fact.

165

© 2016-2022 Altova GmbH

Additional Diagrams 433UML Diagrams

Altova UModel 2023 Basic Edition

The new XML schema will be generated in the same folder as your UModel project.

434 XMI - XML Metadata Interchange

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

9 XMI - XML Metadata Interchange

 Altova website: Exchanging UModel projects using XMI

You can export UModel projects to XML Metadata Interchange (XMI) files, and import XMI files as UModel
projects. This provides interoperability with other UML tools that support XMI. The supported XMI versions are
as follows:

· XMI 2.1 for UML 2.0
· XMI 2.1 for UML 2.1.2
· XMI 2.1 for UML 2.2
· XMI 2.1 for UML 2.3
· XMI 2.4.1 for UML 2.4.1
· XMI 2.4.1 for UML 2.5
· XMI 2.5.1 for UML 2.5.1

To import an XMI file into UModel:

· On the File menu, click Import from XMI File.

To export a UModel project to an XMI file:

· On the File menu, click Export to XMI File.

Notes:

· During the export process, all included files, even those defined as include by reference , are
exported.

· If you intend to re-import generated XMI code into UModel, make sure that you select the Export
UModel Extensions check box.

160

https://www.altova.com/umodel/advanced#xmi

© 2016-2022 Altova GmbH

 435XMI - XML Metadata Interchange

Altova UModel 2023 Basic Edition

The sections below describe options available when exporting projects to XMI.

Pretty-print XMI output
If you select this option, the XMI file will be generated with XML tag indentation and carriage returns.

Export UUIDs
XMI defines three versions of element identification: IDs, UUIDs and labels.

· IDs are unique within the XMI document, and are supported by most UML tools. UModel exports these
type of IDs by default, i.e. none of the check boxes need activated.

· UUID are Universally Unique Identifiers, and provide a mechanism to assign each element a global
unique identification, GUID. These IDs are globally unique, i.e. they are not restricted to the specific
XMI document. UUIDs are generated by selecting the "Export UUIDs" check box.

· UUIDs are stored in the standard canonical UUID/GUID format (e.g "6B29FC40-CA47-1067-B31D-
00DD010662DA", "550e8400-e29b-41d4-a716-446655440000",...)

· Labels are not supported by UModel.

Note: The XMI import process automatically supports both types of IDs.

Export UModel Extensions
XMI defines an "extension mechanism" which allows each application to export its tool-specific extensions to
the UML specification. Other UML tools will, however, only be able to import the standard UML data (ignoring
the UModel extensions). This UModel extension data will be available when importing into UModel.

Data such as the file names of classes, or element colors, are not part of the UML specification and thus have
to be deleted in XMI, or be saved in "Extensions". If they have been exported as extensions and re-imported, all
file names and colors will be imported as defined. If extensions are not used for the export process, then these
UModel-specific data will be lost.

When importing an XMI document, the format is automatically detected and the model generated.

Export diagrams
Exports UModel diagrams as "Extensions" in the XMI file. The option Export UModel Extensions must be
selected before you can save the diagrams as extensions.

436 Source Control

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

10 Source Control

The source control support in UModel is available through the Microsoft Source Control Plug-in API (formerly
known as the MSSCCI API), versions 1.1, 1.2 and 1.3. This enables you to run source control commands such
as "Check in" or "Check out" directly from UModel to virtually any source control system that lets native or
third-party clients connect to it through the Microsoft Source Control Plug-in API.

You can use as your source control provider any commercial or non-commercial plug-in that supports the
Microsoft Source Control Plug-in API, and can connect to a compatible version control system. For the list of
source control systems and plug-ins tested by Altova, see Supported Source Control Systems .

Installing and configuring the source control provider
To view the source control providers available on your system, do the following:

1. On the Tools menu, click Options.
2. Click the Source Control tab.

Any source control plug-ins compatible with the Microsoft Source Code Control Plug-in API are displayed in the
Current source control plug-in drop-down list.

If a compatible plug-in cannot be found on your system, the following message is displayed:

"Registration of installed source control providers could not be found or is incomplete."

Some source control systems might not install the source control plug-in automatically, in which case you will
need to install it separately. For further instructions, refer to the documentation of the respective source control
system. A plug-in (provider) compatible with the Microsoft Source Code Control Plug-in API is expected to be
registered under the following registry entry on your operating system:

HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider\InstalledSCCProviders

439

© 2016-2022 Altova GmbH

 437Source Control

Altova UModel 2023 Basic Edition

Upon correct installation, the plug-in becomes available automatically in the list of plug-ins available to UModel.

Accessing the source control commands
The commands related to source control are available in the Project | Source Control menu.

Resource / Speed issues
Very large source control databases might be introducing a speed/resource penalty when automatically
performing background status updates.

You might be able to speed up your system by disabling (or increasing the interval of) the Perform
background status updates every ... seconds option in the Source Control tab accessed through Tools |
Options.

Note: The 64-bit version of your Altova application automatically supports any of the supported 32-bit source
control programs listed in this documentation. When using a 64-bit Altova application with a 32-bit
source control program, the Perform background status updates every ... seconds option is
automatically grayed-out and cannot be selected.

Differencing with Altova DiffDog
You can configure many source control systems (including Git and TortoiseSVN) so that they use Altova
DiffDog as their differencing tool. For more information about DiffDog, see https://www.altova.com/diffdog. For
DiffDog documentation, see https://www.altova.com/documentation.html.

https://www.altova.com/diffdog
https://www.altova.com/documentation.html

438 Source Control Setting Up Source Control

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

10.1 Setting Up Source Control

The mechanism for setting up source control and placing files in a UModel project under source control is as
follows:

1. If this hasn't been done already, install the source control system (see Supported Source Control
Systems) and set up the source control database (repository) to which you wish to save your
work.

2. Create a local workspace folder that will contain the working files that you wish to place under source
control. The folder that contains all your workspace folders and files is called the local folder, and the
path to the local folder is referred to as the local path. This local folder will be bound to a particular
folder in the repository.

3. In your Altova application, create an application project folder to which you must add the files you wish
to place under source control. This organization of files in an application project is abstract. The files in
a project reference physical files saved locally, preferably in one folder (with sub-folders if required) for
each project.

4. In the source control system's database (also referred to as source control or repository), a folder is
created that is bound to the local folder. This folder (called the bound folder) will replicate the structure
of the local folder so that all files to be placed under source control are correctly located hierarchically
within the bound folder. The bound folder is usually created when you add a file or an application
project to source control for the first time.

439

© 2016-2022 Altova GmbH

Supported Source Control Systems 439Source Control

Altova UModel 2023 Basic Edition

10.2 Supported Source Control Systems

The list below shows the Source Control Servers (SCSs) supported by UModel, together with their respective
Source Control Clients (SCCs). The list is organized alphabetically by SCS. Note the following:

· Altova has implemented the Microsoft Source Control Plug-in API (versions 1.1, 1.2, and 1.3) in
UModel, and has tested support for the listed drivers and revision control systems. It is expected that
UModel will continue to support these products if, and when, they are updated.

· Source Code Control clients not listed below, but which implement the Microsoft Source Control Plug-
in API, should also work with UModel.

Source Control System Source Code Control Clients

AccuRev 4.7.0 Windows AccuBridge for Microsoft SCC 2008.2

Bazaar 1.9 Windows Aigenta Unified SCC 1.0.6

Borland StarTeam 2008 Borland StarTeam Cross-Platform Client 2008 R2

Codice Software Plastic SCM Professional
2.7.127.10 (Server)

Codice Software Plastic SCM Professional 2.7.127.10 (SCC
Plugin)

Collabnet Subversion 1.5.4 · Aigenta Unified SCC 1.0.6
· PushOK SVN SCC 1.5.1.1
· PushOK SVN SCC x64 version 1.6.3.1
· TamTam SVN SCC 1.2.24

ComponentSoftware CS-RCS (PRO) 5.1 ComponentSoftware CS-RCS (PRO) 5.1

Dynamsoft SourceAnywhere for VSS 5.3.2
Standard/Professional Server

Dynamsoft SourceAnywhere for VSS 5.3.2 Client

Dynamsoft SourceAnywhere Hosted Dynamsoft SourceAnywhere Hosted Client (22252)

Dynamsoft SourceAnywhere Standalone 2.2
Server

Dynamsoft SourceAnywhere Standalone 2.2 Client

Git PushOK GIT SCC plug-in (see Source Control with Git)

IBM Rational ClearCase 7.0.1 (LT) IBM Rational ClearCase 7.0.1 (LT)

March-Hare CVSNT 2.5 (2.5.03.2382) Aigenta Unified SCC 1.0.6

March-Hare CVS Suite 2008 · Jalindi Igloo 1.0.3
· March-Hare CVS Suite Client 2008 (3321)
· PushOK CVS SCC NT 2.1.2.5
· PushOK CVS SCC x64 version 2.2.0.4
· TamTam CVS SCC 1.2.40

Mercurial 1.0.2 for Windows Sergey Antonov HgSCC 1.0.1

Microsoft SourceSafe 2005 with CTP Microsoft SourceSafe 2005 with CTP

461

440 Source Control Supported Source Control Systems

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Source Control System Source Code Control Clients

Microsoft Visual Studio Team System
2008/2010 Team Foundation Server

Microsoft Team Foundation Server 2008/2010 MSSCCI
Provider

Perforce 2008 P4S 2008.1 Perforce P4V 2008.1

PureCM Server 2008/3a PureCM Client 2008/3a

QSC Team Coherence Server 7.2.1.35 QSC Team Coherence Client 7.2.1.35

Reliable Software Code Co-Op 5.1a Reliable Software Code Co-Op 5.1a

Seapine Surround SCM Client/Server for
Windows 2009.0.0

Seapine Surround SCM Client 2009.0.0

Serena Dimensions Express/CM 10.1.3 for
Win32 Server

Serena Dimensions 10.1.3 for Win32 Client

Softimage Alienbrain Server 8.1.0.7300 Softimage Alienbrain Essentials/Advanced Client 8.1.0.7300

SourceGear Fortress 1.1.4 Server SourceGear Fortress 1.1.4 Client

SourceGear SourceOffsite Server 4.2.0 SourceGear SourceOffsite Client 4.2.0 (Windows)

SourceGear Vault 4.1.4 Server SourceGear Vault 4.1.4 Client

VisualSVN Server 1.6 · Aigenta Unified SCC 1.0.6
· PushOK SVN SCC 1.5.1.1
· PushOK SVN SCC x64 version 1.6.3.1
· TamTam SVN SCC 1.2.24

© 2016-2022 Altova GmbH

Source Control Commands 441Source Control

Altova UModel 2023 Basic Edition

10.3 Source Control Commands

The following sections use Visual SourceSafe to show the source control features of UModel. The examples in
this section use the Bank_CSharp.ump UModel project (and associated code files) available in the C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples folder. Note that a Source Control
project is not the same as a UModel project. Source Control projects are directory dependent, whereas UModel
projects are logical constructions without direct directory dependence.

To access the Source Control commands, do one of the following:

· Use the menu command Project | Source Control
· Use the context menu in the Model Tree
· Click the source control toolbar buttons in the Source Control toolbar. Use Tools | Customize |

Toolbars to activate the toolbar.

The description of the version control commands that follow apply to the standalone version of UModel. The
Visual Studio and Eclipse versions of UModel use the version control functionality and menu items available in
those IDEs.

Open from Source Control
Enable Source Control
Get Latest Version
Get
Get Folder(s)
Check Out
Check In
Undo Check Out...
Add to Source Control
Remove from Source Control
Share from Source Control
Show History
Show Differences
Show Properties
Refresh Status
Source Control Manager
Change Source Control

10.3.1 Open from Source Control

The Open from Source Control command creates a local project from an existing source control database, and
places it under source control, SourceSafe in this case.

1. Select Project | Source Control | Open from Source Control.
The Login dialog box is opened, enter your login details to continue.
The "Create local project from SourceSafe" dialog box appears.

2. Define the directory to contain the new local project e.g. c:\temp\ssc. This becomes the Working
directory, or the Check Out Folder.

441

444

445

445

446

447

449

449

451

453

454

455

457

458

459

459

459

442 Source Control Source Control Commands

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

3. Select the SourceSafe project you want to download e.g. Bank_CSharp.
If the folder you define here does not exist at the location, a dialog box opens prompting you to create
it.

4. Click Yes to create the new directory.
The Open dialog box is now visible.

© 2016-2022 Altova GmbH

Source Control Commands 443Source Control

Altova UModel 2023 Basic Edition

5. Select the Bank_CSharp.ump UModel project file and click Open.

Bank_CSharp.ump now opens in UModel, and the file is placed under source control. This is
indicated by the lock symbol visible on the Root folder in the Model Tree window. The Root folder
represents both the project file and the working directory for source control operations.

The BankCSharp directory has been created locally, you can now work with these files as you
normally would.

Note:
To place under source control the code files generated when synchronizing code, see: Add to Source
Control 451

444 Source Control Source Control Commands

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Source control symbols

 or
The lock symbol denotes that the file, or folder is under source control, but is currently not checked out.

 or
The red check mark denotes checked out, i.e. the UModel project file (or code file) has been checked out for
editing. The asterisk in the Application title bar denotes that changes have been made to the file, and you will
be prompted to save it when you exit.

 or
The arrow symbol shows that the file(s) have been checked out by someone else in the network, or by you into
a different working directory

10.3.2 Enable Source Control

This command allows you to enable or disable source control for a UModel project and is available through the
Project menu item, i.e. Project | Source Control | Enable Source Control. Selecting this option on any file
or folder, enables/disables source control for the whole UModel project.

To enable Source Control for a project:

1. Select the menu option Project | Source Control and activate/check the Enable source control
check box of the fly-out menu. The previous check in/out status of the various files are retrieved and
displayed in the Model Tree window.

To disable Source Control for a project:

1. Select the menu option Project | Source Control and uncheck the Enable source control check
box.

You are now prompted if you want to remove the binding information from the project.

© 2016-2022 Altova GmbH

Source Control Commands 445Source Control

Altova UModel 2023 Basic Edition

To provisionally disable source control for the project, select No.

To permanently disable source control for the project, select Yes.

10.3.3 Get Latest Version

Retrieves and places the latest source control version of the selected file(s) in the working directory. The files
are retrieved as read-only and are not checked out.

If the affected files are currently checked out, different things occur depending on the specific version control
plugin: nothing happens, new data are merged into your local file, or your changes are overwritten.

This command works in a similar fashion to the Get command, but does not display the "Source control - Get"
dialog box. It is therefore not possible to specify Advanced get options.

Note that this command automatically performs a recursive get latest version operation when performed on a
folder, i.e. it affects all other files below the current one in the package hierarchy.

To get the latest version of a file:

1. Select the file(s) you want to get the latest version of in the Model Tree.
2. Select Project | Source Control | Get Latest Version.

10.3.4 Get

Retrieves a read-only copy of the selected files and places them in the working folder. The files are not
checked-out for editing per default.

Using Get:

· Select the files you want to get in the Model Tree.
· Select Project | Source Control | Get.

446 Source Control Source Control Commands

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Overwrite changed files
Overwrites those files that have been changed locally with those from the source control database.

Select All
Selects all the files in the list box.

Advanced
Allows you to define the Replace writable and Set timestamp options in the respective combo boxes.

The "Make writable" check box removes the read-only attribute of the retrieved files.

10.3.5 Get Folder(s)

Retrieves read-only copies of files in the selected folders and places them in the working folder. The files are
not checked-out for editing per default.

Using Get Folders:

· Select the folder you want to get in the Model Tree.
· Select Project | Source Control | Get Folders.

© 2016-2022 Altova GmbH

Source Control Commands 447Source Control

Altova UModel 2023 Basic Edition

Overwrite changed files
Overwrites those files that have been changed locally with those from the source control database.

Recursive (get tree)
Retrieves all files of the folder tree below the selected folder.

Advanced
Allows you to define the Replace writable and Set timestamp options in the respective combo boxes.

The "Make writable" check box removes the read-only attribute of the retrieved files.

10.3.6 Check Out

This command checks out the latest version of the selected files and places writable copies in the working
directory. The files are flagged as "checked out" for all other users.

To Check Out files:

· Select the file or folder you want to check out in the Model Tree.
· Select Project | Source Control | Check Out.

448 Source Control Source Control Commands

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Note: You can change the number of files to check out, by activating the individual check boxes in the Files
list box.

Select the option Checkout local version to check out only the local versions of the files, not those from the
source control database.

The following items can be checked out:

· Single files, click on the respective files (CTRL + click, in the Model Tree)
· Folders, click on the folders (CTRL + click, in the Model Tree)

 or
The red check mark denotes that the file/folder has been checked out.

Advanced
Allows you to define the Replace writable and Set timestamp options in the respective combo boxes.

The "Make writable" check box removes the read-only attribute of the retrieved files.

© 2016-2022 Altova GmbH

Source Control Commands 449Source Control

Altova UModel 2023 Basic Edition

10.3.7 Check In

This command checks in the previously checked out files, i.e. your locally updated files, and places them in
the source control database.

To Check In files:

· Select the files in the Model Tree
· Select Project | Source Control | Check In.

Shortcut: Right-click a checked out item in the project window, and select "Check in" from the Context menu.

Note:
You can change the number of files to check in, by activating the individual check boxes in the Files
list box.

The following items can be checked in:
· Single files, click on the respective files (CTRL + click, in Model Tree)
· Folders, click on the folders (CTRL + click, in Model Tree)

, or

The lock symbol denotes that the file/folder is under source control, but is currently not checked out.

10.3.8 Undo Check Out...

This command discards changes made to previously checked out files, i.e. your locally updated files, and
retains the old files from the source control database.

450 Source Control Source Control Commands

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

To Undo Check Out..

· Select the files in the Model Tree
· Select Project | Source Control | Undo Check Out.

Note:
You can change the number of files by activating the individual check boxes in the Files list box.

The Undo check out option can apply to the following items:
· Single files, click on the respective files (CTRL + click, in Model Tree)
· Folders, click on the folders (CTRL + click, in Model Tree)

Advanced
Allows you to define the Replace writable and Set timestamp options in the respective combo boxes.

The "Make writable" check box removes the read-only attribute of the retrieved files.

© 2016-2022 Altova GmbH

Source Control Commands 451Source Control

Altova UModel 2023 Basic Edition

10.3.9 Add to Source Control

Adds the selected files or folders to the source control database and places them under source control. If you
are adding a new UModel project you will be prompted for the workspace folder and the location at which your
project should be stored.

Having placed the UModel project file (*.ump) under source control, you can then add the code files produced
by the code-engineering process, to source control as well. For this to work, the generated code files and the
UModel project have to be placed in, or under, the same SourceSafe working directory. The working directory
used in this section is C:\Users\Altova\Documents\UMODEL_WORK\.

To add UModel generated code files to source control:

1. Expand the Component View folder in the Model Tree and Navigate to the BankView component.

2. Click the BankView component and click the Browse icon next to the "directory" field in the
Properties window.

3. Change the code engineering directory to C:\Users\Altova\Documents\UMODEL_WORK\codegen.
4. Select the menu item Project | Merge Program Code from UModel project.
5. Change the Synchronization settings if necessary, and click OK to confirm.

452 Source Control Source Control Commands

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

The Messages window displays the code from project process.
A message box opens asking if you want to place the newly created files under source control.

6. Click Yes to do so.
7. The "Add to Source Control" dialog box is opened, allowing you to select the files you want to place

under source control.

© 2016-2022 Altova GmbH

Source Control Commands 453Source Control

Altova UModel 2023 Basic Edition

8. Click OK once you have selected the files you want to place under source control.
The lock symbol now appears next to each of the classes/file sources placed under source control.

10.3.10 Remove from Source Control

This command removes previously added files, from the source control database. These type of files remain
visible in the Model Tree but cannot be checked in or out. Use the "Add to Source Control" command to place
them back under source control.

454 Source Control Source Control Commands

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

To remove files from the source control provider:

· Select the files you want to remove in the Model Tree.
· Select Project | Source Control | Remove from Source Control.

Note:
You can change the number of files to remove, by activating the individual check boxes in the Files list
box.

The following items can be removed from source control:
· Single files, click on the respective files (CTRL + click, for several)
· Folders, click on the folder icon.

10.3.11 Share from Source Control

This command shares/branches files from other projects/folders within the source control repository, into the
selected folder. To use the Share command you must have the Check in/out rights to the project you are
sharing from.

To share a file from source control:

1. Select the folder you want to share files to, in the Model Tree window, and select Project | Source
Control | Share from Source Control. e.g. BankView Component in the Component View folder.

2. Select the project folder that contains the file you want to share in the "Projects" list box.

© 2016-2022 Altova GmbH

Source Control Commands 455Source Control

Altova UModel 2023 Basic Edition

3. Select the file you want to share in the "Files to share" list box and click the Share button.
The file is now removed from the "File to share" list.

4. Click the Close button to continue.

Branch after share
Shares the file and creates a new branch to create a separate version.

10.3.12 Show History

This command displays the history of a file under source control, and allows you to view, see detailed history
info, difference, or retrieve previous versions of a file.

To show the history of a file:

1. Click on the file in the Model Tree window.
2. Select the menu options Project | Source control | Show history.

A dialog box prompting for more information opens.

456 Source Control Source Control Commands

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

3. Select the appropriate entries and confirm with OK.

This dialog box is provides various way of comparing and getting specific versions of the file in
question. Double clicking an entry in the list opens the History Details dialog box for that file.

Close
Closes this dialog box.

View
Opens a further dialog box in which you can select the type of viewer you want to see the file with.

Details
Opens a dialog box in which you can see the properties of the currently active file.

Get
Allows you to retrieve one of the previous versions of the file in the version list, and place it into the
working directory.

458

© 2016-2022 Altova GmbH

Source Control Commands 457Source Control

Altova UModel 2023 Basic Edition

Check Out
Allows you to check out the latest version of the file.

Diff
Opens the Difference options dialog box, which allows you to define the difference options when
viewing the differences between two file versions.

Use CTRL+Click to mark two file versions in this window, then click Diff to view the differences between
them.

Pin
Pins or unpins a version of the file, allowing you to define the specific file version to use when
differencing two files.

Rollback
Rolls back to the selected version of the file.

Report
Generates a history report which you can send to the printer, file, or clipboard.

Help
Opens the online help of the source control provider plugin.

10.3.13 Show Differences

This command displays the differences between the file currently in the source control repository, and the
checked in/out file of the same name in the working directory.

If you have "pinned" one of the files in the history dialog box, then the pinned file will be used in the "Compare"
text box. Any two files can be selected using the Browse buttons.

To show the differences between two files:

1. Click on a file in the Model Tree window.
2. Select the menu option Project | Source control | Show Differences.

A dialog box prompting for more information appears.

457

458 Source Control Source Control Commands

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

3. Select the appropriate entries and confirm with OK.

The differences between the two files are highlighted in both windows (this example uses MS
SourceSafe).

10.3.14 Show Properties

This command displays the properties of the currently selected file, and is dependent on the source control
provider you use.

© 2016-2022 Altova GmbH

Source Control Commands 459Source Control

Altova UModel 2023 Basic Edition

To display the properties of the currently selected file:
· Select Project | Source Control | Properties.

This command can only be used on single files.

10.3.15 Refresh Status

This command refreshes the status of all project files, independent of their current status.

10.3.16 Source Control Manager

This command starts your source control software with its native user interface.

10.3.17 Change Source Control

This dialog box allows you to change the source control binding that you are using. Click the Unbind button
first, then (optionally) click the Select button to select a new source control provider, and finally click the Bind
button to bind to a new location in the repository.

460 Source Control Source Control Commands

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Source Control with Git 461Source Control

Altova UModel 2023 Basic Edition

10.4 Source Control with Git

Support for Git as a source control system in UModel is available through a third-party plug-in called GIT SCC
plug-in (http://www.pushok.com/software/git.html).

At the time when this documentation is written, the GIT SCC plug-in is available for experimental use.
Registration with the plug-in publisher is required in order to use the plug-in.

The GIT SCC plug-in enables you to work with a Git repository using the commands available in the Project |
Source Control menu of UModel. Note that the commands in the Project | Source Control menu of UModel
are provided by the Microsoft Source Control Plug-in API (MSSCCI API), which uses a design philosophy
different from Git. As a result, the plug-in essentially mediates between "Visual Source Safe"-like functionality
and Git functionality. On one hand, this means that a command such as Get latest version may not be
applicable with Git. On the other hand, there are new Git-specific actions, which are available in the "Source
Control Manager" dialog box provided by the plug-in (under the Project | Source Control | Source Control
Manager menu of UModel).

The Source Control Manager dialog box

Other commands that you will likely need to use frequently are available directly under the Project | Source
Control menu.

The following sections describe the initial configuration of the plug-in, as well as the basic workflow:

· Enabling Git Source Control with GIT SCC Plug-in
· Adding a Project to Git Source Control
· Cloning a Project from Git Source Control

462

462

464

http://www.pushok.com/software/git.html

462 Source Control Source Control with Git

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

10.4.1 Enabling Git Source Control with GIT SCC Plug-in

To enable Git source control with UModel, the third-party PushOK GIT SCC plug-in must be installed,
registered, and selected as source control provider, as follows:

1. Download the plug-in installation file from the publisher's website (http://www.pushok.com), run it, and
follow the installation steps.

2. On the Project menu of UModel, click Change Source Control, and make sure PushOk GITSCC is
selected as source control provider. If you do not see Push Ok GITSCC in the list of providers, it is
likely that the installation of the plug-in was not successful. In this case, check the publisher's
documentation for a solution.

3. When a dialog box prompts you to register the plug-in, click Registration and follow the wizard steps
to complete the registration process.

10.4.2 Adding a Project to Git Source Control

You can save UModel projects as Git repositories. The structure of files or folders that you add to the project
would then correspond to the structure of the Git repository.

To add a project to Git source control:

1. Make sure that PushOK GIT SCC Plug-in is set as source control provider (see Enabling Git Source
Control with GIT SCC Plug-in).

2. Create a new empty project and make sure that it has no validation errors (that is, the command
Project | Check Project Syntax does not show any errors or warnings).

3. Save the project to a local folder, for example C:\MyRepo\Project.ump.
4. In the Model Tree pane, click the Root node.
5. On the Project menu, under Source Control, click Add to Source Control.

462

http://www.pushok.com

© 2016-2022 Altova GmbH

Source Control with Git 463Source Control

Altova UModel 2023 Basic Edition

6. Click OK.

7. Enter the text of your commit message, and click OK.

You can now start adding modeling elements (diagrams, classes, packages, and so on) to your project. Note
that all project files and folders must be under the root folder of the project. For example, if the project was
created in the C:\MyRepo folder , then only files under C:\MyRepo should be added to the project. Otherwise, if
you attempt to add to your project files that are outside the project root folder, a warning message is displayed:

464 Source Control Source Control with Git

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

10.4.3 Cloning a Project from Git Source Control

Projects that have been previously added to Git source control (see Adding a Project to Git Source Control)
can be opened from the Git repository as follows:

1. Make sure that PushOK GIT SCC Plug-in is set as source control provider (see Enabling Git Source
Control with GIT SCC Plug-in).

2. On the Project menu, click Source Control | Open from Source Control.
3. Enter the path or the URL of the source repository. Click Check to verify the validity of the path or

URL.

4. Under Local Path, enter the path to local folder where you want the project to be created, and click
Next. If the local folder exists (even if it is empty), the following dialog box opens:

5. Click Yes to confirm, and then click Next.

462

462

© 2016-2022 Altova GmbH

Source Control with Git 465Source Control

Altova UModel 2023 Basic Edition

6. Follow the remaining wizard steps, as required by your specific case.
7. When the wizard completes, a Browse dialog box appears, asking you to open the UModel Project

(*.ump) file. Select the project file to load the project contents into UModel.

466 UModel Diagram icons

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

11 UModel Diagram icons

The following section is a quick guide to the icons that are made available in each of the modeling diagrams.

The icons are split up into two sections:

· Add - displays a list of elements that can be added to the diagram.
· Relationship - displays a list of relationship types that can be created between elements in the

diagram.

© 2016-2022 Altova GmbH

Activity Diagram 467UModel Diagram icons

Altova UModel 2023 Basic Edition

11.1 Activity Diagram

Add
Action (CallBehaviorAction)
Action (CallOperationAction)
AcceptEventAction
AcceptEventAction (TimeEvent)
SendSignalAction

DecisionNode (Branch)
MergeNode
InitialNode
ActivityFinalNode
FlowFinalNode
ForkNode (vertical)
ForkNode (horizontal)
JoinNode
JoinNode (horizontal)

InputPin
OutputPin
ValuePin

ObjectNode
CentralBufferNode
DataStoreNode
ActivityPartition (horizontal)
ActivityPartition (vertical)
ActivityPartition 2-Dimensional

ControlFlow
ObjectFlow
ExceptionHandler

Activity
ActivityParameterNode
StructuredActivityNode
ExpansionRegion
ExpansionNode
InterruptibleActivityRegion

468 UModel Diagram icons Activity Diagram

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Note
Note Link

© 2016-2022 Altova GmbH

Class Diagram 469UModel Diagram icons

Altova UModel 2023 Basic Edition

11.2 Class Diagram

Relationship
Association
Aggregation
Composition
AssociationClass
Dependency
Usage
InterfaceRealization
Generalization

Add
Package
Class
Interface
Enumeration
Datatype
PrimitiveType
Profile
Stereotype
ProfileApplication
InstanceSpecification

Note
Note Link

470 UModel Diagram icons Communication diagram

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

11.3 Communication diagram

Add
Lifeline
Message (Call)
Message (Reply)
Message (Creation)
Message (Destruction)

Note
Note Link

© 2016-2022 Altova GmbH

Composite Structure Diagram 471UModel Diagram icons

Altova UModel 2023 Basic Edition

11.4 Composite Structure Diagram

Add
Collaboration
CollaborationUse
Part (Property)
Class
Interface
Port

Relationship
Connector
Dependency (Role Binding)
InterfaceRealization
Usage

Note
Note Link

472 UModel Diagram icons Component Diagram

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

11.5 Component Diagram

Add
Package
Interface
Class
Component
Artifact

Relationship
Realization
InterfaceRealization
Usage
Dependency

Note
Note Link

© 2016-2022 Altova GmbH

Deployment Diagram 473UModel Diagram icons

Altova UModel 2023 Basic Edition

11.6 Deployment Diagram

Add
Package
Component
Artifact
Node
Device
ExecutionEnvironment

Relationship
Manifestation
Deployment
Association
Generalization
Dependency

Note
Note Link

474 UModel Diagram icons Interaction Overview diagram

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

11.7 Interaction Overview diagram

Add
CallBehaviorAction (Interaction)
CallBehaviorAction (InteractionUse)
DecisionNode
MergeNode
InitialNode
ActivityFinalNode
ForkNode
ForkNode (Horizontal)
JoinNode
JoinNode (Horizontal)
DurationConstraint

Relationship
ControlFlow

Note
Note Link

© 2016-2022 Altova GmbH

Object Diagram 475UModel Diagram icons

Altova UModel 2023 Basic Edition

11.8 Object Diagram

Relationship
Association
AssociationClass
Dependency
Usage
InterfaceRealization
Generalization

Add
Package
Class
Interface
Enumeration
Datatype
PrimitiveType
InstanceSpecification

Note
Note Link

476 UModel Diagram icons Package diagram

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

11.9 Package diagram

Add
Package
Profile

Relationship
Dependency
PackageImport
PackageMerge
ProfileApplication

Note
Note Link

© 2016-2022 Altova GmbH

Profile Diagram 477UModel Diagram icons

Altova UModel 2023 Basic Edition

11.10 Profile Diagram

Add
Profile
Stereotype

Relationship
Generalization
ProfileApplication
PackageImport
ElementImport

Note
NoteLink

478 UModel Diagram icons Protocol State Machine

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

11.11 Protocol State Machine

Add
Simple state
Composite state
Orthogonal state
Submachine state

FinalState
InitialState

EntryPoint
ExitPoint
Choice
Junction
Terminate
Fork
Fork (horizontal)
Join
Join (horizontal)
ConnectionPointReference

Relationship
Protocol Transition

Note
Note link

© 2016-2022 Altova GmbH

Sequence Diagram 479UModel Diagram icons

Altova UModel 2023 Basic Edition

11.12 Sequence Diagram

Add
Lifeline
CombinedFragment
CombinedFragment (Alternatives)
CombinedFragment (Loop)
InteractionUse
Gate
StateInvariant
DurationConstraint
TimeConstraint

Message (Call)
Message (Reply)
Message (Creation)
Message (Destruction)

Asynchronous Message (Call)
Asynchronous Message (Reply)
Asynchronous Message (Destruction)

Note
Note Link

No message numbering
Simple message numbering
Nested message numbering

Toggle dependent message movement
Toggle automatic creation of replies for messages
Toggle automatic creation of operations in target by typing operation names

480 UModel Diagram icons State Machine Diagram

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

11.13 State Machine Diagram

Add
Simple state
Composite state
Orthogonal state
Submachine state

FinalState
InitialState

EntryPoint
ExitPoint
Choice
Junction
Terminate
Fork
Fork (horizontal)
Join
Join (horizontal)
DeepHistory
ShallowHistory
ConnectionPointReference

Relationship
Transition

Note
Note link

Toggle automatic creation of operations in target by typing operation names

© 2016-2022 Altova GmbH

Timing Diagram 481UModel Diagram icons

Altova UModel 2023 Basic Edition

11.14 Timing Diagram

Add
Lifeline (State/Condition)
Lifeline (General value)
TickMark
Event/Stimulus
DurationConstraint
TimeConstraint

Message (Call)
Message (Reply)
Asynchronous Message (Call)

Note
Note Link

482 UModel Diagram icons Use Case diagram

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

11.15 Use Case diagram

Add
Package
Actor
UseCase

Relationship
Association
Generalization
Include
Extend

Note
Note Link

© 2016-2022 Altova GmbH

XML Schema diagram 483UModel Diagram icons

Altova UModel 2023 Basic Edition

11.16 XML Schema diagram

Add
XSD TargetNamespace
XSD Schema
XSD Element (global)
XSD Group
XSD ComplexType
XSD ComplexType (simpleContent)
XSD SimpleType
XSD List
XSD Union
XSD Enumeration
XSD Attribute
XSD AttributeGroup
XSD Notation
XSD Import

Relationship
XSD Include
XSD Redefine
XSD Restriction
XSD Extension
XSD Substitution

Note
Note link

484 Menu Reference

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

12 Menu Reference

The following section lists all the menus and menu options in UModel, and supplies a short description of
each.

© 2016-2022 Altova GmbH

File 485Menu Reference

Altova UModel 2023 Basic Edition

12.1 File

New
Clears the diagram tab, if a previous project exists, and creates a new UModel project.

Open
Opens previously defined modeling project. Select a previously saved project file *.ump from the Open dialog
box. See Creating, Opening, and Saving Projects and Opening Projects from a URL .

Reload
Reloads the current project and saves or discards the changes made since you opened the project file.

Save
Saves the currently active modeling project using the currently active file name.

Save as
Saves the currently active modeling project with a different name, or allows you to give the project a new name
if this is the first time you save it.

Save Copy As
Saves a copy of the currently active UModel project with a different file name.

Save Diagram as Image
Opens the "Save as..." dialog box and allows you to save the currently active diagram as a .png file. Very large
.png files, in the gigabyte range, can also be saved.

Save all Diagrams as Images
Save all diagrams of the currently active project as .png files.

Import from XMI File
Imports a previously exported XMI file. If the file was produced with UModel, then all extensions etc. will be
retained.

Export to XMI File
Exports the model as an XMI file. You can select the UML version, as well as the specific IDs that you want to
export, see XMI - XML Metadata Interchange .

Send by Mail
Opens your default mail application and inserts the current UModel project as an attachment.

148 149

434

486 Menu Reference File

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Print
Opens the Print dialog box, from where you can print out the current diagram (or a selection on the diagram) as
hard copy.

Use current retains the currently defined zoom factor of the modeling project. Selecting this option enables the
"Page split of pictures" group. Use optimal scales the modeling project to fit the page size. You can also
specify the zoom factor numerically. The Prevent option prevents modeling elements from being split over a
page, and keeps them as one unit.

Print all Diagrams
Opens the Print dialog box and prints out all UML diagrams contained in the current project file.

Print Preview
Opens the same Print dialog box with the same settings as described above.

Print Setup
Opens the Print Setup dialog box in which you can define the printer you want to use and the paper settings.

Recent files
This section of the File menu lists up to four most recent files you have been working with.

Exit
The Exit command exist UModel. If any of your current files have unsaved changes, UModel will prompt you to
save the changes.

© 2016-2022 Altova GmbH

Edit 487Menu Reference

Altova UModel 2023 Basic Edition

12.2 Edit

Undo
UModel has an unlimited number of "Undo" steps that you can use to retrace your modeling steps.

Redo
The redo command allows you to redo previously undone commands. You can step backward and forward
through the undo history using both these commands.

Cut/Copy/Paste/Delete
These are the standard Windows text editing commands. You can use them not only for text but also for
modeling elements, see Renaming, Moving, and Copying Elements .

Paste in Diagram only
Adds a "link" (or "view") of the copied element to the current diagram but not to the Model Tree, see Renaming,
Moving, and Copying Elements .

Delete from Diagram only
Deletes the selected modeling elements from the currently active diagram. The deleted elements are not
deleted from the modeling project and are available in the Model Tree tab. Note that this option is not available
to delete properties or operations from a class, they can be selected and deleted there directly.

Select all
Select all modeling elements of the currently active diagram. Equivalent to the Ctrl+A shortcut.

Find
Allows you to search for specific text in the current window, see Finding and Replacing Text .

Find Next F3
Searches for the next occurrence of the same search string in the currently active window.

Find Previous (Shift+F3)
Searches for the previous occurrence of the same search string in the currently active tab or diagram.

Replace
Allows you to search and replace any modelling elements in the project, see Finding and Replacing Text .

107

107

109

109

488 Menu Reference Edit

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Copy as Bitmap
Copies the currently active diagram to clipboard, from where you can paste it into the application of your
choice.

Copy Selection as Bitmap
Copies the currently selected diagram elements to the clipboard from where you can paste them into the
application of your choice.

© 2016-2022 Altova GmbH

Project 489Menu Reference

Altova UModel 2023 Basic Edition

12.3 Project

Check Project Syntax
Checks the UModel project syntax, see Checking Project Syntax .

Source Control
See Source control systems for detailed information on source control servers and clients and how to use
them.

Import Source Directory
Opens the Import Source Directory wizard. For a specific example, see Reverse Engineering (from Code to
Model) .

Import Source Project
Opens the Import Source Project wizard, see Importing Source Code .

Import Binary Types
Opens the Import Binary Types dialog box allowing you to import Java, C#, and VB binary files, see Importing
Java, C#, and VB.NET Binaries .

Import XML Schema Directory
Opens the Import XML Schema Directory allowing you to import all XML Schemas in that directory and
optionally all XML Schemas in any of the subfolders.

Import XML Schema File
Opens the Import XML Schema File dialog box allowing you to import schema files, see XML Schema
Diagrams .

Generate Sequence Diagrams from Code...
See Generate Multiple Sequence Diagrams .

Generate Code from Sequence Diagrams
UModel can create code from a sequence diagram which is linked to at least one operation. For more
information, see this section .

Generate State Machine Code
UModel enables you to select one or more state machines in which code should be generated. For details, see
this topic .

167

436

69

186

198

416

362

364

318

490 Menu Reference Project

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Merge Program Code from UModel Project / Overwrite Program Code from UModel Project
Updates program code from the model (assuming that your project is set up for code engineering, see
Generating Program Code). The name of this command can be either Merge Program Code from
UModel Project or Overwrite Program Code from UModel Project, depending on the settings in the
Synchronization Settings dialog box. By default, the Synchronization Settings dialog box opens every time
when you run this command. For more information, see Code Synchronization Settings .

Merge UModel Project from Program Code / Overwrite UModel Project from Program Code
Updates the model (the UModel Project) from the program code. The name of this command can either be
Merge UModel Project from Program Code or Overwrite UModel Project from Program Code,
depending on the settings in the Synchronization Settings dialog box. By default, the Synchronization Settings
dialog box opens every time when you run this command. For more information, see Code Synchronization
Settings .

Project Settings
When generating program code into a UModel project, you may want to set or change project settings .

Synchronization Settings
Opens the Synchronization Settings dialog box, see Code Synchronization Settings .

Merge Project
Merges two UModel project files into one model. The first file you open is the one the second file will be merged
into. Please see Merging UModel projects for more information.

Merge Project (3-way)
UModel supports the merging of multiple UModel projects that have been simultaneously edited by different
developers, in a 3-way project merge .

Include Subproject
See Including other UModel projects .

Open Subproject Individually
Opens the selected subproject as a new project.

Clear Messages
Clears the syntax check and code merging messages, warnings and errors from the Messages Window .

Note: Errors are generally problems that must be fixed before code can be generated, or the model code can
be updated during the code engineering process. Warnings can generally be deferred until later. Errors
and warnings are generated by the syntax checker, the compiler for the specific language, the UModel
parser that reads the newly generated source file, as well as during the import of XMI files.

164

215

215

169

215

268

268

158

91

© 2016-2022 Altova GmbH

Project 491Menu Reference

Altova UModel 2023 Basic Edition

Generate Documentation
Generates documentation for the currently open project in HTML, Microsoft Word, and RTF formats, see
Generating UML documentation .

List Elements not used in any Diagram
Creates a list of all elements not used in any diagram in the project, see Checking Where and If Elements Are
Used .

List shared Packages
Lists all shared packages of the current project.

List included Packages
Lists all include packages in the current project.

277

111

492 Menu Reference Layout

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

12.4 Layout

The commands of the Layout menu allow you to line up and align the elements of your modeling diagrams, see
Aligning and Resizing Modeling Elements .

Align
The align command allows you to align modeling elements along their borders, or centers depending on the
specific command you select.

Space Evenly
This set of commands allow you to space selected elements evenly both horizontally and vertically.

Make Same Size
This set of commands allow you to adjust the width and height of selected elements based on the active
element.

Line Up
This set of commands allow you to line up the selected elements vertically or horizontally.

Line Style
This set of commands allow you to select the type of line used to connect the various modeling elements. The
lines can be any type of dependency, association lines used in the various model diagrams.

Autosize
This command resizes the selected elements to their respective optimal size(s).

Autolayout all
This command arranges automatically the modeling elements on the diagram, using one of the options below.

Force Directed Displays the modeling elements from a centric viewpoint.

Hierarchic Displays elements according to their hierarchical relationships. For example, a
superclass will be placed above any of its derived classes.

The hierarchical layout options can be customized from the Tools | Options
menu, View tab, Autolayout Hierarchic group.

Block Displays elements grouped by element size in rectangular fashion.

Reposition Text Labels
Repositions modeling element names (of the selected elements) to their default positions.

125

© 2016-2022 Altova GmbH

View 493Menu Reference

Altova UModel 2023 Basic Edition

12.5 View

The commands available in this menu allow you to:

· Show or hide any of the UModel helper windows, see UModel Graphical User Interface
· Define the sort criteria of elements inside the Model Tree window and Favorites window
· Define the grouping criteria of diagrams in the Diagram Tree window
· Show or hide specific UML elements in the Favorites window and Model Tree window
· Define the zoom factor of the current diagram, see Zooming into/out of Diagrams .

77

79 84

83

129

494 Menu Reference Tools

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

12.6 Tools

The commands available in this menu allow you to:

· Customize the interface: define your own toolbars, keyboard shortcuts, menus, and macros.
· Restore toolbars and windows to their default state.
· Define the global program settings/options .

12.6.1 User-defined Tools

Placing the cursor over the User-defined Tools command rolls out a sub-menu containing custom-made
commands that use external applications. You can create these commands in the Tools tab of the
Customize dialog. Clicking one of these custom commands executes the action associated with this
command.

The User-Defined Tools | Customize command opens the Tools tab of the Customize dialog (in which you
can create the custom commands that appear in the menu of the User-Defined Tools command.)

12.6.2 Customize

The Customize command displays a dialog box from where you can customize UModel to suit your personal
needs. You can customize the following entities:

· Commands
· Toolbars
· Tools
· Keyboard
· Menu
· Options

494

504

497

497

495

496

497

501

502

503

© 2016-2022 Altova GmbH

Tools 495Menu Reference

Altova UModel 2023 Basic Edition

12.6.2.1 Commands

The Commands tab allows you customize UModel menus or toolbars.

To add a command to a toolbar or menu:

1. On the Tools menu, click Customize.
2. Select the command category in the Categories list box. The commands available appear in the

Commands list box.
3. Click a command in the Commands list box and drag it to an existing menu or toolbar. An I-beam

appears when you place the cursor over a valid position to drop the command.
4. Release the mouse button at the position you want to insert the command. A small button appears at

the tip of mouse pointer when you drag a command. The check mark below the pointer means that the
command cannot be dropped at the current cursor position. The check mark disappears whenever you
can drop the command (over a toolbar or menu).

Notes:

· Placing the cursor over a menu when dragging, opens it, allowing you to insert the command anywhere
in the menu.

· Commands can be placed in menus or tool bars. If you created you own toolbar, you can populate it
with your own commands/icons.

· You can also edit the commands in the context menus (right-click anywhere to open the context
menu), using the same method. Click the Menu tab and then select the specific context menu
available in the Context Menus combo box.

502

496 Menu Reference Tools

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

To delete a command or menu:

1. On the Tools menu, click Customize.
2. Click the menu entry or icon you want to delete, and drag with the mouse.
3. Release the mouse button whenever the check mark icon appears below the mouse pointer. The

command (or menu item) is deleted from the menu or tool bar.

12.6.2.2 Toolbars

The Toolbars tab allows you to activate or deactivate specific toolbars, as well as create your own specialized
ones.

Toolbars contain symbols for the most frequently used menu commands. For each symbol, you get a brief "tool
tip" explanation when the mouse cursor is directly over the item and the status bar shows a more detailed
description of the command. You can drag the toolbars from their standard position to any location on the
screen, where they appear as a floating window. Alternatively, you can also dock them to the left or right edge
of the main window.

To activate or deactivate a toolbar:

· Click the check box to activate (or deactivate) the specific toolbar.

© 2016-2022 Altova GmbH

Tools 497Menu Reference

Altova UModel 2023 Basic Edition

To create a new toolbar:

1. Click the New... button, and give the toolbar a name in the Toolbar name dialog box.
2. Add commands to the toolbar using the Commands tab of the Customize dialog box.

To reset the Menu Bar:

1. Click the Menu Bar entry, and
2. Click the Reset button, to reset the menu commands to the state they were when installed.

To reset all toolbar and menu commands:

1. Click the Reset All button, to reset all the toolbar commands to the state they were when the program
was installed. A prompt appears stating that all toolbars and menus will be reset.

2. Click Yes to confirm the reset.

The Show text labels option places explanatory text below toolbar icons when activated.

12.6.2.3 Tools

The Tools tab allows you to create custom menu commands that can start external tools directly from UModel.
The custom menu commands that you define here appear under the menu Tools | User-defined tools.
External tools can be programs included with Windows, such as Windows Explorer (explorer.exe), Notepad
(notepad.exe), or other custom executables. You can optionally assign arguments to each user-defined tool
and set the directory where the external tool should initialize (in order to look for relative file names).

For example, the configuration illustrated below adds a new menu command called "Open Project Folder".
When run, this command will open the directory of the current UModel project in Windows Explorer.

495

498 Menu Reference Tools

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

When an external tool takes arguments (like Windows Explorer in the example above), these can be entered in
the Arguments input box. To supply multiple arguments, separate them with the space character. The values

you can supply as arguments can be plain text (hard-coded values) or be selected with the button from a
list of predefined UModel variables. You can use any of the following UModel predefined variables as
arguments:

UModel predefined variable Purpose

Project File Name The file name of the active UModel project file, for example
Test.ump.

Project File Path The absolute file path of the active UModel project file, for
example, C:\MyDirectory\Test.ump.

Focused UML Data – Name The name of the currently focused UML element, for example,
Class1.

Focused UML Data – UML Qualified Name The qualified name of the currently focused UML element, for
example, Package1::Package2::Class1.

Focused UML Data – Code File Name The code file name of the currently focused UML class,
interface or enumeration as shown in the Property window
(relative to the realizing component), for example, Class1.cs or
MyNamespace\Class1.Java.

© 2016-2022 Altova GmbH

Tools 499Menu Reference

Altova UModel 2023 Basic Edition

UModel predefined variable Purpose

Focused UML Data – Code File Path The code file path of the currently focused UML class,
interface or enumeration as shown in the Property window, for
example, C:\Temp\MySource\Class1.cs.

Focused UML Data – Code Project File
Name

The file name of the code project to which the currently
focused UML class, interface or enumeration belongs.

The code project file name can be relative to the UModel
project file and is the same as shown in the Properties of the
component, for example, C:
\Temp\MySource\MyProject.vcproj or
MySource\MyProject.vcproj.

Focused UML Data – Code Project File
Path

The file path of the code project to which the currently focused
UML class, interface or enumeration belongs, for example, C:
\Temp\MySource\MyProject.vcproj.

Project Folder The directory where the current UModel project is saved, for
example, C:
\Users\<user>\Documents\Altova\UModel2023\UModelExa
mples\.

Temporary Folder The directory where the application's temporary files are
saved, for example, C:\Users\<user>\AppData\Local\Temp.

In some cases, you may also need to enter a value in the Initial Directory input box. For example, the
configuration below opens in Notepad the code file of the currently selected element on a diagram. (Note that,
for this command to work, the element currently selected on the diagram must have a value (file name) defined
in the code file name field of the Properties Window , and that file must exist in C:
\UML_Bank_Sample\CSharpCode directory).

85

500 Menu Reference Tools

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Tools 501Menu Reference

Altova UModel 2023 Basic Edition

12.6.2.4 Keyboard

The Keyboard tab allows you to define (or change) keyboard shortcuts for any command.

To assign a new Shortcut to a command:

1. Select a value from the Category combo box.
2. Select the command you want to assign a new shortcut to, in the Commands list box.
3. Click inside the Press New Shortcut Key text box, and press the shortcut keys that are to activate

the command. The shortcuts appear immediately in the text box. If the shortcut was assigned
previously, then that function is displayed below the text box.

4. Click Assign to permanently assign the shortcut. The shortcut now appears in the Current Keys list
box. (To clear this text box, press any of the control keys, Ctrl, Alt or Shift).

To de-assign (delete) a shortcut:

1. Click the shortcut you want to delete in the Current Keys list box, and
2. Click the Remove button (which has now become active).
3. Click Close to confirm all the changes made in the Customize dialog box.

502 Menu Reference Tools

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

12.6.2.5 Menu

The Menu tab allows you to customize the menu bars as well as the context menus.

Customizing menus
The Default Menu bar is the menu bar that is displayed when no project is open. The UModel project menu
bar is the menu bar that is displayed when a project is open. Each menu bar can be customized separately,
and customization changes made to one do not affect the other.

To customize a menu bar, select it from the Show Menus For drop-down list. Then click the Commands tab
and drag commands from the Commands list box to the menu bar or into any of the menus.

Deleting commands from menus and resetting the menu bars
To delete an entire menu or a command inside a menu, do the following:

1. Select from the Show Menus for drop-down list the menu bar that is to be customized.
2. With the Customize dialog open, select (i) the menu you want to delete from the application's menu

bar, or (ii) the command you want to delete from one of these menus.
3. Either (i) drag the menu from the menu bar or the menu command from the menu, or (ii) right-click the

menu or menu command and select Delete.

You can reset any menu bar to its original installation state by selecting it from the Show Menus For drop-
down list and then clicking the Reset button.

© 2016-2022 Altova GmbH

Tools 503Menu Reference

Altova UModel 2023 Basic Edition

Customizing the application's context menus
Context menus are the menus that appear when you right-click certain objects in the application's interface.
Each of these context menus can be customized by doing the following:

1. Select the context menu from the Select context menu drop-down list. This pops up the context
menu.

2. Click the Commands tab.
3. Drag a command from the Commands list box into the context menu.
4. To delete a command from the context menu, right-click that command in the context menu, and

select Delete. Alternatively, drag the command out of the context menu.

You can reset any context menu to its original installation state by selecting it in the Select context menu
drop-down list and then clicking the Reset button.

Menu shadows
Select the Menu shadows check box to give all menus shadows.

You can choose from among several menu animations if you prefer animated menus. The Menu animations
drop-down list provides the following options:

· None (default)
· Unfold
· Slide
· Fade

12.6.2.6 Options

The Options tab allows you to set general environment settings.

When active, the Show ScreenTips on toolbars check box displays a tooltip label when the mouse pointer is
placed over a toolbar button. The label contains a short description of the button function. If the Show shortcut
keys in ScreenTips check box is selected, the tooltip label displays the associated keyboard shortcut, if one
has been assigned.

When active, the Large Icons check box switches between the standard size icons, and larger versions of the
icons.

12.6.3 Restore Toolbars and Windows

The Restore Toolbars and Windows command closes down UModel and re-starts it with the default settings.
Before it closes down a dialog pops up asking for confirmation about whether UModel should be restarted.

This command is useful if you have been resizing, moving, or hiding toolbars or windows, and would now like to
have all the toolbars and windows as they originally were.

504 Menu Reference Tools

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

12.6.4 Options

Select the menu item Tools | Options to define your project options.

The View tab allows you to define:

· Where the program logo should appear.
· The application title bar contents.
· The types of elements you want listed when using the "List elements not used in any diagram" context

menu option in the Model Tree, or Favorites tab. You also have the option of ignoring elements
contained in included files.

· If a selected element in a diagram is automatically selected/synchronized in the Model Tree.
· The default depth of the hierarchy view when using the Show graph view in the Hierarchy tab.
· The Autolayout Hierarchic settings, which allow you to define the nesting depth up and down in the

hierarchy window.
· "Expand each element only once", only allows one of the same classifiers to be expanded in the same

image/diagram.
· If you want snap lines to help you align elements when dragging in a diagram.

The Editing tab allows you to define:

· If a new Diagram created in the Model Tree tab, is also automatically opened in the main area.
· Default visibility settings when adding new elements - Properties or Operations.

© 2016-2022 Altova GmbH

Tools 505Menu Reference

Altova UModel 2023 Basic Edition

· The default code language when a new component is added.
· If a newly added constraint, is to automatically constrain its owner as well.
· If a prompt should appear when deleting elements from a project, from the Favorites tab or in any of the

diagrams. This prompt can be deactivated when deleting items there; this option allows you to reset
the "prompt on delete" dialog box.

· The delay with which the syntax error pop-up message should be closed.

The Diagram Editing tab allows you to define:

· The number of items that can be automatically added to a diagram, before a prompt appears.
· The display of Styles when they are automatically added to a diagram.
· If Associations between modeling elements, are to be created automatically when items are added to a

diagram.
· If the associations to collections are to be resolved.
· If templates from unknown externals are to be resolved as not fully qualified.
· or use preexisting Collection Templates, or define new ones.

Collection Templates should be defined as fully qualified i.e. a.b.c.List. If the template has this
namespace then UModel automatically creates a Collection Association. Exception: If the template
belongs to the Unknown Externals package, and the option "Unknown externals: resolve unqualified",
is enabled, then only the template name is considered (i.e. List instead of a.b.c.List).

· If the autocompletion window is to be available when editing attributes or operations in the class
diagram.

506 Menu Reference Tools

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

The File tab allows you to define:

· The actions performed when files are changed.
· If the contents of the Favorites tab are to be loaded and saved with the current project, as well as the

any currently open diagrams.
· If the previously opened project is to automatically be opened when starting the application.
· If you want to structure the project file with CR/LF and tab indents in a pretty-print format.

© 2016-2022 Altova GmbH

Tools 507Menu Reference

Altova UModel 2023 Basic Edition

The Code Engineering tab allows you to define the following parameters:

· The circumstances under which the Message window will open.
· If all coding elements i.e. those contained in a Java / C# / VB namespace root, as well as those

assigned to a Java / C# / VB component, are to be checked, or only elements used for code
engineering, i.e. where "use for code engineering" check box is active, are to be checked.

· When updating program code if:
o If a syntax check is to be performed.

o If missing ComponentRealizations are to be automatically generated.

o If missing code file names in the merged code are to be generated.

o If namespaces are to be used in the code file path.

· The Indentation method used in the code, i.e. tabs or any number of spaces.
· The directories to be ignored when updating a UModel project from code, or directory. Separate the

respective directories with a semicolon ";". Child directories of the same name are also ignored.
· The location of the XMLSpy Catalog File, RootCatalog.xml, which enables UModel as well as

XMLSpy to retrieve commonly used schemas (as well as stylesheets and other files) from local user
folders. This increases the overall processing speed, and enables users to work offline.

· You can also specify whether you want to back up modified C++ files.

508 Menu Reference Tools

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

The Source Control tab allows you to define:

· The current source control plug-in using the combo box. The Advanced button allows you to define the
specific settings of the source control plug-in that you selected. These settings change depending on
the source control plug-in that you use.

· The login ID for the source control provider.
· Specific settings check in/out settings.
· The Reset button is made available if you have checked/activated the "Don't show this again" option in

one of the dialog boxes. The Don't show this again prompt is then reenabled.

© 2016-2022 Altova GmbH

Tools 509Menu Reference

Altova UModel 2023 Basic Edition

For information about the settings available in the Network Proxy tab, see Network Proxy Settings . To find
out more about Java VM settings, see Java Virtual Machine Settings .

12.6.4.1 Java Virtual Machine Settings

In the Java section (see screenshot below), you can optionally enter the path to a Java VM (Virtual Machine)
on your file system. Note that adding a custom Java VM path is not always necessary. By default, UModel
attempts to detect the Java VM path automatically by reading (in this order) the Windows registry and the
JAVA_HOME environment variable. The custom path added in this dialog box will take priority over any other
Java VM path detected automatically.

You may need to add a custom Java VM path, for example, if you are using a Java virtual machine which does
not have an installer and does not create registry entries (e.g., Oracle's OpenJDK). You might also want to set
this path if you need to override, for whatever reason, any Java VM path detected automatically by UModel.

510

509

510 Menu Reference Tools

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Note the following:

· The Java VM path is shared between Altova desktop (not server) applications. Consequently, if you
change it in one application, it will automatically apply to all other Altova applications.

· The path must point to the jvm.dll file from the \bin\server or \bin\client directory, relative to the

directory where the JDK was installed.
· The UModel platform (32-bit, 64-bit) must be the same as that of the JDK.
· After changing the Java VM path, you may need to restart UModel for the new settings to take effect.

This setting does not affect Java code generation and import. Note that the Java runtimes used for importing
Java binaries into UModel can be configured separately. For more information, see Adding Custom Java
Runtimes .

12.6.4.2 Network Proxy Settings

The Network Proxy section enables you to configure custom proxy settings. These settings affect how the
application connects to the Internet (for XML validation purposes, for example). By default, the application uses
the system's proxy settings, so you should not need to change the proxy settings in most cases. If necessary,
however, you can set an alternative network proxy by selecting, in the Proxy Configuration combo box, either
Automatic or Manual to configure the settings accordingly.

Note: The network proxy settings are shared among all Altova MissionKit applications. So, if you change the
settings in one application, all MissionKit applications will be affected.

199

© 2016-2022 Altova GmbH

Tools 511Menu Reference

Altova UModel 2023 Basic Edition

Use system proxy settings
Uses the Internet Explorer (IE) settings configurable via the system proxy settings. It also queries the settings
configured with netsh.exe winhttp.

Automatic proxy configuration
The following options are provided:

· Auto-detect settings: Looks up a WPAD script (http://wpad.LOCALDOMAIN/wpad.dat) via DHCP or

DNS, and uses this script for proxy setup.
· Script URL: Specify an HTTP URL to a proxy-auto-configuration (.pac) script that is to be used for

proxy setup.
· Reload: Resets and reloads the current auto-proxy-configuration. This action requires Windows 8 or

newer, and may need up to 30s to take effect.

Manual proxy configuration
Manually specify the fully qualified host name and port for the proxies of the respective protocols. A supported
scheme may be included in the host name (for example: http://hostname). It is not required that the scheme

is the same as the respective protocol if the proxy supports the scheme.

512 Menu Reference Tools

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

The following options are provided:

· HTTP Proxy: Uses the specified host name and port for the HTTP protocol. If Use this proxy server for
all protocols is selected, then the specified HTTP proxy is used for all protocols.

· SSL Proxy: Uses the specified host name and port for the SSL protocol.
· No Proxy for: A semi-colon (;) separated list of fully qualified host names, domain names, or IP

addresses for hosts that should be used without a proxy. IP addresses may not be truncated and IPv6
addresses have to be enclosed by square brackets (for example:
[2606:2800:220:1:248:1893:25c8:1946]). Domain names must start with a leading dot (for

example: .example.com).

· Do not use the proxy server for local addresses: If checked, adds <local> to the No Proxy for list. If

this option is selected, then the following will not use the proxy: (i) 127.0.0.1, (ii) [::1], (iii) all host

names not containing a dot character (.).

Current proxy settings
Provides a verbose log of the proxy detection. It can be refreshed with the Refresh button to the right of the
Test URL field (for example, when changing the test URL, or when the proxy settings have been changed).

· Test URL: A test URL can be used to see which proxy is used for that specific URL. No I/O is done
with this URL. This field must not be empty if proxy-auto-configuration is used (either through Use
system proxy settings or Authomatic proxy configuration).

© 2016-2022 Altova GmbH

Window 513Menu Reference

Altova UModel 2023 Basic Edition

12.7 Window

Cascade
This command rearranges all open document windows so that they are all cascaded (i.e. staggered) on top of
each other.

Tile horizontally
This command rearranges all open document windows as horizontal tiles, making them all visible at the same
time.

Tile vertically
This command rearranges all open document windows as vertical tiles, making them all visible at the same
time.

Arrange icons
Arranges haphazardly positioned, iconized diagrams, along the base of the diagram viewing area.

Close
Closes the currently active diagram tab.

Close All
Closes all currently open diagram tabs.

Close All But Active
Closes all diagram tabs except for the currently active one.

Forward
Whenever you change focus from a diagram window to another one, or navigate a hyperlink, UModel
"remembers" this as an event. This command takes you "forward" in the history of such events. It is only
meaningful and available if you already used the Back menu command (see below).

Back
This command takes you back to the window that was previously in focus. This can be useful when you work
with many diagram windows simultaneously, or when you navigate with hyperlinks, see Hyperlinking
Elements .

Window list (1, 2)
This list shows all currently open diagram windows, and lets you quickly switch between them. You can also
use the Ctrl+Tab or Ctrl F6 keyboard shortcuts to cycle through the open windows.

113

514 Menu Reference Window

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Windows
Displays a dialog box where you can layout or close multiple diagram windows simultaneously, see also
Diagram Pane .94

© 2016-2022 Altova GmbH

Help 515Menu Reference

Altova UModel 2023 Basic Edition

12.8 Help

Table of Contents

Opens the onscreen help manual of UModel with the Table of Contents displayed in the left-hand-side
pane of the Help window. The Table of Contents provides an overview of the entire Help document. Clicking
an entry in the Table of Contents takes you to that topic.

Index

Opens the onscreen help manual of UModel with the Keyword Index displayed in the left-hand-side pane of
the Help window. The index lists keywords and lets you navigate to a topic by double-clicking the
keyword. If a keyword is linked to more than one topic, a list of these topics is displayed.

Search

Opens the onscreen help manual of UModel with the Search dialog displayed in the left-hand-side pane of
the Help window. To search for a term, enter the term in the input field and press Enter or List Topics. The
Help system performs a full-text search on the entire Help documentation and returns a list of hits. Double-
click any item to display that item.

Software Activation

License your product
After you download your Altova product software, you can license—or activate—it using either a free
evaluation key or a purchased permanent license key.

· Free evaluation license. When you first start the software after downloading and installing it, the
Software Activation dialog will pop up. In it is a button to request a free evaluation license. Enter
your name, company, and e-mail address in the dialog and click Request. A license file is sent to
the e-mail address you entered and should reach you in a few minutes. Save the license file to a
suitable location.

When you clicked Request, an entry field appeared at the bottom of the Request dialog. This field
takes the path to the license file. Browse for or enter the path to the license file and click OK. (In
the Software Activation dialog, you can also click Upload a New License to access a dialog
in which the path to the license file is entered.) The software will be unlocked for a period of 30
days.

· Permanent license key. The Software Activation dialog allows you to purchase a permanent
license key. Clicking this button takes you to Altova's online shop, where you can purchase a
permanent license key for your product. Your license will be sent to you by e-mail in the form of a
license file, which contains your license-data.

There are three types of permanent license: installed, concurrent user, and named user. An
installed license unlocks the software on a single computer. If you buy an installed license for N
computers, then the license allows use of the software on up to N computers. A concurrent-user
license for N concurrent users allows N users to run the software concurrently. (The software may
be installed on 10N computers.) A named-user license authorizes a specific user to use the
software on up to 5 different computers. To activate your software, click Upload a New License,
and, in the dialog that appears, enter the path to the license file, and click OK.

Note: For multi-user licenses, each user will be prompted to enter his or her own name.

516 Menu Reference Help

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Your license email and the different ways to license (activate) your Altova product
The license email that you receive from Altova will contain your license file as an attachment.
The license file has a .altova_licenses file extension.

To activate your Altova product, you can do one of the following:

· Save the license file (.altova_licenses) to a suitable location, double-click the

license file, enter any requested details in the dialog that appears, and finish by
clicking Apply Keys.

· Save the license file (.altova_licenses) to a suitable location. In your Altova

product, select the menu command Help | Software Activation, and then Upload a
New License. Browse for or enter the path to the license file, and click OK.

· Save the license file (.altova_licenses) to any suitable location, and upload it from

this location to the license pool of your Altova LicenseServer. You can then either: (i)
acquire the license from your Altova product via the product's Software Activation
dialog (see below) or (ii) assign the license to the product from Altova LicenseServer.
For more information about licensing via LicenseServer, read the rest of this topic.

You can access the Software Activation dialog (screenshot below) at any time by clicking the Help |
Software Activation command.

Activate your software
You can activate the software by registering the license in the Software Activation dialog or by licensing via
Altova LicenseServer (see details below).

· Registering the license in the Software Activation dialog. In the dialog, click Upload a New
License and browse for the license file. Click OK to confirm the path to the license file and to
confirm any data you entered (your name in the case of multi-user licenses). Finish by clicking
Save.

· Licensing via Altova LicenseServer on your network: To acquire a license via an Altova
LicenseServer on your network, click Use Altova LicenseServer, located at the bottom of the
Software Activation dialog. Select the machine on which the LicenseServer you want to use has
been installed. Note that the auto-discovery of License Servers works by means of a broadcast
sent out on the LAN. As these broadcasts are limited to a subnet, License Server must be on the
same subnet as the client machine for auto-discovery to work. If auto-discovery does not work,
then type in the name of the server. The Altova LicenseServer must have a license for your Altova
product in its license pool. If a license is available in the LicenseServer pool, this is indicated in
the Software Activation dialog (see screenshot below showing the dialog in Altova XMLSpy).
Click Save to acquire the license.

https://www.altova.com/licenseserver
https://www.altova.com/licenseserver

© 2016-2022 Altova GmbH

Help 517Menu Reference

Altova UModel 2023 Basic Edition

After a machine-specific (aka installed) license has been acquired from LicenseServer, it cannot
be returned to LicenseServer for a period of seven days. After that time, you can return the
machine license to LicenseServer (click Return License) so that this license can be acquired
from LicenseServer by another client. (A LicenseServer administrator, however, can unassign an
acquired license at any time via the administrator's Web UI of LicenseServer.) Note that the
returning of licenses applies only to machine-specific licenses, not to concurrent licenses.

Check out license
You can check out a license from the license pool for a period of up to 30 days so that the license
is stored on the product machine. This enables you to work offline, which is useful, for example, if
you wish to work in an environment where there is no access to your Altova LicenseServer (such
as when your Altova product is installed on a laptop and you are traveling). While the license is
checked out, LicenseServer displays the license as being in use, and the license cannot be used
by any other machine. The license automatically reverts to the checked-in state when the check-
out period ends. Alternatively, a checked-out license can be checked in at any time via the Check
in button of the Software Activation dialog.

To check out a license, do the following: (i) In the Software Activation dialog, click Check out
License (see screenshot above); (ii) In the License Check-out dialog that appears, select the
check-out period you want and click Check out. The license will be checked out. After checking
out a license, two things happen: (i) The Software Activation dialog will display the check-out
information, including the time when the check-out period ends; (ii) The Check out License
button in the dialog changes to a Check In button. You can check the license in again at any
time by clicking Check In. Because the license automatically reverts to the checked-in status
after the check-out period elapses, make sure that the check-out period you select adequately
covers the period during which you will be working offline.

518 Menu Reference Help

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

License check-ins must be to the same major version of the Altova product from which the license
was checked out. So make sure to check in a license before you upgrade your Altova product to
the next major version.

Note: For license check-outs to be possible, the check-out functionality must be enabled on
LicenseServer. If this functionality has not been enabled, you will get an error message to this
effect when you try to check out. In this event, contact your LicenseServer administrator.

Copy Support Code
Click Copy Support Code to copy license details to the clipboard. This is the data that you will
need to provide when requesting support via the online support form.

Altova LicenseServer provides IT administrators with a real-time overview of all Altova licenses on a
network, together with the details of each license as well as client assignments and client usage of
licenses. The advantage of using LicenseServer therefore lies in administrative features it offers for large-
volume Altova license management. Altova LicenseServer is available free of cost from the Altova website.
For more information about Altova LicenseServer and licensing via Altova LicenseServer, see the Altova
LicenseServer documentation.

Order Form

When you are ready to order a licensed version of the software product, you can use either the Purchase
a Permanent License Key button in the Software Activation dialog (see previous section) or the Order
Form command to proceed to the secure Altova Online Shop.

Registration

Opens the Altova Product Registration page in a tab of your browser. Registering your Altova software will
help ensure that you are always kept up to date with the latest product information.

Check for Updates

Checks with the Altova server whether a newer version than yours is currently available and displays a
message accordingly.

Support Center

A link to the Altova Support Center on the Internet. The Support Center provides FAQs, discussion forums
where problems are discussed, and access to Altova's technical support staff.

FAQ on the Web

A link to Altova's FAQ database on the Internet. The FAQ database is constantly updated as Altova
support staff encounter new issues raised by customers.

Download Components and Free Tools

A link to Altova's Component Download Center on the Internet. From here you can download a variety of
companion software to use with Altova products. Such software ranges from XSLT and XSL-FO processors
to Application Server Platforms. The software available at the Component Download Center is typically free
of charge.

UModel on the Internet

https://www.altova.com/support
https://www.altova.com/
https://www.altova.com/manual/AltovaLicenseServer/
https://www.altova.com/manual/AltovaLicenseServer/

© 2016-2022 Altova GmbH

Help 519Menu Reference

Altova UModel 2023 Basic Edition

A link to the Altova website on the Internet. You can learn more about UModel, related technologies and
products on the Altova website.

About UModel

Displays the splash window and version number of your product. If you are using the 64-bit version of
UModel, this is indicated with the suffix (x64) after the application name. There is no suffix for the 32-bit
version.

https://www.altova.com/
https://www.altova.com/

520 SPL Reference

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

13 SPL Reference

This section gives an overview of SPL (Spy Programming Language), the code generator's template language.

It is assumed that you have prior programming experience, and are familiar with operators, functions, variables
and classes, as well as the basics of object-oriented programming - which is used heavily in SPL.

The templates used by UModel are supplied in the ...\UModelspl folder. You can use these files as an aid to
help you in developing your own templates.

How code generator works
Inputs to the code generator are the template files (.spl) and the object model provided by UModel. The
template files contain SPL instructions for creating files, reading information from the object model and
performing calculations, interspersed with literal code fragments in the target programming language.

The template file is interpreted by the code generator and outputs .java, .cs source code files, or any other
type of file depending on the template.

© 2016-2022 Altova GmbH

Basic SPL structure 521SPL Reference

Altova UModel 2023 Basic Edition

13.1 Basic SPL structure

An SPL file contains literal text to output, interspersed with code generator instructions.

Code generator instructions are enclosed in square brackets '[' and ']'. Multiple statements can be included in a
bracket pair. Additional statements have to be separated by a new line or a colon ':'.

Valid examples are:

[$x = 42
$x = $x + 1]

or

[$x = 42: $x = $x + 1]

Adding text to files
Text not enclosed by [and], is written directly to the current output file.

To output literal square brackets, escape them with a backslash: \[and \]; to output a backslash use \\.

Comments
Comments inside an instruction block always begin with a ' character, and terminate on the next line, or at a
block close character].

522 SPL Reference Variables

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

13.2 Variables

Any non-trivial SPL file will require variables. Some variables are predefined by the code generator, and new
variables may be created simply by assigning values to them.

The $ character is used when declaring or using a variable, a variable name is always prefixed by $. Variable
names are case sensitive.

Variables types:

· integer - also used as boolean, where 0 is false and everything else is true
· string
· object - provided by UModel
· iterator - see foreach statement

Variable types are declared by first assignment:

[$x = 0]

x is now an integer.

[$x = "teststring"]

x is now treated as a string.

Strings
String constants are always enclosed in double quotes, like in the example above. \n and \t inside double
quotes are interpreted as newline and tab, \" is a literal double quote, and \\ is a backslash. String constants
can also span multiple lines.

String concatenation uses the & character:

[$BasePath = $outputpath & "/" & $JavaPackageDir]

Objects
Objects represent the information contained in the UModel project. Objects have properties, which can be
accessed using the . operator. It is not possible to create new objects in SPL (they are predefined by the code
generator, derived from the input), but it is possible to assign objects to variables.

Example:

class [=$class.Name]

This example outputs the word "class", followed by a space and the value of the Name property of the $class
object.

533

© 2016-2022 Altova GmbH

Variables 523SPL Reference

Altova UModel 2023 Basic Edition

The following table shows the relationship between UML elements their SPL equivalents along with a short
description.

Predefined variables

UML element SPL property Multiplicity UML Attribute /

Association

UModel Attribute /

Association

Description

BehavioralFeature isAbstract isAbstract:Boolean

BehavioralFeature raisedException * raisedException:Ty

pe

BehavioralFeature ow nedParameter * ow nedParameter:P

arameter

BehavioredClassifi

er

interfaceRealizatio

n

* interfaceRealizatio

n:InterfaceRealizati

on

Class ow nedOperation * ow nedOperation:O

peration

Class nestedClassifier * nestedClassifier:Cl

assifier

Classifier namespace * namespace:Packag

e

packages w ith

code language

<<namespace>>

set

Classifier rootNamespace * project root

namespace:String

VB only - root

namespace

Classifier generalization * generalization:Gen

eralization

Classifier isAbstract isAbstract:Boolean

ClassifierTemplate

Parameter

constrainingClassifi

er

* constrainingClassifi

er

Comment body body:String

DataType ow nedAttribute * ow nedAttribute:Pro

perty

DataType ow nedOperation * ow nedOperation:O

peration

Element kind kind:String

Element ow ner 0..1 ow ner:Element

Element appliedStereotype * appliedStereotype:

StereotypeApplicati

on

applied

stereotypes

524 SPL Reference Variables

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

UML element SPL property Multiplicity UML Attribute /

Association

UModel Attribute /

Association

Description

Element ow nedComment * ow nedComment:Co

mment

ElementImport importedElement 1 importedElement:Pa

ckageableElement

Enumeration ow nedLiteral * ow nedLiteral:Enum

erationLiteral

Enumeration nestedClassifier * nestedClassifier::Cl

assifier

Enumeration interfaceRealizatio

n

* interfaceRealizatio

n:Interface

EnumerationLiteral ow nedAttribute * ow nedAttribute:Pro

perty

EnumerationLiteral ow nedOperation * ow nedOperation:O

peration

EnumerationLiteral nestedClassifier * nestedClassifier:Cl

assifier

Feature isStatic isStatic:Boolean

Generalization general 1 general:Classifier

Interface ow nedAttribute * ow nedAttribute:Pro

perty

Interface ow nedOperation * ow nedOperation:O

peration

Interface nestedClassifier * nestedClassifier:Cl

assifier

InterfaceRealizatio

n

contract 1 contract:Interface

MultiplicityElement low erValue 0..1 low erValue:ValueS

pecification

MultiplicityElement upperValue 0..1 upperValue:ValueS

pecification

NamedElement name name:String

NamedElement visibility visibility:VisibilityKin

d

NamedElement isPublic isPublic:Boolean visibility <public>

NamedElement isProtected isProtected:Boolea

n

visibility

<protected>

NamedElement isPrivate isPrivate:Boolean visibility <private>

© 2016-2022 Altova GmbH

Variables 525SPL Reference

Altova UModel 2023 Basic Edition

UML element SPL property Multiplicity UML Attribute /

Association

UModel Attribute /

Association

Description

NamedElement isPackage isPackage:Boolean visibility <package>

NamedElement namespacePrefix namespacePrefix:S

tring

XSD only -

namespace prefix

w hen exists

NamedElement parseableName parseableName:Stri

ng

CSharp, VB only -

name w ith

escaped keyw ords

(@)

Namespace elementImport * elementImport:Elem

entImport

Operation ow nedReturnPara

meter

0..1 ow nedReturnPara

meter:Parameter

parameter w ith

direction return set

Operation type 0..1 type type of parameter

w ith direction

return set

Operation ow nedOperationPa

rameter

* ow nedOperationPa

rameter:Parameter

all parameters

excluding

parameter w ith

direction return set

Operation implementedInterfa

ce

1 implementedInterfa

ce:Interface

CSharp only - the

implemented

interface

Operation ow nedOperationIm

plementations

* implementedOperati

on:OperationImplem

entation

VB only - the

implemented

interfaces/operatio

ns

OperationImplemen

tation

implementedOperati

onOw ner

1 implementedOperati

onOw ner:Interface

interface

implemented by the

operation

OperationImplemen

tation

implementedOperati

onName

name:String name of the

implemented

operation

OperationImplemen

tation

implementedOperati

onParseableName

parseableName:Stri

ng

name of the

implemented

operation w ith

escaped keyw ords

Package namespace * namespace:Packag

e

packages w ith

code language

<<namespace>>

set

PackageableEleme

nt

ow ningPackage 0..1 ow ningPackage set if ow ner is a

package

526 SPL Reference Variables

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

UML element SPL property Multiplicity UML Attribute /

Association

UModel Attribute /

Association

Description

PackageableEleme

nt

ow ningNamespace

Package

0..1 ow ningNamespace

Package:Package

ow ning package

w ith code

language

<<namespace>>

set

Parameter direction direction:Parameter

DirectionKind

Parameter isIn isIn:Boolean direction <in>

Parameter isInOut isInOut:Boolean direction <inout>

Parameter isOut isOut:Boolean direction <out>

Parameter isReturn isReturn:Boolean direction <return>

Parameter isVarArgList isVarArgList:Boole

an

true if parameter is

a variable

argument list

Parameter defaultValue 0..1 defaultValue:Value

Specification

Property defaultValue 0..1 defaultValue:Value

Specification

RedefinableElemen

t

isLeaf isLeaf:Boolean

Slot name name:String name of the

defining feature

Slot values * value:ValueSpecifi

cation

Slot value value:String value of the first

value specification

StereotypeApplicat

ion

name name:String name of applied

stereotype

StereotypeApplicat

ion

taggedValue * taggedValue:Slot first slot of the

instance

specification

StructuralFeature isReadOnly isReadOnly

StructuredClassifie

r

ow nedAttribute * ow nedAttribute:Pro

perty

TemplateBinding signature 1 signature:Template

Signature

TemplateBinding parameterSubstituti

on

* parameterSubstituti

on:TemplateParame

terSubstitution

© 2016-2022 Altova GmbH

Variables 527SPL Reference

Altova UModel 2023 Basic Edition

UML element SPL property Multiplicity UML Attribute /

Association

UModel Attribute /

Association

Description

TemplateParameter paramDefault paramDefault:Strin

g

template parameter

default value

TemplateParameter ow nedParametere

dElement

1 ow nedParametere

dElement:Paramete

rableElement

TemplateParameter

Substitution

parameterSubstituti

on

parameterSubstituti

on:String

Java only - code

w ildcard handling

TemplateParameter

Substitution

parameterDimensio

nCount

parameterDimensio

nCount:Integer

code dimension

count of the actual

parameter

TemplateParameter

Substitution

actual 1 Ow nedActual:Para

meterableElement

TemplateParameter

Substitution

formal 1 formal:TemplatePar

ameter

TemplateSignature template 1 template:Templatea

bleElement

TemplateSignature ow nedParameter * ow nedParameter:T

emplateParameter

TemplateableEleme

nt

isTemplate isTemplate:Boolean true if template

signature set

TemplateableEleme

nt

ow nedTemplateSig

nature

0..1 ow nedTemplateSig

nature:TemplateSig

nature

TemplateableEleme

nt

templateBinding * templateBinding:Te

mplateBinding

Type typeName * typeName:Package

ableElement

qualified code type

names

TypedElement type 0..1 type:Type

TypedElement postTypeModifier postTypeModifier:S

tring

postfix code

modifiers

ValueSpecification value value:String string value of the

value specification

Adding a prefix to attributes of a class during code generation
You might need to prefix all new attributes with the "m_" characters in your project.

All new coding elements are written using the SPL templates. For example, if you open UModelSPL\C#[Java]
\Default\Attribute.spl, you can change the way the name is written. Namely, you can replace

528 SPL Reference Variables

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

write $Property.name

with

write "m_" & $Property.name

It is highly recommended that you immediately update your model from code after code generation, to ensure
that code and model are synchronized.

Note: As previously mentioned, copy the SPL templates one directory higher (i.e. above the default directory
to UModelSPL\C#) before modifying them. This ensures that they are not overwritten when you install
a new version of UModel. Please make sure that the "user-defined override default" check box is
activated in the Code from Model tab of the "Synchronization Settings" dialog box.

SPL Templates
SPL templates can be specified per UModel project using the menu option Project | Project Settings (as
shown in the screenshot below). Relative paths are also supported. Templates which are not found in the
specified directory, are searched for in the local default directory.

Global objects

$Options an object holding global options:

generateComments:bool generate doc comments (true/false)

$Indent a string used to indent generated code and represent the current nesting level

$IndentStep a string, used to indent generated code and represent one nesting level

$NamespacePrefix XSD only – the target namespace prefix if present

© 2016-2022 Altova GmbH

Variables 529SPL Reference

Altova UModel 2023 Basic Edition

String manipulation routines

integer Compare(s)

The return value indicates the lexicographic relation of the string to s (case sensitive):

<0: the string is less than s

0: the string is identical to s

>0: the string is greater than s

integer CompareNoCase(s)

The return value indicates the lexicographic relation of the string to s (case insensitive):

<0: the string is less than s

0: the string is identical to s

>0: the string is greater than s

integer Find(s)

Searches the string for the first match of a substring s. Returns the zero-based index of the first character of s
or -1 if s is not found.

string Left(n)

Returns the first n characters of the string.

integer Length()

Returns the length of the string.

string MakeUpper()

Returns a string converted to upper case.

string MakeUpper(n)

Returns a string, with the first n characters converted to upper case.

string MakeLower()

Returns a string converted to lower case.

string MakeLower(n)

530 SPL Reference Variables

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

Returns a string, with the first n characters converted to lower case.

string Mid(n)

Returns a string starting with the zero-based index position n

string Mid(n,m)

Returns a string starting with the zero-based index position n and the length m

string RemoveLeft(s)

Returns a string excluding the substring s if Left(s.Length()) is equal to substring s.

string RemoveLeftNoCase(s)

Returns a string excluding the substring s if Left(s.Length()) is equal to substring s (case insensitive).

string RemoveRight(s)

Returns a string excluding the substring s if Right(s.Length()) is equal to substring s.

string RemoveRightNoCase(s)

Returns a string excluding the substring s if Right(s.Length()) is equal to substring s (case insensitive).

string Repeat(s,n)

Returns a string containing substring s repeated n times.

string Right(n)

Returns the last n characters of the string.

© 2016-2022 Altova GmbH

Operators 531SPL Reference

Altova UModel 2023 Basic Edition

13.3 Operators

Operators in SPL work like in most other programming languages.

List of SPL operators in descending precedence order:

. Access object property
() Expression grouping
true boolean constant "true"
false boolean constant "false"

& String concatenation

- Sign for negative number
not Logical negation

* Multiply
/ Divide
% Modulo

+ Add
- Subtract

<= Less than or equal
< Less than
>= Greater than or equal
> Greater than

= Equal
<> Not equal

and Logical conjunction (with short circuit evaluation)
or Logical disjunction (with short circuit evaluation)

= Assignment

532 SPL Reference Conditions

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

13.4 Conditions

SPL allows you to use standard "if" statements. The syntax is as follows:

if condition

statements
else

statements
endif

or, without else:

if condition

statements
endif

Note: There are no round brackets enclosing the condition.

As in any other programming language, conditions are constructed with logical and comparison operators .

Example:

[if $namespace.ContainsPublicClasses and $namespace.Prefix <> ""]
whatever you want ['inserts whatever you want, in the resulting file]

[endif]

Switch
SPL also contains a multiple choice statement.

Syntax:

switch $variable

case X:

statements
case Y:

case Z:

statements
default:

statements
endswitch

The case labels must be constants or variables.

The switch statement in SPL does not fall through the cases (as in C), so there is no need for a "break"
statement.

531

© 2016-2022 Altova GmbH

Collections and foreach 533SPL Reference

Altova UModel 2023 Basic Edition

13.5 Collections and foreach

Collections and iterators
 A collection contains multiple objects - like a ordinary array. Iterators solve the problem of storing and
incrementing array indexes when accessing objects.

Syntax:

foreach iterator in collection

statements
next

Example:

[foreach $class in $classes

if not $class.IsInternal

] class [=$class.Name];
[endif

next]

Example 2:

[foreach $i in 1 To 3

 Write "// Step " & $i & "\n"

 ‘ Do some work
next]

Foreach steps through all the items in $classes, and executes the code following the instruction, up to the
next statement, for each of them.

In each iteration, $class is assigned to the next class object. You simply work with the class object instead of
using, classes[i]->Name(), as you would in C++.

All collection iterators have the following additional properties:

Index The current index, starting with 0

IsFirst true if the current object is the first of the collection (index is 0)

IsLast true if the current object is the last of the collection

Example:

[foreach $enum in $facet.Enumeration

if not $enum.IsFirst

], [

534 SPL Reference Collections and foreach

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

endif

]"[=$enum.Value]"[
next]

Collection manipulation routines:

collection SortByName(bAscending)

returns a collection whose elements are sorted by name (case sensitive) in ascending or descending order.

collection SortByNameNoCase(bAscending)

returns a collection whose elements are sorted by name (case insensitive) in ascending or descending order

Example:

$SortedNestedClassifier = $Class.nestedClassifier.SortByNameNoCase(true)

collection SortByKind(bAscending)

returns a collection whose elements are sorted by kind names (e.g. “Class”, “Interface”,…) in ascending or
descending order.

collection SortByKindAndName(bAscendingKind, bAscendingName)

returns a collection whose elements are sorted by kind (e.g. “Class”, “Interface”,…) in ascending or descending
order and if the kinds are equal by name (case sensitive in ascending or descending order)

collection SortByKindAndNameNoCase(bAscending)

returns a collection whose elements are sorted by kind (e.g. “Class”, “Interface”,…) in ascending or descending
order and if the kinds are equal by name (case insensitive in ascending or descending order)

© 2016-2022 Altova GmbH

Subroutines 535SPL Reference

Altova UModel 2023 Basic Edition

13.6 Subroutines

Code generator supports subroutines in the form of procedures or functions.

Features:

· By-value and by-reference passing of values
· Local/global parameters (local within subroutines)
· Local variables
· Recursive invocation (subroutines may call themselves)

13.6.1 Subroutine declaration

Subroutines

Syntax example:

Sub SimpleSub()

... lines of code
 EndSub

· Sub is the keyword that denotes the procedure.
· SimpleSub is the name assigned to the subroutine.
· Round parenthesis can contain a parameter list.
· The code block of a subroutine starts immediately after the closing parameter parenthesis.
· EndSub denotes the end of the code block.

Note: Recursive or cascaded subroutine declaration is not permitted, i.e. a subroutine may not contain
another subroutine.

Parameters
Parameters can also be passed by procedures using the following syntax:

· All parameters must be variables
· Variables must be prefixed by the $ character
· Local variables are defined in a subroutine
· Global variables are declared explicitly, outside of subroutines
· Multiple parameters are separated by the comma character "," within round parentheses
· Parameters can pass values

Parameters - passing values
Parameters can be passed in two ways, by value and by reference, using the keywords ByVal and ByRef
respectively.

Syntax:

536 SPL Reference Subroutines

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

' define sub CompleteSub()
[Sub CompleteSub($param, ByVal $paramByValue, ByRef $paramByRef)
] ...

· ByVal specifies that the parameter is passed by value. Note that most objects can only be passed by
reference.

· ByRef specifies that the parameter is passed by reference. This is the default if neither ByVal nor
ByRef is specified.

Function return values
To return a value from a subroutine, use the return statement. Such a function can be called from within an
expression.

Example:

' define a function
[Sub MakeQualifiedName(ByVal $namespacePrefix, ByVal $localName)
if $namespacePrefix = ""
 return $localName
else
 return $namespacePrefix & ":" & $localName
endif
EndSub
]

13.6.2 Subroutine invocation

Use call to invoke a subroutine, followed by the procedure name and parameters, if any.

Call SimpleSub()

or

Call CompleteSub("FirstParameter", $ParamByValue, $ParamByRef)

Function invocation
To invoke a function (any subroutine that contains a return statement), simply use its name inside an
expression. Do not use the call statement to call functions. Example:

$QName = MakeQualifiedName($namespace, "entry")

© 2016-2022 Altova GmbH

 537License Information

Altova UModel 2023 Basic Edition

14 License Information

This section contains information about:

· the distribution of this software product
· software activation and license metering
· the license agreement governing the use of this product

Please read this information carefully. It is binding upon you since you agreed to these terms when you
installed this software product.

To view the terms of any Altova license, go to the Altova Legal Information page at the Altova website.

https://www.altova.com/legal
https://www.altova.com/

538 License Information Electronic Software Distribution

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

14.1 Electronic Software Distribution

This product is available through electronic software distribution, a distribution method that provides the
following unique benefits:

· You can evaluate the software free-of-charge for 30 days before making a purchasing decision. (Note:
Altova MobileTogether Designer is licensed free of charge.)

· Once you decide to buy the software, you can place your order online at the Altova website and get a
fully licensed product within minutes.

· When you place an online order, you always get the latest version of our software.
· The product package includes an onscreen help system that can be accessed from within the

application interface. The latest version of the user manual is available at www.altova.com in (i) HTML
format for online browsing, and (ii) PDF format for download (and to print if you prefer to have the
documentation on paper).

30-day evaluation period
After downloading this product, you can evaluate it for a period of up to 30 days free of charge. About 20 days
into the evaluation period, the software will start to remind you that it has not yet been licensed. The reminder
message will be displayed once each time you start the application. If you would like to continue using the
program after the 30-day evaluation period, you must purchase a product license, which is delivered in the form
of a license file containing a key code. Unlock the product by uploading the license file in the Software
Activation dialog of your product.

You can purchase product licenses at https://shop.altova.com/.

Helping Others within Your Organization to Evaluate the Software
If you wish to distribute the evaluation version within your company network, or if you plan to use it on a PC that
is not connected to the Internet, you may distribute only the installer file, provided that this file is not modified in
any way. Any person who accesses the software installer that you have provided must request their own 30-
day evaluation license key code and after expiration of their evaluation period, must also purchase a license in
order to be able to continue using the product.

https://shop.altova.com/
https://www.altova.com/documentation
https://shop.altova.com/

© 2016-2022 Altova GmbH

Software Activation and License Metering 539License Information

Altova UModel 2023 Basic Edition

14.2 Software Activation and License Metering

As part of Altova’s Software Activation, the software may use your internal network and Internet connection for
the purpose of transmitting license-related data at the time of installation, registration, use, or update to an
Altova-operated license server and validating the authenticity of the license-related data in order to protect
Altova against unlicensed or illegal use of the software and to improve customer service. Activation is based on
the exchange of license related data such as operating system, IP address, date/time, software version, and
computer name, along with other information between your computer and an Altova license server.

Your Altova product has a built-in license metering module that further helps you avoid any unintentional
violation of the End User License Agreement. Your product is licensed either as a single-user or multi-user
installation, and the license-metering module makes sure that no more than the licensed number of users use
the application concurrently.

This license-metering technology uses your local area network (LAN) to communicate between instances of the
application running on different computers.

Single license
When the application starts up, as part of the license metering process, the software sends a short broadcast
datagram to find any other instance of the product running on another computer in the same network segment.
If it doesn't get any response, it will open a port for listening to other instances of the application.

Multi-user license
If more than one instance of the application is used within the same LAN, these instances will briefly
communicate with each other on startup. These instances exchange key-codes in order to help you to better
determine that the number of concurrent licenses purchased is not accidentally violated. This is the same kind
of license metering technology that is common in the Unix world and with a number of database development
tools. It allows Altova customers to purchase reasonably-priced concurrent-use multi-user licenses.

We have also designed the applications so that they send few and small network packets so as to not put a
burden on your network. The TCP/IP ports (2799) used by your Altova product are officially registered with the
IANA (see the IANA Service Name Registry for details) and our license-metering module is tested and proven
technology.

If you are using a firewall, you may notice communications on port 2799 between the computers that are
running Altova products. You are, of course, free to block such traffic between different groups in your
organization, as long as you can ensure by other means, that your license agreement is not violated.

Note about certificates
Your Altova application contacts the Altova licensing server (link.altova.com) via HTTPS. For this
communication, Altova uses a registered SSL certificate. If this certificate is replaced (for example, by your IT
department or an external agency), then your Altova application will warn you about the connection being
insecure. You could use the replacement certificate to start your Altova application, but you would be doing this
at your own risk. If you see a Non-secure connection warning message, check the origin of the certificate and
consult your IT team (who would be able to decide whether the interception and replacement of the Altova
certificate should continue or not).

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

540 License Information Software Activation and License Metering

© 2016-2022 Altova GmbHAltova UModel 2023 Basic Edition

If your organization needs to use its own certificate (for example, to monitor communication to and from client
machines), then we recommend that you install Altova's free license management software, Altova
LicenseServer, on your network. Under this setup, client machines can continue to use your organization's
certificates, while Altova LicenseServer can be allowed to use the Altova certificate for communication with
Altova.

https://www.altova.com/licenseserver
https://www.altova.com/licenseserver

© 2016-2022 Altova GmbH

Altova End-User License Agreement 541License Information

Altova UModel 2023 Basic Edition

14.3 Altova End-User License Agreement

· The Altova End-User License Agreement is available here: https://www.altova.com/legal/eula
· Altova's Privacy Policy is available here: https://www.altova.com/privacy

https://www.altova.com/legal/eula
https://www.altova.com/privacy

Index

© 2016-2022 Altova GmbH

542

Index

.

.NET 5,

as UModel profile, 158

importing types from binaries, 96

support, 11

.NET Core, 11

importing assemblies, 203

.NET Framework, 158

importing assemblies, 203

3
3-way project,

merge, 268

A
Abstract,

class, 27

Activation box,

Execution Specification, 346

Activity,

Add diagram to transition, 308

Add operation, 308

Add to state, 308

create branch / merge, 293

diagram elements, 295

icons, 467

Activity diagram, 289

inserting elements, 290

Actor,

customize, 18

user-defined, 18

Add, 451

diagram to package, 18

new project, 147

package to project, 18

project to source control, 451

to source control, 451

Align,

elements when dragging, 18

snap lines when dragging, 504

All,

expand / collapse, 379

Artifact,

add to node, 55

manifest, 55

Association,

aggregate/composite, 27

as relationship, 130

between classes, 27

changing the properties of, 133

creating, 130, 133

object links, 42

reflexive associations, 133

show typed property, 275

use case, 18

viewing, 133

Association qualifier,

creating, 133

Associations,

viewing, 87

Attribute,

autocompletion window, 504

coloring, 384

show / hide, 379

Autocomplete,

function, 27

Autocompletion,

window on class editing, 504

Autocompletion of data types,

disabling, 127

triggering, 127

Autogenerate,

reply message, 352

Automatially add operation, 308

B
Ball and socket,

interface notation, 379

Base,

class, 36

Base class,

© 2016-2022 Altova GmbH

Index 543

Base class,

expand, collapse compartments, 379

multiple instances on diagram, 379

overriding, 379

Batch mode,

creating projects, 101

loading projects, 101

saving projects, 101

Behavioral,

diagrams, 289

Binary files,

import into model, 198

Binding,

template, 275

Branch,

create in Activity, 293

C
C#,

auto-implemented properties, 171

code generation options, 169

code import options, 188

generate code, 171

generating code, 164

import attributes, 199

import binary files, 198, 203

importing source code, 186

Call,

message, 352

Call message,

go to operation, 352

CallBehavior,

insert, 290

CallOperation,

insert, 290

Catalog,

file - XMLSpy Catalog file, 504

Change provider,

source control, 459

Check In, 449

Check Out, 447

Class,

abstract and concrete, 27

add new, 27

add operations, 27

add properties, 27

associations, 27

base, 36

derived, 36

diagrams, 27

enable autocompletion window, 504

icons, 469

in component diagram, 49

name changes - synchronization, 214

synchronization, 211

syntax coloring, 384

Class diagram, 379

Class name changing,

effect on code file name, 214

Classifier,

constraining, 273

new, 212

renaming, 212

Code, 214

adding code to sequence diagram, 367

default, 504

generate from sequence diagram, 364

generating sequence diagrams from, 358

Java code and class file names, 214

refactoring, 214

SPL, 520

synchronization, 211

Code engineering,

errors, 91

from code to model, 69

from model to code, 60

generate ComponentRealizations, 212

information messages, 91

move project file to new location, 147

resolving associatons, 136

tutorial samples, 14

warnings, 91

Collaboration,

Composite Structre diagram, 394

Collapse,

class compartments, 379

Collection Association,

creating, 136

prerequisites, 136

resolving to collection templates, 136

Color,

syntax coloring - enable/disable, 384

Combined fragment, 348

Index

© 2016-2022 Altova GmbH

544

Command,

add to toolbar/menu, 495

Command line,

creating projects, 101

Generating program code, 96

Importing binary types, 96

Importing source code, 96

loading projects, 101

Reference, 96

saving projects, 101

Synchronizing code and model, 96

Communication,

icons, 470

Communication diagram, 334

generate from Sequence diagram, 335

Compare source files, 457

Compartment,

expand single / multiple, 379

Compatibility,

updating projects, 211

Component,

diagram, 49

icons, 472

insert class, 49

realization, 49

Component diagram, 396

Component view,

as package, 107

ComponentRealizations,

autogeneration, 212

Composite state, 315

add region, 315

Composite Structure,

icons, 471

insert elements, 394

Composite Structure diagram, 393

Composition,

association - create, 27

Concrete,

class, 27

Constraining,

classifiers, 273

Containment,

drawing in a diagram, 139

Copyright information, 537

CR/LF,

for ump file on save, 147

Create,

getter / setter methods, 379

Customize,

actor, 18

toolbar/menu commands, 495

D
Default,

project code, 504

SPL templates, 211

Delete,

command from toolbar, 495

icon from toolbar, 495

toolbar, 496

Dependencies,

viewing, 87

Dependency,

include, 18

usage, 49

Deployment,

diagram, 55

icons, 473

Deployment diagram, 396

Derived,

class, 36

Diagram, 397

- Activity, 289

- Communication, 334

- Component, 396

- Composite structure, 393

- Deployment, 396

- Interaction Overview, 338

- Object, 397

- Package, 397

- Sequence, 343

- State machine, 306

- Timing, 370

- Use Case, 334

Add activity to transition, 308

add to Favorites, 84

adding code to sequence diagram, 367

Additional - XML schema, 416

Class, 379

finding unused elements, 111

generate code from sequence diagram, 364

generate Package dependency diagram, 397

© 2016-2022 Altova GmbH

Index 545

Diagram, 397

icon reference, 79

icons, 466

ignore elem. from inluded files, 504

inserting elements into, 105

multiple instances of class, 379

quick scroll, 89

save as png, 485

save open diagrams with project, 504

styles, 86

viewing an outline of, 89

XML Schema, 416

Diagram Tree window, 83

Diagram type,

identifying, 93

Diagrams, 288

behavioral, 289

changing the appearance of, 123

changing the size of, 123

creating, 93, 119

deleting from project, 123

fit into window, 129

generating, 120

generating from Hierarchy window, 87

opening, 122

structural, 379

viewing inside a project, 83

zoom in/out, 129

Directory,

change project location, 147

ignoring on merge, 504

Disable source control, 444

Distribution,

of Altova's software products, 537, 538

Documentation,

adding to elements, 116

generate from UML project, 277

generating source code with, 116

importing from source code, 116

Documentation window, 90

Download source control project, 441

Drid,

snap lines while dragging, 18

DurationConstraint,

Timing diagram, 376

E
Edit menu,

commands, 487

Element,

add to Favorites, 84

styles, 86

ElementImport,

viewing, 87

Elements,

adding to a diagram, 105

adding to the model, 79, 104

aligning within a diagram, 125

applying custom images to, 117

autolayout, 125

changing properties of, 85

changing the appearance of, 117

constraining, 112

copying, 107

deleting from diagram, 108

deleting from project, 108

documenting, 90, 116

finding, 109

finding in a diagram, 111

hyperlinking, 113

ignore from include files, 504

insert State Machine, 307

moving, 107

renaming, 107

replacing, 109

resizing, 125

Enable source control, 444

End User License Agreement, 537, 541

Enhance,

performance, 163

Entry point,

add to submachine, 315

Errors,

during code engineering, 91

Evaluation period,

of Altova's software products, 537, 538

Event/Stimulus,

Timing diagram, 375

Exception,

Adding raised exception, 379

Index

© 2016-2022 Altova GmbH

546

Execution specification,

lifeline, 346

Exit point,

add to submachine, 315

Expand,

all class compartments, 379

Export,

UModel projects to XMI, 434

External applications,

opening from UModel, 497

F
Favorites window,

adding to, 84

removing from, 84

Fetch file,

source control, 445

File,

merging project files, 268

open from URL, 485

ump, 147

File menu,

commands, 485

Find,

diagrams, 109

elements, 109

text, 109

Folders,

get in source control, 446

Forward engineering, 60

G
Gate,

sequence diagram, 351

General Value lifeline,

Timing diagram, 371

Generalization,

as relationship, 105, 130

creating, 130

Generalizations,

viewing, 87

Generalize,

specialize, 36

Generate,

ComponentRealizations automatically, 212

reply message automatically, 352

Sequence dia from Communication, 335

UML project documentation, 277

Generated documentation,

options, 281

Get,

getter / setter methods, 379

Get file,

source control, 445

Get folders,

source control, 446

Get latest version, 445

Goto,

lifeline, 346

Grid,

snap lines, 504

H
Help menu,

commands, 515

Hide,

show - slot, 379

Hierarchy diagram,

levels shown in documentation, 277

Hierarchy window, 87

History,

show, 455

Hotkeys,

assigning, 501

deleting, 501

Hyperlinks,

in documentation text, 116

I
Icon,

Activity, 467

add to toolbar/menu, 495

class, 469

Communication, 470

© 2016-2022 Altova GmbH

Index 547

Icon,

component, 472

Composite Stucture, 471

deployment, 473

Interaction Overview, 474

object, 475

Package, 476

Sequence, 479

show large, 503

State machine, 480

Timing, 481

use case, 482

XML Schema, 483

Icons,

visibility, 379

Ignore,

directories, 504

elements in list, 504

Images,

using as element background, 117

Import,

XMI to UModel, 434

Include,

.NET Framework, 158

dependency, 18

UModel project, 158

Insert, 290

action (CallBehavior), 290

action (CallOperation), 290

Composite Stucture elements, 394

Interaction Overview elements, 339

Package diagram elements, 399

simple state, 308

Timing diagram elements, 371

Instance,

diagram, 42

multiple class, and display of, 379

object, 42

Intelligent,

autocomplete, 27

Interaction operand, 348

multi-line, 348

Interaction operator,

defining, 348

Interaction Overview,

icons, 474

inserting elements, 339

Interaction Overview diagram, 338

Interaction use, 351

J
Java,

code and class file names, 214

code generation options, 169

code import options, 188

generating code, 164, 176

import annotations, 199

import binary files, 205

importing source code, 186

L
Layout menu,

commands, 492

Legal information, 537

License, 541

information about, 537

License metering,

in Altova products, 539

Lifeline, 346

attributes, 346

General Value, 371

typed property as, 346

Lifelline,

goto, 346

Line,

orthogonal, 49

Line break,

in actor text, 18

Lines,

changing the style of, 131

custom, 131

direct, 131

formatting, 42

moving, 131

orthogonal, 131

snap lines, 504

Links,

in generated documentation, 281

Local project, 441

Location,

Index

© 2016-2022 Altova GmbH

548

Location,

move project, 147

M
Mail,

send project, 485

Manifest,

artifact, 55

Menu,

add/delete command, 495

Merge,

3-way manual project merge, 270

3-way project merge, 268

create in Activity, 293

ignore directory, 504

projects, 268

Message, 352

arrows, 352

call, 352

create object, 352

go to operation, 352

inserting, 352

moving, 352

numbering, 352

Timing diagram, 377

Messages window,

reference, 91

Method,

Add raised exception, 379

Methods,

getter / setter, 379

Model,

adding elements to, 79, 104

changing class name - effect in Java, 214

Model Tree window,

expanding or collapsing items, 79

exploring the project from, 79

icon reference, 79

showing or hiding items, 79

sorting items, 79

Modeling,

enhance performance, 163

Move,

project, 147

Moving message arrows, 352

Multiline, 18

Multi-line,

actor text, 18

interactionOperand, 348

use case, 18

N
Name,

region names - hide / show, 315

New,

classifier, 212

New line,

in Lifeline, 335

ineractionOperand, 348

Node,

add, 55

add artifact, 55

styles, 86

Numbering,

messages, 352

O
Object,

create message, 352

diagram, 42

icons, 475

links - associations, 42

Object diagram, 397

Open Project,

source control, 441

OpenJDK,

importing binaries, 199

Operand,

interaction, 348

Operation,

autocompletion window, 504

Automatically add on Activity, 308

coloring, 384

goto from call message, 352

overriding, 379

reusing, 36

show / hide, 379

© 2016-2022 Altova GmbH

Index 549

Operation,

template, 275

Operations,

adding, 27

Operator,

interaction, 348

Options,

source control, 504

tools, 504

when generating documentation, 281

Orthogonal,

line, 49

state, 315

Override,

class operations, 379

default SPL templates, 211

Overview window,

scrolling, 89

P
Package,

default packages, 79

icon reference, 79

icons, 476

Package diagram, 397

generating dependency diagram, 397

insert elements, 399

PackageImport, 399

viewing, 87

PackageMerge, 399

viewing, 87

Parameter,

template, 275

Path,

change project location, 147

SPL template path, 522

Performance,

enhancement, 163

Pretty print,

in exported XMI files, 434

project on save, 147

Print preview,

options, 485

Profiles,

applying to a package, 154, 404

built-in, 404

creating, 404

definition, 403

Project, 147

3-way manual merge, 270

3-way merge, 268

add or remove items, 79

add to source control, 451

create, 147

default code, 504

exploring, 79

file - updating, 211

generating documentation, 277

include UModel project, 158

insert package, 147

Merge, 268

modularize, 155

move, 147

open last on start, 504

remove from source control, 453

save - pretty print, 147

save open diagrams, 504

send by mail, 485

split into subprojects, 155

styles, 86

workflow, 147

Project menu,

commands, 489

Project open,

source control, 441

Project syntax,

checking, 91

Properties,

adding, 27

source control, 458

Properties window,

adding custom properties, 85

Property,

coloring, 384

reusing, 36

typed - show, 275

typed as lifeline, 346

Provider,

select, 441

Index

© 2016-2022 Altova GmbH

550

R
Raised exception,

Adding, 379

Realization,

component, 49

generate ComponentRealizations, 212

Refactoring code,

class names - synchronization, 214

Reference, 484

Refresh status,

source control, 459

Region,

add to composite state, 315

Region name,

show / hide, 315

Reject source edits, 449

Relationships,

aggregation, 130

association, 105, 130

changing the style of, 131

composition, 130

dependency, 130

generalization, 105, 130

realization, 130

viewing, 133

Remove,

from source control, 453

Rename,

classifier, 212

Reply,

message - autogenerate, 352

Reset,

toolbar & menu commands, 496

Restore,

toolbars and windows, 494

Reverse engineering, 69

Root,

as package, 107

catalog - XMLSpy, 504

package/class synchronization, 211

Run native interface, 459

S
Save,

diagram as image, 485

SC,

syntax coloring, 384

Search,

diagrams, 109

elements, 109

text, 109

Send by mail,

project, 485

Sequence,

icons, 479

Sequence diagram, 343

adding code to, 367

combined fragment, 348

gate, 351

generate code from, 364

generate from Communication diag., 335

inserting elements, 344

interaction use, 351

lifeline, 346

messages, 352

state invariant, 352

Sequence diagrams,

generating from getters/setters, 362

generating from source code, 358

generating multiple, 362

Set,

getter / setter methods, 379

Setting,

synchronization, 211

Settings,

source control, 504

Share,

from source control, 454

Shortcut,

show in tooltip, 503

Shortcuts,

assigning, 501

deleting, 501

Show,

hide - slot, 379

hide- region name, 315

© 2016-2022 Altova GmbH

Index 551

Show,

property as association, 275

Show differences, 457

Show history, 455

Show/hide,

attributes, operations, 379

Signature,

template, 273, 274

Slot,

show / hide, 379

Snap,

line - when dragging, 504

Snap lines, 18

Socket,

Ball and socket, 379

Software product license, 541

Source control,

add to source control, 451

change provider, 459

Check In, 449

Check Out, 447

commands, 441

enable / disable, 444

get file, 445

get latest version, 445

installing a source-control plug-in, 436

open project, 441

options / settings, 504

properties, 458

refresh status, 459

remove from, 453

run native interface, 459

show differences, 457

show history, 455

Undo Check out, 449

Specialize,

generalize, 36

Speed,

enhancememt, 163

Spelling,

checking, 90

SPL, 520

code blocks, 521

conditions, 532

foreach, 533

subroutines, 535

templates user-defined, 211

SPL templates,

template path, 522

Start,

with previous project, 504

State, 315

add activity, 308

composite, 315

define transition between, 308

insert simple, 308

orthogonal, 315

submachine state, 315

State changes,

defining on a timeline, 371

State invariant, 352

State machine,

composite states, regions, 315

diagram elements, 327

icons, 480

insert elements, 307

states, activities, transitions, 308

State Machine Diagram, 306

Stereotypes,

adding custom icons to, 413

adding custom styles to, 413

adding to the Properties window, 85

applying to elements, 142, 408

creating, 405, 408

definition, 140

example, 408

examples, 140, 403

Structural,

diagrams, 379

Styles,

applying to diagrams, 123

applying to elements, 117

applying to lines, 131

cascading, 117, 123, 131

precedence, 117, 123, 131

Styles window, 86

StyleVision,

customize generated documentation with, 286

customizing generated documentation with, 277

Submachine state,

add entry/exit point, 315

Subproject,

create from main project, 155

reintegrate into main project, 155

Symbols,

visibillity icons, 379

Index

© 2016-2022 Altova GmbH

552

Synchronization, 214

class and code file name, 214

class name changes, 214

settings, 211

Synchronize,

root/package/class, 211

to new location, 147

Syntax coloring, 384

T
Tagged values,

as enumerations, 405, 408

creating, 142, 405

definition, 141

example, 408

examples, 141

showing or hiding, 144

Template,

binding, 275

operation/parameter, 275

signature, 273, 274

Templates,

SPL templates, 522

user-defined SPL, 211

Tick mark,

Timing diagram, 374

TimeConstraint,

Timing diagram, 377

Timeline,

defining state changes, 371

Timing,

icons, 481

Timing diagram, 370, 371

DurationConstraint, 376

Event/Stimuls, 375

General Value lifeline, 371

inserting elements, 371

Lifeline, 371

Message, 377

switch between types, 371

Tick mark, 374

TimeConstraint, 377

Timeline, 371

Toolbar,

activate/deactivate, 496

add command to, 495

create new, 496

reset toolbar & menu commands, 496

show large icons, 503

Toolbars,

restore to default, 494

Tools,

options, 504

Tools menu,

adding custom commands to, 497

Tooltip,

show, 503

show shortcuts in, 503

Transition,

Add Activity diagram to, 308

define between states, 308

define trigger, 308

Trigger,

define transition trigger, 308

Tutorial,

sample files, 14

Type,

property - show, 275

Typed,

property - as lifeline, 346

U
UML,

Diagrams, 288

templates, 273

variables, 522

visibility icons, 379

UModel,

Introduction, 11

Main features, 11

UModel diagram icons, 466

UModel projects,

opening, saving, creating, 15

UMP, 147

change project location, 147

file extension, 147

Undo Check out, 449

Update,

project file, 211

URL,

© 2016-2022 Altova GmbH

Index 553

URL,

open file from, 485

Usage,

dependency, 49

Use case,

adding, 18

association, 18

compartments, 18

icons, 482

multi-line, 18

Use Case diagram, 334

User defined,

actor, 18

User-defined,

SPL templates, 211

V
Variables,

UML, 522

VB.NET,

code generation options, 169

code import options, 188

generating code, 164

import binary files, 198

importing source code, 186

Version control,

commands, 441

View,

to multiple instances of element, 379

View menu,

commands, 493

Visibility,

icons - selecting, 379

W
Warnings,

during code engineering, 91

Windows,

restore to default, 494

Workflow,

project, 147

Working directory,

source control, 441

X
XMI,

import and export, 434

XML Schema,

creating diagrams, 422

declare namespace, 422

diagrams, 416

generating from model, 424

icons, 483

importing into a model, 417

modeling, 422, 424

	Altova UModel 2023 Basic Edition User Manual
	Table of Contents
	Introduction
	Support Notes

	UModel Tutorial
	Getting Started
	Use Cases
	Class Diagrams
	Creating Derived Classes

	Object Diagrams
	Component Diagrams
	Deployment Diagrams
	Forward Engineering (from Model to Code)
	Reverse Engineering (from Code to Model)

	UModel Graphical User Interface
	Model Tree Window
	Diagram Tree Window
	Favorites Window
	Properties Window
	Styles Window
	Hierarchy Window
	Overview Window
	Documentation Window
	Messages Window
	Diagram Window
	Diagram Pane

	UModel Command Line Interface
	Creating, Loading, and Saving Projects in Batch Mode

	How to Model...
	Elements
	Creating Elements
	Inserting Elements from the Model into a Diagram
	Renaming, Moving, and Copying Elements
	Deleting Elements
	Converting Elements
	Finding and Replacing Text
	Checking Where and If Elements Are Used
	Constraining Elements
	Hyperlinking Elements
	Documenting Elements
	Changing the Style of Elements

	Diagrams
	Creating Diagrams
	Generating Diagrams
	Opening Diagrams
	Deleting Diagrams
	Changing the Style of Diagrams
	Aligning and Resizing Modeling Elements
	Type Autocompletion in Classes
	Zooming into/out of Diagrams

	Relationships
	Creating Relationships
	Changing the Style of Lines and Relationships
	Viewing Element Relationships
	Associations
	Collection Associations
	Containment

	Stereotypes and Tagged Values
	Tagged Values
	Applying Stereotypes
	Showing or Hiding Tagged Values

	Projects and Code Engineering
	Managing UModel Projects
	Creating, Opening, and Saving Projects
	Opening Projects from a URL
	Moving Projects to a New Directory
	Applying UModel Profiles
	Splitting UModel Projects
	Including Subprojects
	Sharing Packages and Diagrams
	Tips for Enhancing Performance

	Generating Program Code
	Setting a Package as Namespace Root
	Adding a Code Engineering Component
	Checking Project Syntax
	Code Generation Options
	Example: Generate C# Code
	Example: Generate Java Code
	SPL Templates

	Importing Source Code
	Code Import Options
	Example: Import a C# Project

	Importing Java, C# and VB.NET Binaries
	Adding Custom Java Runtimes
	Import Binary Options
	Example: Import .NET Assemblies
	Example: Import Java .class Files

	Synchronizing the Model and Source Code
	Synchronization Tips
	Refactoring Code and Synchronization
	Code Synchronization Settings

	UModel Element Mappings
	C# Mappings
	VB.NET Mappings
	Java Mappings
	XML Schema Mappings

	Merging UModel Projects
	3-Way Project Merge
	Example: Manual 3-Way Project Merge

	UML Templates
	Template Signatures
	Template Binding
	Template Usage in Operations and Properties

	Generating UML Documentation
	Documentation Generation Options
	Customizing Output with StyleVision

	UML Diagrams
	Behavioral Diagrams
	Activity Diagram
	Inserting Activity Diagram elements
	Creating branches and merges
	Activity Diagram elements

	State Machine Diagram
	Inserting state machine diagram elements
	Creating states, activities and transitions
	Composite states
	Generating code from State Machine diagrams
	Working with state machine code
	State Machine Diagram elements

	Protocol State Machine
	Inserting Protocol State Machine elements
	Protocol State Machine Diagram elements

	Use Case Diagram
	Communication Diagram
	Inserting Communication Diagam elements

	Interaction Overview Diagram
	Inserting Interaction Overview elements

	Sequence Diagram
	Inserting Sequence Diagram Elements
	Lifeline
	Combined Fragment
	Interaction Use
	Gate
	State Invariant
	Messages

	Generate Sequence Diagrams from Source Code
	Generate Multiple Sequence Diagrams
	Generate Sequence Diagrams from Getters/Setters

	Generate Code from Sequence Diagram
	Adding code to sequence diagrams

	Timing Diagram
	Inserting Timing Diagram elements
	Lifeline
	Tick Mark
	Event/Stimulus
	DurationConstraint
	TimeConstraint
	Message

	Structural Diagrams
	Class Diagram
	Customizing Class Diagrams
	Overriding Base Class Operations and Implementing Interface Operations
	Creating Getter and Setter Methods
	Ball and Socket Notation
	Adding Raised Exceptions to Methods of a Class
	Adding Receptions to a Class
	Generating Class Diagrams

	Composite Structure Diagram
	Inserting Composite Structure Diagram elements

	Component Diagram
	Deployment Diagram
	Object Diagram
	Package Diagram
	Inserting Package Diagram elements
	Generating Package Diagrams

	Profile Diagram
	Creating and Applying Custom Profiles
	Creating Stereotypes
	Example: Creating and Applying Stereotypes
	Example: Customizing Icons and Styles

	Additional Diagrams
	XML Schema Diagrams
	Importing XML Schemas
	Modeling XML Schemas
	Example: Create and Generate an XML Schema

	XMI - XML Metadata Interchange
	Source Control
	Setting Up Source Control
	Supported Source Control Systems
	Source Control Commands
	Open from Source Control
	Enable Source Control
	Get Latest Version
	Get
	Get Folder(s)
	Check Out
	Check In
	Undo Check Out...
	Add to Source Control
	Remove from Source Control
	Share from Source Control
	Show History
	Show Differences
	Show Properties
	Refresh Status
	Source Control Manager
	Change Source Control

	Source Control with Git
	Enabling Git Source Control with GIT SCC Plug-in
	Adding a Project to Git Source Control
	Cloning a Project from Git Source Control

	UModel Diagram icons
	Activity Diagram
	Class Diagram
	Communication diagram
	Composite Structure Diagram
	Component Diagram
	Deployment Diagram
	Interaction Overview diagram
	Object Diagram
	Package diagram
	Profile Diagram
	Protocol State Machine
	Sequence Diagram
	State Machine Diagram
	Timing Diagram
	Use Case diagram
	XML Schema diagram

	Menu Reference
	File
	Edit
	Project
	Layout
	View
	Tools
	User-defined Tools
	Customize
	Commands
	Toolbars
	Tools
	Keyboard
	Menu
	Options

	Restore Toolbars and Windows
	Options
	Java Virtual Machine Settings
	Network Proxy Settings

	Window
	Help

	SPL Reference
	Basic SPL structure
	Variables
	Operators
	Conditions
	Collections and foreach
	Subroutines
	Subroutine declaration
	Subroutine invocation

	License Information
	Electronic Software Distribution
	Software Activation and License Metering
	Altova End-User License Agreement

	Index

