Altova UModel 2023 Basic Edition

User & Reference Manual

Altova UModel 2023 Basic Edition
User & Reference Manual

All rights reserved. No parts of this work may be reproduced in any form or by any
means - graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems - without the written permission of the
publisher.

Products that are referred to in this document may be either trademarks and/or
registered trademarks of the respective owners. The publisher and the author make no
claim to these trademarks.

While every precaution has been taken in the preparation of this document, the
publisher and the author assume no responsibility for errors or omissions, or for
damages resulting from the use of information contained in this document or from the
use of programs and source code that may accompany it. In no event shall the publisher
and the author be liable for anyloss of profit or any other commercial damage caused or
alleged to have been caused directly or indirectly by this document.

Published: 2022

© 2016-2022 Altova GmbH

Table of Contents

11

2.1
22
23

24
25
26
2.7
2.8

3.1
3.2
3.3
34
35
36
3.7
38
39
3.10
3.1

Introduction 10
10 o] oloT i g N\ o] (=TT 1
UModel Tutorial 14
GEttING STAMEA..........oeeeesseees et ssssssss s sss s ssssssss e 15
USE CSES...........oooocviisisnnneessessssssssssssssssssee 18
Class DiIagramiS.........crecereseessssssssssssssssssssssssnsssssssssssssssssssssasssssssssssssssssssssssssssssses 27
231 Creating DEriVEA ClaSSES.......wwrieeeieesssseesssnees 36
(@ o] =Ted @ B 1 F=To | =1 o 42
(O] o g eTolaT=T o @ DIT=Te = [0 0T 49
Deployment DIagrams.............eeiesssssessas 55
Forward Engineering (from Model to Code)..............ceeoinrresseseeseseseesssesssssssssenns 60
Reverse Engineering (from Code to Model).............ccocommereeecoseseeeeessseessseeessssseneee 69
UModel Graphical User Interface 77
Model TreE WINUOW..................occceiireeeeeeeesseessiisssseeeeeessse 79
Diagram Tre€ WINAOW...........cov..corereceieseeesseessssseessssssssssssssssssssssssssssssassssssssssssssesssssssnsneeess 83
FaVOrtES WINAOW.........ccoo oo ssnsnsenes 84
Properties WINOW..............coovrisiisessssssesssanns 85
SEYIES WINAOW..........oooeeeeeeeseceessssecssesssssssssssssssssssssssssssssss s sssssssssssssssssss s ssssssssssssssens 86
HIErarChy WINAOW...........oo.reercessesscsssssessnsssses 87
OVEIVIEW WINAOW................oocviiiiimeeeesseseessssssssssseseesssesssssees 89
Documentation WINAOW..................ccoovvviicecsiiiissesssssssesssssssssssessssssssssssssssssssssssssssssnsesess 90
MESSAGES WINUOW...........ovoeeeecreeeeesesessesssssessesssssssnsnseess 91
Diagram WINGOW...............cereeeeseeeessessssssessesssssssnsneeses 93
DIagram Pane.....cevooeeeeceseesessessssseessesssssssnsnseses 94

Altova UModel 2023 Basic Edition

5.2

5.3

UModel Command Line Interface 96

Creating, Loading, and Saving Projects in Batch Mode.............ccccoooomeconeeeco. 101
How to Model... 103
EIBMENTS..........oooeess s sssssssssssssssssssssssssssssssssssssss s 104
5141 Creating ElemMENtS...... .t ssnees 104
512 Inserting Elements from the Model into @ Diagram..........c..coeereenmmeenmeeessmneesnneeennns 105
513 Renaming, Moving, and Copying EIEMENtS.............courremmreeemmreeennreessnssessnsessssnnns 107
514 Deleting EIEMENTS.......oicecreves ettt 108
515 CONVEIING EIEMENTS.......coooeiceiseceieeeiseesi s sss s sssssss s ssssssneees 109
516 Finding and Replacing TeXL......cc.rrrrriereiesisessesssssssssessssessssessssesssnnas 109
517 Checking Where and If Elements Are USEd..........coevueeeeeeisneeeisssesssessssssneenns 1M1
518 ConstraiNing EIEMENTS.........civeuereieeeieeesiseesisessssseesss s sesssssessssssesssssssseees 112
519 HYPErliNKING EIBMENTS........ooiveirceieceieeeiiseessisssessssesssssses s ssssssssssssssssss 113
5110 Documenting EIEMENTS.........c.omreereereereeisnseesseeessesssssesssssssssssssssssssssssssssssssssssssssnns 116
51.11 Changing the Style Of EIEMENtS.......ccoovvcirrcerreeiseeeessnessesssssssssssssssssssssssssssssssneees 117
DUAQIAMIS ...ttt s ee ettt ee et set e s s ee s ee s nes e sesnesseneeeen 119
521 Creating DIagrams...........eeeeeeieessnsessssssessssesssssssssssssssssssssssssssssesssssssssssssseees 119
522 Generating DIagramS........ocueeeeeeseseesssseessssessseees 120
523 OPENING DIAGIAMS.....ouireerereeseersiseeesssesesssssssssssesssssssssss s ssss s sssssssssssesssssssseees 122
524 Deleting DIAgrams..........ccceeureeemeressesessssesssssessnaes 123
525 Changing the Style of DIagrams.........cc..oremeesieesieessseessssessssseesssssseeess 123
526 Aligning and Resizing Modeling EIEMENS.........c..orerreemmreennreenreessnreessssessssseessneeens 125
527 Type AUtoCOMPIEtioN iN ClASSES......wwcrrerrrresrnsssneees 127
528 Z00ming iNto/out Of DIAGramS............cvvueeiiscsieesissss s sssssssssssssssssssseens 129
REIALONSNIPS..........oooooceerevrevcvvcveevcvseseessssssssssssssssssssssssssssssssssssss s ssssssssees 130
531 Creating RelationShipS.........cc.rereeeeeeeiseesssesss s sesssssssessssssssssssseees 130
532 Changing the Style of Lines and Relationships............oeeneeeneeeineeeiineenns 131
533 Viewing Element RelationShips........ccrureeieeiieesinessssssessssessssssssssssssssens 133
534 ASSOCTALIONS......ooooreeereresiseeesiseeess st 133
535 COllECtON ASSOCIBLIONS.....vovervverreeriieeesisesesis s sssss s 136
536 CONTAINMENT...... et ss st 139

Altova UModel 2023 Basic Edition

54 Stereotypes and TagQed VAIUES............oooecoeeeeeeeeeeeeeeeseeeeeseesesesssessessssesseseeseesessesseees 140

541 TAGGEA VAIUES.....veeeereeteeeetieseeiseseeises st ssss st 141
542 ADPIYING STErEOLYPEScovvevrreeneresteresiesesss s ssssss s 142
543 Showing or Hiding Tagged ValUES.........oeerermmeeieeesnsessnessssssessssssssssssssssessseees 144
6 Projects and Code Engineering 147
6.1 Managing UMOAEI PIOJECES.........oooeeeeeeseeeeeeeseeeeseeesevese s eese s s ses s s ssessesssses s 148
6.1.1 Creating, Opening, and Saving ProjECtS..........oocreieeieeiseesssseeesssseesssssseeens 148
6.1.2 Opening Projects from @ URL........c.rcrecnreesnseeesessssesssssssssssssssssssssssssssssssnnes 149
6.1.3 Moving Projects to @ NEW DIr€CtOry..........ovreireereeeeeesecssseeessseesssssessssssssssessanns 153
6.1.4 APPIYING UMOAEI PrOfIIESveoovereeerrrceernreessseeesssesssssessns 154
6.1.5 Spliting UMOAEl ProjECS........ocvvverveeciiieessssssiess s ssssssssssssssssssssenns 155
6.1.6 INCIUING SUDPIOJECTS......rveverceereceersecessssesssssssssssssessssssssssssssssssssssssssssssssssssssnnes 158
6.1.7 Sharing Packages and Diagrams...........ooeeeeeeesseesssssessssssssssssssssssssssssssnsseees 160
6.1.8 Tips for Enhancing PerforMancCe............ooreeeimeesisesssssessssssssssssssssssssseens 163
6.2 Generating Program COdE...............oooieeoissesssssesssssssssssssssssssesssssssssssssssssssssssssses 164
6.2.1 Setting a Package as Namespace ROOL...........ccceeeeeineesinesssisesessseessssseeens 164
6.2.2 Adding a Code Engineering COMPONENL.........cooovreemreemmreenneensessnsessssesssssessneeens 165
6.2.3 Checking PrOJECT SYNTAX.....rveerreereesneesssneees 167
6.2.4 Code Generation OPtiONS........cccu.riveeivieesessses s ss s ssssssssssssssssssaeens 169
6.2.5 Example: Generate CH COUE......reireieessssesssssssssssssssssssssssssssssssssssssnnns 171
6.2.6 Example: Generate Java Code..........coumrwrereiesissesssssssssssssssssssssssssssssssnnes 176
6.2.7 SPL TMPIALES. ... rrretrereieereisessisseesss s sessss e ssss s sss st sss s 184
6.3 IMPOrtiNG SOUICE COUE...........oooeeeeeeeeeeeeeeeseeeeeeeeeeeeee e es s eeesesee s s s s sseeseesesseseesseseesseon 186
6.3.1 Code IMPOMt OPHONS......vverrreerreeereessereseeesssssss s ssssssssssssssssss st ssssssssssssssssssssssssnees 188
6.3.2 Example: IMport @ C# PrOJECE. ... ssssssssssssssssessssssssssssssssssanns 190
64 Importing Java, C# and VB.NET BiNaries................cooorieeeccoseesseessssessesesessssssssnes 198
6.4.1 Adding Custom Java RUNIMES........cccc.urrieriireessesesssssssssess s ssssssssssssssssnns 199
6.4.2 IMPOIt BINAIY OPHONS......cvveeeueceereceesseeesssessssssesssssssessssssessssssesssssssssssssssssssssssssssnnes 199
6.4.3 Example: Import NET ASSEMDIIES.........cccrrieeereieeieesiessssssssssesssssessssesssssessanes 203
644 Example: Import Java .ClIass FilS.........c.rreeieinceeesisessisesssesssessenns 205
6.5 Synchronizing the Model and SoUrce COE...........coooooeeecooeeeeeeeosseeeeeeeeseseeeeeeeeesssseseenes 211
6.5.1 SYNCAIONIZATON TIPS.....uvveermereeseerssieeessieeessiesesss s ssssss s sesssss s 212
6.5.2 Refactoring Code and SynChronization................ueeeereenreesneesnseessnseessssssssseesnnns 214

Altova UModel 2023 Basic Edition

6.6

6.7

6.8

7.1
7.2

8.2

6.5.3 Code Synchronization SEiNGS..........werereeeeieesiseesssseessssessssssesssessssssseees 215

UModel EIEMENT MAPPINGS..........ooooeeeeceeeeeeeeeeeseeeesseseesseesesessessesssesessssesssessessessssssssesseesessesseses 218
6.6.1 CH MAPPINGS . veereeereerseeesssesssseessssessassssssssssssssssnees 218
6.6.2 VBINET MaAPPINGS...corriirreerreernsesssnsesssseessnssses 238
6.6.3 JAVA MAPPINGS ...ttt ssess s sss sttt ss s sss s 252
6.6.4 XML SChema MappingsS.......ccocceureiiesiisessiessissses 258
Merging UMOAE! PrOJECES..........oeeeeeeeeeee ettt rsseees e ses e sess s sssesssseses s ses s seneneen 268
6.7.1 3-Way ProjeCt MEIGE. ..ottt ssssssss s sssssssssssssses s 268
6.7.2 Example: Manual 3-Way ProjeCt MErge...........ooerineesinneesieeesssessssssssssssns 270
UML TEMPIGLES.............ooooovvvvevvvvcvvcvsss 273
6.8.1 TeMPIAte SIGNATUTES......coeuuerreireeieeeeieecesi s sesss st ssss e 274
6.8.2 Template BiNAING....vcreereereeeineessnsessneesssssessssssssssssssssessssssssssssssssssssasssssssssssssssssnees 275
6.8.3 Template Usage in Operations and Properties............coreeeeeeeseessnssesssnneees 275
Generating UML Documentation 277
Documentation Generation OPLONS..........coooooocoeeeoeeeeeeeeeeeseeeeseesesseesesseesessesssseseeon 281
Customizing Output with StyleVISION...............ccccceeerieiiissssseeeeseesssssissssssssseesesssssiinns 286
UML Diagrams 288
BENaVIOral DIGQIamMIS........oooeeoeeeeeseee et seeeeseeesesese s se s eese e ses s ses s sessssssssssssessesesenessenesnen 289
8.1.1 ACHVIEY DIBGIAM .coooveeeceeiceiseeeeieesi s ss st 289
8.12 State Maching DIiagram.......cc.ceeueereieessseesssssessssseessssssssssssessssssessssssssssssssseees 306
8.1.3 Protocol State MaChiNe........cc.receceiscssreissessssssssssssssss s sssssssssssssssanns 329
8.14 USE CaSE DIAGIaM......ccereerreerreesneessssssssesssssssssssssssessssessssssssssssssssssssssssssssssssssnsssssnns 334
8.1.5 ComMMUNICALION DIAGIaM.......veeureeerereeeneeesssssssssessaneees 334
8.1.6 Interaction OVErVIEW Diagram.........ccc..cvvveevieerisessisessses s ssssssssss s ssssssssssssanes 338
8.1.7 SEQUENCE DIAGIAM ..covvveerrreerseeesseeeessssesesssssssss st sssssssssssssss s sssssssssssssssssssssneses 343
8.1.8 TIMING DIAGIAM.....ouieereeeeeerieeeieeess st ss st 370
SEUCTUTAI DIGQIAMS........oooeeeeeeeeeee et ee s ee s e see s ses s s see e es s ees s eee s neesee 379
8.2.1 ClaSS DIAGIAM.....cuiveerersereerssseessisssessss s sss bbb sss bbb 379
8.2.2 Composite SrUCIUTE DIagram...........oeuererereiineesisseessssesssssessssssessssssessssssseeess 393
8.2.3 COMPONENE DIAGIAM.......vevrreerereerrreeseresseeesseesseesss s ssssesssssssss st ssssssssssssssssssssssssnees 396
8.24 DepIOYMENT DIAGIram.......ccueeereerreeseessseessssesssssessssessssssssssssssssssssssessssssssssssssssssssnns 396

Altova UModel 2023 Basic Edition

825 ODJECT DIAGIAM.....vvivevrcreerreriiseessissessssseesss s ssss s sss st 397

826 PaCKage Diagram..........occeeeureeemeeesseeessssesssssesssns 397
8.2.7 Profile DIAgram.........ccceuureeeneeeseseeessseesssssessssssesssssssess 403
8.3 AJItIONAl DIAQIAMS.........oooeoeeeeeeeeeeeeeeeseeeeeseesssessssesseeseesesesssseesssessssesssenssssasessseeseessssessesseees 416
8.3.1 XML SChema Diagrams.........ocvecereermreesmnsesssnssnsssssns 416
9 XMI - XML Metadata Interchange 434
10 Source Control 436
10.1 Setting UpP SOUICE CONLIOL...........ooooeeeeeeeeeeeeeeee e eeeees e ses e seesessessessessesesesessee e 438
10.2 Supported Source Control SYSIEMS................oievveviereeisesisssssssssssssssssssssssssssssssssssneens 439
10.3 Source Control COMMANGS..........cccoooreeieeeeeeeeeeeeeeesseees 441
10.3.1 Open from SOUrCE CONMTOL........cocuureereeeeeeeeiseeesss s sesssssesssssesssssssssssesssssns 441
10.3.2 ENable SOUICE CONMIOL.......vucrreerreerereerereeisessessseessssssssesssesssssssssssssssssssssssssssssssssnees 444
10.3.3 GetLAESE VEISION.....ceoreereiereeeecesesses sttt sss st sssesssssssssssssssssnees 445
10,34 GBE ettt 445
10.3.5 GEEFOIABI(S).cvvvruurrerrmreeessmreesssnssesssmssns 446
10.3.8 CRECK OUL...ooooorireeeieseeeeriissseescesssssseessssssssssessssss s sssssssssssssssss s ssssssssssssssssssssenes 447
10.3.7 CRECK Nttt ssss st 449
10.3.8 UNAO ChECK OUL......ocveereereieseiesesessissss s sssssssssss s ssssssssssssssssssssssssssssssssnnss 449
10.3.9 Add 10 SOUICE CONMOL.......ooreerereeercessessiresssisssssssss st sss st essss st ssssssness 451
10.3.10 Remove from SOUrCE CONMOL........cvveereerreeiinreessssesssssssesessnssssssssssssssssssssssssssssssssssnees 453
10.3.11 Share from SOUICE CONIOL..........reereerreesreeersseersesssesesssesssssssssssssssssssssssssssssssssnees 454
10.3.12 SNOW HISOMY....ooueeeereeeerreesseeessseeessseessssssssssesssssesssssesssssssssssesssssssssssssssssssssssssssssssssssssssnees 455
10.3.13 SHOW DiffErENCES.....ourveerrreernrresrnssessssnssns 457
10.3.14 SROW PIOPEIHES........oovcreicertsessesssses s sssssssss s sss s ss st sssenns 458
10.3.15 RefTESN SIAtUS......covuireecrcss st 459
10.3.16 SoUrce CONtrol MANAGET..........cvcureerersessessisssesssssessns 459
10.3.17 Change SOUICE CONMOL.........cuureerrreeeerssssesssssseesssssesssns 459
104 Source Control With Gil..............coooeenneessenes 461
104.1 Enabling Git Source Control with GIT SCC PlUG-iN.......cccrereeeerrirerrieereisseeenenns 462
104.2 Adding a Project to Git SOUICE CONIOL.........orveerreeereereeeeseeeesesesssseeseseessseessseesssnees 462
104.3 Cloning a Project from Git SOUrce CONrOL..........oovvveermreeernnreerneseessesseessesssesssnseeeens 464

Altova UModel 2023 Basic Edition

11

1.1
1.2
1.3
114
11.5
11.6
1.7
11.8
11.9
11.10
11.11
11.12
11.13
11.14
11.15
11.16

12

12.1
12.2
12.3
124
12.5
12.6

12.7
12.8

UModel Diagram icons 466
ACHVILY DIGGIAM...........cooooeeeeeeeeceeeeneseeetsseeessssssssessssssssssesssnees 467
(OISR B IT=To = 0 OO 469
(O] o aa10Tallox=11Tea e [F=To] =10 2 HENIN O 470
Composite Sructure DIagram...........ieconneseecosseseeessesessssssssssssssssessssssssssssssssssee 471
(O] o oTolaT=T 01 @ BIT=Te =0 NN 472
Deployment DIagram...........eissesssssssesssssssesssen 473
Interaction OVerview didgram...............osesesssssssesssssssssssssssssssssssssssssssssens 474
ODJECE DIBGIAM.......coceooeeeeeveetsseees s ssssss s sssssssssssssssss s sssssssssssssssssssssssssssnns 475
PacCKage Iagraim..............ccooreveeieieeeeceeeesseeesses 476
PrOFilE DIGQIAM..........ooovveeeeeeeeeeseeeeesseeeeesseseesssessssessessssesseses s seesssessssssessessssssssssssessessesessesssseseees 477
Protocol State MACKINE.....................ciceineeeeeseecesssssessseesssees 478
SeqUENCE DIAGIAM.........ccooooervveeiieeesseeessssesssssssssss s ssssssssssssssssss s ssssssssssssssssssssssssssnns 479
State Maching Diagram...............corecessesecessesesessessessssssssesssssssssssssssssssssssssssssssssen 480
TIMING DIAGIAM.............ocoooereeeceeeeeeesessee s ssssssssssssssssssssssssssssssssssssss s ssss s sssssss e 481
@Y 0= tST =N o [F=To | =1 o 482
XML Schema diagram............orsessissssssssssessens 483
Menu Reference 484
FHIE et s bR Rt 485
o 1 OSSOSO 487
PLOJECT........e st sssssss s ssssss s ssssss s sssss s ssss s sss s sss s ssss s nesssses 489
LAYOUL........oeeereecesteeesssscsss s ssssssssssssssssssssssssssssssssssssss s sssssss s sssssssssssssssss s sssssesesssses 492
VIBW........ooooeeeresvettseses s sesssssssssssssssssssss s ssssssss s sssssss s sssss s sssss s sssssss s ssssssssssssssssnees 493
TOOUS.......oo e ss s RssssRReesssSAsRRnssRe 494
12861 USEI-AEMINEA TOOIS. ...ttt ssssesssesss s sssessssessassssessssassssnnes 494
12.8.2 CUSIOMIZE.......ooeec ettt s bbbt eees 494
12.6.3 Restore Toolbars and WINAOWS..........ccc.oecueiuieevnmeiineeinesses st sssssassssnnes 503
1264 OPHONS.....iiierciierciiseecsse et sss st s s s ss s 504
WINAOW........ooeeesenees e sessssssesssssssssesssenes 513
[U= o OSSR 515

Altova UModel 2023 Basic Edition

13 SPL Reference 520

13,1 BaSIC SPL SITUCIUFE.............oooeeeeeeeeeee st ssssssesessssssss s ssssssssssnesssssans 521
13.2 VAIIBDIES.........ooeeee st ssss s ssss s ss s sssenan 522
13,3 OPEIALOTS............ooccviiesienneeeesesssssssssssssssessssssssssssssss s sssssssssss s sssssssss s ssssssssssssnsssssneees 531
134 CONAILIONS...........ovveeeeeesseveesse s sssss s sssss s ssss s s s s ssss s s s sssssaan 532
13.5 Collections @nd fOr€aCH............ccovvcceervccisees s ssssssssss s sssssssssssssssssenns 533
138 SUDFOULINES............ccoooeeer e reesceseesses s ssssssssssssssssss s ssssssssssssssss s ssssssssssssssssasssessssssnns 535

13.6.1 SUDrouting deCIAration..........cccccecriciiicireseee st sassssenns 535

13.6.2 SUDIOULINE INVOCALION. ...ttt enes 536
14 License Information 537
141 Electronic Software DiStriDULION..................coooirecesesee s ssssseseeeens 538
142 Software Activation and LICENSE MELEING..........cooocovoeeereeeseeeeseeeeeseeesseeeesseeeeseeseene 539
14.3 Altova End-User LICensSe AQreemeNt.............ooooovcovecoeeeecoseeeoreeeesseeresseesssesssseesesesseone 541
Index 542

Altova UModel 2023 Basic Edition

10 Introduction

1 Introduction

Altova website: & UML tool

Altova UModel 2023 Basic Edition is a UML modeling application with a rich visual interface and superior
usability features to help level the UML learning curve. UModel includes many high-end functions to empower
users with the most practical aspects of the UML 2.5 specification. UModel is a 32/64-bit Windows application
that runs on Windows 7 SP1 with Platform Update, Windows 8, Windows 10, Windows 11, and Windows
Server 2008 R2 SP1 with Platform Update or newer. 64-bit support is available for the Enterprise and
Professional editions. For an overview of UModel capabilities, see Support Notes @

UModel®

UML®, OMG™, Object Management Group™, and Unified Modeling Language™ are either registered
trademarks or trademarks of Object Management Group, Inc. in the United States and/or other countries.

Last updated: 7 October 2022

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

https://www.altova.com/umodel

Introduction Support Notes 1

1.1 Support Notes

UModel is a 32/64-bit Windows application that runs on the following operating systems:

e Windows Server 2008 R2 SP1 with Platform Update or newer
e Windows 7 SP1 with Platform Update, Windows 8, Windows 10, Windows 11

64-bit support is available for the Enterprise and Professional editions.

UML diagrams

UModel supports all fourteen diagrams of the UML 2.5.1 specification, and additional specialized diagram
types.

Structural Behavioral Additional
Class Diagrams Activity Diagram XML Schema Diagrams
Component Diagram Communication Diagram BPMN (Business Process

Modeling Notation) 1.0/ 2.0
Diagrams (UModel Enterprise and
Professional editions)

Composite Structure Diagram Interaction Overview Diagram SysML 1.2, 1.3, 1.4, 1.5, 1.6
Diagrams (UModel Enterprise and
Professional editions)

Deployment Diagram Sequence Diagram Database Diagrams (UModel
Enterprise and Professional
editions)

Object Diagram State Diagrams (State Machine

and Protocol State Machine)
Package Diagram Timing Diagram
Profile Diagram Use Case Diagram

UModel has been designed to allow complete flexibility during the modeling process:

¢ UModel diagrams can be created in any order, and at any time; there is no need to follow a prescribed
sequence during modeling.

e The syntax coloring in diagrams is customizable. For example, you can customize modeling elements
and their properties (font, color, borders, etc.) in a hierarchical fashion at the project, node/line,
element family and element level, see Changing the Style of Elements @

e The unlimited lewvels of Undo/Redo track not only content changes, but also all style changes made to
any model element.

e Modeling elements support hyperlinks, see Hyperlinking Elements @

Code engineering and import of binaries
UModel supports code generation and reverse engineering of program code written in the following languages:

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

12 Introduction Support Notes

Language Code engineering Import of binaries
C# 1.2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 7.1, 7.2, | Same language versions as for code
7.3, 8.0, 9.0", 10 engineering?

C++ (UModel Enterprise | C++98, C++11 and C++14, C++17, C+ | Not applicable
Edition) +20

Only partial support for C++20:
modules are not supported.

Java 1.4,5.0 (1.5), 6 (1.6), 7 (1.7), 8 (1.8), 9 | Same language versions as for code
(1.9), 10, 11, 12, 13, 14, 15, 16, 17, 18, | engineering®
19
Visual Basic .NET 7.1 or newer Same language ersions as for code
engineering
XML Schemas* 1.0 Not applicable
Databases® (UModel Not applicable

Enterprise and
Professional editions)

Table footnotes:

1. If you import binary files compiled from C# 9.0 code, note that any records will be imported as classes.
This limitation is due to the fact that records are marked as classes in the assembly, which makes it
impossible to distinguish them from classes.

2. C# code engineering and import of binaries include support for .NET Framework, .NET Core, .NET 5,
and .NET 6. Note that .NET Framework, .NET Core, .NET 5 or .NET 6 must be installed, as applicable.
Binaries of other .NET implementations which are not mentioned are likely to be imported as well. See
also Importing Java, C# and VB.NET Binaries .

3. ltis also possible to import binaries targeting Java Virtual Machines other than Oracle JDK, such as
OpendDK, SapMachine, Liberica JDK, and others, see Adding Custom Java Runtimes @

4. In the case of XML Schemas, code engineering means that you can import a schema (or multiple
schemas from a directory) into UModel, view or modify the model, and write the changes back to the
schema file. When you synchronize data from the model to a schema file, the schema file is always
overwritten by the model. See also XML Schema Diagrams @

5. In the case of databases, code engineering means that you can (i) model a database in UModel with
the option to update the database through a script generated from the model, or (ii) import an existing
database structure into a model, make changes to it, and then deploy a script generated from the
model to the database. Some database object types are not supported for modeling.

General notes:

¢ You can synchronize the code and model at the project, package, or even class level. UModel does
not require that pseudo-code, or comments in the generated code be present, in order to accomplish
round-trip engineering.

e A single project can support Java, C#, or VB.NET code simultaneously.

¢ UModel supports the use of UML templates and their mapping to or from Java, C# and Visual Basic
generics.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Introduction Support Notes 13

391

e While importing source code, you can optionally generate Class & and PackaaemD diagrams. Once
the source code is imported into the model, you can also generate Sequence = diagrams.

e You can generate program code from Sequence diagrams and from State Machine diagrams

¢ UModel projects can be split up into multiple sub-projects allowing several developers to
simultaneously edit different parts of a single project. You can then reintegrate the changes back into a
common model. You can also merge UModel projects, as a 2-way or as a 3-way merge, see Merging
UModel Projects &9.

e Code generation in UModel is based on Spy Programming Language (SPL) templates and is
customizable.

UML documentation generation

You can generate documentation from UModel projects in HTML, RTF, Microsoft Word 2000 or later formats.
Various options are available that let you configure the level of detail of generated documentation, the look and
feel, and other preferences. Generating documentation in PDF format and deep customization of document
generation templates is possible with Altova StyleVision (https://www.altova.com/stylevision). For more
information, see Generating UML Documentation &2

Interoperability

UModel also provides support for importing or exporting projects to or from XML Metadata Interchange (XMI)
format, see XMl - XML Metadata Interchange 3

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

https://www.altova.com/stylevision

14

UModel Tutorial

2

UModel Tutorial

This tutorial shows you how to create various UML diagrams with UModel, while acquainting you with the
graphical user interface. You will also learn how to generate code from a UML model (forward engineering) as
well as how to import existing code into a UML model (reverse engineering). With respect to code engineering,
you will also learn how to perform full round-trip engineering (either model->code->model or code->model-
>code). This tutorial assumes basic knowledge of the UML.

The tutorial is organized into sections as shown below. In the initial sections of this tutorial you will be working
with a sample project pre-installed with UModel. If you would like to quickly create a new modelling project from

scratch with UModel, you can skip directly to Forward Engineering (from Model to Code)@.

Getting Startedm

Use Cases

Class Diagrams
Creating Derived ClassesB
Object Diagrams
Component DiagramsGB

Deployment Diagrams@
Forward Engineering (from Model to Code ©

Reverse Engineering (from Code to Model

This tutorial makes use of the following sample UModel project files available in the directory C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples\Tutorial:

BankView-start.ump This is the UModel project file that constitutes the initial state of the tutorial

sample. Several model diagrams as well as classes, objects, and other model
elements exist in this project. By working through the tutorial, you will be adding
new elements or diagrams, or editing existing ones, using UModel.

Note: This project is deliberately incomplete, so validation errors and warnings
will be shown if you check the project syntax using the Project | Check Project
Syntax menu command. The tutorial shows you how to resolve these issues.

BankView-finish.ump This is the UModel project file that constitutes final state of the tutorial sample.

Note:

All UModel example files are initially available in the directory C:\ProgramData\Altova\UModel2023.
When any user starts the application for the first time, the example files are copied to C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples. Therefore, do not mowve,
edit, or delete the example files in the initial directory.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Tutorial Getting Started 15

21 Getting Started

When you start UModel for the first time after installation, it opens a default empty project "NewProject1". On
subsequent runs, UModel will open the last project that was loaded. To create, open, and save UModel projects
(.ump files), use the standard Windows commands available in the File menu or in the toolbar.

(T Altova UModel - NewProject! - O 4

File Edit Project Layout View Tools Window Help

iNwE o> ap AXEEBRR & 48 i i @
Model Tree o X
[MRoot

f‘] Component View

EI Model Tree | ER Diagram Tree | ‘{'ﬁ-‘ Fawvarites

Properties o x

=] Properties @ Styles | EI Hierarchy

Overview o X Messages x

¥ vial vial via ninG X

Overview Documentation v
UMadel Basic Edition v2018 Connected to Altova LicenseServer at (0l ©19958-2017 Altova GmbH CAP | NUM | SCRL |

UModel Graphical User Interface

Note the major parts of the user interface: multiple helper windows on the left hand side and the main diagram
window to the right. Two default packages are \isible in the Model Tree window, "Root" and "Component View".
These two packages cannot be deleted or renamed in a project.

The helper windows in the upper-left area are as follows:

o The Model Tree window contains and displays all modeling elements of your UModel project.
Elements can be directly manipulated in this window using the standard editing keys as well as drag
and drop.

o The Diagram Tree window allows your quick access to the modeling diagrams of you project wherever
they may be in the project structure. Diagrams are grouped according to their diagram type.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

16 UModel Tutorial Getting Started

e The Favorites window is a user-definable repository of modeling elements. Any type of modeling
element can be placed in this window using the "Add to Favorites" command of the context menu.

The helper windows in the middle-left area are as follows:

e The Properties window displays the properties of the currently selected element in the Model Tree
window or in the Diagram window. Element properties can defined or updated in this window.

e The Styles window displays attributes of diagrams, or elements that are displayed in the Diagram view.
These style attributes fall into two general groups: Formatting and display settings.

e The Hierarchy window displays all relations of the currently selected modeling item, in two different
views. The modeling element can be selected in a modeling diagram, the Model Tree, or in the
Favorites window.

The helper windows in the lower-left area are as follows:

e The Overview window which displays an outline view of the currently active diagram.
e The Documentation window which allows you to document your classes on a per-class basis.

In this tutorial, you will be working mostly within the Model Tree and Diagram Tree windows, as well as the
main dia%m window. For further information about the graphical user interface elements, see UModel User
Interface “4%.

To open the tutorial project:

1. Select the menu option File | Open and navigate to the ...\UModelExamples\Tutorial folder of
UModel. Note that you can also open a *.ump file through a URL, please see Switch to URL @ for
more information.

2. Open the BankView-start.ump project file. The project file is now loaded into UModel. Several
predefined packages are now visible under the Root package. Note that the main window is empty at
the moment.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Tutorial

Getting Started 17

O oo g4 p | 4 X M By
Model Tree o x

Eile Edit Project Layout View Tools Window Help

_E] Root

“F || Component View

[Deployment View

[Design-phase

@Java Lang [Java Lang.ump]
[Unknown Externals

| EJEVE Profile [Java Profile.ump]

EI Maodel Tree | ER Diagram Tree | * Favarites

Properties o x

=l Properties @ Styles | EI Hierarchy

@ Altova UMaodel - Chlsersh\altova Decuments\ Altova' UModel201 8\ UModelExamples\ TutorialBankView-start.ump — O 4

Owverview o X Messages X
Y vial vial via ning X
~
Overview Documentation o
UModel Basic Edition v2012 Connected to Altova LicenseServerat ~ ©1998-2017 Altova GmbH CAP | NUM | SCRL

Bank Viewstart.ump project

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

18 UModel Tutorial

Use Cases

2.2 Use Cases

This tutorial section shows you how to create a Use Case diagram, while acquainting you with the basics of the

UModel graphical user interface. Specifically, it illustrates the following tasks:

Add a new package to the project

Add a new use case diagram to the project

Add use case elements to the diagram, and define the dependencies amongst them
Align and adjust the size of elements in the diagram

Change the style of all diagrams in a UModel project.

To proceed, run UModel and open the BankView-start.ump project (see also Opening the Tutorial Proiecta).

Adding a new package to a project

As you already know from UML, a package is a container for organizing classes and other UML elements,
including use cases. Let's begin by creating a package that will store a new use case diagram. Note that
UModel does not require that a specific diagram must reside in a specific package; however, you might want to

organize diagrams into packages for better organization and consistency.

1. Right-click the Root package in the Model Tree window, and select New Element | Package.
2. Enter the name of the new package (in this example, "Use Case View"), and press Enter.

_

Root
[Component View
g Deployment View
- Design-phase

- & Java Lang [Java Lang.ump]
------- Use Case View
| Unknown Externals

- [« 7] Java Profile [Java Profile.ump]

ElMCIdElTrEE EDiagramTree {%Fav-:nrites

Adding a Use Case diagram to a package

1. Right-click the previously created "Use Case View" package.
2. Select New Diagram | UseCase Diagram.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UModel Tutorial

Use Cases 19

Model Tree

FRoot
A Component View
A Deployment View
- Design-phase
[&7 Java Lang [Java Lang.ump]
A Unknown Externals
B 1 Use Case Wiew
o F™ UseCaseDiagram1
- [+ 7] Java Profile [Java Profile.ump]

El Model Tree | BB Diagram Tree

Properties

%% Favorites

X

UseCaseDiagram1
UseCase Diagram

name
element kind

&3 Styles | [2] Hierarchy

[=] Properties

pkg Use Case View|

F™ useCaseDiagram

A Use Case diagram has now been added to the package in the Model Tree window, and a new
Diagram window has been created as well. A default name has been provided automatically.

3. Double-click the diagram name in the Model Tree window, change it to "Ovenview Account Balance",

and press Enter to confirm.

Model Tree

Root
[Component View
[Deployment View
BEs| Design-phase
[&7 Java Lang [lava Lang.ump]
g Unknown Externals
B 1Use Case View
- F™ Overview Account Balance
- [« 7] Java Profile [Java Profile.ump]

EI Model Tree | = Diagram Tree

{% Favaorites

Adding Use Case elements to the Use Case diagram
1. Right-click in the newly created diagram and select New | Actor. The actor element is inserted at the

click position.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

20 UModel Tutorial Use Cases

2. Click the Use Case toolbar button = and then click inside the diagram window to insert the

element. A "UseCase1" element is inserted. Note that the element, and its name, are currently
selected, and that its properties are \visible in the Properties window.

pkg Use Case View |

Actort

UseCasel

extension points

|

3. Change the title to "get account balance", press Enter to confirm. Double-click the title if it is
deselected. Note that the use case is automatically resized to adjust to the text length.

pkg Us:e{:;:m:‘|.|’|'\f.-1.|'.'ﬂI o

Adtort

2 get account balance

Note: To create a multi-line use case name, press Enter while holding the Ctrl key pressed.

Manipulating UModel elements: handles and compartments

When selected, model elements in a diagram display various connection handles and other items used to
manipulate them. Handles can be used to create relationships between elements, or show or hide certain
compartments from the element, as shown below.

1. Double-click the "Actor1" text of the Actor element, change the name to "Standard User" and press

Enter to confirm.
2. Place the mouse cursor over the handle to the right of the actor. A tooltip containing "Association"

appears.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Tutorial

Use Cases 21

pkg Use{:ase‘u’im) L
. d L

_Standard User

2]

| Aszociation .
account balance)

3. Click the handle, drag the Association line to the right, and drop it on the "get account balance" use
case. An association has now been created between the actor and the use case. The association
properties are also visible in the Properties window. The new association has been added to Model

Tree under the Relations item of the Use Case View package.

pkg Use Case View] =

_Standard User

: get account balance .

4. Click the use case and drag it to the right to reposition it. The association properties are visible on the

association object.

5. Click the use case to select it, then click the collapse icon on the left edge of the ellipse.

ISR
"_,..--' -‘--"-l

o 'f \\. o
> N

./ oetaccount balance %,
o=
k- extension points S
Sul e

™

L. L Mmg T L
" L e

The "extension points" compartment is now hidden.

e

- .
-
-
L

bl
Y L
D—!\ get account balance fH
E"'-.

B - —--'."".-'IE.
!

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

22 UModel Tutorial

Use Cases

A blue dot next to an element in the Model Tree window signifies that the element is visible in the
current diagram. For example, in the image below, three elements are currently visible in the diagram

and thus have a blue dot in the Model Tree:

Model Tree

n

»

- Deployment View

-H Design-phase

A & Java Lang [Java Lang.ump]
-H Unknown Externals

B Use Case View

E - Overview Account Balance
] get account balance

aﬁ- Standard User

= :’g} Relations

- [« #]Java Profile [Java Profile.ump]

£ Association: [get account balance - !

L]

W

pkg UseCase‘u'Tm,_J o

_Standard User

Resizing the actor adjusts the text field, which can also be multi-line. To insert a line break into the
text, press Enter while holding the Ctrl key pressed.

To finish up the Use Case diagram:

Lo

N —

key.

Click the Use Case toolbar button and simultaneously hold down the Ctrl key.
Click at two different vertical positions in the diagram to add two more use cases, then release the Ctrl

3. Name the first use case "get account balance sum" and the second, "generate monthly revenue

report”.

&

Click the collapse icon of each use case to hide the extensions compartment.

5. Click the actor and use the association handle to create an association between "Standard User" and

"get account balance sum".

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UModel Tutorial

Use Cases 23

pkg Use Case Wﬂv)

_Standard User

: get account balance sum

generate monthly revenue report

To create an "Include" dependency between use cases (creating a subcase):

Click the Include handle of the "get account balance sum" use case, at the bottom of the ellipse, and
drop the dependency on "get account balance". An "include" dependency is created, and the include

stereotype is displayed on the dotted arrow.

pkg Use Case View.] =

2

zincludes=

: get account balance sum

generate monthly revenue report

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

24 UModel Tutorial Use Cases

Inserting user-defined (customized) actors

The actor in the "generate monthly revenue report" use case is not a person, but an automated batch job run by
a bank computer. The instructions below show to add a new actor to the diagram, and also use a custom
image for it.

Click the Actor toolbar button to insert an actor in the diagram.
Rename the actor to "Bank".

N —

3. Inthe Properties window, click Browse E‘ next to "icon file name" entry, and browse for the Bank-
PC.bmp file available in the same folder as the project.

4. Clear the Absolute Path check box to make the path relative. Select Preview to display a preview of
the selected file in the dialog box.

Enter Filepath

File path:| Bark-PC.bmp |-

[Jabsolute path [Preview i— o]

Hefresh

Cancel

5. Click OK to confirm the settings and insert the new actor. Move the new "Bank" actor to the right of the
lowest use case.

6. Click the Association toolbar button and drag from the "Bank" actor to the "generate monthly
revenue report" use case. This is an alternative method of creating an association.

pkg Use Case View |

_Standard User

3

azincludes=

: get account balance sum

generate monthly revenue report

" Bank

Note: The background color used to make the bitmap transparent has the RGB values 82.82.82.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Tutorial Use Cases 25

Aligning and adjusting the size of diagram elements

When dragging components in a diagram, guide lines appear allowing you to align an element to any other
element in the diagram. You can enable or disable this option as follows:

1. On the Tools menu, click Options.
2. Click the View tab.
3. Inthe Alignment group, select the Enable snap lines check box.

You can also align and adjust the size of multiple elements, as follows:

1. Create a selection marquee by dragging on the diagram background, making sure that you encompass
all three use cases starting from the top. Alternatively, to select multiple elements, click elements
while holding the Ctrl key pressed. Note that the last use case to be marked, is shown in a dashed
outline in the diagram, as well as in the Overview window.

pkg Use Case Vim) L.

_Standard User

-
D—{ generate monthly revenue repo ::

- -
e .
E.‘_‘ _'__,..l-"'
. E‘. .. .-"-.-!--\.__E__.--r.-"". ..

" Bank

All use cases are selected, with the lowest being the basis for the following adjustments.

2. Click the Make same size toolbar button.

—+|+
(n] (=]

3. Toline up all the ovals, click the Center Horizontally toolbar button.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

26 UModel Tutorial Use Cases

pkg Use Case View/) -}

_Standard User

. U
s
D—:_ generate monthly revenue report :i—i--—-
-\\.‘ L
. @' 5 G -'.-"'.-'l-—u-—l__.--r.-""." .

B

" Bank

Change the style of diagrams in a project

By default, all diagrams of the tutorial project have a gradient background color, and a background grid is also
visible. The appearance of diagrams in a project is configurable. For example, to change the background color
of all diagrams, do the following:

1. In the Properties window, click Styles.
2. Under Project Styles, identify the setting Diag. Background Color.

Styles o =
Project Styles w
Draw Mirrored false ol LS
Diag. Background Color |gradient |
Diag. Grid Color black HEE ~ |3
Diag. Show Grid true |
Diag. Snap to Grid true | w
Jhiiin o _aial fine == =!
[=] Properties @l Styles @Hierarchy

3. Change the value from "gradient" to a color of your choice.

To enable or disable the diagram background grid:

e Change the setting Diag. Show Grid from "true" to "false”. (Alternatively, if a diagram is currently
open, click the Show Grid | toolbar button.)

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Tutorial Class Diagrams 27

2.3 Class Diagrams

This tutorial section illustrates the following tasks:

e Add an abstract class to an existing class diagram

e Add class properties and operations, and define parameters as well as their direction and type
e Add a return type to an operation

e Change icons to UML conformant symbols

e Delete and hide class properties and operations

e Create a composite association between two classes.

To proceed, run UModel and open the BankView-start.ump project (see also Opening the Tutorial ProiectG
).

Adding an abstract class

The diagram to which the abstract class will be added is called "BankView Main" and can be opened as
follows:

1. In the Diagram Tree window, expand the "Class Diagrams" package to display all class diagrams
contained in the project.

Diagram Tree o x

= Diagrams
------- i) Activity Diagrams
B 5] Class Diagrams
-------- [Apply Java Profile
o 7 BankView Main
------- a4 Communication Diagrams
-H g Component Diagrams
------- = Composite Structure Diagrams
- (g1 Deployment Diagrams
------- g Interaction Owerview Diagrams
- @ Object Diagrams
------- 3| Package Diagrams
------- Eg| Profile Diagrams
------- I=7|Protocol State Machine Diagrams
------- o) Sequence Diagrams
------- =7 5tate Machine Diagrams
------- Timing Diagrams
------- 5 UseCase Diagrams
------- wp| XML Schema Diagrams

ElMDdHTFEE @DiagramTree %%Favnrites

2. Do one of the following:

e Double-click the "BankView Main" diagram icon.
e Right-click the diagram, and select Open diagram from the context menu.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

28 UModel Tutorial Class Diagrams

Note: It is also possible to open the diagram from the Model Tree window. First, locate the diagram under

the package "Root | Design-phase | BankView | com | altova | bankview", and then use either of the
methods above to open it.

Two concrete classes with a composite association between them are visible in the class diagram.

pkg bankview] 5
BankView - Bank
@] banks:Bank[*] {ordered} : : @] bankname:5tring
&1 bankAPLIBankAP!) _{°riz"_°‘d} &1 IPAddress:string
o - . .amFs &1 username:String
P «constructors BankView(in bankAPLIBankaP) 1‘-—.;- @] password:String
@) collectBankAddressinfos(:boolean o
g\) collectAccountinfos(:boolean o » «constructor= Bank(in name:String, in IP:String, in userString, in pw:String)
¢» colledtDatal}:boolean s o o o oa » collectAccountinfos(in bankAPLIBankAPl:boolean
¢» getBalanceAtBank(in bankname:string):int ° o o o o ¢» getBalanceOfAccounts(iint
» getBalanceSumOfAllBanks():int oo » getBankMame(:5tring
o » getlPAddress():String
¢» getUsername(}:5tring
» getPassword():5tring

"Bank View Main" diagram

The new abstract class can be added as follows:

1. Click the Class = toolbar button, and then click to the right of the Bank class to insert the new

class.
2. Double-click the name of the new class and change it to Account.

Bank
@] bankname:5tring -
I @] IPAddress:String o
[@] username:string . -I---t--.ii.
o @] password:3tring 1 Account H
. -0
¢» «constructor= Bank(in name:String, in IP:String, in usenString, in pw:String) | | m===a=amn

% collecthccountinfos(in bankAPLIBankaPl:boaolean
% getBalanceOfAccounts(int

% getBankMame():String

™ getiPaddress(:String

™ getUsername():String

% getPassword(:5String

3. Inthe Properties window, select the abstract check box to make the class abstract. The class title is
now displayed in italic, which is the identifying characteristic of abstract classes.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Tutorial

Class Diagrams 29

4. In the code file name text box, enter "Account.java" to define the Java class.

Properties q x
name Account

qualified name Design-phase:zBankView::c
element kind Class

visibility public |
leaf O

abstract

isFinalSpecialization O

active O

code file name E;ﬁ.cc::uunt.java|

code file path

«annotationss O

«statics O

astrictfps O

[=] Properties @St}'les @Hierarch}'

Adding properties to a class

1. Right-click the "Account" class and select New | Property, or press F7. A default property propertyl
is inserted with stereotype identifiers << >>.

A T .
1 Account | _
ol i
o1 S Prapeni e
e

2. Change the property name to balance, and then enter a colon (:) character. A drop-down list

containing all valid types is displayed.

3. Type "f", and press Enter to insert the return type "float". Note that drop-down lists are case sensitive.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

30 UModel Tutorial Class Diagrams

R i -
o Account i .
EE:@] <> Balancerf (= -
"-.'-.'-.'-f-'.-'.-'.'! Type Mame Mamespace Sl
R B File Unknown Externals A
B FileDescriptor Unknown Externals
B Finalizer Java Lang:java:langiire
B FinalizerThread Java Lang:java:langiire
B FinalReference Java Lang:java:langiire
v

4. Continue on the same line by appending "=0" to define the default value.
5. Using the same method as abowe, create a new property id of type string.

1

|
—-

bal Float=0
¢l _djsath_CE_ pat=0 o
@] id:5tring y

Adding operations to a class
1. Right-click the Account class and select New | Operation, or press F8.
2. Enter "Account()" as operation name. Notice that the stereotype has changed to <<constructor>>,
since the operation name is the same as the class name.

I Account 1
. -
] A

!@1 balance:float=0 s

. L [
'_;@] id:String :—EI)
= [

1 4% cconstructors Account() :

o e

3. Using the same method as abowe, add two more operations, namely, getBalance () : float and
getId() :String.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Tutorial Class Diagrams 31

| |
]
]
]
]
]
]
]
=
]
=
]
e
]
]
]
]
]
]
]
2

i Account .
= 1
] .
~ 1a] balanceifloat=0 T
'&] id:String L,
oY i
i o
1 P «constructors Account(§
. 1 B
! % getBalance(:float . _
|
1 {» getld():String i
emmmmmmmnnn—————— PrY.s

Let's now add a new operation which takes a parameter. We will also specify the parameter direction and type.

1. Press F8 to create another operation, collectAccountInfo().
Place the mouse cursor within the brackets and start typing "i". A drop-down list opens, allowing you
to select the parameter direction: in, inout, or out.

T S

Account

-

1

1

1

@1 balance:float=0 - o
. . |
id:5tring

@l g [

¥ wconstructors Account]
M getBalance(:float
<» getid(:String

PR -

3. Select "in" from the drop-down list, enter a space, and continue editing on the same line.
4. Enter "bankAPI" as parameter name and then a colon (:). A drop-down list opens, allowing you to
select the parameter type.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

32 UModel Tutorial Class Diagrams

]
: : Account -
H
- 1@l balancefloat=0 |
';@] id:5tring :_}
1
QJ-E ¢» «zconstructors Account(:_':'
. E\’} getBalance(:float :
1 <% getld():String 1
'\'} <<= > collectAccountinfolin hank_-ﬁ.F‘I:I : 5
L |L]
| Type | Name Mamespace Si... |
| B AbstractMethodError Java Lang:java:lang s
| B AccessControlContext Unknown Externals
B AccessibleCbject lava Lang:java:lang:re
B Account Design-phase:BankVie
[E] AnnotationPresets Java Profile
B ArithmeticException Java Lang:java:lang W

5. Select IBankAPI from the drop-down list.

Adding a return type to an operation
So far, the operation parameter has been added, but it does not have a return type yet. To add a return type:

1. Place the mouse cursor after the close parenthesis character ")" and enter a colon (:). A drop-down
list opens, allowing you to select a return type.
2. Press the "b" key and select boolean as data type.

S | S .
1 Account :
d I
. 1 I .
_ :@] balance:float=0 1
,;};EEH id:String :_}
] :ﬁ) zconstructors Account() :_t'
. V<> getBalance(:float] _
_ V¢ getidp:String E _
. By <e>> collecthccountinfolin bank-‘-‘-.F‘I:IBanl'.:l'-.F‘I]:b|E:_.
B R
1| Type MName Mamespace 5i...|
B AssertionErrar Java Lang:javaslang A
B AssertionStatusDirectiv Java Lang::java:lang
B EBank Design-phase:BankVie
B EBankView Design-phase:BankVie
B BasicPermission Unknown Externals
[@ boolean Javabrotile g
i@ éﬁ I P

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Tutorial Class Diagrams 33

To specify an operation's \isibility (for example, "private", "protected”, "public"), click the icon preceding the
operation name, and select the required value, for example:

]

]

]

]

]

]

]

]

]

]

]

]

]

]

r .
]

] N
—=
-
]

Y -
]

]

]

]

]

]

]

]

]

]

]

]

]

]

JI

@"I balance:float=0
@‘I id:string

% getBalance(:float
g :String

1
1
L
1
1
1
1
—
1
g «CORSTIUCTOr= ACCOURNT|

“> tructors & t :—”
1
1
1
1
1

P M-

ountinfolin bank-*-.P'I:IEEanL‘.-'-‘-.P'I]:h-:u-:nI-sanE. 5
e

\?pmtected
' \?prhrate

The Visibility "package" is applicable for Java. In C#, use "package" to specify visibility as "internal". For
information about how UModel elements map to constructs in each language, see UModel Element
Mappings

Changing icons to UML conformant symbols
The visibility icons can be changed to UML conformant symbols if necessary, as follows:

1. In the Styles window, select Project Styles from the top drop-down list.
2. Scroll down to the Show Visibility setting, and select UML Style.

Deleting and hiding class properties and operations from a Class diagram
Press F8 to add a dummy operation Operationl to the Account class.

To delete the dummy operation, select it and then press Delete. (Alternatively, right-click it and select Delete
from the context menu). A message box appears asking if you want to delete the element from the project.
Click Yes to delete operationl from the class diagram as well as from the project.

To delete the operation from the class in the diagram, but not from the project, press the Ctrl+Delete. This
hides the operation from the diagram, although it continues to exist in the project. Classes with hidden
members are displayed with an ellipsis (...) character, as shown below:

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

34 UModel Tutorial Class Diagrams

Account

gl balancefloat=0
g id:5tring

¥ wconstructors Account]

% getBalance(:float

<» getld(:5tring

% collecticcountinfolin bankAPLIBankAPl:boolean

A class with hidden operations

To unhide the operation, double-click the ellipsis at the bottom of the class. A dialog box appears where you
can choose the elements that should be \visible on the diagram, for example:

Vizible elements

Element Stules Attributes | k. |
Show Attributes @'1 balance:float=0
public protected @ | id:String Cancel
] Operations
private package Oy Account])
™ getBalance():float

Show Operations < getld(:String
El ublic atected % collectaccountinfolin bankaPlBankaPl:boolean

; ; [] <% Operation1()
private package Select Al
Show nested Classifier Select None

public protected YWhen new elements are added and not hidden by Element Styles

private package (®) Show elements

i) Hide elements [except thoze added ta thiz node]

"Visible elements" dialog box

It is possible to configure UModel not to display a message box when you attempt to delete an object from the
diagram, as follows:

1. On the Tools menu, click Options.
2. Click the Editing tab.
3. Under Ask before deleting from project, clear the in diagrams check box.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Tutorial Class Diagrams 35

Creating a composition association between the Bank and Account classes

1. Click the Composition *~ | toolbar button, and then drag from the Bank class to the Account class.

The class is highlighted when the association can be made. A new property (Propertyl:Account) is
created in the Bank class, and a composite association arrow joins the two classes.

Bank

@] bankname:5tring

@] IPAddress:5tring Account
;@] username:string L pal Floated

@] password:5tring L gﬂ .aan.CE' oat=0

@'1 Property1:Account . @] id:5tring

¥ xconstructors Bank(in name:String, in IP:String, in user:String, in pw:String) | . FFTOPEMY < «constructors Account(

» collectAccountinfosfin bankAPl:IBankAPl:boolean A GetBalanclEIJ:fl-Jat

& getBalanceOfAccounts(:int | < getld:String

» getBankMame(:5tring S 3 collectAccountinfalin bankAP:IBankAP):boolean
'\) getlPAddress():5tring S e © © © © © © © © © © © ©° © © o o °
» getUsername():String

¢ getPassword(:5tring

2. Double click the new propertyl property in the Bank class and change it to "accounts”, being sure

not to delete the Account type definition (displayed in teal/green).

Press the End keyboard key to place the text cursor at the end of the line.

4. Enter the open square bracket character ([) and select asterisk (*) from the dropdown list. This
defines the muiltiplicity, namely, the fact that a bank can have many accounts.

w

Bank
@] bankname:5tring
g1 IPAddress:String Account
@] username:5tring L
rl @1 password:String D .balan_ce:flaat=.,-
g1 accounts:Account]¥] |91 idstring
» =constructors Bank(in name:String, in IP:String, in user:String, in pw:string) | . Faccounts < wconstructors Account]
3 collectAccountinfos(in bankAP:IBankAP:boolean B) getBaIanc.m].fI-:uat
¢} getBalanceOfAccounts(:int | < getld]:String
» getBankMame(:5tring S 3 collectAccountinfalin bankAP:IBankAP):boolean
L :
& getlPAddress(:String e e e oeos s oe s
% getUsername():String
» getPassword(:5tring

Notice that the multiplicity range previously added to the diagram is also visible in the Properties
window:

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

36 UModel Tutorial Class Diagrams
Properties 3 x
name accounts ~
qualified name Design-phase:BankView
element kind Property
visibility protected |
leaf]
ordered]
unigue
multiplicity * |
type Account |
type modifier n/a
static]
readOnly |
derived] v

. - - —
=] Properties @ Styles El Hierarchy
231 Creating Derived Classes

This tutorial section illustrates the following tasks:

Note:

Add a new class diagram to the project

Add existing classes to a diagram

Add a new class to a diagram

Create derived classes from an abstract class, using generalizations.

It is assumed you have already followed the previous tutorial section, Class Diagrams , to create the
abstract class Account.

Creating a new Class Diagram

1.

In the Model Tree window, right-click the bankview package (under Root | Design-phase |
BankView | com | altova), and select New Diagram | Class Diagram.

2. Double-click the new "ClassDiagram1" entry, rename it to "Account Hierarchy", and press Enter to

confirm. The new "Account Hierarchy" diagram is now \isible in the working area.

Adding existing classes to a diagram

1.

In the Model Tree window, click the Account class in the bankview package (under com | altova |
bankview), and drag it into the diagram.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Tutorial

Class Diagrams 37

I

odel Tree

L4

Root

-H Component View
-H Deployment View
i Design-phase

i] Overview
i-[# &1 Banking access
5--{_=_| L BankView
- [Apply Java Profile
~B | wcom

5..E| | altova

5..{_—-_| w | bankview

- [Account Hierarchy
- [BankView Main
- [0 Sample Accounts
- [AltovaBank
- [John's Checking
- B Account
-{# B Bank
-7 B BankView
- B Checkingéccount
-[# B CreditCardAccount
-E1 =% Relations

_» Association: (Account - Ban ¥

>

EIM:::dEITrEE @DiagramTree {%‘Fav-:urites

pkg bankview] .

Account

@1 balancefloat=0
gl id:String

¢» =constructors Accountf)

<% getBalance(:float

<» getld(:5tring

% collectAccountinfolin bankAPLIBankAPI:boalean

2. Click the checkingaccount class (of the same package) and drag it into the diagram. Place the class

below and to the left of the Account class.

3. Use the same method to insert the Creditcardaccount class. Place it to the right of the
CheckingAccount class.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

38 UModel Tutorial

Class Diagrams

pkg bankview,|

Account

@] balance:float=0
@] id:5tring

&» =constructors Account()
% getBalancef):float
'C) getld(:5tring

% collectAccountinfolin bankAPLIBankaP:boolean

CheckingAccount

CreditCard Account

@] minimumEBalance:float=10000

» «constructors CheckingAccounti)
O collectAccountinfolin bank&PlIBankAPl:boolean

&1
&l
&l

creditLimit:float
interestRateCnEBalance:float
interestRateCnCashAdvance:float

o
4
o
o
(4]

sconstructors CreditCardAccount(
getCreditLimit(:float
getinterestRateCnBalance():float
getinterestRateOnCashAdvance():float
collectAccountinfolin bankAPLIBankAP:boolean

Adding a new class

The third derived class, SavingsaAccount, will be added manually to the diagram.

1. Right-click the diagram and select New | Class. A new class is automatically added to the correct
package (bankview) which contains the current class diagram "Account Hierarchy".

N

Double-click the class name and change it to SavingsAccount.

3. Create the class structure as illustrated below. To add pro%rties and operations, use the methods
illustrated in the previous tutorial section, Class Diagrams ¥,

SavingsAccount

g interestRate:float

¢» sconstructors SavingsAccount(
% getMinimumBalance[:float

3. Inthe Properties window, in the "code file name" text box, enter "SavingsAccount.java" to define the

Java code class.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UModel Tutorial Class Diagrams 39

Properties o x

visibility public x| A
leaf Il
abstract Il
isFinalSpecialization ([
active Il
code file name 553vingsﬁ.ccount.java|
code file path
=annotations: Il
astatic Il
astrictfps |
W

=] Properties @Sty‘les ElHierarch}'

Properties and operations can be directly copied or moved from one class to another:

Within a class in the current diagram

Between different classes of the same diagram

In the Model Tree window

Between different UML diagrams, by dropping the copied data onto a different diagram.

This can be achieved using drag and drop, as well as the standard Copy/Paste keyboard shortcuts (Ctrl + C,

Ctrl + V), see also Renaming, Moving, and Copying Elements @ For the scope of this example, you can
quickly copy the collectAccountInfo () operation from the Account class to the new savingsAccount class,

as follows:

1. In the Model Tree window, expand the Account class.
2. Right-click the collectaAccountInfo operation and select Copy.
3. Right-click the savingsaAccount class and select Paste.

The operation is copied into the savingsAccount class, which is automatically expanded to display the new
operation.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

40 UModel Tutorial Class Diagrams
Model Tree o x
B/ com A
E| o altova
@ bankview

-------- [Account Hierarchy
-------- [BankView Main
-------- @ Sample Accounts
- B AltovaBank
- B John's Checking
--EE Account
........ §1 balance
-------- @ id
........ Qﬁccgunt
-@ O collecticcountinfo
@ ¥ getBalance
@ ¥ getld
- B Bank
-[F B BankView
‘E CheckingAccount
‘E CreditCardAccount
E‘E SavingsAccount

1 interestRate
i@ % collectAccountinfo
<% getMinimumBalance
b 3 SavingsAccount v

EandEITrEE @Diagram Tree |‘§¢r§ Favorites

The new operation is now also \isible in the savingsaAccount class in the class diagram.

Creating derived classes using generalization/specialization

At this point, the class diagram contains the abstract class, Account, as well as three specific classes.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UModel Tutorial

Class Diagrams 41

Account

g1 balancefloat=0
&1 id:tring

{» getBalance(:float
» getld]:String

¥ «constructor» Account]

<» collectAccountinfolin bankAPL:IBankAPI):boalean

CheckingAccount

CreditCardAccount

SavingsAccount

&1 minimumBalance:float=10000

&1 creditlimit:float

&» «constructors CheckingAccount()
4] collectAccountinfo(in bankAPEIBankAPl:boolean

@'1 interestRateCOnBalance:float
&1 interestRateOnCashAdvance:float

&1 interestRate:float

¢» wconstructors CreditCardfccount(

<» getCreditLimit():float

% getinterestRateOnBalance():float

4] getinterestRateOnCashAdvance(:float

<» collectAccountinfo(in bankAPl:IBankAPl:boolean

¥ =constructors SavingsAccount()
4] getMinimumBalance(j:float
¢» collectAccountinfolin bankAPl:IBankAPl):boolean

We will now create a generalization/specialization relationship between account and the specific classes (that
is, create three derived concrete classes).

Click the Generalization

N —

T

toolbar button and hold down the Ctrl key.
Drag from CreditCardaccount class and drop on the Account class.

3. Drag from the checkingAccount class and drop on the arrowhead of the previously created

generalization.

4. Drag from the savingsAccount class and drop on the arrowhead of the previously created
generalization: release the Ctrl key at this point.

Generalization arrows are created between the three subclasses and the Account superclass.

Account

balance:float=0
id:5tring

zconstructor: Account()

getBalance():float

getld(}:5tring

collectAccountinfofin bankA&PlIBankAPl:boolean

Ay

CheckingAccount

CreditCard Account

SavingsAccount

ance:float=10000 @'1

creditLimit:float

@'1 interestRate:float

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

42 UModel Tutorial Object Diagrams

24 Object Diagrams

This tutorial section illustrates the following tasks:

e Combine class and object diagrams into one diagram

e Create objects/instances and define the relationships between them
e Format association/links

e Enter real-life data into objects/instances

To proceed, run UModel and open the BankView-start.ump project (see also Opening the Tutorial Proiecta).
The project includes a predefined object diagram "Sample Accounts"”, which will be used to illustrate the tasks
abowe.

Combining objects and classes into one diagram

In the Model Tree window, navigate to the following path: Root | Design-phase | BankView | com | altova |
bankview. Then double-click the icon next to the "Sample Accounts" diagram.

Bank

&1 bankname:5tring
@] IPAddress:String
@] username:5tring
@] password:5tring
@] accounts:Account[*]

¢» «constructor= Bank(in name:String, in IP:String, in userString, in pw:String)
% collecthccountinfos(in bankAPLIBankaPl:boaolean

% getBalanceOfAccounts(int

% getBankMame():String

™ getiPaddress(:String

™ getUsername():String

% getPassword(:5String

AltovaBank:Bank =| @ [Johns Checking: CheckingAccount =
bankname = AltovaBank |~ T balance =
IPAddress = 1010427128 [|id=
username = John Doe L minimumEBalance = 10,000,00
password = lodoe
accounts =

"Sample Accounts" diagram

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Tutorial

Object Diagrams

This object diagram combines both classes and instances of them (objects). Specifically, AltovaBank:Bank is
the object/instance of the Bank class, while John's checking: CheckingAccount is an instance of the class

CheckingAccount class (not yet added to the diagram).

Let's now add the missing Account class to the diagram, by dragging it from the Model Tree into the diagram.
Notice that the composite association between Bank and account is displayed automatically (this association

was defined in one of the previous tutorial sections, see Class Diagrams).

Bank

bankname:string
IPAddress:5tring
username:string
password:5tring
accounts:Account[®]

aconstructors Bank(in name:5string, in [F
collectAccountinfos(in bankAPLIBEankAP
getBalanceOfAccounts(iint
getBankMame():5tring
getlPAddress():5tring
getUsernamef):5tring
getPassword(:5tring

Account

@l

balance:float=0
idi5tring

:#a:ccn:un:ts &

s | O
&
&

wconstructor: Account(
getBalance():float
getld(}:5tring

collectAccountinfolin bankAPLIEa

Adding a new object/instance (Approach 1)

Let's now add a new object to the diagram, called John's credit. This object will instantiate the
CreditCardAccount class.

1.

Click the InstanceSpecification

[

AltovaBank: Bank E

toolbar button, and then click inside the diagram, below the
object John's Checking: Checking Account.

2. Change the name of the new instance to John's Credit, and press Enter.

John's Checking: Checki

count &

bankname = AltovaBank
IPAddress = 10,10,127.128
username = lohn Doe
password = Jlodoe
accounts =

balance =
id =

v

minimumEBalance = 10,000,

| John's Credit: |

: =L 1
. ';i-—---.--p-.-qw.

3. Select the new instance to display its properties in the Properties window.
In the Properties window, next to "classifier", select CreditCardAccount from the drop-down list.

4.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

44 UModel Tutorial Object Diagrams

Properties o X
name Jlohn's Credit

qualified name Design-phasenBankView::c
element kind Instancespecification
visibility public ol
classifier CreditCardAccount hdl
specification

[=] Properties @Sty‘les @Hierarch}'

The instance has now changed appearance to display all properties of the class. Double-click any
property to enter a value, for example:

. Jg-—————— ‘..
1

John's Credit: CreditCardAccount B !

[}
o1
—
]

nnnnn

1
]
I .
tid = Lo
! creditlimit = :
: interestRateCnBalance = :

1
: interestRateCOnCashAdvance = 1
To show or hide specific nodes, right-click the instance and select Show/hide node content (Ctrl+Shift+H)
from the context menu.

Adding a new object/instance (Approach 2)

We will now add a new instance of the class savingsaccount, this time using a different approach:

1. Inthe Model Tree window, right-click the bankview package, and select New element |
InstanceSpecification.

2. Rename the new instance to John's Saving, and press Enter to confirm. The new object is added to
the package and sorted accordingly.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Tutorial

Object Diagrams 45

Model Tree

@& BankView

-A[w7 com
L@l altova

- = Banking access -

........ [Apply Java Profile

LAl bankview

........ Hhccnunt Hierarchy

........ [BankView Main

-------- [@ sample Accounts

E AltovaBank

g Jlohn's Checking

‘g John's Credit

........ [John's 5aving

- B Account W

EIMndeI Tree @Diagram Tree |{% Favaorites

3. While the object is still selected in the Model Tree window, select SavingsAccount next to
"classifier" in the Properties window.

Properties

name

qualified name
element kind
visibility
classifier
specification

John's Saving
Design-phasenBankView::c
Instancespecification
public dl

Savingsiccount |

[=] Properties @ Styles | EI Hierarchy

4. Drag the object John's saving from the Model Tree window into the diagram, placing it below the

object John's Credit.

John's Credit: CreditCardAccount B

balance = 99999
id =
creditlimit =

interestRateOnBalance =

interestRateOnCashAdvance =

......... .
:Juhri‘sSavi Savil nt &E :)
9 1,
:balance = o
rid = v
! interestRate = : .
II """"""""""" B

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

46 UModel Tutorial Object Diagrams

Creating links between objects

Links are the instances of class associations, and describe the relationships between objects/instances at a
fixed moment in time.

1. Click the existing link (association) between the object AltovaBank: Bank and the object John's
Checking: CheckingAccount.

2. In the Properties window, next to "classifier", select the entry Account - Bank. The link now changes
to a composite association, in accordance with the class definitions.

AltovaBank;Bank =| @ [)ohn's Checking: Checki count &
bankname = AltovaBank _I S a:ccc-:un:ts balance =
IPAddress = 1010127128 lid=
username = John Doe |minimumBalance = 1000000
password = lodoe
accounts =
3. Click the InstanceSpecification = toolbar button, and position the cursor over the object John's

Credit: CreditAccount. The cursor now appears as a + sign.

4. Drag from the object John's Credit: CreditAccount t0 AltovaBank: Bank to create a link between
the two.

5. In the Properties window, next to "classifier", select the entry Account - Bank.

6. Finally, using the methods outlined abowve, create a link between the object A1tovaBank: Bank and the
object John's Saving: SavingsAccount.

AltovaBank:Bank =| [John's Checking: Checki count B

bankname = AltovaBank . " accounts | balance =

IP&ddress = 10,10.127.128 . . id =

username = lohn Doeg . | minimumBalance = 10,000,00
password = lodoe

accounts = S

- John's Credit: CreditCardAccount E

. ECCCrLIﬂtE

id =

creditLimit =
interestRateCnBalance =
interestRateCnCashAdvance =

John's Saving: Savi count &

balance =
accounts | jd =

interestRate =

Note that changes made to the association type in any class diagram are automatically updated in the object
diagram.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Tutorial

Object Diagrams

47

Formatting association/link lines in a diagram

To format links between objects, place the cursor on the line and drag to the desired position. To reposition the
line both horizontally and vertically, drag the corner waypoint, as illustrated below.

AltovaBank; Bank & |

b

John's Checking: Checki count &

bankname = AltovaBank

username = John Doeg
password = Jodoe

IPAddress = 10,10.127.128 pgpe——— o

_accounts

balance =
id =
minimumEBalance = 10,000,000

accounts = -‘.‘

Waypoint

Links in an object diagram

Entering sample data into objects
The instance value of an attribute/property in an object is called a slot. To describe the state of an object,

- accounts

: % balance =

accounts

John's Credit: CreditCardAccount E

id =
creditLimit =
interestRateCnBalance =

interestRateCOnCashAdvance =

John's Saving: Savi count &

id =
interestRate =

double-click the slots and enter sample instance data after the "=" character, for example:

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

48 UModel Tutorial Object Diagrams

AltovaBank:Bank =| [Johns Checking: Checki nt 5
~ A — ~
bankname = AltovaBank | & aeepunts | balance = 11,575.00
IPaddress = 10,10,127.128 .- . . id=1
username = lohn Doe . . o | minimumBalance = 10,000,00
password = Jodoe
accnunts = b

- accounts

balance = 82.00

id= 2

creditLimit = 7500.00
interestRateCOnBalance = 1
interestRateCnCashAdvance = 1.5

John's Saving: SavingsAccount B

— balance = 8,743.00
_ a;c::u_un_ts id= 3
interestRate = 1.2

Object slots can also be filled from the Properties window, by selecting the object and entering the appropriate
text next to "value", for example:

Properties o x
element kind Slot

definingFeature balance

value 3,743.00

[=] Properties @ Styles | EI Hierarchy

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Tutorial Component Diagrams 49

2.5 Component Diagrams

This tutorial section illustrates the following tasks:

e Create realization dependencies between classes and components
e Change the appearance of lines used in the diagram

e Add usage dependencies to an interface

e Use "ball-and-socket" interface notation

To proceed, run UModel and open the BankView-start.ump project (see also Opening the Tutorial Proiectm).
The project includes sewveral predefined object diagrams which will be used to illustrate the tasks abowe. It is
assumed you have already followed the tutorial section Creating Derived Classes ® to create the class

SavingsAccount.

Creating realization dependencies between classes and components

In the Diagram Tree window, expand "Component Diagrams", and double-click the "BankView realization"
diagram icon. This diagram already contains the Bankview component and several classes connected to it with
dependencies of type "ComponentRealization". The text "from bankview" inside each class indicates the name
of the package where the class belongs.

pkg Ban kKView | .

BankView
[from bankview]

- =Realization]x.-

=

ccomponent= 3 | ﬁﬁ_“zétlﬂfﬂz} Bank

BankView T [from bankview)
| «Réalization3s

«Realizationd». . ..
. b,

CheckingAccount |
[from bankview)

CreditCard Account
[from bankview)

"Bank View realization" diagram

Let's now add a new class to the diagram and also create a realization dependency between the new class and
the Bankview component.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

50 UModel Tutorial Component Diagrams

1. Inthe Model Tree window, locate the savingsaAccount class in the bankview package. If this class is

missing, follow the tutorial section Creating Derived Classes & to create it first.
2. Drag the savingsAccount class from the Model Tree into the diagram.

By default, the class is displayed with all compartments expanded. Click the collapse/expand icons to the left
of the class to show or hide properties and operations.

Collapse/Expand S j‘ o
icons S P M
o SavingsAccount |

To create a realization dependency between the class and the component, do one of the following:

e Click the Realization toolbar button and drag from the savingsaAccount class to the Bankview

component.
e Movwe the cursor over the "ComponentRealization" handle of the class and drag to the BankView

component.

R

I;:)_:Saﬁngsﬁttﬂllnt]

"ComponentRealization"
Handle

The realization dependency between savingsAccount and BankView has now been created.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Tutorial

Component Diagrams 51

pkg BankView.

SavingsAccount 4 .
[from bankview)

?

Lo R

BankView
[from bankview)

- «Realization]x.-

«Components
BankView

$:| ﬁea:lizz:lticinl:n Bank

[from bankview)

' &Réali‘z@tinn'an'

«Realizafionds .

CreditCard Account
[from bankview)

f
i
P
4

™,
i

CheckingAccount |
[from bankview]|

To give a name to the new dependency line (for example, "Realization5"), first select the line, and then start
typing its name directly. Alternatively, select the line, and then edit the Name property in the Properties

window.

Changing the appearance of diagram lines
Let's now change the line appearance from "curved" to "direct line", as follows:

1. Select the line created previously (that is, the one between savingsAccount and BankView).

2. Click the Direct Line

/

toolbar button.

Adding usage dependencies to an interface

1. In the Model Tree window, navigate to Root | Design-phase and double-click the icon next to the
"Owveniew" diagram. The "Overview" component diagram is opened and displays the currently defined

system dependencies between components and interfaces.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

52 UModel Tutorial

Component Diagrams

pkao Design-phase .J,

cinterfaces
IBankAPI

[from EankAPl)

QP
&
&
&
o
O
O
]
]
4]
QP
&
&
&
o

connect(in IPAddress:5tring):boolean

login(in username:5tring, in password:5tring):boolean
disconnect(ivoid

getMinimimBalance(in nAccountMrint):float
getNrOfAccounts(iint

getAccountlD{in nAccountMriint):5tring
getAccountBalance(in nAccountMrintl:int
getdccountLlimit(in nAccountMrint):int
isCheckingAccount(in nAccountMrintp:boolean
isSavingsAccount(in nAccountNrinti:boolean
isCreditCardAccount(in nAccountNrint:boolean
getinterestRate(in nAccountMrint):float
getCreditLimit(in nAccountNrint:float
getinterestRateOnBalance(in nAccountMrint).float
getinterestRateCOnCashAdvance(in nAccountMrint):float

- Bank API client

scomponents]

[from Banking access)

2. In the Model Tree window, navigate to Root | Component View | BankView and drag the Bankview
GUI package into the diagram.
3. Also drag the Bankview package into the diagram.

u
4. Click the Usage * |toolbar button and drag from the Bankview GUI package to the 1BankaAPI
Interface.
pkg Design-phase J_
«interface=
IBankAP]
[from BankAPl)
| =components |
¥ connect(in IPAddress:String):boolean -] Bank API client
-’\) login(in username:String, in password:String):boolean {from Banking access)
» disconnect(:void
¥ getNrOfAccounts(iint
q) getAccountIDiin nAccountMrint):String
«COmMponents » getAccountBalance(in nAccountirint)int
MM/IGUI q} getAccountlimit(in nAccountMrinthint
(EID TS q) isCheckingAccount(in nAccountMrint:boolean

q) isSavingsAccount(in nAccountirintj:boolean

Q isCreditCardAccount(in nAccountMrinti:boolean
Q getMinimimBalance(in nAccountMrint):float

() getinterestRate(in nAccountMrint):float

-’\) getCreditlimitin nAccountirint):float

-’\) getinterestRateOnBalance(in nAccountNrint):float

-’\) getinterestRateOnCashAdvance(in nAccountMrint):float

5. Repeat the previous step for the package Bankview.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UModel Tutorial

Component Diagrams

53

As illustrated below, both packages now hawve a usage dependency to the interface. Namely, the 1BankaPT

interface is required by the packages Bankview and Bankview GUI. As for the package Bank API Client, it

provides the interface.

pkag Desrgn-phaseJ_
cinterfaces
IBankAP1
[from Bank&Pl)
‘Amm;?‘w;:r | susen = ¢» connectiin IPAddress:String):boolean {:}_ _______ Gm:aiir:::zm“tg
{from BankView] C) loginfin username:5tring, in password:5tring):boolean {from Banking access)
¢» disconnect(j:void
» getNrOfAccounts(int
scomponents E] [Lyusen i <» getAccountiD(in nAccountNrint):String
BankView GUI 5 ¢» getAccountBalance(in nAccountNrint):int
[from BankView] C} getAccountlimit(in nAccountMrintlint
C} isCheckingAccount(in n&ccountMrint):boolean
\) isSavingsAccount(in nAccountMrinti:boolean
\) isCreditCardAccount(in nAccountMrinthboolean
\) getMinimimBalance(in nAccountMrint):float
\) getinterastRatefin nAccountMrint):float
\) getCreditLimitin nAccountMrint:float
\) getinterastRateCOnBalance(in nAccountMrint):float
k) getinterestRateOnCashAdvance(in nAccounthrint):float

Using "ball-and-socket" notation

Optionally, it is possible to convert the current diagram notation to "ball-and-socket" style notation, as follows:

e Select the interface, and then click the Toggle Interface Notation button in its lower-right corner.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

54 UModel Tutorial Component Diagrams

u
—
]
M.
]

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
[]

=zinterface=
IBankAPl
[from BankaPl)

ool

:\} connect(in IPAddress:String):boolean

ad

g} login(in username:String, in password:String):boolean
% disconnect(ivoid

% getNrOfAccounts(:int

{) getAccountiD{in nAccountMrint):5tring

{) getAccountBalance(in nAccountMrintlint

{) getdccountlimit{in nAccountMrint)int

R) isCheckingAccount(in nAccountMrint:boolean

:\} isSavingsdccount(in nAccountMrinti:boolean

i

g} isCreditCard&ccount(in nAccountMrinti:boolean

{} getMinimimBalance(in nAccountMrint):float

{) getinterestRate(in nAccountMrint):float

{) getCreditLimit(in nAccountMrintlfloat

{) getinterestRatenBalance(in nAccountMrint):.float

{) getinterestRateOnCashAdvance(in nAccountMrint):float

"""""""""" g e =

e eg——— g [

e

E

Toggle interface

notation
The diagram has now changed to "ball-and-socket" notation.
pkog De-sTgn-phas-e,J. o
ccomponents I
BankView
[from BankView) L
[BankAPl | scomponents z |
Q Bank APl client
(from Banking access)

ccomponents I
BankView GUI
[from BankView])

To switch back to the previous notation style, select the interface, and then click the Toggle interface
notation button again.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Tutorial Deployment Diagrams 55

2.6 Deployment Diagrams

This tutorial section illustrates the following tasks:

Add a dependency between two artifacts in a Deployment diagram

Add elements to a Deployment diagram

Embed artifacts into a node in a Deployment diagram

Creating artifact elements (for example, properties, operations, nested artifacts)

To proceed, run UModel and open the BankView-start.ump project (see also Opening the Tutorial Proiect‘B
).

Adding a dependency between two artifacts in a Deployment diagram

In the Diagram Tree window, under "Deployment Diagrams", double-click the icon next to the "Artifacts"
diagram to open it. As illustrated below, this diagram shows the manifestation of the Bank aPI client and the
BankView components, to their respective compiled Java .jar files.

pkg Deployment ‘ufl'ew) L

wCOMmponents | .
Bank APl cient | . cmanifests foapifad. O
[from Banking access) | BankAPljar

scomponent= 2 (
BankView . . “manifeste |arifacs [
[from BankView) o BankView.jar

"Artifacts" diagram

These manifestations were created using a technique similar to other relationships previously illustrated in this
tutorial, as follows:

1. Click the Manifestation toolbar button.
2. Mowe the mouse cursor over the artifact and drag into the component.

Using the same technique, let's also add a dependency between the two .jar files, as follows:

..... -

1. Click the Dependency toolbar button.
2. Mowe the cursor over the Bankview.jar artifact and drag into the BankaPI.jar artifact.
3. Select the dependency line and type "Dependency?2".

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

56 UModel Tutorial Deployment Diagrams

=COMponents 3
Bank APl cient | . cmanifests foogifag. Oy
[from Banking access) o BankAPLjar

T

" «Dependency?=

«=component= 21
BankView R oc.ma.mf.est.n. . |=artifact= [H
[from BankView) | BankView.jar

Adding elements to a Deployment diagram

In the Diagram Tree window, under "Deployment Diagrams", double-click the icon next to the "Deployment”
diagram to open it. This diagram is deliberately incomplete and consists of a single node, which represents a
home PC. In the following steps, we will be adding more elements to this diagram.

pkag Deplo}.rment‘u’im/l_ o

Home PC

"Deployment” diagram

Assuming that the goal is to illustrate a TCP/IP connection between the home PC and a bank, let's add the
required elements:

1. Click the Node =) toolbar button, and click right of the Home PC node to insert it.
2. Rename the node to "Bank", and drag one of its edges to enlarge it.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Tutorial

Deployment Diagrams 57

Home PC

3. Click the Dependency toolbar button, and then drag from the "Home PC" node to the "Bank"
node. This creates a dependency between the two nodes.
4. Select the dependency line and enter "TCP/IP" as name of the new dependency. (Alternatively, edit the

Name property in the Properties window).

Home PC

wTCR/IP= *

Bank

Embedding artifacts

In the Model Tree window, expand the "Deployment View" package, and then drag all of the following artifacts
into the diagram: BankAddresses.ini, BankAPIl.jar, and BankView.jar. The project is preconfigured to
include deploy dependencies between these artifacts and the "Home PC" node, so all these dependencies are

now \visible in the diagram:

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

58 UModel Tutorial Deployment Diagrams

Home PC
e
edegdloy= - - - - edegloys- - - «deploy= -
sartifact= ™ sartifact» [sartifact= [
BankAddresses.ini BankView.jar |. BankAPLjar

You can also embed the artifacts into the "Home PC" node, by dragging each of the artifacts into it. Notice that
the deploy dependencies are no longer \isible on the diagram, although they continue to exist logically.

Home PC
aartifacts Oy
BankAddresses.ini . Bank
. «TCP/IPs "
=artifact= [e
BankView.jar
iy
0 adeqllny
]
T .
! cartifacts !
o) Lo
. 1 BankAPLjar .
L N

Artifacts embedded into the node can also have dependencies between them. To illustrate this:

"BankView.jar" artifact into the "BankAddresses.ini".
2. While holding the Ctrl key pressed, drag from the "BankView.jar" artifact into the "BankAPI.jar"
artifact.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Tutorial Deployment Diagrams 59

Home PC

wartifact= [
BankView.jar

«TCPAR, | DANK
i i %
wartifact= ™ cartifacts= [0
BankAddresses.ini BankAPLjar

Note: Dragging an artifact out of a node onto the diagram always creates a deployment dependency
automatically.

Creating artifact elements (properties, operations, nested artifacts)

In UML, artifacts can be composed of properties, operations, and other elements, including nested artifacts. To
create such nested elements, right-click the artifact in the Model Tree window and select the appropriate
action from the context menu (for example, New Element | Operation, or New Element | Property). The new
element will appear nested below the selected artifact in the Model Tree window.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

60 UModel Tutorial Forward Engineering (from Model to Code)

2.7 Forward Engineering (from Model to Code)

This example illustrates how to create a new UModel project and generate program code from it (a process
known as "forward engineering"). For the sake of simplicity, the project will be very simple, consisting of only
one class. You will also learn how to prepare the project for code generation and check that the project uses
the correct syntax. After generating program code, you will modify it outside UModel, by adding a new method
to the class. Finally, you will learn how to merge the code changes back into the original UModel project (a
process known as "reverse engineering").

The code generation language used in this tutorial is Java; however, similar instructions are applicable for other
code generation languages.

Creating a new UModel project
You can create a new UModel project as follows:

¢ On the File menu, click New. (Alternatively, press Ctrl+N, or click the New toolbar button.)

At this stage, the project contains only the default "Root" and "Component View" packages. These two
packages cannot be deleted or renamed. "Root" is the top grouping level for all other packages and elements in
the project. "Component View" is required for code engineering; it typically stores one or more UML
components that will be realized by the classes or interfaces of your project; howewver, we didn't create any
classes yet. Therefore, let's first design the structure of our program, as follows:

1. Right-click the "Root" package in the Model Tree window and select New Element | Package from
the context menu. Rename the new package to "src".

2. Right-click "src" and select New Element | Package from the context menu. Rename the new
package to "com"

3. Right-click "com" and select New Element | Package from the context menu. Rename the new
package to "nanonull".

4. Right-click "nanonull" and select New Element | Class from the context menu. Rename the new class
to "MyClass".

Model Tree b4

_|Root
o Component View
EE| SrC
E"L:J com
§.E| nanonull
] B MyClass

EI Model ... BB Diagra... %:% Favaorites

Preparing the project for code generation
To generate code from a UModel model, the following requirements must be met:

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Tutorial Forward Engineering (from Model to Code) 61

e A Java, C#, or VB.NET namespace root package must be defined.

e A component must exist which is realized by all classes or interfaces for which code must be
generated.

e The component must have a physical location (directory) assigned to it. Code will be generated in this
directory.

e The component must have the property use for code engineering enabled.

All of these requirements are explained in more detail below. Note that you can always check if the project
meets all code generation requirements, by validating it:

e On the Project menu, click Check Project Syntax. (Alternatively, press F11.)

If you validate the project at this stage, the Messages window displays a validation error ("No Namespace Root
found! Please use the context menu in the Model Tree to define a Package as Namespace Root"). To resolve
this, let's assign the package "src" to be the namespace root:

¢ Right-click the "src" package and select Code Engineering | Set As Java Namespace Root from
the context menu.

e When prompted that the UModel Java Profile will be included, click OK.

Utodel ot

This command will include the UModel Java Profile and apply it to the
selected Package.
Do you want to continue?

QK Cancel

Notice the package icon has now changed to =71, which signifies that this package is a Java namespace root.
Additionally, a Java Profile has been added to the project.

Model Tree x

Roat
-------- Compaonent View
B & src
E| com
EE| nanonull
E B MyClass
= Relations

-[# [+7] Java Profile [lava Profile.ump]

E| Model T..| = Diagram... %% Favorites

The actual namespace can be defined as follows:

1. Select the package "com" in the Model Tree window.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

62

UModel Tutorial

Forward Engineering (from Model to Code)

2.

3. Repeat the step above for the "nanonull" package.

In the Properties window, enable the <<namespace>> property.

Properties

name com

qualified name SFCCOm

element kind Package

visibility public dl
LR

«Mamespaces

=] Properties @I Styles EI Hierarchy

Notice that the icon of both "com" and "nanonull" packages has now changed to %!, which indicates these are
now namespaces.

Another requirement for code generation is that a component must be realized by at least a class or an
interface. In UML, a component is a piece of the system. In UModel, the component lets you specify the code
generation directory and other settings; otherwise, code generation would not be possible. If you validate the
project at this stage, a warning message is displayed in the Messages window: "MyClass has no
ComponentRealization to a Component - no code will be generated". To solve this, a component must be
added to the project, as follows:

1.

2. Rename the new Component to "nanonull".

3.

Right-click "Component View" in the Model Tree window, and select New Element | Component from

the context menu.

Model Tree

=

Root
2 JComponent View
- £] nanonull
3=

El " com
EE| ~nanonull
: B MyClass
5..;}¢;Ff-':l_=.t|-:-n:-

-[H [+« 7] Java Profile [Java Profile.ump]

EIM::dEITr... EDiagram... %'%Fat-‘-:urites

In the Properties window, change the directory property to a directory where code should be
generated (in this example, "src\com\nanonull"). Notice that the property use for code engineering

is enabled, which is another prerequisite for code generation.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UModel Tutorial Forward Engineering (from Model to Code) 63

name nanonull

Javad.0 {1.9) Ll
srovcominanonull

use for code engineering

=] Properties @I Styles EI Hierarchy

4. Save the UModel project to a directory and give it a descriptive name (in this example, C:
\UModelDemo\Tutorial.ump).

Note: The code generation path can be absolute or relative to the .ump project. If it is relative as in this
example, a path such as src\com\nanonull would create all the directories in the same directory
where the UModel project was saved.

We have deliberately chosen to generate code to a path which includes the namespace name; otherwise,
warnings would occur. By default, UModel displays project validation warnings if the component is configured to
generate Java code to a directory which does not have the same name as the namespace name. In this
example, the component "nanonull" has the path "C:\UModelDemo\src\com\nanonull", so no validation
warnings will occur. If you want to enforce a similar check for C# or VB.NET, or if you want to disable the
namespace validation check for Java, do the following:

1. On the Tools menu, click Options.
2. Click the Code Engineering tab.
3. Select the relevant check box under Use namespace for code file path.

The component realization relationship can be created as follows:

¢ In the Model Tree window, drag from the MyClass created previously and drop onto component
nanonull.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

64 UModel Tutorial Forward Engineering (from Model to Code)

Model Tree

O Info:

Drop will add ComponentRealizations to the Component

Root
B Compo

H = s

El w | COm

E E--L:_l w | nanonull

: P B MyClass
E--?&;F{-’:L‘ltiﬂl'l‘.’-

& [« Java Profile [Java Profile.ump]

ElMCIdElTrEE EDiagramTree %}Fam-‘-:urites

The component is now realized by the project's only class MyClass. Note that the approach abowe is just one of
the ways to create the component realization. Another way is to create it from a component diagram, as
illustrated in the tutorial section Component Diagrams.

Next, it is recommended that the classes or interfaces which take part in code generation have a file name.
Otherwise, UModel will generate the corresponding file with a default file name and the Messages window will
display a warning ("code file name not set - a default name will be generated"). To remowve this warning:

1. Select the class MyClass in the Model Tree window.
2. In the Properties window, change the property code file name to the desired file name (in this
example, MyClass.java).

Properties x
name My Class

qualified name sroicomananonull:byCl
element kind Class

visibility public il
leaf]

abstract]

isFinalspecialization [

active]

code file name MyClass.java

code file path ChUModelDemotsroico
«annotationss]

wstatics]

astrictfps I

=] Properties @I Styles EI Hierarchy

Including the JDK types

Although this step is optional, it is recommended that you include the Java Development Kit (JDK) language
types, as a subproject of your current UModel project. Otherwise, the JDK types will not be available when you

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Tutorial

Forward Engineering (from Model to Code)

65

create the classes or interfaces. This can be done as follows (the instructions are similar for C# and VB.NET):

1.

On the Project menu, click Include Subproject.

2. Click the Java tab and select the Java JDK 9 (types only) project.

Include Subproject

Bazsic CH Java Ok

PS
@ ava JDK 9 (types only).ump Cancel

@ Java IDK 8 (types onlyl.ump
@ Java IDK 7 (types onlyl.ump
@ lava IDK & (types onlyl.ump
@ Java DK 5.0.ump

Mo (WP PP v I Browse. .. I

Description:
Containg acceszible packages: and types from fram Sun Jawva SE 9 far
Java 3 [without operations and properties).

When prompted to include by reference or as a copy, select Include by reference.

Include Subproject

K.ind of include

(®)nclude by reference; Store a reference ta the original data of your subpraject.
Include subproject elements: E ditable Fieadonly

() Include as a copy: Store a copy of the ghared data of your subproject in wour kodel
project file. References to the onginal data will be lost,

Styles of included diagrams
Fetain styles: Included diagrams will appear as defined in their subproject.

IJze project file shyles: Diagrams will uze curent project file stules.

|Java'3.[l"-.] ava 0K 9 [lwpes anly].ump
kake path relative to Lk odelT utonial ump Cemee

Generating code
Now that all prerequisites have been met, code can be generated as follows:

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

66 UModel Tutorial Forward Engineering (from Model to Code)

1. On the Project menu, click Merge Program Code from UModel Project. (Alternatively, press F12.)
Note that this command will be called Overwrite Program Code from UModel Project if the
Overwrite Code according to Model option was selected previously on the "Synchronization

Settings" dialog box illustrated below.

Synchronization Settings

Code from Model Model from Code
SPL templates
|User-defined ovemde default

When deleting Code
(® Comment out () Delete

Synchronization
(®) Merge Model into Code
() Overwrite Code according to Model

[litsheaps show dislog when synchronizing

Project Settings Cancel

2. Leawe the default synchronization settings as is, and click OK. A project syntax check takes place

automatically, and the Messages window informs you of the result:

Messages
W v|al vjal wlal O)GE X

Bl starting Syntax Check ...
H— .. finished Syntax Check - 0 error(s), 0 warning(s)

Bl starting update code from project ..
i Collecting source files in "ChUModelDematsrdcominananull’

Parsing file: "C\UModelDemosrcicomnanonullMyClass.java'
Resolving type references
---------- w finished update code from project - 0 error(s), 0 warning(s)

Modifying code outside of UModel

Generating program code is just the first step to developing your software application or system. In a real life
scenario, the code would go through many modifications before it becomes a full-featured program. For the
scope of this example, open the generated file MyClass.java in a text editor and add a new method to the

class, as shown below. The MyClass.java file should look as follows:

package com.nanonull;

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UModel Tutorial Forward Engineering (from Model to Code) 67

public class MyClass{
public float sum(float numl, float num2) {
return numl + num?2;

}

MyClass.java

Merging code changes back into the model
You can now merge the code changes back into the model, as follows:

1. On the Project menu, click Merge UModel Project from Program Code (Alternatively, press Ctrl +
F12).

Synchronization Settings

Code from Model Meodel from Code

Synchronization
(@ Merge Code into Model

() Overwrite Model according to Code

[litsheaps show dislog when synchronizing

Froject Settings Cancel

2. Leawe the default synchronization settings as is, and click OK. A code syntax check takes place
automatically, and the Messages window informs you of the result:

Messages x
W v|a v]al vlal O)GE X
I:Tlﬂtarting update model from code ... &~

[Collecting source files in "C\UModelDema'sreycomnanonull®

Parsing file: "Ch\UModelDemotsroicominanonull My Class java’

Resolving type references

fr— .. finished update model from code - 0 error(s), O warning(s) -

The operation sum (which has been reverse engineered from code) is now \visible in the Model Tree window.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

68

UModel Tutorial

Forward Engineering (from Model to Code)

[Root

2/ | Component View
E--E_|$:| nananull
:’:; Relations
H Ev‘]Jaua IDKE 9 [types only) [Java JOK S [types only
BB sre
B[com
E-EH‘]nannnull

- < return
-@ = Relations
S| F‘q]aua Profile [Java Profile.ump]

4 [g

EI Model Tree | Diagram Tree | {E‘ Favarites

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UModel Tutorial Reverse Engineering (from Code to Model) 69

2.8 Reverse Engineering (from Code to Model)

This tutorial section illustrates how to import existing program code from a directory into a new UModel project
(reverse engineering). You will also add a new class into the model, prepare it for code generation, and then
merge changes back into the Java code (forward engineering). Although this tutorial illustrates importing Java
code, the process is similar if you would like to import existing C# or VB.NET code.

Note: The sample Java code used in this tutorial is available as a ZIP archive at the following path: C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples\OrgChart.zip. Please
unzip the archive to the same directory before starting the tutorial.

Importing existing code from a directory

1. On the File menu, click New.

2. On the Project menu, click Import Source Directory.

3. Select the language of the source code (in this example, Java).
4

Click the Browse button U , select the OrgChart directory unzipped previously, and click Next. Notice
the Enable diagram generation check box is selected, which instructs UModel to generate Class
Diagrams and Package Diagrams from the source code.

Import Source Directory >

Language: |Javal.0(1.8) e

Dlirectony: |C:"-._LIsers"-.ahu:uva"—..Du:uu:umerdS"-.}-‘-.Itwa"-._LlMu:udeIEmI w

Process all subdirectores
Import directories relative to UModel project file

Java Project Settings
[]JavaDocs a= Documentation

Resolve aliases

Synchronization
(@) Merge Code into Model
() Owerwrite Model according to Code

Diagram generation

Enable diagram generation

< Back Mest = Cancel

5. Select the Generate diagram per package option. This instructs UModel to create a new diagram
for each package. The diagram styling options can be changed later if necessary.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

70 UModel Tutorial Reverse Engineering (from Code to Model)

Content Diagram Generation >

Content diagrams

Style
[] Show Attributes compartment

[|iSenerate single diagram;

(Generate diagram per package

[Jopend [] Show Operations compartment
pen diagrams

[] Show nested Classifiers compartment
[] Show nested classfiers separately
[] Show EnumerationLiterals compartment
[] Show Tagged Values

Ise own compartment for MET properties

[] Show anonymous bound elements
Hyperink package(s) to diagramis)

Show MNET properties compartment

Autolayout
Autolayout
hierarchic w
< Back Mest = Finish Cancel

6. Click Next to continue. This dialog box allows you to define the package dependency generation
settings.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Tutorial Reverse Engineering (from Code to Model) 7

Package Dependency Diagram Generation >

Package dependency diagram

S . Style
GGenerte diagram:

Fill color of extemal packages:
[] Open diagram " | |

St
[lgnore extemal packages
{nat child of impart target)

Hyperink package to diagram Autolayout

Autolayout

hierarchic w

< Back Next 3 Cancel

7. Click Finish. When prompted, save the new model to a directory on your system. The data is parsed,
and a new package called "OrgChart" is created.

Maodel Tree »

_|Foot

Component View

[@[% | OrgChart

D Unknown Externals

E.D Jawva Profile a Profile.umnl

T
[u1]
=1]

.
(=]

[

F1Model ... | = Diagra... | # Favorites

8. Expand the new package and keep expanding the sub packages until you get to the OrgChart
package (com | OrgChart). Double-click the "Content of OrgChart" diagram icon:

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

72 UModel Tutorial

Reverse Engineering (from Code to Model)

Model Tree

Root
H Component View
= & OrgChart
-------- [Content of OrgChart

-E wcom

........ [Content of com

- | w7 altova

-B w1 CrgChart

........ [Content of OrgChart
- | wipo

-F EH CompanylogoType
-F E Desclype

-[F E DivisionType

-[F E emailType

-[# E FirstType

[B OfficeType

-[H B COrgChartDoc

- B CraChartType

-[# E PersonType

-[# B PersonType2

- B TextType

~[#| v OrgChartTest

-@ = Relations

o] Unknown Externals

-------- ﬁPackage dependencies of OrgChart

[[« 7] Java Profile [Java Profile.ump]

E|M::udEITrEE @Diagram Tree| 3§ Favorites

The "Content of OrgChart" diagram is now displayed in the main pane.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UModel Tutorial Reverse Engineering (from Code to Model) 73

pkg -DrgChart,J

] | . |DescType
«Namespacex
ipo

[CompanylogoType | [DivisionType

[emailtype | [Firstiype | :

OrgChartDoc | [OrgChartType | [TextType |

Adding a new class to the OrgChart diagram

At this stage, you have fully reverse engineered some existing Java code and created a model out of it, which
also includes sewveral automatically generated diagrams. We will now go one step further, and extend the model
to include a new class.

1. Right-click inside the "Content of OrgChart" diagram, and then select New | Class from the context
menu.
2. Click the header of the new class, and enter CompanyType as the name of the new class.

pkg OrgChart -
[7] | | DescType
«famespacex
ipo
A P n
01_; CompanyType| E;_,
. = o
[CompanylogoType | . [DiwisionType | e
[emailType |~ [FirstType | [OfficeType |
e

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

74 UModel Tutorial Reverse Engineering (from Code to Model)

3. Add new operations to the class using the F8 shortcut key. For the purpose of this example, add the
following operations: CompanyType (), getCompanyType () : String, setCompanyType () : String.

L} u
: F;' CompanyType -E :
= .
'3':': » «constructors CompanyType() g
’] <» getCompanyType(:5tring '
: % setCompanyType():String : _
SSS s s s s T

Note: Since the class name is CompanyType, the operation CompanyType () is automatically assigned the
<<constructor>> stereotype.

Making the new class available for code generation

Now that the model has been extended with a new class, you will most likely want to update the underlying
code accordingly, in order to keep both in sync. However, if you press F11 to check the project syntax at this
stage, a warning is displayed in the Messages window: ‘CompanyType' has no Component Realization to a
Component - ComponentRealization to Component ‘OrgChart' will be generated. The reason is that the new
class requires realization to a component before code can be generated from it, as explained in Round-Trip
Engineering (Model-Code-Model . In some cases (including this example), UModel can generate the
required realization automatically; however, you can also define the realization dependency manually, as
follows:

1. While the companyType class is selected in the diagram, locate the property "code file name" in the
Properties window and enter "CompanyType.java" as file name.

name CompanyType A
qualified name COrgChart:com:OrgChart
element kind Class

visibility public bl
leaf O

abstract O

isFinalSpecialization |

active O

code file name CompanyType.java

code file path

«annotationss O W

[=] Properties @St}'les @Hierarchy

2. Click the new companyType class in the Model Tree, drag upwards and drop onto the OrgChart
component below the Component View package. A notification appears when the mouse pointer is over
a component.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Tutorial Reverse Engineering (from Code to Model) 75

Model Tree o= ||
[— 1 [nlem Mirerhark |
Root -
arcd @ Info: :I

-EE] Drop will add CormponentRealizations te the Component
HE]
B £] OrgChart PersonType? | .

[=% Relations

B Z] COrgChartTest

[&] types

.$:| ®ml

B & CrgChart

-------- [Content of OrgChart

-------- EﬂPackage dependencies of OrgChart
-A 1 com

........ [Content of com

@ altova

-E [OrgChart :
.7 Content of OrgChart P—

E CompanylLogaoType

-E CompanyType

‘E DescType W

| CompanyLogoType

This method creates a relation of type "ComponentRealization" between a class and a component. An
alternative way to do this is to draw the relation in a component diagram, see Component Diagrams
. Expand the Relations item below OrgChart to see the newly created relation.

Model Tree *

“IRoot N
B 1 Component View
- £] altova
-E] ipo
E_|$:| OrgChart
E| —c- Relations
S CnmpnnentReallzatmn [{CompanylogoType]
[CnmponentReallzatlon [CompanyType)
-------- b ComponentRealization: [DescType)
e CnmpnnentRealizatinn' [DivisionType)
CnmpnnentReallzatmn [emailType) ¥

ElMGdHTrEE @Dlagram Tree |§% Favorites

Merging program code from a package

In UModel, you can generate code at pack 3 level, component level, or for the entire project, see also
Synchronizing the Model and Source Code In this example, we will generate code at component level, as
follows:

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

76 UModel Tutorial Reverse Engineering (from Code to Model)

1. In the Model Tree window, locate the OrgChart component in the "Component View".
2. Right-click the OrgChart component, and select Code Engineering | Merge Program code from

UModel Component from the context menu.

Synchronization Settings

Code from Model Model from Code
SPL templates
|User-defined ovemide default

When deleting Code
(® Comment out () Delete

Synchronization
(®) Merge Model into Code
() Overwrite Code according to Model

[litslways show dislog when synchronizing

Project Settings Cancel

The messages window displays the syntax checks being performed and status of the synchronization

process.
Messages x
¥ v|al wa vlal BBE X
Parsing file: "ChilUsers\altovaiDocumentsiAltovatUModel2018\UModelExamples\COrgChartwcom\OrgChart TextType.java’ -~
Resolving type references
Creating file: "Ch\Users\altova\DocumentstAltova\UModel201 8 WUModelExamples\CrgChartcom\CQrgChat\CompanyType.java’
Changing file: 'C\Users\altova\DocumentsiAltova'UModel201 8\UModelExamples\OrgChart\com\OrgChart\CompanyType java' [Pass
- .. finished update code from project - 0 error(s), 0 warning(s) W
£ >

When the process completes, the new CompanyType.java class has been added to the folder ...
\OrgChart\com\OrgChart\.

All method bodies and changes to the code will either be commented out or deleted depending on
the setting in the "When deleting code" group, in the Synchronization settings dialog box.

You have now completed a full round-trip code engineering cycle with UModel.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Graphical User Interface 77

3 UModel Graphical User Interface

The UModel graphical user interface consists of the main diagram pane, as well as several smaller helper
windows where you can enter or view data. The diagram pane serves as a parent container for any diagram
windows that are open. To cycle through all open diagram windows, press Ctrl+Tab.

@) Altova UModel - C:\Users\altova\Documents — O >
f_1 File Edit Project Layout View Tools Window Help -8 X
O = ['s] 4 p | X BB R & & 8 enumeration - g 8 @ SHL Diagram
..... o ane
o oo s Do A Mo Bpop ODBEEcEHE-E o e = LA =L TR R 1 P
* o o o
Diagram Tree o X A
@Dia-;nams -~
i [Account Hierarchy
[Apply Java Profile
- () Artifacts Lol
Fl:i:ant:!ew Ma:.n " @1 banks:Bank[*] {ordered}
-8 | BankView realization @] bankAPLIEankAP| {ordered}
i (] Deployment #bank
Model Tree ---E"!OVENi"“‘Diﬁ ram Tree = it 3 «constructors BankView(in bankAPl:|IBankAPl) e————
window - [E® Overvi ar avornes g collectBankAddressinfosi):boolean !
window window
[0 Samp oo g» collectAccountinfosfiboolean
[]Model Tree |l Diagram Tree | %% Favorites & colledDatafiboolean Diagram
i ¢» getBalanceAtBank(in bankname:Stringint window
Properties ox » getBalanceSumOfAllBanks(:int
name BankView Main
element kind Class Diagram
Properties -
window Styles Hierarchy
window window ¥
I — >
[=l Properties | 53 Styles EIHierarchy -f_iﬁank‘u"lewl'ulain Messages 4
Cverview * X Messages window ®
|—| ¥ val vial va miww X
[
Overview | . |
window Documentation
window
P
Ovenriew Ed Documentation
UModel Basic Edition Altova GmbH CAP NUM SCRL

UModel graphical user interface

By default, the helper windows on the left side are docked in groups of three, and the Messages window
appears below the diagram pane. You can, however, move and dock or undock any window as necessary. All
windows can be searched using the Find combo box in the Main toolbar, or by pressing Ctrl+F. See also

Finding and Replacing Text.

To dock or undock a window:

¢ Right-click its title bar, and select Docking (or Floating, respectively) from the context menu.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

78 UModel Graphical User Interface

To move a window:

1. Click the window's title bar and drag to a new position. Several docking helpers appear.

2. Drag the window over a top, right, left, or bottom handle to dock it to the new position.

To reset all toolbars and windows to their default state:

¢ On the Tools menu, click Restore toolbars and Windows.

This chapter provides reference information about the parts that make up the UModel graphical user interface,
as follows:

Model Tree Window

Diagram Tree Window
Favorites Window
Properties Window@
Styles Window

Hierarchy Window
Oweniew Window

Documentation Window

Messages Windowm
Diagram Window
Diagram Pane

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Graphical User Interface Model Tree Window 79

3.1 Model Tree Window

The Model Tree window enables you to view and manipulate all items (packages, classes, diagrams,
relationships, and so on) in the UModel project.

Model Tree »

_|Root
-~ Component View

E|M::udEITrEE @Diagramﬂ'ee 2% Favorites

Model Tree window

When you create a new UModel project, two packages are available by default, the "Root" and "Component
View" packages. These two packages are the only ones that cannot be renamed or deleted. The "Root"
package serves as starting point for modeling all other elements, while the "Component View" package is
required for code engineering.

You can create additional packages, classes, diagrams, and their hierarchy either from this window or directly
from a diagram, see Creating Elements @ For additional operations that you can take against items in the
Model Tree, see the How to Model... chapter.

Note: UModel includes several example projects that you can explore in order to learn the modeling basics
and the graphical user interface. These can be found at the following path: C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples.

Showing, hiding, and sorting items in the Model Tree

To configure what should be displayed in the Model Tree window, as well as the sorting options, right-click
inside the window, and then select the required menu option. To view all actions that can be taken against
items displayed in the Model Tree window, right-click the item and observe the context menu options.

Collapsing and expanding items in the Model Tree
To expand items (for example, packages) in the Model Tree window:

e Press the * (asterisk) key to expand the current item and all child items
e Press the + (plus) key to expand the current item only.

To collapse the packages, press the - (dash) keyboard key. To collapse all items, click the "Root" package
and press - (dash). Note that you can use both the standard keyboard keys and the numeric keypad keys to
achiewe this.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

80 UModel Graphical User Interface

Model Tree Window

Identifying active diagram items

When a diagram is open in the Diagram pane, the Model Tree window shows some items with a light-blue dot
at their base. These are items that are displayed in the active diagram (like "BankView" and "Java Profile" in

the example below):

Model Tree a
Root
- Behavior View
[Component Wiew
[Deployment View
= Design View
- B Owerview

Accaunt Transfer
é Banking access
'CLF" BankWiew

[= Relations

‘@ Interaction View

- B JDKS.0 Java ftypes o

-H Unknown Externals
-H Use Case View

-4 #]Java Profile [Java Profile.ump]

pkag BankView | .

Apply Java Profile in order to get the Java specific
Stereotypes and Datatypes
Apply ‘'namespace’ stereotype to define a Java -

namespace

BankView oca.pp;lyx-. wprofiles
ffrom Design View] f--c----mmaemmeeem-22d Java Profile |
[from Root)

ElModelTree @DiagramTr-‘:-‘: ‘%%Fa‘-.-‘-:uritr:s

Icon reference

The Model Tree window may display a large number of icons which correspond to elements and diagrams in
your project, the code engineering packages, as well as the imported profiles or subprojects. Specifically, it

may display the following package types:

Icon | Description
Standard UML Package
= Java namespace root package. Used to generate or reverse engineer Java code
o C# namespace root package. Used to generate or reverse engineer C# code
WE Visual Basic namespace root package. Used to generate or reverse engineer VB.NET code
S0 XML Sphema namespace root package. Qsed to %lerate XML schemas from the model, or import
them into the model, see XML Schema Diagrams .
M A namespace package (a package with the <<namespace>> stereotype applied to it)
4F A UML profile

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UModel Graphical User Interface

Model Tree Window 81

The diagrams that can appear in the Model Tree window are listed below.

Icon | Description

[l | Activity Diagram

1 | Class Diagram

E Communication Diagram

2] Component Diagram

= | Composite Structure Diagram
& Deployment Diagram

[Interaction Ovenview Diagram
= Object Diagram

= Package Diagram

Profile Diagram

= Protocol State Machine Diagram
&) Sequence Diagram

£l | State Machine Diagram
Timing Diagram

al Use Case Diagram

F=tl XML Schema Diagram

Below are some examples of UML modeling elements that can appear in the Model Tree window. For more
information about UML elements and the diagram types where they occur, see the UML Diagrams chapter.

Icon | Description
=] Class
@1 Property

» Operation

b Parameter
& | Actor
o Use Case
] Component

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

82 UModel Graphical User Interface Model Tree Window
Icon | Description
7 Node
i Artifact
o= Interface
== Class Instance (Object)
1 Class instance slot
j’; Relations

Constraints

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UModel Graphical User Interface Diagram Tree Window 83

3.2 Diagram Tree Window

The Diagram Tree window displays any diagrams contained in the current UModel project.

Diagram Tree =
£ Diagrams

------- [=] Account Transfer

------- [E] Apply Csharp Profile

....... [E] BankAPI Draft

....... [BankView Main

....... =7 BankView realization

------- rE'I Collect Account Information
....... [l collectData Draft

....... [E] Connect to BankAPI

....... [Ceployment

------- [Hierarchy of Account

....... =7 Overview

------- B Overview Account Balance
....... [El Query BankServer Draft

....... [@ sample Accounts

E| Model T..| & Diagra... %} Favorites

Diagram Tree window

Diagrams in this window can be shown either as an alphabetical list, or grouped by type. To change the display
option, right-click in the window, and select or clear the Group by Diagram type option.

For instructions about creating, opening, and generating diagrams, including how to model their content, refer
to the How to Model... @ chapter. For specific information about each diagram type, refer to the UML

Diagrams 26 chapter.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

84 UModel Graphical User Interface

Favorites Window

3.3 Favorites Window

The Favorites window displays any modeling elements or diagrams that you have added as favorites.
"Favorites" represent a personal, custom-picked list of modeling elements or diagrams that you can use for

quick access, for example.

Favorites

& Favorites

5-1_:_| v bankview

........ [BankView Main
........ [Hierarchy of Account
........ [sample Accounts
- B AgencyBank

-[[John's 1st

- B lohn's 2nd

- B lohn's 3rd

-[F B Account

- B Bank

- B BankView

W

E| Model Tree | = Diagram Tree 2% Favorites

Favorites window

By default, the contents of the Favorites window are automatically saved when you save the project. You can
change this option from the Tools | Options menu, File tab. The relevant option name is Load and save with

project file | Favorites.

ltems in the Favorites window are not copies or clones; they represent the actual elements or diagrams. Most
actions that you take in the Model Tree window are also applicable in the Favorites window, including adding or

deleting elements. For more information, see the How to Model...

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UModel Graphical User Interface Properties Window 85

3.4 Properties Window

The Properties window shows information about an item that is currently selected (in focus). The "in focus"
element can be an element selected in the Model Tree window (or other windows), an element selected on the
diagram, or even a diagram itself.

The Properties window also enables you to change the properties of the currently selected element or
relationship. The available properties depend on the kind of the element that is selected. There are properties
which are read-only and grayed out (such as "element kind") and properties that you can modify (for example,
"name").

If an operation or property takes a parameter, you can quickly jump to the respective parameter type in the
Model Tree window, directly from the Properties window. To do this, right-click the "type" property of the
parameter in the Properties window and select Select in Model Tree from the context menu. The same is
applicable for return parameters.

Properties x
name api

qualified name Design View::BankView::c
element kind Parameter

visibility unspecified |
ordered |

unigue

multiplicity |
type dBankAP| |
type modifier n/a Select in Model Tree
direction in]
default o |
yartrglist |

zannotations: |

«fFinals |

[=] Properties @ Styles EI Hierarchy

Properties window

Changing a property of an element from the Properties window is immediately reflected in the diagram.
Likewise, making a change in the diagram (for example, changing the visibility of an operation from public to
private) affects the applicable property in the Properties window.

Properties that are enclosed within guillemets represent stereotypes (for example, «final»). You can add
custom stereotypes to the project, in which case they would appear as properties in the Properties window, in
addition to the default ones. For more information, see Example: Creating and Applying Stereotypes D

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

86 UModel Graphical User Interface Styles Window

3.5 Styles Window

The Styles window enables you to view or change the visual appearance of diagrams or elements that are
currently selected (in focus). The style attributes fall into two general groups:

e Formatting settings (for example, font size, weight, color, etc)
e Display settings (for example, show background color, grid, \visibility settings, etc).

Styles x
Project Styles W
Header Gradient Bec/#ATAGBF [N LI@ ~
Header Gradient Enclwhite —1 LI@
Header Colol black [Kal])
Header Font Segoe LI hdl
Header Font-Size 11]|
Header Font-Weight|bold hdl
Fill Color white =153
Trans. Fill Color Ld)
Pen Colot #525252 W w |53
Font Color black [Kal])
Font Segoe LI hdl
Font-Size 11]|
Font-Weinht narmal - | b
=] Properties '-.?;.l Styles ElHierarch}-'

Styles window

Changing a property from the Styles window is immediately reflected in the user interface. Likewise, making a
style change in another place (for example, setting the visibility of the diagram grid using the Show Grid ::
toolbar button) affects the applicable property in the Styles window.

The Styles window has a dropdown list in the upper part, which enables you to select the level at which the
style change is to be applied (for example, at individual element level, or at project level). For more information,
see:

¢ Changing the Style of Elements
¢ Changing the Style of Diagrams
e Changing the Style of Lines and Relationships

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Graphical User Interface Hierarchy Window 87

3.6 Hierarchy Window

The Hierarchy window displays all relations of the currently selected modeling item, in two different views. The
modeling element can be selected in a diagram, in the Model Tree window, or in the Favorites window.

ltems in the Hierarchy window can be displayed in two views:

o Tree view
e Graph view

To switch between views, click the Show tree view E or Show graph view buttons in the upper-left
corner of the window.

The tree view shows multiple relations of the currently selected element, as a tree. Click the buttons at the top
of the window to select types of relations that are to be shown. In the image below, only generalizations
and associations are selected to be shown.

E| 4— Subtypes
i B CheckingAccount
........ H SavingsAccount
- H CreditCardAccount

E‘—; Associations

=l Properties @St}-‘les @Hierarchy

Hierarchy window (tree view)

The graph view shows a single set of relations in a hierarchical oveniew, as a diagram. In this view, only one of

the relation buttons can be active at any one time. In the image below, the Show Generalizations button
is currently active.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

88 UModel Graphical User Interface Hierarchy Window

Hierarchy =

B[] — B omor .

-E Account

B CheckiﬁgAcmunt B Sauing.sAccount B CreditCérdAccount

Create diagram as this graph

[=] Properties @St}-‘les @Hierarchy

Hierarchy window (graph view)

In the graph view, you can generate diagrams that include the elements visible in the window. To do this, right-
click inside the window, and select Create diagram as this graph from the context menu.

Settings pertaining to Hierarchy window can be changed using the menu option Tools | Options | View, in the
Hierarchy group in the lower section of the dialog box.

The Hierarchy window is navigable: double-click one of the element icons, inside the window, to display the
relations of that element. This applies both in the tree view and in the graph view.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Graphical User Interface Oveniew Window 89

3.7 Overview Window

The Ovenview window displays an outline view of the currently active diagram. This is especially handy when
you need to scroll very large diagrams. To scroll the diagram, click and drag the red rectangle.

Owverview »

Overview window

See also Zooming into/out of Diagrams .

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

90 UModel Graphical User Interface Documentation Window

3.8 Documentation Window

The Documentation window enables you to document any of the UML elements available in the Model Tree
window. To add documentation to an element, first click the element, and then enter text in the Documentation
window. This window supports the standard editing shortcuts, including Select All (Ctrl+A), Cut (Ctrl+X),
Copy (Ctrl+C) and Paste (Ctrl+V).

Documentation =
IThis is some documentation text which
contains a hypedink.

Documentation window

Text inside the Documentation window can be spell-checked. To do this, right-click inside the window, and
select Documentation Spelling from the context menu.

Documentation text can also be exported as comments in the generated source code, or imported from source

code comments during reverse engineering. For more information, see Documenting Elements @@,

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Graphical User Interface Messages Window 91

3.9 Messages Window

The Messages window displays any of the following message types: information messages, warnings, and
errors. Such messages may occur when you check the project syntax (see Checking Project Syntax), or
when you perform code engineering tasks. For more information about code engineering, see Generating

Program Code and Importing Source Code@.

Messages *
Y vjal vial vjal binE X

Bl starting Syntax Check ...
- . finished Syntax Check - 0 error(s), 0 warning(s)

[El starting update code from praoject ...
-------- Collecting source files in "CAWUNML_Bank_SampletJavaCodecomtaltovaibankview’

-------- Parsing file: "CA\UML_Bank_Sample’JavaCode\com\altova\bankviewhAccount.java’

-------- Parsing file: "CA\UML_Bank_Sample'JavaCode\com'\altovaibankview'\Bank. java'

-------- Parsing file: "CA\UML_EBank_Sample‘JavaCode\com'altovaibankview'\BankView java'

-------- Parsing file: "CAUML_Bank_Sample'JavaCode\com\altova\bankview\CheckingAccount,java’
-------- Parsing file: "CA\UML_Bank_Sample'JavaCode'\com'\altova\bankview\CreditCardAccount.java'
-------- Parsing file: "C\UML_Bank_Sample‘JavaCode'\com'\altova'\bankview\5avingsiccount.java'
-------- Resolving type references

-------- w finished update code from project - 0 errar(s), 0 warninag(s)

Messages window

The table below lists possible message types and their icons.

Icon Description

none Indicates an information message.

r, Indicates a warning message. Warnings are less critical than errors, but they may still
prevent code from being imported or generated.

1] Indicates an error message. When an error occurs, code generation or import fails.

The buttons available at the top of the Messages window enable you to take the following actions:

Icon Description
| Filter messages by sewerity: information messages, and warnings. Select Check All to

include all severity lewvels (this is the default behavior). Select Uncheck All to remowve all
severity lewvels from the filter.

o Jump to the next error.
al Jump to the previous error.
= Jump to the next warning.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

92 UModel Graphical User Interface Messages Window

Icon Description

2 Jump to the previous warning.

hd Jump to the next line.

al Jump to the previous line.

Copy the selected line to the clipboard.

Copy the selected line to the clipboard, including any lines nested under it.
Copy the full contents of the Messages window to the clipboard.

X Clear the Messages window.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Diagram Window 93

UModel Graphical User Interface

3.10 Diagram Window

Whenever you create a new diagram, or open an existing one, a new Diagram window is loaded in the Diagram
Pane“¥. The diagram window provides the canvas (drawing area) where you design UML diagrams. Various
modeling commands are available when you right-click either the diagram canvas itself, or any element on it.

Importantly, the toolbar buttons and the context menu commands in UModel change based on the type of
diagram that is currently active (in focus). For example, if you click inside a Class diagram, the toolbar buttons
will include only elements applicable to class diagrams. To view the diagram type, click inside an empty area in
the diagram, and observe the "element kind" property displayed in the Properties window“*. The diagram type
can also be distinguished by the icon accompanying the diagram, see Creating Diagrams “*.

E=N Eol =53

57 BankView realization

Show what our sample
component will realize
(when forward

engineering):
BankView
[from bankview]
_,ﬁ.-.--
ccomponent= 3 | s Bank
BankView T [from bankview)
AT
Account | S
(from bankview) | = .~ 7 . L N
J . .J!. S ‘.x\‘.
¢ Do o A :
CheckingAccount |
SavingsAccount {from bankview]

(from bankview) | = = !

CreditCard Account
[from bankview)

Diagram window

For information about creating new.diagrams, opening existing ones, and manipulating elements inside the
103

diagram, see the How to Model...

chapter.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

94 UModel Graphical User Interface Diagram Pane

3.1 Diagram Pane

The diagram pane hosts all diagram windows that are currently open. For information about creating new
diagrams, opening existing ones, and manipulating elements inside the diagram, see the How to Model... @
chapter.

The image below illustrates the diagram pane with four diagram windows open and positioned using the
Window | Cascade menu command.

[F

== Account Transfer | = ” =] ” 2 |
i [B Apply Java Profile IEREREE

[=] XA
|| |
[..

~

[P} [BankaP! Draft

=

’_FI

' g1 banks:Bank[*] {ordered} I
@1 bankAPl:IBankAP|

ol |

Tordered} &1 v
>

Accnunt Transfer | Apply]ava Profile | E BankAPl Draft Eﬂank‘.l'"lew Main

Diagram pane

Sewveral commands applicable to the current diagram window are available when you right-click the
corresponding window tab at the lower area of the diagram pane.

To apply miscellaneous commands to windows inside the diagram pane, use the commands available in the
Window menu. Several window manipulation commands are also available on the Window dialog box (to open
this dialog box, select the menu command Window | Windows).

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Graphical User Interface Diagram Pane 95

Windows >

Select window: Activate

(=) Account Transfer

|E=) Apply Java Profie oK
[BankAF| Draft
[BankView Main Close Window(z)

Cascade
Tile Horizontalhy
Tile Verically

Minimize

Windows dialog box

To select multiple windows on the dialog box above, hold down the Ctrl key pressed and click the
corresponding entries.

To cycle through all open diagram windows, press Ctrl+Tab.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

96 UModel Command Line Interface

4 UModel Command Line Interface

In addition to the graphical user interface, UModel also has a command line interface. To open the command
line interface, run the UModelBatch.exe file available in the C:\Program Files\Altova\UModel2023 directory.
If you run UModel 32-bit on a 64-bit operating system, the path is C:\Program Files (x86)
\Altova\UModel2023.

The command line parameter syntax is shown below, and can be displayed in the command prompt window by
entering: umodelbatch /?

Note: If the path or file name contains spaces, enclose it in quotes, for example: "C:\Program Files\...
\MyProject.ump".

usage: UModelBatch.exe [project] [options]

/? or /help ... display this help information

project ... project file (*.ump)

/new[=file] ... create/save/save as new project, see Creating, Loading, and Saving
Projects in Batch Mode

/set ... set options permanent

/gui ... display UModel user interface

commands (executed in given order) :

/chk ... check project syntax
/isd=path ... 1lmport source directory
/isp=file ... lmport source project file

(*.project, *.xml, *.jpx, *.csproj, *.csdproj, *.vcxproj, * .vbproj, *.vbdproj
,*.sln, *.bdsproj)

/ibt=1ist ... lmport binary types (specify binary[typenames] list)
(';'=separator, '*'=all types, '#' before assembly names)

/ixd=path ... import XML schema directory

/ixs=file ... import XML schema file (*.xsd)

/m2c ... update program code from model (export/forward engineer)

/c2m ... update model from program code (import/reverse engineer)

/ixf=file ... import XMI file

/exf=file ... export to XMI file

/inc=file ... include file

/mrg=file ... merge file

/doc=file ... write documentation to specified file

/lue[=cpri] ... list all elements not used on any diagram (i.e. unused)

/1dg ... list all diagrams

/1lcl ... list all classes

/1lsp ... list all shared packages

/1lip ... list all included packages

options for save as new project:
/npad=opt ... adjust relative file paths (Yes | No | MakeAbsolute)

options for import commands:
/iclg=lang ... code language (Javal.4 | Java5.0 | Java6.0 | Java7.0 | Java8.0 |
Java9.0 |

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Command Line Interface

97

Javal5.0 |

C#7.1 |

/ipsd[=0]1
/irpf[=0]|1
/ijdc([=0]1
/icdc[=0]1

/ivdc[=0]|1
/ivds [=1lst
/icppdm[=1
/icpphi
/icpphc

C#7.2

/icppms

| 1300
/icppsy

]
]
]
]
/icds[=1st]
]
]
s
|
|
|

t]
011]
011]
011]
=ver]
1200)
0]1]

/icppid[=1st
/icppsd[=1st
/icppagl=arg
/imrg[=0]1]
/iudf[=0]|1]
/iflt[=1st]

[=
[=
[=
/icppmv [
|
[=
[=
[=

options for import binary types

/ibrt=vers
/ibpv=path
/ibro[=0]1]
/ibua[=0]1]
/ibar [=f1t]
/ibot [=0]1]
/ibuv[=0]1]
/ibmv [=key]
/ibsa[=0]1]
/iboa[=0]1]
/ibss[=0]1]

Javal0.0 | Javall.O | Javal2.0 | Javal3.0 | Javald.0 |
C#1.2 | C#2.0 | C#3.0 | C#4.0 | C#5.0 | C#6.0 | C#7.0
C#7.3 | C#8.0 | C#9.0 |
VB7.1 | VB8.0 | VB9.0 |
C++98 | C++11 | C++14 | C++17)
process sub directories (recursive)
import relative to UModel project file
JavaDocs as Java comments
DocComments as C# comments
C# defined symbols
DocComments as VB comments
VB defined symbols (custom constants)
C++ defined macros
read only C++ header files
treat .h files a .cpp files
enable C++ Microsoft Compiler compatibility
MSVC version to use (1900 | 1800 | 1700 | 1600 | 1500 | 1400 | 1310

auto detect C++ system include files

list of C++ include directories to use

list of C++ system include directories to use
Additional C++ arguments for the compiler

synchronlze merged

use directory filter
directory filter (presets /iudf)

(after /iclg):

runtime version

override of PATH variable for searching native code libraries
use reflection context only

use add referenced types with package filter

add referenced types package filter (presets /ibua)
import only types

use minimum visibility filter

keyword of required minimum visibility (presets /ibuv)
suppress attribute sections / annotation modifiers
create only one attribute per attribute section

suppress 'Attribute' suffix on attribute type names

options for diagram generation:

/dgen[=01]
/dopn [=0]1]
/dsac[=0]1]
/dsoc[=0]1]
/dscc[=0]1]
/dstv[=0]1]
/dudp [=0]1]
/dspd[=0]1]

generate diagrams

open generated diagrams
show attributes compartment
show operations compartment
show nested classifiers compartment
tagged values

.NET property compartment

.NET property compartment

show
use
show

options for export commands:

/ejdc[=0]1]
/ecdc[=0]1]
/evdc[=0]1]
/espl[=0]1]

Java comments as JavaDocs
C# comments as DocComments
VB comments as DocComments
use user defined SPL templates

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

98 UModel Command Line Interface

/ecod[=0]1]
/emrg[=0]1]
/egfn[=0]1]

]

/eusc[=0]1

. comment out deleted

. synchronize merged

. generate missing file names
. use syntax check

options for XMI export:

/exid[=0]1]
/exex[=0]1]
/exdg[=0]1]
/exuv [=ver
UML2.5.1)

. export UUIDs
. export UModel specific extensions
. export diagrams (presets /exex)
] ... UML version (UML2.0 | UML2.1.2 | UML2.2 | UML2.3 | UML2.4 | UML2.5 |

options for merge file:

/mcan=file

. common ancestor file

options for documentation generation:

/doof=fmt
/dsps=file

. output format (HTML | RTF | MSWORD | PDF)
. SPS design file

Example 1: Import Java source code and preserve settings

The following command imports source code and creates a new project file. Notice that the project path
contains spaces and is enclosed in quotes.

"C:\Program Files\Altova\UModel2023\UModelBatch.exe" /new="C:\My
Projects\Fred.ump" /isd="X:TestCases\UModel\Fred" /set /gui /iclg=Java8.0 /ipsd=1 /ijdc=1
/dgen=1 /dopn=1 /dmax=5 /chk

The meaning of all

options is as follows:

/new Specifies that the newly-created project file should be called "Fred.ump" in C:\My Projects

/isd Specifies that the source directory should be X:\TestCases\UModel\Fred

/set Specifies that any options used in the command line tool will be saved in the registry
(When subsequently starting UModel, these settings become the default settings).

/gui Display the UModel graphical user interface during batch processing.

/iclg UModel will import the code as Java 8.0.

/ipsd=1 Recursively process all subdirectories of the root directory specified in the /isd parameter.

/ijde=1 Create JavaDoc from comments where appropriate.

/dgen=1 Generate diagrams.

/dopn=1 Open generated diagrams.

/chk Perform a syntax check.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Command Line Interface 99

Example 2: Synchronize code from the model
The following command updates code from an existing project file ("C:\UModel\Fred.ump").

"C:\Program Files\Altova\UModel2023\UModelBatch.exe™ "C:
\UModel\Fred.ump" /m2c /ejdc=1 /ecod=1 /emrg=1 /egfn=1 /eusc=1

The meaning of all options is the same as in the previous examples, plus:

/m2c Update the code from the model.

/ejdc Comments in the project model should be generated as JavaDoc.
/ecod=1 Comment out any deleted code.

/emrg=1 Synchronize the merged code.

/egfn=1 Generate any missing file names in the project.

/eusc=1 Use the syntax check.

Example 3: Import Java binaries into the model

Let's assume that some Java binary .class files exist in the C:\JavaProject\bin directory, and you want to
import these binaries into UModel. To do this, run the following command:

"<C:\Program Files\Altova\UModel2023\UModelBatch.exe>" /new="C:
\JavaProject\Result.ump" /ibt=*C:
\JavaProject\bin /iclg=Java8.0 /ibrt=JDK1.8.0 144 /dgen=1 /chk

The options used are as follows:

/new Creates a new UModel project at the specified path.

/ibt Instructs UModel to import binary types. The asterisk before the path indicates that all
binary types at that path must be imported.

/iclg Specifies the code generation language ("Java8.0", in this example).

/ibrt Specifies the runtime environment ("JDK1.8.0_144" in this example). This is the same value
that appears on the "Import Binary Types" dialog box in the "Runtime" drop-down list, see
Importing Java, C# and VB.NET Binaries ©. You can also use a value like "jdk-10.0.1" as
set in the gava_HOME environment variable.

For C#, you can use the value /ibrt:any or otherwise values as they appear in the GUI in
the "Runtime" drop-down list, making sure to omit any spaces. Examples:

/ibrt:any
/ibrt: .NET5
/ibrt: .NETFramework4.8 (v4.8.3752)

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

100 UModel Command Line Interface

The option "any" is the same as selecting "any (use disassembler)" from the "Runtime"
drop-down list and is the recommended option.

/dgen=1 Generate diagrams.

/chk Perform a syntax check after import.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Command Line Interface Creating, Loading, and Saving Projects in Batch Mode 101

4.1 Creating, Loading, and Saving Projects in Batch Mode

When you run UModelBatch.exe with a command like UModelBatch MyProject.ump, YOU can use the
following parameters:

/new This parameter defines the path and file name of the new UModel project file (*.ump) to create.
It can also be used to load an existing project and save it under a different name, for example:

UmodelBatch.exe MyFile.ump /new=MyBackupFile.ump

/set This parameter overwrites the current default settings in the registry with the options you
specify.
/qui This parameter displays the UModel graphical user interface (GUI) during the batch process.

The examples below illustrate how to create, load, or save projects in full batch mode (in other words, the /gui
parameter is not set).

new
UModelBatch /new=xxx.ump (options)
creates a new project, executes options, xxx.ump is always saved (regardless of options)
auto save
UModelBatch xxx.ump (options)
loads project xxx.ump, executes options, xxx.ump is saved only if document has changed (like /ibt)
save
UModelBatch xxx.ump (options) /new
loads project xxx.ump, executes options, xxx.ump is always saved (regardless of options)
sawe as

UModelBatch xxx.ump (options) /new=yyy.ump
loads project xxx.ump, executes options, always saves xxx.ump as yyy.ump (regardless of options)

The examples below illustrate how to create, load, or save projects in batch mode with UModel user interface
visible (the /gui parameter is set).

new

UModelBatch /gui /new (options)

creates a new project, executes options, nothing saved, the GUI is left open
save new

UModelBatch /gui /new=xxx.ump (options)

creates a new project, executes options, xxx.ump saved, the GUI is left open
user mode

UModelBatch /gui xxx.ump (options)

loads project xxx.ump, executes options, nothing saved, the GUI is left open
save

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

102 UModel Command Line Interface Creating, Loading, and Saving Projects in Batch Mode

UModelBatch /gui xxx.ump (options) /new
loads project xxx.ump, executes options, xxx.ump is saved, the GUI is left open

save as
UModelBatch /gui xxx.ump (options) /new=yyy.ump
loads project xxx.ump, executes options, xxx.ump is saved as yyy.ump, the GUI is left open

The project will be saved successfully provided that no critical errors occur while executing the options.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

How to Model... 103

5 How to Model...

Altova website: ©° UML modeling

This chapter provides instructions for creating and manipulating UML elements, diagrams, and relationships
from the UModel graphical user interface. It is intended as a "how to" guide to modeling with UModel. The
enclosed instructions are generic across UModel and not specific to a particular element or diagram type,
unless explicitly mentioned. For information applicable to (and grouped by) each diagram type, refer to the UML
Diagrams chapter.

The information in this chapter is organized into the following categories: Elements, Diagrams, Relationships,
and Stereotypes.

Elements Diagrams Relationships Stereotypes

Creating EIements‘m Creating Diagrams Creating StereotﬁEes and Tagged
Relationships Values

Inserting Elements from Generating Diagrams@ Changing the Style of Tagged Values

the Model into a Lines and

Diagram@ Relationships

Renaming, Movingi and Opening Diagrams Viewing Element Applying Stereotypes

Copying Elements Relationships

Deleting EIements@ Deleting Diagrams Associations Showing or Hidinﬁ

Tagged Values

Converting Elements Changing the Style of Collection
Diagrams Associations‘B

Finding and Replacing Aligning and Resizina Containment

Text Modeling Elements

Checking Where and If Type Autocompletion in

Elements Are Used Classes

Constrainin Zooming into/out of
Elements Diagrams@
Hyperlinkin

Elements

Documentin

Elements

Changing the Style of
Elements

Note: UModel includes several example projects that you can explore in order to learn the modeling basics
and the graphical user interface. These can be found at the following path: C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

https://www.altova.com/umodel

104 How to Model... Elements

5.1 Elements

511 Creating Elements

With UModel, new elements can be created as follows:

o From the Model Tree ® window. With this approach, elements are added to the model only, and you
can insert them later into diagrams if necessary.

e From any diagram window. Any elements added to a diagram are also automatically added to the
model as well. Should you need to delete an element later, you can choose whether it should be
removed from the diagram only, or deleted from the model as well.

To add elements from the Model Tree window:

e In the Model Tree ® window (or Favorites @ window), right-click the element (for example, package)
under which you want the new element to appear, and select New Element | <Element Name> from
the context menu. For example, to add a new package under the "Root" package, right-click the
"Root" package, and select New Element | Package.

To add elements from the Diagram window:

1. Create a new diagram (see Creating Diagrams) or open an existing one (see Opening Diagrams
).
2. Do one of the following:
a. Right-click inside the diagram and select New | <Element Name> from the context menu.
b. Click the toolbar button of the element you wish to add, and then click inside the diagram. To
insert multiple elements of the same type, hold down the Ctrl key before clicking inside the

diagram.
Packages
As you model elements, you will likely need to work with packages more often than with other elements. Each
entry marked with a folder symbol in the Model Tree window represents a UML package. Packages in

UModel serve as containers for all other UML modeling elements (including diagrams, classes, and so on) and
have the following behavior:

e They can be created at any position in the Model Tree.

e They can be moved or copied to other packages (as well as into valid model diagrams), see Renaming,
Moving, and Copying Elements @

e They can be used as source or target elements when code is generated or synchronized with the
model, see Forward Engineering (from Model to Code)@ and Reverse Engineering (from Code to
Model) &

When you create a new UModel project, two packages are available by default, the "Root" and "Component
View" packages. These two packages are the only ones that cannot be renamed or deleted. The "Root"
package serves as starting point for modeling all other elements, while the "Component View" package is
required for code engineering.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

How to Model... Elements 105

Model Tree x

_|Root
- Component View

ElMUdElTrEE @Diagramﬂ'ee ‘%%Fat-‘-:urites

Default UModel pack ages

5.1.2 Inserting Elements from the Model into a Diagram

Elements present in the model can be inserted into a diagram either individually or as a group. To select
multiple elements from the Model Tree window, hold down the Ctrl key while clicking each item. There are two
ways to insert elements into a diagram: drag left, and drag right.

e Drag left (holding down the left mouse button and releasing it in the diagram) inserts elements
immediately at the cursor position. In this case, any associations, dependencies etc. that exist
between the currently inserted elements and the new one, are automatically displayed.

e Drag right (holding down the right mouse button and releasing it in the diagram) opens a context
menu from which you can select the specific associations, generalizations you want to display.

For example, let's suppose that you want to create a new class diagram from a class that already exists in the
model. To illustrate this scenario, open the sample project Bank_MultiLanguage.ump available at the
following path: C:\Users\<username>\Documents\Altova\UModel2023\UModelExamples. Assuming that
you want to replicate the "Account Hierarchy" diagram in a new class diagram, do the following:

1. Right-click the bankview package and select New Diagram | Class Diagram.
Locate the abstract account class in the model tree, and use drag right to place it in the new
diagram. For this example, we would like to display the class together with its derived classes. To
achiewe this, select Insert with Generalization Hierarchy (specific) from the context menu.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

106 How to Model... Elements

Model Tree o x plg BankView]
-# TAccount Transfer A e
- = Bank Server [Bank Server.ump]

[2 Banking access [Banking access.ump] C Insert

- =1 BankView [BankView.ump]
. 5] Apply Java Profile C Insert with Generalizations (specific)
. [T ClassDiagrami Insert with Generalization Hierarchy (specific)
E‘ w] com Insert with Full Generalization Hierarchy (general and specific)
SR altova
E--EI w | bankview C Insert with Associations

-------- [BankView Main

........ T Hierarchy of Account
-------- [Sample Accounts

- B AgencyBank

- [John’s 1st

~[# B John's 2nd

- B John's 3rd

-H B Account

-[# B Bank

Insert with All Properties as Assaciations

Insert with TypedElements

3. Select or clear the check boxes for specific items you want to appear in the diagram.

Styles of new items

Style
[+]i5how Attrbutes compartment
Show Operations compartment Cancel

[] Show nested Classifiers compartrent

[] 5how EnumerationLiterals compartment

[] Show Extension Paints compartment

[]5how Tagged Yalues

Ilze cwn compartment for MET properties
] Show MET properties compartment

Alwaps shaw thiz dialog befare adding

4. Click OK. The account class, together with its three subclasses, is inserted into the diagram. The
Generalization arrows are also automatically displayed. To automatically arrange the classes inside
the diagram, run the menu command Layout | Autolayout All | Hierarchic.

If you had selected the Insert command instead of Insert with Generalization Hierarchy (specific), the
class would have been added to the diagram without any derived classes. Note that you can still display the
generalization hierarchy later, as follows:

¢ Right-click the account class in the diagram and select Show | Generalization hierarchy from the
context menu. As a result, the derived classes are inserted into the diagram as well.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

How to Model... Elements 107

51.3 Renaming, Moving, and Copying Elements

You can cut, copy, rename and mowve elements in the Model Tree @ window and inside diagrams of the same
type. These actions may also be possible across diagrams of different type if applicable. You can also copy or
mowe elements from the Model Tree window into a diagram, provided that the diagram is allowed to contain the
corresponding element according to the UML specification.

To rename an element:

e Double-click the element name and edit it.
o Alternatively, click the element and press F2.

The procedures above apply regardless of the window in which the element is displayed, including the Model
Tree window, Properties window, and the Diagram window.

The "Root" and "Component View" packages are displayed at all times in the Model Tree window and
cannot be renamed or deleted.

To copy or move elements:

e Use the standard Windows commands Cut, Copy, or Paste. These commands can be triggered from
keyboard shortcuts (Ctrl+X, Ctrl+C, Ctrl+V, respectively), from the corresponding toolbar buttons, as
well as from the Edit menu.

e Alternatively, drag an element to a destination package (or element). Dragging an element mowes it.
Holding down the Ctrl key and dragging an element creates a copy of it.

For example, in a diagram, you can mowve a class member to another class by dragging it from the source
class to the destination class. To copy the class member rather than moving it, first select it, and then drag it
to the destination class while holding down the Ctrl key.

If you paste a class into the same package, the new class is created with a sequential number appended to
the end, for example, "MyClass1". Likewise, if you paste a property inside the same class, the new property is
created with a sequential number appended to the end, for example, "MyProperty1". The same applies for other
class members, such as operations and enumerations. The same logic is also applicable when you paste
elements in the same diagram, provided that the diagram belongs to the same package as the elements that
are being pasted.

If you paste a class into a different package, the new class will have the same name as the original class. The
same logic applies when you copy class members (such as properties, operations, and so on) to a different
class.

By default, any element that is pasted into a diagram is automatically added to the model as well (and thus is
visible in the Model Tree window). However, you can also copy and paste an element into the current diagram
only, without adding it to the model. To do this, first copy the element, right-click on the diagram, and then
select Paste in Diagram only from the context menu. The Paste in Diagram only command also appears
when you drag an existing item into the same diagram while holding the Ctrl key pressed.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

108 How to Model... Elements

L T _______ n
1 MyClass1] k |
= : s Paste
MyProperty o
':'E gl MyFroperty 1 Paste in Diagram only
1
Vd myOperation?) ' |

gt == 1T

In the example above, Paste will create the new class in the diagram and add it to the model as well, while
Paste in Diagram only will only display a second view of it on the diagram. Note that copies created using the
second approach are merely additional views of the original element and link to it; they are not standalone
copies. (For example, renaming a property in the duplicated class will automatically apply the same change to
the original class.)

514 Deleting Elements

Elements can be deleted in one of the following ways:

e From the Model Tree window. Use this approach if the element should be deleted from the project as
well as any diagrams where it is present.

e Directly from diagrams where they occur. In this case, you can choose whether the element should be
removed from the diagram only, or deleted from the model (project) as well.

To delete elements from the project and all related diagrams (approach 1):

1. In the Model Tree window, click the element you want to delete. Hold the Ctrl key down to select
multiple elements.
2. Press Delete.

To delete elements from the project and all related diagrams (approach 2):

1. Open a diagram and click the element you want to delete. Hold the Ctrl key down to select multiple
elements.

2. Press Delete. A dialog box appears asking to confirm that you want to delete the element both from
the project and the diagram.

3. Click Yes. The element is deleted both from the diagram and the project.

To delete elements from the diagram but not from the project:
1. Open a diagram and click the element(s) you want to remove. Hold the Ctrl key down to select
multiple elements.
2. Hold down the Ctrl key and press Delete. The elements are deleted from the diagram but still kept in

the project.

Before you delete elements from a project, you may want to check if they are used in any diagrams.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

How to Model... Elements 109

e Right-click an element in the Model Tree, and then select Show element in all diagrams from the
context menu.

Likewise, when a diagram is open, you can quickly select an element in the Model Tree, as follows:

e Right-click the element on the diagram, and select Select in Model Tree from the context menu.
e Alternatively, click the element on the diagram and press F4.

51.5 Converting Elements

Some of the elements support quick conversion to some other element kind. This action may be useful, for
example, if you started designing a class but would like to change it later to an interface, or vice versa. More
specifically, the following kinds of elements support conversion to any other item in the list:

Class
Interface
Enumeration
PrimitiveType
DataType

You can convert the element kinds listed above either from the Diagram windowm or from the Model Tree.

To convert elements:

1. Open a diagram that includes classes, interfaces, enumerations, primitive types or data types (for
example, a class diagram). Alternatively, locate any of these element kinds in the Model Tree.

2. Right-click the element of interest (for example, a class) and select Convert To | <element kind>
from the context menu.

After conwersion, the name of the element is preserved. If possible, the data associated with the element is also
preserved. For example, a conwersion from interface to class or from class to interface preserves data such as
properties or operations. However, a conversion from a class or interface to an enumeration will result in data
loss. In such cases, if necessary, you can restore the previous state of the element by running the Undo
(Ctrl+Z) command.

5.1.6 Finding and Replacing Text

You can search for modeling elements, diagrams, text, and so on, inside any of following windows:

Diagram window

Model Tree window
Diagram Tree window
Favorites window
Documentation window
Messages window

The search scope is applicable to the window where the cursor is currently placed. Therefore, if you want to
search for text inside a diagram, for example, click inside the diagram first. Likewise, if you want to search for
an item in the UModel project, click inside the Model Tree window first.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

110 How to Model...

Elements

To search for text or elements:

1. Click inside the window where you want to find text.

2. Do one of the following:

a. Type the search text in the text box of the main toolbar, and then click Find Next E or press F3.
To go to the previous occurrence, press Shift+F3.

i X HER S A2 38| Acoun |~| & &y

DEeE < 4 b

b. On Edit menu, click Find (or press Ctrl+F).

Find

Find what: |f-‘-.ccu:uunt

v| [FindNest

Dptionz
[] tatch whole ward only
[] Match caze

Direction
(CiUp
(®) Down

Cancel

Find and replace

You can also find and replace text (for example, in order to quickly rename modeling elements). When the
element is found, it is highlighted in the diagram as well as in the Model Tree. Search and replace works in the

following windows:

Diagram window

Model Tree window
Diagram Tree window
Faworites window
Documentation window

To find and replace text:

1. Click inside the window where you want to find/replace text.

2. Do one of the following:

c. Click the Replace % toolbar button.
d. On the Edit menu, click Replace (or press Ctri+H).

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

How to Model... Elements 111

Find & Replace >
Firid what: |}-‘-.ccu:uur|t w | | Find Mext |
Feplace with: |Savingsﬁ.ccl:uunt v | Eeplace
Options Direction Replace Al
[] tatch whole ward only) Up Ol
[]Match caze (®) Down
] Replace in zelection anly

5.1.7 Checking Where and If Elements Are Used

While navigating the elements in the Model Tree, you might want to see where, or if, the element is actually
present in a model diagram. To find where elements are used, do one of the following:

¢ Right-click the element in the Model Tree window, and select Show element in all diagrams (or, ifa
diagram is currently open, Show element in active diagram).

You can also find elements not used in any diagram either for the entire project, or for individual packages.

To find unused elements in the entire project:

¢ On the Project menu, click List elements not used in any diagram.

To find unused elements for a specific package:

¢ Right-click the package you would like to inspect, and select List elements not used in any
diagram.

A list of unused elements appears in the Messages window. Note that the unused elements are displayed for
the currently selected package and its subpackages. ltems inside parentheses are elements which have been
configured to appear in the unused list, from Tools | Options | View tab.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

112 How to Model... Elements

Messages »
W vlal vjal val wnE X

E_lList all elements [Classifier, Package, Relations, Instancespecification) not used in any diagram...
-------- B Banking access

ProfileApplication: [Banking access -= C#F Profile)
i BankAPl
- .3 elements have been found

Click the element name in the Messages window to locate it in the Model Tree.

51.8 Constraining Elements

Constraints can be defined for most model elements in UModel. Note that constraints are not checked by the
syntax checker, because they are not part of the code generation process.

To constrain an element (from the Model Tree):

1. Right-click the element you want to constrain, and select New Element | Constraints | Constraint.
. Enter the name of constraint and press Enter.
3. Type the constraint text in the "specification" field of the Properties window (for example, name length

> 10).

Properties x
name Constraint

qualified name EBehavior View::BankAPL:Con
element kind Constraint

visibility public |
specification iname length > 10 {
constrained elements BankAPl o
[=] Properties '@ Styles EIHierarchy

To constrain an element (from a diagram):

1. Double-click the specific element to be able to edit it.
1. Type "#", and then type the constraint text inside curly braces, for example, #{interestRate >=0}.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

How to Model... Elements 113

To assign constraints to multiple modeling elements:

1. Select a constraint in the Model Tree window.
2. Right-click the "constrained elements" property the Properties window, and select Add element to
constrained elements.

Properties x
name Constrainti

gqualified name Design View:BankView::com
element kind Constraint

visibility public |
specification interastRate=0 ... |
constrained elements interestRateCnBalance—

Select in Model Tree

=l Properties | 3 Styles | [F]Hierarchy Add Element To Constrained Elements

Remove Element From Constrained Elements

3. Select the specific element you want to assign the current constraint to. Hold down the Ctrl key to
select multiple elements.

Properties =
name ‘Constraint1
qualified name Design View:BankView:: com:alt
element kind Constraint
visibility public hdl
specification interestRate=0 Lo
interestRate Lo
constrained elements interestRateCnBalance Lo
interestRateOnCashAdvance |
[=] Properties @I Styles EIHierarchy

The "constrained elements” field contains the names of the modeling elements it has been assigned to. For
example, in the image above, Constraintl has been assigned to the following properties: interestRate,
interestRateOnBalance, interestRateOnCashAdvance.

51.9 Hyperlinking Elements

You can manually create hyperlinks between most modeling elements (except lines) and any of the following:

e Other elements (either on the diagram or in the Model Tree)

e Diagrams

e Files external to the project (for example, PDF, Word, or Excel documents, graphics files, and so on)
e Web pages

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

114 How to Model... Elements

A single element can have one or more hyperlinks of any of the kinds mentioned abowe. In a diagram, elements
that contain hyperlinks can be easily recognized by the hyperlink icon [Z] that is visible next to them (either in
the right or left corer). To open the hyperlink target, right-click the hyperlink icon [Z] on the element and select
the target. If there is only one hyperlink defined, you can also click [Z1 and access the target directly.

(7] BankView

@] banks:Bank[*] {ordered}
@1 bankAPL:IBankAPI

% «constructore BankView(in banka&PlBankAP)
@'} collectBankAddressinfos(:boolean

@'} collectAccountinfos(:boolean

<% collectDataf:boolean

¢» getBalanceAtBank(in bankname:String):int
% getBalanceSumOfAlIBanks(kint

Class containing hyperiink s

Tip: As you navigate through the UModel graphical user interface, either with or without hyperlinks, you can

easily go back and forward between views by clicking the Back or Forward toolbar
buttons, respectively.

You can automatically generate hyperlinks between dependent packages and diagrams when importing source
code or binary files into a model, provided tha%)u selected the specific settings on the import dialog box. For

more information, see Importing Source Code and Importing Java, C# and VB.NET Binaries D Also, when
you generate UML documentation from the project, you can choose whether to include hyperlinks in the
generated output, see Generating UML documentation @@

You can create hyperlinks not only from elements that appear in the diagram or in the Model Tree window, but
also from text within notes, as well as text in the Documentation window, as shown in the instructions below.

To create a hyperlink from an element:

1. Right-click an element on a diagram or in the Model Tree window, and select Hyperlinks | Insert/Edit
Hyperlinks from the context menu.

2. Click Add, and select a hyperlink kind (element, diagram, file, or a Web link).

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

How to Model... Elements 115

Edit Hyperlinks
Default name User defined name Address Add L4 | File Link
e e Web Link
Diagram Link

Dielete Link,
sEe Madel Link
Miove Up

tdove Down

Cancel

3. Do one of the following:
e To create a diagram or hyperlink, select the target element or diagram when prompted.
e To create a file hyperlink, click the Ellipsis button and browse for the target file.

Uhodel

File path:
! ..

[[] Make path relative to Bank_CSharp

Cancel

e To create a Web link, type the target address in the "Address" column of the dialog box, for
example:

Edit Hyperlinks

Default name User defined name Address Add k
http thttp:/fwvewaltova,com
Open Link,
Delete Link
bowve Up
kove Do

Carcel

4. Optionally, enter a custom link name in the "User defined name" column. If defined, this custom name
will be displayed in the UModel's graphical interface instead of the target path (or address).
To create a hyperlink inside a note:

e Select some text inside the note, right-click it and then select Insert/Edit Hyperlinks from the context
menu. The same instructions apply for text in the Documentation window.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

116 How to Model... Elements

This is a hyperlink inside a note, |§1

To change or remove a hyperlink:

e Right-click the hyperlink icon [#] on the element (or the hyperlinked text), and use the appropriate
command in the "Edit Hyperlinks" dialog box.

5.1.10 Documenting Elements

You can add documentation comments to modeling elements as follows:

e Click the element (either in the diagram or in the Model Tree window).
e Enter text in the Documentation window.

Any documentation text will be saved together with the project.

When an element is selected, its documentation is visible at all times in the Documentation window, if
available. You can also display documentation as a comment on the diagram, as follows:

¢ Right-click the element on the diagram, and select Show | Annotating Comments from the context
menu.

Documentation hyperlinks
To create a hyperlink inside the Documentation window, select some text inside the window, right-click it and
then select Insert/Edit Hyperlinks from the context menu. The hyperlink target can be a Web site, a diagram,

a file, or another element, see also Hyperlinking Elements %<

Documentation =
IThis is some documentation text which
contains a hypedink.

Documentation window

Code generation and documentation comments

If you generate code from class diagrams, any comments applied to classes and their members (in class
diagrams) can be exported to the generated code as well. To do this, select the check box Write
Documentation as Java Docs (for Java) or Write Documentation as DocComments (for C#, VB.NET)

before generating program code, see also Code Generation Options @,

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

How to Model... Elements 117

Likewise, if you reverse engineer program code into a model, the code comments can be imported into the
model. To do this, select the check box JavaDocs as Documentation (for Java) or DocComments as
Documentation (for C#, VB.NET) before reverse engineering program code, see also Code Import Options 12 3

For information about how comments in program code (or XML schemas) map to UModel comments, refer to
the mapping tables for each language:

218

C# Mappings
VB.NET Mappings 238
Java Mappings

XML Schema Mappings@

5.1.11 Changing the Style of Elements

You can change the appearance (style) of modeling elements, including their color, font size, font weight,
background color, line thickness, and others. The appearance of elements can be changed at various lewels:
globally for all elements in the project, selectively for all elements of the same family (for example, classes), or
for each individual element. For information about changing the style of the diagram itself, see Changing the

Style of Diagrams.

If you would like to use custom images instead of conventional element representations in diagrams, this is
possible by extending your pro!?.gt with custom profiles and stereotypes. For more information, see Example:

Customizing Icons and Styles
To change the appearance of elements:
1. Click the element on a diagram.

2. Notice the dropdown list at the top of the Styles Window and do one of the following as applicable:
a. To edit the properties of the current element only, select "Element Styles" from the list.

Styles x
Element Styles e
Head > A
Head hdl
Head |
Header Font-Weight |

Color £CTFEET 1 =53
Pen Colo Llﬁ
Font Colo Llﬁ
Font LI L

=] Properties @St_r.rles ElHierarch],-‘

b. To edit the properties of all elements of the same kind (for example, classes), select "Element
Family Styles" from the list.

c. To edit the properties of all elements globally at the project level, select "Project Styles".

d. To edit the properties of all lines in the project, including association, dependency, and realization
lines, select "Line Styles". (This value is only visible if the currently selected element is a line.)

e. To edit the properties of all elements that are not lines (the so-called "nodes") across the project,
select "Node Styles". (This value is only \isible if the currently selected element is not a line.)

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

118 How to Model... Elements

3. Change the value of the required property (for example, "Fill Color").

A more specific style overrides a more generic style. That is, styles applied at individual element level
override those applied at element family lewel. Likewise, styles applied at element family level override
those applied at project level.

When a style is overridden, a small red triangle appears in the upper-right corner of the overridden property.

Movwe the cursor over the triangle to display a tooltip with information about style precedence.

Styles *

Project Styles (o Infor:
‘Elerment Styles’, 'Element Family Styles' override this setting

nt-Weight Id |

o white —1 LI@

Trans. Fill Color LI@
olor £525252 HEEE ~ |53

t Color black I LI@

Font Seqoe Ul Ed W

[=] Properties @St_l.rles EIHierarch}-'

Overridden element style

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

How to Model...

Diagrams 119

5.2

5.2.1

Diagrams

Creating Diagrams

Diagrams represent visually how modeling elements interact, what is their structure, dependencies, hierarchy,
and so on. Diagrams must belong to a package in the project, and therefore must be created under an existing
package in the Model Tree window. You can mowve diagrams from one package to another at any time, by
dragging them into a destination package.

To create a new diagram:

1.

Right-click a package in the Model Tree window .
2. Select New Diagram | <Diagram Kind>.

You can also create a new diagram from the Diagram Tree window@, as follows:

1.

Right-click the root node ("Diagrams") in the Diagram Tree window.
2. Select a package where the diagram should belong, and click OK.

When the diagram window is active, the toolbars display only modeling elements applicable to the current
diagram kind. The diagram kind is displayed in the Properties window after you click an empty area of the

diagram. In addition to this, the following icons depict the diagram kind.

Icon | Description

Al | Activity Diagram

1 | Class Diagram

E Communication Diagram

2] Component Diagram

= | Composite Structure Diagram
& Deployment Diagram

& Interaction Overview Diagram
= Object Diagram

= Package Diagram

Profile Diagram

= Protocol State Machine Diagram
&) Sequence Diagram

1 | State Machine Diagram

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

120 How to Model... Diagrams

Icon | Description

= Timing Diagram

Use Case Diagram

2]

XML Schema Diagram

5.2.2 Generating Diagrams

In addition to creating diagrams from scratch, you can also generate certain diagrams automatically from
existing modeling elements or from program code. This topic shows you how to generate diagrams from
existing modeling elements. For information about how to generate diagrams from source code, see:

e Generating Class Diagrams
e Generating Sequence Diagrams from Source Code@
e Generating Package Diagrams While Importing Code or Binaries@

To generate diagrams from existing elements, right-click an element (for example, package) in the Model Tree,
and then select Show in new diagram | <option> from the context menu. Below are some examples:
To create a diagram which shows the contents of an existing package:
e Right-click a package in the Model Tree window and select Show in new Diagram | Content from
the context menu.
To create a diagram which shows the dependencies of an existing package:

¢ Right-click a package in the Model Tree window and select Show in new Diagram | Package
dependencies from the context menu.

To create a diagram which shows the generalization hierarchy of a class:

1. In the Model Tree window, right-click a class which has generalization relationships to or from other
classes (for example, class Account from the sample project C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples\Bank_CSharp.ump).

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

How to Model...

Diagrams 121

Model Tree

B[% com
L@l altova

El v bankview

-------- [BankView Main
-------- [Hierarchy of Account
-------- [sample Accounts
-[# B AgencyBank

- E John's 1st

-F B John's 2nd

- E John's 3rd

-F B Account

-F B Bank

-F B BankView

-FH B CheckingAccount
-F B CreditCardAccount
-[F B savingsAccount

L

Ell"-ﬂﬂdElTrEE EDiagram T... %% Favorites

2. Select Show in new diagram | Generalization hierarchy from the context menu. A dialog box
appears where you can adjust the preferences for the diagram to be created, including the diagram
type. Notice the text "N diagram-items", which displays the number of items that are to be added to
the diagram. In the example below, the chosen diagram type is "Class Diagram" and there will be four
diagram items (classes) on the diagram: the Account class and three classes derived from it.

Mew Hierarchy Diagram

Diagram Mame: Higrarchy of Account

Diagrar Type: | Class Diagram

Create hyperlink to diagram
Style

Show Attibutes compartment

[1 5how Operations compartment

[] Show nested Classifiers compartment
[] 5how EnumerationLiterals compartment

[] 5how Extension Points compartment

[5how Tagged Yalues

- [4 diagram-itemnz)

Autolapout
Atolayout

hierarchic

IJze own compartment for [MET properties

[]5how MET property compartment

Cancel

3. Click OK. The diagram is generated according to the selected options and opens in the Diagram

window, for example:

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

122 How to Model... Diagrams

pkg ban kl.rl'ew) ;

(2] Account

&1 balance:float
g id:string

i

CreditCard Account

SavingsAccount

@1 creditlimit:float
@] interestRateCnBalance:float
@] interestRateCnCashAdvance:float

CheckingAccount |

g1 interestRate:float
@] minimumBalance:float=10000

5.2.3 Opening Diagrams

If the UModel project contains diagrams, these are displayed in the Diagram Tree window.

Diagram Tree =
¢ Diagrams

------- [E Account Transfer

....... [E] Apply Csharp Profile

....... [El] BankAPI Draft

....... [BankView Main

------- &7 BankView realization

------- rE'I Collect Account Information
....... [l collectData Draft

------- [Connect to BankAPI

....... [Deployment

....... [Hierarchy of Account

....... =7 Overview

------- E™ Overview Account Balance
....... =] Query BankServer Draft

....... [@ Sample Accounts

EI Model T..| & Diagra... ‘%} Favarites

Diagram Tree window

By default, diagrams are grouped by type in the Diagram Tree window. To display only diagrams

Note:
(without parent groups), right-click inside the window and clear the Group by diagram type context

menu option.

Diagrams are also displayed in the Model Tree window under the packages where they belong, for example:

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

How to Model... Diagrams 123

Model Tree x

Root

Behavior View
Component View
Deployment View
Design View

HEE s

o] Owerview
Account Transfer
c# Banking access
- c# BankView
E--?&:}F-‘:Iﬁtl-:-l‘u-
-H Interaction View
H Use Case View
1 [« 7] C# Profile [C# Profile.ump]

Ell"dndel EDiagra... %% Favaorites

To open an existing diagram:

e Double-click the diagram icon in the Model Tree window (or in the Diagram Tree window, or in the
Faworites window).
¢ Right-click the diagram, and select Open diagram from the context menu.

524 Deleting Diagrams

UModel diagrams can be deleted in one of the following ways:

¢ In the Model Tree window (or Diagram Tree window, or Favorites window), right-click the diagram, and
then select Delete from the context menu.
e Click the diagram in any of the windows mentioned abowe, and then press Delete.

Deleting a diagram does not remowve any elements from the project except the diagram itself. To check if
elements are used in any diagrams, right-click the package you would like to inspect, and select List
elements not used in any diagram, see also Checking Where and If Elements Are Used @

For information about deleting elements from a diagram or from a project, see Deleting Elements @,

5.2.5 Changing the Style of Diagrams

You can change the appearance (style) of a diagram, including the background color, grid visibility, grid size
and color, as well as the appearance of the diagram heading. You can either change the style of individual
diagrams in the project, or apply the same properties to all diagrams in the project. For information about
changing the style of elements inside a diagram, see Changing the Style of Elements @

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

124 How to Model...

Diagrams

The size of diagrams is defined by elements and their placement. To enlarge the diagram size, drag an element

to one of the diagram edges and the size will adjust accordingly.

To change the appearance of diagrams:

1. Open a diagram (see Opening Diagrams).

2. Notice the dropdown list at the top of the Style Window and do one of the following as applicable:
a. To edit the properties of the current diagram only, select "Diagram Styles" from the list. This value
is selected by default if you click anywhere where the diagram background is empty (that is, when

you do not click any diagram elements).

Styles

Diagram Styles

L2|¥]

sund Colo white C =153

La|¥]

e[«)l |1«

[=] Properties @Styles EIHi-‘:rar-:h;-‘

b. To apply changes to all diagrams in the project, select "Project Styles". In this case, scroll down
to the end of the Styles window until you find the styles applicable to diagrams (that is, the ones

that begin with "Diag.").

3. Change the value of the required property (for example, "Diagram Background Color").

Styles applied at diagram level override those applied at project level.

When a style is owverridden, a small red triangle appears in the upper-right corner of the overridden property.
Movwe the cursor over the triangle to display a tooltip with information about style precedence.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

How to Model... Diagrams 125

Styles O Info:
Project Styles Diagram Styles' override this setting
Drraw Mirrored 5e hdl h
Diag. Background Color gradient |
Diag. Grid Color black I ﬂﬁ
Diag, Show Grid true |
Diag. Snap to Grid true |
Diag. Grid Size 15 |
Diag, UML Heading abbreviated |
W
=l Properties @ Styles El Hierarchy

Overridden diagram style

The following diagram-specific properties are available as toolbar buttons. Changing the property in the Styles
window will update the state of the toolbar button, and vice versa.

Show grid Shows or hides the diagram grid.
] | show diagram Shows or hides the diagram heading.
heading
44 | Snap to grid When enabled, this property makes all elements adhere to the grid. When
disabled, elements are positioned regardless of the grid pattern.

5.2.6 Aligning and Resizing Modeling Elements

You can change the size of elements on the diagram as follows:

1. Click an element on the diagram. A set of black dots appear at the element's edges.

1 .
#"'F-- -“""‘l-.._
s
F UseCase “
o= ¥
I_l‘
%, extension points ¢
b

”
. f'

. """-1--""" &=

2. Drag any of the black dots into the direction where you want the element to grow.
To reset the element size to its default boundaries, do one of the following:

e Click the Enable Autosize icon at the lower-right corner of the element.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

126 How to Model... Diagrams

] i]
—_—
-
‘ﬁ

*#,—-- .
P B
Fs UseCasel N
::E"... -
%, extension points | Enable Autosize

et

e

¢ Right-click an element on the diagram, and select Autosize from the context menu.
e Select one or more elements. On the Layout menu, click Autosize.

When at least two modeling elements are selected on the diagram, they can be aligned in relation to each
other (for example, both can be aligned to have the same horizontal or vertical position, or even size). The
commands which align or resize elements are available in the Layout menu and in the Layout toolbar.

Sl fped &ak HTD B BOE O EE P

Layout toolbar

When you select several elements, the element that was selected last serves as a template for the
subsequent align or resize commands. For example, if you select three class elements and run the Make
same width command, then all three will be made as wide as the last class you selected. The element
that was selected last always appears with a dashed border.

The commands specific to element alignment and resizing are as follows:

Icon Command Notes

o Align left

o8 Align right

[T Align top

ﬂ Align bottom

o Center vertically

dla Center horizontally

H Space across This command is available when three or more elements are
selected. It distributes the horizontal space evenly between
selected elements.

a Space down This command is available when three or more elements are
selected. It distributes the vertical space evenly between selected
elements.

g1 Line up horizontally This command repositions all selected elements on the diagram
so that they are arranged horizontally one after the other.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

How to Model... Diagrams 127
Icon Command Notes
iy Line up vertically This command repositions all selected elements on the diagram

so that they are arranged vertically one after the other.

Make same width

Make same height

Make same size

You can also automatically layout all elements in the diagram, as follows:

On the Layout menu, click Autolayout All and choose one of the following options: Force Directed,
Hierarchic, or Block.

Force Directed

Displays the modeling elements from a centric viewpoint.

Hierarchic Displays elements according to their hierarchical relationships. For example, a
superclass will be placed abowe any of its derived classes.
The hierarchical layout options can be customized from the Tools | Options
menu, View tab, Autolayout Hierarchic group.
Block Displays elements grouped by element size in rectangular fashion.
5.2.7 Type Autocompletion in Classes

When you add operations and attributes to a class, autocompletion of data types is enabled by default in
UModel. This makes it possible to specify the data type of the operation or property directly on the diagram, for

example:

1.

Right-click a class, and select New | Operation from the context menu.

Type the name of the operation after the double angle brackets << >>, and then type the colon (:)
character.
An autocompletion window is automatically opened.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

128 How to Model... Diagrams

R R .
1 Account -:I_} _
D_:Q] <<»> Balance:f E_‘:‘
E|' 1
: "-------T-'.-'.-'.1Type Mame Mamespace Sil...
R B File Unknown Externals A
B FileDescriptor Unknown Externals
B Finalizer Java Lang:java:lang:re
B FinalizerThread Java Lang:java:lang:re
B FinalReference Java Lang:java:lang:re
(O fioxt Jwaborie |

Autocompletion window

The autocompletion window has the following features:
e Clicking a column name sorts the window by that attribute in ascending or descending order.
e The window can resized by dragging the bottom-right corner.
e The window contents can be filtered by clicking the respective filters (categories) at the bottom of the

window: Class, Interface, PrimitiveType, DataType, Enumeration, Class Template, Interface Template,
DataType Template.

To enable only one of the filters at a time:
e Click the Single mode button g5 The image above shows the autocompletion window in "multi-
mode", that is, all filters are enabled. The single mode button is not enabled.

To select or clear all filters simultaneously:

e Click the Set All Categoriesa‘:’: or Clear All Categories o buttons, respectively.

To disable autocompletion:

1. On the Tools menu, click Options, and then click the Diagram Editing tab.
2. Clear the Enable automatic entry helper check box.

To trigger autocompletion on demand (when it is disabled):

1. Make sure that the cursor is inside an attribute or operation of a class, after the colon (:) character.
2. Press Ctrl+Space.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

How to Model... Diagrams 129

5.2.8 Zooming into/out of Diagrams

To zoom into or out of a diagram, do one of the following:

¢ Run the menu command View | Zoom In (Ctrl+Shift+l) or View | Zoom out (Ctrl+Shift+O).
e Select a predefined percentage value from the Zoom toolbar.

100% - _

v

e Hold down the Ctrl key while rotating the mouse wheel.

To fit the diagram area to the visible window:

¢ Run the menu command View | Fit to window (or click the Fit to window toolbar button).

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

130 How to Model... Relationships

5.3 Relationships

5.3.1 Creating Relationships

A relationship typically needs two elements, so your diagram must already contain the elements between
which you want to add relationships. You can create relationships as follows:

1. By using a toolbar button that depicts the relationship you need (for example, Association).
2. By using handles that appear when you click on any element on the diagram.

Creating relationships using toolbar buttons

When a diagram window is active in UModel's main pane (in focus), the toolbar displays all the elements and
relationships supported by that diagram. For example, a Class diagram provides toolbar buttons for all

supported relationships, including Association , Collection Association , Aggregation , Composition

, Realization , Generalization , and others. Likewise, a Use Case diagram provides toolbar buttons for
I

Associations , Generalizations , as well as Include and Extend relationships.

The instructions below illustrate how to create an association relationship between an actor and a use case.
Use the same approach for other relationships you might need.

Click an element on the diagram (actor "Standard User", in the image below).

Click the toolbar button corresponding to the relationship you need (Association , in this example).
3. Mowe the mouse over "Standard User" and drag onto a target element ("get account balance" use
case). Note that the target element is highlighted in green color and accepts the relationship only when
it is meaningful according to UML specifications.

N —

pkg Use Case View |

_Standard User

./ get account balance

Association in a Use Case diagram

Creating relationships using handles

When you click an element on a diagram, several handles may appears to the left, right, top, or bottom of the
element. The handles appear only for elements which support relationships. Each handle corresponds to a
relationship kind. For example, class elements have the following handles:

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

How to Model... Relationships 131

InterfaceRealization
Generalization
Association

Collection Association

To view the relationship kind that each handle creates, move the mouse over the handle. For example, in the
image below, the selected top handle can be used to create a Generalization relationship.

Generalization

O-E: SavingsAccount
=L —
R ofu

To create the relationship, click the handle and drag the cursor over a destination element. This creates the
corresponding relationship (Generalization, in this case).

Account

SavingsAccount

Generalization relationship between two classes

5.3.2 Changing the Style of Lines and Relationships

You can change the thickness, color, and bending style of lines from the Styles window. You can also add text
(labels) to relationships, reposition labels, and hide/show labels on the diagram either individually for each
relationship or in batch.

Note: In the instructions below, it is important to distinguish between "lines" (any line on the diagram) and

"relationships" such as association, generalization, composition, and so on. All relationships are lines,
but the opposite is not true. For example, a comment or note link is just a line, not a relationship.

To change line properties:

1. Click a line on the diagram.
2. Inthe Styles window, set the required property (for example, "Line Thickness").

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

132 How to Model... Relationships

Styles X
Project Styles W

ested Classifier Fom|11 | s

2 Classifier Forn/normal |

2 Classifier Sort|/no sort |
LutoSize true |

Line Style ‘rectangular x|

Line Thickness 1 |

Ise Syntax Coloring [true x|

5C Stereotypes olive v Ch
SC Name £3F3F3F EEE v 5D
5C Type teal [KAL)
5C Multiplicity navy AR
=] Properties @ Styles El Hierarchy

The values available for the "Line Style" property are also available as commands under the Layout | Line
Style menu, and as toolbar buttons. If you change this property, the corresponding toolbar button will become
enabled, and vice versa.

Orthogonal line A line with this style will only bend at straight angles.

Direct line A line with this style will make a direct connection between two elements,
without any waypoints.

Custom line A line with this style can bend at any angle. To move the line, drag any
waypoint (small black dots) on the line. To create new waypoints, click in
between two existing waypoints, and drag the line. To delete waypoints,
drag a waypoint directly on the top of an existing one.

Line styles, just like other element styles, can be set for each individual line, or at a more generic level
(project level, for example). The more specific style overrides the generic one. When a style is overridden,
this is indicated by a red triangle next to the affected property in the Styles window, see also Changing the
Style of Elements @

To add label text to a relationship:

e Click a relationship on the diagram, and start typing.

To move the label text:

e Click the label, and the drag it to some other position on the diagram.
e To mowe the label back to the default position, right-click the relationship, and select Text Labels |
Reposition Text Labels from the context menu.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

How to Model... Relationships 133

e To reposition multiple labels simultaneously, select one or more relationships on the diagram, and then
run the menu command Layout | Reposition Text Labels.

To show or hide the label text:

¢ Right-click the relationship, and select Text Labels | Show/Hide all Text Labels from the context
menu.

5.3.3 Viewing Element Relationships

By default, the relationships of an element are visible in the Model Tree window under that specific element. For
example, the checkingaccount class illustrated below has a Generalization relationship with the account
class:

Model Tree b4

IE Account A
IE Bank
E BankView
-3 B CheckingAccount

-------- «» CheckingAccount

@ O collectAccountinfo

El =, Relations

i —p Generalization: [Account]

-F B CreditCardAccount
-F B SavingsAccount

- = Relations hd

E|M::udEITrEE EDiagramTree 2% Favorites

Relationship in the Model Tree window

Note: To hide relationships from the Model Tree window, right-click inside the window and clear the Show
Relations in Tree option.

To show the relationships of an element on the diagram, right-click the element on the diagram, and select

Show | <relationship kind> from the context menu.

5.34 Associations

An association is a conceptual connection between two elements. You can create association relationships
like any other relationship in UModel, see Creating Relationships ®,

When you create an association between two classes, a new attribute is automatically inserted in the
originating class. For example, creating an association between car and Engine classes adds a property of
type Engine to the Car class.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

134 How to Model...

Relationships

Car

Engine

@] Propertyl:Engine

#Propertyl

When a class is added to a diagram, its associations are shown automatically on the diagram, provided that

the following conditions are met:

e The option Automatically create Associations is enabled from Tools | Options | Diagram Editing

tab.

e The attribute's type is set (in the image above, Propertyl is of type Engine)

e The class of the referenced "type" is also present in the current diagram (in the image abowe, the class

Engine).

You can also explicitly show the class properties of any class as associations on the diagram. To do this,

right-click a class property, and select one of the following commands:

e Show | <Property> as Association

e Show | All Properties as Associations

When you click an association on the diagram, its properties can be changed, if necessary, from the

Properties window.

Properties X
name

qualified name

element kind Association

visibility public |
leaf |

abstract |
isFinalSpecialization|]

derived |

A name Propertyl

&: aggregation none |
A& memberEndKind |\memberEnd |
& multiplicity |
B: name

E: aggregation none |
BE: memberEndKind |ownedEnd |
B: multiplicity |
=] Properties @St}-‘les EIHierarch}-'

It is important to note the properties listed below. Modifying these properties changes the appearance of the
association on the diagram, or adds various informative text labels. For information about showing or hiding text
labels, or changing the appearance of the relationship (such as color or line thickness), see Changing the Style

of Lines and Relationships

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

How to Model...

Relationships 135

Property

Purpose

A: name

The name of the member on end A of the relationship. In the car example abowe, it
is Propertyl.

A: aggregation

Enables you to change the type of association on end A. Changing this property
will also change the representation of the association on the diagram. Valid
values:

none Denotes a normal association
shared Changes the association into an aggregation
composite changes the association into a composition

A: memberEndKind

Attributes participating in a relationship can belong either to a class or to the
association. This property specifies who owns this end of the relationship and
whether this end of the relationship is navigable. ("Navigable" means that the end
has an "arrow" ending). Valid values:

memberEnd Member on this end belongs to the class.

ownedEnd Member on this end belongs to the association

navigableOwnedEnd Member on this end belongs to the association and

this end becomes navigable.

Setting both A and B ends to ownedEnd makes the association bi-directional.

A: multiplicity

Multiplicity specifies the number of objects at this end of the relationship. For
example, if a car has four wheels, multiplicity would be 1 on one end and 4 on the
other end of the relationship.

Car Fwheels Wheeal

©1 wheels:Wheel[4] 1 4

The same set of attributes are available for end B of the relationship.

If enabled, the property Show Assoc. Ownership in the Styles window displays ownership dots for the
selected relationship. By default, this property is set to False. The following is an example of a class where
Show Assoc. Ownership is set to True:

Car

+ Engine

@‘I Property1l:Engine

#Propertyl

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

136 How to Model... Relationships

Creating reflexive associations

Associations can be created using the same class as both the source and target. This is a so-called "self link",
or reflexive association. It may describe, for example, the ability of an ob'ehct to send a message to itself, for
recursive calls. To create a self link, click the association toolbar button , then drag from the element,

dropping somewhere else on the same element.

CarOccupant
#passenger

driver:CarCicc t[1
@] river:CarCccupant[1] 0.4

#driver

Creating association qualifiers

Associations can be optionally decorated with association qualifiers. Qualifiers are attributes of an association.
In the example below, the association qualifier isbn specifies that a book can be retrieved from the list of books
by this attribute. To add a qualifier:

1. Create an association between two classes.
2. Right-click the association and select New | Qualifier.

Library 2bookiist Book
o] #booklist
g1 booklistBook[*] — "

To rename or delete association qualifiers, use the same steps as for all other elements, see Renaming,
Moving, and Copying Elements and Deleting Elements .

5.3.5 Collection Associations

A collection association relationship is suitable to illustrate that a class property is a collection of some
kind. For example, in the diagram below, the property colors of the class ColorBox is a list of colors. This
type is defined in this case as an enumeration; however, it may also be another class or even an interface.

ColorBox zenumeration=
Color
@] colors:List<T-> Colors ¢
#colors
RED
GREEM
BELUE

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

How to Model... Relationships 137

Before you can create collection associations, the UModel project must contain the collection templates for the
project language you want to use (such as Java, C#, or VB.NET). Otherwise, a tooltip with the text "No
collections defined for this language" appears when you attempt to create the collection association.

Class1 Class2

I Rt S E— Mo collections defined for this language (UML Standard Profile)

If your project is UML only (without support for a specific code engineering language), you can define collection
templates from the menu Tools | Options | Diagram Editing | Collection Templates | UML tab.

If your project already contains a language namespace (such as Java, C#, VB.NET), the collection templates
are predefined from the profile of that language. Additional templates can be added from the menu Tools |
Options | Diagram Editing | Collection Templates.

To create a collection association (between two classes, for example):

Add two classes to the diagram.

Click the Collection Association toolbar button.
3. Drag from the first class and drop it onto the second class. The collection templates defined for the
project appear in the context menu, and you can select the required one.

N

Class1 Class2
-~ |—1

SystemuCollections: Generic:Comparer

System::Collections: Generic:EqualityComparer
System::Collections:Generic:Hash5et
System:Collections:Generic::KeyedByTypeCollection
SystemuCollections: Generic:LinkedList
System::Collections: Generic:LinkedListMode

System:: Collections:: GenericiList

System:Collections:Generic:Queue

SystemuCollections: Generic:Stack

Collection associations and code engineering

If you import program code into the model, collection associations are created automatically by default, based
on predefined collection templates. To enable or disable this option:

1. On the Tools menu, click Options.
2. Click the Diagram Editing tab.
3. Select or clear, as necessary, the check box Resolve collections.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

138 How to Model...

Relationships

Local Options

When automatically adding tems on diagrams

Ask before adding more than | items
Style
Always show dialog before adding
Show Attributes compartment
Show Operations compartment
[]5how nested Classifiers compartment
[] Show EnumerationLiterals compartment
[] Show ExtensionPoints compartment
[]5how Tagged Values
|se own compartment far MET properties
[]5how MET properties compartment

View Editing Ciagram Editing File Code Engineering Source Contral Scripting

When adding tems on diagrams

Automatically create Associations
Also for MET properties

Associations to collections

Resolve collections

Unknown e:-:te!'ljals:
resolve unqualified

Collection templates. ..

Reset existing Associations. ..

Autocompletion

Enable automatic entry helper

Cancel Apply

The collection associations are resolved by default based on a list of built-in collection templates. To view or
modify the built-in collection templates, click Collection Templates.

To insert custom collection types, use the Append, Insert, or Delete buttons available in the dialog box
below. The column Par.Pos. denotes the position of the parameter which contains the value type of the

collection.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

How to Model... Relationships 139

Collection Templates

Java CH B LML

Append
Template Mame Par.Pos. Y
javanutib:ArrayList
" . . |nigert
javanutil:AbstractList
javanutil:AbstractCollection

Delete

javanutil:AbstractSet
javanutik:AbstractQueue
javanutil:Collection
javanutil:HashSet
javanutil:LinkedList
javanutil:List
javanutik:Queue
javanutil:Set
javanutil:Vector
javanutil:AbstractMap
javanutil:Dictionary
javanutil:HashMap
imvA kil Hashtahkla

Set Defaultz

Cancel

(O SR T U O N T R I U R I T U U I RIS QU

Collection Templates dialog box

To reset the collection templates to their default values, click Set default.

5.3.6 Containment

A containment line is used to show, for example, parent-child relationships between two classes or two
packages.

To illustrate containment between two classes:

1. Click the Containment toolbar button (in a class or package diagram).
2. Drag from the class that is to be "contained", and drop on the container class.

Car Engine

EH Engine

Note that the contained class, Engine in this case, is now visible in a compartment of car. This also places
the contained class in the same namespace as the container class.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

140 How to Model... Stereotypes and Tagged Values

5.4 Stereotypes and Tagged Values

A stereotype is an extension mechanism; it is intended as a flexible way to extend an existing UML element
and capture some aspect of it that standard UML doesn't. Stereotypes applied to an element signify that that
element has some special use. The UModel built-in profiles (C#, Java, VB.NET, and so on) contain all the
stereotypes required to model projects in the respective languages. However, you can also create your own

profiles (and their respective stereotypes), see Creating and Applying Custom Profiles @

When you import source code or binaries into the model, UModel applies stereotypes to elements
automatically, based on the structure of the original code. For example, if annotations modifiers exist in the
imported Java source code, the corresponding elements in the model get the «annotations» stereotype. For
information about how various language constructs map to UModel elements and become stereotypes in the

model, see UModel Element Mappings.

You can also apply stereotypes to elements manually, while modeling them. For example, you can apply the
«attributes» stereotype to a C# class, which would indicate that the class must be decorated with attributes
in generated code. To specify the attribute values in the generated code, you can add so-called "tagged values"
in UModel, as shown in Applying Stereotypes @ Stereotypes are also used extensively in XML schema
modeling, to model elements such as simple types, complex types, facets, and so on.

Across the UModel graphical interface, stereotypes are displayed enclosed within guillemets (for example,
«static»). All stereotypes included into the built-in UModel profiles appear in the Properties window when you
click an element. For example, clicking a Java class in the Model Tree would display in the Properties window
only class stereotypes applicable to the Java profile (in this example, «annotations», «static», «strictfp»).

Properties X
name BankWView

qualified name Design View::BankView
element kind Class

visibility public x|
leaf O

abstract O

isFinalSpecialization |[]

active O

code file name BankView.java

code file path CAUML_Bank_Sample'Ja
zannotations: O

wstatics O

wstrictfps]

=] Properties @ Styles El Hierarchy

In class diagrams, stereotypes are visible above the name of the class. For example, the class below has the
«attributes» stereotype applied to it.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

How to Model... Stereotypes and Tagged Values 141

cattributess
Account

@] Balance:decimal

<% aconstructors Account()
<% Calculatelnterest:decimal

In case of methods or properties, stereotypes are displayed inline, like the «constructor» stereotype applied
to the Account() method in the class above.

5.4.1 Tagged Values

Stereotypes may hawe attributes (tagged values) associated with them. Tagged values are name-value pairs
that provide extra information related to the stereotype where they belong. For example, the class illustrated
below has the stereotype «attributes» applied to it. Notice that the «attributes» stereotype has tagged
values associated with it: a key (name) called "sections" and a value called "Serializable".

wattributess
sections = Serializable

=attributes=
SavingsAccount

@] Balance:decimal

¥ wconstructors SavingsAccount]
<% Calculatelnterest():decimal

Tagged values

A stereotype may have multiple pairs of tagged values. Also, a value can be selected from a set of enumeration
values.

| einfos =y
«Infox 4 Usability = 75% |
DemoClass [~ lisObsolete = No i
wEE Yes
Mo

You can change how t%ged values are displayed on the diagram, or hide them altogether, see Showing or

Hiding Tagged Values "*_ For information about changing a stereotype's tagged values, see Applying
Stereotypes ¥, For an example that illustrates how to create stereotypes with tagged values, see Example:

Creating and Applying Stereotypes

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

142 How to Model... Stereotypes and Tagged Values

5.4.2 Applying Stereotypes

By applying a stereotype to an element, you indicate that the element has some specific use. In case of code
languages supported in UModel (such as C#, VB.NET, Java), you typically apply stereotypes in order to
comply with the grammar of that language. For example, a Java class may have the «static» stereotype

applied to it.

Before you can apply stereotypes, the corresponding profile must be applied to your package(s) first. This
is done automatically by UModel if you right-click a package and select the Code Engineerin%Set as
{language} namespace root command. For more information, see Applying UModel Profiles “.

If you created custom profiles, these must be applied manually to the package, see Creating and Applying
Custom Profiles .

To apply a stereotype to an element:

1. Click the element in the Model Tree window. If the element can be extended by any stereotypes, they
appear as properties in the Properties window, enclosed within guillemets ("«" and "»").
2. Select the stereotype's check box in the Properties window (for example, «static»).

You can also apply stereotypes while designing elements inside a class diagram. To do this, click a property of
a class and start typing text inside the "<< and ">>" characters.

i- wattributes= -i
[Account :
E|' i
; s
ol v
I < » wcgnew nt) b
1 ¢y callinternal cimal §
e nullable iy |

const

attributes
unsafe

volatile
privateProtected

Some stereotypes are associated with a list of name-value pairs referred in UML as "tagged values". To apply a
stereotype with tagged values to an element, select the stereotype's check box in the Properties window (in
this example, «attributes»). This adds an indented entry where you can select the required value from a

predefined list.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

How to Model...

Stereotypes and Tagged Values

143

Properties X
wstructs | "
adelegates |
wattributess

sections

zinternal= Attributelsage LY
LN CLSCompliant
wstatics ContextStatic
aprivateProtecteds Flags - W
Sropee [B s

Tagged values

You can also add multiple values to the same key. To do this, right-click the idented entry, and select Add

ManSerialized
Obsolete
ParamArray

Serializable bl

Tagged Value | <name> from the context menu.

Properties =
code file name A
code file path
wstructs O]
zdelegates |
sattributess
sections Serializable .
i — |:| i sections
B | Femove Tagged Value

[=] Properties @l Styles | El Hierarchy

Alternatively, you can add tagged values directly from the diagram, by right-clicking a value, and selecting New
| Tagged Value from the context menu.

«attributess
SavingsAccount

b

@1 Balance:decimal

(} zconstructorz SavingsAccount(
¥ Calculatelnteresti):decimal

3

Tagged Value

I wattributess =i
Lsections = Serializable 2
.t —| MNew
Show
Sl Cut
Copy

Show/Hide Mode content..,

Ctrl+5hift+H

Ctri+X
Ctrl+C

»

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

144 How to Model... Stereotypes and Tagged Values

54.3 Showing or Hiding Tagged Values

When an element has tagged values, you can view all the respective tagged values either in a standalone box,
or inline, as a compartment. You can also hide tagged values completely. To choose how tagged values should
be displayed, right-click the element on the diagram, and select Tagged Values | <display option>. For
example, to display all tagged values outside of the class, right-click the class on the diagram, and select
Tagged Values | all. To hide all tagged values of a class, right-click the class on the diagram, and select
Tagged Values | none.

wattributess
sections = Serializable

=attributes=
SavingsAccount

&1 Balance:decimal

% «constructors SavingsAccount])
™ Calculatelnterest(:decimal

Tagged values displayed outside a class

Toggle compact mode
When some values in a tagged values box are empty, you can hide only the empty values, as follows:

1. Select a tagged values box on the diagram (one that has both empty and non-empty values).

Class OrgChart-Schema J
e -
:«velemenb& I-\i
lid = 1
1 id = 1
| block = substitution |
:final = restriction :
fixed = |
.--{ form = :
_i.-"' 1 1
- lnillable = 1
[#] «element= ' e
OrgChart

2. Click the Toggle compact mode [5] handle in the bottom-right corner of the box.

When the handle is in expanded state El the empty values are shown as well. When the handle is in
collapsed state El the empty values are hidden.

Changing the display of tagged values globally

You can change the display of tag values either individually for each element as shown abowve, or globally at
project level.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

How to Model...

Stereotypes and Tagged Values 145

To change tag values at project level:

1.

Select Project Styles from the list at the top of the Styles Window @
2. Scroll down until to the Show Tagged Values property and select the required option from the list (for

example, all, hide empty).

Styles x
Project Styles W
Show Parameter true]| ES
Show Par.direction true]|
Show Property Type true |
Show MET properties in own £ Show expanded |
Show Expression bodies Show far all |
Show ExtensionPoints true]|
Show Tagged Values |
Show Execution Specifications
Show ge Mumbers element
Show ge Parameters element, hide empty
Show Type Modifiers all
Show Assoc, Ownership Dot
Mamespace Display Mode in compartment
Show region names on states Ilguc‘:_:umpartment, compadt —

Draw Mirrored false]| W
=] Properties @I Styles ElHierarch],-‘

For information about changing styles at various levels, see Changing the Style of Elements @

Possible display options

The possible options for controlling the display of tagged values are listed in the table below. These options are
similar when you change tagged values globally or for individual elements.

None

Hides all tagged values.

All

Displays the tagged values of an element (for
example, a class) as well as those of elements
owned by the class, such as attributes and
operations.

All, hide empty

Displays only those tagged values where a value
exists.

Element

Displays the tagged values of an element (for
example, a class) but not those of owned attributes,
operations, and so on.

Element, hide empty

Displays only those tagged values of an element
where a value exists.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

146 How to Model... Stereotypes and Tagged Values

In compartment Displays the tagged values in a separate
compartment. For example, the class illustrated
below has an «attributes» compartment that contains

tagged values.

sattributess=
SavingsAccount

=Tttributes s

sections = Serializable

@] Balance:decimal

% «constructore Savingsaccount()
% Calculatelnterest(j:decimal

In compartment, hide empty Displays only those tagged values where a value
exists, in a compartment.

In compartment, compact Same as above.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering 147

6 Projects and Code Engineering

This chapter provides information about creating UModel modeling projects (either new, or by importing data
from source code or binaries). It also describes various operations applicable to code engineering with UModel,
namely:

e Forward engineering (generating code from a UModel project)

e Rewerse engineering (importing source code into a UModel project)

e Roundtrip engineering (that is, synchronizing the model and code in either direction, as and when
necessary)

The menu commands applicable to code engineering are available in the Project menu. For example, the menu
command Project | Import Source Project enables you to import C#, or VB.NET Visual Studio solutions, or
Java code, and generate UModel diagrams based on it. When no project solution is available, use the menu
command Project | Import Source Directory, see Importing Source Code (Reverse Engineering). Java,
C#, and VB.NET binaries can also be imported, provided that a few basic prerequisites are met, see Importing
Java, C# and VB.NET Binaries @.

The code engineering operations above are applicable not only to programming languages but also to
databases and XML Schema. For example, you could use the menu command Project | Import XML
Schema File to reverse engineer an existing XML schema and automatically generate a class diagram based
on it.

For the list of mappings between UModel elements and elements in each supported language profile (including
databases and XML Schema), see UModel Element Mappings@.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

148 Projects and Code Engineering Managing UModel Projects

6.1 Managing UModel Projects

A UModel project acts as a container for UML modeling elements, diagrams, and various project-related
settings that you may define. UModel projects are saved as files with .ump (UModel Project File) extension.

UModel does not force you to follow any predetermined modeling sequence. You can add any type of model
element: UML diagram, package, actor etc., to the project in any sequence (and in any position). All model

elements can be inserted, renamed, and deleted in the Model Tree window itself, you are not even forced to
create them as part of a diagram.

6.1.1 Creating, Opening, and Saving Projects

When you start UModel for the first time, a new project is open automatically. On subsequent runs, UModel will
open the most recent project you worked with.

Note: UModel includes several example projects that you can explore in order to learn the modeling basics

and the graphical user interface. These can be found at the following path: C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples.

To create a new project:

e On the File menu, click New (or click the New toolbar button).

A new project with the default name NewProject1 is created. Also, the following packages are automatically
added to the project and visible in the Model Tree window.

e Root
e Component View

These two packages have special use and are the only ones that cannot be renamed, or deleted, as explained

in the tutorial, see Forward Engineering (from Model to Code)m.

Once the project is created, you can add modeling elements to it, such as UML packages and diagrams, see
Creating Elements @ and Creating Diagrams.
To add a new package:

1. Right-click the package under which you want the new package to appear (either Root or Component

View in a new project).

2. Select New Element | Package from the context menu.
Be aware that packages, as well as other modeling elements, can also be added from UML diagrams, in which
case they will appear in the Model Tree window automatically.

To add a new diagram:

¢ Right-click a package in the Model Tree, and select New Diagram.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Managing UModel Projects 149

To add elements to a diagram:
o Do one of the following:

= Right-click the diagram, and select New Element | <Element Kind> from the context menu.
= Drag the desired element from the toolbar.

For a worked example of how to create a project and generate program code from it, see Forward Engineering

(from Model to Code)@.
To open an existing project:
e On the File menu, click Open, and browse for the .ump project file.
Note: By default, UModel registers any changes made externally to the .ump project file or included file(s),
and displays a dialog box asking you to reload the project. This functionality can be disabled from the
Tools | Options | File tab.
To save a project:
e On the File menu, click Save (or Save as).

All project relevant data is stored in the UModel project file, which has the extension *.ump (UModel Project
File).

Note: The *.ump file is an XML file format which can be optionally "prettified" on saving. Pretty-printing can be

enabled from the Tools | Options | File tab.

6.1.2 Opening Projects from a URL

In addition to opening local project files, you can also open files from a URL. The supported protocols are
HTTP, HTTPS, and FTP. Note that files loaded from URLs cannot be saved back to their original location (in
other words, access to the file is read-only), unless they are checked out from a Microsoft® SharePoint®
Server, as shown below.

To open a file from a URL:

1. On the Open dialog box, click Switch to URL.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

150 Projects and Code Engineering

Managing UModel Projects

@ Open

g

Cuick access

Desktop

[|
Libraries

L2

This PC

@

Metwork

Look i_r1:| IIModelExamples Vl @ ? -

AP
Bank_MultiLanguage_CSharp
Bank_MultiLanguage_lava
Bmps
IDEPIugin
Scripting
StateMachineCodeGeneration
Tuterial

(% Bank_BPMN.ump

[Bank_BPMNZ.ump

% Bank_CSharp.ump

% Bank_lava.ump

% Bank_MultiLanguage.ump

% Bank_MultiLanguage_Use Case View.ump

% Bank_SysML.urnp

g

File name: || e |

| Open

Files of type: UModel Projects (*.ump) W

Switch to LIRL

Cancel

2. Enter the URL of the file in the File URL text box, and click Open.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Projects and Code Engineering Managing UModel Projects 151

Open *
File LIRL: hitp: /fexample. org/Mydh odelProject. ump w
File lnad
(®) Use cache/prosy () Beload
| dentification
User: | Password: |] Remember pazzwaord

between application starts

Available filez
Semer URL: | R | Browse

[] Thiz is a Microsoft® SharePoint® Server

HMew Folder Delete

Switch ta File Dialog Cancel

If the server requires password authentication, you will be prompted to enter the user name and password. If
you want the user name and password to be remembered next time you start UModel, enter them in the Open
dialog box and select the Remember password between application starts check box.

If the file you are loading is not likely to change, select the Use cache/proxy option to cache data and speed
up loading the file. Otherwise, if you want the file to be reloaded each time when you open UModel, select
Reload.

For servers with Web Distributed Authoring and Versioning (WebDAV) support, you can browse files after
entering the server URL in the Server URL text box and clicking Browse.

Note: The Browse function is only available on servers which support WebDAV and on Microsoft SharePoint
Seneers.

If the senver is a Microsoft® SharePoint® Server, select the This is a Microsoft® SharePoint® Server check
box. Doing so displays the check-in or check-out state of the file in the preview area.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

152 Projects and Code Engineering

Managing UModel Projects

Open >
File LIRL: hitp: /7 ‘Documentz/B ank_CSharp.ump w
File load
(®) Use cache/prosy (") Reload
| dentification
i i Remember pazsward
User. | Password: | 606868 | [between application starts
Available files
Semer URL: |htt|:u:.n’.n" R | Browse
Thiz iz a Microzoft® SharePoint® Server
=W Documents *
- Forms
#-[im Reports
W] Bank_CSharp.ump
E ExpReport.sps | Check Out...
@ ExpReportxml Check In...
@ ExpReport xsd Unda Check Out.., ¥
Mew Folder Delete
Switch ta File Dialog Cancel

The state of the file can be one of the following:

[

Checked in. Available for check-out.

]

Checked out by another user. Not available for check-out.

Checked out locally. Can be edited and checked-in.

To be able to modify the file in UModel, right-click the file and select Check Out. When a file is checked out
from Microsoft® SharePoint®, saving the file in UModel sends the changes back to the server. To check in the
file back to the sener, right-click the file in the dialog box above, and select Check In from the context menu
(alternatively, log on to the server and perform this operation directly from the browser). To discard the changes
made to the file since it was checked out, right-click the file, and select Undo Check Out (or perform this

operation from the browser).

Note the following:

e When afile is already checked out by another user, it is not available for check out.
e Ifyou check out a file in one Altova application, you cannot check it out in another Altova application.

The file is considered to be already checked out to you.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Projects and Code Engineering Managing UModel Projects 153

6.1.3 Moving Projects to a New Directory

UModel projects and generated code can be easily mowved to a different directory (or a different computer) and
be resynchronized there. There are two ways to do this:

e Select the menu option File | Save As..., and click Yes when prompted to adjust the file paths to the
new project location.

Utodel

This project contains relative file paths.
Do you want to adjust all these relative paths to the new project file location?

E Yes ; Mo Make Absolute

e Copy the UModel project (*.ump) to a new location, and then adjust the code generation paths for each
component involved in code generation.

For an example of the second approach, open the following sample project: C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamplesBank_Multilanguage.ump.

1. Locate the Bankview component in the Model Tree.

Model Tree 4

Root
A Behavior View
B Component View
-------- =7 Bank realizations
BankView
Component View [Bank Server.ump]
-------- Component View [Bank_MultiLanguage_
Component View [Banking access.ump]

il

Component View [BankView.ump]
@ £] BankView

A Deployment View

- Design View

-H Interaction View

- =7 JDK5.0 [Java [types only].ump]

A Unknown Externals

g Use Case View [Bank_MultiLanguage_Use ¢
[[« 7] C# Profile [C# Profile.ump]

- [+ 7] Java Profile [Java Profile.ump]

< >

ElMUdElTrEE @DiagramTree ‘%Fav-:urites

2. In the Properties window, locate the directory property and update it to the new path.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

154 Projects and Code Engineering Managing UModel Projects

Properties 4
name BankView

qualified name Component View:Compo
element kind Component

visibility public bl
leaf O

abstract O

isFinalspecialization |
indirectlylnstantiated
code language Java5.0 1.5] bl
directory ChUsers\altova\Docum ...
use for code engineeri

[=] Properties @St}-‘les EIHierarchy

3. Re-synchronize the model and code.

6.1.4 Applying UModel Profiles

By default, whenever you start a new modeling project in UModel, the project is unaware of the business
application or code engineering language that you are going to need. Therefore, to tailor your UML project to a
domain or language, you must apply a profile to it.

One must distinguish between two types of profiles:

e Profiles built into UModel (these include C#, VB.NET, Java, and so on).
e Custom profiles that you can create to extend UML to your specific domain or needs.

You can add any of the built-in profiles to your project by selecting the menu command Project | Include
Subproject. In addition, UModel prompts you to apply a built-in profile whenever you take an action that
requires that specific profile. For example, when you right-click some new package and select the Code
engineering | Set as Java Namespace Root context menu option, you are prompted to apply the Java profile
to it.

Utodel =

This command will include the UModel Java Profile and apply
it to the selected Package.
Do you want to continue?

Cancel

To view the full list of UModel built-in profiles or add them to your model manually, select the menu command
Project | Include Subproject. See also Including Subproiects.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Managing UModel Projects 155

For instructions about creating custom profiles in order to extend or adapt UML, see Creating and Applying
Custom Profiles @.

6.1.5 Splitting UModel Projects

You can split UModel projects into multiple subprojects and thus allow several developers to simultaneously
edit different parts of a single project. Subprojects are like standard UModel project files and have the same
*.ump extension. Each individual subproject can be added to a source control system. The top-level project is
called the main project.

You can create a subproject from nearly any package in the main project. You can choose whether the
subproject should be editable from within the main project, or be read-only. In the latter case, the subproject is
editable only if you open it as a standalone project.

Subprojects can be structured in any way that you wish, in a flat or hierarchical structure, or a combination of
both. This makes it theoretically possible to split off every package of a main project into subproject files.

In the Model Tree Window, subprojects appear with the respective .ump file name displayed to the right,
enclosed within square brackets. For example, the project illustrated below includes several subprojects (this is
the Bank_MultiLanguage.ump from the C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples directory).

Model Tree x

Root
-H Behavior View
- Component View
- Deployment View
= Design View

-[| JAccount Transfer

-[# c#| Bank Server [Bank Server.ump]

-[F = Banking access [Banking access.ump)
- 2 BankView [BankView.ump]

-@ = Relations

H Interaction View

- [E1JDKS.0 [Java [types only).ump]

- Unknown Externals

A Use Case View [Bank_MultiLanguage_Use Case View.ump]
- [« 7] CF Profile [C# Profile.ump]

[[« ¥]Java Profile [Java Profile.ump]

E|M::udEITrEE EDiagramTree 2% Favorites

During the code-engineering process, all subordinate components of a subproject are considered. There is no
difference between a single project file or one that consists of multiple editable subprojects. This also applies to
UML diagrams—they can also be edited at the main, or subproject, level.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

156 Projects and Code Engineering Managing UModel Projects

Note: You can also share packages and UML diagrams they %ht contain, between different projects. For
more information, see Sharing Packages and Diagrams “=¥.

Creating subprojects

To create a subproject, right-click a package, and select the command Subproject | Create new Subproject
from the context menu.

Create new Subproject

Eile path:
| BankView ump

Make path relative to Bank_MultiLanguage ump

Include subproject elements

O Edtable

(®) Readonly

Cancel

Next, click Browse and select the directory where the subproject should be saved.

Select Editable to be able to edit the subproject from the main project. (Selecting Read-only makes it
uneditable in the main project.)

Note: You can change the file path of the subproject at any time by right clicking the subproject and
selecting Subproject | Edit File Path.

Opening and editing subprojects
You can open a subproject as a standalone UModel project, directly from the main project. For this to be

successful, there should not be any unresolved references to other elements. UModel automatically performs
checks when creating a subproject from the "main" project, and whenever a file is saved.

To open a subproject as a standalone UModel project, right-click the subproject package in the main project
and select Subproject | Open as Project. This starts another instance of UModel and opens the subproject
as a "main" project. Any unresolved references are shown in the Messages window.

Reusing subprojects
Subprojects that have been split off from a main project can be used in any other main project(s).

1. Open a project and select the menu command Project | Include Subproject.
2. Click the Browse button and select the *.ump file that you want to include.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Managing UModel Projects 157

Include Subproject

Kind of include

{®) Include by reference: Store a reference to the original data of your subproject.
Include subproject elements: () Editable (@) Readonly

() Include as a copy:; Store a copy of the shared data of your subproject in your UMadel
project file. References to the original data will be lost.

Styles of included diagrams
Retain styles: Included diagrams will appear as defined in their subproject.

|Use project file styles: Diagrams will use cument project file styles.

IModelExamples'Bank_MultiLanguage _Java“BankView ump

Make path relative to MewProject 1 Crice

3. Choose how the file is to be included; by reference or as copy.

Saving projects

When you save the main project file, all editable subproject files are also saved. You should therefore not
create/add data (components) outside of the shared/subproject structure, if the subproject is defined as
"editable" in a main project file. If data exists outside of the subproject structure, a warning message will be
displayed in the Messages window.

Saving subproject files

When saving subprojects (from the main project level), all references to sibling, as well as child subprojects,
are considered and saved. For example, if two sibling subprojects, "sub1" and "sub2", exist and "sub1" uses
elements from "sub2", then "sub1" is saved in such a way that it automatically saves references to "sub2" as
well.

If "sub1" was opened as a "main" project, then it is considered as a self contained project and can be edited
without any reference to the actual main project.

Reintegrating subprojects into the main project

You can copy previously defined subprojects back into the main project again. If the subproject does not
contain any diagrams then the reintegration will be immediate. If diagrams exist, a dialog box will open.

1. Right-click the subproject and select Subproject | Include as Copy. This opens the "Include
Subproject" dialog box, which allows you to define the diagrams styles you want to use when including
the subproject.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

158 Projects and Code Engineering Managing UModel Projects

Include Subproject

Kind of include
Include by reference: Store a reference to the onginal data of your subproject.

Include subproject elements: Editable Readaonly

Include as a copy: Store a copy of the shared data of your subproject in your UMadel
project file. References to the original data will be lost.

Styles of included diagrams
(") Retain styles: Included diagrams will appear as defined in their subproject.

(®)ilise project file styles: Diagrams will use cument project file styles.

Malke path relative to Bank_MultiLanguage ump Crice

2. Select the style option that you want to use, and then click OK.

6.1.6 Including Subprojects

When you want to generate code from a model, or import source code into a model, a profile project applicable
to that specific language (for example, C#, Java, VB.NET) must be included in your UModel project.

To include a UModel project as a subproject of another UModel project, select the menu command Project |
Include Subproject. As illustrated below, several .ump subprojects (language profiles required for code
engineering) are available on the Basic tab. In addition, several .ump subprojects containing C#, Java, and
VB.NET types, organized by version, are available in tabs with the same name.

In order for all types to be recognized correctly during code engineering, make sure to include both the
language profile (for example, the C# profile) and the types project of the corresponding language version
(for example, .NET 5 for C# 9.0). Otherwise, an "Unknown Externals" package will be created in the
project which will include all unrecognized types.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Managing UModel Projects 159

Include Subproject

Basic CH Java VB

Cancel

@ MET Standard 2.1 for C£8.0 (types

onlyl.ump

JMET Standard 2.0 for C27.1 (types
onlyl.ump

@ Microsoft.MET4.7.1 for CE7.0 (types

onlyl.ump

Microsoft. MET4.6 for C#6.0 (types
onlyl.ump

ATy Microsoft. META.5 for C#5.0 (types W I Browse... I

Description:

Include Subproject dialog box

The tabs and UModel projects (.ump files) available on the "Include Subproject” dialog box are configurable.
Namely, UModel reads this information from the following path relative to the "Program Files" folder on your
operating system: \Altova\UModel2023\UModelinclude. Note that the project files available on the Basic tab
exist directly under the UModellnclude folder, while projects in each of the Java, VB, and C# tabs exist as
subfolders of the UModellnclude folder.

To view all currently imported projects:

e Select the menu option Project | Open Subproject Individually. The context menu displays the
currently included subprojects.

Dpen Subproject As Projeck >| Java Lang.ump

Java Profile.ump

=T T T T T TR

lear Messages

To create a custom tab on the "Include Subproject" dialog box:

¢ Navigate to the \Altova\UModel2023\UModellnclude folder (relative to your "Program Files"), and
create your custom folder in it, for example \UModellnclude\myfolder. The name you give to the
folder determines the name of the tab on the "Include Subproject" dialog box.

e Copy to your custom folder any .ump files that you want to make available on the corresponding tab.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

160 Projects and Code Engineering Managing UModel Projects

To create descriptive text for each UModel project file:

e Create a text file using the same name as the *.ump file and place in the same folder. For example,
the MyModel.ump file requires a descriptive file called MyModel.txt. Please make sure that the
encoding of this text file is UTF-8.

To remove an included project:
1. Click the included package in the Model Tree view and press the Delete key.
2. When prompted, click OK to delete the included file from the project.

To delete or remove a project from the "Include Subproject” dialog box:

e Delete or remove the (MyModel).ump file from the respective folder.

6.1.7 Sharing Packages and Diagrams

You can share packages (and UML diagrams they might contain) between different UModel projects. Packages
can be included in other UModel projects by reference, or as a copy.

Also note that subproject files can be split off a main, or subproject, file at any time. The subproject files can be
included as editable or read-only from the main project; each package is shared and saved as a s érqect file.
Subprojects can be added to a source control system, see Teamwork support for UModel projects

Notes

e In order to be shareable, a package must not contain links to external elements (elements outside
of the shared scope).

o When creating UModel project files, do not use one project file as a "template/copy" for another
project file into which you intend to share a packa%Thls will cause conflicts due to the fact that
every element should be globally unique (see uuid“+") and this will not be the case, as two
projects will have elements that have identical uuids.

To share a package between projects:

e Right-click a package in the Model Tree window and select Subproject | Share package. A "shared"
icon appears below the shared package in the Model Tree. This package can now be included in any
other UModel project.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Managing UModel Projects 161

Model Tree »

|Root
- Component View
o MySharedPackage

ElMUdHTrEE @Diagram Tree %} Favorites

To include/import a shared folder in a project:

1. Open the project which should contain the shared package (an empty project in this example).

Model Tree »

_|Root
-~ Component View

ElMUdHTrEE @Diagram Tree %} Favorites

2. Select the menu item Project | Include Subproject...

3. Click Browse, select the project that contains the shared package, and click Open. The "Include
Subproject” dialog box allows you to choose between including the package/project by reference, or as
a copy.

Include Subproject

Kind of include
(®) Include by reference: Store a reference ta the original data of your subpraject.

Include subproject elements: () Editable (@) Readonly

() Include as a copy: Store a copy of the tshared data of your subproject in wour kodel
project file. Feferences to the onginal data will be lost.

Styles of included diagrams
Retain styles: Included diagrams will appear as defined in their subproject.

IJze project file shyles: Diagrams will use curent project file styles.

SharedPackage. ump

take path relative to MewProject] Carcel

4. Select the required option ("Include by reference”, in this example) and click OK.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

162 Projects and Code Engineering Managing UModel Projects

The "Deployment View" package is now visible in the new package. The packages' source project is displayed
in parenthesis (SharedPackage.ump, in this example).

Model Tree X
|Root
- Component View
b MySharedPackage [SharedPackage.ump]

EIM::ndelTree @Diagram Tree ‘%{%Fav-:nrites

Notes:

¢ When you include a source project which contains subprojects, all subprojects of the source project
will also be included into the target project.

e Shared folders that have been included by reference can be changed to "Include by copy" at any time,
by right-clicking the folder and selecting Subproject | Include as a Copy.

Resolving links to external elements

Attempting to share a package which has links to external elements causes a warning dialog box to appear.
For example, the following message appears if you attempt to share the "Deployment View" package of the
sample project C:

\Users\<username>\Documents\Altova\UModel2023\UModelExamples\Tutorial\BankView-start.ump.

Uhodel >

The shared Package(s) have links to external elements!

o These errors must be solved before the UModel projectfile can be
saved.
Do you still want to change the shared status of this Package?

Yes Mo Cancel

Click Yes to share the package despite of the errors; otherwise, click No. The Messages window provides
information about each of the external links.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Managing UModel Projects 163

Messages 4

V| val val val B8E X
[El starting Checking shared packages ...
-------- ﬂ Manifestation has links out of the shared Package(s): "utilizedElement’
-------- 'g Manifestation has links out of the shared Package(s): "utilizedElement’
-------- I}.'_ Deployment Diagram "Artifacts’ (Component "BankView') has links out of the shared Package(s)
-------- IL'— Deployment Diagram "Artifacts’ (Component "Bank APl client’} has links out of the shared Package(s)
i+, Package 'Design-phase’ is defined outside of the shared Package(s} and can get lost when you include this

-------- . finished Checking shared packages

Click an entry in the Messages window to display the relevant element in the Model Tree window.

6.1.8 Tips for Enhancing Performance

Some modeling projects can become quite large, in which case there are a few ways you can enhance the
modeling performance:

e Make sure that you are using the latest driver for your specific graphics card (resolve this before
addressing the following tips)

e Disable syntax coloring (from the Styles window, set the property Use Syntax Coloring to false).

e Disable "gradient" as a background color for diagrams, use a solid color (from the Styles window, set
the property Diagram background color to a solid color, for example, white).

e Deactivate automatic completion (go to Tools | Options | Diagram Editing and clear the check box
Enable automatic entry helper).

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

164 Projects and Code Engineering Generating Program Code

6.2 Generating Program Code

After you design the model of your application in UModel (for example, one or more class diagrams), you might
want to quickly generate a prototype project which includes all defined interfaces, classes, operations, and so
on, in your language of choice. UModel enables you to generate C#, VB.NET, or Java program code from a
model, based on UML elements found in your UModel project (such as interfaces, classes, operations, and so
on). This process is also known as "forward engineering". The generated code will create all objects exactly as
they were defined in the model, so that you can proceed to their actual implementation.

Code generation is also applicable to XML schemas and databases*. For example, you could design an XML
schema or a database with UModel and then generate the corresponding file (or SQL script, in case of
databases) from the model. To achieve this, consult the mapping tables to find out which schema or database
elements map to UModel elements, see UModel Element Mappings@.

* Engineering databases requires UModel Enterprise or Professional editions.

Prerequisites
In order for code generation to be possible, the UModel project must meet the following minimum requirements:

¢ One of the packages in your project must be designated as namespace root. The namespace root can
be a C#, Java, VB.NET, XSD, or Database namespace. This package must contain all classes and
interfaces from which code is to be generated. For more information, see Setting a Package as

Namespace Root @,
e A code engineering component must be added to the project. This component must be realized by all

the classes or interfaces from which code is to be generated. For more information, see Adding a Code
Engineering Component@. .

In addition to this, it is recommended that you include one of the built-in UModel s%rojects corresponding to
the language (or the language version) you want to use, see Including Subprojects “<¥. For example, if your
application must target a specific version of C#, Java, or VB.NET, this would enable you to use the
corresponding data types while designing your UML classes, interfaces, and so on.

For a worked example of how to create a project from scratch and generate code from it, see Example:
Generate Java Code @ .

6.2.1 Setting a Package as Namespace Root

In order to generate program code from your UModel project, a package in your model must be designated as
namespace root.

To set a package as namespace root:

¢ Right-click a package in the Model Tree Window® and select Code Engineering | Set as <...>
Namespace Root from the context menu, where <...> is one of the following: C#, Java, VB.NET,
XSD.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Generating Program Code 165

When you set a package as namespace root, UModel informs you that the UML profile of the corresponding
language will also be added to the project and applied to the selected package. Click OK to confirm when
prompted by a dialog box such as the one below.

Uhodel X

This command will include the UMedel Java Profile and apply it to the
selected Package.
Do you want to continue?

QK Cancel

6.2.2 Adding a Code Engineering Component

In order to generate program code, your UModel project must contain a code engineering component that
specifies all the code generation details (for example, which classes from the project should be included in
code generation, and what should be the target generation directory). As illustrated in the instructions below,
the component must meet the following criteria for successful code generation:

e The component must have a physical location (directory) assigned to it. Code will be generated in this
directory.

e The classes or interfaces that take part in code engineering must be realized by the component.

e The component must have the property use for code engineering enabled.

To add a component which realizes the desired classes or interfaces:

1. Right-click a package in the Model Tree and select New Element | Component from the context
menu. This adds a new Component to the model.

2. In the model tree, click the class or interface that must be realized by the component, and then drag
and drop the cursor onto the component (in this example, Class1 from packagel was dragged onto
Component1). This automatically creates a ComponentRealization relation in the Model Tree.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

166

Projects and Code Engineering

Generating Program Code

Model Tree

Roat
B 1Component View

E--E_|$:| Compaonenti

E| = Relations
E— .. ComponentRealization: (Classi)

-0 & Packagel

........ E Class1

E--E{’Ff-':l_=.t|-:-|'|:-
-5 [« #]Java Profile [Java Profile.ump]

ElMUdElTrEE @Diagram Tree %%Fat-‘-:urites

There is also an alternative approach to do this, by creating a Component diagram and then drawing a
ComponentRealization relation between the component and the classes or interfaces. For more information,
see Component Diagrams =,

To prepare a component for code engineering:

1.

2.

3.

Select the component in the Model Tree (it is assumed that this component is already realized by at

least one class or interface, as explained abowe).

In the Properties window, locate the directory property and set it to the path where you want to

generate code.

In the Properties window, select the check box use for code engineering.

For example, in the image below, the component Component1 from package Component View is configured

to generate Java 8.0 code into the directory C:\codegen:

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Projects and Code Engineering

Generating Program Code 167

6.2.3

Model Tree x
Root
‘B Component Yiew
E-E| g] Component
E--E|E”g}F!-':I.=|ti-:-|'|:
(— b ComponentRealization: [Class1)
=] /& Package1
- & Class1
= Relations
[|« #]Java Profile [Java Profile.ump]
EI Model Tree | = Diagram Tree %} Favarites
Properties 4
name Component
gualified name Component View:Com
element kind Component
visibility public dl
leaf 1
abstract 1
isFinal5pecialization |
indirectlylnstantiated
code language Javad.0 (1.8) |
directory Chcodegen e
use for code engineering

[=l Properties '@St}-‘les EIHierarchy

Checking Project Syntax

It is important to check the syntax of the project before generating code from the model. This will inform you of
any problems which prevent code from being generated. Project syntax can be checked from the menu
command Project | Check Project Syntax (alternatively, press F11). A syntax check will also be performed
automatically before code is updated from the model. The results (errors, warnings, and information messages)
are reported in the Messages window.

When a syntax check is performed, the project file is checked on multiple levels as detailed in the tables
below. Note the following:

For information about solving common syntax errors, see the Code generation prerequisites D
For components, the checks below are performed only if the use for code engineering property is

enabled for the component in the Properties window.

For classes, interfaces, and enumerations, the checks below are performed only if the class, interface,
enumeration is contained in a code language namespace. In other words, it must be under a package

which has been defined as nhamespace root.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

168 Projects and Code Engineering Generating Program Code

e Constraints on model elements are not checked, as they are not part of the code generation process,
see Constraining Elements @

Level Checksif... Error severity if check fails
Project ...at least one namespace root package exists. Error
Component ...project file or directory is set. Error

...this component has a ComponentRealization relation | Error
with at least one class or interface.

Class ...code file name is set. Error if the option Generate
missing code file names is
Note: This check is not applicable for nested classes. not set in Tools | Options |

Code Engineering tab.
Warning if the option is set.

...type for operation parameter is set. Error
...type for properties is set. Error
...operation return type is set. Error

...duplicate operations (names + parameter types) exist. Error

...a ComponentRealization relation exists to a Warning
component.

Note: This check is not applicable for nested classes.

...name is valid (no forbidden characters, name is not a Error

keyword)

...multiple inheritance occurs Error
Class ...name is valid (no forbidden characters, name is not a Error
operation keyword)

...a return parameter exists. Error
Class ...name is valid (no forbidden characters, name is not a Error
operation keyword)
parameter

...type is valid Error
Interface ...code file name is set. Error if the option Generate

missing code file namesiis
not set in Tools | Options |
Code Engineering tab.
Waming if the option is set.

...interface is contained in a code language namespace. Error

...type for properties are set. Error

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering

Generating Program Code 169

Level Checksif... Error severity if check fails
...type for operation parameters are set Error
...operation return type is set Error
...duplicate operations (names + parameter types) Error
...interfaces are involved in a ComponentRealization Warning
...name is valid (no forbidden characters, name is not a Error
keyword)

Interface ...name is valid (no forbidden characters, name is not a Error

operation keyword)

Interface ...name is valid (no forbidden characters, name is not a Error

operation keyword)

parameter

Interface ...name is valid (no forbidden characters, name is not a Error

properties keyword)

Package ...name is valid (no forbidden characters, name is not a Error
keyword)
Note: This check is applicable if the package is inside a
namespace root package and has the <<namespace>>
stereotype applied to it from the Properties window.

Enumeration ...a ComponentRealization relation exists to a Warning
component.

6.24

Code Generation Options

When generating program code into a UModel project, you may want to set or change the options listed below.
These options are available when you run the menu command Project | Project Settings and are saved
together with the project.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

170 Projects and Code Engineering Generating Program Code

Project Settings >

Java C# VB SPL Templates Scripting

Update Program Code from UModel Project

[]#rite Documentation as JavaDocs:

Update UModel Project from Program Code

[]JavaDocs as Documentation

Cancs

The options are grouped into tabs as follows.

Tab Options

Java Select the check box Write Documentation as JavaDocs to convert the
documentation of UModel elements to equivalent JavaDocs-style documentation in
generated code.

C# Select the check box Write Documentation as DocComments to convert the
documentation of UModel elements to comments in generated C# code.

VB Select the check box Write Documentation as DocComments to conwert the
documentation of UModel elements to comments in generated VB.NET code.

SPL Templates If you want to force UModel to read SPL templates from a custom path other than
the default one, the custom path must be entered here. See also SPL

Templates @.

In addition to the settings above, there are a few other settings which affect code generation. To access them,
run the menu command Tools | Options, and then click the Code Engineering tab. The settings applicable to
generating code from a model are grouped under Update Program Code from UModel Project. Note that
these settings are local (they will only affect the current installation of UModel and will not be saved with the
project).

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Generating Program Code 171

6.2.5 Example: Generate C# Code

This example shows you how to generate C# code with UModel. You will first create a sample C# namespace
that contains a couple of classes, configure the project for code generation, and then generate the actual code.

In this example, the target platform is .NET Standard 2.0 for C# 7.1. This is possible thanks to a profile built
into UModel that defines all the types of .NET Standard 2.0 for C# 7.1. UModel also includes built-in profiles for
specific .NET Framework versions. For details, see Including Subproiects

Create a new project and its structure

The first step is to create an empty project that has two default packages (rRoot and Component Vview): Click
New in the File menu or in the toolbar. Next, right-click the root package and create a few mor&f)ackages, as
illustrated below. If you are new to the UModel graphical user interface, see the UModel Tutorial “*¥ and How to
Model @ sections to get started.

Model Tree »

JRoot
-------- Component View
E-E_| Design View

- SampleMamespace

ElMcudeIT... @Diagra... ‘%} Favaorites

In this example, the Design View package acts as a container for the design part of your model (e.g., classes
and class diagrams), while the sampleNamespace package acts as a namespace for all classes that are to be
created. In general, you can organize your packages differently.

Code engineering
The next step is to set C# for our package. Right-click the pesign view package and select Code

Engineering | Set as C# Namespace Root from the context menu. UModel will inform you that the C# profile
will be applied to the package. Click OK. The C# profile built into UModel has just been included in the project
(see screenshot below).

Model Tree 4

JRoot

-------- Component View
cx Design View
SampleMamespace

El Model Tr..| ER Diagram... %% Favorites

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

172 Projects and Code Engineering Generating Program Code

Set SampleNamespace as namespace
Next, click the sampleNamespace package and select the <<namespace>> check box in the Properties

window. This applies the namespace stereotype to the package, and its icon changes to ' *!. You can now
create classes under this namespace.

Include a subproject
So far, the model includes the C# profile, which contains the data types applicable to C#. Howewer, the model

does not yet include the types specific to .NET Standard 2.0 (these are available in a separate UModel profile).
To add this profile to the project, do the following:

1. Go to the Project menu and select Include Subproject.
2. Switch to the C# tab and select .NET Standard 2.0 for C# 7.1 (types only).
3. Select Include by reference in the Include Subproject dialog and click OK.

The additional profile has been added to the project (see below).

Model Tree x

- e .MET Standard 2.0 for C# types anly
-------- Component View

- c# Design View

--------- n | sampleMamespace

4 4
ElModelTree @Diagramﬂ'... ‘%{%Fa-.-'-:nrit-'::

Create C# classes

The next step is to create classes, which you can do directly in the Model Tree pane or from a class diagram.
For this example, we have chosen the second option. Follow the steps below:

1. Open the Diagram Tree pane.
2. Right-click Class Diagrams and select New Diagram | Class Diagram.

This example assumes that all your classes must be generated under the sampleNamespace namespace.
Therefore, when prompted to select an owner for the diagram, select the sampleNamespace package. If you
choose a different package, any elements that you add to the diagram will belong to the same package as the
diagram (which may or may not be the intended goal).

Create classes and their structure

Next, create classes, types, and other elements required in your model. For our example, you can create a
simple diagram that contains an Artist class and a MusicStore class (see screenshot below). Follow the
instructions below:

1. Right-click inside the pkg SampleNamespace window and select New | Class.
2. Name this class artist.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering

Generating Program Code

173

ook w

Artist

[1 IDuint
[1 Mame:string

pkag S.ampleHamespace), ..

Musicstore

[1 lastUpdated:DateTime

% CreateTestArtists|):List«<T-> Artist=

For more information about designing classes and their members, see the Class Diagrams and How to

Model sections.

About auto-implemented C# properties
In UModel, you can see whether C# properties have been auto-implemented. The auto-implementation option

becomes available after the property check box has been selected (for CreateTestArtist () in our example)
in the Properties window (see screenshots below).

pkg SampleNamespace]
Artist Musicstore
(1 IDuint [1 LastUpdated:DateTime
1 MName:int
_ C# Properties
< (@roperiyDCreateTestartist():List<T->Artist>

Properties o x
CONCUrrency sequential - |
quETy |
implements
auto impl |
cconstructors]
@SN O
«destructors]
wpropertys |
xindexers]
wimatbrraconry [-
[=] Properties @St}-‘les EIHierarchy

Add documentation (optional)

Optionally, click the Musicstore class in the diagram and add some documentation by typing the text in the

Documentation window & (see screenshot below). This lets you generate code comments for this class.

Right-click inside the artist box and create two properties: 1D of type int and Name of type string.
Create the second class called MusicStore.

Create a property called LastUpdated of type DateTime.

Create an operation and type its name and definition as shown below.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

174 Projects and Code Engineering Generating Program Code

Documentation x

frhis class models a music store, It contains
methods to manage assets such as music tracks
or artists,

Cverview Documentation % Layer

Configure the project for code engineering
In the next step, we need to define code engineering settings. Take the steps below:

1. Sawe the project to a directory.

2. Then right-click the component Vview package in the Model Tree pane and add a new Component £]
(that is, a software component) to it.

3. Click the new software component and set the following properties in the Properties window (see
screenshot below):

¢ Set the code language of the component to C# 7.1, for example.
¢ Select the code generation directory (C:\codegen in our example).
e Select the use for code engineering check box.

Properties x
name Componentl

qualified name Component View:Compone,
element kind Component

visibility public |
leaf O

abstract O

isFinalspecialization |

indirectlylnstantiated

code language CETA |
directory iChcodegen m
use for code engineering

[=] Properties @l Styles EI Hierarchy

Create a ComponentRealization relationship

Next, create a ComponentRealization relationship between the classes from which C# code must be
generated. This can be done as follows: In the Model Tree pane, click the class to be realized by the
component (Artist in this example), then drag and drop it into the code engineering component (Component1)
(see screenshot below). Take the same step for the MusicStore class.

B |Component View
E| g] Component?
E| = Relations

F— "y ComponentRealization: [Artist)

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Generating Program Code 175

Note: In case you forget to create a ComponentRealization relationship for a class, UModel still
generates the corresponding code file, even though warnings will be issued in the Messages window.
This setting is configurable from Tools | Options | Code Engineering tab (the Generate missing
ComponentRealizations check box).

Generate C# code
The final step is to generate the actual C# code. Take the steps below:

1. Go to the Project menu and click Merge Program Code from UModel Project. A dialog box
appears where you can adjust whether changes in code should be merged with those in the code or
overwrite them (if applicable). For the scope of this example, you can select Overwrite since a new
project is getting generated.

2. Toinclude the class documentation as comments in the generated code, click Project | Project
Settings and select the Write Documentation as DocComments check box. For more information,

see Code Generation Options @
3. Click OK. The Messages window displays the code engineering result (see below).

Messages »
N T *

Bl starting Syntax Check ...
- o finished Syntax Check - 0 error(s), 0 warning(s)

[l starting update code from project ...
--------- Collecting source files in "Chcodegen’

--------- Creating file: "ChcodegentArtist.cs’

--------- Creating file: "ChcodegeniMusicstore.cs’

--------- Changing file: "ChcodegenArtist.cs’ (Pass 1)

--------- Changing file: "ChcodegeniMusicstore.cs’ [Pass 1)

--------- . finished update code from project - 0 errar(s), 0 warning(s)

If you have added any documentation to the MusicStore class, notice that it appears as code comments in the
generated code:

using System;
using System.Collections.Generic;
namespace SampleNamespace
{
/// This class models a music store. It contains methods to manage assets such as
music tracks or artists.
public class MusicStore
{
public DateTime LastUpdated;
public List<Artist> CreateTestArtists()

{
// TODO add implementation

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

176 Projects and Code Engineering Generating Program Code

6.2.6 Example: Generate Java Code

This example illustrates how to create a new UModel project and generate program code from it (a process
known as "forward engineering"). For the sake of simplicity, the project will be very simple, consisting of only
one class. You will also learn how to prepare the project for code generation and check that the project uses
the correct syntax. After generating program code, you will modify it outside UModel, by adding a new method
to the class. Finally, you will learn how to merge the code changes back into the original UModel project (a
process known as "reverse engineering").

The code generation language used in this tutorial is Java; however, similar instructions are applicable for other
code generation languages.

Creating a new UModel project
You can create a new UModel project as follows:

¢ On the File menu, click New. (Alternatively, press Ctrl+N, or click the New toolbar button.)

At this stage, the project contains only the default "Root" and "Component View" packages. These two
packages cannot be deleted or renamed. "Root" is the top grouping level for all other packages and elements in
the project. "Component View" is required for code engineering; it typically stores one or more UML
components that will be realized by the classes or interfaces of your project; howewver, we didn't create any
classes yet. Therefore, let's first design the structure of our program, as follows:

1. Right-click the "Root" package in the Model Tree window and select New Element | Package from
the context menu. Rename the new package to "src".

2. Right-click "src" and select New Element | Package from the context menu. Rename the new
package to "com"

3. Right-click "com" and select New Element | Package from the context menu. Rename the new
package to "nanonull".

4. Right-click "nanonull" and select New Element | Class from the context menu. Rename the new class
to "MyClass".

Model Tree b4

_|Root
o Component View
EE| SrC
E"L:J com
§.E| nanonull
] B MyClass

EI Model ... BB Diagra... %:% Favaorites

Preparing the project for code generation
To generate code from a UModel model, the following requirements must be met:

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Generating Program Code 177

e A Java, C#, or VB.NET namespace root package must be defined.

e A component must exist which is realized by all classes or interfaces for which code must be
generated.

e The component must have a physical location (directory) assigned to it. Code will be generated in this
directory.

e The component must have the property use for code engineering enabled.

All of these requirements are explained in more detail below. Note that you can always check if the project
meets all code generation requirements, by validating it:

e On the Project menu, click Check Project Syntax. (Alternatively, press F11.)

If you validate the project at this stage, the Messages window displays a validation error ("No Namespace Root
found! Please use the context menu in the Model Tree to define a Package as Namespace Root"). To resolve
this, let's assign the package "src" to be the namespace root:

¢ Right-click the "src" package and select Code Engineering | Set As Java Namespace Root from
the context menu.

e When prompted that the UModel Java Profile will be included, click OK.

Utodel ot

This command will include the UModel Java Profile and apply it to the
selected Package.
Do you want to continue?

QK Cancel

Notice the package icon has now changed to =71, which signifies that this package is a Java namespace root.
Additionally, a Java Profile has been added to the project.

Model Tree x

Roat
-------- Compaonent View
B & src
E| com
EE| nanonull
E B MyClass
= Relations

-[# [+7] Java Profile [lava Profile.ump]

E| Model T..| = Diagram... %% Favorites

The actual namespace can be defined as follows:

1. Select the package "com" in the Model Tree window.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

178 Projects and Code Engineering Generating Program Code

2. In the Properties window, enable the <<namespace>> property.

Properties b
name com

qualified name SFCCOm

element kind Package

visibility public dl
LR

«Mamespaces

=] Properties @I Styles EI Hierarchy

3. Repeat the step above for the "nanonull" package.

Notice that the icon of both "com" and "nanonull" packages has now changed to %!, which indicates these are
now namespaces.

Another requirement for code generation is that a component must be realized by at least a class or an
interface. In UML, a component is a piece of the system. In UModel, the component lets you specify the code
generation directory and other settings; otherwise, code generation would not be possible. If you validate the
project at this stage, a warning message is displayed in the Messages window: "MyClass has no
ComponentRealization to a Component - no code will be generated". To solve this, a component must be
added to the project, as follows:

1. Right-click "Component View" in the Model Tree window, and select New Element | Component from

the context menu.
2. Rename the new Component to "nanonull".

Model Tree b4

Root
2 JComponent View
- £] nanonull
3=

El " com
EE| ~nanonull
: B MyClass
5..;}¢;Ff-':l_=.t|-:-n:-

-[H [+« 7] Java Profile [Java Profile.ump]

EIM::dEITr... EDiagram... %'%Fat-‘-:urites

3. Inthe Properties window, change the directory property to a directory where code should be
generated (in this example, "src\com\nanonull"). Notice that the property use for code engineering
is enabled, which is another prerequisite for code generation.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Generating Program Code 179

name nanonull

Javad.0 {1.9) Ll
srovcominanonull

use for code engineering

=] Properties @I Styles EI Hierarchy

4. Save the UModel project to a directory and give it a descriptive name (in this example, C:
\UModelDemo\Tutorial.ump).

Note: The code generation path can be absolute or relative to the .ump project. If it is relative as in this
example, a path such as src\com\nanonull would create all the directories in the same directory
where the UModel project was saved.

We have deliberately chosen to generate code to a path which includes the namespace name; otherwise,
warnings would occur. By default, UModel displays project validation warnings if the component is configured to
generate Java code to a directory which does not have the same name as the namespace name. In this
example, the component "nanonull" has the path "C:\UModelDemo\src\com\nanonull", so no validation
warnings will occur. If you want to enforce a similar check for C# or VB.NET, or if you want to disable the
namespace validation check for Java, do the following:

1. On the Tools menu, click Options.
2. Click the Code Engineering tab.
3. Select the relevant check box under Use namespace for code file path.

The component realization relationship can be created as follows:

¢ In the Model Tree window, drag from the MyClass created previously and drop onto component
nanonull.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

180 Projects and Code Engineering Generating Program Code

Model Tree

O Info:

Drop will add ComponentRealizations to the Component

Root
B Compo

H = s

El w | COm

E E--L:_l w | nanonull

: P B MyClass
E--?&;F{-’:L‘ltiﬂl'l‘.’-

& [« Java Profile [Java Profile.ump]

ElMCIdElTrEE EDiagramTree %}Fam-‘-:urites

The component is now realized by the project's only class MyClass. Note that the approach abowe is just one of
the ways to create the component realization. Another way is to create it from a component diagram, as
illustrated in the tutorial section Component Diagrams.

Next, it is recommended that the classes or interfaces which take part in code generation have a file name.
Otherwise, UModel will generate the corresponding file with a default file name and the Messages window will
display a warning ("code file name not set - a default name will be generated"). To remowve this warning:

1. Select the class MyClass in the Model Tree window.
2. In the Properties window, change the property code file name to the desired file name (in this
example, MyClass.java).

Properties x
name My Class

qualified name sroicomananonull:byCl
element kind Class

visibility public il
leaf]

abstract]

isFinalspecialization [

active]

code file name MyClass.java

code file path ChUModelDemotsroico
«annotationss]

wstatics]

astrictfps I

=] Properties @I Styles EI Hierarchy

Including the JDK types

Although this step is optional, it is recommended that you include the Java Development Kit (JDK) language
types, as a subproject of your current UModel project. Otherwise, the JDK types will not be available when you

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Generating Program Code 181

create the classes or interfaces. This can be done as follows (the instructions are similar for C# and VB.NET):

1. On the Project menu, click Include Subproject.
2. Click the Java tab and select the Java JDK 9 (types only) project.

Include Subproject

Bazsic CH Java Ok

PS
@ ava JDK 9 (types only).ump Cancel

@ Java IDK 8 (types onlyl.ump
@ Java IDK 7 (types onlyl.ump
@ lava IDK & (types onlyl.ump
@ Java DK 5.0.ump

Mo (WP PP v I Browse. .. I

Description:
Containg acceszible packages: and types from fram Sun Jawva SE 9 far
Java 3 [without operations and properties).

3. When prompted to include by reference or as a copy, select Include by reference.

Include Subproject

K.ind of include

(®)nclude by reference; Store a reference ta the original data of your subpraject.
Include subproject elements: E ditable Fieadonly

() Include as a copy: Store a copy of the ghared data of your subproject in wour kodel
project file. References to the onginal data will be lost,

Styles of included diagrams
Fetain styles: Included diagrams will appear as defined in their subproject.

IJze project file shyles: Diagrams will uze curent project file stules.

|Java'3.[l"-.] ava 0K 9 [lwpes anly].ump
kake path relative to Lk odelT utonial ump Cemee

Generating code
Now that all prerequisites have been met, code can be generated as follows:

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

182 Projects and Code Engineering

Generating Program Code

1. On the Project menu, click Merge Program Code from UModel Project. (Alternatively, press F12.)
Note that this command will be called Overwrite Program Code from UModel Project if the
Overwrite Code according to Model option was selected previously on the "Synchronization

Settings" dialog box illustrated below.

Synchronization Settings

Code from Model Model from Code
SPL templates
|User-defined ovemde default

When deleting Code
(® Comment out () Delete

Synchronization
(®) Merge Model into Code
() Overwrite Code according to Model

[litsheaps show dislog when synchronizing

Project Settings Cancel

2. Leawe the default synchronization settings as is, and click OK. A project syntax check takes place

automatically, and the Messages window informs you of the result:

Messages
W v|al vjal wlal O)GE X

Bl starting Syntax Check ...
H— .. finished Syntax Check - 0 error(s), 0 warning(s)

Bl starting update code from project ..
i Collecting source files in "ChUModelDematsrdcominananull’

Parsing file: "C\UModelDemosrcicomnanonullMyClass.java'
Resolving type references
---------- w finished update code from project - 0 error(s), 0 warning(s)

Modifying code outside of UModel

Generating program code is just the first step to developing your software application or system. In a real life
scenario, the code would go through many modifications before it becomes a full-featured program. For the
scope of this example, open the generated file MyClass.java in a text editor and add a new method to the

class, as shown below. The MyClass.java file should look as follows:

package com.nanonull;

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Projects and Code Engineering Generating Program Code 183

public class MyClass{
public float sum(float numl, float num2) {
return numl + num?2;

}

MyClass.java

Merging code changes back into the model
You can now merge the code changes back into the model, as follows:

1. On the Project menu, click Merge UModel Project from Program Code (Alternatively, press Ctrl +
F12).

Synchronization Settings

Code from Model Meodel from Code

Synchronization
(@ Merge Code into Model

() Overwrite Model according to Code

[litsheaps show dislog when synchronizing

Froject Settings Cancel

2. Leawe the default synchronization settings as is, and click OK. A code syntax check takes place
automatically, and the Messages window informs you of the result:

Messages x
W v|a v]al vlal O)GE X
I:Tlﬂtarting update model from code ... &~

[Collecting source files in "C\UModelDema'sreycomnanonull®

Parsing file: "Ch\UModelDemotsroicominanonull My Class java’

Resolving type references

fr— .. finished update model from code - 0 error(s), O warning(s) -

The operation sum (which has been reverse engineered from code) is now \visible in the Model Tree window.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

Generating Program Code

184 Projects and Code Engineering
Model Tree b4
Root
& 1Component View
E--E_|$:| nananull
= Relations
[B Java JDK 9 {types on ava JDK 9 [types on
5 =5
3| W com
E| w | nananull
E--E| = MyClass
@< sum
ey numi
e 3 AUME
- v return
- = Relations
[|« 7] Java Profile [Java Profile.ump
1 2
= Diagram Tree %%‘ Favarites

Ell"-ﬂﬂdElTrEE

When generating C#, Java, or VB.NET code, as well as XSD schemas, UModel uses a templating language

6.2.7 SPL Templates

called SPL (Spy Programming Language). The SPL templates dictate the syntax of the generated code files. It
is possible to customize the SPL templates, for example, in order to slightly change the syntax of the
generated code. Editing SPL templates is meaningful only for languages supported by UModel. If you want to

create completely new SPL templates for other languages, it would be possible to generate new code but it
would not be possible to update existing code (since the language syntax would be unknown to UModel).

The default SPL templates are available in the UModelSPL directory relative to the program installation

directory.

SPL templates are only used when new code is generated (that is, when new classes, operations etc have
been added to the model, and then code generation takes place). Any existing code is not affected by the SPL

Do not modify the existing default SPL templates, since these directly affect the default code generation.
Should you need to customize code generation, create custom templates instead, as shown below.

templates.
For an introduction to SPL, see SPL Reference@.

To modify the provided SPL templates:

Locate the provided SPL templates in the UModel installation directory ("Program Files"), for
example: ...\UModel2023\UModelSPL\Java\Default.

1.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Projects and Code Engineering Generating Program Code 185

2. Copy the SPL files you want to modify into the parent directory. For example, if you want to modify
the appearance of a Java class in generated code, copy the Class.spl file from ...
\UModel2023\UModelSPL\Java\Default to ...\UModel2023\UModelSPL\Java.

3. Make the changes to the .spl file(s) and save them.

To use the custom SPL templates:

1. Select the menu option Project | Synchronization settings.
2. Select the User-defined override default check box in the SPL templates group.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

186 Projects and Code Engineering Importing Source Code

6.3 Importing Source Code

Existing Java, C#, and VB.NET program code can be imported into UModel (a process also known as "reverse
engineering"). The following project types can be imported into UModel:

e Java projects (Eclipse .project files, NetBeans project.xml files, and JBuilder .jpx files)
e C# and VB.NET projects (Visual Studio .slIn, .csproj, .csdprj, .vbproj, .vbp as well as Borland .bdsproj
project files)

In addition to importing source code from a source project, it is also possible to import code from a source
directory. Importing from a source directory works in a similar way, and is particularly useful when your code
doesn't use any of the project types listed above. For an example of importing a source directory, see Rewerse

Engineering (from Code to Model 1@.

It is possible to import source code either into a new, empty UModel project or into an existing UModel project.
During the import, you can specify whether the imported elements should overwrite those in the model (if any),
or be merged into the model. Optionally, Class and Package diagrams can be generated automatically as you
import code.

The import wizard includes various import options specific to each platform (Java, .NET). For example, if the
imported Java/C#/VB.NET code contains comments, these can be optionally converted to UModel
documentation. For a complete list of options, see Code Import Options .

Once your C#, VB.NET, or Java code has been imported into UModel, it is possible to modify the model (for
example, add new classes, or rename properties and operations), and optionally synchronize it back with the
original code, thus achieving full round-trip engineering, see Synchronizing the Model and Source Code @D

Prerequisites

UModel includes several built-in sub-projects that were created specifically for code engineering and which
include the data types applicable to each supported language and platform. Before attempting to import source
code into a UModel project, it is recommended to include the built-in UModel subproject applicable to the
corresponding programming language and platform, see Including Subpro'ects. Otherwise, certain data
types will not be recognized and will be placed after import into a separate package called "Unknown
externals".

To include a subproject with the required language data types:
1. On the Project menu, click Include Subproject.

2. Click the tab applicable to the source language and platform (for example, Java 8.0, C# 6.0, VB 9.0),
and then click OK.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Importing Source Code 187

Include Subproject
Basic CH Java VB I oK I
" Cancel
JMET Standard 2.1 for C28.0 (types
onlyl.ump
MET Standard 2.0 for CE7.1 (types
onlyl.ump
Microsoft. MET4.7.1 for CE7.0 (types
onlyl.ump
Microsoft. MET4.6 for C26.0 (types
onlyl.ump
AT Microsoft. NET4.5 for C#5.0 (types v I Browse... I
Description:

Note the following:

When you include a data type subproject for a particular language, UModel also automatically adds the
profile of that language to your project. The profile subproject (.ump) contains only the most basic
types and is different from the data type subproject (also .ump) which contains more extensive type
definitions.

If you perform the import without including a data type subproject, the import operation will take place
nonetheless, and UModel will also automatically include the profile of that language to the project.
However, any unknown types will be placed into the "Unknown externals" package. To solve this, make
sure to include the data types subproject for the required language and platform, as explained above.

Importing source code from a project

1.

3.
4.

5.

On the Project menu, click Import Source Project. (Alternatively, if you would like to import code
from an existing directory, select Import Source Directory.)
Select the language version of the source project (for example, Java 8.0, C# 6.0).

Click Browse El and select the source project file.

Set or change the required import options, see also Code Import Options (note that these options
depend on the language selected in step 2).
Click Finish to complete the wizard.

For a step-by-step example, see Example: Import a C# Proiect.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

188 Projects and Code Engineering Importing Source Code

6.3.1 Code Import Options

When importing program code into a UModel project, you may need to set or change the options listed below.
These options are available on the dialog box which appears when you run the menu command Project |

Import Source Project or Project | Import Source Directory.

Import Source Project

.......................

Language: | Java LT i

Project file: |

Import project relative to UMaodel project file

Java Project Settings
[]JavaDocs a= Documentation

Resolve aliases

Synchronization
(@) Merge Code into Model
() Owverwrite Model according to Code

Diagram generation

Enable diagram generation

I
A

Back e mish Cancel

Import Source Project dialog box

Most of the options on the dialog box above can also be changed at any time later, see Code Synchronization
Settings

The following options are applicable to all project types, regardless of the language or platform:

Option Description

By default, this option is selected, which means that a relative path
dependency will be established between the UModel project and

the imported source code project.

Import project relative to UModel
project file

After source code is imported, a UML component is generated
automatically in the UModel project (it is available in the Model
Tree, as a child of "Component View"). This component realizes

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering

Importing Source Code 189

Option

Description

the interfaces or classes to be engineered; it also specifies the
code engineering options, including the path to the source project
or directory. This will be a relative path if Import project relative
to UModel project file is selected; otherwise, it will be an
absolute path.

Model according to Code

Merge Code into Model / Overwrite If Merge... is selected, potential name conflicts (such as package

or class names) will be resolved by appending a number to the
element that is being imported.

If Overwrite... is selected, and if there are name conflicts, the
imported element will take precedence over (overwrite) the one
existing in the project.

Enable diagram generation

Optionally, select this check box if you want to generate Class and
Package diagrams from the imported classes. When this check
box is selected, the import wizard includes additional steps which
enable you to customize the look of the generated diagrams.

The following options are applicable only to C# and VB.NET projects:

Option

Description

DocComments as
Documentation

Select this check box to convert comments found in the C# code into
UModel element documentation (see also Documentationm).

Resolve aliases

This check box is enabled by default. If your C# or VB.NET code contains
namespace or class aliases like in the code listing below, it is
recommended to keep this check box selected. Otherwise, associations
and dependencies involving aliased classes and namespaces in your code
may not be detected automatically by UModel during the import (and thus
would not be present in the model).

using Q = System.Collections.Generic.Queue<String>;
Q myQueue;

Example of an alias in C# code

During the source code import, any potentially conflicting aliases are added
to the "Unknown externals" package of the UModel project if their use is
unclear.

When you update the code back from the model (round-trip engineering),
aliases will be retained as they exist in the generated code.

The Resolve aliases option can be changed at any time later, see Code
Synchronization Settings @ you enable this option after (not before) the
import operation, UModel prompts you to update the project from the code
again, since the option also has consequences for forward engineering.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

190 Projects and Code Engineering Importing Source Code

Option Description

Defined symbols If your C# or VB.NET code includes symbols that are defined through
preprocessor directives such as #if, #endif, you can instruct UModel to
take them into account while reverse engineering code.

#1f DEBUG
static void DisplayMessage()
{
Console.WritelLine("Please wait...");
¥
#endif

Example of a conditional compilation symbol in C# code

For example, if you reverse engineer the code abowe, the method
DisplayMessage () Will only be imported into the model if you specified the
DEBUG symbol.

To specify conditional compilation symbols, enter them in the "Defined
symbols" text box, delimited by a semicolon.

During the reverse engineering process, UModel outputs all symbols used
in the source code in the Messages window.

The following option is applicable only to Java projects:

Option Description

JavaDocs as Documentation Select this check box to convert JavaDocs-style comments found in the
code into UModel element documentation (see also Documentation@).

Note: Only comments applicable for Java classes, interfaces, operations,
and properties are converted.

6.3.2 Example: Import a C# Project

This example illustrates how to import into UModel a sample C# solution created with Visual Studio. The
source solution is available as a .zip archive at the following path: C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples\Tutorial\Anagram_CSharp.zip. It
is not necessary to compile the solution with Visual Studio before importing it; however, make sure to unzip the
Anagram_CSharp.zip archive to a folder of your choice before proceeding to the steps below.

Our goal in this example is to reverse engineer the C# solution and create a UModel project from it. As we
import code, we will opt to generate class and package diagrams automatically.

Step 1: Create a new project

It is possible to import source code either into existing or new UModel projects. For the scope of this example,
we will be importing code into a new UModel project.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Importing Source Code 191

e On the File menu, click New (Alternatively, press Ctrl + N or click the New toolbar button).

Step 2: Include the C# language types

The source project was written in C# with Visual Studio 2015, so we will include a built-in UModel project that
contains the C# 6.0 language types (since the C# language version corresponding to Visual Studio 2015 is
6.0). Earlier versions of C# are also likely to work with our C# example solution.

1. On the Project menu, click Include Subproject.
2. Click the C# tab.

Include Subproject

Bazic CH Java WE oK
Microsoft. MET4.7.1 for CET.0 (types & Cancel
onlyl.ump

licrosoft.MET4.6 for C#6.0 (types

nly).ump

@ 5

@ Microsoft. MET4.5 for C#5.0 (types

onlyl.ump

Microsoft. MET4.0 for CE4.0 (types
onlyl.ump

@ Microsoft.MET3.5 for C#3.0 (types

onlyl.ump

AT Microsoft. NET2.0 for C22.0 (types v I Browse... I

Description:

3. Select the project Microsoft .NET 4.6 for C# 6.0 (types only).ump, and click OK.
4. When prompted to select the kind of include (by reference or as a copy), leave the default option as is.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

192

Projects and Code Engineering

Importing Source Code

Include Subproject

K.ind of include

(®)nclude by reference; Store a reference ta the oniginal data of your subpraject.
Inzlude subproject elements: E ditable Readonly

J Inchude as a copy: Store a copy of the shared data of your subproject in wour kodel
project file. References to the onginal data will be lost,

Styles of included diagrams
Retain styles: Included diagrams will appear az defined in their subproject.

IJze project file shyles: Diagrams will uze curent project file styles.

CHE.OMicrozaft MET 4.6 for CHE.O [types only].ump

kake path relative ta HewProject] Ceriee]

As a result, both the C# language types and the C# language profile are included and visible in the Model Tree:

Model Tree b4
_|Root
o Component View
e Microsoft. MET4.6 for CFE.0 [types anly)

L@ [% C# Profile [C# Profile.ump]

£ >

E|M::udEITrEE EDiagram Tr..| 3% Favorites

Step 3: Import the C# solution

1.

On the Project menu, click Import Source Project.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Projects and Code Engineering

Importing Source Code

193

@

o

Import Source Project

Language: |CH ~| |60

Project file: |-"||:u:|e|2|}'| 9% UModelExamples Tutoral ' Anagram_CSharp*Anagram sln -~

Import project relative to LUMaodel project file
CH Project Settings
DocComments as Documentation
Resolve aliases

Defined symbols:

Synchronization
() Merge Code into Model
(®) Overwrite Model according to Code

Diagram generation

Enable diagram generation

[==}
51}
0

o> | [

Select C# 6.0 as language.
Click Browse | next to Project file and browse for the solution .sIn file.

Select the DocComments as Documentation check box (this will import the code comments found

on operations or properties into the model).

Since we are importing code into a new UModel project, select the option Overwrite Model

according to Code (the other option Merge Code into Model is preferable when you import into an

existing project).
Click Next.

Select the diagram generation options as shown below, and click Next. (These options are applicable

to Class diagrams generated automatically on code import.)

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

194 Projects and Code Engineering Importing Source Code

Content Diagram Generation >

Content diagrams

] : Style
[«]iSenerate single diagram; b
Show Attributes compartment

Show Operations compartment

[] Generate diagram per package
Open diagrams

[] Show nested Classifiers compartment
[] Show nested classifiers separately

[] 5how EnumerationLiterals compartment
[] Show Tagged Values
Ise own compartment for MET properties

[] 5how anonymous bound elements
Hyperink package(s) to diagramis)

[]5how .MET properties compartment

Autolayout
Autalayout
hierarchic w
< Back Mext = FEinish Cancel

8. Select the diagram generation options as shown below, and click Finish. (These options are applicable
to Package diagrams generated automatically on code import.)

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Importing Source Code 195

Package Dependency Diagram Generation >

Package dependency diagram

Style
Generate diagram
e ses s . Fill color of extemal packages:
Open diagram; " =
St
[lgnore extemal packages
{nat child of impaort target)
] Hyperink package to diagram Autolayout
Autolayout
hierarchic w

< Back Mext = Cancel

9. Enter a name and select a destination folder for the new UModel project, and click Save (by default,
this dialog box displays the same folder as the solution you are importing).

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

196 Projects and Code Engineering Importing Source Code

@ Save As

Save i_n:| Anagram_CSharp vl @ ﬂ' s [

i Mame Date modified Type
Anagram 2272017 4:42 AM File folder

Cuick access

Desktop

Libraries

L2

This PC

Metwork

File name: Anagram_C5Sham

Save as type: UModel Projects (" .ump) b

Switch to LIRL

The progress of the reverse engineering operation is shown in the Messages window.

Messages

¥ v|al vja| via BBE X

ElStartlng Project Check ..
--------- . finished F‘rcu_|ect Check - 0 error(s], 0 warning(s)

ElStartlng update model from code .
Parsing file: C'-U5Ers\aItcn.ra'-Dncuments'-AItm.ra'-UMndvallmS\UMcudEIExampIES'-Tutnrlal\Anagram CSharphan:

Parsing file: "Ch\WUsers\altovaiDocumentsiAltovasUModel201 8\WUModelExamples\TutorialAnagram_CSharphAni
Parsing file: "Ch\WUsers\altovaiDocumentsiAltovasUModel201 8\WUModelExamples\TutorialAnagram_CSharphAni

Resolving type references
.. finished update model from code - 0 error(s], 0 warning(s)

ElStartlng Project Check ..
. finished F‘rcu_|ect Check - 0 error(s], 0 warning(s)

Also, when code import completes, all generated diagrams are opened automatically since this option was
selected before code generation. All generated diagrams are available in the Diagram Tree:

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering

Importing Source Code

197

Diagram Tree

EDiagrams
------- rhl &ctivity Diagrams
-@Eusiness Process Diagrams
B [&] Class Diagrams
_— HCnntent of Anagram and all subpackages
------- [&3 Communication Diagrams
------- F&n Component Diagrams
------- [=5 Compasite Structure Diagrams
------- [&1 Database Diagrams
------- [Deployment Diagrams
------- [Z3 Interaction Overview Diagrams
------- [E Object Diagrams
-2 [Cq Package Diagrams
_— ﬂ Package dependencies of Anagram
------- [Eq Profile Diagrams
------- [= Protocol State Machine Diagrams

ElMUdElTrEE @DiagramTree %{%Famrites

Since we opted to generate documentation from the source code, the imported documentation is \isible in the
Documentation window if you click, for example, the create operation of the Anagram class:

pkg Anagram, T _____ .

Anagram

1

1
1
:[‘Frnm Anagram) .

Er o’
b (} Create(in word:string):string
| ¢ Shufflefin chars:char[*]}:charf*]

f

[from Anagram] . | =namespace=
Anagram
Ifl} Mainfin args:string[*]l:void

Documentation b4

lezummary:=

Generates an anagram from the word supplied as
argument.

</zummanry:=

<param name="word"=</param->

<returns=The anagram for the given word.</returns=

Cverview Documentation ﬁ Layer

Note: The documentation is added only if the option DocComments as Documentation was selected while
importing the C# solution (see "Step 3: Import the C# Solution" above).

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

198 Projects and Code Engineering Importing Java, C# and VB.NET Binaries

6.4 Importing Java, C# and VB.NET Binaries

UModel supports the import of C# , Java and VB.NET binaries. This is extremely useful when working with
binaries from a third party, or if the original source code has become unavailable. Note the following:

e To import Java binary files, a supported version ® of the Java Runtime Environment (JRE) or
Dewelopment Kit (JDK) must be installed. Type import is supported for Java .class files or .jar class
archives adhering to the Java Virtual Machine Specification. This includes Java Virtual Machines such
as OpenJDK, SapMachine, Liberica JDK, and others, see Adding Custom Java Runtimes ®.

e To import C# or VB.NET binary files, .NET Framework, .NET Core, .NET 5, or .NET 6 must be
installed, as applicable. For best results, select the any (use disassembler) option on the import
dialog box. After import, any unrecognized types will be placed in the "Unknown externals" package.
To prevent (or decrease the number of) unknown externals, apply the UModel profile specific to the
version of your code engineering language (for example, ".NET 5 for C# 9.0") before the import. See

also Applying UModel Profiles %=,
e The import of obfuscated binaries is not supported.

The table below lists the available approaches for importing binary types into a UModel project.

C#, VB.NET Java

Import assembly file (.dll, .exe) Import class file archive (.jar, .zip)

Import assembly from Global Assembly Cache Import class file (.class) from a package root folder

(GAC)

Import assembly from Visual Studio .NET Import class archives from class path

References
Import class archives from Java runtime (only for Java
versions up to and including Java 8)

You can import binary files by running the Project | Import Binary Types menu command. Optionally, you
can have UModel generate class and package diagrams from the imported types. For examples, see Example:
Import .NET GAC Assemblies @ and Example: Import Java .class Files @

In addition, you can import binary files from the command line (see UModel Command Line Interface@).
When importing binary files into a UModel project, you can specify various import options, including:

e You can import any referencing types, in addition to the types defined in the binary file. In addition, you
can restrict importing referencing types to specific Java packages and .NET namespaces.

e You can skip type members while importing. For example, you can import classes and interfaces
without their properties and methods.

e You can import types according to their accessibility modifiers (such as private or public). For
example, you can import only public classes and skip private, protected, and internal classes.

For reference to all options, see Import Binary Options@.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Importing Java, C# and VB.NET Binaries 199

6.4.1 Adding Custom Java Runtimes

By default, UModel detects JDKs and JREs if they are installed on the local machine. Consequently, these
appear in the list of Java runtimes when you start the binary import wizard. This is the case for JDKs and JREs
released by Oracle, which come with an installer and register themselwves in the system when installed.
Howevwer, other Java Virtual Machine distributions that do not have an installer must be added manually into
UModel. The latter include Oracle OpendDK, SapMachine, and others.

To add custom Java runtimes to UModel:

1. On the Project menu, click Import Binary Types.
2. Select Java as language.
3. Expand the Runtime drop-down list, and click Edit user Java runtime locations.
4. Click Append and browse for the directory of the respective JDK.
Uzer Java Runtime Locations >
MName Directory Append
JDE1.8.0 181 Ch\Program Files (x8e)Javayjdk1.8.0_131
JOE11.0.1 Cihsapmachine-jdk-11.0.1.13_windows-x64_bin'sag Delete
JDE11.001 Chopenjdk-11.0,1_windows-x64_bin'jdk-11.0.1
< >
Cancel
5. Click OK.

The selected runtime now appears in the Runtime list, and you can select it whenever you need to import
binary files targeting that runtime.

Note that these settings affect only the import of binary files. For information about adding a Java Virtual
Machinegth to be used for JDBC connectivity and Java code generation and import, see Java Virtual Machine

Settings

6.4.2 Import Binary Options

When you run the menu command Project | Import Binary Types, one of the wizard steps prompts you to
specify the binary import options. The options you can set are described below. Note that the dialog box
options may be slightly different, depending on whether you are importing .NET or Java binaries.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

200 Projects and Code Engineering Importing Java, C# and VB.NET Binaries

Import Binary Options >

Automatic Type Inclusion

[]izdd all referenced types, optional restricted to the following packages:

Content Restriction
[]import only types {no fields, operations etc.)
import only elements with visibility greater or equal: | public w

|:| suppress attribute sections

Attribute Section styles
] create only one attribute per attribute section
[] suppress "Attribute” suffix on attribute type names

Mext = Finish Cancel

Import Binary Options dialog box

Automatic type inclusion

.NET or Java binaries may reference various external assemblies or packages. Select the option add all
referenced types... if you would like to import all types referenced by the types included in the binary file.

To import referenced types only for specific Java packages or .NET namespaces, enter those packages or
namespaces in the adjacent text box. To separate multiple packages or namespaces, use the comma, semi-
colon, or space characters.

For example, let's assume that the source .NET .dll file references types from System.Reflection and
System.Data hamespaces. If you would like to import types from the System.Reflection namespace but not
from the system.Data namespace, select the option add all referenced types, optionally restricted to the
following packages and enter "System.Reflection" in the text box.

Content restriction
Select the option import only types to skip members such as fields, operations, properties, and so on.

Select the option import only elements with visibility greater than or equal to to import types and type
members according to their visibility. The table below lists visibility of types, beginning with types with least

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Importing Java, C# and VB.NET Binaries 201

visibility. For example, selecting "private" will import all types, whereas selecting "public" will import only public
types and type members.

Note: |If the check box is not selected, all types will be imported, regardless of their visibility.

.NET Java
private private
internal package (default visibility when

no explicit modifier exists)

protected protected

public public

The option suppress attribute sections is applicable for .NET binaries. By default, UModel imports the C# or
VB.NET attributes detected in the binary. Select the suppress attribute sections option if you don't want to
import attributes. Otherwise, members that were decorated with attributes in the original source code will have
the <<attributes>> stereotype applied to them after you import the binary into the model. If attributes are
imported, you can display them on the diagram as tagged values, by right-clicking the class on the diagram
and selecting Tagged Values | All from the context menu. For more information, see Stereotypes and Tagged
Values <.

The option suppress annotation modifiers is applicable for Java binaries. By default, UModel imports Java
annotations detected in the binary, provided that their retention policy was defined as RUNTIME (not CLASS or
SOURCE). If you don't want to import annotations, select the suppress annotation modifiers option. If
annotations are imported, members that had annotations in the original source have the <<annotations>>
stereotype, and annotations appear as tagged values, as illustrated below.

wannotationss [
madifiers = com.nanonull.Obsaolete

zannotations=

sumi) (Operation)
MyClass ‘

wannotationse modifiers = com.nanonull.Documented

% wconstructors MyClass()
% «annotations= sum(in p1:float, in p2:float):float

Attribute section styles

These options are applicable to .NET binaries only. As previously mentioned, if types or type members in the
original source code were decorated with attributes, these are imported as tagged values in UModel.

The option create only one attribute per attribute section is best illustrated by an example. Let's assume
that the original C# source code defined a method with two attributes:

using System;
using System.Diagnostics;

namespace MyNamespace

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

202 Projects and Code Engineering Importing Java, C# and VB.NET Binaries

{
class Program
{
[Conditional ("VERBOSE"), Conditional("TERSE")]
static void reportHeader()
{
Console.WriteLine("This is the header");
}
static void Main(string[] args)
{
reportHeader();
}
}
}

If the option create only one attribute per attribute section is enabled upon importing from the binary file,
then each attribute would appear on a separate line inside the "Tagged Values" element :

Program reportHeader() (Operation)
[from MyMamespace] wattributess sections = System.Diagnostics. Conditional&ttribute[" VERBOSE"
= System.Diagnostics.ConditionalAttribute[TERSE")

EIB sattributess reportHeader(:void
EI\:’ Mainfin args:string[*]j:void
» «constructor= Program()

Otherwise, attributes would appear as comma-separated:

reportHeader() (Operation)
wattributess sections = System.Diagnostics.ConditionalAttribute["VERBOSE"), System.Diagnostics.ConditionalAttribute["TERSE")

Program
[from MyMNamespace]

EI\:’ watiributess reportHeader{):void
EI\" Main{in args:string[*]}:void
¢» «constructors Program()

Finally, the option suppress 'Attribute’ suffix on attribute type names removes the 'Attribute’ suffix of an
attribute type. For example, if this option is selected, an attribute type defined in the original code as
System.Xml.Serialization.XmlTypeAttribute would be imported as
System.Xml.Serialization.XmlType.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Importing Java, C# and VB.NET Binaries 203

6.4.3 Example: Import .NET Assemblies

This example shows you how to import binary types from the .NET Global Assembly Cache (GAC) into a
UModel C# project. The instructions are similar if you want to import binary %es from a standalone .d11 or
.exe file. To find out out how to import Java .class files, see the next topic =<,

To import binary files from the .NET Global Assembly Cache:

1. Go the Project menu and click Import Binary Types (see screenshot below).

Import Binary Types X
Language: |CH “| |73 -
Runtime: | any {use disassembler) b

Synchronization

(® Merge Code into Model
() Overwrite Model according to Code

Diagram generation

Enable diagram generation

Back Mext = Finish Cancel

2. Choose the target language of the UModel project (C#, VB.NET, Java). In this example, C# is selected,
since we are importing a .NET GAC assembly.

3. Ifyou would like to set a specific language version for the imported UModel project, select it from the
adjacent text box. In this example, C# 7.3 is selected.

4. Optionally, select a .NET runtime version from the Runtime drop-down list. The default option is any
(use disassembler). In this case, UModel will choose a reflection API that is most appropriate for the
imported binary.

5. Ifyou import binary types into a new project, select either Merge Code into Model or Overwrite
Model according to Code.

6. Optionally, to generate class diagrams and package diagrams from the imported binary types, select
the Enable diagram generation check box. If you select this option, more diagram generation
options will be available in the next steps. See Generating Class Diagrams@ and Generating

Package Diagrams @.
7. Click Next.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

204 Projects and Code Engineering Importing Java, C# and VB.NET Binaries

8. Click Add | Assembly from Global Cache (GAC) (see screenshot below). Note that the option
Assembly from Global Cache (GAC) is only available for .NET Framework 2.x-4.x. The GAC is not
relevant to .NET Core, .NET 5 and later versions. For more information, see the Microsoft
documentation. In order to import assembly files for .NET Core, .NET 5 and .NET 6, you will need to
extract the required files from the GAC. Then click Add | Assembly File (DLL/EXE), select the
assembly files manually and add them to the project.

i
Assemnbly File (DLL/EXE]...
Assembly from Global Cache (GAC)...
Assembly from MSVS \NET References...

emaove A [—

9. Select an assembly from the dialog box. In this example, the EventViewer assembly is selected (see
screenshot below).

[El Select Aszemblies from Global Cache (GAC)...
Component Mame |‘ufersic|r1 |Runtime Assembly Name
EnvDTE100 10.0.0.0 v2.0.50727 EnvDTE100, Ve...
EnvDTE2D 2.0.0.0 v1.0.3705 EnvDTERD, Ver...
EnvDTESD 9.0.0.0 v1.0.3705 EnvDTESD, Ver...
EnvDTES03 9.0.0.0 v1.0.3705 EnvDTESOa, Ve...
EventViewer 10.0.0.0 v4.0.30319 EventViewer, V...
EventViewer.Resources 10.0.0.0 va.0 EventViewer.R...

10. Select the types you would like to import and click Next. For more information about other options of
the Import Binary Selection dialog box, see the notes below.

11. Select the import options as applicable. For more information, see Import Binary Options@.

12. If you enabled diagram generation in Step 6, click Next and configure the options applicable to diagram
generation. Otherwise, click Finish.

UModel performs the conversion and displays a progress log in the Messages window. If the conversion of
binary types is not possible, the error text may provide additional information. For example, the binary file you
are trying to import is targeting a runtime newer than the one selected in the Import Binary Types dialog box.
In this case, select a newer runtime version and try again.

Notes:

e The text box Override of PATH variable... in the Import Binary Selection dialog box is applicable
only to Java. Optionally, paste here any Java class paths that must be queried in addition to those read
from the cLasspPaTH environment variable. Alternatively, click Add and browse for the required folders.

e The check box use 'reflection only' context... in the Import Binary Selection dialog box is
applicable only when you import a C# or VB.NET binary. This is useful when importing a library which
has dependencies that cannot be resolved or loaded. Selecting this check box will not execute any
static initializer code, which might cause errors when importing.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

https://docs.microsoft.com/en-us/dotnet/core/compatibility/core-libraries/5.0/global-assembly-cache-apis-obsolete
https://docs.microsoft.com/en-us/dotnet/core/compatibility/core-libraries/5.0/global-assembly-cache-apis-obsolete
https://docs.microsoft.com/en-us/archive/blogs/akukreja/get-dll-out-of-the-gac

Projects and Code Engineering Importing Java, C# and VB.NET Binaries 205

6.4.4 Example: Import Java .class Files

This example shows you how to import compiled Java .class files into UModel. In this example, the source
Java .class files originate from a tutorial Java project that was created with UModel, but you can also use other

.class files as an alternative.

Compiling UModel-generated Java code (optional)

This section shows you how to compile a demo UModel-generated Java project with Eclipse. Note that this
step is purely optional, the goal here is to obtain some compiled .class files. You can skip it if you already have
readily available Java .class files. In this example, Eclipse is chosen as compilation environment for
convenience; however, you can use the Java command line or some other Java development environment to
achieve the same result.

1. If you haven't done that already, create a simple Java project with UModel, as shown in Example:
Generate Java Code @ This is a very simple example consisting of a Java package with only one
class. When you complete the example, the directory C:\UModelDemo\src will contain the required
Java source code.

2. Run Eclipse. On the File menu, click Import.

S Import O by

Select \
Analyzes the content of your folder or archive file to find projects and import thern in the IDE. E i 5 |

Select an import wizard:

JE Archive File -
122 Existing Projects into Workspace

[} File System

] Preferences

[} Projects from Folder or Archive

= Git

3. Select Projects from Folder or Archive, and click Next.

& Import Projects from File Systermn or Archive

Import Projects from File System or Archive

This wizard analyzes the content of your folder or archive file to find projects and irmnport thern in the IDE.

Import sources | ChUModelDeme

4. Enter C:\UModelDemo as directory, and click Finish.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

206 Projects and Code Engineering

Importing Java, C# and VB.NET Binaries

5. Right-click the com.nanonull package in Eclipse's Package Explorer and select New | Class from

the context menu.

6. Enter a class name ("MainClass", in this example), and select the public static void main... check

box.

Java Class

Source folder:
Package:

[] Enclosing type:

Mame:

Modifiers:

Superclass:

Interfaces:

)
@

& Mew Java Class

Create a new Jlava class,

| UhodelDemo/src

| com.nananull

| MainClass |
(®) public () package private protected
[]abstract []final static

| java.lang.Object

Which method stubs would you like to create?

public static void main(5tring[] args)
] Constructers from superclass

Inherited abstract methods

[] Generate comments

Do you want to add comments? (Configure templates and default value here

Browse...
Browse...

Browse...

Browse...

Add...

Eemove

Cancel

7. On the Run menu, click Run.

You have now finished compiling the UModel-generated Java project. The compiled .class files should now be
available in the bin sub-directory of your project's directory.

Finally, take note of the Java version used for compilation—this is important if you intend to import binary types
later. By default, if you did not modify your Eclipse project properties, it is likely that it was compiled with the
default Java version available to Eclipse. To view the default Java version, do the following in Eclipse:

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Projects and Code Engineering Importing Java, C# and VB.NET Binaries 207

1.
2.

On the Window menu, click Preferences.
Click Java, and then click Installed JREs.

Importing Java .class files

If you already hawe binary .class files such as the ones compiled previously, you can now proceed to importing
them into UModel.

1.

2.

Note:

Create a new UModel project, or open an existing one. In this example, we are importing binary types
into a new project.
If your project does not contain the Java JDK types already, do the following:

a. On the Project menu, click Include subproject.
b. Click the Java tab and select Java JDK (types only).
c. Select Include by reference when prompted.

This is an optional step which normally prevents the "Unknown externals" package from appearing in
the project after the import is complete.

On the Project menu, click Import Binary Types.

Select Java as language, and the Java version in which the Java code was compiled (for example,
11.0).

Select the Java runtime to be used by UModel for extracting information from the binary files (the so-
called "reflection"). The runtime version must be equal or newer than the Java version selected in the
previous step.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

208 Projects and Code Engineering Importing Java, C# and VB.NET Binaries
Import Binary Types x
Language: |Java P |10 ~
Rurtime: | JOK11.0.1 {C:Ydk-11.0.1) ki
Synchronization

Note:

(@) Merge Code into Model
() Owerwrite Model according to Code

Diagram generation

Enable diagram generation

Jack Meat =

1
A

nish Cancel

The Runtime drop-down list contains only Java JDKs and JREs detected automatically. If your JDK or
JRE is not listed, select the entry Edit user java runtime locations and browse for the directory
where the respective distribution is installed on your machine, see Adding Custom Java Runtimes @,

If you import binary types into a new project, select either Merge Code into Model or Overwrite
Model according to Code. Otherwise, select Merge code into Model.

Optionally, to generate class diagrams and package diagrams from the imported binary types, select
the Enable diagram generation check box. If you select this option, more diagram generation
options are available in subsequent steps, see also Generating Class Diagrams and Generating

Package Diagrams @.
Click Next.

Import Binary Selection x

Binaries in load order (set check mark to import types): —[=]

Class File Archive (JAR/ZIP)...
Class File Package Root Folder...

Class Archives from Class Path...

Class Archives from Java Runtime...

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Importing Java, C# and VB.NET Binaries 209

9. In this example, we are importing Java .class files from a package root. Select Add | Class File
Package Root Folder. and browse for the C:\UModelDemo\bin directory. If this directory does not
exist, make sure to compile the project first, as shown in the first part of this tutorial.

Import Binary Selection x
Binaries in load order (set check mark to impaort types): —| =
H v C\UModelDemoibin Add 3
e[com.nanonull.MainClass
‘ com.nanonull,MyClass
Remove
Remove Al
Meve Up
Move Down
Owemide of PATH varable for searching native code libraries:
w Add
< Back Mext = Finish Cancel

10. Select the classes to be imported, and click Next.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

210 Projects and Code Engineering Importing Java, C# and VB.NET Binaries

Import Binary Options

Automatic Type Inclusion

[liadd all referenced types, optional restricted to the following packages:;

Cortent Restriction
[]import onty types {no fields, operations etc.)
[]import onty elements with visibilty greater or equal: public

[] suppress annotation modiiers

< Back Meat = Finish Cancel

11. Select the import options as applicable, see Import Binary Options.
12. If you enabled diagram generation in an earlier step, click Next and configure the options applicable to

diagram generation. Otherwise, click Finish.

UModel performs the conversion and displays a progress log in the Messages window. If the conversion of
binary types is not possible, the error text may provide additional information. For example, the binary file you
are trying to import is targeting a runtime newer than the one selected in the Import Binary Types dialog box.

In this case, select a newer runtime version and try again.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Synchronizing the Model and Source Code 211

6.5 Synchronizing the Model and Source Code

You can synchronize the model and code in either direction, and at different levels (for example, project,
package or class).

When UModel (Enterprise or Professional) runs as an Eclipse or Visual Studio plug-in, synchronization
between model and code takes place automatically. Manual synchronization is possible at the project
level; the option to update individual classes or packages is not available.

When you right-click an element in the Model Tree (for example, a class), the context menu displays the code
synchronization or merging commands under the Code Engineering menu item:

¢ Merge Program Code from UModel ***
¢ Merge UModel *** from Program Code

*** is a Project, Package, Component, Class, and so on, depending on your current selection.

Depending on the settings you have defined from Project | Synchronization Settings, the alternative name of
these two commands may be:

e Overwrite Program Code from UModel ***
e Overwrite UModel *** from Program Code

To update the entire project (but not classes, packages, or other local elements), you can also use the
following commands on the Project menu of UModel:

e Merge (or Overwrite) Program Code from UModel Project
e Merge (or Overwrite) UModel Project from Program Code

For convenience, any of the commands listed above will be generically referred to as "code synchronization
commands" further in this topic.
To synchronize at the project or Root package level, do one of the following:
e Right-click the Root package in the Model Tree, and select the required code synchronization
command.
¢ On the Project menu, click the required code synchronization command.
To synchronize at package level:

1. Use Shift, or Ctrl + Click to select the package(s) you want to merge.
2. Right-click the selection, and select the required code synchronization command.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

212 Projects and Code Engineering Synchronizing the Model and Source Code

To synchronize at class level:

1. Use Shift, or Ctrl + Click to select the classes(s) you want to merge.
2. Right-click the selection, and click the required code synchronization command.

To awid undesired results when synchronizing the model and code, consider the following scenarios:

On the Project menu, click Overwrite e This checks all directories (project files) of all different code

UModel Project from Program Code. languages you have defined in your project.

o New files are identified and added to the project.

¢ An entry "Collecting source files in (...)" appears in the
Messages window.

Right-click a class or interface in the Model | e This updates only the selected class (interface) of your

Tree and select Code Engineering | project.
Overwrite UModel Class from Program o If the source code contains classes that are new or
Code. modified classes since the last synchronization, those

changes will not be added to the model.

Right-click a Component in the Model Tree o This updates the corresponding directory (or project file)

(within the Component View package) and only.
select Code Engineering | Overwrite * New files in the directory (project file) are identified and
UModel Component from Program Code. added to the project.

o An entry "Collecting source files in (...)" appears in the
Message window.

Note: When synchronizing code, you might be prompted to update your UModel project before
synchronization. This occurs when you open UModel projects created before the latest release. Click
Yes to update your project to the latest release format, and save your project file. The notification
message will not occur once this has been done.

6.5.1 Synchronization Tips

Renaming of classifiers and reverse engineering

The process described below applies to the standalone application as well as to the plug-in versions (Visual
Studio or Eclipse) when reverse engineering or automatic synchronization takes place.

Renaming a classifier in the code window of your programming application causes it to be deleted and re-
inserted as new classifier in the Model Tree.

The new classifier is only re-inserted in those modeling diagrams that are automatically created during the
reverse-engineering process, or when generating a diagram using the Show in new Diagram | Content
option. The new classifier is inserted at a default position on the diagram, that will likely differ from the previous
location.

See also Refactoring code and synchronization.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Synchronizing the Model and Source Code 213

Automatic generation of ComponentRealizations

UModel is capable of automatically generating ComponentRealizations during the code engineering process.
ComponentRealizations are only generated where it is absolutely clear to which component a class should be
assigned:

e Only one Visual Studio project file exists in the .ump project.
e Multiple Visual Studio projects exist but their classes are completely separate in the model.

To enable automatic generation of ComponentRealizations:

1. Open the menu item Tool | Options.
2. Click the Code Engineering tab and activate the Generate missing ComponentRealizations
option.

Automatic ComponentRealizations are created for a Classifier that can be assigned one (and only one)
Component

¢ without any ComponentRealizations, or
e contained in a code language namespace.

The way the Component is found differs for the two cases.
Component representing a code project file (property "projectfile” set)

e ifthere is ONE Component having/realizing classifiers in the containing package

e ifthere is ONE Component having/realizing classifiers in a subpackage of the containing package (top
down)

e ifthere is ONE Component having/realizing classifiers in one of the parent packages (bottom up)

e ifthere is ONE Component having/realizing classifiers in a subpackage of one of the parent packages
(top down)

Component representing a directory (property "directory" set)

e ifthere is ONE Component having/realizing classifiers in the containing package
e ifthere is ONE Component having/realizing classifiers in one of the parent packages (bottom up)

e The option "Code Engineering | Generate missing ComponentRealizations" has to be set.
e As soon as ONE viable Component is found during one of the abowe steps, this Component is used
and the remaining steps are ignored.

Error/Warnings:

e If no viable Component was found, a warning is generated (message log)
e If more than one viable Component was found, an error is generated (message log)

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

214 Projects and Code Engineering Synchronizing the Model and Source Code

6.5.2 Refactoring Code and Synchronization

When refactoring code, it is often the case that class names are changed or updated in the code. If it detects
that new types have been added or renamed during reverse engineering, UModel (version 2009 or later) displays
a dialog box. The new types are listed in the "Name in code" column while the assumed original type name is
listed in the "Name in model" column. UModel attempts to determine the original name by relying on
namespace, class content, base classes and other data.

¥ -.

@ Select Renamed Types @

Uk odel has detected new typez while reverse engineerning. |f zome of these
bppes are not new but have been renamed, pleaze zelect the previous type

name.
Name in code Namespace INﬂme in model
Class Account com.altova. bankview Checkingfccount = |

k. l | Cancel [treat all az new)

If a class was renamed, select the previous class name using the combo box in the "Name in model" column,
e.g. C1. This ensures that all related data are retained and the code engineering process remains accurate.

Changing class names in the model and regenerating code

Having created a model and generated code from it, it is possible that you might want to make changes to the
model again before going through the synchronization process.

E.g. You decide that you want to change the class names before generating code the second time round. As
you previously assigned a file name to each class, in the "code file name" field of the Properties window, the
new class and file name would now be out of sync.

UModel prompts if you want the code file name to agree with the new class name, when you start the
synchronization process. Note that you also have the option to change the class constructors as well.

Round-trip engineering and relationships between modeling elements

When updating model from code, associations between modeling elements are automatically displayed, if the
option Diagram Editing | Automatically create Associations has been activated in the Tools | Options

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Synchronizing the Model and Source Code 215

dialog box. Associations are displayed for those elements where the attributes type is set, and the referenced
"type" modeling element is in the same diagram.

InterfaceRealizations as well as Generalizations are all automatically shown in the diagram when
updating model from code.

6.5.3 Code Synchronization Settings

The code synchronization settings are relevant in the following scenarios:

e When program code is generated from the model (that is, when either the command Project | Merge
Program Code from UModel Project or the command Project | Overwrite Program code from
UModel Project is run)

e When source code is imported into the model (that is, when either the command Project | Merge
UModel Project from Program Code or the command Project | Overwrite UModel Project from
Program Code is run)

e When automatic synchronization takes place in either direction (this applies to UModel Enterprise and
Professional Editions when UModel runs as a Visual Studio or Eclipse plug-in).

To change the code synchronization settings:

e On the Project menu, click Synchronization Settings.

Synchronization Settings

Code from Model Model from Code

SPL templates
User-defined ovenide default

When deleting Code
(® Comment out () Delete

Synchronization
(®) Merge Model into Code
() Overwrite Code according to Model

Alwayz shaw dialog when synchranizing
: Project Settings k. Cancel

Synchronization Settings dialog box

By default, the Synchronization Settings dialog box will be displayed automatically every time when you initiate
any of the code synchronization commands. To disable this behaviour, clear the check box Always show
dialog when synchronizing.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

216 Projects and Code Engineering Synchronizing the Model and Source Code

The available options are grouped into two tabs:

e Code from Model (options in this tab are applicable when program code is generated from the model)
¢ Model from Code (options in this tab are applicable when program code is imported into the model).

Option

Description

SPL templates

This option is applicable only when generating program code. Select the check box
User-defined override default check box if you have created custom Spy
Programming Language (SPL) templates that should owerride the default ones
supplied with UModel (see also SPL Templates@).

When deleting code

This option is applicable only when generating program code. Select whether
program code should be deleted or commented out during synchronization
(assuming the relevant objects no longer exist in the model).

Synchronization

This option is applicable both when generating and importing program code. It lets
you specify whether changes should be merged as opposed to being overwritten.
Assuming that code has been generated once from a model, and changes have
since been made to both model and code, for example:

e A new class Xhas been added in UModel
e A newclass Y has been added to the external code,

Merge Model into Code means that:

e The newly added class Y in the external code is retained
e The newly added class X, from UModel, is added to the code.

Overwrite Code according to Model means that:
e The newly added class Y in the external code is deleted (or commented
out, depending on the current settings)
e The newly added class X, from UModel, is added to the code.

Merge Code into Model means that:

e The newly added class Xin UModel is retained
e The newly added class Y, from the external code, is added to the model

Overwrite Model according to Code means that:
e The newly added class Xin UModel is deleted (or commented out,

depending on the current settings)
e The newly added class Y, from the external code, is added to the model.

Project settings

Opens the Project Settings dialog box, where you can modify the code engineering
settings plicable to each language. For reference to all settings, see Code Import
Options ® and Code Generation Options @, respectively.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Synchronizing the Model and Source Code 217

Option Description

The Project Settings dialog box can also be triggered from the menu command
Project | Project Settings. Note that the project settings in this dialog box are
global (they are saved together with the project and are applicable on any
workstation where the UModel project is open) whereas the options you define from
Tools | Options are local (they are applicable only to the current installation of
UModel).

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

218 Projects and Code Engineering UModel Element Mappings

6.6 UModel Element Mappings

This section illustrates how UModel elements map to elements (constructs) in various programming languages
(C#, Java, VB.NET), as well as to databases and XML schemas. The mappings are grouped by language, and
are applicable when importing code into model, or when generating code from model.

218

C# Mappings @D
VB.NET Mappin&s
Java Mappings

258

XML Schema Mappings.

6.6.1 C# Mappings

The table below shows the one-to-one correspondence between:

e UModel elements and C# code elements, when outputting model to code
e C# code elements and UModel model elements, when inputting code into model

C# Project
C# UModel
Project projectfile projectfile Component
directory directory
C# Namespace
C# UModel
Namespace name name Package <<namespace>>
C# Class
C# UModel
Class name name Class
modifiers internal visibility package
protected internal protected <<internal>>
public public
protected protected
private private
sealed leaf

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering

UModel Element Mappings 219

C# UModel
abstract abstract
static <<static>>
unsafe <<unsafe>>
partial <<partial>>
new <<new >>

filename

code file name

associated projectfile/directory

ComponentRealization

base types

Generalization, InterfaceRealization(s)

attribute sections

<<attributes>>

doc comments

Comment(->Documentation)

Field name name Property
modifiers internal visibility package
protected internal protected <<internal>>
public public
protected protected
private private
static static
readonly readonly
volatile <<volatile>>
unsafe <<unsafe>>
new <<new >>
type type
type dimensions multiplicity
type pointer type modifier
nullable <<nullable>>
default value default
attribute sections <<attributes>>
doc comments Comment(->Documentation)
Constant name name Property
<<const>>
modifiers internal visibility package

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

220 Projects and Code Engineering UModel Element Mappings
C# UModel

protected internal protected <<internal>>
public public
protected protected
private private
new <<new >>

type type

type dimensions multiplicity

type pointer type modifier

nullable <<nullable>>

default value default

attribute sections <<attributes>>

doc comments

Comment(->Documentation)

Method

name name

modifiers internal visibility package
protected internal protected <<internal>>
public public
protected protected
private private
static static
abstract abstract
sealed leaf
override <<override>>
partial <<partial>>
virtual <<virtual>>
new <<new >>
unsafe <<unsafe>>

attribute sections <<attributes>>

doc comments

Comment(->Documentation)

implemented interfaces

implements

type

direction

return Parameter

Operation

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Projects and Code Engineering

UModel Element Mappings

221

doc comments

Comment(->Documentation)

Parameter | name

name Parameter

modifiers

ref

out

direction inout

out

C# UModel
Parameter | name name
modifiers ref direction inout
out out
params varArgList
type type
type dimensions multiplicity
type pointer type modifier
this <<this>>
nullable <<nullable>>
Type name name Template
Parameter Parameter
constraint constraining classifier
predefine | struct <<ValueTypeConstraint
d >>
constraint
class <<ReferenceTypeConst
raint>>
new () <<ConstructorConstrain
t>>
attribute sections <<attributes>>
Construct | name name Operation
or <<constru
modifiers internal visibility package ctor>>
protected internal protected <<internal>>
public public
protected protected
private private
static static
unsafe <<unsafe>>
attribute sections <<attributes>>

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

222 Projects and Code Engineering

UModel Element Mappings

C# UModel
params varArgList
type type
type dimensions multiplicity
type pointer type modifier
nullable <<nullable>>
Destructor | name name Operation
<<destruc
modifiers private visibility private tor>>
unsafe <<unsafe>>
attribute sections <<attributes>>
doc comments Comment(->Documentation)
Property name name Operation
<<propert
modifiers internal visibility package y>>
protected internal protected <<internal>>
public public
protected protected
private private
static static
abstract abstract
sealed leaf
override <<override>>
virtual <<virtual>>
new <<new >>
unsafe <<unsafe>>
attribute sections <<attributes>>

doc comments

Comment(->Documentation)

type direction return Parameter
type dimensions multiplicity

nullable <<nullable>>

Get modifiers internal visibility internal <<GetAcc

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Projects and Code Engineering

UModel Element Mappings

223

C# UModel
protected protected
internal internal
protected protected
private private
Set modifiers internal visibility internal <<SetAcc
Accessor essor>>
protected protected
internal internal
protected protected
private private
Operator name name Operation
<<operato
modifiers public visibility public r>>
static static
unsafe <<unsafe>>
attribute sections <<attributes>>
doc comments Comment(->Documentation)
type direction return Parameter
Parameter | name name
modifier params varArgList
type type
type dimensions multiplicity
type pointer type modifier
nullable <<nullable>>
Indexer name (="this") name (="this") Operation
<<indexer
modifiers internal visibility package >>
protected internal protected <<internal>>
public public
protected protected
private private
static static
abstract abstract
sealed leaf

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

224 Projects and Code Engineering UModel Element Mappings

C# UModel
override <<override>>
virtual <<virtual>>
new <<new >>
unsafe <<unsafe>>
attribute sections <<attributes>>
doc comments Comment(->Documentation)
type direction return Parameter
Parameter | name name
modifier params varArgList
type type
type dimensions multiplicity
type pointer type modifier
nullable <<nullable>>
Get modifiers internal visibility internal <<GetAcc
Accessor essor>>
protected protected
internal internal
protected protected
private private
Set modifiers internal visibility internal <<SetAcc
Accessor essor>>
protected protected
internal internal
protected protected
private private
Event name name Operation
<<event>>
modifiers internal visibility package
protected internal protected <<internal>>
public public
protected protected
private private
static static
abstract abstract

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering UModel Element Mappings 225

C# UModel
sealed leaf
override <<override>>
virtual <<virtual>>
new <<new >>
unsafe <<unsafe>>
attribute sections <<attributes>>
doc comments Comment(->Documentation)
type direction return Parameter
type dimensions multiplicity
nullable <<nullable>>
Add Accessor <<AddRemoveAccessor>>

Remove Accessor

Type name name Template
Parameter Parameter
constraint constraining classifier
predefine | struct <<ValueTypeConstraint>>
gonstraint class <<ReferenceTypeConstraint>>
new () <<ConstructorConstraint>>
attribute sections <<attributes>>
C# Struct
C# UModel
Struct name name Class
<<struct>
modifiers internal visibility package >
protected internal protected <<internal>>
public public
protected protected
private private
unsafe <<unsafe>>
partial <<partial>>
new <<new >>

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

226 Projects and Code Engineering UModel Element Mappings

C# UModel
filename code file name
associated projectfile/directory ComponentRealization
base types InterfaceRealization(s)
attribute sections <<attributes>>
doc comments Comment(->Documentation)
Field name name Property
modifiers internal visibility package
protected internal protected <<internal>>
public public
protected protected
private private
static static
readonly readonly
volatile <<volatile>>
unsafe <<unsafe>>
new <<new >>
type type
type dimensions multiplicity
type pointer type modifier
nullable <<nullable>>
default value default
attribute sections <<attributes>>
doc comments Comment(->Documentation)
Constant name name Property
<<const>>
modifiers internal visibility package
protected internal protected <<internal>>
public public
protected protected
private private
new <<new >>

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering

UModel Element Mappings

227

C# UModel
type type
type dimensions multiplicity
type pointer type modifier
nullable <<nullable>>
default value default
attribute sections <<attributes>>

doc comments

Comment(->Documentation)

Fixedsize | name name Property
Buffer <<fixed>>
modifiers internal visibility package
protected internal protected <<internal>>
public public
protected protected
private private
unsafe <<unsafe>>
new <<new >>
type type
type pointer type modifier
nullable <<nullable>>
buffer size default
attribute sections <<attributes>>
doc comments Comment(->Documentation)
Method name name Operation
modifiers internal visibility package
protected internal protected <<internal>>
public public
protected protected
private private
static static
abstract abstract
sealed leaf

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

228

Projects and Code Engineering

UModel Element Mappings

C# UModel
override <<override>>
partial <<partial>>
virtual <<virtual>>
new <<new >>
unsafe <<unsafe>>
attribute sections <<attributes>>

doc comments

Comment(->Documentation)

implemented interfaces implements
type direction return Parameter
Parameter | name name
modifiers ref direction inout
out out
params varArgList
type type
type dimensions multiplicity
type pointer type modifier
this <<this>>
nullable <<nullable>>
Type name name Template
Parameter Parameter
constraint constraining classifier
predefine | struct <<ValueTypeConstraint
d >>
constraint
class <<ReferenceTypeConst
raint>>
new () <<ConstructorConstrain
t>>
attribute sections <<attributes>>
Construct | name name Operation
or <<constru
modifiers internal visibility package ctor>>
protected internal protected <<internal>>
public public

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Projects and Code Engineering

UModel Element Mappings

229

C# UModel
protected protected
private private
static static
unsafe <<unsafe>>
attribute sections <<attributes>>

doc comments

Comment(->Documentation)

Parameter | name name Parameter
modifiers ref direction inout
out out
params varArgList
type type
type dimensions multiplicity
type pointer type modifier
nullable <<nullable>>
Destructor | name name Operation
<<destruc
modifiers private visibility private tor>>
unsafe <<unsafe>>
attribute sections <<attributes>>
doc comments Comment(->Documentation)
Property name name Operation
<<propert
modifiers internal visibility package y>>
protected internal protected <<internal>>
public public
protected protected
private private
static static
abstract abstract
sealed leaf
override <<override>>
virtual <<virtual>>

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

230 Projects and Code Engineering UModel Element Mappings

C# UModel
new <<new >>
unsafe <<unsafe>>
attribute sections <<attributes>>
doc comments Comment(->Documentation)
type direction return Parameter
type dimensions multiplicity
nullable <<nullable>>
Get modifiers internal visibility internal <<GetAcc
Accessor essor>>
protected protected
internal internal
protected protected
private private
Set modifiers internal visibility internal <<SetAcc
Accessor essor>>
protected protected
internal internal
protected protected
private private
Operator name name Operation
<<operato
modifiers public visibility public r>>
static static
unsafe <<unsafe>>
attribute sections <<attributes>>
doc comments Comment(->Documentation)
type direction return Parameter
Parameter | name name
modifier params varArgList
type type
type dimensions multiplicity
type pointer type modifier
nullable <<nullable>>

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering UModel Element Mappings 231

C# UModel
Indexer name (="this") name (="this") Operation
<<indexer
modifiers internal visibility package >>
protected internal protected <<internal>>
public public
protected protected
private private
static static
abstract abstract
sealed leaf
override <<override>>
virtual <<virtual>>
new <<new >>
unsafe <<unsafe>>
attribute sections <<attributes>>
doc comments Comment(->Documentation)
type direction return Parameter
Parameter | name name
modifier params varArgList
type type
type dimensions multiplicity
type pointer type modifier
nullable <<nullable>>
Get modifiers internal visibility internal <<GetAcc
Accessor essor>>
protected protected
internal internal
protected protected
private private
Set modifiers internal visibility internal <<SetAcc
Accessor essor>>
protected protected
internal internal
protected protected

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

232 Projects and Code Engineering UModel Element Mappings

C# UModel
private private
Event name name Operation
<<event>>
modifiers internal visibility package
protected internal protected <<internal>>
public public
protected protected
private private
static static
abstract abstract
sealed leaf
override <<override>>
virtual <<virtual>>
new <<new >>
unsafe <<unsafe>>
attribute sections <<attributes>>
doc comments Comment(->Documentation)
type direction return Parameter
type dimensions multiplicity
nullable <<nullable>>
Add Accessor <<AddRemoveAccessor>>
Remove Accessor
Type name name Template
Parameter Parameter
constraint constraining classifier
predefine | struct <<ValueTypeConstraint>>
Sonstraint class <<ReferenceTypeConstraint>>
new () <<ConstructorConstraint>>
attribute <<attributes>>
sections

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering

UModel Element Mappings 233

C# Interface
C# UModel
Interface name name Interface
modifiers internal visibility package
protected internal protected <<internal>>
public public
protected protected
private private
unsafe <<unsafe>>
partial <<partial>>
new <<new >>
filename code file name

associated projectfile/directory

ComponentRealization

base types

Generalization(s)

attribute sections

<<attributes>>

doc comments

Comment(->Documentation)

Method name name
modifiers | public visibility public
new <<new >>
unsafe <<unsafe>>
attribute sections <<attributes>>

doc comments

Comment(->Documentation)

type direction return Parameter
Parameter | name name
modifiers ref direction inout
out out
params varArgList
type type
type dimensions multiplicity
type pointer type modifier

Operation

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

234 Projects and Code Engineering UModel Element Mappings

C# UModel
this <<this>>
nullable <<nullable>>
Type name name Template
Parameter Parameter
constraint constraining classifier
predefine | struct <<ValueTypeConstraint
d >>
constraint
class <<ReferenceTypeConst
raint>>
new () <<ConstructorConstrain
t>>
attribute sections <<attributes>>
Property name name Operation
<<propert
modifiers | public visibility public y>>
new <<new >>
unsafe <<unsafe>>
attribute sections <<attributes>>
doc comments Comment(->Documentation)
type direction return Parameter
type dimensions multiplicity
nullable <<nullable>>
Get modifiers internal visibility internal <<GetAcc
Accessor essor>>
protected protected
internal internal
protected protected
private private
Set modifiers internal visibility internal <<SetAcc
Accessor essor>>
protected protected
internal internal
protected protected
private private
Indexer name (="this") name (="this") Operation
<<indexer
modifiers public visibility public >>

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering

UModel Element Mappings

235

C# UModel
new <<new >>
unsafe <<unsafe>>
attribute sections <<attributes>>

doc comments

Comment(->Documentation)

doc comments

Comment(->Documentation)

Parameter

type direction return
type dimensions multiplicity
nullable <<nullable>>

Add Accessor

<<AddRemoveAccessor>>

type direction return Parameter
Parameter | name name
modifier params varArgList
type type
type dimensions multiplicity
type pointer type modifier
nullable <<nullable>>
Get modifiers internal visibility internal <<GetAcc
Accessor essor>>
protected protected
internal internal
protected protected
private private
Set modifiers internal visibility internal <<SetAcc
Accessor essor>>
protected protected
internal internal
protected protected
private private
Event name name Operation
<<event>>
modifiers public visibility public
new <<new >>
unsafe <<unsafe>>
attribute sections <<attributes>>

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

236 Projects and Code Engineering UModel Element Mappings
C# UModel
Remove Accessor
Type name name Template
Parameter Parameter
constraint constraining classifier
predefine | struct <<ValueTypeConstraint>>
gonstraint class <<ReferenceTypeConstraint>>
new () <<ConstructorConstraint>>
attribute sections <<attributes>>
C# Delegate
C# UModel
Delegate name name Class
<<delegat
modifiers internal visibility package e>>
protected internal protected <<internal>>
public public
protected protected
private private
unsafe <<unsafe>>
new <<new >>
filename code file name
associated projectfile/directory ComponentRealization
attribute sections <<attributes>>
doc comments Comment(->Documentation)
type direction return Parameter | Operation
Parameter | name name
modifiers ref direction inout
out out
params varArgList
type type
type dimensions multiplicity
type pointer type modifier

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Projects and Code Engineering

UModel Element Mappings

237

C# UModel
nullable <<nullable>>
Type name name Template
Parameter Parameter
constraint constraini
ng
classifier
predefine | struct <<ValueTypeConstraint
d >>
constraint
class <<ReferenceTypeConst
raint>>
new () <<ConstructorConstrain
t>>
attribute <<attribute
sections S>>
C# Enum
C# UModel
Enum name name Enumeration
modifiers internal visibility package
protected internal protected
<<internal>>
public public
protected protected
private private
new <<new >>
filename code file name

associated projectfile/directory

ComponentRealization

base type

type

<<BaseType>>

attribute sections

<<attributes>>

attribute sections

<<attributes>>

doc comments Comment(-
>Documentation)
Enum Constant name name Enumeration Literal
default value default

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

238 Projects and Code Engineering UModel Element Mappings

C# UModel

doc comments Comment(-
>Documentation)

C# Parameterized Type
C# UModel

Parameterized Type Anonymous Bound Element

6.6.2 VB.NET Mappings

The table below shows the one-to-one correspondence between:

e UModel elements and VB.NET code elements, when outputting model to code
e VB.NET code elements and UModel model elements, when inputting code into model

VB.NET UModel
Project projectfile projectfile Componen
directory directory t
Namespac | name name Package
e <<namesp
ace>>
Class name name Class
modifiers Friend visibility package
Protected Friend protected <<Friend>>
Public public
Protected protected
Private private
NotInheritable leaf
Mustinherit abstract
Partial <<Partial>>
Shadow s <<Shadow s>>
filename code file name
associated projectfile/directory ComponentRealization
base types Generalization, InterfaceRealization(s)

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering

UModel Element Mappings

VB.NET

UModel

attribute sections

<<Attributes>>

doc comments

Comment(->Documentation)

attribute sections

<<Attributes>>

doc comments

Comment(->Documentation)

Field name name Property
modifiers Friend visibility package
Protected Friend protected <<Friend>>
Public public
Protected protected
Private private
Shared static
ReadOnly readonly
Shadow s <<Shadow s>>
type type
type dimensions multiplicity
nullable <<Nullable>>
default value default
attribute sections <<Attributes>>
doc comments Comment(->Documentation)
Constant name name Property
<<Const>
modifiers Friend visibility package >
Protected Friend protected <<Friend>>
Public public
Protected protected
Private private
Shadow s <<Shadow s>>
type type
type dimensions multiplicity
nullable <<Nullable>>
default value default

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

240 Projects and Code Engineering UModel Element Mappings
VB.NET UModel
Method name name Operation

modifiers Friend visibility package
Protected Friend protected <<Friend>>
Public public
Protected protected
Private private
Shared static
MustOverride abstract
NotOverridable leaf
Overrides <<Overrides>>
Overridable <<Overridable>>
Partial <<Partial>>
Shadow s <<Shadow s>>
Overloads <<Overloads>>

attribute sections <<Attributes>>

doc comments Comment(->Documentation)

implemented interfaces implements
type (function) direction return Parameter
Parameter | name name
modifiers ByRef direction inout
ByVal in
ParamArr | varArgList
ay
Optional default
type type
type dimensions multiplicity
nullable <<Nullable>>
Type name name Template
Parameter Parameter
constraint constraining classifier
predefine | Structure | <<ValueTypeConstraint
d >>

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Projects and Code Engineering

UModel Element Mappings

241

VB.NET UModel
constraint | Class <<ReferenceTypeConst
raint>>
New <<ConstructorConstrain
t>>
attribute sections <<Attributes>>
Construct | name name Operation
or <<Constru
modifiers Friend visibility package ctor>>
Protected Friend protected <<Friend>>
Public public
Protected protected
Private private
Shared static
attribute sections <<Attributes>>
doc comments Comment(->Documentation)
Parameter | name name Parameter
modifiers ByRef direction inout
ByVal in
ParamArr | varArgList
ay
Optional default
type type
type dimensions multiplicity
nullable <<Nullable>>
Property name name Operation
<<Propert
modifiers Friend visibility package y>>
Protected Friend protected <<Friend>>
Public public
Protected protected
Private private
Default <<Property>> (Default <= IsDefault)
Shared static

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

242

Projects and Code Engineering

UModel Element Mappings

VB.NET UModel

MustOverride abstract

NotOverridable leaf

Overrides <<Overrides>>

Overridable <<Overridable>>

Shadow s <<Shadow s>>

Overloads <<Overloads>>

ReadOnly <<GetAccessor>> (without
<<SetAccessor>>)

WriteOnly <<SetAccessor>> (without
<<GetAccessor>>)

attribute sections

<<Attributes>>

doc comments

Comment(->Documentation)

type direction return Parameter
type dimensions multiplicity
nullable <<Nullable>>
Get modifiers Friend visibility Friend <<GetAcc
Accessor essor>>
Protected Protected
Friend Friend
Protected Protected
Private Private
Set modifiers Friend visibility Friend <<SetAcc
Accessor essor>>
Protected Protected
Friend Friend
Protected Protected
Private Private
Operator name name Operation
<<Operato
modifiers Public visibility Public r>>
Shared static
Narrow ing name <= Narrow ing
Widening name <= Widening

attribute sections

<<Attributes>>

doc comments

Comment(->Documentation)

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Projects and Code Engineering UModel Element Mappings 243
VB.NET UModel
type direction return Parameter
Parameter | name name
modifier ByVal direction in
type type
type dimensions multiplicity
nullable <<Nullable>>
Event name name Operation
<<Event>>
modifiers Friend visibility package
Protected Friend protected <<Friend>>
Public public
Protected protected
Private private
Shared static
MustOverride abstract
NotOverridable leaf
Overrides <<Overrides>>
Overridable <<Overridable>>
Shadow s <<Shadow s>>
Overloads <<Overloads>>
kind w ithout specifying a <<Event>> (Type <= Simple)
delegate type
w ith specifying a <<EBvent>> (Type <= Regular)
delegate type
w ith custom accessors | <<Event>> (Type <= Custom)
attribute sections <<Attributes>>
doc comments Comment(->Documentation)
type direction return Parameter
type dimensions multiplicity
nullable <<Nullable>>
Type name name Template
Parameter Parameter
constraint constraining classifier

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

244 Projects and Code Engineering UModel Element Mappings
VB.NET UModel
predefine | Structure <<ValueTypeConstraint>>
gonstraint Class <<ReferenceTypeConstraint>>
New <<ConstructorConstraint>>
attribute sections <<Attributes>>
Structure | name name Class
<<Structur
modifiers Friend visibility package e>>
Protected Friend protected <<Friend>>
Public public
Protected protected
Private private
Partial <<Partial>>
Shadow s <<Shadow s>>

filename

code file name

associated projectfile/directory

ComponentRealization

base types

InterfaceRealization(s)

attribute sections

<<Attributes>>

doc comments

Comment(->Documentation)

Property

Field name name

modifiers Friend visibility package
Public public
Private private
Shared static
ReadOnly readonly
Shadow s <<Shadow s>>

type type

type dimensions multiplicity

nullable <<Nullable>>

default value default

attribute sections

<<Attributes>>

doc comments

Comment(->Documentation)

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Projects and Code Engineering

UModel Element Mappings

245

VB.NET UModel
Constant name name Property
<<Const>
modifiers Friend visibility package >
Public public
Private private
Shadow s <<Shadow s>>
type type
type dimensions multiplicity
nullable <<Nullable>>
default value default
attribute sections <<Attributes>>
doc comments Comment(->Documentation)
Method name name Operation
modifiers Friend visibility package
Public public
Private private
Shared static
MustOverride abstract
NotOverridable leaf
Overrides <<Overrides>>
Overridable <<Overridable>>
Partial <<Partial>>
Shadow s <<Shadow s>>
Overloads <<Overloads>>

attribute sections

<<Attributes>>

doc comments

Comment(->Documentation)

implemented interfaces implements
type (function) direction return Parameter
Parameter | name name
modifiers ByRef direction inout
ByVal in

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

246

Projects and Code Engineering

UModel Element Mappings

VB.NET UModel
ParamArr | varArgList
ay
Optional default
type type
type dimensions multiplicity
nullable <<Nullable>>
Type name name Template
Parameter Parameter
constraint constraining classifier
predefine | Structure | <<ValueTypeConstraint
d >>
constraint
Class <<ReferenceTypeConst
raint>>
New <<ConstructorConstrain
t>>
attribute sections <<Attributes>>
Construct | name name Operation
or <<Constru
modifiers Friend visibility package ctor>>
Public public
Private private
Shared static
attribute sections <<Attributes>>
doc comments Comment(->Documentation)
Parameter | name name Parameter
modifiers ByRef direction inout
ByVal in
ParamArr | varArgList
ay
Optional default
type type
type dimensions multiplicity
nullable <<Nullable>>
Property name name Operation
<<Propert

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Projects and Code Engineering

UModel Element Mappings

attribute sections

<<Attributes>>

doc comments

Comment(->Documentation)

VB.NET UModel
modifiers Friend visibility package y>>
Public public
Private private
Shared static
Default <<Property>> (Default <= IsDefault)
MustOverride abstract
NotOverridable leaf
Overrides <<Overrides>>
Overridable <<Overridable>>
Shadow s <<Shadow s>>
Overloads <<Overloads>>
ReadOnly <<GetAccessor>> (without
<<SetAccessor>>)
WriteOnly <<SetAccessor>> (without
<<GetAccessor>>)
attribute sections <<Attributes>>
doc comments Comment(->Documentation)
type direction return Parameter
type dimensions multiplicity
nullable <<Nullable>>
Get modifiers Friend visibility Friend <<GetAcc
Accessor essor>>
Private Private
Set modifiers Friend visibility Friend <<SetAcc
Accessor essor>>
Private Private
Operator name name Operation
<<Operato
modifiers | Public visibility Public r>>
Shared static
Narrow ing name <= Narrow ing
Widening name <= Widening

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

Projects and Code Engineering

UModel Element Mappings

VB.NET UModel
type direction return Parameter
Parameter | name name
modifier ByVal direction in
type type
type dimensions multiplicity
nullable <<Nullable>>
Event name name Operation
<<Event>>
modifiers Friend visibility package
Public public
Private private
Shared static
MustOverride abstract
NotOverridable leaf
Overrides <<Overrides>>
Overridable <<Overridable>>
Shadow s <<Shadow s>>
Overloads <<Overloads>>
kind w ithout specifying a <<Bvent>> (Type <= Simple)
delegate type
w ith specifying a <<Event>> (Type <= Regular)
delegate type
w ith customaccessors | <<Event>> (Type <= Custom)
attribute sections <<Attributes>>
doc comments Comment(->Documentation)
type direction return Parameter
type dimensions multiplicity
nullable <<Nullable>>
Type name name Template
Parameter Parameter
constraint constraining classifier
predefine | Structure <<ValueTypeConstraint>>
Sonstraint Class <<ReferenceTypeConstraint>>

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Projects and Code Engineering UModel Element Mappings 249
VB.NET UModel
New <<ConstructorConstraint>>
attribute sections <<Attributes>>
Interface name name Interface

modifiers Friend visibility package
Protected Friend protected <<Friend>>
Public public
Protected protected
Private private
Shadow s <<Shadow s>>

filename code file name

associated projectfile/directory

ComponentRealization

base types

Generalization(s)

attribute sections

<<Attributes>>

doc comments

Comment(->Documentation)

Method

name name
modifiers | Public visibility public
Shadow s <<Shadow s>>

attribute sections

<<Attributes>>

doc comments

Comment(->Documentation)

type (function) direction return Parameter
Parameter | name name
modifiers ByRef direction inout
ByVal in
ParamArr | varArgList
ay
Optional default
type type
type dimensions multiplicity
nullable <<Nullable>>
Type name name Template

Operation

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

250 Projects and Code Engineering UModel Element Mappings
VB.NET UModel
constraint constraining classifier
predefine | Structure | <<ValueTypeConstraint
d >>
constraint
Class <<ReferenceTypeConst
raint>>
New <<ConstructorConstrain
t>>
attribute sections <<Attributes>>
Property name name Operation
<<Propert
modifiers Public visibility public y>>
Default <<Property>> (Default <= IsDefault)
Shadow s <<Shadow s>>
ReadOnly <<GetAccessor>> (without
<<SetAccessor>>)
WriteOnly <<SetAccessor>> (without
<<GetAccessor>>)
attribute sections <<Attributes>>
doc comments Comment(->Documentation)
type direction return Parameter
type dimensions multiplicity
nullable <<Nullable>>
Event name name Operation
<<BEvent>>
modifiers Public visibility public
Shadow s <<Shadow s>>
kind w ithout specifying a <<Event>> (Type <= Simple)

delegate type

w ith specifying a
delegate type

<<Event>> (Type <= Regular)

attribute sections

<<Attributes>>

doc comments

Comment(->Documentation)

type direction return Parameter
type dimensions multiplicity
nullable <<Nullable>>

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Projects and Code Engineering

UModel Element Mappings 251

VB.NET UModel
Type name name Template
Parameter Parameter
constraint constraining classifier
predefine | Structure <<ValueTypeConstraint>>
Sonstraint Class <<ReferenceTypeConstraint>>
New <<ConstructorConstraint>>
attribute sections <<Attributes>>
Delegate name name Class
<<Delegat
modifiers Friend visibility package e>>
Protected Friend protected <<Friend>>
Public public
Protected protected
Private private
Shadow s <<Shadow s>>
filename code file name
associated projectfile/directory ComponentRealization
attribute sections <<Attributes>>
doc comments Comment(->Documentation)
type direction return Parameter | Operation
Parameter | name name
modifiers ByRef direction inout
ByVal in
type type
type dimensions multiplicity
nullable <<Nullable>>
Type name name Template
Parameter Parameter
constraint constraining classifier

predefine | struct

<<ValueTypeConstraint>>

d
constraint | class

<<ReferenceTypeConstraint>>

new ()

<<ConstructorConstraint>>

attribute sections

<<Attributes>>

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

252 Projects and Code Engineering

UModel Element Mappings

VB.NET UModel
Enum name name Enumerati
on
modifiers Friend visibility package
Protected Friend protected <<Friend>>
Public public
Protected protected
Private private
Shadow s <<Shadow s>>
filename code file name
associated projectfile/directory ComponentRealization
base type type <<BaseTy
pe>>
attribute sections <<Attributes>>
doc comments Comment(->Documentation)
Enum name name Enumerati
Constant on Literal
default value default
attribute sections <<Attributes>>
doc comments
Comment(->Documentation)
Parameterized Type Anonymous Bound Eement
6.6.3 Java Mappings
The table below shows the one-to-one correspondence between:
e UModel elements and Java code elements, when outputting model to code
¢ Java code elements and UModel model elements, when inputting code into model
Java UModel
Project projectfile projectfile Componen
t
directory directory
Package name name Package
<<namesp
ace>>
Class name name Class

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Projects and Code Engineering

UModel Element Mappings

253

Java UModel

modifiers package visibility package

public public

protected protected

private private

abstract abstract

strictfp <<strictfp>>

final <<final>>

filename

code file name

associated projectfile/directory

ComponentRealization

extends clause

Generalization

implements clause

InterfaceRealization(s)

modifiers package

public

protected

private

visibility package

public

protected

private

java docs Comment(->Documentation)
Field name name Property
modifiers package visibility package
public public
protected protected
private private
static static
transient <<transient>>
volatile <<volatile>>
final <<final>>
type type
type dimensions multiplicity
default value default
java docs Comment(->Documentation)
Method name name Operation

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

254 Projects and Code Engineering

UModel Element Mappings

Java UModel
static static
abstract abstract
final <<final>>
native <<native>>
strictfp <<strictfp>>
synchronized <<synchronized>>

throw s clause

raised exceptions

throw s clause

raised exceptions

java docs Comment(->Documentation)
Parameter | name name Parameter
modifier final <<final>>
varArgList
type type
type dimensions multiplicity
Type name name Template
Parameter Parameter
bound constraining classifier

java docs Comment(->Documentation)
type direction return Parameter
Parameter | name name
modifier final <<final>>
varArgList
type type
type dimensions multiplicity
Type name name Template
Parameter Parameter
bound constraining classifier
Construct | name name Operation
or <<constru
modifiers public visibility public ctor>>
protected protected
private private

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Projects and Code Engineering

UModel Element Mappings 255

Java UModel
Type name name Template
Parameter Parameter
bound constraining classifier
Interface name name Interface
modifiers package visibility package
public public
protected protected
private private
abstract abstract
strictfp <<strictfp>>
filename code file name
associated projectfile/directory ComponentRealization
extends clause Generalization(s)
java docs Comment(->Documentation)
Field name name Property
modifiers public visibility public
static static
final <<final>>
type type
type dimensions multiplicity
default value default
java docs Comment(->Documentation)
Method name name Operation
modifiers public visibility public
abstract abstract

throw s clause

raised exceptions

java docs Comment(->Documentation)
type direction return Parameter
Parameter | name name
modifier final <<final>>
varArgList

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

256 Projects and Code Engineering UModel Element Mappings
Java UModel
type type
type dimensions multiplicity
Type name name Template
Parameter Parameter
bound constraining classifier
Type name name Template
Parameter Parameter
bound constraining classifier
Enum name name Enumerati
on
modifiers package visibility package
public public
protected protected
private private
filename code file name
associated projectfile/directory ComponentRealization
java docs Comment(->Documentation)
Enum name name Enumerati
Constant on Literal
Field name name Property
modifiers package visibility package
public public
protected protected
private private
static static
transient <<transient>>
volatile <<volatile>>
final <<final>>
type type
type dimensions multiplicity
default value default
java docs Comment(->Documentation)
Method name name Operation

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Projects and Code Engineering

UModel Element Mappings

257

Java UModel

modifiers package visibility package
public public
protected protected
private private
static static
abstract abstract
final <<final>>
native <<native>>
strictfp <<strictfp>>
synchronized <<synchronized>>

throw s clause

raised exceptions

throw s clause

raised exceptions

java docs Comment(->Documentation)
Parameter | name name Parameter
modifier final <<final>>
varArgList
type type

java docs Comment(->Documentation)
type direction return Parameter
Parameter | name name
modifier final <<final>>
varArgList
type type
type dimensions multiplicity
Type name name Template
Parameter Parameter
bound constraining classifier
Construct | name name Operation
or <<constru
modifiers public visibility public ctor>>
protected protected
private private

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

258 Projects and Code Engineering UModel Element Mappings

Java UModel
type dimensions multiplicity
Type name name Template
Parameter Parameter
bound constraining classifier

Parameterized Type Anonymous Bound Hement

Annotation <<annotations> modifiers

6.6.4 XML Schema Mappings

The table below shows the one-to-one correspondence between:

e UModel elements and XML Schema elements, when outputting model to code
e XML Schema elements and UModel model elements, when inputting code into model

Legend:

-}{SDIUML Element
-Steren’wpe property (=tagoed valueg)

XSD UModel
file path projectfile Componen
t
schema target namespace name Package
<<namesp
ace>>
attributeFormDefault attributeFormDefault Class
<<schema
blockDefault blockDefault >>
elementFormDefault elementFormDefault
finalDefault finalDefault
version version
xml:lang xml:lang
xmins xmins
annotation | source source
appinfo Comment
<<appinfo

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Projects and Code Engineering

UModel Element Mappings

259

XSD UModel
>>
document | xmil:lang xml:lang Comment
ation <<docume
ntation>>
attributeGr | name name Class
oup <<attribute
annotation | appinfo Comment | Group>>
<<appinfo
>>
document Comment
ation <<docume
ntation>>
attribute name name Property
<<attribute
form form >>
use use
ref type
type
default default
fixed fixed
attributeGr | ref type Property
oup <<attribute
Group>>
anyAttribu | namespace namespace Property
te <<anyAttri
processContents processContents bute>>
attribute name name Class
<<attribute
form form >>
use use
type type Property
default default
fixed fixed
annotation | appinfo Comment
<<appinfo
>>
documentation Comment
<<docume
ntation>>

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

260 Projects and Code Engineering UModel Element Mappings

XSD UModel
simpleType name (= name of Class | DataType
+ <<simpleT
" _anonymousType[n]") | ype>>

element name name Class
<<element

abstract abstract >>

block block

final final

form form

nillable nillable

type type Property

default default

fixed fixed

substitutionGroup general Generaliz
ation
<<substitu
tion>>

annotation | appinfo Comment
<<appinfo
>>

document Comment
ation <<docume

ntation>>

simpleTyp name (= name of Class | DataType

e + <<simpleT

_anonymousType[n]") | ype>>

complexT name (= name of Class | Class
ype + <<comple
" _anonymousType[n]") | xType>>

group name name Class
<<group>
annotation | appinfo Comment | >
<<appinfo
>>

document Comment
ation <<docume
ntation>>

all name (="_all") Property

name (="mg"_ +"all") Class

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering

UModel Element Mappings 261

XSD UModel
annotation | appinfo Comment
<<appinfo
>>
document Comment
ation <<docume
ntation>>
element name name Property
<<element
ref type >>
type
choice name (="_choice") Property
name (="mg"_+ Class
"choice") <<choice>
>
annotation | appinfo Comment
<<appinfo
>>
document Comment
ation <<docume
ntation>>
element name name Property
<<element
ref type >>
type
group Property
<<group>
>
any namespac | namespac | Property
e e <<any>>
processC | processC
ontents ontents
choice Property
Class
<<choice>
>
sequence Property
Class
<<sequen
ce>>
sequence name (="_sequence") Property

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

262 Projects and Code Engineering UModel Element Mappings

XSD UModel
name (= "mg"_+ Class
"sequence") <<sequen
ce>>
annotation | appinfo Comment
<<appinfo
>>
document Comment
ation <<docume
ntation>>
element name name Property
<<element
ref type >>
type
group Property
<<group>
>
any namespac | namespac | Property
e e <<any>>
processC | processC
ontents ontents
choice Property
Class
<<choice>
>
sequence Property
Class
<<sequen
ce>>
notation name name DataType
<<notation
system system >>
public public
annotation | appinfo Comment
<<appinfo
>>
document Comment
ation <<docume
ntation>>
complexT | name name Class
ype <<comple
abstract abstract xType>>
block block

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering UModel Element Mappings 263
XSD UModel
final final
mixed mixed
annotation | source source
appinfo Comment
<<appinfo
>>
document | xmil:lang xml:lang Comment
ation <<docume
ntation>>
group name (="_ref[n]") Property
<<group>
>
maxOccurs multiplicity
minOccurs
ref type
all name (= "mg"_ + "all") Class
<<gll>>
name (="_all") Property
maxQOccurs multiplicity
minOccurs
choice name (= "mg"_+ Class
"choice[n]") <<choice>
>
name (="_choice[n]") Property
maxQOccurs multiplicity
minOccurs
sequence name (= "mg"_+ Class
"sequencel[n]") <<sequen
ce>>
name (= Property
"_sequence[n]")
maxQOccurs multiplicity
minOccurs
attribute name name Property
<<attribute
ref type >>

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

264 Projects and Code Engineering UModel Element Mappings

XSD UModel
type
attributeGr | ref Property
oup type <<attribute
Group>>
anyAttribu | namespace namespace Property
te <<anyAttri
processContents processContents bute>>
complexC | restriction Generaliz
ontent ation
<<restricti
on>>
base general
extension Generaliz
ation
<<extensi
on>>
simpleTyp | name name DataType
e <<simpleT
final final ype>>
Enumerati
annotation | source source on
<<simpleT
appinfo Comment | ype>>
<<appinfo
>>
document | xmil:lang xml:lang Comment
ation <<docume
ntation>>
itemType name (= Property <<list>>
"_itemTyp | <<itemTyp
st e") e>>
simpleType DataType
<<simpleType>>
union memberTy name (= Property <<union>>
pes "memberT | <<member
ype[n]") Type>>
simpleTyp DataType
e <<simpleType>>
minExclusi | value value <<minExcl
ve usive>>
fixed fixed
mininclusi | value value <<mininclu
ve sive>>
fixed fixed
maxExclu | value value <<maxExc

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering

UModel Element Mappings

265

XSD UModel
fixed fixed
maxInclusi | value value <<maxIncl
ve usive>>
fixed fixed
totalDigits | value value <<totalDigi
ts>>
fixed fixed
fractionDi | value value <<fraction
gits Digits>>
fixed fixed
length value value <<length>
>
fixed fixed
minLength | value value <<minLen
gth>>
fixed fixed
maxLengt | value value <<maxLen
h gth>>
fixed fixed
w hitespac | value value <<w hitesp
e ace>>
fixed fixed
pattern value value <<w hitesp
ace>>
enumerati | value name Enumerati
on onLiteral
simpleTyp DataType
e <<simpleT
ype>>
restriction | base general Generaliz
ation
<<restricti
on>>
complexT | name name DataType
ype <<comple
simpleCon | annotation | source source xType>>
tent <<simpleC
appinfo Comment ontent>>
<<appinfo
>>
document | xmil:lang xml:lang Comment
ation <<docume
ntation>>

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

266 Projects and Code Engineering

UModel Element Mappings

XSD UModel
minExclusi | value value <<minExcl
ve usive>>

fixed fixed
mininclusi | value value <<mininclu
ve sive>>
fixed fixed
maxExclu | value value <<maxExc
sive lusive>>
fixed fixed
maxInclusi | value value <<maxIncl
ve usive>>
fixed fixed
totalDigits | value value <<totalDigi
ts>>
fixed fixed
fractionDi | value value <<fraction
gits Digits>>
fixed fixed
length value value <<length>
>
fixed fixed
minLength | value value <<minLen
gth>>
fixed fixed
maxLengt | value value <<maxLen
h gth>>
fixed fixed
w hitespac | value value <<w hitesp
e ace>>
fixed fixed
pattern value value <<w hitesp
ace>>
attribute name name Property
<<attribute
ref type >>
type
attributeGr | ref type Property
oup <<attribute
Group>>
anyAttribu | namespac namespac Property
te e e <<anyAttri

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Projects and Code Engineering UModel Element Mappings 267

XSD UModel
processC processC
ontents ontents
simpleTyp DataType
e <<simpleT
ype>>
restriction | base general Generaliz
ation
<<restricti
on>>
extension | base general Generaliz
ation
<<extensi
on>>
import schemalocation schemalocation Hementim
port
namespace namespace <<import>
>
include schemal.ocation schemal.ocation Blementim
port
<<include
>>
redefine schemalocation schemalocation Hementim
port
<<redefin
e>>
simpleTyp DataType
e <<simpleT
ype>>
complexT Class
ype <<comple
xType>>
<<redefine>>
attributeGr Class
oup <<attribute
Group>>
group Class
<<group>
>

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

268 Projects and Code Engineering Merging UModel Projects

6.7 Merging UModel Projects

It is possible to perform a two-way or three-way project merge in UModel. Both operations merge different
UModel project files into a common UModel *.ump model. This option is useful if multiple persons are working
on the same project at the same time, or you just want to consolidate your work into one model.

To merge two UML projects:

1. Open the UML file that is to be the target of the merge process, i.e. the file into which the second
model will be merged - the merged project file.

2. Select the menu option Project | Merge Project....

3. Select the second UML project that is to be merged into the first one. The Messages window reports
on the merge process, and logs the relevant details.

Messages

b4 v o X
Elstarting merge project ...

i Successfully loaded snapshotfile 'C:\Usershaltova\Documents\AltovatlUModel2021\UModelExamples'\Bank_CSharp.ump’
Setting ‘visibility' for Operation 'CollectBankAddressinfos' [Class 'Root:Design View:BankView: com::altova:bankview:BankWiew')
Setting ‘operation’ for CallOperationAction "collectAccountinfos’ (Activity 'Root:Behavior View::BankView')
Setting ‘type’ for Parameter ‘return’ (Operation 'Root:Design View::BankView::com:altova: bankview::BankView:CollectAccountinfos’)
i Removing 'ownedOperation’ Operation 'CollectAccountinfos’ from Class "BankView' [Package 'Root:Design View:BankView:: com::altova:bankview')
(— W finished merge project - O error(s], 0 warning(s)

Note: Clicking on one of the entries in the Messages window displays that modeling element in the Model
Tree.

Merging results:

¢ New modeling elements i.e. those that do not exist in the source, are added to the merged model.

e Differences in the same modeling elements; the elements from the second model take precedence,
e.g. there can only be one default value of an attribute, the default value of the second file is used.

e Diagram differences: UModel first checks to see if there are differences between diagrams of the two
models. If there are, then the new/different diagram is added to the merged model (with a running
number suffix, activity1 etc.) and the original diagram is retained. If there are no differences, then
identical diagrams(s) are ignored, and nothing is changed. You can then decide which of the diagrams
you want to keep or delete, you can of course keep both of them if you want.

o The whole merge process can be undone step-by-step by clicking the Undo toolbar button, or pressing
Ctri+Z.

¢ Clicking an entry in the message window displays that element in the Model Tree.

e The file name of the merged file (the first file you opened) is retained.

6.7.1 3-Way Project Merge

UModel supports the merging of multiple UModel projects that have been simultaneously edited by different
dewelopers, in a 3-way project merge. The 3-way project merge works with top-level UModel projects, i.e. main
projects that may contain subprojects, it does not support individual file merging, when these files have
unresolved references to other files.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Merging UModel Projects 269

When merging main projects, any editable subprojects are automatically merged as well. There is no need for a
separate subproject merging process. For an example, see Example: Manual 3-Way Project Merge. Note
the following:

e The whole merge process can be undone step-by-step by clicking the Undo toolbar button, or pressing
Ctrl+Z

e Clicking an entry in the message window displays that element in the Model Tree.

e The file name of the merged file, the first file you opened, is retained.

Merging results
In the following text, "source" means the initial/first project file you open before starting the merge process.

¢ New modeling elements in the second file i.e. that do not exist in the source, are added to the merged
model.

e New modeling elements in the source file i.e. that do not exist in the second file, remain in the merged
model.

e Deleted modeling elements from the second file i.e. those that still exist in the source, are removed
from the merged model.

e Deleted modeling elements from the source file i.e. that still exist in the second file, remain deleted
from the merged model.

Differences to the same modeling elements:

e Ifa property (e.g. the visibility of a class) is changed in either the source, or second file, the updated
value is used in the merged model.

e Ifa property (e.g. the visibility of a class) is changed in both source and second file, the value of the
second file is used (and a warning is shown in the messages window).

Mowved elements:

e Ifan element is moved in the source, or second file, then the element is moved in the merged model.
e Ifan element is moved (to different parents) in both the source and second file, a prompt appears, and
you have to manually select the parent element in the merged model.

Diagram differences:

UModel first checks to see if there are differences between diagrams of the two models. If yes, then the
new/different diagram is added to the merged model (with a running number suffix, activity1 etc.) and the
original diagram is retained. If there are no differences, then identical diagrams(s) are ignored, and nothing is
changed. You can then decide which of the diagrams you want to keep or delete, you can of course keep both
of them if you want.

Source control systems support for 3-way merging

When checking in/out project files, UModel automatically generates "Common ancestor" (or snapshot) files
which are then used for the 3-way merge process. This enables a much finer merge result than the normal 2-
way merge.

The specific source control system you use, determines if the automatic snapshot 3-way merge process is
supported by UModel. A manual 3-way merge is however, always possible.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

270 Projects and Code Engineering Merging UModel Projects

e Source control systems that perform automatic file merging without user intervention, will probably not
support an automatic 3-way merge.

e Source control systems that prompt you to choose between Replace or Merge, when a project file has
been changed, will generally support a 3-way merge. After the source control plug-in has replaced the
file, selecting the Replace command activates the UModel file alert which then allows you to do a 3-
way merge. UModel must be used for the check in/out process.

e Main projects as well as subprojects can be placed under source control. Changing data in a
subproject automatically prompts you if the subproject(s) should be checked out.

e Each check in/out action, creates a Common ancestor, or a snapshot, file which is then used during
the 3-way project merge process.

Note: Snapshot files are automatically created and used only with the standalone versions of UModel, i.e.
these functions are not available in the Eclipse or Visual Studio plug-in versions.

Example

User A edits a UModel project file and changes the name of a class in the BankView Main diagram. User B
opens the same project file and changes the visibility of the same class.

As snapshot files are created for each user, the snapshot editing history allows the individual changes to be
merged into the project. Both the name and visibility changes are merged into the project file during the 3-way
merge process.

6.7.2 Example: Manual 3-Way Project Merge

This example illustrates a simple 3-way project merge. Let's suppose that two users, Tom and Alice, created
their own copies of a UModel project and made changes to them. There are now three versions of the same
project: the original one, Tom's copy, and Alice's copy. In the context of 3-way merging, the original project
represents the "common ancestor file".

For the scope of this example, let's assume that the common ancestor file is Bank_CSharp.ump project,
available in the folder C:\Users\<username>\Documents\Altova\UModel2023\UModelExamples. The copies
of Tom and Alice must be created manually. Therefore, let's first create two copies of the Bank_Csharp.ump
project in child folders below the ...\UModelExamples folder. Let's call the child folders Alice and Tom; the
project name can remain as is.

Use the File | Save Project As command to create the copies of Tom and Alice. When prompted to
adjust the relative paths, click Yes. This way you will awid introducing syntax errors in the project
copies.

The goal of the example is to show how Alice should merge changes not only from the original
Bank_CSharp.ump, but also from Tom's project into a new merged model (a so-called "3-way merge").

Step 1: Prepare Tom's project

Tom opens the Bank_CSharp.ump project file in folder Tom, opens the "BankView Main" diagram, and
makes changes to the Bankview class.

1. Operation CollectAccountInfos () :bool is deleted from the Bankview class.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering Merging UModel Projects 271

2. The visibility of the CollectBankaddressInfos () :bool operation is changed from "protected" to
"public".

Bank\View

@] banks:Bank[*] {ordered]
@] bankAPLIBankAPI

a} «constructors BankView(in bankAPl:[BankAPI)
¥ ColledtBankAddressinfos(:bool

¥ CollectDatal:bool

a'} GetBalanceAtBank(in bankname:string)iint
% GetBalanceSumOfallBanks(int

—

3. The project is then saved.

Step 2: Prepare Alice's project

Alice opens the Bank_CSharp.ump project file in folder Alice, opens the "BankView Main" diagram, and
makes changes to the Bank class.

1. The operations CollectAccountInfos and GetBalanceOfAccounts are both changed from "public" to

"protected".
Bank
@] bankname:string
ien @1 IPaddress:string
#banks)
@] username:string o
— .
> @] password:string 1 #accounts
ﬁ.] accounts:Account[*] .
C# Propertiss

R} wizetAccessor, property» BankMame():string
R} xzizetAccessor, property: IPAddress():string
R} «ietAccessor, property= Username():string
k} xethccessor, property= Password():string

Method's
a} econstructors Bank(in name:string, in [P:string, in userstring, in pw:string)
ﬁ} CollectAccountinfos(in api:lBankAPl):bool
ﬁ.} GetBalanceOfAccounts(jiint

2. The project is then saved.

Step 3: Perform the 3-way merge

Alice now starts a 3-way project merge:

1. Open Alice's project from Alice folder.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

272 Projects and Code Engineering Merging UModel Projects

2. On the Project menu, click Merge Project (3-way), and select the project file changed by Tom from
Tom folder.

3. You are now prompted to open the common ancestor file. Select the original Bank_CSharp.ump
project file from the ...\UModelExamples folder.

The 3-way merge process is started and you return to the project file from which you started the 3-way merge
process, i.e. from the project file in the Alice folder. The Messages window shows you the merge process in
detail.

Messages b4
5 T »

[starting merge project ...
i Successfully loaded snapshotfile "Ch\Users\altovatDocuments\AltovatUModel2021WUModelExamplesiBank_CSharp.ump’

Setting ‘wisibility’ for Operation 'CollectBankAddressinfos’ (Class ‘Root:Design View:BankViews:com::altova:bankview: BankView')

Setting ‘operation’ for CallOperationAdtion 'collecticcountinfos’ (Activity ‘Root:Behavior View::BankView')

Setting ‘type’ for Parameter ‘return’ [Operation 'Root::Design View:BankView::com:altova:bankview:BankView:: CollectAccountinfos’)

Remoaving ‘ownedOperation’ Operation "CollectAccountinfos” from Class "BankView' [Package "‘Root:Design View::BankView::com::altova:bankview')
.. finished merge project - 0 error(s), 0 warning(s)

The outcome of the 3-way merge is as follows:

e The changes made to the project by Tom are replicated in Alice's project.
e The changes made to the project by Alice are retained in the project file.

Note: The project file in the Alice folder should now be used as the common ancestor file for future 3-way
merges between the project files in folders Tom and Alice.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering UML Templates 273

6.8

UML Templates

UModel supports the use of UML templates and their mapping to or from Java, C# and Visual Basic generics.

Templates are "potential" model elements with unbound formal parameters.

These parameterized model elements, describe a group of model elements of a particular type:
classifiers, or operations.

Templates cannot be used directly as types, the parameters have to be bound.

Instantiate means binding the template parameters to actual values.

Actual values for parameters are expressions.

The binding between a template and model element, produces a new model element (a bound element)
based on the template.

If multiple constraining classifiers exist in C#, then the template parameters can be directly edited in
the Properties tab, when the template parameter is selected.

Template signature display in UModel:

MyVector

@] mylrray T[]

Class template called MyVector, with formal template parameter "T", visible in the dashed rectangle.
Formal parameters without type info (T) are implicitly classifiers: Class, Datatype, Enumeration,
PrimitiveType, Interface. All other parameter types must be shown explicitly e.g. Integer.

Property myArray with unbounded number of elements of type T.

Right clicking the template and selecting Show | Bound elements, displays the actual bound
elements.

Template binding display:

intvector:Myvector<T-~int>

A bound named template intvector
Template of type, MyVector, where
Parameter T is substituted/replaced by int.
"Substituted by" is shown by - >.

Template use in properties/operations:

Clag=s3

.§|‘| My Flostector: yWector=T-=float=

An anonymous template binding:

Property MyFloatVector of type MyVector<T->float>

Templates can also be defined when defining properties or operations. The autocomplete function helps you
with the correct syntax when doing this.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

274 Projects and Code Engineering UML Templates

Class3

% Operation (O Mysector=T-=flost=

e Operation1 returns a vector of floats.

6.8.1 Template Signatures

A Template signature is a string that specifies the formal template parameters. A template is a parameterized
element that is used to generate new model elements by substituting/binding the formal parameters to actual
parameters (values).

Formal template parameter
T
Template with a single untyped formal parameter
(stores elements of type T)

Multiple formal template parameters
KeyType:DateType, ValueType

Parameter substitution
T>aBaseClass

The parameter substitution must be of type "aBaseClass", or derived from it.

Default values for template parameters
T=aDefaultValue

Substituting classifiers
T>{contract}aBaseClass

allowsSubstitutable is true
Parameter must be a classifier that may be substituted for the classifier designated by the classifier
name.

Constraining template parameters
T:Interface>anlinterface

When constraining to anything other than a class, (interface, data type), the constraint is displayed
after the colon ":" character. E.g. T is constrained to an interface (T:Interface) which must be of type
"aninterface" (>aninterface).

Using wildcards in template signatures
T>vector<T->?7<aBaseClass>

Template parameter T must be of type "vector" which contains objects which are a supertype of
aBaseClass.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Projects and Code Engineering UML Templates 275

Extending template parameters
T>Comparable<T->T>

6.8.2 Template Binding

Template binding involves the substitution of the formal parameters by actual values, i.e. the template is
instantiated. UModel automatically generates anonymously bound classes, when this binding occurs. Bindings
can be defined in the class name field as shown below.

intvector:hMyvector<T-=int>

Substituting/binding formal parameters
vector <T->int>

Create bindings using the class name
a_float_vector:vector<T->float>

Binding multiple templates simultaneously
Class5:vector<T->int, map<KeyType->int, ValueType<T->int>

Using wildcards ? as parameters (Java 5.0)
vector<T->7>

Constraining wildcards - upper bounds (UModel extension)
vector<T->?>aBaseClass>

Constraining wildcards - lower bounds (UModel extension)
vector<T->?<aDerivedClass>

6.8.3 Template Usage in Operations and Properties

Operation returning a bound template
Class1
Operation1():vector<T->int>

Parameter T is bound to "int". Operation1 returns a vector of ints.
Class containing a template operation

Class1

Operation1<T>(in T): T
Using wildcards

Class1

Property 1:vector<T->7?>

This class contains a generic vector of unspecified type (? is the wildcard).

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

276 Projects and Code Engineering UML Templates

Typed properties can be displayed as associations as follows:

¢ Right click a property and select Show | PropertyX as Association, or
e Drag a property onto the diagram background.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Generating UML Documentation 277

7 Generating UML Documentation

Altova website: UML project documentation

Run the Project | Generate Documentation menu command to generate detailed documentation about your
UML project in HTML, Microsoft Word, RTF or PDF format. The documentation generated by this command
can be freely altered and used; permission from Altova to do so is not required.

Notes
e To generate documentation in PDF format or to customize the generated documentation, Altova
StyleVision (https://www.altova.com/stylevision) must be installed and licensed.
e To generate documentation in Microsoft Word format, Microsoft Word 2000 or later is required.

Documentation is generated for the modeling elements you select in the Generate Documentation dialog box.
You can either use the fixed design, or specify a custom StyleVision Power Stylesheet (SPS). Using a
StyleVision Power Stylesheet enableagou to customize the output of the generated documentation, see

Customizing Output with StyleVision

You can also create partial documentation of modeling elements. To do this, right-click an element (or multiple
elements using Ctrl+Click) in the Model Tree and select Generate Documentation. The element can be a
folder, class, interface, and so on. The documentation options are the same in both cases.

Related elements are hyperlinked in the generated output, enabling you to navigate from component to
component. All manually created hyperlinks also appear in the documentation.

If your project contains UModel profiles (such as C#, Java, VB.NET, and so on), the generated documentation
will include these if the Included subprojects option is enabled in the Include tab, see Documentation

Generation Options @
To generate documentation:
1. Open a project (for example, C:

\Users\<username>\Documents\Altova\UModel2023\UModelExamples\Bank_Java.ump).
2. On the Project menu, click Generate Documentation.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

https://www.altova.com/umodel#proj_docs
https://www.altova.com/stylevision

278 Generating UML Documentation

Generate Documentation >

Main Include Details Fonts

Documentation Design

(®) Use fixed design for documentation in HTML, Word or RTF format.
i) Use user-defined design for HTML, Word, RTF or POF format. Requires StyleVision,

Select SPS design: ZealtovalModelDoc % \UModelDocumentation. sps Browse Edit
Output format Generate links to local files
(IHTML []Embed diagrams ®absolute:
(®) Microsoft Word [] create folder for diagrams O relative to resutt file
i JRTF

PDF (see above)

Split output to multiple files
Embed C55 in HTML

Show result file after generation

Corcs

3. Select an output format (HTML, Word, RTF, PDF).
4. Optionally, customize the generation options, see Documentation Generation Options @,
5. Click OK and choose a target output folder.

The following image shows a fragment of UModel fixed-design documentation generated from the
Bank_Java.ump project file.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Generating UML Documentation

279

Activity Diagram
Class Diagram

Component
Diagram

Compaosite
Structure Diagram

Deployment
Diagram

Object Diagram

Profile Diagram
Sequence
Diagram

State Machine
Diagram
UseCase Diagram

Actor

Class

Component

Interface

Index of elements:

Bank_Java.ump
project location CA\Usersy

Index of diagrams:

collectData Draft
BankView Main

BankView realization

Account Transfer

Deployment

Sample Accounts

Apply Java Profile

Collect Account Information

BankAPI Draft

Owverview Account Balance

Bank

Account
CreditCardAccount

Bank API client

IBankAPI

\UModelExamples\Bank Java.ump

Hierarchy of Account

Owerview

Connect to BankAPI

Query BankServer Draft

Standard User

Bank
SavingsAccount

BankView

BankView

BankView GUI

As illustrated above, the generated documentation includes an index of diagrams and elements (with links) at
the top of the HTML file.

The image below shows a fragment of the generated documentation for the account class. Note that the
individual members in class diagrams are also hyperlinked to their definitions. For example, clicking a property
or operation takes you to its definition. The hierarchy classes, as well as all underlined text, are also

hyperlinked.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

280 Generating UML Documentation

Class Account

diagram Account

@] balancefloat=0
gl id:5tring

¢» «constructors Account()

¢» getBalance(:float

<% getld(:String

% collectAccountinfolin bankAPEIBankAP:boaolean

hierarchy

H Account

T
I

[]
H Checkingfcoount | | SavingsAccount H CreditCardAccount

owner | bankview

properties qualified name Design View::BankView::com::altova::bankview:: Account
visibility public
leaf false
abstract true
isFinalspecialization false
active false
code file name Account.java
code file path CAVUML _Bank_SampletJavaCode\comtaltova\bankview'\Account,java
«annotations» false
wstatice false
xstrictfp= false

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Generating UML Documentation Documentation Generation Options 281

71 Documentation Generation Options

When generating documentation from UModel projects, you can set various options as described below. The
options are organized by the tab in which they appear in the "Generate Documentation" dialog box.

Main tab

The Main tab includes the general documentation generation options.

Generate Documentation >

Main |nclude Detailz Fonts

Documentation Design
{®) Use fixed design for documentation in HTML, Word or RTF format.
() Use user-defined design for HTML, Word, RTF or PDF format. Requires StyleVision,

Select SPS design: tAltovalModelDoc b UModelDocumentation. sps Browse Edit
Qutput format Generate links to local files
{IHTML []Embed diagrams @:al:us-:ulute
(®) Microsoft Word [] create folder for diagrams O relative to resutt file
ORTF

POF (zee above)

split output to multiple files
Embed C55 in HTML

Show result file after generation

Cancel

Documentation Design:

e Select Use fixed design... to use the UModel built-in documentation design.

e Select Use user-defined... to generate documentation formatted with the help of a custom StyleVision
Power Stylesheet (.sps file) created in StyleVision. Note: This option requires Altova StyleVision to be
installed, see also Customizing Output with SterVision.

¢ Click Browse to browse for a predefined stylesheet file.

e Click Edit to launch StyleVision and open the selected stylesheet file in a StyleVision window.

Output format:

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

282 Generating UML Documentation Documentation Generation Options

e The output format can be one of the following: HTML, Microsoft Word, RTF, or PDF. Microsoft Word
documents are created with the .doc file extension when generated using a fixed design, and with a
.docx file extension when generated using a StyleVision Power Stylesheet. The PDF output format
requires Altova StyleVision to be installed.

e Split output to multiple files generates an output file for each modeling element (class, interface,
diagram, and so on). Clear this check box to generate one global file with all modeling elements.

e Select the Embed CSS in HTML check box to embed the generated CSS code in the HTML
documentation. Clear this check box to keep the CSS file external.

e The Embed diagrams option is enabled for the Microsoft Word and RTF output options. When this
check box is selected, diagrams are embedded in the generated file. Diagrams are created as .png
files, which are displayed in the result file via object links.

e Create folder for diagrams generates a subfolder below the selected output folder, that will contain
all diagrams.

e The Show result file after generation option is enabled for all output formats. When this check box
is selected, the main generated file is displayed in the default browser (for HTML files), in Microsoft
Word (for Word files), or in the default application (for .pdf or .rtf files).

¢ The Generate links to local files option allows you to specify if the generated links are to be
absolute, or relative, to the output file.

Include tab
This tab allows you to select which diagrams and modeling elements are to appear in the documentation.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Generating UML Documentation Documentation Generation Options 283

Generate Documentation >

Main Include Details Forts

Diagrams: Elements:
[w] Activity Diagram a | AcceptEventiction - Imdes
EPMM 1 Business Process [] Action
w| Named elements on
BEPMM 2 Business Process [[] actionExecutionSpecification by
EPMM 2 Choreography D [] ActioninputPin [] Included subprojects
[+ BPMM 2 Callaboration Di [] Activity ' !
Predefined subprojects
Class Diagram [] ActivityEd ge prel
Communication Diagram [] ActivityFinalMode |:| Unknown Extemnals
Component Diagram [ActivityGroup
Composite Structure Diag [ActivityNode i
1 Select All Diagrams
Database Diagram [] activityParameterMode d
Deployment Diagram [] activityPartition)
Interaction Overview Dia: [l Actor SIIoCoTIT
Ohbject Diagram [] AnyReceiveEvent
Package Diagram [] Artifact Select Ml Bements
Frofile Diagram [] associationClass
Protocol State Machine C [l Behaviar Select No Elements
[Sequence Diagram [BehavioralFeature
¥l state Machine Diaaram ~ |[| BehavioredClassifier v
L 3 L | 3 Select Default

Corcs

To prevent subprojects or profiles from being documented, clear the Included subprojects check box. Be
aware that, if this check box is not selected, any elements or diagrams that are in subprojects will not be
included in generated documentation. Select the Predefined subprojects check box to include UModel built-
in profiles such as C# or Java profiles. Note, however, that generating documentation from predefined projects
takes a very long time. Unknown externals refers to elements whose kind could not be identified—this
usually happens after you import source code into UModel without first including the built-in subprojects for that
language or language version, see Mgmmj% for more information.

Details tab

This tab allows you to select the element details that are to appear in the documentation.

e Ifyou intend to import XML tags text in your documentation, clear the as HTML option under the
Documentation option.

e The up and down fields allow you to define the nesting depth shown above or below the current class
in the hierarchy diagram.

e The expand each element only once option allows only one of the same classifiers to be expanded
in the same image or diagram.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

284 Generating UML Documentation

Documentation Generation Options

Generate Documentation

Main Include Details Fors

Element details

; Generals

Higrarchy diagram Specifics

Expanded nesting depth up:| 5% Implemented Interfaces

down:| 1-% Associations to,/from

Expand each element only once Sourcestarget of other relations
Cwner Typed elements
Template parameters Bound elements
Template parameter substitutions Shown on diagram
Properties Hyperinks
Operation parameters Constraints
Owned diagrams Documentation Select Al
” as HTML
Cwned members S

Cancsl
Fonts tab

This tab allows you to customize the font settings for the various headers and text content.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Generating UML Documentation

Documentation Generation Options 285

Generate Documentation

Main Include Details Forts

Header

Header?
Element Name Header

Elerment Kind Header
Line Title

Line Content

Sub-line Title

Sub-line Content
Footer

Footer2

Fort face

Set Defaults

|Segu:ue 1l

[] Use the zame for all

Size

[] Use the same for al

Styles

Text Color
Background Calar

Corcs

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

286 Generating UML Documentation Customizing Output with StyleVision

7.2 Customizing Output with StyleVision

You can customize the design of UModel-generated documentation with the help of StyleVision Power
Stylesheet (.sps) files. Such files are created in Altova StyleVision (https://www.altova.com/stylevision). The
advantage of using an .sps file is that you have complete control over the design of the documentation. In
addition, PDF output is available if an .sps file is used.

To generate documentation with .sps files, Altova StyleVision must be installed and licensed.

UModel includes a predefined .sps file, which is available at the following path: C:
\users\<username\Documents\UModel2023\Documentation\UModel\UModelDocumentation.sps. To
format the generated documentation using a custom .sps file, select this option while generating
documentation, for example:

Generate Documentation >

Main Include Details Forts

Documentation Design
(") Use fixed design for documentation in HTML, Werd or RTF format,
(@) Usze uzer-defined design for HTML, Word, RTF or POF format. Requires Stylevision, i
Select SPS design: %ealtovalModelDoc % \UModelDocumentation. sps ~ | | Browse Edit

You can begin the customization by creating a copy of the default UModelDocumentation.sps and editing it
in StyleVision. For example, you can change the existing formatting or add links and images to the design.

Any StyleVision Power Stylesheet is based on an XML Schema. In case of stylesheets that control the design
of UModel-generated documentation, this schema is available at the following path: C:
\users\<username\Documents\UModel2023\Documentation\UModel\UModelDocumentation.xsd. Note
that the UModelDocumentation.xsd file references the Documentation.xsd file located in the folder abowe it.

When you author custom .sps files in StyleVision for UModel documentation, the UModelDocumentation.xsd
file must be used as a schema. The image below illustrates the Design Oveniew window of StyleVison after
you open the UModelDocumentation.sps file. Notice that it uses the UModelDocumentation.xsd schema
file, and a working XML required to preview the design. The working XML file is available in the SampleData
subfolder relative to the schema file.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

https://www.altova.com/stylevision

Generating UML Documentation

Customizing Output with StyleVision 287

Design Overview

T Sources

(2 $XML (main)
Schema UModelDocumentation, xsd
Working XML Bank_MultiLanguage. xml
Template XML
¥ML Signature | Disabled
add new Source...

T Modules
add new Module...
© CSS Files
add new C55 File...
© Parameters
add new Parameter. ..
% XSLT Files
add new XSLT file. ..

For instructions about how to edit .sps files, refer to the StyleVision documentation

(https://www.altova.com/documentation).

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

https://www.altova.com/documentation

288 UML Diagrams

8 UML Diagrams

Altova website: UML diagrams

There are two major groups of UML diagrams, Structural diagrams, which show the static view of the model,
and Behavioral diagrams, which show the dynamic view. UModel supports all fourteen diagrams of the UML 2.5
specification, as well as Additional diagrams.

e Behavioral diagrams include Activity, State machine, Protocol State Machine and Use Case
diagrams; as well as the Interaction, Communication, Interaction Oveniew, Sequence, and Timing
diagrams.

e Structural diagrams include: Class, Composite Structure, Component, Deployment, Object, and
Package diagrams.

e Additional diagrams XML schema diagrams.

Note: The Ctrl+Enter keys can be used to create multi-line labels for most of the modeling diagrams, e.g.
Lifeline labels in sequence diagrams, timing diagrams; guard conditions, state names, activity names
etc.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

https://www.altova.com/umodel/uml-diagrams

UML Diagrams Behavioral Diagrams 289

8.1 Behavioral Diagrams

These diagrams depict behavioral features of a system or business process, and include a subset of diagrams
which emphasize object interactions.

1! Activity Diagram

=| State Machine Diagram

= Protocol State Machine Diagram
%7 Use Case Diagram@

A subset of the Behavioral diagrams are those that depict the object interactions, namely:

“z Communication Diagram
&2 Interaction Oveniew Diagram
7 Sequence Diagram

Timing Diagram

8.1.1 Activity Diagram

Altova website: ©° UML Activity diagrams

Activity diagrams are useful for modeling real-world workflows of business processes, and display which
actions need to take place and what the behavioral dependencies are. The Activity diagram describes the
specific sequencing of activities and supports both conditional and parallel processing. The Activity diagram is
a variant of the State diagram, with the states being activities.

The Activity diagram shown below is available in the Bank_MultiLanguage.ump sample, in the ...
\UModelExamples folder supplied with UModel.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

https://www.altova.com/umodel/activity-diagrams

290 UML Diagrams Behavioral Diagrams

manual invokation

Receive Update Ul Event

Validate References

1 sec since last update

[reference missing]

[walic]

akarted

collectAccountinfos

[Bank\iew::)
]

Handle Display Exception

|_|_|

1

{Drdering = ordered}

Exception

{wveight="}

==datasztores==

Send AfterUpdate Signal
Updatelog

finished

8.1.1.1 Inserting Activity Diagram elements

To add elements to the diagram:

1. Click the element's toolbar button in the Activity Diagram toolbar.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 291

Activity Diagran
mEn @ e 0 X Dt e @ @k =ik

Abk

T

OREBE M| — M| hids s

2. Click in the Activity Diagram to insert the element.
To insert multiple elements of the selected type, hold down the Ctrl key and click in the diagram window.
Dragging existing elements into the activity diagram
Most elements occurring in other activity diagrams can be inserted into an existing activity diagram.

1. Locate the element you want to insert in the Model Tree Window @ (you can use the search function

text box, or press Ctrl+F to search for any element).
2. Drag the element(s) into the activity diagram.

Inserting an action (CallBehavior)

1. Click the Action (CallBehavior) toolbar button, and click in the Activity diagram to insert it.
2. Enter the name of the Action, e.g. "Validate References", and press Enter to confirm.

Properties =

rame Yalidate References

clement ki |CallBehaviorAction manual i/ okstion

wizibility unzpecified =]

leat O B pmmmmsmmmmmmee ="

isSynchronous ! Validate References j—”

behavior =] g mmmmmmmmmmmes o=

Note: Use Ctrl+Enter to create a multi-line name.

Inserting an action (CallOperation) and selecting a specific operation

1. Click the Action (CallOperation) icon in the icon bar, and click in the Activity diagram to insert
it.

2. Enter the name of the Action, e.g. "collectAccountinfo”, and press Enter to confirm.

3. Click the Browse button to the right of the operation field in the Properties tab. This opens the "Select
Operation” dialog box in which you can select the specific operation.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

292

UML Diagrams

Behavioral Diagrams

Properties o X gITETEEETATE o
4 o— collectAccountinfos }—D
MSimE collect&ccountinfos M e m &
n E =
element kind CalloperationAction
wizibility unzpecified i M Select operation
=Y |
i=Synchronous ~|Roat
opetation _% Behavior Wiew
Component Yiew
ll @[Deployment Vie
[thlcolleckDat, | (8| Desion iew
| Interaction i

Il Select operation

a

E| wlattova
1_—‘_| w | bankwviesny

........ [Bankigw hain

........ [Hierarchy of Account
........ [zample Accounts

- & AgencyBank

-F | John's 1=t

-[F B John's 2nd

- B John's 3rd

- B Account

-[# B Bank

-2 B BankView

-------- & | bankAP|
-3 R} Bank\iew
-Eg > collectBankAddressinfos
g collectAccountinfos

[< collectData

x|

Properties

rame
elemert kind
wizibility

leaf

operation

i=Synichronous

collectAccourtinfos
CalloperationAction
unzpecified

O

collectAccourtinfos]): boolean

u e = E NN = -
[L]
i collectAccountinfos i_n
1‘ (Bankhiew::] !

n e ————————— E’ u

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 293

8.1.1.2 Creating branches and merges

A branch has a single incoming flow and multiple outgoing guarded flows. Only one of the outgoing flows can
be traversed, so the guards should be mutually exclusive.

In this example the (BankView) references are to be validated:

e branch1 has the guard "reference missing", which transitions to the abort activity
e branch2 has the guard "valid", which transitions to the collectAccountInfos activity.

Creating a branch (alternate flow)

(118}

P

1. Click the DecisionNode icon

(’u‘alidate Referem:es)

in the title bar, and insert it in the Activity diagram.

collectAccountinfos
[BankYiew::]

®
2. Click the ActivityFinalNode icon which represents the abort activity, and insert it into the

Activity diagram.

3. Click the "Validate References" activity to select it, then click the right-hand handle, ControlFlow, and
drag the resulting connector onto the "DecisionNode" element. The element is highlighted when you
can drop the connector.

4. Click the "DecisionNode" element, click the right-hand connector, ControlFlow, and drop it on the
"collectAccountinfos" action. Please see "Inserting an Action (CaIIOperation" for more information.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

294 UML Diagrams Behavioral Diagrams

(‘Ualida’te Rﬂferences)

u]
”
o—;
i ®
|] VEI

collectAccountinfos
[Bank iew::)

s

5. Enter the guard condition "valid", in the guard field of the Properties tab.

Properties
[rame (’l.l‘alidate References)
elemert kind CortrolFlosw

wizibility unspecified |
lleat O

guard fealic

wveight @

IishﬂurtiCast |

izmutiReceive (] [valicl]
=election o
transformation o collectAccountinfos
[(Bank'iew:)

6. Click the DecisionNode element and drag from the right-hand handle, ControlFlow, and drop it on the
"ActivityFinalNode" element. The guard condition on this transition is automatically defined as "else".
Double click the guard condition in the diagram to change it e.g. "reference missing".

(’u’alidate Rﬂferences)

[reference mizsing)

®

[walid]

collectAccountinfos
[(Bank"iew::

Note: UModel does not validate, or check, the number of Control/Object Flows in a diagram.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams

Behavioral Diagrams 295

Creating a merge

1. Click the MergeNode icon

l%l

IF'rn:nperties lSt':.ers ‘

" e
Properties o X
MEme MergeMode
H | | n
element kind [MergeMode /«‘
wisibility unzpecified ad " s
lle=t] = YHa

in the icon bar, then click in the Activity diagram to insert it.

2. Click the ControlFlow (ObjectFlow) handles of the actions that are to be merged, and drop the arrow(s)
on the "MergeNode" symbol.

8.1.1.3 Activity Diagram elements

Action (CallBehavior)

Inserts a CallBehaviorAction element which directly invokes a specific behavior. Selecting an existing
behavior using the behavior combo box, e.g. HandleDisplayException, displays a rake symbol within the

element.

Properties o x

MEme Handle Display Exception - __l ______________ -
elemert kind |CallBehaviorAction " Handle Display Exception |
wizibility unzpecified i] I'|_| :_‘:‘
e] _"-.. _______________ -'_
i=Synchronous

behavior HandleDisplayException |

Action (CallOperation)

Inserts a CallOperationAction which indirectly invokes a specific behavior as a method. Please see "Inserting

an action (CallOperation)" for more information.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

296 UML Diagrams Behavioral Diagrams

Properties
name collectAccourtinfos " T T e e ="
element kind Callsperationction D_: collectAccountinfos i_n
wvizibility unspecified =] 1‘ (Bankhiew::] !
leat O g mmmmmmmm e Gl =
i=Synchronous
operation collectAccountinfos(boolean ...
. .

Action (OpaqueAction)

A type of action used to specify implementation information. Can be used as a placeholder until you decide
which specific action type you want to use.

=

Action (ValueSpecificationAction)

A type of action that evaluates(/generates) a specific value at the output pin. (Defined by the specific properties,
e.g. upperBound.)

]

AcceptEventAction
Inserts the Accept Event action which waits for the occurrence of an event which meets specific conditions.

e

AcceptEventAction (TimeEvent)

Inserts an AcceptEventAction, triggered by a time event, which specifies an instant of time by an expression
e.g. 1 sec. since last update.

Receive Update Ul Event

ENCES

1 sec since last update

C

SendSignalAction

Inserts the SendSignalAction, which creates a signal from its inputs and transmits the signal to the target
object, where it may cause the execution of an activity.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 297

i
Propetties o x ",'
narme =end Afterlpdate Signal
element kind | SendSignal dction k=1
wvizibility unspecified =] 'r ------------------ .
LY
leat L |_o—! Send AfterUpdate Signal }
zignal e m g
[E E.
finizhed
DecisionNode

Inserts a Decision Node which has a single incoming transition and multiple outgoing guarded transitions.
Please see "Creating a branch " for more information.

C’u‘alidate Rﬂferences)

[reference missing)

®

[walid]

collectAccountinfos
[(Bankiew::

Lt
¢ MergeNode

Inserts a Merge Node which merges multiple alternate transitions defined by the Decision Node. The Merge
Node does not synchronize concurrent processes, but selects one of the processes.

InitialNode
The beginning of the activity process. An activity can have more than one initial node.

®

ActivityFinalNode

The end of the activity process. An activity can have more that one final node, all flows in the activity stop when
the "first" final node is encountered.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

298 UML Diagrams Behavioral Diagrams

@

FlowFinalNode

Inserts the Flow Final Node, which terminates a flow. The termination does not affect any other flows in the
activity.

§
ForkNode
Inserts a vertical Fork node. Used to divide flows into multiple concurrent flows.

4

™ | ForkNode (Horizontal)
Inserts a horizontal Fork node. Used to divide flows into multiple concurrent flows.

L JoinNode
Inserts a vertical Fork node. A Join node synchronizes multiple flows defined by the Fork node.

Aol

T

Join Node (horizontal)
Inserts a horizontal Fork node. A Join node synchronizes multiple flows defined by the Fork node.

.

g InputPin

Inserts an input pin onto a Call Behavior, or Call Operation action. Input pins supply input values that are used
by an action. A default name, "argument”, is automatically assigned to an input pin.

Properties o x
<<parallel>>
riame argumerit
element kind [InputPin "=
wiibility unspecified ad update I'.I'IEIT.I ui
|:eaf]
WEIE x|

The input pin symbol can only be placed onto those activity elements where the mouse pointer changes to the

hand symbol "_/. Dragging the symbol repositions it on the element border.

OutputPin

Inserts an output pin action. Output pins contain output values produced by an action. A name corresponding
to the UML property of that action e.g. result, is automatically assigned to the output pin.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 299

Properties ox

name result

elemert kind |(OutputPin update qeny ui
wizibility unzpecified i 1=

[=2=0]] -I'EI‘\
bype i

g el ifice (=B

The output pin symbol can only be placed onto those activity elements where the mouse pointer changes to

the hand symbol . Dragging the symbol repositions it on the element border.

Exception Pin

An OutputPin can be changed to an Exception pin by clicking the pin and selecting "isExceptionPin" from the
Properties pane.

ValuePin

Inserts a Value Pin which is an input pin that provides a value to an action, that does not come from an
incoming object flow. It is displayed as an input pin symbol, and has the same properties as an input pin.

|

ObjectNode

Inserts an object node which is an abstract activity node that defines object flow in an activity. Object nodes
can only contain values at runtime that conform to the type of the object node.

5 CentralBufferNode

Inserts a Central Buffer Node which acts as a buffer for multiple in- and out flows from other object nodes.

(5

DataStoreNode

Inserts a Data Store Node which is a special "Central Buffer Node" used to store persistent (i.e. non transient)
data.

=

ActivityPartition (horizontal)

Inserts a horizontal Activity Partition, which is a type of activity group used to identify actions that have some
characteristic in common. This often corresponds to organizational units in a business model.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

300 UML Diagrams Behavioral Diagrams

Properkies o x

-
name 'I i
element kind ActivityPartition -
izibility unspecified i
i=Dimension o

[
i=External O =

=

Double clicking a label allows you to edit it directly; pressing Enter orients the text correctly.

Please note that Activity Partitions are the UML 2.0 update to the "swimlane" functionality of previous UML
versions.

e Elements placed within a ActivityPartition become part of it when the boundary is highlighted.

e Objects within an ActivityPartition can be individually selected using Ctrl+Click, or by dragging the
marquee inside the boundary.

e Click the ActivityPartition boundary, or title, and drag to reposition it.

M ActivityPartition (vertical)
Inserts a vertical Activity Partition, which is a type of activity group used to identify actions that have some
characteristic in common. This often corresponds to organizational units in a business model.

Properties ax

name Manager - .
element kind ActivityPartition Clark Manager E
wizibility unspecified hadl

IisDimensiDn O

izExternal O

i ActivityPartition (2 Dimensional)

Inserts a two dimensional Activity Partition, which is a type of activity group used to identify actions that have
some characteristic in common. Both axes have editable labels.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams

Behavioral Diagrams 301

|
Crim1

To remove the Dim1, Dim2 dimension labels:

1.

EU SCO

M anzger

Clerk

Click the dimension label you want to remowve e.g. Dim1

2. Double click in the Dim1 entry in the Properties tab, delete the Dim1 entry, and press Enter to confirm.

Properties o x
MEmeE

element kind ActivityPartition

wizibility unzpecified had
izDimenzion

izExternal |

IF‘rl:uperties lSters ‘

Owverview o x

[- 2

Note that Activity Partitions can be nested:

1.

Right click the label where you want to insert a new partition.

Select New | ActivityPartition.

Crim1

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

302

UML Diagrams

Behavioral Diagrams

ControlFlow

A Control Flow is an edge, i.e. an arrowed line, that connects two activities/behaviours, and starts an activity
after the previous one has been completed.

Properties o X ____m _______________ S
IE=linl=
element kind |ControlFlow {wveight="}
wisibility unspecified =] R E— -
leaf O | Send AfterUpdate Signal
Updatelog
ouard
weeight
! .
ObjectFlow

A Object Flow is an edge, i.e. an arrowed line, that connects two actions/object nodes, and starts an activity
after the previous one has been completed. Objects or data can be passed along an Object Flow.

Properties

rame
element kincd
izikility

leaf

cjLiarc

sneeicht
izhuttiCast
izhultiReceive
=zelection
Lranzformation

OhjectFlow
unzspecified

O

O
O

lF‘ererties lSt':.-'Ies ‘

KIE]

{ordering = ordered}

(.
(Eend data to Display i

L]
!
1
1
1
1
1
1

S

ExceptionHandler

An Exception Handler is an element that specifies what action is to be executed if a specified exception occurs
during the execution of the protected node.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 303

Properties o I
element kind ExceptionHandler e Ll L
raized exception Exception . — I‘|‘I_/
ng = ordered}
________ -,
|
|
|
|
|
]—\L : Exception
Di=play . .
| - i

An Exception Handler can only be dropped on an Input Pin of an Action.

izReadonly Il
iz SingleExecution]

M| Activity

Inserts an Activity into the activity diagram.

Properties o=
. T T T T T T - -y L

name Payment i "'I

Element kind A ctivity { Payment |

visibility public | Ik |

leat O i :

abstract O : '

reertrant O ‘ Send payment Accept payment | !
‘ ‘
i 1
i 1
i 1
i 1
‘ ‘
i 1

IF'ru:uperties lSt':.ers ‘ T T e e S S - & =

= ActivityParameterNode

Inserts an Activity Parameter node onto an activity. Clicking anywhere in the activity places the parameter node
on the activity boundary.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

304 UML Diagrams Behavioral Diagrams

"
Requested order Process Order [arder rejected)

eletmnent kindd ActivityParameterMoce

wizibility Lnspecified =] I: ﬁ;aﬁés'tea order ':.

leat O o= == "= Tl

by e =l

vioe modifier nfa

izCartralType [Receive order = Fill oder

ordering FIFC =

zelection hadl [Crder accepted)

Lt Baurnc

“* | StructuredActivityNode

Inserts a Structured Activity Node which is a structured part of the activity, that is not shared with any other
structured node.

Properties o X
IS Structured ActivityPMoce L _ "
L]

element kinc StructuredActivityPoce i .
P o =structured=->
wisibility unzpecified =] H h
leaf O "-.‘_ ___________ !
inuztizolate O - G~ .

Pl
e

ExpansionRegion

An expansion region is a region of an activity having explicit input and outputs (using ExpansionNodes). Each
input is a collection of values.

Properkies o — 1

e ExpanzionRegion {ordering = ordered}
element kind | ExpansionRegion srmmmmmmmmmna] | | [|2 []|]| po==m==ee-- -, -
izibility Lnspecified |

liesarf O

imuztlzolste O

mode parallel i

e T T

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 305

The expansion region mode is displayed as a keyword, and can be changed by clicking the "mode" combo box
in the Properties tab. Available settings are:parallel, iterative, or stream.

e ExpansionNode

Inserts an Expansion Node onto an Expansion Region. Expansion nodes are input and output nodes for the
Expansion Region, where each input/output is a collection of values. The arrows into, or out of, the expansion
region, determine the specific type of expansion node.

Properties ox

name ExpanzionMode . {Drn:iering = ordered}
element kind Expanzionhode HE
wvizibility unspecified |

It O

bypae i

[vie modifier |nfa

isContralType]

ordering ordered =]

=election i

Lipaper Bound

I Properties l Skyles ‘

o
L

b

InterruptableActivityRegion

An interruptible region contains activity nodes. When a control flow leaves an interruptible region all flows and
behaviors in the region are terminated.

To add an interrupting edge:

1. Make sure that an Action element is present in the InterruptableActivityRegion, as well as an outgoing
Control Flow to another action:

2. Right click the Control Flow arrow, and select New | InterruptingEdge.

FE LT

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

306 UML Diagrams Behavioral Diagrams

Properties 3 X |

eletnent kind Irterruptiblesctivity Redion
interruptingEdge [ControlFlow: (Action -= collec |

.

Note: You can also add an InterrupingEdge by clicking the InterruptableActivityRegion, right clicking in the
Properties window, and selecting Add InterruptingEdge from the pop-up menu.

8.1.2 State Machine Diagram

The State Machine Diagram models the behavior of a system by describing the various states an object may
be in, and the transitions between those states. They are generally used to describe the behavior of an object
spanning several use cases.

Two types of processes can achiewe this:
1. Actions, which are associated to transitions, are short-term processes that cannot be interrupted (for
example, internal error /notify admin in the diagram below)
2. State Activities (behaviors), which are associated to states, are longer-term processes that may be
interrupted by other events (for example, listen for incoming connections, in the diagram below).

A state machine can have any number of State Machine Diagrams (or State Diagrams) in UModel.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams

307

?

|'/— Hot Connected T
bﬂ !Histen for incaming connections

o dizconnect, [akort

connect [S5L available]

. User Connected ™y

laggin

Logging in User

[authertication ok] [authertication failed] Aog failure

irternal errar inctify admin

>0

Suspended

User Autherrtit:ated)

transact
- Performing Transaction Y

Tran=zacting : BankServer
fa¥a)
e

Logging Transactiun)—

vy
b -~

Sample State Machine diagram

The State machine diagram illustrated abowe is available in the following sample UModel project: C:

\Users\<username>\Documents\Altova\UModel2023\UModelExamples\Bank_MultiLanguage.ump.

8.1.2.1 Inserting state machine diagram elements

To insert state machine diagram elements:

1. Click the specific state machine diagram icon in the State Machine Diagram toolbar.

State Machine Diagram

O Ee® ® 00 8 o XEkailbRmipae| - | OB 8|

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

308 UML Diagrams Behavioral Diagrams

2. Click in the State Diagram to insert the element. To insert multiple elements of the selected type, hold
down the Ctrl key and click in the diagram window.

Dragging existing elements into the state machine diagram
Most elements occurring in other state machine diagrams can be inserted into an existing state machine.
1. Locate the element you want to insert in the Model Tree tab (you can use the search function text

box, or press Ctrl+F to search for any element).
2. Drag the element(s) into the state diagram.

8.1.2.2 Creating states, activities and transitions

To add a simple state:

i
1. Click the State toolbar icon (), and then click inside the diagram.

2. Enter the name of the state and press Enter to confirm.

To add an activity to a state:

¢ Right-click the state element, select New, and then one of the entries from the context menu.

iY Constraint
rh Dot Ackiviey

.

.3 Do Inkeraction
= Do StateMachine
1 Entry: Activity

(.2 Enkry: Inkerackion
“o Ertry: StateMachine
r Exit: Activity

0,3 Exit: Interaction

S= Exit: SkakeMachine
=
[

Internal Transition

Fegian

The Entry, Exit, and Do activities are associated with one of the following possible behaviors: "Activity",
"Interaction", and "StateMachine". Therefore, the options available in the context menu are:

Do: Activity

Do: Interaction
Do: StateMachine
Entry: Activity
Entry: Interaction

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams

Behavioral Diagrams 309

Entry: StateMachine
Exit: Activity

Exit: Interaction
Exit: StateMachine

These options originate in the UML specification. Namely, each of these internal actions are behaviors, and, in
the UML specification, three classes derive from the "Behavior" class: Activity, StateMachine, and Interaction.
In the generated code, it does not make a difference which particular behavior (Activity, StateMachine, or

Interaction) has been selected.

You can select one action from the Do, Entry and Exit action categories. Activities are placed in their own
compartment in the state element, though not in a separate region. The type of activity that you select is used
as a prefix for the activity e.g. entry / store current time.

Properties o x
name store current time
elemert kind A ctivity

wizibility public =]
| O

ahatract |

reertrant |

i=ReadOnly |

i=SingleE xecutio[]

IF'ru:uperties lSt':.ers ‘

result accepted fstore result

SL command sent

_______ =y

{’ Wating for result :l
:Eentry ! ztare current time :_
: exit f free allocated memary :
4 |
b ¢

ExitPoint

To delete an activity:

e Click the respective activity in the state element and press the Del key.

To create a transition between two states:

1. Click the Transition handle of the source state (on the right of the element).

2. Drag-and-drop the transition arrow onto the target state.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

310

UML Diagrams

Behavioral Diagrams

To automatically create operations from transitions:

Activating the "Toggle automatic creation of operations in target by typing operation names" icon ,

'r_ Hot Connected
: dao J listen for incoming connections
\

User Connected

lodin

Logging in User

The Transition properties are now \visible in the Properties tab. Clicking the "kind" combo box, allows
you to define the transition type: external, internal or local.

Properties a3 x I('f Hot Connected ™
name Eu:u flizten for incoming connections:
clement kind | Transition oy

wizibility unzpecified =]

connect [SSL available]

== [
kind external d User Connected
cuard ==L available
oin
> Loqgqging in User
IPererties lSters ‘ LI

Transitions can have an event trigger, a guard condition and an action in the form eventTrigger [guard

condition] /activity.

"
st

automatically creates the corresponding operation in the referenced class, when creating a transition and
entering a name e.g. myOperation().

Note:

To automatically create operations from activities:

Operations can only be created automatically when the state machine is inside a class or interface.

1. Right click the State and select the specific action/activity, e.g. New | Entry:Activity.
2. Enter the name of the activity making sure to finish with the open/close brackets "()", e.g. entry /

OnEntryCooler().

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UML Diagrams

Behavioral Diagrams 311

Note:

el Tree o x
boo. [E0] AP ConditionStatetachineDisgr s ;I
LT i : Operating
[MainRegion
........ . ity Operstingl)
........ sk CiperatinC)
........ El:)) E I(f' Heater -\II
"""" Lot entry § OnEntryHester)
~Ef) Cperating et ¢ OrExitHester()
-E[[] Rediontocde
........ g:l feselectt) JL TmndeSelem(j
.. . - -y -
B Conler ‘& Cooler y
: ---rher:tr?rféOEEﬁrgrmiIer centry f OREntryCooler() "o
QT: rieAit-ooler ¢ exit J OnExitCaoler() !
[eater 1)
-[F] = Relations B b B =

The new element is also visible in the Model Tree. Scrolling down the Model Tree, you will notice that
the OnEntryCooler operation has been added to the parent class AirConditionController.

Maodel Tree

1

Al EATTRGTTe Y

[B AirCondtionController

B "= AirCondition
-------- [E] AirCondition=tatetachineliagral
(1] MainRedgion

- = IRegion

-E O~ State

- B CallBventiction

- [E] Tstateld

- <> modeSelect

S On_Off_Operating_Effect

[< OnDebughlessage

- 4% OnErtryCooler

[< OnErtryHeater

| B

El Model Tree ‘ K Diagram Tree | 2% Favorites

Operations are automatically added for: Do:Activity, Entry:Activity, Exit:Activity, as well as guard
condition activities and effects (on transitions).

-3 [E] T=tateld
- o modeSelect
@ s On_Off_Opersting_Effect

@ ¥ onDebughessane _ILI =
. - — - . }))

povverButton) -I-an_raff-_Oraerating_Effact(—j

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

312 UML Diagrams Behavioral Diagrams

To create a transition trigger:

1. Right-click a previously created transition (arrow).
2. Select New | Trigger.

M| i Activity
_|[:1 Trigger

k

|| [l Activity Diagram

An "a" character appears in the transition label above the transition arrow, if it is the first trigger in the
state diagram. Triggers are assigned default values of the form alphabetic letter, source state -> target
state.

3. Double-click the new character and enter the transition properties in the form eventTrigger [guard
condition] / activity.

Transition property syntax

The text entered before the square brackets is the trigger; the text between brackets is the guard
condition, and the text after the slash—the activity. Manipulating this string automatically creates
or deletes the respective elements in the Model Tree.

Note: To see the individual transition properties, right-click the transition (arrow) and select "Select in Model
Tree". The event, activity and constraint elements are all shown below the selected transition.

EC 1 Uszer Connected ﬂ I/’ Hot Connected I
El :}’-3 Relations do J listen for incoming connections
-------- = Transition: [-= Mot Connected) k v
-ED%I- Transition: [connect [SSL available],
P [:lu:cunneu:t connect [S5L availakble]
551 available

Adding an Activity diagram to a transition

UModel has the unique capability of allowing you to add an Activity diagram to a transition, to describe the
transition in more detail.

1. Right-click a transition arrow in the diagram, and select New | Activity Diagram. This inserts an
Activity diagram window into the diagram at the position of the transition arrow.

2. Click the inserted window to make it active. You can now use the scroll bars to scroll within the
window.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 313

o

(Reading tran=action data)

database
-
Kl =ert jeffect

exit f free allocated memary

L7
|»

entry

3. Double-click the Action window to switch into the Activity diagram and further define the transition, e.g.
change the Action name to "Database logon". Note that a new Activity Diagram tab has now been
added to the project. You can add any activity modeling elements to the diagram, please see "Activity
Diagram @ for more information.

=
l" [2, n
o— Database logon [—©
LY
g Tmmmmmm——— E’rl
w
Kl E
[=]ouery BankServer Draft lnctivityDiagraml ‘ g [

4. Click the State Machine Diagram tab to switch back to see the updated transition.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

314 UML Diagrams Behavioral Diagrams

(Rﬂading transaction data)

l data read
_____ u
database

o] zert jeffect

3
entry ﬁrrslurrsmr‘; 'a

exit f free allocated memary

1
s

result accepted fstare result
i

tirmeowt

ki

[=]|Query BankServer Draft l.ﬁ.ctivityDiagraml

5. Drag the Activity window to reposition it in the diagram, and click the resize handle if necessary.

(Rﬂading transaction data)

data read

(Sending command to datahase)

- Lgpmand sent feffect

e
-hlhq..h_hq"‘.
-

I'/_ Wating for result -\'I
entry f store current time

-

exit f free allocated memary

Dragging the Activity window between the two states displays the transition in and out of the activity.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 315

S
(Sending command to datahase)

command sent feffect

|/— Wating for result -\-I
entry Fstore current time

exit § free allocated memary

8.1.2.3 Composite states

= Composite state

This type of state contains a second compartment comprised of a single region. Any number of states may be
placed within this region.

To add a region to a composite state:

¢ Right-click the composite state and select New | Region from the context menu. A new region is
added to the state. Regions are divided by dashed lines.

To delete a region:
e Click the region you want to delete in the composite state and press the Del key.

Deleting a region of an orthogonal state reverts it back to a composite state; deleting the last region of a
composite state changes it back to a simple state.

To place a state within a composite state:

¢ Click the state element you want to insert (e.g. Logging in User), and drop it into the region
compartment of the composite state.

The region compartment is highlighted when you can drop the element. The inserted element is now
part of the region, and appears as a child element of the region in the Model Tree pane.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

316 UML Diagrams Behavioral Diagrams

-3 ?p ser Connected ;I
A 1] Regiont

........ O ' User Connected
........ & _
........ -}I:; J |I:Igll'| u ,._._._..______..,“'
-------- i H Logging in User j—ﬂ
........) I = =
-------- 1 Connecting to BankServer \[
________) Logging in User [authentication ok] [autherticat
-[FH) Performing Transaction - | |

Moving the composite state moves all contained states along with it.

Orthogonal state
This type of state contains a second compartment comprised of two or more regions, where the separate
regions indicate concurrency.

Right clicking a state and selecting New | Region allows you add new regions.

e ———— - n
E'onhngunalma«tm)

i .

1 h

(o
1

i :

: |

1 ;

p eeSSSooos B =

To show/hide region names:

e Click the Styles tab, scroll to the "Show region names on states" entry, and select true/false.

Submachine state
This state is used to hide details of a state machine. This state does not have any regions but is associated to
a separate state machine.

To define a submachine state:

1. Having selected a state, click the submachine combo box in the Properties tab. A list containing the

currently defined state machines appears.
2. Select the state machine that you want this submachine to reference.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 317

Propetties ~
Mame Transacting
element kind [State transact
- Performing Transaction T

wizibility unspecified =

lEaf N emmmmmammmmmmm==a -

submachine e @ransacﬁng : BankSeruer@,_
oD

- I“ ---------------- T =

= Hank=ervet Root:Behavior View

StateMachine! Root::Behavior Wiesw = (Logging Transat:tlun_/'.
ol | . -
£l

Properties

Overview
F "

A hyperlink icon automatically appears in the submachine. Clicking it opens the referenced state
machine, "BankServer" in this case.

To add entry / exit points to a submachine state:

The state which the point is connected to, must itself reference a submachine State Machine (visible in

the Properties tab).
e This submachine must contain one or more Entry and Exit points

1. Click the ConnectionPointReference icon = in the title bar, then click the submachine state that

you want to add the entry/exit point to.

- Performing Trangaction ™

""*i:-]i:ﬂnsac’ting = BankSeruer)

a i

2. Right-click in the Properties tab and select Add entry. Please note that another Entry, or Exit Point
has to exist elsewhere in the diagram to enable this pop-up menu.

it
M lf/'_ Perfurming Tran=action _R\,
MEme ConnectionPointReferen

element kind ConnectionPointReferem h..{
,|-1F|:ﬂnsan’ting : BankServer

wizibility unzpecified =] ‘CL\ M)

L}u add entry i
Femove entry OOOING Transan‘tiun:}

add exit vy

Remowve exit

IPererties lSters ‘

This adds an EntryPoint row to the Properties tab, and changes the appearance of the
ConnectionPointReference element.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

318 UML Diagrams

Behavioral Diagrams

Iname ConnectionPointReferen

element kind ConnectionPointReferem
wizibility unzpecified =]
ity EntryPoint =]

-

Performing Trangaction

~

Entry;b"rﬁt

-y
.f | Foansacting : BankServer
-,

[]

,

M

KLngging Transan‘tiunj}

vy

3. Use the same method to insert an ExitPoint, by selecting "Add exit" from the context menu.

8.1.2.4 Generating code from State Machine diagrams

UModel can generate executable code from State Machine diagrams (C#, Java, VB.NET). Almost all of the
State Machine diagram elements and features are supported:

State

Region
InitialState
FinalState
Transition
Guard

Trigger
Call-Event
Fork

Join

Choice
Junction
DeepHistory
ShallowHistory
Entry/exit/do actions
Effects

CompositeState, with any hierarchical level
OrthogonalState, with any number of regions

State Machine code generation is integrated into the "normal” round-trip engineering process. This means that
State Machine code can be automatically updated on every forward-engineering process.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UML Diagrams

Behavioral Diagrams 319

-~

Operating

entry FOnEntryOperating
exit F OnExtOperating()

Regionkode s

Heater =

entry ! OnEntryHeater() H
poyvverButton)

e

exit f OnExitHeater()

-

modeselect()

modeselect()

-

Cooler \-I

entry f OnEntryCoaler()
exit f OnExitCooler()

(H

Regionzpeed

speedSelect)

speedzelect)

sheedzelect()

povwerButtoni()
Fon_Off_Operating_Effect() o

(Hj=—

standbyButton()

I/— Standby -\-I

eritry F OnErtryStandiby ()
exit ¥ OnExitStandbyy ()

standbyButton()

-~

The screenshot above shows the AirCondition State Machine diagram which is available in the ..
\StateMachineCodeGeneration directory under ...\UModelExamples. A separate directory exists for each
of the code generation languages supported by UModel.

Each directory contains an AirCondition and Complex folder, which contains the respective UModel project,
programming language project files, as well as the generated source files. The Complex.ump project file
contains almost all of the modeling elements and functionality that UModel supports when generating code

from State Machine diagrams.

Each directory also contains a test application, e.g. TestSTMAIirCondition.sIn for C#, allowing you to work with

the generated source files immediately.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

320 UML Diagrams

Behavioral Diagrams

-

o2 Test State Machine Code generated by Altova UModel E@g

modeSelect powerButton speedSelect standbyButton

Cument state(s):

ArCandition|

=~ MainRegion : Operating
- RegionMode : Heater
RegionSpeed : Low

Debug owtput messages:

======= E\,‘En‘t 1 =========

BEGIMN_EVEMNT: powerButton
TRAMSITION: Off —= <Forc:
SET_CURRENT_STATE: Operating
ACTION: OnEntryOperating
TRAMSITION: <Forc: —= Heater
SET_CURREMNT_STATE: Heater
ACTION: OnEntryHeater
TRAMSITION: <Farcs —= Low
SET_CURRENT_STATE: Low

EMD_EVEMT: powerButton

*

m
T

To generate code from a State Machine diagram:

¢ Right-click in the State Machine diagram and select "Generate State Machine code", or
e Select the menu option Project | Generate State Machine Code

Generate State Machine Code |

—General

v getcCalEvents

¥ Generate debug messages

IRegion——] [I5tate
v gekMame

¥ getstates v getld

v getMarne

v getRegions

X

Additional impartsideclarations:

Kl

¥ Automatically update state machine code

@SuppressWwarnings){"serial", "unused"})

o]

=

vl

Cancel |

The default settings are shown abowe. Click OK to generate the code.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 321

State Machine code is automatically updated when you start the forward engineering process. You can
however change this setting by clicking on the State Machine diagram background and clicking the "Automatic
Update Code" check box.

Changes should not be made manually in the generated code, as these changes are not reflected in the State
Machine diagram during the reverse-engineering process.

Properties
Mame AjirConditionStateMachinelDiagram
element kind Stete Machine Disgram

sutomatic Update Code

=l Froperties | 55 Skyles | EI Hierarchy

Clicking the —- icon of the Automatic Update field, opens the Generate State Machine Code dialog box,
allowing you to change the code generation settings.

To perform a syntax check on a State Machine diagram:

¢ Right-click the diagram and selecting Check State Machine Syntax from the context menu.

8.1.2.5 Working with state machine code

The parent class of the state machine (i.e. the "controller class", or "context class") is the one, and only,
"interface" between the state machine user and the state machine implementation.

The controller class provides methods which can be used from "outside" to change the states (e.g. after
external events occur).

The state machine implementation however, calls controller class methods ("callbacks") to inform the state
machine user about state changes (OnEntry, OnExit, ...), transition effects, and the possibility to override and
implement methods for conditions (guards).

UModel can automatically create simple operations (without any parameter) for entry/exit/do behaviors,
transition effects, ... when the corresponding option is turned on (also see Creating states, activities and
transitions @). These methods can be changed to whatever you want in UModel (add parameters, set them as
abstract, etc.).

A state machine (i.e. its controller class) can be instantiated several times. All instances work independently of
each other.

e The UML State machine execution is designed for the "Run-to-completion execution model".
¢ UML state machines assume that processing of each event is completed before the next event is
processed.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

322 UML Diagrams Behavioral Diagrams

e This also means no entry/exit/do action or transition effect may directly trigger a new transition/state
change.

Initialization
e Every region of a state machine has to hawe an initial state.
e The code generated by UModel automatically initializes all regions of the state machine (or when the
Initialize () method of the controller class is called).
e If OnEntry events are not wanted during initialization, you can call the Initialize () method manually
and ignore OnEntry events during the startup.

Getting the current state(s)

UModel supports composite states as well as orthogonal states, so there is not just one current state—ewvery
region (in any hierarchy level) can have one current state.

The AirCondition.ump example shows how to walk through the regions to the current state(s):

TreeNode rootNode = m CurrentStateTree.Nodes.Add(m STM.getRootState () .getName ()) ;
UpdateCurrentStateTree (m_ STM.getRootState (), rootNode) ;

private void UpdateCurrentStateTree (AirCondition.AirConditionController.IState state,
TreeNode node)

{

foreach (AirCondition.AirConditionController.IRegion r in state.getRegions())

{
TreeNode childNode = node.Nodes.Add(r.getName() + " : " +
r.getCurrentState () .getName ()) ;
UpdateCurrentStateTree (r.getCurrentState (), childNode) ;
}

Example 1 - a simple transition

Statet State2

The corresponding operation is automatically generated in UModel

MyEwvent1()

TestController

% MyEventi():boo

Generated method in code:

private class CTestStateMachine : IState

{

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 323

public bool MyEventl ()
{

e The state machine user should call the generated method "MyEwent1" when the corresponding event
occurs (outside the state machine).

e The return parameter of these event-methods provides information about whether the event caused a
state change (i.e. if it had any effect on the state machine) or not. For example, if "State1" is active
and event "MyEvent1()" occurs, the current state changes to "State2" and "MyEwvent1()" returns true. If
"State2" is active and "MyEwvent1()" occurs, nothing changes in the state machine and MyEvent1()
returns false.

Example 2 - a simple transition with an effect

MyEwvent1(} / OnState1State2E ffect()

State1 State2

The corresponding operation is automatically generated in UModel

TestController

% MyEvent1()bool
¢%» OnState!State?Effect(in text: String):void

Generated method in code:

private class CTestStateMachine : IState

{

// Override to handle entry/exit/do actions, transition effects,...:
public virtual void OnStatelState2Effect () {}

Notes:

¢ "OnState1State2Effect()" will be called by the state machine implementation, whenever the transition
between "State1" and "State2" is fired.

e To react to this effect, "OnState1State2Effect()" should be overridden in a derived class of
"CTestStateMachine".

e "CTestStateMachine:: OnState1State2Effect()" can also be set to abstract, and you will get compiler
errors until the method is overridden.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

324

UML Diagrams Behavioral Diagrams

When "OnState1State2Effect()" is not abstract, and the "Generate debug messages" option is active,
UModel will generate following debug output:

// Override to handle entry/exit/do actions, transition effects,...:
public virtual void OnStatelState2Effect () {OnDebugMessage ("ACTION:
OnStatelState2Effect") ;}

Example 3 - a simple transition with an effect and parameter

MyEvent1(} / OnState1State2Effect("™ == 27}

State1 State2

The corresponding operation is automatically generated in UModel

TestController

¢» MyEvent1(}bool

™% OnStateState2Effect(in text: String)ovoid

Generated method in code:

private class CTestStateMachine : IState

{

// Additional defined operations of the controller class:
public virtual void OnStatelState2Effect (String text)

{
}

Notes:

To effect operations (automatically created by UModel) parameters can be added manually (UModel
cannot know the required type).

In this sample, the parameter "text:String" has been added to the Effect method in TestController. A
proper argument has to be specified when calling this method (here: "1 => 2").

Another possibility would be: e.g. to call static methods ("MyStatic.OnState1State2Effect("1 => 2")"),
or methods of singletons ("getSingleton().OnState1State2Effect("1 => 2")").

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 325

Example 4 - entry/exit/do actions

o State3 Ty MyEvent2() 7 Stated N
exit / OnExit=tate3() entry / OnEntryStated()
k oy do / OnDoStated()
p

The corresponding operations are automatically generated in UModel

TestController

&% MyEvent!()bool
% OnState1State2Effect(in text: String)ovoid

Generated method in code:

private class CTestStateMachine : IState

{

Notes:

// Override to handle entry/exit/do actions, transition effects,...:
public virtual void OnExitState3 () {}

public virtual void OnEntryState4 () {}

public virtual void OnDoStated () {}

States can have entry/exit/do behaviors. UModel automatically creates the corresponding operations to
handle them.

When "MyEwent2()" occurs in the sample above, the state machine implementation calls
"OnEXxitState3()". If "MyEvent2" would have an Effect, it would be subsequently called, then
"OnEntryState4" and "OnDoState4" would be called.

Normally, these methods should be owverridden. When they are not abstract and the "Generate debug
messages" option is active, UModel provides default debug output as described in Example 2.

These methods can also have parameters as shown in Example 3.

Example 5 - guards
Transitions can have guards, which determine if the transition really can fire.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

326 UML Diagrams Behavioral Diagrams

MyEvent2(} [CanGoStates()]
States State6

The corresponding operation is automatically generated in UModel

TestController

% MyEvent2()bool

% CanGosStates()bool

Generated method in code:

private class CTestStateMachine : IState

{

// Additional defined operations of the controller class:
public virtual bool CanGoState6 ()
{

return true; // Override!

}

Notes:

If "State5" is the active state and "MyEvent2" occurs, the state machine implementation will call

"CanGoState6" and, depending on its result, the transition will fire or not.

¢ Normally, these methods should be overridden. When they are not abstract and the "Generate debug
messages" option is active, UModel provides default debug output as described in Example 2.

o These methods also can have parameters as shown in Example 3.

e Multiple transitions with the same event, but having different guards, are possible. The order in which

the different guards are polled is undefined. If a transition does not have a guard, or the guard is "else",

it will be considered as the last (i.e., only when all other transition guards return false, will this one will

fire). For example, in the diagram below, it is undefined whether canGoState6 () or CanGoState7 () is

called first. The third transition will only fire if CanGoState6 () and canGoState7 () return false.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams

Behavioral Diagrams

327

MyEwvent2(} [CanGoStates()]

| states | State
-

MyEventZ(} [CanGoState7(}]

)

State?

MyEwventZ() [elze]
Stated

0e

Additional constructs and functionality can be found in the AirCondition.ump and Complex.ump samples.

8.1.2.6 State Machine Diagram elements

InitialState (pseudostate)

The beginning of the process.

]

FinalState

The end of the sequence of processes.

8]

EntryPoint (pseudostate)

The entry point of a state machine or composite state.

@

ExitPoint (pseudostate)

The exit point of a state machine or composite state.

<

This represents a dynamic conditional branch, where mutually exclusive guard triggers are evaluated (OR

Choice

operation).

$

This represents an end to the OR operation defined by the Choice element.

X

Junction (pseudostate)

Terminate (pseudostate)

The halting of the execution of the state machine.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

328 UML Diagrams Behavioral Diagrams

'k Fork (pseudostate)

Inserts a vertical Fork bar. Used to divide sequences into concurrent subsequences.

4

£

Fork horizontal (pseudostate)
Inserts a horizontal Fork bar. Used to divide sequences into concurrent subsequences.

b Join (pseudostate)

Joins/merges previously defined subsequences. All activities have to be completed before progress can
continue.

Jbd

T

Join horizontal (pseudostate)

Joins/merges previously defined subsequences. All activities have to be completed before progress can
continue.

i DeepHistory

A pseudostate that restores the previously active state within a composite state.

® ShallowHistory

A pseudostate that restores the initial state of a composite state. All pseudostate elements can be changed to
a different "type", by changing the kind combo box entry in the Properties tab.

Properties
Marme ExitPairit
elemert kind Pzeudostate
wizibility unzpecified =]
kind m -]
imitial =
deepHistary
shallowHistary
jiir
Properties | SEfark
ChEryien |un#|un
chioice
entryPoint
terminate ;L

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 329

&4 | ConnectionPointReference

A connection point reference represents a usage (as part of a submachine state) of an entry/exit point defined
in the state machine reference by the submachine state.

To add Entry or Exit points to a connection point reference:

e The state which the point is connected to, must itself reference a submachine State Machine (visible in
the Properties tab).
e This submachine must contain one or more Entry and Exit points

—

Transition

A direct relationship between two states. An object in the first state performs one or more actions and then
enters the second state depending on an event and the fulfillment of any guard conditions. Transitions have an
event trigger, guard condition(s), an action (behavior), and a target state. The supported event subelements are:

ReceiveSignalEvent
SignalEvent
SendSignalEvent
ReceiveOperationEvent
SendOperationEvent
ChangeEvent.

+
4]
&,

Toggle automatic creation of operations in target by typing operation names

Activating the "Toggle automatic creation of operations in target by typing operation names" icon, automatically
creates the corresponding operation in the referenced class, when creating a transition and entering a name
myOperation ().

Note: Operations can only be created automatically when the state machine is inside a class or interface.

8.1.3 Protocol State Machine

Altova website: UML Protocol State Machine diagrams

Protocol State Machines are used to show a sequence of events that an object responds to, without having to
show the specific behavior. The required sequence of events, and the resulting changes in the state of the
object, are modeled in this diagram.

Protocol State Machines are most often used to describe complex protocols, e.g. database access through a
specific interface, or communication protocols such as TCP/IP.

Protocol State Machines are created in the same way as State Machine diagrams, but have fewer modeling
elements. Protocol-Transitions between states can have pre- or post conditions which define what must be true
for a transition to another state to occur, or what the resulting state must be, once the transition has taken
place.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

https://www.altova.com/umodel/state-machine-diagrams

330 UML Diagrams Behavioral Diagrams

stm ProtocolStateMachined {prntu:u:u:ul})

[creste] §

CreateDB

[close] J

open f[good login]

.| OpenDB
.

[queryStatement==null] / [com&resa set]
[cancel] I [comirea cleared]

ﬂu@

[fetch] F [comares recordioK]

FetchData

p

[cancel] f [comArea cleared) [close] /

[close] §

A

Clo=eDB

[destroy] §

8.1.3.1 Inserting Protocol State Machine elements

Protocol State Machine Diagram

COREE® ® 008 ¢ XEkmibasl - OB 0

Using the toolbar icons:

1. Click the Protocol State Machine icon in the toolbar.
2. Click in the Protocol State Machine Diagram to insert the element. To insert multiple elements of the
selected type, hold down the Ctrl key and click in the diagram window.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 331

Dragging existing elements into the Protocol State Machine diagram
Most elements occurring in other Protocol State Machine diagrams, can be inserted into an existing diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search function text

box, or press Ctrl+F to search for any element).
2. Drag the element(s) into the Protocol State Machine diagram.

To insert a simple state:

—
1. Click the State icon in the icon bar and click in the Protocol State Machine diagram to insert it.

2. Enter the name of the state and press Enter to confirm. Simple states do not have any regions or any
other type of substructure.

To create a Protocol Transition between two states:

1. Click the Transition handle of the source state (on the right of the element), or use the Protocol
Transition icon in the icon bar.

2. Drag-and-drop the transition arrow onto the target state. The text cursor is automatically set for you to
enter the pre and/or post condition. Please make sure to use the square brackets [] and slash
character when entering the conditions directly.

Entering the pre/post conditions in the Properties window automatically inserts the square brackets
and slash character into the diagram.

Properties .

Marme ProtocolTransitions \\". [fetch] f [comrea recordoK]
oualified name Protocol=tateMachine::Regic

elemert kind |Pratocol Transition 'x\

vizibility unspecified d I"*.

et | . B =

kind cternal -l .[cancel] I [com&res cleared] .

pre condition ancel o [close] !

post condition comArea cleared

&

[destroy] §

For information about how to create and insert composite state elements and submachine states, see
Composite states €@

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

332 UML Diagrams Behavioral Diagrams

8.1.3.2 Protocol State Machine Diagram elements

—

State

A simple state element with one compartment.

= Composite state

This type of state contains a second compartment comprised of a single region. Any number of states may be
placed within this region.

Orthogonal state

This type of state contains a second compartment comprised of two or more regions, where the separate
regions indicate concurrency. Right clicking a state and selecting New | Region allows you add new regions.

Submachine state

This state is used to hide details of a state machine. This state does not have any regions but is associated to
a separate state machine.

InitialState (pseudostate)
The beginning of the process.

]

FinalState
The end of the sequence of processes.

(@]

EntryPoint (pseudostate)

The entry point of a state machine or composite state.

&

ExitPoint (pseudostate)
The exit point of a state machine or composite state.

<

Choice

This represents a dynamic conditional branch, where mutually exclusive guard triggers are evaluated (OR
operation).

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 333

* Junction (pseudostate)
This represents an end to the OR operation defined by the Choice element.

*

Terminate (pseudostate)
The halting of the execution of the state machine.

'k Fork (pseudostate)

Inserts a vertical Fork bar. Used to divide sequences into concurrent subsequences.

4

£

Fork horizontal (pseudostate)
Inserts a horizontal Fork bar. Used to divide sequences into concurrent subsequences.

b Join (pseudostate)

Joins/merges previously defined subsequences. All activities have to be completed before progress can
continue.

Jbd

T

Join horizontal (pseudostate)

Joins/merges previously defined subsequences. All activities have to be completed before progress can
continue.

fasi}

ConnectionPointReference

A connection point reference represents a usage (as part of a submachine state) of an entry/exit point defined
in the state machine reference by the submachine state.

To add Entry or Exit points to a connection point reference:

e The state which the point is connected to, must itself reference a submachine State Machine (visible in
the Properties tab).
e This submachine must contain one or more Entry and Exit points

—

Protocol Transition

A direct relationship between two states. An object in the first state performs one or more operations and then
enters the second state depending on an event and the fulfillment of any pre- or post conditions.

Please see Inserting Protocol State Machine elements for more information.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

334 UML Diagrams Behavioral Diagrams

8.1.4 Use Case Diagram

Please see the Use Cases msection in the tutorial for more information on how to add use case elements to
the diagram.

Standard User
get account balance
qqincfgfrde:b
get account balance sum
Bank
8.1.5 Communication Diagram

Altova website: ¢ UML Communication diagrams

Communication diagrams display the interactions i.e. message flows, between objects at run-time, and show
the relationships between the interacting objects. Basically, they model the dynamic behavior of use cases.

Communication diagrams are designed in the same way as sequence diagrams, except that the notation is laid
out in a different format. Message numbering is used to indicate message sequence and nesting.

UModel allows you to generate Communication dia%rams from Sequence diagrams and vice versa, in one
simple action see "Generating Sequence diagrams " for more information.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

https://www.altova.com/umodel/communication-diagrams

UML Diagrams Behavioral Diagrams 335

— 1a: Message]
Hy s[k]B

1h1: Message3 4+
Jr 1h1.1: Mezsaged
1h: Message? ~yg
¢ 1h1.2 Messages

s[ul:B

8.1.5.1 Inserting Communication Diagam elements

Using the toolbar icons:

1. Click the specific communication icon in the Communication Diagram toolbar.

Add Elements - Communi » =

= | e x| B

2. Click in the Communication diagram to insert the element. To insert multiple elements of the selected
type, hold down the Ctrl key and click in the diagram window.

Dragging existing elements into the Communication Diagram
Elements occurring in other diagrams, e.g. classes, can be inserted into a Communication diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search function text
box, or press Ctrl+F to search for any element).
2. Drag the element(s) into the Communication diagram.

=

Lifeline

The lifeline element is an individual participant in an interaction. UModel allows you to insert other elements into
the sequence diagram, e.g. classes. Each of these elements then appear as a new lifeline. You can redefine
the lifeline colors/gradient using the "Header Gradient" combo boxes in the Styles tab.

To create a multiline lifeline, press Ctrl+Enter to create a new line.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

336 UML Diagrams

Behavioral Diagrams

To insert a Communication lifeline:

1. Click the Lifeline icon in the title bar, then click in the Communication diagram to insert it.

Properties

0 x

rsme
rualified name
element kind
vizibility
represents
destruction
=elector

Lifeline1
Interaction::Lifeline1
Lifeline

unzpecified |
=

O

S .

1]

| Lifelinel o
1

i i

C B

2. Enter the lifeline name to change it from the default name, Lifeline1, if necessary.

Messages

A Message is a modeling element that defines a specific kind of communication in an interaction. A
communication can be e.g. raising a signal, invoking an Operation, creating or destroying an instance. The
message specifies the type of communication as well as the sender and the receiver.

_}
Message (Call)

b

To insert a message:

Message (Reply)
Message (Creation)

Message (Destruction)

1. Click the specific message icon in the toolbar.
Drag and drop the message line onto the receiver objects.
Lifelines are highlighted when the message can be dropped.

Properties ox
Marme Messaged

qualified name Irteractiont::Mezzag
element kind Meszage

wvizibility unspecified |
meszagesor zynchCall |
operation

asynch O

uzer defined sequence

Lifelined

— 1. Mezzagel

Lifeline2

‘L 1.1: Message?
u

=

Lifeline3

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 337

Note: Holding down the Ctrl key allows you to insert a message with each click.

To insert additional messages:

1. Right-click an existing communication link and select New | Message.

Lifelined Lifeline2

— 1. Meszagel

JY 1.1: Message?
‘L 1.2 Messaged

Lifeline3

e The direction in which you drag the arrow defines the message direction. Reply messages can point in
either direction.

¢ Having clicked a message icon and holding down Ctrl allows you to insert multiple messages by
repeatedly clicking and dragging in the diagram tab.

Message numbering

The Communication diagram uses the decimal numbering notation, which makes it easy to see the hierarchical
structure of the messages in the diagram. The sequence is a dot-separated list of sequence numbers followed
by a colon and the message name.

Generating Sequence diagrams from Communication diagrams

UModel allows you to generate Communication diagrams from Sequence diagrams and vice versa, in one
simple action:

¢ Right-click anywhere in a Communication diagram and select Generate Sequence Diagram from the
context menu.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

338 UML Diagrams

Behavioral Diagrams

| o Lifeli... | O Lifeli... | o Lifeli...
Lifelined Lifeline2 Lifeline3
: 1: Message : :
. P_._ :
1.1: Mezsage? '
-
Reply
q 1
1.2 Mezsage3 .
-
Reply2
4 ;
Reply3 '
o ; .

8.1.6

Altova website: ©

Interaction Overview Diagram

UML Interaction Oveniew diagrams

Interaction Oveniew Diagrams are a variant of Activity diagrams and give an oveniew of the interaction between
other interaction diagrams such as Sequence, Activity, Communication, or Timing diagrams. The method of
constructing a diagram is similar to that of Activity diagram and uses the same modeling elements: start/end

points, forks, joins etc.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

https://www.altova.com/umodel/interaction-overview-diagrams

UML Diagrams Behavioral Diagrams 339

?

EzstablizhAccess("lllegal PIN™)

ref)

{0,253
sd
User ACSystem
: CardOut :
[phzr{]
sd
User ACSystem
Please enter :

Two types of interaction elements are used instead of activity elements: Interaction elements and Interaction
use elements.

Interaction elements are displayed as iconized versions of a Sequence, Communication, Timing, or Interaction
Oweniew diagram, enclosed in a frame with the "SD" keyword displayed in the top-left frame title space.

Interaction occurrence elements are references to existing Interaction diagrams with "Ref" enclosed in the
frame's title space, and the occurrence's name in the frame.

8.1.6.1 Inserting Interaction Overview elements

Using the toolbar icons
1. Click the specific icon in the Interaction Oveniew Diagram toolbar.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

340 UML Diagrams Behavioral Diagrams

Add Elements - Interaction Overyiew Diagram

2 4 @ o Brrib Hi — B 1

2. Click in the diagram to insert the element. To insert multiple elements of the selected type, hold down
the Ctrl key and click in the diagram window.

Dragging existing elements into the Interaction Overview Diagram

Elements occurring in other diagrams, e.g. Sequence, Activity, Communication, or Timing diagrams can be
inserted into a Interaction Ovenview diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search function text box,

or press Ctrl+F, to search for any element).
2. Drag the element(s) into the diagram.

Inserting an Interaction element

1. Click the CallBehaviorAction (Interaction) icon
Oveniew diagram to insert it.

in the icon bar, and click in the Interaction

Properties 1 X o]
name CallBehavior&ction (Interaction) s .;-’:::::;"
gualified name |Design Visw:: Activity]: CallBieh: || SReRERH=e
element kind CallBehavior Action ! R
wizibility unzpecified Sl | : : :
oat I:l : 4 ok oA R H : :
=Sy nchronous] ; :
behavioridiagram Callect Account Information = | i I, S 2 wccoargaurcn i
| e 1
1 i dbank
1 g rn o HLIERR
1 ik FLE Y
1 ipHIHIMI:’H-II
: Py e
1 rianiks
1 rin
1
i decoarBuliecH|]
I weccrin v
1 7 T
=] Froperties | &5 Stvles ; coleciec cuminicn . i
1 L M ' '
Creeryig ax H
I 1
1
I- ..

The Collect Account Information sequence diagram is automatically inserted if you are using the
Bank_Multilanguage.ump example file from the ...\UModelExamples folder. The first sequence
diagram, found in the model tree, is selected by default.

2. To change the default interaction element: Click the behavior/diagram combo box in the Properties
tab. A list of all the possible elements that can be inserted is presented.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams

Behavioral Diagrams 341

gk d b 1
IR
Ete deribs Jrci e

ol chrinil]

Properties .
Mame CallBehaviorAction (Interaction] IE:I
qualified name Dezign Wiew: Activity:: CallBeh| (f §
element kind CallBehaviorAction : Lt
wizibility unspecified i :
== | i
i=Synchronous i £
behavior idiagram =] hdlll F
=ref= (write empty result, log error)
=ref= [BankWiew) Foot::
=ref= (FiterDisplayData) Foot::
=ref= (HandleDizplayException) Foot::
. =ref= (lizten for incaming connections)
M =refs (BankAFl) Raat
Overview =ref= (Collect Accourt Information) Root:
Collect &ccount Information Root::
=ref= (Connect to Bank &P

Foot::

Behavior Wiew

Behavior View: BankWiew
Behavior View: BankWiew

‘Behavior Wiew

Irteraction Wiew

Irteraction Wiew: Collect Ad
Irteraction Wiew
sIrteract

or

3. Click the element you want to insert to e.g. Connect to BankAPI.

onnect t

Properties

ax

e
qualified name
elemert kind
wizibility

leaf
iz=ynchronous
behavioridiagram

CallBehaviorAction (Inte
Dresign Wieww:: Activity1:
CallBehavior Sction
unspecified

O

sd

fod]|

coPrkE|

herdSPED kS —

corra|

Connect to BankaPl =

T

CTELTL LY TLTEN NPT -2 | hersOenkC

EEmEE. fusmsmmn

kealei]

As this is also a sequence diagram, the Interaction element appears as an iconized version of the
sequence diagram.
If you select <ref> BankAPI, then the Interaction element occurrence is displayed.

Properties o x
name CallBehavior Action (Inte
cualified name Design Yiesn:: Activity1:
elemert kind CalBehaviar Action L
- - K
wizibility Lnspecified | 1
[BankAPl 1
lest | ' I
1
=Sy nchronous Jommmmmmmmmmnnm d
behavioridiagram |=ref= (Bank&Pl) i

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

342 UML Diagrams Behavioral Diagrams

Inserting an Interaction element occurrence

1. Click the CallBehaviorAction (InteractionUse) icon in the icon bar, and click in the Interaction
Oweniew diagram to insert it.

Collect Account Information is automatically inserted as a Interaction occurrence element, if you are
using the Bank_Multilanguage.ump example file from the ...\UModelExamples folder. The first
existing sequence diagram is selected per default.

Properties o x

name CallBehavior Action (InteractionlUse) .
qualified name Design Yiew:: Activity1:: CallBehavior &) -

clemert kind |CallBehavior ction : sl sl LU s
wizibility Lnspecified |
leaf O]

i=Synchronous
hehavioridiagram |=ref= (Collect Account Information) = |

2. To change the Interaction element, double-click the behavior combo box in the Properties tab. A list
of all the possible elements that can be inserted is presented.
3. Select the occurrence you want to insert.

Note: All elements inserted using this method appear in the form shown in the screenshot abowe i.e. with
"ref" in the frame's title space.

it
£

DecisionNode

Inserts a Decision Node which has a single incoming transition and multiple outgoing guarded transitions.
Please see "Creating a branch®" for more information.

Es
¥ MergeNode

Inserts a Merge Node which merges multiple alternate transitions defined by the Decision Node. The Merge
Node does not synchronize concurrent processes, but selects one of the processes.

InitialNode
The beginning of the activity process. An interaction can have more than one initial node.

®

ActivityFinalNode

The end of the interaction process. An interaction can have more that one final node, all flows stop when the
"first" final node is encountered.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 343

1L ForkNode

Inserts a vertical Fork node. Used to divide flows into multiple concurrent flows.

4

™ | ForkNode (Horizontal)
Inserts a horizontal Fork node. Used to divide flows into multiple concurrent flows.

ik JoinNode

Inserts a vertical Fork node. A Join node synchronizes multiple flows defined by the Fork node.

Abd

T

Join Node (horizontal)
Inserts a horizontal Fork node. A Join node synchronizes multiple flows defined by the Fork node.

[AddDurationConstraint

A Duration defines a ValueSpecification that denotes a duration in time between a start and endpoint. A
duration is often an expression representing the number of clock ticks, which may elapse during this duration.

—

ControlFlow

A Control Flow is an edge, i.e. an arrowed line, that connects two behaviours, and starts an interaction after the
previous one has been completed.

8.1.7 Sequence Diagram

Altova website: UML Sequence diagrams

UModel supports the standard Sequence diagram defined by UML, and allows easy manipulation of objects
and messages to model use case scenarios. The sequence diagrams shown in the following sections are
available in the Bank_Java.ump, Bank_CSharp.ump and Bank_MultiLanguage.ump samples, in the ...
\UModelExamples folder supplied with UModel.

You can model sequence diagrams manually, or, alternatively, generate them from reverse-engineered source
code, as described in Generating Sequence Diagrams from Source Code @

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

https://www.altova.com/umodel/sequence-diagrams.html

344 UML Diagrams Behavioral Diagrams

a:BankView &5 bankAPEIBankAPIC~

1: connect)

connect()

if the password iz OH,
the no. of accounts iz
determined, elze the
connection is clozed.

.

2 Bank("AgencyBank”, ip, usr, paw) bank:Bank =

2.1: loging)

att)

[passwordok] 2.1.1: dizconnect()

212 gethrOfAccounts)

{au:u:u:uunt.ﬂalzn unt = 0}

logginei)
bank=Banki -
al . P .
E . bankview collects accou
3 collectAccountinfos() Ef) an involved process, this
y collectAcoountinfas() Collect Account Information :;ﬂ?lﬁféfﬂg;ﬁi'tug::?ﬂhuer;

4. bank =null

8.1.7.1 Inserting Sequence Diagram Elements

A sequence diagram models runtime dynamic object interactions, using messages. Sequence diagrams are
generally used to explain individual use case scenarios.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 345

e Lifelines are the horizontally aligned boxes at the top of the diagram, together with a dashed vertical
line representing the object's life during the interaction. Messages are shown as arrows between the
lifelines of two or more objects.

e Messages are sent between sender and receiver objects, and are shown as labeled arrows. Messages
can have a sequence number and various other optional attributes: argument list etc. Conditional,
optional, and alternative messages are all supported.

See also:
o Lifeline®®
. Wzm@eﬁt@
e Interaction Use
. m@
e State Invariant €
e Messages

Sequence diagram and other UModel elements, can be inserted into a sequence diagram using several
methods.

| = aBank | O3 bodccount | S zlBankaP | = dBank
e element
E that the
ge has bheen
anothier
ption. a:Bank 5 b:Account = c:IBank &P~ d:Bank (7]

1: collectd cocourtinfos) -

e g

loop [0,n]] 1 1: collectAccountinfar

> 1.1.1: getdccountBalance)
Thiz loop iterates

over all bank > A0 query SOP databaze
accounts.

The gray averlapping
execution specification 14111 autherticate challe
iz crested automatically
and depicts recursion.

return guery resut .-

geticcourtBalance) IR

collectAccountinfar) "

n

collectAccountinfos

K

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

346 UML Diagrams Behavioral Diagrams

Using the toolbar icons

1. Click the specific sequence diagram icon in the Sequence Diagram toolbar.
2. Click in the Sequence diagram to insert the element. To insert multiple elements of the selected type,
hold down the Ctrl key and click in the diagram window.

Dragging existing elements into the sequence diagram

Most classifier types, as well as elements occurring in other sequence diagrams, can be inserted into an
existing sequence diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search function text
box, or press Ctrl+F to search for any element).
2. Drag the element(s) into the sequence diagram.

8.1.7.1.1 Lifeline

—
The lifeline L___| element is an individual participant in an interaction. UModel also allows you to insert other
elements into the sequence diagram, e.g. classes and actors. Each of these elements appear as a new lifeline
once they have been dragged into the diagram pane from the Model Tree tab.

The "lifeline" label appears in a bar at the top of the sequence diagram. Labels can be repositioned and resized
in the bar, with changes taking immediate effect in the diagram tab. You can also redefine the label
colors/gradient using the "Header Gradient" combo boxes in the Styles tab.

To create a multiline lifeline, press Ctrl+Enter to create a new line.
Most classifier types can be inserted into the sequence diagram. The "represents” field in the Properties tab

displays the element type that is acting as the lifeline. Dragging typed properties onto a sequence diagram
also creates a lifeline.

Model Tree X ||] S baccount | S cBankaP
F oot alflg =
Component Wigw : b:Account = : c:lBankAPlC=-
Deployment Yigwm ! ,
DesignView 777777 r====~ *
Interaction Wiew
-. ZJava Lang [lava Lang.umpllll
1| [»
I CModel .. l = Diagra.. l 4% Favoari.. J
Propetties o x untintoc)
name LifelineZ 7 114 geticoourtBalkncel)
elemnent kind Lifelire
izibility unzpecified =]
represents brAccount =]
destuction O The grg‘f Dverls!p:!ping B}
. execution specification

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 347

Execution Specification (Object activation)

An execution specification (activation) is displayed as a box (rectangle) on the object lifeline. An activation is
the execution of a procedure and the time needed for any nested procedures to execute. Activation boxes are
automatically created when a message is created between two lifelines.

A recursive, or self message (one that calls a different method in the same class) creates stacked activation
boxes.

To display/hide activation boxes:
e Click the Styles tab and scroll to the bottom of the list.

The "Show Execution Specifications" combo box allows you to show/hide the activation boxes in the
sequence diagram.

Lifeline attributes

The destruction check box allows you to add a destruction marker, or stop, to the lifeline without having to use
a destruction message.

The selector field allows you to enter an expression that specifies the particular part represented by the lifeline,
if the ConnectableElement is multivalued, i.e. has a multiplicity greater than one.

Goto lifeline element

Right clicking a lifeline allows you to select Goto XXX, where XXXis the specific lifeline type that you clicked.
The element will then be visible in the Model Tree window.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

348 UML Diagrams Behavioral Diagrams

8.1.7.1.2 Combined Fragment

E=]
Combined fragments = are subunits, or sections of an interaction. The interaction operator visible in the
pentagon at top left, defines the specific kind of combined fragment. The constraint thus defines the specific

fragment, e.g. loop fragment, alternative fragment etc. used in the interaction.

bank:Bank =5

2.1 loging)

alt
[passwordok] 2.1.1: dizconnect()

212 getMrOfAccounts()

{au:u:u:uunt.!k[n unt = 0%

The combined fragment icons in the icon bar allow you to insert a specific combined fragment: seq, alt or loop.
Clicking the interactionOperator combo box also allows you to define the specific interaction fragment.

Properkies o X R N R A
p] 1
=l CombinedFragment jatt [.
- - i 2.1 1: dizconnect
element kind CombinedFragment i [passwordok] 0
visibility unspecified =l 3 [
interactionQperatar | alk =] :
temmmmmmmmmmmnd |mememmmcacamman—an]
[elze]
assert |

212 getMrOf Accounts]
IPererties lSters ‘

{au:u:-:uuntﬁ{n unt = 0}
Overview o x

) —

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams

Behavioral Diagrams 349

InteractionOperators
Weak . |ggq)
sequencing seq
The combined fragment represents weak sequencing between the
behaviours of the operands.
Alteratives Only one of the defined operands will be chosen, the operand must hawe
alt a guard expression that evaluates to true.
T
M I
) 1
.
I [elze] .:
----------------- .E.
If one of the operands uses the guard "else", then this operand is
executed if all other guards return false. The guard expression can be
entered immediately upon insertion, will appear between the two square
brackets.
E Egj CombinedFragment1 '-a-lt-i-'_ ------
@ B InteractionOperand -[E:‘a.sswnrdﬂk} _
IEEE [passwordOk) e
‘[B2 InteractionOperand _I_I oo e e -
S PR WY TR | o WP ¥ h 1 . . . o
............
J| [4 Ueke} - - -
odel ... Di F ik 1
EI nde l@ iagra l%% aviari es‘ ' [assert |
Propetties ax - o
1
namfa. = : ' '{al':cn-urlt'.ﬂ.
cualified name : o
element kind {InteractionConstraint I T
wizibility puklic =] LI
oard IpaszweordOk Collect Account Infar
The InteractionConstraint is actually the guard expression between the
square brackets.
Option Option represents a choice where either the sole operand is executed, or
opt nothing happens.
Break The break operator is chosen when the guard is true, the rest of the
break enclosing fragment is ignored.
Parallel par Indicates that the combined fragment represents a parallel merge of
operands.
Strict strict The combined fragment represents a strict sequencing between the
sequencing behaviours of the operands.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

350 UML Diagrams

Behavioral Diagrams

Loop

,_
=
=
=

loop == The loop operand will be repeated by the number of times defined in the

guard expression.
|qup [l],n])
Having selected this operand, you can directly edit the expression (in the
loop pentagon) by double clicking.

Critical Region critical The combined fragment represents a critical region. The sequence(s)
may not be interrupted/interleaved by any other processes.

Negative neg Defines that the fragment is invalid, and all others are considered to be
valid.

Assert assert Designates the valid combined fragment, and its sequences. Often used
in combination with consider, or ignore operands.

Ignore ignore Defines which messages should be ignored in the interaction. Often used
in combination with assert, or consider operands.

Consider consider Defines which messages should be considered in the interaction.

Adding InteractionOperands to a combined fragment

1. Right-click the combined fragment and select New | InteractionOperand. The text cursor is
automatically set for you to enter the guard condition.

2. Enter the guard condition for the InteractionOperand e.g. !passwordOK and press Enter to confirm.
Use Ctrl+Enter to create a multi-line InteractionOperand.

Properties o x
name | nteractiond perand
element kind | nteractiond perand 2
visibility unspecified I || ¥ [
quard |pazswordOk, -
bemmmmmmmmmmmad |mamaa
elze]

IPererties lSters ‘

IPut

3. Use the same method to add the second interaction operand with the guard condition "else". Dashed
lines separate the individual operands in the fragment.

Deleting InteractionOperands

1. Double-click the guard expression in the combined fragment element, of the diagram (not in the
Properties tab).

2. Delete the guard expression completely, and press Enter to confirm. The guard expression/interaction
operand is removed and the combined fragment is automatically resized.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 351

8.1.7.1.3 Interaction Use

. nil| . : . .
The InteractionUse element is a reference to an interaction element. This element allows you to share

portions of an interaction between several other interactions.

T = [Java Cang [Java Cang ump]

i assert |

: Unknovn Esternals]
Uze Caze View

LE[«9ava Profile [1ava Profile. ump) {accnunt#k[n u

IEI Model ... l@ Ciagra... l%{% Fav-:urites‘

laging)

Properties ax D '

harme Interaction ze . :
elerment kind|Interactionl] e B m e ememememaman ==
visbilty unspeciied =/|—pet? |
referzTo Collect Account |nformation = | : OB AECEI (TR b
_______ 1 |
e e e e e =

|l ' E

IF'ru:uperties lSt':.ers ‘ '

Clicking the "refersTo" combo box, allows you to select the interaction that you want to refer to. The name of
the interaction use you select appears in the element.

Note: You can also drag an existing Interaction Use element from the Model Tree into the diagram tab.

81714 Gate

s
(m]

A gate is a connection point which allows messages to be transmitted into, and out of, interaction
fragments. Gates are connected using messages.

1. Insert the gate element into the diagram.
2. Create a new message and drag from the gate to a lifeline, or drag from a lifeline and drop onto a gate.
This connects the two elements. The square representing the gate is now smaller.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

352 UML Diagrams Behavioral Diagrams

a:Bank 5 b:Acco

Femmnnnd

1: callectAccountinfas()

=

This loop iterates
over all bank
accounts.

8.1.7.1.5 State Invariant

is}

A Statelnvariant is a condition, or constraint applied to a lifeline. The condition must be fulfilled for the
lifeline to exist.

To define a Statelnvariant:

1. Click the State invariant icon, then click a lifeline, or an object activation to insert it.
2. Enter the condition/constraint you want to apply, €.g. accountamount > 0, and press Enter to

confirm.
Properties a X
P - assert |
narne Statelrvanant] 29 %
elerment kind |Statelnvanant . .
wizibility unzpecified id {au:u:u:uunt#k[n unt = 0}
u | |

8.1.7.1.6 Messages

Messages are sent between sender and receiver lifelines, and are shown as labeled arrows. Messages can
have a sequence number and various other optional attributes: argument list etc. Messages are displayed from
top to bottom, i.e. the vertical axis is the time component of the sequence diagram.

e A call is a synchronous, or asynchronous communication which invokes an operation that allows
control to return to the sender object. A call arrow points to the top of the activation that the call
initiates.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 353

e Recursion, or calls to another operation of the same object, are shown by the stacking of activation
boxes (Execution Specifications).

To insert a message:

1. Click the specific message icon in the Sequence Diagram toolbar.
. Click the lifeline, or activation box of the sender object.
3. Drag and drop the message line onto the receiver objects lifeline or activation box. Object lifelines are
highlighted when the message can be dropped.

e The direction in which you drag the arrow defines the message direction. Reply messages can point in
either direction.

e Activation box(es) are automatically created, or adjusted in size, on the sender/receiver objects. You
can also manually size them by dragging the sizing handles.

¢ Depending on the message numbering settings you have enabled, the numbering sequence is updated.

e Having clicked a message icon and holding down Ctrl key, allows you to insert multiple messages by
repeatedly clicking and dragging in the diagram tab.

To delete a message:
1. Click the specific message to select it.

2. Press the Del. key to delete it from the model, or right click it and select "Delete from diagram". The
message numbering and activation boxes of the remaining objects are updated.

"Go to operation" for call messages:
The operations referenced by call messages can be found in sequence and communication diagrams.

1. Right-click a call message and select "Go to Operation".

= Relations
........ le_?* connect()
[l ‘j—> connect()

e |:r_> Bank("AgencyBank", ip, usr, p -
I :
EI Model ... l@ Diagra. .. l &% Faw:uritesJ

Hide all Text Labels

Select in Model Tree

| o ko Operation

Add to Favorites

Properties o x Hyperlinks
u‘ e

hiaime
Fualified name 2 Bank("&gencyBank”, ip, usr, g
Element kind Meszage

izikility unspecified |
neszage=or refply
operation connect(in Pa =]

The display changes and the connect operation is displayed in the Model Tree tab.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

354 UML Diagrams Behavioral Diagrams

- & Banking access
-3 v Bank AP
B0~ [BankaAF
- < connect
- < login
<[¥ disconnect
- O gethrOfAccounts
S O getAccountlD

J B m?.&cmumﬁalance_lll
3

4
I El Model ... l E Diagra. .. l 43 Favnrites‘

[12 Bankview -]
—

Note: Static operation names are shown as underlined in sequence diagrams.

1A getAcocourtBalance)

=g

To position dependent messages:
e Click the respective message and drag vertically to reposition it.
The default action when repositioning messages is to move all dependent messages related to the active one.

Using Ctrl+Click allows you to select multiple messages.

To position messages individually:

=
J'J-—

1. Click the Toggle dependent message movement icon to deselect it.

2. Click the message you want to move and drag to mowe it.

Only the selected message moves during dragging. You can position the message anywhere in the vertical
axis between the object lifelines.

To automatically create reply messages:

=

1. Click the "Toggle automatic creation of replies for messages" icon
2. Create a new message between two lifelines. A reply message is automatically inserted for you.

Message numbering
UModel supports different methods of message numbering: nested, simple and none.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 355

e Nonel™

removes all message numbering.

1,

e Simple assigns a numerical sequence to all messages from top to bottom i.e. in the order that
they occur on the time axis.

1.2
e Nested | uses the decimal notation, which makes it easy to see the hierarchical structure of the

messages in the diagram. The sequence is a dot-separated list of sequence numbers followed by a
colon and the message name.

1.1: collectAccourtintol)

1.1.1: getAcocourtBalencel)

o query SGP databasze

| The praw owerlamninn b'.

There are two methods of selecting the numbering scheme:
e Click the respective icon in the icon bar.
e Use the Styles tab to select the scheme.
To select the numbering scheme using the Styles tab:
1. Click the Styles tab and scroll down to the Show Message Numbering field.
Click the combo box and select the numbering option you want to use. The numbering option you

select is immediately displayed in the sequence diagram.

Note: The numbering scheme might not always correctly number all messages, if ambiguous traces exist. If
this happens, adding return messages will probably clear up any inconsistencies.

Message replies
Message reply icons are available to create reply messages, and are displayed as dashed arrows.

L LY QLR L=) LS BT L el BELE |) LI) .
i autherticate response

return gquery resut .-

getAccountBalance) T

collectAccourtinfal) -

H 1 H

Reply messages are also generally implied by the bottom of the activation box when activation boxes are
present. If activation boxes have been disabled (Styles tab | Show Execution Specifics=false), then reply
arrows should be used for clarity.

s
Activating the L "toggle reply messages" icon, automatically creates syntactically correct reply messages

when creating a call message between lifelines/activations boxes.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

356 UML Diagrams Behavioral Diagrams

Creating objects with messages

+0

1. Messages can create new objects. This is achieved using the Message Creation icon
2. Drag the message arrow to the lifeline of an existing object to create that object. This type of message
ends in the middle of an object rectangle, and often repositions the object box vertically.

Froperties ax 2 Bank("AgencyBank”, ip, usr, paw) bank:Bank =5
harme Bank["AgencyBank", i I gommmemmeems =

element kind |Meszage

wizibiliky unzpecified =

mezzageSort | createb ezzage

L

Sending messages to specific class methods/operations in sequence diagrams

Having inserted a class from the Model Tree into a sequence diagram, you can then create a message from a
lifeline to a specific method of the receiver class (lifeline) using UModel's syntax help and autocompletion
functions.

1. Create a message between two lifelines, the receiving object being a class lifeline (Bank). As soon as
you drop the message arrow, the message name is automatically highlighted.

2. Enter a character using the keyboard e.g. "b". A pop-up window containing a list of the existing class
methods is opened.

2: Bank("AgencyBank”, ip, usr, pyw) bank:Bank = E
21 loging) .
n n
b att) |
Bank N B
= I
collectAccourtinfos [rasswwordiok]
getBalanceOfAcoou_ |
petBankiame
getiPAddress Tl || |esmmmmmmsmaaaad -
[elze]
[aggert | | [}

3. Select an operation from the list, and press Enter to confirm e.g. collectAccountInfos.
4. Press the space bar and press Enter to select the parenthesis character that is automatically
supplied. A syntax helper now appears, allowing you to enter the parameter correctly.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 357

2; Bank("AgencyBank", ip, usr, pw) bank:Bank 5

2.4 loging

- collectAccountinfos(in apilBank AP boolean |
collectAocountinfos(alt
. : J []

[pazswardOk]

aceart]

Creating operations in referenced classes

foit
Activating the — Toggle automatic creation of operations in target by typing operation names icon,
automatically creates the corresponding operation in the referenced class, when creating a message and

entering a name e.g. myOperation ().

Note: Operations can only be created automatically when the lifeline references a class or interface.

Message icons

Message (Call)

Message (Reply)

Message (Creation)

Message (Destruction)

Asynchronous Message (Call)

Asynchronous Message (Reply)

Asynchronous Message (Destruction)

Toggle dependent message movement

Toggle automatic creation of replies for messages

Toggle automatic creation of operations in target by typing operation names

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

358 UML Diagrams

Behavioral Diagrams

8.1.7.2 Generate Sequence Diagrams from Source Code

This example shows you how to generate a Sequence diagram from a method. The project containing this
method will be reverse-engineered from Java source code. You can find the Java source code at the following
path: C:\Users\<user>\Documents\Altova\UModel2023\UModelExamples\OrgChart.zip. First, unzip the
OrgChart.zip archive to the same location (for example, right-click the archive in Windows Explorer and select

Extract All).

1. On the Project menu, click Import Source Directory, and select the directory unzipped previously.
Go through the wizard steps to import the source code as a Java project. For more information about
this step, see Reverse Engineering (from Code to Model)@.

3. Having imported the code, right-click the main method of the orgChartTest class in the Model Tree
and select Generate Sequence Diagram from Code... from the context menu.

Model Tree

Root

E‘u:% CrgChart

-El o] com

- Lo altova
@[OrgChart

- Component View

........] Content of OrgChart
-------- g Content of OrgChart and all subpackags
-------- O] Package dependencies of OrgChart

-------- EContent of com

E"E‘D" OrgChartTest
i< Content of OrgChartTest
-0 B OrgChartTest
@5 example

. .\1} m=in
-[= Relatior

Mew element

. Unknow
& Unknown

Generate Sequence Diagram from Code...

He Java Profil

Create Sequence Diagram for code

Show in new diagram

Open diagram

This opens the Sequence Diagram Generation dialog box in which you define the generation settings.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 359

Sequence Diagram Generation *

General

Diagram owner: [autoselect]

[] Automatically update diagram when model is updated from code

Presentation

Show code in notes
[] Also show code of messages displayed directly below

|Ise special color for non - displayable invocations
Show empty Combined Fragments
Show unknown invocations

Spltt into smaller diagrams where appropriate

Layout

Maximum invocation depth:

Type names to ignare; | |

Operation names to ignore: |-|-in'rtC|:|m|:u:|nents |

[] Use dedicated Lifeline for static calls

Cancs

4. Select the presentation and layout options, and then click OK to generate the diagram. The settings
shown above produce the sequence diagram below.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

360 UML Diagrams Behavioral Diagrams

sd main{in args:String[*]) :\rol'd)

a:0rgChartTest 5 e

strict]

[Ery]

[catch Exception]

Sequence diagram generation options
The table below lists the generation options pertaining to Sequence diagrams.

Option Purpose

Diagram owner You can set this option when generating a diagram
for the first time. For existing diagrams, this
information is read-only.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams

Behavioral Diagrams 361

Option

Purpose

Click the Ellipsis button to select the owner package
of the diagram. Otherwise, the option [autoselect]
places the diagram in the default package.

Automatically update diagram when model is updated
from code

When you perform reverse engineering (from code to
model), sequence diagrams are re-generated
automatically in the model, provided that you have
selected the option Automatically update diagram
when model is updated from code when
generating the diagram for the first time.

For existing diagrams, you can change this option as
follows:

1. Select the Sequence diagram in the Model
Tree or in the Diagram Tree.

2. In the Properties window, select the update
on reverse engineering check box.

name SeguenceDiagram main

[=] Properties @St;,-'l-':i EIHi-‘:rar-:h-,-‘

If you select the use for forward engineering
check box, the synchronization from model to code
will generate code based on the sequence diagram,
when you perform forward engineering (from model to

code), see also Generate Code from Sequence
Diagram =&

If the two "engineering" check boxes are missing, it
is likely that this diagram is just a fragment of a
bigger diagram, or perhaps you have created the
diagram from a non reverse-engineered operation.

Show code in notes

Select this check box to generate the diagram with
notes (callouts) that contain program code.

Also show code of messages displayed directly
below

Even when it is possible to show a piece of code as
UML Message on the diagram, this option still
displays the code of that message as a note.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

362 UML Diagrams

Behavioral Diagrams

Option

Purpose

Use special color for non-displayable invocations

Assigns a color of your choice to non-displayable
invocations.

Show empty Combined Fragments

Keeps the Combined Fragment@ blocks on the
diagram, even if they don't contain anything.

Shown unknown invocations

When selected, this option also displays messages
for operations or constructors which could not be
resolved (that is, not found in the model).

Split into smaller diagrams where appropriate

Automatically splits sequence diagrams into smaller
sub-diagrams, and automatically generates
hyperlinks between them for easy navigation.

Maximum invocation depth

Defines the call depth to be used in the diagram. For
example, if methodl () calls method2 () which calls
method3 (), and the invocation depth is set to 2, then
only method2 is shown, and method3 is no longer
shown.

Type names to ignore

Lets you define a comma delimited list of types that
should not appear in the sequence diagram when it is
generated.

Operation names to ignore

Lets you define a comma delimited list of operations
that should not appear in the generated sequence
diagram. Adding the operation names to the list
causes the complete operation to be ignored.
Prepending a "+" character to the operation in the list
(for example, +InitComponent) causes the
operation calls to be shown in the diagram, but
without their content.

Use dedicated Lifeline for static calls

If there are static methods calls, and if there is
already an instance of that object on the diagram,
messages are normally drawn to that existing lifeline.
With this option enabled, the diagram generator uses
a dedicated new lifeline just for static method calls
for that classifier.

8.1.7.2.1 Generate Multiple Sequence Diagrams

You can also create multiple sequence diagram models from multiple operations, as follows:

1. Select the menu option Project | Generate Sequence diagrams from Code.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UML Diagrams

Behavioral Diagrams

363

Select one or more operations

i)

Root

Component Yiew

B2 OrgChart

-= | w]com

A v altova

-E| wtypes

~F = SchemaType

~[F = SchemaTypeBinary
~-FHT~ SchemaTypeCalendar
~[H = SchemaTypeMumber
-3 B NotAMumberException

@ < NotAMumberException
@ < NotAMumberException
--E’c;l-“.-':ls.tl-:-n:-

- B SchematnyURI

Please select one are more operations from a reverse engineered class where a
sequence diagram should be generated from.

Select Al
Select All Public

Include Getters and
[Setters

oK

Cancel

2. Select the operations that you want to generate a sequence diagram for and click OK. (Use the Select
All Public and Select All buttons where necessary.)

3. Optionally, select the Include Getters and Setters check box to generate sequence diagrams for

C#/VB.NET getters and setters.

5. Click OK. A sequence diagram is generated for each selected operation, and UModel automatically
opens it.

Click OK. This opens a dialog box where you can specify the sequence diagram generation options@

Creating multiple Sequence diagrams will likely take longer if your project is large. Note that only the first
10 diagrams will be opened automatically by UModel; all the rest will be generated without being opened.

8.1.7.2.2 Generate Sequence Diagrams from Getters/Setters

You can also generate a sequence diagram from getter/setter properties (in C#, VB .NET), as follows:

1. Right-click an Operation with a GetAccessor/SetAccessor stereotype.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

364 UML Diagrams Behavioral Diagrams

==gtiributes==
BankServer

<saltribitess=
zectionz = System Componentihodel Brovezakle! falze)

% logingin username: string, in passweord string): ool

,e.m..--l:l---El--t'

<% ==CGeticcessor, Setfccessor, property== NrOfAccnuntsU:irﬁé

4 Mew L4

Creerride)Implement Operations. .. Al

Generate Sequence Diagram from Getker, .,

Generate Sequence Diagram from Setter, .,

Shiow 3

ShovefHide Mode content. .. Ckrl+Shift+H
& ocut Chrl+
Copy Chrhc

e o
W N NN NN NN

2. Select Generate Sequence Diagram from Code (Getter/Setter) from the context menu. This opens

a dialog box where you can specify the sequence diagram generation options (50}
3. Click OK to generate the Sequence Diagram.

8.1.7.3 Generate Code from Sequence Diagram

UModel can create code from a sequence diagram which is linked to at least one operation. Code generation
from sequence diagrams is available for:

e VB.NET, C# and Java
¢ UModel standalone, Eclipse, and Visual Studio editions
e All three UModel editions

Creating code from Sequence diagrams is possible by either:

. Starti%from a reverse engineered operation, see Generating Sequence Diagrams from source
code =¥

¢ By creating a new sequence diagram from scratch, which is linked to an operation, by right-clicking
the operation (in the Model Tree) and selecting Create sequence diagram for code@.

When using a reverse engineered sequence diagram as basis, ensure that the option "Show code in
notes" is selected when reverse engineering the code, so you do not lose any code when you start the
forward-engineering process again. This is due to the fact that UML is not able to display all the language
features of VB.NET, Java and C# on the sequence diagram, and those code sections are therefore shown
as code notes.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 365

To add plain text as code when creating a sequence diagram:
1. Attach a note to a sequence diagram lifeline.

2. Type in the code which should be written into the final source code. Click the Is Code check box (in
the Properties pane) for that note, to make it accessible.

See Adding code to sequence diagrams for an example.
If a Sequence Diagram is to be used for code engineering automatically every time code engineering is started:

1. Select the diagram in the Model Tree or Diagram Tree window.
2. Select the Use for forward engineering check box in the Properties window.

Old code will always be lost when forward engineering code from a sequence diagram, because it will be
overwritten with the new code.

To generate code using the Project menu:

1. Select the menu option Project | Generate Code from Sequence Diagrams. You are now prompted
to select the specific Sequence Diagram(s). Clicking the "Select All" button selects all the Sequence
Diagrams in the UModel project.

Select one or more sequence diagrams

Please select one or more sequence diagrams, linked to an operation where code
should be generated from

|Root Select Al
- Component View

@Z OrgChart
Unknown Externals

«»]Java Profile [lava Profile.ump]

Cancel

2. Click OK to generate the code. The Messages window shows the status of the code generation
process.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

366

UML Diagrams

Behavioral Diagrams

To generate code using the Model Tree:

Right click a Sequence Diagram and select Generat

—

L [bankyiew
........ [Bankyiew hain
........ [Hierarchy of Account

........ [Sample Accounts
-3 &1 getBankMamer): String
- [SequenceDiaoram eetBarkiame Il [[
Mew element r
""""" Generake Communication Diagram 2 Bank("Age
- E
Ipdate Seguence Diagram From Code. ..
@@ P q a
-EE Generate Code from Sequence Diagram. ..
-3 3obo Operation
-H B
g=l= Shaw in new diagram L
ﬂ Cpen diagram
j Model Tree IE Shiw slement in active disoranm F4

To generate a Sequence Diagram containing code of an operation:

1.

s getBankHame{}:String)

a:Bank &5

[
Generate Comrunicakion Diagram

Ipdate Sequence Diagram From Code, ..

Generate Code from Sequence Diagram. ..

Paste

(&

Paste in Diagram only

Copy as Bitmap

This command starts the forward-engineering process at this point.

e Code from Sequence diagram.

Click into the empty space of the Sequence Diagram, that contains code of an operation.
2. Select Generate Code from Sequence diagram.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UML Diagrams

Behavioral Diagrams 367

To create a Sequence diagram for code (engineering):

¢ In the Model Tree, right-click an operation and select Create Sequence diagram for code.

........ & 1 Uzerame
-[@ ¢ »Bank

B O colled
S etBs

Mew element b

Generate Sequence Diagram From Code, .

-3 4 1} getBi
S getiP |

Create Sequence Diagram for code

[getPs
S e et
-[F B Bank'ig
-[FH B Checkin
-FH B CreditC
-F B Savings
-[= Relstions
- = Relations

< %
El Model Tree | B Diagr

Shows in news diagram »

Cpen diagram

Shiow elerment in ackive diagram F4
Shiowe elerment in all diagrams

List elements not used in any diagram

Zuk Strg+=

Copy Skrg+C

You will then be prompted if you want to use the new diagram for forward engineering.

M i | a:Bank

B :'} Biark

- B Bank'iesw

-] = Relations

@ ¥ collectAccountinfos
@ O petBalanceCfAccou s
[» getBankiame
@ O getiPAddress
@ O getPassword
@ O et sername

- B CheckingAccount
- B CreditCardAcoount
-F B SavingsAccount

:I s Bank{in name:5tring, in IP:5tring, in user:string, in pw:string)

The result is a new Sequence Diagram containing the lifeline of that class.

8.1.7.3.1 Adding code to sequence diagrams

Program code can be generated from new, and reverse-engineered sequence diagrams, but only for a sequence
diagram linked to the "main operation".

When reverse-engineering code, standard sequence diagram elements, e.g. CombinedFragments, are
"mapped/assigned" to coding elements (e.g. "if" statements, loops, etc.).

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

368 UML Diagrams Behavioral Diagrams

For those programming statements that have no corresponding sequence diagram elements, e.g. "i = i+1",
UModel makes use of "code" notes to add code to diagrams. These notes must then be linked to the lifeline.

Note that UModel does not check, or parse, these code fragments. It is up to you to make sure that the code
fragments are correct and will compile.

To add code to a sequence diagram:

i

1. Click the Note icon then click the model element where you want to insert it, e.g.
CombinedFragment.

Enter the code fragment, e.g. return.

3. Click the Node Link handle of the inserted note and drop the cursor on the lifeline.

4. Activate the "Is Code" check box in the Properties tab to include this code fragment when generating

N

code.
Model Tree X a:UhlodelStyles
________ F Cortert of Styles ;I sd OnCommand(in nllkint, in |1UMO{IeI:0I1jec’t}:voitl)
-------- [E|Package dependencies of s aUModelStyles 5
Hin Styles
A Cortent of Styles I
E| " OnCommand(in niCxint, in g :
{ L B SequenceDiagram OnCo ¥ at) §
4] | i [im_hPlugin'ersianok]
1

Elmodel ... | ERDiagra... | %% Favorites . i e
i 11

1
Propetties o x :
1
element kind Mote: ;
Iz Code :

When selecting a note on a sequence diagram, which can be used for code generation, the property "is code"
is available in the Properties window. Clicking the check box, allows you to switch between "ordinary" notes
and code generation notes.

Ordinary notes: .
Code generation notes - return L i
9 - shown with a darker dog-ear

Code updates occur automatically on every forward engineering process if the "Use for forward engineering”
check box is active. If changes were made to the sequence diagram, the code of the operation is always
overwritten.

The sequence diagram shown below was generated by right clicking the OnCommand operation and selecting
Generate sequence diagram from code. The C# code of this example is available in the C:
\Users\<user>\Documents\Altova\UModel2023\UModelExamples\IDEPlugin\Styles\ folder. Use the option
Project | Import Source Project, to import the project.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 369

sd OnCommand{in nll:int, in |rl.ll'u'lotlel:ohje~:rt}:voitl)

allModelStyles 5

) :
i

[Im_bPlugin® ersionok,

-

att]

[0 == 3 || nlD == §]

— 1 OnSetStyles(ilapplication)pUbodel, "red") B]

pEf)

OnSetStyles({lApplication)pUModel, "red™)

| [7]

1: Onéet&tyles((l.&pplicatiunijMDdeI, "red™
1

EP

[NlD == 4 || nlD == 7]

------ -I OnsetStylesilapplicationpUodel, "areen™) Il‘1

2 0ons

L

tivles((l&pplication)pUaodel, "green™
ref |

OnSetStyles({lApplication)pUModel, "green™)
o L

J— GC Collect() [

The code shown below is generated from the sequence diagram.

Public woid OnCommand (int nID, object pUModel)
{

//Generated by UModel. This code will be overwritten when you re-run code generation.

if (!m bPlugINVersionOK)

{
return;

}

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

370 UML Diagrams

Behavioral Diagrams

if (nID == 3 || nID == 6)

{

OnSetStyles ((IApplication)pUModel,

}

if (nID == || nID == 7)

{

OnSetStyles ((IApplication)pUModel,

}
GC.Collect () ;

8.1.8 Timing Diagram

Altova website: UML Timing diagrams

"red") ;

"green") ;

Timing diagrams depict the changes in state, or condition, of one or more interacting objects over a given period
of time. States, or conditions, are displayed as timelines responding to message events, where a lifeline
represents a Classifier Instance or Classifier Role.

A Timing diagram is a special form of a sequence diagram. The difference is that the axes are reversed i.e. time
increases from left to right, and lifelines are shown in separate vertically stacked compartments.

Timing diagrams are generally used when designing embedded software or real-time systems.

State or Condition

DurationConztraint |

Time conztraint

}l {d. 3} 9{

Meszage

WiaitCard
Lifeline ;
» User WiaitAcocess
CardCut
evert or Iclle §0.131 ¥
ghimulus ft.1+3%
= Code
=}
Ok
MaCard
ACSystem
HazCard
1 1 1 L1 1 1
I T 1T 1 1 11
DT*I 2 t T
tick mark, values tirming ruler

There are two different types of timing diagram: one containing the State/Condition timeline as shown abovwe,
and the other, the General value lifeline, shown below.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

https://www.altova.com/umodel/timing-diagrams

UML Diagrams Behavioral Diagrams 371

' .
1 1
1 1
1 1
1 1
1 1
1 1
1 1
I 1
'sdUserA Idie >< Waitcoess ><I.-“-.I'a'rtCard >< Il]

/]
: 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

8.1.8.1 Inserting Timing Diagram elements

Using the toolbar icons
1. Click the specific timing icon in the Timing Diagram toolbar.

Add Elements - Timing Diagram
= opm T] | 6 Oy A

2. Click in the Timing Diagram to insert the element. To insert multiple elements of the selected type,
hold down the Ctrl key and click in the diagram window.

Dragging existing elements into the timing machine diagram
Elements occurring in other diagrams, e.g. classes, can be inserted into an Timing Diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search function text
box, or press Ctrl+F to search for any element).
2. Drag the element(s) into the state diagram.

8.1.8.2 Lifeline

The lifeline element is an individual participant in an interaction, and is available in two different
representations:

1. State/Condition lifeline

2. General Value lifeline

To create a multiline lifeline, press Ctrl+Enter to create a new line.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

372 UML Diagrams Behavioral Diagrams

To insert a State Condition (Statelnvariant) lifeline and define state changes:

1. Click the Lifeline (State/Condition) icon in the title bar, then click in the Timing Diagram to
insert it.
':"""“;""‘;"‘“““““““““““‘.‘
il ifeline1f i ~—‘ -
i | State2]
e % gEIL]
2. Enter the lifeline name to change it from the default name, Lifeline1, if necessary.
3. Place the mouse cursor over a section of one of the timelines and click left. This selects the line.

4. Mowe the mouse pointer to the position you want a state change to occur, and click again. Note that
you will actually see the double headed arrow when you do this. A red box appears at the click
position and divides the line at this point.

Any number of state changes can be defined per lifeline. Once the red box appears on a line, clicking
anywhere else in the diagram deletes it.

To add a new state to the lifeline:

¢ Right-click the lifeline and select New | State/Condition (Statelnvariant). A new State e.g. State3 is
added to the lifeline.

B o e e e e e e e e e e =
: N -
i Lifelined fopotes | :
' ! States ;

lI """""""""""""""""" @Hﬂ

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 373

To move a state within a lifeline:
1. Click the state label that you want to mowe.
2. Drag it to a different position in the lifeline.
To delete a state from a lifeline:

e Click the state and press the Del. key, or alternatively, right click and select Delete.

To switch between timing diagram types:

e Click the "toggle notation" icon at the bottom right of the lifeline.

| |

This changes the display to the General Value lifeline, the cross-over point represents a state/value

change.
S
|]
| Lifeline1 Stated ><Statez>< State]
i ! 1
groEEEEEEEEmmEmmmm e mmmmmEe- ETam
Note: Clicking the Lifeline (General Value) icon = inserts the lifeline as shown abowve. You can switch

between the two representations at any time.

To add a new state to the General value lifeline:

1. Right-click the lifeline and select New | State/Condition (Statelnvariant).
Edit the new name e.g. state3, and press Enter to confirm.

A new State is added to the lifeline.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

374 UML Diagrams

Behavioral Diagrams

Grouping lifelines
Placing or stacking lifelines automatically positions them correctly and preserves any tick marks that might
have been added. Messages can also be created between separate lifelines by dragging the respective

message object.

i :
L 1
: }e id. 3} %| :
: Wit Card :
L 1
L 1
1 .
: User Waticocess :
: Cardout -
! Iclle: 40,13} !
: t.t+3r)
i Cocle :
! 1

i i ; oK

i MoCard

ACSystem1 |
E HazCard

8.1.8.3 Tick Mark

a

The TickMark

B =

is used to insert the tick marks of a timing ruler scale onto a lifeline.

To insert a TickMark:

1. Click the tick mark icon and click on the lifeline to insert it.

Lifeline1

Statet
State2
Stated

2. Insert multiple tick marks by holding down the Ctrl key and repeatedly clicking at different positions on
the lifeline border.
3. Enter the tick mark label in the field provided for it. Drag tick marks to reposition them on the lifeline.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UML Diagrams Behavioral Diagrams 375

To evenly space tick marks on a lifeline:

1. Use the marquee, by dragging in the main window, to mark the individual tick marks.

H

2. Click the Space Across icon in the icon bar.

State
Lifelined States

Stated

8.1.8.4 Event/Stimulus

k==

The Event/Stimulus & ExecutionEvent is used to show the change in state of an object caused by the
respective event or stimulus. The received events are annotated to show the event causing the change in
condition or state.

To insert an Event/Stimulus:

1. Click the Event/Stimulus icon, then click the specific position in the timeline where the state change

takes place.

Properties o=

risime Code }% 1. 3%} —=
qualified name |Design Yiew::Code Vst ard |
element kind ExecutionEvert

vizibility public ||| waticcess

CardOut

e ———

| |
I I
n 1 2z

2. Enter a name for the event, in this example the event is "Code".

Note that the event properties are visible in the Properties tab.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

376

UML Diagrams

Behavioral Diagrams

8.1.8.5 DurationConstraint

A DurationConstraint

4

defines a ValueSpecification that denotes a duration in time between a start and

endpoint. A duration is often an expression representing the number of clock ticks, which may elapse during

this duration.

To insert an DurationConstraint:

1. Click the DurationConstraint icon, then click the specific position on the lifeline where the constraint
is to be displayed. The default minimum and maximum values, "d..t", are automatically supplied.
These values can be edited by double clicking the time constraint, or by editing the values in the
Properties window.

Properties o x
name DurationConstraint
qualified name [Design View:Interacti 3 P
element kind DurationConstraint LR LR .I.‘EI'.
N [] j []
wizibility public | || VusitCard >
lully! o .
atioccess
=k t
Cardiout
[icdle:
Code
2. Use the handles to resize the object if necessary.
Properties o x
name DurationConstraint = =
qualified name Design Yiew::Interacti iy H
: : : o2 -~ {d. 3} - - 34
element kind DurationConstraint] 1 1
wizibility public ~ | [. El'—
i d Watdcoess
ITIE 3*d
Cardiout
Icdle:
Code

To change the orientation of the DurationConstraint:

e Click the "Flip" icon to orient the constraint vertically.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UML Diagrams

Behavioral Diagrams

. .
WZ-{d.ty-3a | —
. E]’- "'?-
% {d.l.t}
{d.1} - ¥

8.1.8.6 TimeConstraint

.
3 |-‘_|

A TimeConstraint is generally shown as graphical association between a Timelnterval and the construct
that it constrains. Typically, this is graphical association between an EventOccurrence and a Timelnterval.

To insert a TimeConstraint:

e Click the TimeConstraint icon, then click the specific position on the lifeline where the constraint is to

be displayed.

Properties o X I

riame: TimeZonstraint1

qualified name [Design Viewy:Interactiont;:

element kinc TimeConstraint J CardOut

wisibility public hd| . .

Imir t QK it 1+3)

s b+3 " "
111
rrri

t

The default minimum and maximum values are automatically supplied, "d..t" respectively. These values
can be edited by double clicking the time constraint, or by editing the values in the Properties window.

8.1.8.7 Message

A Message is a modeling element that defines a specific kind of communication in an Interaction. A
communication can be e.g. raising a signal, invoking an Operation, creating or destroying an Instance. The
Message specifies the type of communication defined by the dispatching ExecutionSpecification, as well as
the sender and the receiver.

Use the following toolbar buttons to add specific message types:

_’.
Message (Call)

Message (Reply)

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

378 UML Diagrams Behavioral Diagrams

Ny

Async message (Call)

Messages are sent between sender and receiver timelines, and are shown as labeled arrows.

To insert a message:

1. Click the specific message icon in the toolbar.
. Click anywhere on the timeline sender object e.g. Idle.
3. Drag and drop the message line onto the receiver objects timeline e.g. NoCard. Lifelines are
highlighted when the message can be dropped.

YR ard —
Propetties o x
ame Code YWaitAoocess
ualified name Design View:Interactiont Cardout
Element kind Meszage Iclle — 10,13}
izikility Lnzpecified |
fnessageSart [synchCall | Cods
operation
sy nich | 'l|
MaCard
HaszCard
1] 1 [|
r 1 11 | L
o1 2 t

Notes:

e The direction in which you drag the arrow defines the message direction. Reply messages can point in
either direction.

e Having clicked a message icon and holding down Ctrl key, allows you to insert multiple messages by
repeatedly clicking and dragging in the diagram tab.

To delete a message:

1. Click the specific message to select it.
2. Press the Del key to delete it from the model, or right click it and select "Delete from diagram".

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Structural Diagrams 379

8.2 Structural Diagrams

These diagrams depict the structural elements that make up a system or function. Both the static, e.g. Class
diagram, and dynamic, e.g. Object diagram, relationships are presented.

= Class Diagram

&1 Component Diagram

= Composite Structure Diagram
& Deployment Diagram

E Object Diagram

B Package Diagram

El Profile Diagram

8.2.1 Class Diagram

This section includes tasks and concepts applicable to Class Diagrams, as follows:

Customizing Class Diagrams

Overriding Base Class Operations and Implementing Interface Operations@
Creating Getter and Setter Methods

Ball and Socket Notation

Adding Raised Exceptions to Methods of a Class @

Adding Receptions to a Class &9

Generating Class Diagrams

For a basic introduction to Class Diagrams, see Class Diagrams in the tutorial section of this
documentation.

8.2.1.1 Customizing Class Diagrams

Expanding / hiding class compartments in a UML diagram
There are several methods of expanding the various compartments of class diagrams.

e Click on the + or = buttons of the currently active class to expand/collapse the specific compartment.

e Use the marquee (drag on the diagram background) to mark multiple classes, then click the
expand/hide button. You can also use Ctrl+Click to select multiple classes.

e Press Ctrl+A to select all classes, then click the expand/collapse button, on one of the classes, to
expand/collapse the respective compartments.

Expanding / collapsing class compartments in the Model Tree
In the Model Tree classes are subelements of packages and you can affect either the packages or the classes.

e Click the package / class you want to expand and:
= Press the * key to expand the current package/class and all sub-elements
= Press the *+ key to open the current package/class.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

380

UML Diagrams

Structural Diagrams

To collapse the packages/classes, press the = keyboard key.

Note that you can use the standard keyboard keys, or the numeric keypad keys to achiewe this.

Changing the visibility type icons
Clicking the visibility icon to the left of an operation j, or property §‘1|, opens a drop-down list enabling you to
change the \isibility status. You can also change the type of visibility symbols that you want to see.

Showing or hiding node content (class attributes, operations, slots)

Click a class in the diagram window, click the Styles tab and scroll down the list until you find the
Show Visibility entry.

Project Styles

Shiowy Mested Classifier: true
Showy Wisibility
Shiowy Stereotypes

Shiowy Constraintz
=hiowy Detault Value true
=howy Parameter true

[=]Properties l &3 Shyles l El Hierarchy ‘

You can choose between the UModel type shown abowve, or the UML conformant symbols shown

below.

+ ==constructors= Accourt()
aetBalancel): flost

= getld =tring

~~ collectAccountinfolin bank AP

o m m m m m m m m m m m m g

In class diagrams, you can show or hide specific members of a class, such as attributes or operations. You
can show or hide not only individual members but also multiple members of the same type according to their
visibility. For example, you can hide only those class attributes that have private visibility. Showing or hiding is

also supported for object slots (InstanceSpecifications)in Object diagrams.

To show or hide class members or object slots:

Right-click a class (for example, savingsAccount from the example Bank_MultiLanguage.ump

project) and select Show/Hide Node content from the context menu.
2. Select or clear the check box next to the members you want to show or hide, respectively.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UML Diagrams Structural Diagrams 381

Vizible elements

Element Styles Attributes | 0K |
Show Attributes @] interestRate:float
e [@] minimumBalance:float=10000 Cancel
Operations
private package < Savingsaccount(
™ getinterestRate(:float
Show Operations % collectAccountinfolin bank&Pl:boolean
pul:uli-:: protected ™ getMinimumBalance(:float
private package Select Al
Show nested Classifier Select None
public protected When new glements are added and not hidden by Bement Styles
private package (®) Show elements

() Hide elements (except those added to this node)

To show or hide multiple members based on their visibility, use the check boxes in the Element Styles group.

For example, clearing the protected check box in the Show Attributes group hides all protected attributes of
the class.

Note: Tagged values of hidden elements are also hidden when you select the hide option.

After you confirm your preferences with OK and close the dialog box, any hidden members on the diagram are
replaced by the ellipsis . .. symbol. To open the dialog box again, double-click the ellipsis.

SavingsAccount

g1 minimumBalance:float=10000

% wconstructors SavingsAccount(

% getinterestRatef):float

% collectdccountinfolin bankAPl:boaolean
% getMinimumBalance():float

The When new elements are added and not hidden by Element Styles option allows you to define what
will be made visible when new elements are added to the class. This applies not only to elements added
manually in the diagram or in the Model Tree, but also to those added automatically during the code
engineering process. The valid values for this option are as follows:

Show elements When a new member is added to the class, show it on the
diagram. Nevertheless, if any of the options set under
"Element styles" dictate that the element must be hidden,
hide it.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

382 UML Diagrams Structural Diagrams

Hide elements (except those added to this | Here, the term "node" refers to the current instance of the
node) class on the diagram. (Recall that the same class can be
added multiple times on the same diagram, see
Renaming, Moving, and Copying EIements.)

When two or more instances of the same class exist on
the diagram, and when a new member is added to this
instance of the class, then hide the member in all
instances of the class but show it for the current instance.

For an example of how the options above are useful, open the Bank_MultiLanguage.ump example project,
and find the "Hierarchy of Account" class diagram.

Next, create a new instance of the savingsaccount class, as follows:
1. Right-click the savingsAccount class in the diagram and select Copy.
2. Right-click an empty area in the same diagram and select Paste in this diagram only from the

context menu.

There are now two instances of the savingsAccount class on the diagram.

SavingsAccount SavingsAccount
@1 interestRate:float @1 interestRate:float
@] minimumBalance:float=10000 @] minimumBalance:float=10000
% «constructors SavingsAccount() % «constructors SavingsAccount()
% getinterestRate(:float % getinterestRate(:float
% collecticcountinfolin bankAPl):boalean % collecticcountinfolin bankAPl):boalean
% getMinimumBalance():float % getMinimumBalance():float

Next, set different visibility options in each of the instances:

1. Right-click the left instance of the class, select Show/Hide Node content, and then select the Show
elements option.

2. Right-click the right instance of the class, select Show/Hide Node content, and then select the Hide
elements (except those added to this node) option.

Next, add a new property to the left instance (select the class and press F7). As illustrated below, the new
property (Propertyl) is visible in the left instance but not visible in the right instance. This happens because
the right-side instance of the class has the the Hide elements (except those added to this node) option
enabled.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML

getMinimumBalance(:float

&

getMinimumBalance(:float

Finally, add a new property to the right-side instance of the class. As illustrated below, the new property
(Property2) is \visible in both instances. This happens because the left-side instance is configured to show new
elements, while the right-side instance is the current instance where the property is added, so the new property
is shown unconditionally.

SavingsAccount

interestRate:float
minimumEBalance:float=10000
Propertyi

Property2

SavingsAccount

wconstructors SavingsAccount()
getinterestRate(:float
collecthccountinfofin bank&Pl:boolean
getMinimumBalance():float

interestRate:float
minimumBalance:float=10000

Property2

Showing or hiding .NET compartments

&
&
&
&

wconstructors SavingsAccount()
getinterestRate(:float
collecthccountinfofin bank&Pl:boolean
getMinimumBalance():float

Diagrams Structural Diagrams 383
SavingsAccount SavingsAccount
@1 interestRate:float @1 interestRate:float
g1 minimumBalance:float=10000 g1 minimumBalance:float=10000
ﬁ] Propertyl
-;) zconstructors SavingsAccount(-;) zconstructors SavingsAccount(
l;) getlnterestRate(:float l;) getlnterestRate(:float
-;) collectAccountinfolin bankAPl:boolean -;) collectAccountinfolin bankAPl:boolean

To display .NET properties in their own compartment, select the "Show .NET properties in own compartment”
option in the Styles tab.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

384 UML Diagrams

Structural Diagrams

Project Styles

CreditCardAccount

Showy Par direction
Showy Property Type

Showy ExtenzionPairts

Zhowy Tagged Values

Showy Execution Specifications
Showy Message Mumbers
Showy Message Parameters
Showy Azzoc, Ownership Dot
Mamespace Dizplay Mode
Showy region names on states
Dzt flirraredd

Diag. Background Color

Showy MET propetties in own compartment S

briie =]

all lhd

trLie lhd
nested =]

falze =]

falze =]

short il

falze =] J
falze =]
whitC_—] =] 53 -
P ———

el
2]
gl

creditLimit: flost
interestRateOnBalance; flost
irtereztRate OnCazhAdvance: flost

&
O
&

C¥# Poperies
gizetAccessar, propertys Creditlimit): flost
gizetAcceszar, propertys: InterestRateOnBalancel): |
zizetdooessor, properys InterestRateinCazhidyan

&
&

Methods
gronstructor: CreditCardcoournt!)
CollectAccountintalin bankAPLIBank AP ool

=l Properties |58 Styles ‘ El Hierarchy

Showing .NET properties as associations
To display .NET properties as associations, right-click a C# property as shown below, and select Show | All

.NET Properties as Associations from the context menu.

Account

®1 balance:float
g1 id:string

C# Properties

‘» «GetAccessor, propertys Balance(): float

-;) wGethccessor, propertys d().string

Changing the syntax coloring of operations/properties
UModel automatically enables syntax coloring, but lets you customize it to suit your needs. The default

settings are shown below.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UML Diagrams

Structural Diagrams

385

BankView

banks:Bank[*] {ordered}
hankAPLIEankAP]

Bank“iew(in bank&PLIBank AP
collectBankAddressinfos(1t boolean
collectAccountinfostboolean
collectDatal: boolean
getBalanceAtBankiin bankname: Stringint
getBalanceSumOf AIBanka) int

Project Styles j

Line Style rectangular lhd ;I

Uze Syntax Coloring rue hd o
=C Sterectypes olive I - @ gl
SC Mame #3F3FSF I v | 5D >
SC Type teal |)
S0 Muttiplicity Ny ___Ihd E ¢
= Defadlt Yalue maroon [| @ @
=C Constraint [l [JRalke] &
SC Parameter #555555 M v | T <
SC Par direction blue ____JSa|CE] &
SC Mested Classifier navy N =] 33

Showe Attributes Compar|true =] .l

To change the default syntax coloring options (shown below):

1. Switch to the Styles tab and scroll the SC prefixed entries.
2. Change one of the "SC color" entries e.g. "SC Type" to "red".

BankView

@1 bankAPLIBankLF

@] hanks: Bank[*] {ordered}

k) BankWiew(in bank &P IBank AP0
@} collectBankAddressinfos 1 boolean

To disable syntax coloring:

1. Switch to the Styles tab and change the Use Syntax Coloring entry to false.
2. Use the Attribute Color, or Operation Color entries in the Styles tab to customize these items in
the class.

Project Styles j
attribute Color purple | @;I
Attribite Font Arial lhd
Attribute Font-Size 11 lhd
Aftribute Font-Weight normal =]
Attribute Sort-hode no zort =]
Cperation Color hlue I - @
Cperation Font Al il

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

386 UML Diagrams

Structural Diagrams

8.2.1.2 Overriding Base Class Operations and Implementing Interface

Operations

UModel gives you the ability to override the base-class operations, or implement interface operations of a class.
This can be done from the Model Tree, Fawvorites tab, or in Class diagrams.

1. Right-click one of the derived classes in the class diagram, e.g. CheckingAccount, and select

Override/Implement Operations. This opens the dialog box shown below.

Override /Implement Operations

B Account
] < Accaunt()
[] < aetBalancel flast
[] 0 getld: String
™ collect A ccountinforin bankAPLBank AP boo

| | B

— Operationz

Sort-p ode:; Ir‘u:- zark
¥ Hide static

v Hide private

[Hide «finals

Select undefined |nterface methods

Select undefined abstract methods

Select All |
Select Hone |

di

Cancel

&

2. Select the Operations that you want to override and confirm with OK. The "Select undefined..." buttons

select those method types in the window at left.

Note: When the dialog box is opened, operations of base classes and implemented interfaces that have the
same signature as existing operations, are automatically checked (i.e. active).

8.2.1.3 Creating Getter and Setter Methods

During the modeling process it is often necessary to create get/set methods for existing attributes. UModel

supplies you with two separate methods to achiewe this:

e Drag and drop an attribute into the operation compartment
¢ Use the context menu to open a dialog box allowing you to manage get/set methods

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UML Diagrams

Structural Diagrams 387

To create getter/setter methods using drag and drop:

e Drag an attribute from the Attribute compartment and drop it in the Operations compartment.

L]
]
]
]
]
]
]
]
]
—
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
lI

-

SavingsAccr

» getinterestRater: flast
% collectaccourtinfolin bankaPl Bank P boolesn
< gethdinimumBalance . float

P - - T

i) Info:
@l interestRate flost Drop will create getter/setter
1 minimumBialance: fiost=100 .
v s -
<% SavingsAccount) o

A pop-up menu appears at this point allowing you to decide what type of get/set method you want to

create.

Create getter & setker {default) |

Create getter (defaulk)

Create setter (defaulk)

Choose getterfsetker,

[| I A]
] SavingsAccount
181 interestRate: flost
" g1 minimumBalance: float=10000
% SavingsAcocount)

<% getinterestRater): flost

% collectdcocountinfolin bankAPL BankAP: boolean
% gethinimumBalance float

% setinterestRatelin InterestRate: float): void

% getirterestRater): flost

ettt halals O |

To create getter/setter methods using the context menu:

Selecting the first item creates a get and set method for interestRate:float.

1. Right-click the class title, e.g. savingsAccount, and select the context menu option Create
Getter/Setter Operations. The Create Getters/Setters dialog box opens displaying all attributes

available in the currently active class.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

388 UML Diagrams Structural Diagrams

Create Getters,;Setters

linterestRate Select Getters |
setter [| setinterestRatelin InterestRate: float):void
getter [| getinterestRater): flost Select Setters |

|minimumBalance
setter [| setMinimumBalance(in MinimumBalance: flost: vaoid
getter [| getMinimumBalancel): flost Select Al

Select Mone

Cancel

I
I
ok, |
|

2. Use the buttons to select the items as a group, or click the getter/setter check boxes individually.

Note: You can also right-click a single attribute and use the same method to create an operation for it.

8.2.1.4 Ball and Socket Notation

UModel supports the ball and socket notation of UML. Classes that require an interface display a "socket" and
the interface name, while classes that implement an interface display the "ball".

Class3

- ==USERR
h-'*-__‘ I____jl____ L]

- a3
T | .

vy ==interfaces=
Clags1 | ==use==

Claz=s2

==use=x 1

o am e ol

-

Classd |-~

In the shots shown abowe, Class2 realizes Interface1, which is used by classes 1, 3, and 4. The usage icons
were used to create the usage relationship between the classes and the interface.

To switch between the standard and ball-and-socket view:

e Click the Toggle Interface notation icon at the base of the interface element.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Structural Diagrams 389

Class3

Irterfacel

Clas=1 Class2

/@

Clas=s4

8.2.1.5 Adding Raised Exceptions to Methods of a Class

To add raised Exceptions to methods of a class:

1. Click the method of the class you want to add the raised exception to in the Model Tree window, e.g.
getBalance of the Account class.

2. Right-click the Properties window and select Add Raised Exception from the pop-up menu. This adds
the raised exceptions field to the Properties window, and automatically selects the first entry in the
list.

w7 LT
% yetBalance

-

IEI Model Tree IE Diagram Tree l%:% Favarites ‘

Propetties

Name: getBalance -

cualified name Des=ign Yiew::Bankiew: cor

element kind Operation

wizikility o d

leat Add Raised Exception

=tatic Remowe Raised Exception

abatract] % Ched

COMCUrrency sequertial | O calle
A

LRy I:l LI]

IEI Properties l@l Styles ‘ FlHierarchy d

Overyigm 1 X Messages

I | ST~[al~[4

3. Select an entry from the list, or enter your own into the field.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

390 UML Diagrams Structural Diagrams

Properties

CONCUFFEncy sequertial ﬂ;l

ey O

==annatations== |

==final== |

==nativess= |

==atrictfp== |

==aynchronizeds:= O O Ched

sised exceptions hstractMethDdEerr __________________ O cole

AbstractivethodError Foot:: Java Lang;

[5] Praperties l@ i AcceszsibleOhject Root::Java Lang

Crerviem Account Root:; Design Vi
_____ ArithimeticException Foot:: Java Lang
' Array Root::Java Lang

8.2.1.6 Adding Receptions to a Class

In addition to operations and properties, you can add Reception elements to a class.

To add a Reception to a class:
¢ Right-click the class on the diagram and select New | Reception from the context menu.

Receptions appear in a separate compartment on the Class diagram, similar to properties and operations, for
example:

pkag Root,]

Class1

2 1 Property

<% Operation1(

Gk «signal= Reception1()

Receptions share the same styles as operations. This means that, whenever you change the style of
operations, the changes affect Receptions also. For more information, see Changing the Style of Elements @@,

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Structural Diagrams 391

8.2.1.7 Generating Class Diagrams

As an alternative to designing class diagrams directly in UModel, you can generate them automatically when
importing source code or binaries into UModel projects (see Importing Source Code®™ and Importing Java, C#
and VB.NET Binaries @). When following the import wizard, make sure that:

1) The Enable diagram generation check box is selected on the "Import Source Project”, "Import Binary
Types", or "Import Source Directory" dialog box.

-

Import Source Project @

Language: IJa\raE.D (1.6) -.-]

Project file: C\Users“altova’Documerts Atova ' UMadel201! D

Import project relative to LModel project file

Java Project Settings
[]JavaDocs a= Documentation

Reszolve aliases

Synchronization
"1 Merge Code inta Madel

@ Overwrte Model according to Code

Diagram generation

Enable diagram generation

< Back Next = I [Finish] I Cancel

Import Source Project dialog box

2) The Generate single diagram and/or the Generate diagram per package options are selected on the
"Content Diagram Generation" dialog box.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

392 UML Diagrams Structural Diagrams

-

Content Diagrarn Generaticn

Cortent diagrams

; . Style
[¥]iSenerate single diagram; 4

Show Attibutes compartment
Generate diagram per package ki :

Show Operations compartment
[Open diagrams

Show nested Classifiers compartment
[] Show nested classifiers separately
Show Enumeration Literals compartment

Show Tagged Values

Use own compartment for MET properties

[] Show anorymous bound elemerts
Hyperink package(s)to diagramis)

Show MNET properties compartment

Autolayout
Autolayout

[hiaarc:hic -

<Back || MNet> || Fmsh | | Caneel

Content Diagram Generation dialog box

Once the import operation is finished, any generated class diagrams are available under "Class Diagrams" in
the Diagram Tree.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Structural Diagrams 393

Diagram Tree o x

= Diagrams
....... Activity Diagrams
- Business Process Diagrams
= Clazss Diagramz
-] Content of OrgChart and all subpackages
------- 2. Communication Diagrams
....... Companent Diagrams
------- Composite Structure Diagrams
....... [& Database Diagrams
------- Deployment Diagrams
------- Interaction Overview Diagrams
....... Object Diagrams
-7 = Package Diagrams
....... [Profile Diagrams
------- ;];: Protocol State Machine Diagrams
....... Sequence Diagrams
....... State Machine Diagrams
[i3 SvsML Diagrams
....... Timing Diagrams
....... UseCase Diagrams
------- [t ¥ML Schema Diagrams

C1Model Tree | = Diagram Tree | 4% Favorites

Diagram Tree

8.2.2 Composite Structure Diagram

Altova website: & UML Composite Structure diagrams

The Composite Structure Diagram has been added in UML 2.0 and is used to show the internal structure,
including parts, ports and connectors, of a structured classifier, or collaboration.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

https://www.altova.com/umodel/composite-structure-diagrams

394 UML Diagrams Structural Diagrams

Provider Receiver

secUre connection "'I
r

- L
-~ - T ™
-
ff “‘\
. B -
o - sl o u k‘\
r 1\Accuunt Transfer | ,
L L T
‘.* LY _— e Y
. ——————) Source Bank !
] i Provider]
: =' !
[: /
y ; i
: : A
3 i /
% . ’
AN 7 . .
. i Receiver +
. i L4
" o
M., Target Bank .
. “’
e | -

8.2.2.1 Inserting Composite Structure Diagram elements

Using the toolbar icons
1. Click the specific Composite Structure diagram icon in the toolbar.

Add Elements - Composite Structure Diagram ~ X
xn O8 o il | — - [A

2. Click in the Composite Structure diagram to insert the element. To insert multiple elements of the
selected type, hold down the Ctrl key and click in the diagram window.

Dragging existing elements into the Composite Structure diagram

Most elements occurring in other Composite Structure diagrams, can be inserted into an existing Composite
Structure diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search function text box,
or press Ctrl+F to search for any element).
2. Drag the element(s) into the Composite Structure diagram.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Structural Diagrams 395

“| Collaboration

Inserts a collaboration element which is a kind of classifier/instance that communicates with other instances to
produce the behavior of the system.

CollaborationUse

Inserts a Collaboration use element which represents one specific use of a collaboration involving specific
classes or instances playing the role of the collaboration. A collaboration use is shown as a dashed ellipse
containing the name of the occurrence, a colon, and the name of the collaboration type.

Properties o x s T
=T Bank Account Transfer L
name | [Feeeeeee e e e e e m - ——a- LT
element kind |CollaborationUsze tu
vizibility unzpecified =" T —— —— "
F -~
bype Accourt Transfer =] || £ Account Transfer ‘}
\"'h_, ______ ,,...--i-“""I T e s Bank
= 7 E= Provider | SoUrce Ban

When creating dependencies between collaboration use elements, the "type" field must be filled to be able to
create the role binding, and the target collaboration must have at least one part/role.

|

Part (Property)

Inserts a part element which represents a set of one or more instances that a containing classifier owns. A Part
can be added to collaborations and classes.

;| Port

Inserts a port element which defines the interaction point between a classifier and its environment, and can be
added on parts with a defined type.

=

Class
Inserts a Class element, which is the actual classifier that occurs in that particular use of the collaboration.

Connector

Inserts a Connector element which can be used to connect two or more instances of a part, or a port. The
connector defines the relationship between the objects and identifies the communication between the roles.

Dependency (Role Binding)

Inserts the Dependency element, which indicates which connectable element of the classifier or operation,
plays which role in the collaboration.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

Structural Diagrams

396 UML Diagrams

8.2.3 Component Diagram

Please see the Component Diagrams section in the tutorial for more information on how to add component
elements to the diagram.

-H 5 Clasz Diagrams

2.4 Communication Diagrams
2| g Component Disgrams

' £ Bank realizations
S Orvervienny -

BankView
[fram bankwviess)

F =] Composite Structure Diagrams
B g Deployment Diagrams

==Component=:=
BankVYiew
[fram Bank'view

2]

Bank
[fram bankviess)

ga) Interaction Cwerview Diagrams
- | hiect Diagrams

3| Fackage Diagrams

- |57 Zequence Diagrams

[= =tate Machine Diagrams
Titning Diagrams

A |78 UzeCase Diagrams

s

= :’
ElMu:udeI T...l@Diagram...l% Favorites I

CheckingfAccount
[from bankwview)

Properties o x i

FiImE: Bank realizations :‘

element kinc Companent Diagram CreditCardAccount
[fram bankwviesn

8.24 Deployment Diagram

Please see the Deployment Diagramsm section in the tutorial for more information on how to add nodes and
artifacts to the diagram.

[] -
< :
i Home PC i
i ==grtifact== [i
] BankView.jar !

: :
i 8 . i ==TCPAP==
] ==atifact== [| |==adifact== [!
i BankhAdresses.ini BankAPLjar E
1 1
. -

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams

Structural Diagrams

397

8.2.5 Object Diagram

Please see the Object Diagrams section in the tutorial for more information on how to add new

objects/instances to the diagram.

AltovaBank: Bank E

John's Checking: CheckingAccount

bankname = AtovaBank -
Padresz = 1010127125
username = Jahn Doe
pazsword = Jodoe

accounts

balance = 11 975.00
id= JDCA-GTES
minimumBalance = 10,000.00

accounts = K

[

accournts

John's Credit: CreditCardAccount B

balance = §2.00

i = JDCCA-0123

creditLimit = 2000000
interestRateCnBalance = 3.3
interestRateonCash&dvance = 140

John's Saving: SavingsAccount =]

accounts

balance = 8 743.00
id= JDZA-2345
irterestRate = 1.2

8.2.6 Package Diagram

Package diagrams display the organization of packages and their elements, as well as their corresponding
namespaces. UModel additionally allows you to create a hyperlink and navigate to the respective package

content.

Packages are depicted as folders and can be used on any of the UML diagrams, although they are mainly used

on use-case and class diagrams.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

398 UML Diagrams Structural Diagrams

==NAMESPAcE== ==NAMESPAcE== [#]
bankview lang =LNAMESPACE==
[from attoss) [from javal http:iiwww.altova.comiaPO
T i T '
L] ==profile== ST
Behavior View T K
) Foct X5D Profile . XSDDatatypes
rom R 5
() [fram Root) x,-‘ [fram X=D Prafile]
|'IIII .-"f o
n ! .-"'"’)
S=MEMESPaceE=s

http:/'www. xmilspy.comischemas/orgchart

Automatic Package Dependency diagram generation
You can generate a package dependency diagram for any package that already exists in the Model Tree.

Dependency links between packages are created if there are any references between the modeling elements of
those packages. E.g. Dependencies between classes, derived classes, or if attributes have types that are
defined in a different package.

To generate a package dependency diagram:

1. Right click a package in the Model Tree, e.g. altova, and select Show in new Diagram | Package
Dependencies.... This opens the New Package Dependency Diagram dialog box.

Mew Package Dependency Diagram

Diagram Mame: IF'au:kage dependencies of altova

[Ignaore external packages [not child of alkowval

¥ Create hyperlink to diagram

Style Autolayout
Fill color of external packages: V¥ Autolayaut
— [ierarchic =

] I Cancel |

2. Select the specific options you need and click OK to confirm.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams

Structural Diagrams

399

—

o

r o=

Z|Bankiew ;I

..... T &pply Java Profile
2|« com J

§'E|.:.H altova
I Elpackage depe

[e PNk

[]

==profile==

Java Profile

[fram Raoot)
i

7]

1]

2=MEMEeEpaces= ZeMEmespaces:
BankAPI1 lang
[fram Banking access) [fram jawva)

B

=, Relations
= Relations)
= |Banking access SENAMESACER=
(ESRSeS BankAPI altova dﬂnamesp-aceb::
= Relations (from com) bankview

8.2.6.1 Inserting Package Diagram elements

Using the toolbar icons

1.

Add Elements - Package Diagr ~ X

M M

I:l """ P

il |

Click the specific icon in the Package Diagram toolbar.

A new diagram is generated and displays the package dependencies of the altova package.

2. Click in the diagram to insert the element. To insert multiple elements of the selected type, hold down

the Ctrl key and click in the diagram window.

Dragging existing elements into the Package Diagram
Elements occurring in other diagrams, e.g. other packages, can be inserted into a Package diagram.

Locate the element you want to insert in the Model Tree tab (you can use the search function text box,

1.
or press Ctrl+F to search for any element).

2. Drag the element(s) into the diagram.

O Package
Inserts the package element into the diagram. Packages are used to group elements and also to provide a
namespace for the grouped elements. Being a namespace, a package can import individual elements of other

packages, or all elements of other packages. Packages can also be merged with other packages.

Profile
Inserts the Profile element, which is a specific type of package that can be applied to other packages.

The Profiles package is used to extend the UML meta model. The primary extension construct is the

Stereotype, which is itself part of the profile. Profiles must always be related to a reference meta model such

as UML, they cannot exist on their own.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

400 UML Diagrams Structural Diagrams

..... Y

Dependency

Inserts the Dependency element, which indicates a supplier/client relationship between modeling elements, in
this case packages, or profiles.

qiH
“*|Packagelmport

Inserts an <<import>> relationship which shows that the elements of the included package will be imported into

the including package. The namespace of the including package gains access to the included namespace; the
namespace of the included package is not affected.

Note: Elements defined as "private" within a package, cannot be merged or imported.

[

~* | PackageMerge

Inserts a <<merge>> relationship which shows that the elements of the merged (source) package will be
imported into the merging (target) package, including any imported contents of the merged (source) package.

If the same element exists in the target package then these elements' definitions will be expanded by those
from the target package. Updated or added elements are indicated by a generalization relationship back to the
source package.

Note: Elements defined as "private" within a package, cannot be merged or imported.

ProfileApplication

Inserts a Profile Application which shows which profiles have been applied to a package. This is a type of
package import that states that a Profile is applied to a Package.

The Profile extends the package it has been applied to. Applying a profile, using the Profile Application icon,
means that all stereotypes that are part of it, are also available to the package.

Profile names are shown as dashed arrows from the package to the applied profile, along with the <<apply>>
keyword.

8.2.6.2 Generating Package Diagrams

You can instruct UModel to generate package diagrams when importing source code or binaries into the
UModel project (see Importing Source Code and Importing Java, C# and VB.NET Binaries@). When
following the import wizard, make sure that:

1) The Enable diagram generation check box is selected on the "Import Source Project”, "Import Binary
Types", or "Import Source Directory" dialog box.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Structural Diagrams 401

-

Import Source Project @

Language: I._Ia'n.raﬁ.ﬂ (1.6) i I

Project file: C\Users*altova’\Documerts' Atova' UMadel201! - D

Import project relative to UMaodel project file
Java Project Settings

[] Javaliocs as Documentation

Resolve aliases

Synchronization
1 Merge Code into Maodel

@ Overwrite Model according to Code

Diagram generation

Enable diagram generation

< Back Ment = I [Finizh] I Cancel

Import Source Project dialog box

2) The Generate diagram option is selected on the "Package Dependency Diagram Generation" dialog box.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

402 UML Diagrams Structural Diagrams

-

Package Dependency Diagram Generation @
Package dependency diagram
Style
Fill color of extemal packages:
Open diagram " | El
[] lgnore extemal packages
{not child of import tanget)
Hyperink package to diagram Autolayout
Autolayout
lhiemrmic -

| < Back | MNest = Finish]I Cancel

Package Dependency Diagram Generation dialog box

Once the import operation is finished, any generated package diagrams are available under "Package
Diagrams" in the Diagram Tree.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Structural Diagrams 403

Diagram Tree o x

i Diagrams
....... Activity Diagrams
- Business Process Diagrams
- [Class Diagrams
------- 2a] Communication Diagrams
....... Component Diagrams
------- Composite Structure Diagrams
------- Database Diagrams
------- Deployment Diagrams
------- Interaction Cverview Diagrams
------- Object Diagrams
-1 |0 Package Diagrams
- [E]PackagedependenciesnfUrgl:hart
------- B Profile Diagrams
------- I=7|Protocol State Machine Diagrams
------- Sequence Diagrams
------- State Machine Diagrams
[518 Sy=hL Diagrams
....... Timing Diagrams
------- UseCase Diagrams

....... zc0] AML Schema Diagrams

C1Model Tree | =R Diagram Tree | 4% Favorites

Diagram Tree

8.2.7 Profile Diagram

Altova website: & UML profile diagrams

In UML, profiles are a way to extend UML to a specific platform or domain. Unlike a package, a profile is in the
meta-model and consists of "meta" building blocks that extend or constrain something. This is possible with
the help of the following extension mechanisms included into a profile: stereotypes, tagged values, and
constraints.

In UModel, the profile diagram is where you can conwveniently create your own stereotypes, tagged values and
constraints bundled as a custom profile. Profiles enable you to extend or adapt UML to your specific domain or
customize the appearance of elements in your modeling projects. For example, you may want to define custom
styles or add custom icons for UML elements such as classes, interfaces, and so on.

Importantly, the profile diagram is where you can apply a profile to a package. For example, the profile diagram
below illustrates a Profile Application relationship between the package BankView and the Java profile built
into UModel. You can find this diagram in the following sample project: C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples\BankView_Java.ump; it is called
"Apply Java Profile".

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

https://www.altova.com/umodel/profile-diagrams

404

UML Diagrams Structural Diagrams

pkag BankView] .

Apply Java Profile in order to get the Java specific Stereotypes and Datatypes
Apply ‘'namespace’ stereotype to define a Java - namespace

- .. . wapply= xprofiles
Bank\/iew smmmmmesmmmnmeremsmemem--ee—-—--23 awa Profile |
(from DesignView) | = |[fromRoof

Profile diagram

The applied Java profile means that any class or interface that is part of the BankView package (or will be
added to this package in future) must look like a Java class or interface and all its members must exhibit
behavior specific to that language. For example:

All Java data types that exist in the profile are available for selection from a drop-down list when you
design a class in a class diagram, see also Class Diagrams.

All Java-specific stereotypes defined in the profile, such as «annotations», «final», «static»,
«strictfp», and so on, are visible as properties in the Properties window when you select an element.

This chapter describes how you can extend UModel projects by means of custom &oﬁles and stereotypes. For

information about using the UModel built-in profiles, see Applying UModel Profiles

and Stereotypes and

Tagged Values @.

8.2.7.1 Creating and Applying Custom Profiles

The instructions below show you how to create a custom UModel profile and apply it to a package. This is
typically required if you need to create and apply stereotypes beyond those included in the default UModel
profiles. For information about applying the default UModel profiles, see Applying UModel Profiles @

To create a custom profile:

1.

2.

Right-click the package where you would like to create the new profile, (for example, "Root"), and
select New element | Profile from the context menu.

Create all the elements that should be part of this profile, such as stereotypes, data types, and so on.
You can do this either in the Model Tree window or from a profile diagram. For example, to create a
new stereotype in the model, right-click the profile and select New element | Stereotype from the
context menu. See also Creating Stereotypes @,

Optionally, create a profile diagram (right-click the profile and select New diagram | Profile diagram
from the context menu). To add all the required elements to the diagram, use the standard UModel
menu commands and toolbars, see How to Model... @

If you would like to create the profile from a profile diagram, make sure that the diagram is owned by

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Structural Diagrams 405

(created under) a profile, or by a package inside a profile.

In addition, if you would like to reuse the profile across multiple UModel projects, do the following:

1.

2.

Share any packages that you want to make reusable. (Right-click the package or the profile itself, and
select Subproject | Share package from the context menu.)
Sawe the pro%t to a directory from where you can later include it as a subproject, see Including

Subprojects

So far, you have created a profile but have not added (or applied) it to any package. By applying a profile to a
package, you make all of the extension mechanisms of that profile (such as stereotypes, data types, and so
on) available to elements of the package.

To apply a custom profile to a package:

1.

how

Create a new UModel project, or open an existing one.

Do one of the following:

a. Create your custom profile in the existing project, as shown abowe.

b. Include a custom profile from an existing project using the menu command Project | Include
Subproject. Note that either the entire profile or its packages under must be shared in order to be
reusable, see Sharing Packages and Diagrams@ .

Right-click the profile and select New diagram | Profile diagram from the context menu.

Add some package(s) and the custom profile to the diagram.

Draw a ProfileApplication relationship from the package to the profile. For example, the profile
diagram below illustrates a Profile Application relationship between the package BankView and the
Java profile built into UModel. As illustrated below, profile applications are shown as dashed arrows
from the package to the applied profile, along with the <<app1y>> keyword.

pkg Bank\View] .

Apply Java Profile in order to get the Java specific 5tereotypes and Datatypes ﬁ

Apply ‘'namespace’ stereotype to define a Java - namespace

- .. . wapplys sprofiles |
BankView cmmrmmmmmmemsemm—-o-—--—-——————- |awa Profile |
(from Design View) | =~ .~ . . | [fromRoot

8.2.7.2 Creating Stereotypes

When you model projects using any of the UModel built-in profiles (such as C#, Java, VB.NET, XML schema,
and so on), you shouldn't typically need to create any custom stereotypes. Instead, you can just apply the
existing stereotypes to your model's elements, as described in Applying Stereotypes 2

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

406 UML Diagrams Structural Diagrams

However, if you would like to add custom icons to elements or customize their appearance based on the
applied stereotype, this can be achieved by creating custom stereotypes. Note the following prerequisites:

e Stereotypes must be owned by a profile or a package inside a profile. Therefore, in order to create a
stereotype, you must create a profile first (or a package inside an existing profile).
e After creating the profile, you must apply it to the package where you need to use the custom

stereotypes, as described in Creating and Applying Profiles @D

Once you have created a profile, you can start adding stereotypes to it. This can be done either directly in the
Model Tree window, or from a profile diagram. If you would like to create stereotypes from a profile diagram,
make sure that the diagram is owned by (created under) a profile, or by a package inside a profile, as shown
below.

To create a stereotype:

1. If you haven't done so already, create a profile, see Creating and Applying Custom Profiles @

2. Optionally, right-click the profile and select New diagram | Profile diagram from the context menu.
This creates a new profile diagram under the current profile—it will help you visualize in one place all
the stereotypes, data types, and other elements that you will subsequently add to the profile.

Model Tree »

_|Root
-------- Component View
-3 (<51 Profilet

_— || ProfileDiagram

EI Model Tr..| = Diagram... {% Favaorites

3. Right-click the profile in the Model Tree window, and select New element | Stereotype from the
context menu.

Maodel Tree x

_|Root
. Component View
-3 (<1 Profilet

........ J& ProfileDiagram

-] stereotypel

EI Model Tr..| = Diagram... %% Favaorites

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Structural Diagrams 407

4. Optionally, set the stereotype properties in the Properties window. For example, if you set the
stereotype's metaclass to "Class", the stereotype will apply to classes only. Likewise, you can set a

custom icon for the stereotype by clicking the Ellipsis |-/ button next to icon file name.

Properties x
name Stereotypel

qualified name Profilel-Stere e

element Kin Stereotype

! public -

Abstra L]

Finalspecializa il D

shakld Class |
con file name Image.bmp [
[=l Properties | §3 Styles | [R] Hierarchy

Notes

o Ifthe image path is relative, it must be relative to the UModel project's folder.
e To use custom icons with transparent background, set their background color to RGB value
82,82,82.

o To display stereotypes for association relationships, set the Show MemberEnd stereotypes
property to "true" in the Styles window.

Adding stereotype attributes (properties)

The stereotype created abowe is very simple and does not have any attributes (properties) associated with it. It
is, however, possible to add properties to a stereotype. Such properties will become tagged values when this
stereotype is applied to some element in future.

To add attributes (properties) to a stereotype:

1. Click the stereotype in the Model Tree window or on the diagram.
2. Do one of the following

a. Right-click the stereotype and select New | Property from the context menu.
b. Press F7.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

408 UML Diagrams Structural Diagrams

Model Tree 4

_|Root
. Component View
-3 (<51 Profilet
........ J& ProfileDiagram
E..L:_|] Stereotypel
- 'Er'] Property1

E| Model ... &2 Diagra... 2% Favorites

You can set the data type of each property from the Properties window, by selecting a value from the type list.
Any data type previously defined in the same profile as the stereotype is available for selection. If the profile
doesn't contain any data types yet, you can define one by right-clicking the profile diagram, and selecting New
| Data type from the context menu.

To set the default value of a property, enter that value in the default field of the Properties window. For
example, the stereotype property illustrated below has "0" as default value:

Properties 4
derivedUnion | Y
sID |
default 0 e
aggregation none |
memberEndKind |n/fa

W

[=] Properties @ Styles EI Hierarchy

The data type of a stereotype attribute (property) can also be an enumeration, see Example: Creating and
Applying Stereotypes

8.2.7.3 Example: Creating and Applying Stereotypes

This example provides a step-by-step demo of the stereotype creation process. It shows you how to achieve
the following goals:

Create a stereotype

Create stereotype attributes (properties) that become tagged values when applied to an element
Define a stereotype attribute as an enumeration

Set a default value for a stereotype attribute

Apply the stereotype to elements in the model.

The example is accompanied by a sample project file called StereotypesDemo.ump, available at the following
path: C:\Users\<username>\Documents\Altova\UModel2023\UModelExamples\Tutorial. If you follow the
instructions below literally, you will create a similar project.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Structural Diagrams 409

Create a new profile
As mentioned above, a stereotype must be owned by a profile; therefore, let's first create a profile.

1. Create a new UModel project.
Right-click the "Root" package and add a new profile by selecting New element | Profile from the
context menu.

3. Rename the new profile to "DemoProfile".

Model Tree »

_|Root
— Component View
tlyy) DemoProfile

EI Model...| = Diagra... %[% Favori...

Create a stereotype

For the scope of this tutorial, you will create a stereotype with two attributes: "Usability" and "IsObsolete". The
"IsObsolete" attribute will be defined as an enumeration. The enumeration will consist of two values, "Yes" and
"No", where "No" is the default value.

1. Right-click the profile and select New element | Stereotype from the context menu. A new
stereotype has been added to the profile.

2. Rename the new stereotype to "Info".

3. Right-click the stereotype and select New element | Property from the context menu. This adds a
new property.

4. Rename the new property to "Usability".

Model Tree x

_|Root
o] Component View
EE| <+ DemoProfile
@ £ Info
-] Usability

Ell"dndel EDiagra... %‘%‘ Favorites

5. Repeat the steps abowve to create a new property called "IsObsolete".

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

UML Diagrams

Structural Diagrams

Model Tree »

_|Root
— Component View
-3 <5 DemaProfile

@ £ Info
........ @ | IsObsolete
e 'fr'] Usability

ElMUdEl @Diagra... %% Favorites

Right-click the "DemoProfile" and select New Element | Enumeration from the context menu.

Rename the enumeration to "YesNoEnum".

Right-click the enumeration and select New Element | EnumerationLiteral from the context menu.

Rename the enumeration literal to "Yes".
Repeat the step above and create an enumeration literal called "No".

Model Tree x

_|Root

o] Component View
EE| <+ DemoProfile

L:J = Infa

: @] IsObsolete
@] Usability
- [£] YesMoEnum

E|M::udEIT... EDiagra... 2% Favorites

IINOII

9. Click the "IsObsolete" property and change its type to YesNoEnum. Also, set the default property to

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UML Diagrams Structural Diagrams 411

Properties 4
multiplicity AFS
type []
type modifier n/a
static |:|
readOnly |
derived |
derivedUnion |
IsID []
defaul o ——] =i
aggregation none x|
memberEndKind n/a w
=] Properties @ Styles El Hierarchy

Create a new package

In order to illustrate how the custom stereotype can be used, let's create a simple package containing only one
class.

1. Right-click the "Root" package and add a new package by selecting New element | Package from
the context menu.

2. Rename the new package to "DemoPackage".

3. Add a class to the package (in this example, "DemoClass".

Model Tree 4

_|Root

. Component View
E| DemoPackage

- ... DemaClass

+ | DemaoProfile

EI Model T.., & Diagra... ‘%} Favaorites

Apply the profile to a package

As you recall from Step 1, the stereotype was created inside a profile. In this step, we apply the profile to a
package, so that the stereotype becomes "visible" to the package.

1. Right-click the "DemoProfile" in the Model Tree window and select New diagram | Profile diagram
from the context menu.

2. Drag both the "DemoPackage" package and the "DemoProfile" profile from the Model Tree window into
the diagram.

3. Click the ProfileApplication toolbar button, and draw a Profile Application relationship from the
package to the profile.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

412 UML Diagrams Structural Diagrams

pkg Dem oProfile J .

DemoPackage ﬁ.apﬁ.lljl'x:- aprofiles
{from Root) [~ DemoProfile
{from Foot)

Apply the stereotype to classes
You can now apply the stereotype to a class.

1. Right-click the "DemoPackage" and select New diagram | Class diagram from the context menu.

2. Drag the class "DemoClass" onto the diagram.

3. Click the class and select the «Info» stereotype in the Properties window. Notice that the
"IsObsolete" property is pre-filled with its default value.

Properties »
code file name '
code file path
slnfos

Usability
lsObsolete Ma =2

[=] Properties @ Styles EI Hierarchy

4. Enter a value for the "Usability" property ("75%", in this example).

The class on the diagram now has a "Tagged values" section which displays the stereotype attributes and their
values. You can change these values either from the Properties window, or directly from the diagram.

| einfos =y
«Infox 4 Usability = 75% |
DemoClass [~ lisObsolete = No i
wEE Yes
Mo

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Structural Diagrams 413

8.2.7.4 Example: Customizing Icons and Styles

This example shows you how to customize the appearance of a class in UModel with the help of stereotypes.
Atfter following this example, you will learn how to add custom icons to elements and change the style of all
elements that use the same stereotype.

The class that will be customized in this example is in the StereotypesDemo.ump project, available at the
following path: C:\Users\<username>\Documents\Altova\UModel2023\UModelExamples\Tutorial. This is a
simple demo project which includes a custom profile under which we will create the stereotype. For an example
that shows you how to create profiles and stereotypes from scratch, see Example: Creating and Applying

Stereotypes

Let's first create the stereotype to be used for styling:

1. Open the StereotypesDemo.ump project.
Right-click the "DemoProfile" profile in the model tree, and select New Element | Stereotype from the
context menu.

3. Rename the stereotype to "StylingStereotype".

Model Tree x

_|Root
o] Component View
DemoPackage
@[5 DemaoProfile
........ [&] ProfileDiagram
@ = Info
--------- (5 StylingStereotype
[[E] YesNoEnum

EIM::dEITr... @Diagram... ‘%%Fat-‘-:urites

To add a custom image to the stereotype, click the stereotype, and then click the Ellipsis || button next to
icon file name property in the Properties window. Select the following sample image: C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples\Tutorial\class.bmp.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

414 UML Diagrams Structural Diagrams

Properties 4
name StylingStereotype
qualified name DremoProfile:StylingSt.
element kind Stereotype
visibility public bl
abstract |
isFinalspecialization |[]
metaclass Element bl
icon file name _
[=] Properties @ Styles EI Hierarchy

Next, click the Styles tab of the Properties window. Select Styles of Elements with this Stereotype from the
top list, and change the Header Font Size property to "16".

Styles x
Styles of Elements with this Stereotype b
Header Font | F
Header Font-5ize |16 |
Header Font-We, |
Fill Color hdl|
Trans. Fill Color x|
Pen Color x|
Font Color x|
Font hdl b

=] Properties @St_\.rles ElHierarchy‘

Finally, apply the stereotype to a class.

1. Open the class diagram "ClassDiagram1". You will find this diagram under the "DemoPackage" in the
Model Tree view.

Model Tree X
Root
........ Compaonent View Info Zlnf:T.ty 75
« w sability =
. DemoPackage st
= DemoClass | IsObsolete = Mo

-------- £ ClassDiagram1
- -------- -E DemoClass
[= Relations

[<+ DemoProfile

2. Click the "DemoClass" class, and then select the «StylingStereotype» check box in the Properties
window.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Structural Diagrams 415

Properties x
abstract O ~
isFinalSpecialization |[]
active O
code file name
code file path
«lnfiox

Usability 75

IsObsolete Mo |
«5StylingStereotypes LY
[=] Properties @ Styles EI Hierarchy

The appearance of the class on the diagram is now changed according to the applied stereotype:

wlnfon
Usability = 75
7 IsDbsolete = Mo
«|nfox
DemoClass

Remarks
The demo project contains a profile diagram, "ProfileDiagram1". In this diagram, notice that the "DemoProfile"

is applied to the "DemoPackage" with a Profile Application relationsréi& This makes the stereotype
available to the package, see also Creating and Applying Custom Profiles %=,

pkag DemoProfile,] .
| .. =apply= .
DemoPackage r--------------------=3 «profiles
(fromRoot) | | DemoProfile
(from Root)

You have now learned how to change the appearance of elements using stereotypes. You can use the same
technique in other projects. Just keep in mind that the profile where you create the stereotype must be applied
to the target package, as shown abovwe.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

416 UML Diagrams Additional Diagrams

8.3 Additional Diagrams
The additional diagram kinds supported by UModel Basic Edition are as follows:

50 XML Schema diagrams

8.3.1 XML Schema Diagrams

Altova website: @ XML Schemas in UML

UModel supports the import and generation of W3C XML schemas as well as their forward and reverse
engineering. In case of XML Schemas, "forward and reverse engineering" means that you can import a schema
(or multiple schemas from a directory) into UModel, view or modify the model, and write the changes back to
the schema file. When you synchronize data from the model to a schema file, the schema file is always
overwritten by the model.

Note: The XML Schema must be valid before it can be imported into UModel. XML Schemas are not validated
when you create or import them in UModel, or when you run a project syntax check. Nevertheless,
UModel checks whether the XML schema is well-formed when importing it.

XML Schema diagrams display schema components in UML notation. For example, simple types are shown in
UModel as data types with the «simpleType» stereotype. Complex types are shown as classes with the
«complexType» Stereotype. Various schema details are represented as Tagged Values m, while schema
annotations are represented as comments. For a mapping table that illustrates how all the XML schema
components map to UModel elements, see XML Schema Mappings e

Class X5DSchema]

—_—

wmaxinclusives
value = 10
w«mininclusives

value = 1

«global, simpleType=
«=global, maxinclusive, mininclusive, simpleTypes erestrictions xdataTypes
«dataTypes [= integer
SizeType [from Root:X5D Profile:XSDDatatypes)
«=complexType, global» wE@UEnCEs
ProductType R sequenc;: mg_seguence =elements
- [from ProductType) product
[1 _sequence:mg_sequence
[1 «attributes createdAt:date [1 =element= numberinteger [1 product:ProductType
[1 =elements size:SizeType
B =sequences mg_sequence

Example XML Schema diagram

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

https://www.altova.com/umodel#xml_uml

UML Diagrams

Additional Diagrams 417

8.3.1.1 Importing XML Schemas

You can import either a single schema file into UModel, or all schemas from a directory. If a schema includes

or imports other schemas, these are imported into the model as well.

To import a single XML Schema:

1. Select the menu command Project | Import XML Schema file.

2. Click Browse and select the source schema to import. For the scope of this example, you can use

the following schema: C:

\Users\<username>\Documents\Altova\UModel2023\UModelExamples\Tutorial\OrgChart.xsd.

Import XML Schema File

Pt

(@) Merge Code into Model
() Owverwrite Model according to Code

Diagram generation

Enable diagram generation

|=n)
[51]
0

Mext = FEinish

Language: | ¥5D ~| 1.0 ~
K50 file: |Jments'-_-’-‘-.ltcuua'-.LlMndeI2D21 “UModelExamples' Tutoral"OrgChart xzd -~
Import XS0 file relative to UModel project file
Synchronization

Cancel

3. To generate diagrams from the schema, make sure that the Enable diagram generation check box

is selected and click Next.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

418 UML Diagrams Additional Diagrams

Content Diagram Generaticn x

Content diagrams
Style
[]i5how Attributes compartment;

Generate diagrams for X50 globals

[] Open diagrams
Hypedink diagrams

Show Operations compartment
[] Show nested Classffiers compartment
[] 5how EnumerationLiterals compartment
[] Show Schema Details as Tagged Values

< Back Meat = Finish Cancel

4. To create a separate diagram for each global component in the schema like in this example, select the
Generate diagrams for XSD globals option. To open all generated diagrams after import, select
Open diagrams. Options from the "Style" group let you define the compartments that appear by
default in diagrams for each schema component. The Show schema details as tagged values
option displays the schema details as Tagged Values @

5. Click Next. To generate a Package dependency diagram like the one in this example, select the
Generate Diagram check box.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Additional Diagrams 419

Package Dependency Diagram Generaticn x

Package dependency diagram

.. Style

..

Fill color of extemal packages:
[]Cpen diagram

| | M|

[] lgnore extemal packages
(nat child of import target)

[] Hyperink package to diagram Autolayout
Autolayout

| hierarchic e

< Back Mexd Cancel

6. Click Finish.

Once UModel completes importing the schema, a new package called All Schemas is created and set
automatically as the "XSD Namespace Root". The OrgChart.xsd schema used in this example imports types

from another namespace, more specifically, from the ipo.xsd schema. Consequently, both schemas appear in
the Model Tree window after import, under their respective namespaces:

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

420 UML Diagrams

Additional Diagrams

Maodel Tree

Roat
B ueol All Schemas

- W httpsfananwaltova,. com/1PO
- B address-5chema

-------- Address [complexType)
EU-Address [complexType)
-------- US-Address [complexType)
E Address

-[# B EU-Address

-[F B USs-Address

-[@ [£] Us-state

- [r] EU-Postcode

-@ =% Relations

-F B COrgChart-5chema

-@ = Relations
--?@:}R-‘:Iati-:-ns

-H Component View

- [« 7|50 Profile [X50 Profile.ump]

-------- || Package dependencies of All Schemas

-E W httpsfanwew xmis py.comy/schemas/orgchart

ElMUdHTrEE @DiagramTree %%Fav-:urites

If you have selected the Generate diagrams for XSD globals check box, all XSD global components
generate an XML Schema diagram, and the diagrams appear under the respective namespace packages, like

the "Address (complexType)" diagram in the image abowve.

To import multiple XML Schemas:

1. Select the menu command Project | Import XML Schema directory.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UML Diagrams Additional Diagrams 421

Import XML Schema Directory x
Language: | ¥5D ~| |10 w
Directony: || R

[] Process all subdirectories
Import directories relative to UModel project file
Synchronization
() Merge Code into Model
(®) Overwrite Model according to Code

Diagram generation

Enable diagram generation

< Back et > Finish Cancel

2. To import schemas from all subdirectories of the selected directory, select the Process all
subdirectories check box. The rest of the import process is the same as described above for a single
XML schema.

Changing the display of tagged values

After importing an XML schema, certain schema details may appear as tagged values on the diagram, if you
have selected the Show Schema Details as Tagged Values option during the import.

Class OrgChart-Schema,/
- - "
I welements I-\i
lid = 1
1 id = 1
| block = substitution |
| final = restriction 1
Ifixed =]
4 1
. I1’:::|rm = :
el i nillable = 1
[#] «element= ' e
OrgChart

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

422 UML Diagrams Additional Diagrams

You can configure whether such details are to be shown or hidden from the diagram. To do this, right-click the
element and select Tagged Values | <option> from the context menu. You can configure the display of
tagged values not only individually for each element, but also globally at project level. For more information, see

Showing or Hiding Tagged Values@.

8.3.1.2 Modeling XML Schemas

New XML Schema projects in UModel have the structure illustrated below. This structure is created
automatically the first time when you add an XML Schema diagram to a new UModel project.

Model Tree x

Root
........ Component View
2 el X5DMNamespaceRoot
L:J W | X5DTargetnamespace
. E] & X5DSchema
- [=p] ¥MLSchemaDiagram
:}t:} Relations

[[« 71 %50 Profile [X50 Profile.ump]

ElMUdHTrEE @Diagram %% Favorites

The "Root" and "Component View" packages are common to any UModel Project and cannot be deleted.
"Root" is the topmost level under which any other packages are added, and "Component View" is used for code
engineering (in this case, importing or generating schema files).

The "XSDNamespaceRoot" package includes all the namespaces used by your schema(s). To turn a package
into an XSD Namespace Root, right-click it and select Code Engineering | Set as XSD Namespace Root
from the context menu. If you import an existing XML schema into the project, this package is called "All
schemas" by default.

The "XSDTargetnamespace" package is an XML Schema namespace. Multiple such namespaces may exist
under the same XSD Namespace Root. To turn a package into a namespace, first select the package, and
then select the «namespace» property (stereotype) in the Properties window.

"XSDSchema" is a schema, or, in UML terms, a class with the «schema» property (stereotype) selected in the
Properties window.

XMLSchemaDiagram1 is the actual diagram that describes the schema's model. You can create XML
Schema diagrams under an XSD Namespace Root, under an XML Schema Namespace, or under an XML
Schema. In the example project illustrated abowve, the diagram is created under the XML schema.

The XSD Profile enables all the types and structures required to work with XML Schema in the project. If your
project does not hawve this profile, you will be prompted to include it whenever you create a new XML Schema
diagram. You can also add the XSD profile to a project explicitly, see Applying UModel Profiles @.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Additional Diagrams 423

Creating XML Schema diagrams
To create a new XML schema diagram:

1. Do one of the following:

a. Right-click a package in the Model Tree Window® and select XML Schema Diagram from the
context menu.

b. Right-click "Diagrams" or "XML Schema Diagrams" in the Diagram Tree Window® and select
New Diagram | XML Schema diagram from the context menu. A dialog box opens asking you
to select the owner of the diagram. Select a package where the diagram should be stored, and
click OK.

2. If the current UModel project does not include the XSD profile, a dialog box opens asking you to
include it. Click OK to include the XSD profile into the current project, see also Applying UModel

Profiles @.

Adding new XML Schema elements
To add XML schema elements to a diagram:

e Click a specific toolbar button, and then click inside the XML Schema diagram.

XML Schema Diagram w
M\ B @ G E Mo s LT LT ST OB A

To insert multiple elements of the same type, hold down the Ctrl key and click multiple times in the diagram.

As stated above, XML Schema diagrams can be created at various levels in the project's structure. If the
diagram is at a level which does not allow placing a particular element, certain toolbar buttons are not
meaningful and they show a tooltip with information instead of adding the element.

The table below lists all the toolbar buttons and their purpose.

6 XSD Target Namespace Adds an XSD target namespace. Clicking this button is
meaningful if the diagram was created directly under an XSD
Namespace Root.

&= XSD Schema Adds an XML Schema Definition (XSD). Clicking this button is
meaningful if the diagram was created under an XSD target
namespace.

[E]1 | Element (global) Adds a global element to the diagram. When you add an

element, a property with the same name as the element is
automatically generated in the attributes compartment. Set the
property type to set the element's type.

= Group Adds a named model group to the diagram.

Complex Type Adds a global complex type to the diagram. In UML terms, this
is a class that has the «global» and «complexType»

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

424 UML Diagrams

Additional Diagrams

stereotypes applied.

Complex Type with Simple Adds a global complex type with simple content. In UML terms,

Content this is a data type that has the «global», «complexType», and
«simpleContent» stereotypes applied.

Simple Type Adds a global simple type.

=] | List Adds a list type.

] | Union Adds a union type.

Enumeration Adds an enumeration.

® | Attribute Adds an attribute.

= | Attribute group Adds an attribute group.

= Notation Adds a notation type.

o, Import Adds an import relationship.

s Include Adds an include relationship.

REL Redefine

Adds a redefine relationship.

T | Restriction

Adds a restriction relationship.

=] | Extension

Adds an extension relationship.

=7 | Substitution

Adds a substitution relationship.

[Comment Adds a comment. Comments are converted to annotations when
you generate the schema file from the model. You can specify
the annotation type by selecting the required stereotype from the
Properties window.

Note Adds an explanatory note.

A Note link Links a note to some other element on the diagram.

For step-by-step schema modeling instructions, see Example: Create and Generate an XML Schema®@®.

8.3.1.3 Example: Create and Generate an XML Schema

This example shows you how to model a new XML Schema with UModel, step by step. After modeling the
schema visually using UML, you will generate the schema file. More specifically, you will learn how to create
and generate the product.xsd schema listed below.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.altova.com/umodel"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns:prod="http://www.altova.com/umodel">

<xs:simpleType name="SizeType">

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UML Diagrams Additional Diagrams 425

<xs:restriction base="xs:integer">
<xs:maxInclusive value="10"/>
<xs:minInclusive value="1"/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="ProductType">
<xXs:sequence>
<xs:element name="number" type="xs:integer">
</xs:element>
<xs:element name="size" type="prod:SizeType'>
</xs:element>
</xs:sequence>
<xs:attribute name="createdAt" type="xs:date">
</xs:attribute>
</xs:complexType>
<xs:element name="product" type="prod:ProductType">
</xs:element>
</xs:schema>

product.xsd

As shown abowe, the product.xsd schema has two namespace declarations:

1. The default XML Schema namespace http://www.w3.0rg/2001/XMLSchema mapped to the "xs"

prefix.
2. The secondary namespace http://www.altova.com/umodel mapped to the "prod" prefix, which is

also the target namespace.
Also, the XML schema has a global product element, a complex type ProductType and a simple type

SizeType.

Declaring namespaces and file encoding

To proceed, create a new UModel project. Right-click the Root package, and select New Diagram | XML
Schema Diagram from the context menu. When prompted to include the UModel XSD Profile, click OK.

Model Tree x

Root
-------- Component View
2 el K5DMamespaceRoot
EE_l w | ¥5DTargetnamespace
[0 B ¥5D5chema

- [s=o] ¥MLSchemaDiagram
-] = Relations

- [« 71 X500 Profile [X50 Profile.u

ElMGdElTrEE @Diagram ‘%{% Favaorites

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

426 UML Diagrams Additional Diagrams

In the Model Tree Window, rename "XMLSchemaDiagram1" to "MainDiagram". This is the diagram where
most schema components will be created, except for namespace declarations.

Next, rename "XSDTargetNamespace" to "http://www.altova.com/umodel" (recall that this is the required target
namespace). This declares the target namespace of the new schema.

Maodel Tree 4

Roat

-------- Component View

2 yspl K5DMamespaceRoot
E_| w | ttp:fwaew.altova. com/umodel
. O & ¥sDschema
-~ [z=e] MainDiagram
E--;}E}F\f":l.‘lti':'l'lﬂ

[[« 71 X5D Profile [X5D Profile.ump]

ElMUdElTrEE @DiagramT... %%Fat-‘-:urites

The two "xmlIns" namespaces and the UTF-8 encoding can be set as follows:

1. Select the XSDSchema schema in the Model Tree.

2. In the Properties window, right-click the xmlIns property and select Add Tagged Value | xImns.
3. Edit the xmlIns and encoding properties as shown below.

Properties x
&groups [Py
«redefines O
«schemas

id

attributeFormDefault |

blockDefault |

elementFormDefault |

finalDefault |

Version

xmklang

amins ¥s=http:/fwwew w3, org/ 2001/ XML chema

prod=http:/fwww.altova,. com/umodel

encoding LITF-2 |

=SEOUENCEs [v

=] Properties @I Styles El Hierarchy

Optionally, you can quickly generate a new XML Schema diagram at namespace level that presents the same
information visually, as follows:

1. In the Model Tree, right-click the namespace "http://www.altova.com/umodel" and select New
Diagram | XML Schema diagram from the context menu.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Additional Diagrams 427

2. When a message box with the following text appears: "Do you want to add the XML Schema Diagram'
to a new XSD Schema'?", click No.
3. Drag the XML Schema from the Model Tree into the diagram.

pkg hitp:/fwww.altova.com/umodel J

wschemax

¥mins = xs=http:/fwwww 3. org/2001/XML5chema
= prod=http://'www.altova.com/umodel

) encoding = UTF-2

eschemas |
X5D5chema

As shown abowve, the namespace and encoding are stored as Tagged Values ® and can be edited from the
diagram window as well.

Add a simple type

The following steps create the sizeType simple type to the XML schema. This is a type that restricts the base
xs:integer type; therefore, we will add the base type to the diagram as well, and create a restriction
relationship.

1. Double-click the MainDiagram in the Model Tree to open it.

2. Click the XSD Simple Type =] toolbar button, and then click inside the diagram.
3. Rename the newly added simple type to sizeType.

I 1
I I
: «dataTypes :_"
! SizeType :_n
—

4. Click inside the Model Tree and press Ctrl+F. The Find dialog box appears. Start typing "integer" and
locate the integer type from the "XSDDataTypes" package of the "XSD Profile".
5. Drag the integer type into the diagram.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

428 UML Diagrams

Additional Diagrams

Class XS-I}S:chemaJ

xglobal, simpleTypex
adataTypex
SizeType

«global, simpleTypex
xdataTypex

integer
(from RootuXSD ProfilenXsSDDatatypes)

6. Click the Restriction wl toolbar button and drag the cursor from sizeType to integer. This creates
the restriction relationship; see also Creating Relationships ®

Class KSl}Bchema,J

«global, simpleTypex
zdataTypex
SizeType

wrastriction=

«global, simpleType=
wdataTypex

integer
(from RootuXSD ProfilenXSDDatatypes)

7. To define the minInclusive and maxInclusive values, select the simple type and edit the properties
with the same name in the Properties window.

Properties »
smaxlnclusives A
id
fixed |
value 10
smaxLengths [
aminExclusives O
sminlnclusives
id
fixed |
value i
sminLengths [
|l=notation: M <
=] Properties @I Styles EI Hierarchy

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UML Diagrams Additional Diagrams 429

Add a complex type

The following steps add the ProductType complex type to the XML schema. All these steps take place in the
MainDiagram as well.

1. Click the XSD Complex Type toolbar button, and then click inside the diagram.
2. Rename the complex type to ProductType.

3. Right-click the complex type and select New | XSD Sequence from the context menu.

zcomplexType, global=
ProduciType

[1 _sequence:mg_sequence

B «sequences mg_sequence

4. Drag the «sequence» class away from the complex type and into the diagram.

zcomplexType, global= o j‘ ______ -
ProductType | «sequencen |

~; mg_sequence |

[1 _sequence:mg_sequence +_sequence | [from ProductType) rﬂ
EF==m=mmmmmes iy

B «sequences mg_sequence

5. Right-click the sequence and select New | XSD Element (local).
6. Change the element's name to number and set the type to integer. The integer type is a base XML
Schema type from the XSD Profile. For instructions about setting an element's type, see Type

Autocompletion in Classes 127}
«complexType, global= e t ___________ -
ProduciType aSEqUEnCes :
- mg_sequence :_3
[1 _sequence:mg_sequence +_sequence I [from ProductType] La
b 1
: 1 <<elements> number:integer:
B =«sequences mg_sequence ERm =TI ; -
|Type Name Mamespace S |
[r] hexBinary ¥5D ProfilenXSDDatatyp a
[1D X5D ProfilenXSDDatatyg
[F]1 IDREF X5D ProfilenXSDDatatyg
[f] IDREFs ¥5D Profile:xSDDatatyp
[E int ¥5D Profile::xSDDatatyy
[t] integer ¥SD Profile:XSDDatatyy ™
x| E1 =3 51 B C1 B3 [E

7. Using the same steps as abowe, create the element size of type SizeType. Note that sizeType is the
simple type created previously.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

430 UML Diagrams Additional Diagrams

=complexType, global= xSEQUEnCes
ProduciType mg_sequence

= [from ProductType]
[1 _sequence:mg_sequence + sequence

[1 =element= numberinteger
[0 =«elements size:SizeType

B «sequences mg_sequence

8. Right-click the complex type on the diagram and select New | XSD Attribute (local) from the context

window.
9. Change the attribute's name to createdAt and the type to date.

«complexType, global= xSEqUenCes

ProductType mg_sequence
ffrom ProductType]

+_sequence

[1 _sequence:mg_sequence

[=attribute= createdAt:date [1 =elements numberinteger
A =element= size:SizeType

B «sequences mg_sequence

Add an element
Now that all the required types of the schema have been defined, you can add a product element of type
ProductType, as follows:

1. Click the XSD Element (global) E] toolbar button, and then click inside the diagram. Notice that a
class with the «element» stereotype and a single property is added.

=2lement= .i

¥SDElement :—?-
+—0a
1
1

[1 XSDElement

2. Rename the property to product and change its type to ProductType.

«element=
product

[1 productProductType

Completed design
The steps above conclude the design part of the schema. By now, your full schema design should look as
follows:

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams Additional Diagrams 431

Class X5DSchema]

wmaxinclusives
value = 10
«mininclusives

value = 1

«global, simpleTypes
«global, maxinclusive, mininclusive, simpleType= srestrictions =dataTypes
«dataTypes == integer
SizeType [from Root:¥SD Profile:X5DDatatypes)
=complexType, global=] wSEUEnCes
ProdudT: = zelements
roductType - sequence mg_seguence
[from ProductType) product
[1 _sequence:mg_sequence
[0 «attributes createdit:date [1 =element= numberinteger [1 product:ProductType
[1 =elements size:SizeType
B «sequences mg_sequence

Enable code engineering

To make it possible to generate a schema file from the model, let's now add a code engineering component
that provides the schema generation details. The code engineeri% component is similar to other UModel

project kinds, see also Adding a Code Engineering Component

Right-click the "Component View" package in the Model Tree and add a new element of type Component.
Make sure to change the component's properties as shown below:

1. The use for code engineering property must be enabled.
. The code language property of the code engineering component must be set to "XSD 1.0".
3. The project file property of the code engineering component must point to the schema file that is to
be generated (in this example, product.xsd).

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

432 UML Diagrams Additional Diagrams

Model Tree X | Properties x
Root - name Component
= Component View qualified name Component View: Component
#] Componenti element kind Component
-3 Lep %¥SDMamespaceRoot visibility public hd
-3 w7 http:fwww.altova.com/umodel leaf L
-------- [i=] ¥MLSchemaDiagram1 abstract Ol

£ B ¥SDSchema isFinalspecialization |1

indirectlylnstantiated

MainDiagram
Epmduct code language X501.0 |
T = 1 product project file product.xsd =
A — P - use for code engine...
b »

Ell"ﬂ[ldElTrEE EDiagramT... %Fat-‘-:urites [=] Properties @St}-‘les EIHierarchy

Note: If a project file property is missing, enter product.xsd in the directory property and press Enter. A
message box should now appear asking you to refer to a project file instead. Click Yes to confirm.

Finally, the XML Schema must be realized by the code engineering component, as described in Adding a Code
Engineering Component@. For the scope of this example, the quickest way to create the
ComponentRealization relationship is as follows:

e In the Model Tree, drag the XSDSchema schema over the code engineering component
(Component1) and drop it when a tooltip appears such as the one below:

Model Tree
(© Info:

Root Crop will add CompeonentRealizations to the Component
e Compone T

I £] Componen

B e X3DMamespaceRoot

E| v | ttpe/fwwwaltova.com/umaodel

P [s50] ¥MLSchemaDiagram?

i - E X5D5chema

: -------- [z=0] MainDiagram -
1 r

Elf'-."lﬂdElTrEE @DiagramT... %% Favaorites

You can now generate the schema file. To do this, either press F12 or select the Project | Overwrite
Program Code from UModel project menu command. Note that merging is not supported in case of XML
Schemas; therefore, the dialog box shows a message in red to state this fact.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UML Diagrams

Additional Diagrams 433

Synchronization Settings

Code from Model Madel from Code
SPL templates
User-defined ovenide default

When deleting Code
Comment out Delete

Synchronization
Merge Model inta Code

Cverwrite Code according to Madel

¥ML Schema files are always overwrtten

[+]:8way= show dialog when synchronizing:

Project Settings

Cancel

The new XML schema will be generated in the same folder as your UModel project.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

434

XMI - XML Metadata Interchange

9

¢ Altova website: Exchanging UModel projects using XMl

XMI - XML Metadata Interchange

You can export UModel projects to XML Metadata Interchange (XMl) files, and import XMl files as UModel

projects. This provides interoperability with other UML tools that support XMI. The supported XMI versions are
as follows:

XMI 2.1 for UML 2.0
XMI 2.1 for UML 2.1.2
XMI 2.1 for UML 2.2
XMI 2.1 for UML 2.3
XMI 2.4.1 for UML 2.4.1
XMI 2.4.1 for UML 2.5
XMI12.5.1 for UML 2.5.1

To import an XMl file into UModel:

On the File menu, click Import from XMI File.

To export a UModel project to an XMI file:

Notes:

On the File menu, click Export to XMl File.

AMI Export

Filename: | C:\Users\altova'Desktop'\Bank_Java.xmi

Encoding: | Unicode UTF-8

Version: XMI 2.5.1 for UML 2.5.1

General options

Pretty-print ¥MI output
Export UUIDs

Export UModel Extensions
Export diagrams

Cancel

During the export process, all included files, even those defined as include by reference@, are

exported.

If you intend to re-import generated XMI code into UModel, make sure that you select the Export

UModel Extensions check box.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

https://www.altova.com/umodel/advanced#xmi

XMI - XML Metadata Interchange 435

The sections below describe options available when exporting projects to XMI.

Pretty-print XMl output
If you select this option, the XMl file will be generated with XML tag indentation and carriage returns.

Export UUIDs
XMI defines three versions of element identification: IDs, UUIDs and labels.

e IDs are unique within the XMI document, and are supported by most UML tools. UModel exports these
type of IDs by default, i.e. none of the check boxes need activated.

e UUID are Universally Unique Identifiers, and provide a mechanism to assign each element a global
unique identification, GUID. These IDs are globally unique, i.e. they are not restricted to the specific
XMI document. UUIDs are generated by selecting the "Export UUIDs" check box.

e UUIDs are stored in the standard canonical UUID/GUID format (e.g "6B29FC40-CA47-1067-B31D-
00DD010662DA", "550e8400-e29b-41d4-a716-446655440000",...)

e Labels are not supported by UModel.

Note: The XMI import process automatically supports both types of IDs.

Export UModel Extensions

XMl defines an "extension mechanism" which allows each application to export its tool-specific extensions to
the UML specification. Other UML tools will, however, only be able to import the standard UML data (ignoring
the UModel extensions). This UModel extension data will be available when importing into UModel.

Data such as the file names of classes, or element colors, are not part of the UML specification and thus have
to be deleted in XMI, or be saved in "Extensions". If they have been exported as extensions and re-imported, all
file names and colors will be imported as defined. If extensions are not used for the export process, then these
UModel-specific data will be lost.

When importing an XMI document, the format is automatically detected and the model generated.

Export diagrams

Exports UModel diagrams as "Extensions" in the XMl file. The option Export UModel Extensions must be
selected before you can sawe the diagrams as extensions.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

436 Source Control

10 Source Control

The source control support in UModel is available through the Microsoft Source Control Plug-in API (formerly
known as the MSSCCI API), versions 1.1, 1.2 and 1.3. This enables you to run source control commands such
as "Check in" or "Check out" directly from UModel to virtually any source control system that lets native or
third-party clients connect to it through the Microsoft Source Control Plug-in API.

You can use as your source control provider any commercial or non-commercial plug-in that supports the
Microsoft Source Control Plug-in API, and can connect to a compatible version control system. For the list of
source control systems and plug-ins tested by Altova, see Supported Source Control Systems ®

Installing and configuring the source control provider
To view the source control providers available on your system, do the following:

1. On the Tools menu, click Options.
2. Click the Source Control tab.

Any source control plug-ins compatible with the Microsoft Source Code Control Plug-in API are displayed in the
Current source control plug-in drop-down list.

Cument source control plug-n:
|I'u'lic:msuﬂ Visual SourceSafe v| | Advanced...

Logon D (SourceSafe):
MYFAWID|

Perform background status updates every | 500 | ms

| Display output messages from plug-in
Get eventhing when opening a project
Check in eventhing when closing a project
Dont show Check Out dialog box when checking out items
Dont show Check In diglog box when checking in items
Keep tems checked out when checking in or adding tems

If dialogs were hidden using Don't show this again,
click Reset to view them again.

1
[11]
i

If a compatible plug-in cannot be found on your system, the following message is displayed:

"Registration of installed source control providers could not be found or is incomplete."
Some source control systems might not install the source control plug-in automatically, in which case you will
need to install it separately. For further instructions, refer to the documentation of the respective source control
system. A plug-in (provider) compatible with the Microsoft Source Code Control Plug-in APl is expected to be

registered under the following registry entry on your operating system:

HKEY LOCAL MACHINE\SOFTWARE\SourceCodeControlProvider\InstalledSCCProviders

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Source Control 437

Upon correct installation, the plug-in becomes available automatically in the list of plug-ins available to UModel.

Accessing the source control commands
The commands related to source control are available in the Project | Source Control menu.

Resource / Speed issues

Very large source control databases might be introducing a speed/resource penalty when automatically
performing background status updates.

You might be able to speed up your system by disabling (or increasing the interval of) the Perform
background status updates every ... seconds option in the Source Control tab accessed through Tools |
Options.

Note: The 64-bit version of your Altova application automatically supports any of the supported 32-bit source
control programs listed in this documentation. When using a 64-bit Altova application with a 32-bit
source control program, the Perform background status updates every ... seconds option is
automatically grayed-out and cannot be selected.

Differencing with Altova DiffDog

You can configure many source control systems (including Git and TortoiseSVN) so that they use Altova
DiffDog as their differencing tool. For more information about DiffDog, see https://www.altova.com/diffdog. For
DiffDog documentation, see https://www.altova.com/documentation.html.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

https://www.altova.com/diffdog
https://www.altova.com/documentation.html

438

Source Control Setting Up Source Control

10.1

Setting Up Source Control

The mechanism for setting up source control and placing files in a UModel project under source control is as

follows:

1.

If this hasn't been done already, install the source control system (see Supported Source Control
Systems) and set up the source control database (repository) to which you wish to save your
work.

Create a local workspace folder that will contain the working files that you wish to place under source
control. The folder that contains all your workspace folders and files is called the local folder, and the
path to the local folder is referred to as the local path. This local folder will be bound to a particular
folder in the repository.

In your Altova application, create an application project folder to which you must add the files you wish
to place under source control. This organization of files in an application project is abstract. The files in
a project reference physical files saved locally, preferably in one folder (with sub-folders if required) for
each project.

In the source control system's database (also referred to as source control or repository), a folder is
created that is bound to the local folder. This folder (called the bound folder) will replicate the structure
of the local folder so that all files to be placed under source control are correctly located hierarchically
within the bound folder. The bound folder is usually created when you add a file or an application
project to source control for the first time.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Source Control

Supported Source Control Systems 439

10.2

Supported Source Control Systems

The list below shows the Source Control Servers (SCSs) supported by UModel, together with their respective
Source Control Clients (SCCs). The list is organized alphabetically by SCS. Note the following:

e Altova has implemented the Microsoft Source Control Plug-in API (versions 1.1, 1.2, and 1.3) in
UModel, and has tested support for the listed drivers and revision control systems. It is expected that
UModel will continue to support these products if, and when, they are updated.

e Source Code Control clients not listed below, but which implement the Microsoft Source Control Plug-

in API, should also work with UModel.

Source Control System

Source Code Control Clients

AccuRev 4.7.0 Windows

AccuBridge for Microsoft SCC 2008.2

Bazaar 1.9 Windows

Aigenta Unified SCC 1.0.6

Borland StarTeam 2008

Borland StarTeam Cross-Platform Client 2008 R2

Codice Software Plastic SCM Professional
2.7.127.10 (Server)

Codice Software Plastic SCM Professional 2.7.127.10 (SCC
Plugin)

Collabnet Subversion 1.5.4

Aigenta Unified SCC 1.0.6
PushOK SVN SCC 1.5.1.1
PushOK SVN SCC x64 version 1.6.3.1
TamTam SVN SCC 1.2.24

ComponentSoftware CS-RCS (PRO) 5.1

ComponentSoftware CS-RCS (PRO) 5.1

Dynamsoft SourceAnywhere for VSS 5.3.2
Standard/Professional Server

Dynamsoft SourceAnywhere for VSS 5.3.2 Client

Dynamsoft SourceAnywhere Hosted

Dynamsoft SourceAnywhere Hosted Client (22252)

Dynamsoft SourceAnywhere Standalone 2.2
Server

Dynamsoft SourceAnywhere Standalone 2.2 Client

Git

PushOK GIT SCC plug-in (see Source Control with Git@)

IBM Rational ClearCase 7.0.1 (LT)

IBM Rational ClearCase 7.0.1 (LT)

March-Hare CVSNT 2.5 (2.5.03.2382)

Aigenta Unified SCC 1.0.6

March-Hare CVS Suite 2008

Jalindi Igloo 1.0.3

March-Hare CVS Suite Client 2008 (3321)
PushOK CVS SCC NT 2.1.2.5

PushOK CVS SCC x64 version 2.2.0.4
TamTam CVS SCC 1.2.40

Mercurial 1.0.2 for Windows

Sergey Antonov HgSCC 1.0.1

Microsoft SourceSafe 2005 with CTP

Microsoft SourceSafe 2005 with CTP

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

440 Source Control

Supported Source Control Systems

Source Control System

Source Code Control Clients

Microsoft Visual Studio Team System
2008/2010 Team Foundation Server

Microsoft Team Foundation Server 2008/2010 MSSCCI
Provider

Perforce 2008 P4S 2008.1

Perforce P4V 2008.1

PureCM Server 2008/3a

PureCM Client 2008/3a

QSC Team Coherence Sener 7.2.1.35

QSC Team Coherence Client 7.2.1.35

Reliable Software Code Co-Op 5.1a

Reliable Software Code Co-Op 5.1a

Seapine Surround SCM Client/Senrver for
Windows 2009.0.0

Seapine Surround SCM Client 2009.0.0

Serena Dimensions Express/CM 10.1.3 for
Win32 Server

Serena Dimensions 10.1.3 for Win32 Client

Softimage Alienbrain Server 8.1.0.7300

Softimage Alienbrain Essentials/Advanced Client 8.1.0.7300

SourceGear Fortress 1.1.4 Server

SourceGear Fortress 1.1.4 Client

SourceGear SourceOffsite Server 4.2.0

SourceGear SourceOffsite Client 4.2.0 (Windows)

SourceGear Vault 4.1.4 Server

SourceGear Vault 4.1.4 Client

VisualSVN Server 1.6

¢ Aigenta Unified SCC 1.0.6
e PushOK SVN SCC 1.5.1.1
e PushOK SVN SCC x64 version 1.6.3.1
e TamTam SVN SCC 1.2.24

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Source Control Source Control Commands 441

10.3 Source Control Commands

The following sections use Visual SourceSafe to show the source control features of UModel. The examples in
this section use the Bank_CSharp.ump UModel project (and associated code files) available in the C:
\Users\<username>\Documents\Altova\UModel2023\UModelExamples folder. Note that a Source Control
project is not the same as a UModel project. Source Control projects are directory dependent, whereas UModel
projects are logical constructions without direct directory dependence.

To access the Source Control commands, do one of the following:

e Use the menu command Project | Source Control

e Use the context menu in the Model Tree

e Click the source control toolbar buttons in the Source Control toolbar. Use Tools | Customize |
Toolbars to activate the toolbar.

The description of the version control commands that follow apply to the standalone version of UModel. The
Visual Studio and Eclipse versions of UModel use the version control functionality and menu items available in
those IDEs.

Open from Source Control
Enable Source Control

Get Latest Version

Get

Get Folder(si

Check Out

Check Ineg

Undo Check Out...

Add to Source Control
Remove from Source Control
Share from Source Control

Show History
Show Differences

Show Properties@
Refresh Status

Source Control Manager®
Change Source Control

10.3.1 Open from Source Control

The Open from Source Control command creates a local project from an existing source control database, and
places it under source control, SourceSafe in this case.

1. Select Project | Source Control | Open from Source Control.
The Login dialog box is opened, enter your login details to continue.
The "Create local project from SourceSafe" dialog box appears.

2. Define the directory to contain the new local project e.g. c:\temp\ssc. This becomes the Working
directory, or the Check Out Folder.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

442 Source Control Source Control Commands

- =

Create local project from SourceSafe @

Create a new project in the folder:

C:\Usersialtova\Documents\UMODEL _WORK

SourceSafe project to download:
g/

=2 @

H [Bank_CSharp

(0]4] [Cancel] [Help

3. Select the SourceSafe project you want to download e.g. Bank_CSharp.
If the folder you define here does not exist at the location, a dialog box opens prompting you to create
it.

4. Click Yes to create the new directory.
The Open dialog box is now visible.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Source Control Source Control Commands 443

-

’ @ Open @

Lookin: |, Bank_CSharp - @ E
o | Brnps
""ﬁ“ %Bank_CSharp

Recent Places

Desktop

=
Libraries
A

Computer

q-“ﬂln
€A
Metwork

-

File name: ump - Qpen

Files of type: UModel Projects {~.ump} -

5. Select the Bank_CSharp.ump UModel project file and click Open.
Bank_CSharp.ump now opens in UModel, and the file is placed under source control. This is

indicated by the lock symbol visible on the Root folder in the Model Tree window. The Root folder
represents both the project file and the working directory for source control operations.

Model Tree 3 x

= Root

Behavior View
Component View
Deployment Wiew
Dezign Wiew
Interaction View
Uze Case View

T

C# Profile [C# Profile.ump]

HEHBHEHEE

The BankCSharp directory has been created locally, you can now work with these files as you
normally would.
Note:

To place under source control the code files generated when synchronizing code, see: Add to Source
Control “&

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

444 Source Control Source Control Commands

Source control symbols

& &
or 3
The lock symbol denotes that the file, or folder is under source control, but is currently not checked out.
v o
or 'ié
The red check mark denotes checked out, i.e. the UModel project file (or code file) has been checked out for

editing. The asterisk in the Application title bar denotes that changes have been made to the file, and you will
be prompted to sawe it when you exit.

o

or
The arrow symbol shows that the file(s) have been checked out by someone else in the network, or by you into
a different working directory

10.3.2 Enable Source Control

This command allows you to enable or disable source control for a UModel project and is available through the
Project menu item, i.e. Project | Source Control | Enable Source Control. Selecting this option on any file
or folder, enables/disables source control for the whole UModel project.

To enable Source Control for a project:

1. Select the menu option Project | Source Control and activate/check the Enable source control
check box of the fly-out menu. The previous check in/out status of the various files are retrieved and
displayed in the Model Tree window.

To disable Source Control for a project:

1. Select the menu option Project | Source Control and uncheck the Enable source control check
box.

s =

Source Control

I-é-l Source control has been disconnected!

Do you want to remove source control binding information from your project?

[Don't show this message again.

Yes | | Mo

You are now prompted if you want to remove the binding information from the project.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Source Control Source Control Commands 445

To provisionally disable source control for the project, select No.

To permanently disable source control for the project, select Yes.

10.3.3 Get Latest Version

Retrieves and places the latest source control version of the selected file(s) in the working directory. The files
are retrieved as read-only and are not checked out.

If the affected files are currently checked out, different things occur depending on the specific version control
plugin: nothing happens, new data are merged into your local file, or your changes are overwritten.

This command works in a similar fashion to the Get command, but does not display the "Source control - Get"
dialog box. It is therefore not possible to specify Advanced get options.

Note that this command automatically performs a recursive get latest version operation when performed on a
folder, i.e. it affects all other files below the current one in the package hierarchy.
To get the latest version of a file:

1. Select the file(s) you want to get the latest version of in the Model Tree.
2. Select Project | Source Control | Get Latest Version.

10.3.4 Get

Retrieves a read-only copy of the selected files and places them in the working folder. The files are not
checked-out for editing per default.
Using Get:

e Select the files you want to get in the Model Tree.
e Select Project | Source Control | Get.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

446 Source Control Source Control Commands

Source Cantrol - Get

CAlzersiatova\Documents\UMODEL_VWORK\Bank_CSharp\codegen\Account.cs
CAalzersiatovaiDocuments\UMODEL_VWORK\Bank_CSharp\codegen\Bank.cs Cancel
Calsersiatova\Documents\UMODEL_VWORK\Bank_CSharp\codegen\BankView.cs
C\UserstatovaiDocuments\UMODEL_WORK\Bank_CSharp\codegen\Checking&ccount.cs Select Al
ClsersialtovaiDocuments\UMODEL_WORK\Bank_CSharpicodegen\CreditCardAccount.cs
CAUserstatovaiDocuments\UMODEL_WORK\Bank_CSharpicodegeniSavingsAccount.cs Advanced...

[] Ovenwrite changed files

Overwrite changed files
Overwrites those files that have been changed locally with those from the source control database.

Select All
Selects all the files in the list box.

Advanced
Allows you to define the Replace writable and Set timestamp options in the respective combo boxes.

-

Advanced Get Options @

Replace writable:
e]

Set timestamp:

[Current T] ["| Make writable

The "Make writable" check box removes the read-only attribute of the retrieved files.

10.3.5 Get Folder(s)

Retrieves read-only copies of files in the selected folders and places them in the working folder. The files are
not checked-out for editing per default.

Using Get Folders:

e Select the folder you want to get in the Model Tree.
e Select Project | Source Control | Get Folders.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Source Control Source Control Commands 447

Source Control - Get Folders

E“ES 0K
[] CcalsersiatovaiDocuments\UMODEL_WORK
CAlzersiatova\Documents\UMODEL_VWORK\Bank_CSharp\codegen Canicel

Select A

Advanced...

ik

[] Ovenwrite changed files
[] Becursive [get tree]

Overwrite changed files
Owerwrites those files that have been changed locally with those from the source control database.

Recursive (get tree)
Retrieves all files of the folder tree below the selected folder.

Advanced
Allows you to define the Replace writable and Set timestamp options in the respective combo boxes.

Advanced Get Options @
Replace writable:
IASk 'I Cancel
Set timestamp:

Il:urrent - I [Make writable Help

The "Make writable" check box removes the read-only attribute of the retrieved files.

10.3.6 Check Out

This command checks out the latest version of the selected files and places writable copies in the working
directory. The files are flagged as "checked out" for all other users.

To Check Out files:

e Select the file or folder you want to check out in the Model Tree.
e Select Project | Source Control | Check Out.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

448 Source Control Source Control Commands

Source Control - Check Out

CAUsers\attova\Documents\UMODEL_WORK\Bank_CSharp\codegen\Account.cs
CAUsersiattova\Documentsi\UMODEL_WORK\Bank_CSharp\codegen\Bank.cs Cancel
CUzers\attova\Documents\UMODEL_WORK\Bank_CSharpicoedegen\BankView.cs
ChUsersiatovalDocuments\UMODEL_WORK\Bank_CSharp\codegen\Checkingfccount.cs Select 4l
CAlUzers\atova\Documents\UMODEL_WORK\Bank_CSharpicodegen\CreditCardAccount.cs

CAUsers\atovaiDocuments\MODEL_WORK\Bank_CSharpicodegen\SavingsAccount.cs Advanced...

[7] Checkout local version
Comment

Note: You can change the number of files to check out, by activating the individual check boxes in the Files
list box.

Select the option Checkout local version to check out only the local versions of the files, not those from the
source control database.

The following items can be checked out:

e Single files, click on the respective files (CTRL + click, in the Model Tree)
e Folders, click on the folders (CTRL + click, in the Model Tree)

=
F or |‘_‘é

The red check mark denotes that the file/folder has been checked out.

Advanced
Allows you to define the Replace writable and Set timestamp options in the respective combo boxes.

-

Advanced Get Options @

Replace writable:
e]

Set timestamp:

ICurrent "I [| Make writable

The "Make writable" check box removes the read-only attribute of the retrieved files.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Source Control Source Control Commands 449

10.3.7 Check In

This command checks in the previously checked out files, i.e. your locally updated files, and places them in
the source control database.
To Check In files:

e Select the files in the Model Tree
e Select Project | Source Control | Check In.

Shortcut: Right-click a checked out item in the project window, and select "Check in" from the Context menu.

e =

Source Control - Check In

CAUsersiattova\Documents\UMODEL_VWORK\Bank_CSharp\Bank_CSharp.ump
CAUsersiattova\Documents\UMODEL_WORK\Bank_CSharpicodegen\Account.cs Cancel
CAUsersiattova\DocumentsiUMODEL_WORK\Bank_CSharpicodegen\Bank.cs

CAUsers\atovaiDocumentsi\UMODEL_WORK\Bank_CSharp\codegeniBankView.cs Select Al
CAlsers\atova\Documents\UMODEL_VWORK\Bank_CSharpicodegen\CheckingAccount.cs
CAUsersiattova\Documents\UMODEL_WORK\Bank_CSharp\codegen\CreditCardAccount.cs
ClUzers\attova\Documents\UMODEL_WORK\Bank_CSharpicoedegen\SavingsAccount.cs

Differences. .
[] Eeep checked out
Comment
Note:
You can change the number of files to check in, by activating the individual check boxes in the Files
list box.

The following items can be checked in:
e Single files, click on the respective files (CTRL + click, in Model Tree)
e Folders, click on the folders (CTRL + click, in Model Tree)

.83

The lock symbol denotes that the file/folder is under source control, but is currently not checked out.

10.3.8 Undo Check Out...

This command discards changes made to previously checked out files, i.e. your locally updated files, and
retains the old files from the source control database.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

450 Source Control Source Control Commands

To Undo Check Out..

e Select the files in the Model Tree
e Select Project | Source Control | Undo Check Out.

Source Control - Undo Check Out

CAlzersiatova\Documents\UMODEL_WORK\Bank_CSharp\Bank_CSharp.ump
CAalzersiatova\Documents\UMODEL_VWORK\Bank_CSharp\codegen\Account.cs Cancel
CAlszersiatova\Documents\UMODEL_VWORK\Bank_CSharp\codegen\Bank.cs
CAUserstattovailocuments\UMODEL_VWORK\Bank_CSharpicodegen\BankView.cs Select Al
ChlsersialtovaiDocuments\UMODEL_WORK\Bank_CSharp\codegen\CheckingfAccount.cs

CAUserstatovalDocuments\UMODEL_WORK\Bank_CSharpicodegen\CreditCardAccount.cs Advanced...
CAlszersiatova\Documents\UMODEL_VWORK\Bank_CSharp\codegen\SavingsAccount.cs

Note:
You can change the number of files by activating the individual check boxes in the Files list box.

The Undo check out option can apply to the following items:
e Single files, click on the respective files (CTRL + click, in Model Tree)
e Folders, click on the folders (CTRL + click, in Model Tree)

Advanced
Allows you to define the Replace writable and Set timestamp options in the respective combo boxes.

-

Advanced Get Options @

Replace writable:
e]

Set imestamp:

[Current "] [Make writable

The "Make writable" check box removes the read-only attribute of the retrieved files.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Source Control Source Control Commands 451

10.3.9 Add to Source Control

Adds the selected files or folders to the source control database and places them under source control. If you
are adding a new UModel project you will be prompted for the workspace folder and the location at which your

project should be stored.

Having placed the UModel project file (*.ump) under source control, you can then add the code files produced
by the code-engineering process, to source control as well. For this to work, the generated code files and the
UModel project have to be placed in, or under, the same SourceSafe working directory. The working directory
used in this section is C:\Users\Altova\Documents\UMODEL_WORK\.

To add UModel generated code files to source control:

1. Expand the Component View folder in the Model Tree and Navigate to the BankView component.

Maodel Tree 4

" Root

7| |Behavior View

-3 |Component View

Banking access

E"L:J BankWiew

_ & |BankView realization

g | BankView

i] BankWiew GUI
Deployment View
Design Wiew
Interaction View
Uze Case View

HEHEHEE

F1Model Tree | = Diagram T...| 3% Favorites

2. Click the BankView component and click the Browse icon next to the "directory" field in the
Properties window.

Properties X
sFinalSpecializaton [-
narectiyinstantiared
code language C#2.0 |
director EC:".Users".artuva".Dun:umE; =
ze for code engineeri#]

(= Properties | 531 Styles & Hierarchy

3. Change the code engineering directory to C:\Users\Altova\Documents\UMODEL_WORK\codegen.
4. Select the menu item Project | Merge Program Code from UModel project.
5. Change the Synchronization settings if necessary, and click OK to confirm.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

452 Source Control Source Control Commands

- =

Synchronization Settings

Code from Model | Model from Code

SPL templates
User-defined ovemide default

When deleting Code

@ Comment ot () Delete
Synchronization

@ Merge Model into Code

) Ovenwrite Code according to Maodel

[F]itslways show dialog when synchronizing

|F'ru:uieu:t5&ttings k.] l Cancel

The Messages window displays the code from project process.
A message box opens asking if you want to place the newly created files under source control.

i =

Source Control @

[0] Do you want to put the newly added file(s) under source control?

[Don't show this message again.

Y¥es | I Mo

6. Click Yes to do so.
7. The "Add to Source Control" dialog box is opened, allowing you to select the files you want to place
under source control.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Source Control Source Control Commands 453

Source Control - Add to Source Control

ClUzersiatova\Documents\UMODEL_WORK\codegen\account.cs
CilzersiatovalDocuments\UMODEL_WORKMcodegen\Bank.cs
CAlUsersiatova\Documents\UMODEL_WORK\codegen\BankView.cs
CilzersiatovaiDocuments\UMODEL_WORK\codegen\CheckingAccount.cs

CAUserslatova\Documents\UMODEL_WORK\codegen\CreditCardAccount.cs
CilzersiatovaiDocuments\UMODEL_WORK\codegen\SavingsAccount.cs

[7] Eeep checked out
Comment

Fleaze note that you can zplit your project into multiple subprojects. Each individual zubproject can be added to
the source control spstem separately, allowing multiple developers to work. on a single project.

8. Click OK once you have selected the files you want to place under source control.
The lock symbol now appears next to each of the classes/file sources placed under source control.

Model Tree X
-[3] je=£| BankVigw T
-------- [E Apply CSharp Profile
-E /| com
B[attova

.= bankview

........ = BankView Main

........ Hierarchy of Account
........ [L] Sample Accounts

-[F [AgencyBank

- [John's 15t

[[John's 2nd |
-{# B John's 3rd

-E%3 Account

-m53 Bank

-5 BankView T

F1Model Tree | = Diagram Tree| 3§ Favorites

m

10.3.10 Remove from Source Control

This command removes previously added files, from the source control database. These type of files remain
visible in the Model Tree but cannot be checked in or out. Use the "Add to Source Control" command to place
them back under source control.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

454 Source Control Source Control Commands

To remove files from the source control provider:

e Select the files you want to remowe in the Model Tree.
e Select Project | Source Control | Remove from Source Control.

Source Control - Remowve from Source Control

CAlsersiatova\Documents\UMODEL_WORK\Bank_CSharp\Bank_CSharp.ump
CAalzersiatova\Documents\UMODEL_WORK\Bank_CSharp\codegen\account.cs Cancel
CAalzersiatovaiDocuments\UMODEL_VWORK\Bank_CSharp\codegen\Bank.cs

CAUsersiatovaiDocuments\UMODEL_WORK\Bank_CSharpicodegen\BankView.cs Select All
Chlsersiatova\locuments\UMODEL_VWORK\Bank_CSharpi\codegen\CheckingfAccount.cs
ClsersialtovaiDocuments\UMODEL_WORK\Bank_CSharpicodegen\CreditCardAccount.cs
CilsersialtovaiDocuments\UMODEL_WORK\Bank_CSharp\codegen\SavingsAccount.cs

Note:
You can change the number of files to remowve, by activating the individual check boxes in the Files list
box.

The following items can be removed from source control:
e Single files, click on the respective files (CTRL + click, for several)
e Folders, click on the folder icon.

10.3.11 Share from Source Control

This command shares/branches files from other projects/folders within the source control repository, into the
selected folder. To use the Share command you must have the Check in/out rights to the project you are
sharing from.

To share a file from source control:
1. Select the folder you want to share files to, in the Model Tree window, and select Project | Source

Control | Share from Source Control. e.g. BankView Component in the Component View folder.
2. Select the project folder that contains the file you want to share in the "Projects” list box.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Source Control

Source Control Commands 455

|_"| Checkingdcoount. cs
|| CreditCardécoount. cs
|| Savingshcoount cs

Share to &/
File to share: Projects:
= &/.../codegen
|| Aceount, s = L_[j &f
|_L| Bank.cs = [J Bank_CSharp
|_"| BankMiew.cs |3 Brps

G

List files of type:

Relevant Masks (*.%)

vJ [] Branch after share

Close

Share

Help

b r g

3. Select the file you want to share in the "Files to share" list box and click the Share button.

The file is now removed from the "File to share" list.

4. Click the Close button to continue.

Branch after share
Shares the file and creates a new branch to create a separate version.

10.3.12 Show History

This command displays the history of a file under source control, and allows you to view, see detailed history
info, difference, or retrieve previous versions of a file.

To show the history of a file:

1.

Click on the file in the Model Tree window.
2. Select the menu options Project | Source control | Show history.

A dialog box prompting for more information opens.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

456

Source Control Source Control Commands

History Options @
)
[Labels Only
Hem
To:
User:

Select the appropriate entries and confirm with OK.

i =

1) History of $/Bank_CSharp/Bank_CSharp.ump

History: 1items Close

Werzion dzer D ate Actian

altowa 75 10:454 Created

Details

1
heng

Get
Ched: Qut
Diff
Pin
Rollback

Report

Help

This dialog box is provides various way of comparing and getting specific versions of the file in
question. Double clicking an entry in the list opens the History Details dialog box for that file.

Close
Closes this dialog box.

View
Opens a further dialog box in which you can select the type of viewer you want to see the file with.

Details
Opens a dialog box in which you can see the properties of the currently actiwe file.

Get
Allows you to retrieve one of the previous versions of the file in the version list, and place it into the
working directory.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Source Control Source Control Commands 457

Check Out
Allows you to check out the latest version of the file.

Diff
Opens the Difference options dialog box, which allows you to define the difference options when
viewing the differences between two file versions.

Use CTRL+Click to mark two file versions in this window, then click Diff to view the differences between
them.

Pin

Pins or unpins a version of the file, allowing you to define the specific file version to use when
differencing two files.

Rollback
Rolls back to the selected version of the file.

Report
Generates a history report which you can send to the printer, file, or clipboard.

Help
Opens the online help of the source control provider plugin.

10.3.13 Show Differences

This command displays the differences between the file currently in the source control repository, and the
checked in/out file of the same name in the working directory.

If you have "pinned" one of the files in the history dialog box, then the pinned file will be used in the "Compare"
text box. Any two files can be selected using the Browse buttons.
To show the differences between two files:

1. Click on a file in the Model Tree window.

2. Select the menu option Project | Source control | Show Differences.
A dialog box prompting for more information appears.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

458 Source Control

Source Control Commands

-

Difference Options

| 0

i

[] 1gnore white space []1gnore caze

o C Sharp Bank_CSharp.ump JIEEETT N K
To: C:\Jsers\altovaDocuments Browse.., w
Farmat
) Report
@ Visual
i©) SourceSafe Help
1 Unix

Project...

Advanced >

3. Select the appropriate entries and confirm with OK.

Lqﬂ Differences for 5/Bank_CSharp/Bank_CSharp.ump '?'@
-] (] % | @
uj §/Bank_CSharp/Bank_CSharp.ump [¥ C\Users\altova\Documents\UMODEL_WORK\Bank_CSharg\Ban...
1 <?xml version="1.0" encoding="UIF-8"7> 1 <?xml version="1.0" encoding="UTF-8"7> «
2 «Model wversion="12"> 2 <Model version="12"> 1| 4
3 <Settings> 3 <S5ettings> N
4 <ProjectStyles namespacemode="3" t 4 <Projectityles namespacemode=T3’
-?I 5 <SourceControl Provider="Micros:
5 </5ectings> a </S5ettings>
& <Model:> 7 <Model>
7 <Package uuid="00000001-7510-11d9- 8 <Package uuid="00000001-7510-11¢
8 <packagedElement> g <packagedElement>
9 <Package uuid="00000003-T7E 10 <Package uuid="00000003-
10 <packagedElement> 11 <packagedElement >
11 <Package uuid="T7%3" 12 <Package uuid=""
12 <packagedElems 13 <packagedEl:
13 <Component 14 < Compon:
14 <inter 15 <imt
15 <] 16
16 <finte 17 </ i1
17 <reali 18 <red
3 <(19
13 <freal 20 </ re
20 </Componer 21 </ Compor
21 </packagedElen 22 </packagedE
22 </Package> 23 </Package>
23 <Package uuid="82" 24 <Package uuid="{
24 <packagedElems 25 <packagedEl: =
1 [FoA [P
Deleted Text = Changed Text Inserted Text Lnl, Coll

The differences between the two files are highlighted in both windows (this example uses MS

SourceSafe).

10.3.14 Show Properties

This command displays the properties of the currently selected file, and is dependent on the source control

provider you use.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Source Control Source Control Commands 459

To display the properties of the currently selected file:
e Select Project | Source Control | Properties.

This command can only be used on single files.

§/Bank_CSharp/Bank_CSharp.ump @

General | Check Out Status | Links | Paths |

Mame: &/Bank_CSharp/Bank_CSharp.ump

Unicode (UTF-8)
Auto-detect encoding of local file
Size: 237350 bytes 3887 lines
Store only latest version
Latest:

Version: 1
Date: 3/27/15 10:45a

Comment:

[Close][Report][Help

10.3.15 Refresh Status

This command refreshes the status of all project files, independent of their current status.

10.3.16 Source Control Manager

This command starts your source control software with its native user interface.

10.3.17 Change Source Control

This dialog box allows you to change the source control binding that you are using. Click the Unbind button
first, then (optionally) click the Select button to select a new source control provider, and finally click the Bind
button to bind to a new location in the repository.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

460 Source Control Source Control Commands

.- =

Change Source Control @
Local Path: C:\LocalFolder Browsze...
Sco Provider: Jalindi [gloo Select...
Server Marme: C:5MuSourceControlsR epasitar Bind...
Server Binding: CYSROOTA\Emptydi Unbird
Logar (D ala
Connected: e

Ok | | Cancel

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Source Control Source Control with Git 461

10.4 Source Control with Git

Support for Git as a source control system in UModel is available through a third-party plug-in called GIT SCC
plug-in (http://www.pushok.com/software/qgit.html).

At the time when this documentation is written, the GIT SCC plug-in is available for experimental use.
Registration with the plug-in publisher is required in order to use the plug-in.

The GIT SCC plug-in enables you to work with a Git repository using the commands available in the Project |
Source Control menu of UModel. Note that the commands in the Project | Source Control menu of UModel
are provided by the Microsoft Source Control Plug-in API (MSSCCI API), which uses a design philosophy
different from Git. As a result, the plug-in essentially mediates between "Visual Source Safe"-like functionality
and Git functionality. On one hand, this means that a command such as Get latest version may not be
applicable with Git. On the other hand, there are new Git-specific actions, which are available in the "Source

Control Manager" dialog box provided by the plug-in (under the Project | Source Control | Source Control
Manager menu of UModel).

-

& PushOk Git SCC plug-in (C:\XMLSpyProjectl) = @3]
File Edit View Help

Rename Delete Details

Operations

1| = ot T i w3 . R
s |25tN0 COENGES 1T { Mg Update your locs

m
I

f Full changes _ ‘fL i Fetch changes (F Push changes
tting.cha from.remote re..i our repository fro... " | Sending
L

.-,-'Ji Publish repostony z?‘ Switch to branch ' Merge branch

B Deploying of local repository to i Go to another branc} - .. Applying changes from another
Wi e iti ¥

Pl gl Vet Mooty
Systemn

¥a Plug-in settings i Git GUI

@ E:'.g-;--:--' E: B | unch Git G

The Source Control Manager dialog box

Other commands that you will likely need to use frequently are available directly under the Project | Source
Control menu.

The following sections describe the initial configuration of the plug-in, as well as the basic workflow:

e Enabling Git Source Control with GIT SCC Plug-in
e Adding a Project to Git Source Control

e Cloning a Project from Git Source Control

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

http://www.pushok.com/software/git.html

462

Source Control Source Control with Git

1041 Enabling Git Source Control with GIT SCC Plug-in

To enable Git source control with UModel, the third-party PushOK GIT SCC plug-in must be installed,
registered, and selected as source control provider, as follows:

3.

Download the plug-in installation file from the publisher's website (http://www.pushok.com), run it, and
follow the installation steps.

On the Project menu of UModel, click Change Source Control, and make sure PushOk GITSCC is
selected as source control provider. If you do not see Push Ok GITSCC in the list of providers, it is
likely that the installation of the plug-in was not successful. In this case, check the publisher's
documentation for a solution.

s =

Change Source Control

x5

Local Path; C:APraject] Browse. ..
SecProvider PushOk GITSCC Select..
Server Marne: ElT
Server Binding: Unbind
Logon |0
Connected:

Ok,] l Cancel

When a dialog box prompts you to register the plug-in, click Registration and follow the wizard steps
to complete the registration process.

10.4.2 Adding a Project to Git Source Control

You can save UModel projects as Git repositories. The structure of files or folders that you add to the project
would then correspond to the structure of the Git repository.

To add a project to Git source control:

1.

how

Make sure that PushOK GIT SCC Plug-in is set as source control provider (see Enabling Git Source
Control with GIT SCC Plug-in).

Create a new empty project and make sure that it has no validation errors (that is, the command
Project | Check Project Syntax does not show any errors or warnings).

Save the project to a local folder, for example C:\MyRepo\Project.ump.

In the Model Tree pane, click the Root node.

On the Project menu, under Source Control, click Add to Source Control.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

http://www.pushok.com

Source Control Source Control with Git 463

Source Control - Add to Source Control

Ei'ES oK
C:\MyRepo\Project.spp

Cancel

Select Al

1

[Keep checked out
Comment
6. Click OK.
Please, enter the commit message @
Adding a project to a Git repositony r

[] Do not ask for comments anymore

I Recent comments_.. OK]I Cancel

7. Enter the text of your commit message, and click OK.

You can now start adding modeling elements (diagrams, classes, packages, and so on) to your project. Note
that all project files and folders must be under the root folder of the project. For example, if the project was
created in the c:\MyRrepo folder , then only files under c:\MyrRepo should be added to the project. Otherwise, if
you attempt to add to your project files that are outside the project root folder, a warning message is displayed:

- =

Source Control @

l . Files should only be added to a location below the binding root of your project (C\MyRepa).

[C] Don't show this dialog again (Always add files even if they are outside the binding root)!

Continue J [Cancel

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

464 Source Control

Source Control with Git

10.4.3 Cloning a Project from Git Source Control

Projects that have been previously added to Git source control (see Adding a Project to Git Source Control @)

can be opened from the Git repository as follows:

1. Make sure that PushOK GIT SCC Plug-in is set as source control provider (see Enabling Git Source

Control with GIT SCC Plug-in).
2. On the Project menu, click Source Control | Open from Source Control.

3. Enter the path or the URL of the source repository. Click Check to verify the validity of the path or

URL.

-

Open from Source Control Wizard
Specify source and destination

Fleaze specify url of GIT repository and local path where you want project to
be created.

Source Repositony:
C\MyRepo - l:]

Check

Local Path:
CMGitClone -

a

[] Sourse from SWN repository

Gl¥ |,

I Mext =]l Cancel

4. Under Local Path, enter the path to local folder where you want the project to be created, and click
Next. If the local folder exists (even if it is empty), the following dialog box opens:

-

Question

I."'_"‘.I Directory C:\GitClone already exists. It will be completely deleted. Do
' you wish to continue?

-

(30

ves || Mo

5. Click Yes to confirm, and then click Next.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Source Control Source Control with Git 465

- =

Open from Source Control Wizard

Copying remote repository o local folder
Flease wait while GIT clone your repository to local folder

Gl¥ |,

Clone repository operation completed successfully.

Clane the repositony _ Ok, p

<Back || MNext> | | Cancel |

6. Follow the remaining wizard steps, as required by your specific case.
7. When the wizard completes, a Browse dialog box appears, asking you to open the UModel Project
(*.ump) file. Select the project file to load the project contents into UModel.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

466 UModel Diagram icons

11 UModel Diagram icons

The following section is a quick guide to the icons that are made available in each of the modeling diagrams.

The icons are split up into two sections:

e Add - displays a list of elements that can be added to the diagram.
¢ Relationship - displays a list of relationship types that can be created between elements in the

diagram.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Diagram icons Activity Diagram 467

111 Activity Diagram

Activity Diagranm
= 0 X | vy ¥

Add

Action (CallBehaviorAction)
Action (CallOperationAction)
AcceptEventAction
AcceptEventAction (TimeEwvent)
SendSignalAction

DecisionNode (Branch)
MergeNode

InitialNode
ActivityFinalNode
FlowFinalNode
ForkNode (vertical)
ForkNode (horizontal)
JoinNode

JoinNode (horizontal)

InputPin
OutputPin
ValuePin

ObjectNode
CentralBufferNode
DataStoreNode
ActivityPartition (horizontal)
ActivityPartition (vertical)
ActivityPartition 2-Dimensional

ControlFlow
ObjectFlow
ExceptionHandler

Activity
ActivityParameterNode
StructuredActivityNode
ExpansionRegion
ExpansionNode
InterruptibleActivityRegion

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

468 UModel Diagram icons Activity Diagram

Note
Note Link

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Diagram icons Class Diagram 469

11.2 Class Diagram

Add Elements - ClassDiagram

Relationship

Association
Aggregation
Composition
AssociationClass
Dependency

Usage
InterfaceRealization
Generalization

Add

Package

Class

Interface
Enumeration
Datatype
PrimitiveType

Profile

Stereotype
ProfileApplication
InstanceSpecification

Note
Note Link

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

470 UModel Diagram icons Communication diagram

11.3 Communication diagram

Add Elements - Communi ~ >

El —* e +|? 3 __.-"El

Add

Lifeline
Message (Call)
Message (Reply)
Message (Creation)
Message (Destruction)

Note
Note Link

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Diagram icons Composite Structure Diagram 471

11.4 Composite Structure Diagram

Add Elements - Composite Structure Diagram ~ X
e I I — e I: | — - g B | A

Add

Collaboration
CollaborationUse
Part (Property)
Class

Interface

Port

Relationship

Connector

Dependency (Role Binding)
InterfaceRealization

Usage

Note
Note Link

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

472 UModel Diagram icons

Component Diagram

11.5 Component Diagram

Add Elements - Component Diagram

D - E ﬂ D q | R[} e 3 U} _____ 5 | __.-"E

Add

Package
Interface
Class
Component
Artifact

Relationship

Realization
InterfaceRealization
Usage

Dependency

Note
Note Link

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UModel Diagram icons Deployment Diagram 473

11.6 Deployment Diagram

Add Elements - DeploymentDiagram

NDelmogegg ! ™% — 7 -+ 5 .1

Add

Package

Component

Artifact

Node

Device
ExecutionEnvironment

Relationship

Manifestation
Deployment
Association
Generalization
Dependency

Note
Note Link

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

474 UModel Diagram icons

Interaction Oveniew diagram

11.7 Interaction Overview diagram

Add Elements - Interaction Overview Diagram

oo Y @ @ R e Sl = g 0

Add

CallBehaviorAction (Interaction)
CallBehaviorAction (InteractionUse)
DecisionNode

MergeNode

InitialNode

ActivityFinalNode

ForkNode

ForkNode (Horizontal)
JoinNode

JoinNode (Horizontal)
DurationConstraint

Relationship
ControlFlow

Note
Note Link

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UModel Diagram icons Object Diagram 475

11.8 Object Diagram

Add Elements - ObjectDiagram

Relationship

Association
AssociationClass
Dependency

Usage
InterfaceRealization
Generalization

Add

Package

Class

Interface
Enumeration
Datatype
PrimitiveType
InstanceSpecification

Note
Note Link

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

476 UModel Diagram icons

Package diagram

11.9 Package diagram

Add Elements - Package Diagr ~ X
M , Doon | b A

Add

Package
Profile

Relationship

Dependency
Packagelmport
PackageMerge
ProfileApplication

Note
Note Link

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UModel Diagram icons Profile Diagram 477

11.10 Profile Diagram

Profile diagram

B¢ ot | g 4

Add

Profile
Stereotype

Relationship

Generalization
ProfileApplication
Packagelmport
Elementimport

Note
NoteLink

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

478 UModel Diagram icons Protocol State Machine

11.11 Protocol State Machine

Protocol State Machine Diagram

COREE® ® 808 ¢ xkmibaos - OB .0

Add

Simple state
Composite state
Orthogonal state
Submachine state

FinalState
InitialState

EntryPoint

ExitPoint

Choice

Junction

Terminate

Fork

Fork (horizontal)

Join

Join (horizontal)
ConnectionPointReference

Relationship
Protocol Transition

Note
Note link

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Diagram icons Sequence Diagram 479

11.12 Sequence Diagram

Sequence Diagram

TEAEOr B G NN (DB L[R2 [

Add

Lifeline

CombinedFragment
CombinedFragment (Alternatives)
CombinedFragment (Loop)
InteractionUse

Gate

Statelnvariant

DurationConstraint
TimeConstraint

Message
Message
Message
Message

Call)

Reply)
Creation)
Destruction)

—~ o~~~

Asynchronous Message (Call)
Asynchronous Message (Reply)
Asynchronous Message (Destruction)

Note
Note Link

No message numbering
Simple message numbering
Nested message numbering

Toggle dependent message movement
Toggle automatic creation of replies for messages
Toggle automatic creation of operations in target by typing operation names

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

480 UModel Diagram icons State Machine Diagram

11.13 State Machine Diagram

State Machine Diagram

COFE® ® e 0@ o xEkmifRMMHS - OB 4| o

Add

Simple state
Composite state
Orthogonal state
Submachine state

FinalState
InitialState

EntryPoint
ExitPoint
Choice

Junction
Terminate

Fork

Fork (horizontal)
Join

Join (horizontal)
DeepHistory
ShallowHistory
ConnectionPointReference

Relationship
Transition

Note
Note link

Toggle automatic creation of operations in target by typing operation names

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

UModel Diagram icons Timing Diagram 481

11.14 Timing Diagram

Add Elements - Timing Diagram
EZEI e o R I A

Add

Lifeline (State/Condition)
Lifeline (General value)
TickMark
Event/Stimulus
DurationConstraint
TimeConstraint

Message (Call)
Message (Reply)
Asynchronous Message (Call)

Note
Note Link

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

482 UModel Diagram icons

Use Case diagram

11.15 Use Case diagram

Add Elements - UseCaseDiagram ~ X

Add

Package
Actor
UseCase

Relationship

Association
Generalization
Include
Extend

Note
Note Link

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

UModel Diagram icons XML Schema diagram 483

11.16 XML Schema diagram

@\ E® GElE] G cE @ @ o9 of L f s OB 8

Add

XSD TargetNamespace
XSD Schema

XSD Element (global)
XSD Group

XSD ComplexType
XSD ComplexType (simpleContent)
XSD SimpleType

XSD List

XSD Union

XSD Enumeration

XSD Attribute

XSD AttributeGroup
XSD Notation

XSD Import

Relationship

XSD Include
XSD Redefine
XSD Restriction
XSD Extension
XSD Substitution

Note
Note link

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

484 Menu Reference

12 Menu Reference

The following section lists all the menus and menu options in UModel, and supplies a short description of
each.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Menu Reference File 485

12.1 File

New
Clears the diagram tab, if a previous project exists, and creates a new UModel project.

Open
Opens previously defined modeling project. Select a previously saved project file *.ump from the Open dialog
box. See Creating, Opening, and Saving Proiects and Opening Projects from a URL@E®

Reload

Reloads the current project and saves or discards the changes made since you opened the project file.

Save
Saves the currently active modeling project using the currently active file name.

Save as

Sawes the currently active modeling project with a different name, or allows you to give the project a new name
if this is the first time you sawe it.

Save Copy As

Saves a copy of the currently active UModel project with a different file name.

Save Diagram as Image

Opens the "Sawe as..." dialog box and allows you to save the currently active diagram as a .png file. Very large
.png files, in the gigabyte range, can also be saved.

Save all Diagrams as Images
Sawe all diagrams of the currently active project as .png files.

Import from XMI File

Imports a previously exported XMl file. If the file was produced with UModel, then all extensions etc. will be
retained.

Export to XMl File
Exports the model as an XMl file. You can select the UML version, as well as the specific IDs that you want to
export, see XM| - XML Metadata Interchange.

Send by Mail

Opens your default mail application and inserts the current UModel project as an attachment.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

486 Menu Reference File

Print

Opens the Print dialog box, from where you can print out the current diagram (or a selection on the diagram) as
hard copy.

Print >
Wwhat
© ik e
() Selection Er—
Lo Print Setup
(®) Use curment
(") Use optimal Cancel
{100 4
Fage zplit of pictures
() Prevent
() Allow

Use current retains the currently defined zoom factor of the modeling project. Selecting this option enables the
"Page split of pictures" group. Use optimal scales the modeling project to fit the page size. You can also
specify the zoom factor numerically. The Prevent option prevents modeling elements from being split over a
page, and keeps them as one unit.

Print all Diagrams
Opens the Print dialog box and prints out all UML diagrams contained in the current project file.

Print Preview
Opens the same Print dialog box with the same settings as described above.

Print Setup

Opens the Print Setup dialog box in which you can define the printer you want to use and the paper settings.

Recent files
This section of the File menu lists up to four most recent files you have been working with.

Exit
The Exit command exist UModel. If any of your current files have unsaved changes, UModel will prompt you to
save the changes.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Menu Reference Edit 487

12.2 Edit

)

Undo

UModel has an unlimited number of "Undo" steps that you can use to retrace your modeling steps.

[}

Redo

The redo command allows you to redo previously undone commands. You can step backward and forward
through the undo history using both these commands.

Cut/Copy/Paste/Delete
These are the standard Windows text editing commands. You can use them not only for text but also for
modeling elements, see Renaming, Moving, and Copying Elements @

Paste in Diagram only

Adds a "link" (or "view") of the c‘oged element to the current diagram but not to the Model Tree, see Renaming,
Moving, and Copying Elements %<7,

Delete from Diagram only

Deletes the selected modeling elements from the currently active diagram. The deleted elements are not
deleted from the modeling project and are available in the Model Tree tab. Note that this option is not available
to delete properties or operations from a class, they can be selected and deleted there directly.

Select all
Select all modeling elements of the currently active diagram. Equivalent to the Ctrl+A shortcut.

Find
Allows you to search for specific text in the current window, see Finding and Replacing Text@®.

[

Find Next L% | F3

Searches for the next occurrence of the same search string in the currently active window.

Find Previous (Shift+F3)

Searches for the previous occurrence of the same search string in the currently active tab or diagram.

Replace
Allows you to search and replace any modelling elements in the project, see Einding and Replacing Text@®.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

488 Menu Reference Edit

Copy as Bitmap

Copies the currently active diagram to clipboard, from where you can paste it into the application of your
choice.

Copy Selection as Bitmap

Copies the currently selected diagram elements to the clipboard from where you can paste them into the
application of your choice.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Menu Reference Project 489

12.3 Project

Check Project Syntax
Checks the UModel project syntax, see Checking Project Syntax.

Source Control

See Source control systems@ for detailed information on source control servers and clients and how to use
them.

Import Source Directory

Opens the Import Source Directory wizard. For a specific example, see Reverse Engineering (from Code to
Model) @

Import Source Project
Opens the Import Source Project wizard, see Importing Source Code®@.

Import Binary Types

Opens the Import Binary Types dialog box allowing you to import Java, C#, and VB binary files, see Importing
Java, C#. and VB.NET Binaries ®.

Import XML Schema Directory

Opens the Import XML Schema Directory allowing you to import all XML Schemas in that directory and
optionally all XML Schemas in any of the subfolders.

Import XML Schema File

Opens the Import XML Schema File dialog box allowing you to import schema files, see XML Schema
Diagrams @3,

Generate Sequence Diagrams from Code...
See Generate Multiple Sequence Diagrams.

Generate Code from Sequence Diagrams

UModel can create code from a sequence diagram which is linked to at least one operation. For more
information, see this section™#.

Generate State Machine Code

UModel enables you to select one or more state machines in which code should be generated. For details, see
this topic.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

490 Menu Reference Project

Merge Program Code from UModel Project / Overwrite Program Code from UModel Project

Updates program code from the model (assuming that your project is set up for code engineering, see
Generating Program Code). The name of this command can be either Merge Program Code from
UModel Project or Overwrite Program Code from UModel Project, depending on the settings in the
Synchronization Settings dialog box. By default, the Synchronization Settings dialog box opens every time
when you run this command. For more information, see Code Synchronization Settings 2153

Merge UModel Project from Program Code / Overwrite UModel Project from Program Code

Updates the model (the UModel Project) from the program code. The name of this command can either be
Merge UModel Project from Program Code or Overwrite UModel Project from Program Code,
depending on the settings in the Synchronization Settings dialog box. By default, the Synchronization Settings
dialog box opens every time when you run this command. For more information, see Code Synchronization

Settings 99

Project Settings
When generating program code into a UModel project, you may want to set or change project settings 2}

Synchronization Settings
Opens the Synchronization Settings dialog box, see Code Synchronization Settings 215 §

Merge Project

Merges two UModel project files into one model. The first file you open is the one the second file will be merged
into. Please see Merging UModel pro'ects@ for more information.

Merge Project (3-way)
UModel supports the merging of mult% UModel projects that have been simultaneously edited by different
dewelopers, in a 3-way project merge <.

Include Subproject
See Including other UModel projects .

Open Subproject Individually
Opens the selected subproject as a new project.

Clear Messages
Clears the syntax check and code merging messages, warnings and errors from the Messages Window D

Note: Errors are generally problems that must be fixed before code can be generated, or the model code can
be updated during the code engineering process. Warnings can generally be deferred until later. Errors
and warnings are generated by the syntax checker, the compiler for the specific language, the UModel
parser that reads the newly generated source file, as well as during the import of XMl files.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Menu Reference Project 491

Generate Documentation

Generates documentation for the currently open project in HTML, Microsoft Word, and RTF formats, see
Generating UML documentation @9

List Elements not used in any Diagram

Creat%a list of all elements not used in any diagram in the project, see Checking Where and If Elements Are
Used 9

List shared Packages
Lists all shared packages of the current project.

List included Packages
Lists all include packages in the current project.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

492 Menu Reference Layout

124 Layout

The commands of the Layout menu allow % to line up and align the elements of your modeling diagrams, see
Aligning and Resizing Modeling Elements %=,

Align
The align command allows you to align modeling elements along their borders, or centers depending on the
specific command you select.

Space Evenly

This set of commands allow you to space selected elements evenly both horizontally and vertically.

Make Same Size

This set of commands allow you to adjust the width and height of selected elements based on the active
element.

Line Up

This set of commands allow you to line up the selected elements vertically or horizontally.

Line Style

This set of commands allow you to select the type of line used to connect the various modeling elements. The
lines can be any type of dependency, association lines used in the various model diagrams.

Autosize
This command resizes the selected elements to their respective optimal size(s).

Autolayout all
This command arranges automatically the modeling elements on the diagram, using one of the options below.

Force Directed Displays the modeling elements from a centric viewpoint.

Hierarchic Displays elements according to their hierarchical relationships. For example, a
superclass will be placed above any of its derived classes.

The hierarchical layout options can be customized from the Tools | Options
menu, View tab, Autolayout Hierarchic group.

Block Displays elements grouped by element size in rectangular fashion.

Reposition Text Labels
Repositions modeling element names (of the selected elements) to their default positions.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Menu Reference View 493

12.5 View

The commands available in this menu allow you to:

Show or hide any of the UModel helper windows, see UModel GraEhicaI User Interface @@
Define the sort criteria of elements inside the Model Tree window®® and Favorites window ©?
Define the grouping criteria of diagrams in the Diagram Tree window &

Show or hide specific UML elements in the Favorites window and Model Tree window
Define the zoom factor of the current diagram, see Zooming into/out of Diagrams (1203

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

494 Menu Reference Tools

12.6 Tools

The commands available in this menu allow you to:

o Customize™ the interface: define your own toolbars, keyboard shortcuts, menus, and macros.
e Restore toolbars and windows to their default state.
e Define the global program settings/options@.

v Spelling..
Spelling Opticns...

Scripting Editor...

Macros r
User-defined tools r
Customize...

Restore Toolbars and Windows...

Opticns...

12.6.1 User-defined Tools

Placing the cursor over the User-defined Tools command rolls out a sub-menu containing custom-made
commands that use external applications. You can create these commands in the Tools tab @ of the
Customize dialog. Clicking one of these custom commands executes the action associated with this
command.

The User-Defined Tools | Customize command opens the Tools tab® of the Customize dialog (in which you
can create the custom commands that appear in the menu of the User-Defined Tools command.)

12.6.2 Customize

The Customize command displays a dialog box from where you can customize UModel to suit your personal
needs. You can customize the following entities:

Commands

Toolbars
Tools

Keyboard &
Menu

Options

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Menu Reference

12.6.2.1 Commands

The Commands tab allows you customize UModel menus or toolbars.

Customize >
Commands Toolbarz Toolz Keyboard Menu Macroz Plug-ine Options
Categories: Commands:
q New A
Project [Z= Open...
Layout \
‘-ﬁ:ﬁ Reload
Tools o
Window S
Help Save As..
Macros
Al Commands Save Copy As...
%] Save Diagram As Image...
B Corim All Mimemee An lemmmnn v
Description:
Close

To add a command to a toolbar or menu:

1.

Notes:

On the Tools menu, click Customize.

Select the command category in the Categories list box. The commands available appear in the
Commands list box.

Click a command in the Commands list box and drag it to an existing menu or toolbar. An I-beam
appears when you place the cursor over a valid position to drop the command.

Release the mouse button at the position you want to insert the command. A small button appears at
the tip of mouse pointer when you drag a command. The check mark below the pointer means that the
command cannot be dropped at the current cursor position. The check mark disappears whenever you
can drop the command (over a toolbar or menu).

Placing the cursor over a menu when dragging, opens it, allowing you to insert the command anywhere
in the menu.

Commands can be placed in menus or tool bars. If you created you own toolbar, you can populate it
with your own commands/icons.

You can also edit the commands in the context menus €2 (right-click anywhere to open the context
menu), using the same method. Click the Menu tab and then select the specific context menu
available in the Context Menus combo box.

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

496 Menu Reference Tools

To delete a command or menu:

1. On the Tools menu, click Customize.
. Click the menu entry or icon you want to delete, and drag with the mouse.
3. Release the mouse button whenever the check mark icon appears below the mouse pointer. The
command (or menu item) is deleted from the menu or tool bar.

12.6.2.2 Toolbars

The Toolbars tab allows you to activate or deactivate specific toolbars, as well as create your own specialized
ones.

Customize >

Commands Toolbars Tools Keyboard Menu Macros Plug-ine Options

Toolbars:

W}ictivity Diagram _ ___________ __J8 Reset
Business Process 2 Choreography Diagr
Business Process 2 Collaboration Diagre Reset Al

Business Process 2 Diagram
Business Process Diagram
Class Diagram
Communication Diagram
Component Diagram Rename. ..
Composite Structure Diagram
Database Diagram Delete
Deployment Diagram
Interaction Overview Diagram
Layout [] Show text labelz
Main

Menu Bar
Ohiect Miaoram

S I

] Apply changes for all views Close

Toolbars contain symbols for the most frequently used menu commands. For each symbol, you get a brief "tool
tip" explanation when the mouse cursor is directly over the item and the status bar shows a more detailed
description of the command. You can drag the toolbars from their standard position to any location on the
screen, where they appear as a floating window. Alternatively, you can also dock them to the left or right edge
of the main window.

To activate or deactivate a toolbar:

e Click the check box to activate (or deactivate) the specific toolbar.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Menu Reference Tools 497

To create a new toolbar:

1. Click the New... button, and give the toolbar a name in the Toolbar name dialog box.
2. Add commands to the toolbar using the Commands @ tab of the Customize dialog box.

To reset the Menu Bar:

1. Click the Menu Bar entry, and
2. Click the Reset button, to reset the menu commands to the state they were when installed.

To reset all toolbar and menu commands:

1. Click the Reset All button, to reset all the toolbar commands to the state they were when the program
was installed. A prompt appears stating that all toolbars and menus will be reset.
2. Click Yes to confirm the reset.

The Show text labels option places explanatory text below toolbar icons when activated.

12.6.2.3 Tools

The Tools tab allows you to create custom menu commands that can start external tools directly from UModel.
The custom menu commands that you define here appear under the menu Tools | User-defined tools.
External tools can be programs included with Windows, such as Windows Explorer (explorer.exe), Notepad
(notepad.exe), or other custom executables. You can optionally assign arguments to each user-defined tool
and set the directory where the external tool should initialize (in order to look for relative file names).

For example, the configuration illustrated below adds a new menu command called "Open Project Folder".
When run, this command will open the directory of the current UModel project in Windows Explorer.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

498 Menu Reference

Tools

Customize
Commands Toolbars Tools Keyboard Menu

Menu contents:

Open Project Folder

Pt

Macros Plug-lns Options

La|| A & W*

Command: |e:-:p|n:nrer.e:-:e
Arguments: | %(Project Faolder)
Initial directony: |

Close

When an external tool takes arguments (like Windows Explorer in the example abowe), these can be entered in
the Arguments input box. To supply multiple arguments, separate them with the space character. The values

you can supply as arguments can be plain text (hard-coded values) or be selected with the Y button from a
list of predefined UModel variables. You can use any of the following UModel predefined variables as

arguments:

UModel predefined variable

Purpose

Project File Name

The file name of the active UModel project file, for example
Test.ump.

Project File Path

The absolute file path of the active UModel project file, for
example, C:\MyDirectory\Test.ump.

Focused UML Data — Name

The name of the currently focused UML element, for example,
Class1.

Focused UML Data — UML Qualified Name

The qualified name of the currently focused UML element, for
example, Package1::Package2::Class1.

Focused UML Data — Code File Name

The code file name of the currently focused UML class,
interface or enumeration as shown in the Property window
(relative to the realizing component), for example, Class1.cs or
MyNamespace\Class1.Java.

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

Menu Reference

Tools 499

UModel predefined variable

Purpose

Focused UML Data — Code File Path

The code file path of the currently focused UML class,
interface or enumeration as shown in the Property window, for
example, C:\Temp\MySource\Class1.cs.

Focused UML Data — Code Project File
Name

The file name of the code project to which the currently
focused UML class, interface or enumeration belongs.

The code project file name can be relative to the UModel
project file and is the same as shown in the Properties of the
component, for example, C:
\Temp\MySource\MyProject.vcproj or
MySource\MyProject.vcproj.

Focused UML Data — Code Project File
Path

The file path of the code project to which the currently focused
UML class, interface or enumeration belongs, for example, C:
\Temp\MySource\MyProject.vcproj.

Project Folder The directory where the current UModel project is saved, for
example, C:
\Users\<user>\Documents\Altova\UModel2023\UModelExa
mples\.

Temporary Folder The directory where the application's temporary files are

saved, for example, C:\Users\<user>\AppData\Local\Temp.

In some cases, you may also need to enter a value in the Initial Directory input box. For example, the
configuration below opens in Notepad the code file of the currently selected element on a diagram. (Note that,
for this command to work, the element currently selected on the diagram must have a value (file name) defined
in the code file name field of the Properties Window@, and that file must exist in C:

\UML_Bank_Sample\CSharpCode directory).

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

500 Menu Reference Tools

Customize >

Commands Toolbars Tools Keyboard Menu Macros Plug-lns Options

Menu contents: =1 2 AR

Open code file

Command: |nntepad.e:e | »
Arguments: |${F_Cude FileMame) | 3
Initial directony: |C:'\LlML_Eank_SampIe\CSharpCude | .

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Menu Reference Tools 501

12.6.2.4 Keyboard

The Keyboard tab allows you to define (or change) keyboard shortcuts for any command.

Customize >

Commands Toolbarz Toolz Keyboard Menu Macroz Plug-ne Options

Category: Set Accelerator for:
File e Default e @
Commands: Cument Keys:

~ Assign
Export to XMI File...
Impart fram XM File...

New Press Mew Shortout Key: e
Open... W

< > | Reset Al
Description:

Cuit the application;
prompts to save
documents

Close

To assign a new Shortcut to a command:

1. Select a value from the Category combo box.

. Select the command you want to assign a new shortcut to, in the Commands list box.

3. Click inside the Press New Shortcut Key text box, and press the shortcut keys that are to activate
the command. The shortcuts appear immediately in the text box. If the shortcut was assigned
previously, then that function is displayed below the text box.

4. Click Assign to permanently assign the shortcut. The shortcut now appears in the Current Keys list
box. (To clear this text box, press any of the control keys, Ctrl, Alt or Shift).

To de-assign (delete) a shortcut:
1. Click the shortcut you want to delete in the Current Keys list box, and

2. Click the Remove button (which has now become actiwe).
3. Click Close to confirm all the changes made in the Customize dialog box.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

502 Menu Reference Tools

12.6.2.5 Menu

The Menu tab allows you to customize the menu bars as well as the context menus.

Customize >

Commands Toolbarz Toolz Keyboard Menu Macroz Plug-lne Options

Application Frame Menus: Context Menus:
Show Menus far: Select context menu:
Default Menu e v
Beset @ Feset
Default application menu. Hint: select the cortext menu,
Appears when no documents change the page to Commands”
are open. and drag the toolbar buttons into

the menu window.

Menu animations: MNone w

Menu shadows

Close

Customizing menus

The Default Menu bar is the menu bar that is displayed when no project is open. The UModel project menu
bar is the menu bar that is displayed when a project is open. Each menu bar can be customized separately,
and customization changes made to one do not affect the other.

To customize a menu bar, select it from the Show Menus For drop-down list. Then click the Commands tab
and drag commands from the Commands list box to the menu bar or into any of the menus.

Deleting commands from menus and resetting the menu bars
To delete an entire menu or a command inside a menu, do the following:

1. Select from the Show Menus for drop-down list the menu bar that is to be customized.
With the Customize dialog open, select (i) the menu you want to delete from the application's menu
bar, or (ii) the command you want to delete from one of these menus.

3. Either (i) drag the menu from the menu bar or the menu command from the menu, or (ii) right-click the
menu or menu command and select Delete.

You can reset any menu bar to its original installation state by selecting it from the Show Menus For drop-
down list and then clicking the Reset button.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Menu Reference Tools 503

Customizing the application's context menus

Context menus are the menus that appear when you right-click certain objects in the application's interface.
Each of these context menus can be customized by doing the following:

1. Select the context menu from the Select context menu drop-down list. This pops up the context
menu.

2. Click the Commands tab.

3. Drag a command from the Commands list box into the context menu.

4. To delete a command from the context menu, right-click that command in the context menu, and
select Delete. Alternatively, drag the command out of the context menu.

You can reset any context menu to its original installation state by selecting it in the Select context menu
drop-down list and then clicking the Reset button.

Menu shadows
Select the Menu shadows check box to give all menus shadows.

You can choose from among several menu animations if you prefer animated menus. The Menu animations
drop-down list provides the following options:

None (default)
Unfold

Slide

Fade

12.6.2.6 Options

The Options tab allows you to set general environment settings.

When active, the Show ScreenTips on toolbars check box displays a tooltip label when the mouse pointer is
placed over a toolbar button. The label contains a short description of the button function. If the Show shortcut
keys in ScreenTips check box is selected, the tooltip label displays the associated keyboard shortcut, if one
has been assigned.

When active, the Large Icons check box switches between the standard size icons, and larger versions of the
icons.

12.6.3 Restore Toolbars and Windows

The Restore Toolbars and Windows command closes down UModel and re-starts it with the default settings.
Before it closes down a dialog pops up asking for confirmation about whether UModel should be restarted.

This command is useful if you have been resizing, moving, or hiding toolbars or windows, and would now like to
have all the toolbars and windows as they originally were.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

504

Menu Reference Tools

12.6.4 Options

Select the menu item Tools | Options to define your project options.

The View tab allows you to define:

Where the program logo should appear.

The application title bar contents.

The types of elements you want listed when using the "List elements not used in any diagram" context
menu option in the Model Tree, or Favorites tab. You also have the option of ignoring elements
contained in included files.

If a selected element in a diagram is automatically selected/synchronized in the Model Tree.

The default depth of the hierarchy view when using the Show graph view in the Hierarchy tab.

The Autolayout Hierarchic settings, which allow you to define the nesting depth up and down in the
hierarchy window.

"Expand each element only once", only allows one of the same classifiers to be expanded in the same
image/diagram.

If you want snap lines to help you align elements when dragging in a diagram.

Local Options X

View Edting Diagram Edting File Code Engineering Source Cortral — Scripting

Program logo Frame title Autolayout Hierarchic

() File name only _ .
@ Full path name min. X distance

Show an print

Show on diagram min. Y distance

List all elements not used in any diagram Grow direction

(®) top - down
Clazsifier Relations O bottom - up
Package Instance Specification () left to right
right tao left
[lgnore elements of included files Orig
Model Tree Alignment
Automatically select focused diagram item Enable Snap Lines

Hierarchy
Default expanded nesting depth up:| 205

down: E =

Expand each element anly once

Cancel Apply

The Editing tab allows you to define:

If a new Diagram created in the Model Tree tab, is also automatically opened in the main area.
Default visibility settings when adding new elements - Properties or Operations.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Menu Reference Tools 505

e The default code language when a new component is added.

e [fanewly added constraint, is to automatically constrain its owner as well.

e If a prompt should appear when deleting elements from a project, from the Favorites tab or in any of the
diagrams. This prompt can be deactivated when deleting items there; this option allows you to reset
the "prompt on delete" dialog box.

e The delay with which the syntax error pop-up message should be closed.

Local Options x

View Editing | Diagram Editing File Code Engineering Source Control — Scripting

When adding new tems Ask before deleting from project

é:;!pen new diagrams in Favortes Tree in diagrams

Set default visibility Syrtax Ermor Bubble

P rti rotected e
roperties B Disappear delay: 4000| me

Operations | public e

Set default code language
Components |Java8.0(1.8) ~

Constraints

Conetrain owner

Concel | | ton

The Diagram Editing tab allows you to define:

e The number of items that can be automatically added to a diagram, before a prompt appears.

e The display of Styles when they are automatically added to a diagram.

e If Associations between modeling elements, are to be created automatically when items are added to a
diagram.

e [fthe associations to collections are to be resolved.

o [ftemplates from unknown externals are to be resolved as not fully qualified.

e or use preexisting Collection Templates, or define new ones.

Collection Templates should be defined as fully qualified i.e. a.b.c.List. If the template has this
namespace then UModel automatically creates a Collection Association. Exception: If the template
belongs to the Unknown Externals package, and the option "Unknown externals: resolve unqualified",
is enabled, then only the template name is considered (i.e. List instead of a.b.c.List).

e [fthe autocompletion window is to be available when editing attributes or operations in the class
diagram.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

506 Menu Reference Tools

Local Options x

View Editing Ciagram Editing File Code Engineering Source Contral Scripting

When automatically adding tems on diagrams When adding tems on diagrams
Ask before adding more than items Automatically create Associations
Style Also for MET properties

Always show dialog before adding
[]5how Attributes compartment

[] Show Operations compartment

[]5how nested Classifiers compartment Linknown extemals:

resolve unqualified
[] Show EnumerationLiterals compartment

Associations to collections

Resolve collections

[] Show ExtensionPoints compartment Collection templates. ..
[]5how Tagged Values
IUse own compartmert for NET properties Reset existing Associations. ..

[]5how MET properties compartment
Autocompletion

Enable automatic entry helper

Cancel Apply

The File tab allows you to define:

e The actions performed when files are changed.

e [fthe contents of the Fawvorites tab are to be loaded and saved with the current project, as well as the
any currently open diagrams.

e [fthe previously opened project is to automatically be opened when starting the application.

e If you want to structure the project file with CR/LF and tab indents in a pretty-print format.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Menu Reference Tools 507

Local Options x

View Editing Diagram Editing File Code Engineering Source Control — Scripting

Automatic reload of changed files
[+ atch forfile changes: Ask before reload

Load and save with project file
Favorites

Open diagrams

Project
Open last project on program start

Pretty-prirt
[] Pretty-prirt file content when saving

Concel | | tool

The Code Engineering tab allows you to define the following parameters:

e The circumstances under which the Message window will open.

o Ifall coding elementsi.e. those contained in a Java / C# / VB namespace root, as well as those
assigned to a Java / C# / VB component, are to be checked, or only elements used for code
engineering, i.e. where "use for code engineering" check box is active, are to be checked.

e When updating program code if:

o If a syntax check is to be performed.

o If missing ComponentRealizations are to be automatically generated.
o If missing code file names in the merged code are to be generated.

o If namespaces are to be used in the code file path.

¢ The Indentation method used in the code, i.e. tabs or any number of spaces.

e The directories to be ignored when updating a UModel project from code, or directory. Separate the
respective directories with a semicolon ";". Child directories of the same name are also ignored.

e The location of the XMLSpy Catalog File, RootCatalog.xml, which enables UModel as well as
XMLSpy to retrieve commonly used schemas (as well as stylesheets and other files) from local user
folders. This increases the overall processing speed, and enables users to work offline.

¢ You can also specify whether you want to back up modified C++ files.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

508 Menu Reference Tools

Local Options X

View Editing Diagram Editing File Code Engineeing Sounce Cortrol - Scripting Network Proxy Java

Open Message Window |Ipdate Program Code from UModel Project
(®) Aways Use Syntax Check

O For emors and wamings Generate missing Component Realizations
() For emors

Generate missing code file names

Syntax Check Generate Componerts for Namespaces

@ all coding elements |lse namespace for code file path

() elements used for code engineering Mca ve Java

*MLSpy Catalog Fie Backup modified C+=files

| Indentation

(®) Insert tabs
Update UModel Project from Program Code () Insert

spaces
lgnore directories:

cvs; |

coce | | rowy

The Source Control tab allows you to define:

e The current source control plug-in using the combo box. The Advanced button allows you to define the
specific settings of the source control plug-in that you selected. These settings change depending on
the source control plug-in that you use.

e The login ID for the source control provider.

e Specific settings check in/out settings.

e The Reset button is made available if you have checked/activated the "Don't show this again" option in
one of the dialog boxes. The Don't show this again prompt is then reenabled.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Menu Reference Tools 509

Local Options x

View Editing Diagram Editing File Code Engineering Source Control Scripting

Curmrent source corntrol plug-n:

MNone w | | Advanced...

Logon 1DV (Mone):

[] Perform background status updates every 500 | ms

Display output messages from plug4n

] Get everything when opening a project

[]Check in evenything when closing a project

[] Don't show Check Out dialog box when checking ot items

[] Dont show Check In dislog box when checking in tems

[]Keep tems checked out when checking in or adding tems
Automatically create and use snapshot files for 3-way project merge)

if dialogs were hidden using Dan't show this again, Reset
click Reset to view them again. =

Cancel Apply

For information about the settings available in the Network Proxy tab, see Network Proxy Settings @D 1o find
out more about Java VM settings, see Java Virtual Machine Settings@.

12.6.4.1 Java Virtual Machine Settings

In the Java section (see screenshot below), you can optionally enter the path to a Java VM (Virtual Machine)
on your file system. Note that adding a custom Java VM path is not always necessary. By default, UModel
attempts to detect the Java VM path automatically by reading (in this order) the Windows registry and the
JAVA HOME environment variable. The custom path added in this dialog box will take priority over any other
Java VM path detected automatically.

You may need to add a custom Java VM path, for example, if you are using a Java virtual machine which does
not have an installer and does not create registry entries (e.g., Oracle's OpenJDK). You might also want to set
this path if you need to override, for whatever reason, any Java VM path detected automatically by UModel.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

510 Menu Reference Tools

Java VM library location

Path to jym.dll:

E.q.. C:\Program Files («86)"Javajdk-11.0.5bin‘serverjym.dl Browse...

Leave the field empty for auto-detection of the JYWM.

Impertant: The Java bit-version must be the same as that of the Altova application (64-bit).

Mote: £ JWM has been started within the cument instance of the Altova application, a change of the JWM
location will take effect only after the application is restarted.

Note the following:

e The Java VM path is shared between Altova desktop (not server) applications. Consequently, if you
change it in one application, it will automatically apply to all other Altova applications.

e The path must point to the jvm.d11 file from the \bin\server or \bin\client directory, relative to the
directory where the JDK was installed.

e The UModel platform (32-bit, 64-bit) must be the same as that of the JDK.

e After changing the Java VM path, you may need to restart UModel for the new settings to take effect.

This setting does not affect Java code generation and import. Note that the Java runtimes used for importing
Java binaries into UModel can be configured separately. For more information, see Adding Custom Java
Runtimes .

12.6.4.2 Network Proxy Settings

The Network Proxy section enables you to configure custom proxy settings. These settings affect how the
application connects to the Internet (for XML validation purposes, for example). By default, the application uses
the system's proxy settings, so you should not need to change the proxy settings in most cases. If necessary,
however, you can set an alternative network proxy by selecting, in the Proxy Configuration combo box, either
Automatic or Manual to configure the settings accordingly.

Note: The network proxy settings are shared among all Altova MissionKit applications. So, if you change the
settings in one application, all MissionKit applications will be affected.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Menu Reference Tools 511

Network Proxy

Proxy configuration | System w

Current proxy settings

Test URL | http:/fwww.example.com | L]

Found |E auto-proxy corfiguration.

Methods WPAD (using test URL hitp:/Awww example.com)
PAC resovled DIRECT {NO PROXY).

Using no Proxy.

Use system proxy settings
Uses the Internet Explorer (IE) settings configurable via the system proxy settings. It also queries the settings
configured with netsh.exe winhttp.

Automatic proxy configuration
The following options are provided:

e Auto-detect settings: Looks up a WPAD script (http://wpad.LOCALDOMAIN/wpad.dat) via DHCP or
DNS, and uses this script for proxy setup.

e Script URL: Specify an HTTP URL to a proxy-auto-configuration (.pac) script that is to be used for
proxy setup.

e Reload: Resets and reloads the current auto-proxy-configuration. This action requires Windows 8 or
newer, and may need up to 30s to take effect.

Manual proxy configuration

Manually specify the fully qualified host name and port for the proxies of the respective protocols. A supported
scheme may be included in the host name (for example: http: //hostname). It is not required that the scheme
is the same as the respective protocol if the proxy supports the scheme.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

512 Menu Reference Tools

Network Proxy

Proxy configuration | Manual w

HTTP Proxy | | F'u:urt| 0 |

[]Use this proxy server for all protocols

SSLProxy | | Port| 0 |

Mo F'r-:ux}rﬁ:url |

[] Do not use the proxy server for local addresses

Current proxy settings

Test URL| http:/fwww.example.com | 3]

(using test URL http:/fwww.example.com)
Using no Proxy.

The following options are provided:

e HTTP Proxy: Uses the specified host name and port for the HTTP protocol. If Use this proxy server for
all protocols is selected, then the specified HTTP proxy is used for all protocols.

e SSL Proxy: Uses the specified host name and port for the SSL protocol.

e No Proxy for: A semi-colon (;) separated list of fully qualified host names, domain names, or IP
addresses for hosts that should be used without a proxy. IP addresses may not be truncated and IPv6
addresses hawve to be enclosed by square brackets (for example:
[2606:2800:220:1:248:1893:25c8:1946]). Domain names must start with a leading dot (for
example: .example.com).

e Do not use the proxy server for local addresses: If checked, adds <local> to the No Proxy for list. If
this option is selected, then the following will not use the proxy: (i) 127.0.0.1, (ii) [::11, (iii) all host
names not containing a dot character (.).

Current proxy settings
Provides a verbose log of the proxy detection. It can be refreshed with the Refresh button to the right of the
Test URL field (for example, when changing the test URL, or when the proxy settings have been changed).

e Test URL: A test URL can be used to see which proxy is used for that specific URL. No I/O is done
with this URL. This field must not be empty if proxy-auto-configuration is used (either through Use
system proxy settings or Authomatic proxy configuration).

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Menu Reference Window 513

12.7 Window

Cascade

This command rearranges all open document windows so that they are all cascaded (i.e. staggered) on top of
each other.

Tile horizontally

This command rearranges all open document windows as horizontal tiles, making them all visible at the same
time.

Tile vertically

This command rearranges all open document windows as ‘ertical tiles, making them all visible at the same
time.

Arrange icons
Arranges haphazardly positioned, iconized diagrams, along the base of the diagram viewing area.

Close
Closes the currently active diagram tab.

Close All

Closes all currently open diagram tabs.

Close All But Active

Closes all diagram tabs except for the currently active one.

Forward

Whenever you change focus from a diagram window to another one, or navigate a hyperlink, UModel
"remembers" this as an event. This command takes you "forward" in the history of such events. It is only
meaningful and available if you already used the Back menu command (see below).

Back

This command takes you back to the window that was previously in focus. This can be useful when you work
with many diagram windows simultaneously, or when you navigate with hyperlinks, see Hyperlinking
Elements @9

Window list (1, 2)
This list shows all currently open diagram windows, and lets you quickly switch between them. You can also
use the Ctrl+Tab or Ctrl F6 keyboard shortcuts to cycle through the open windows.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

514 Menu Reference Window

Windows
Displays a dialabox where you can layout or close multiple diagram windows simultaneously, see also

Diagram Pane

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

Menu Reference Help 515

12.8

Help

=I Table of Contents

Opens the onscreen help manual of UModel with the Table of Contents displayed in the left-hand-side
pane of the Help window. The Table of Contents provides an oveniew of the entire Help document. Clicking
an entry in the Table of Contents takes you to that topic.

Index

Opens the onscreen help manual of UModel with the Keyword Index displayed in the left-hand-side pane of
the Help window. The index lists keywords and lets you navigate to a topic by double-clicking the
keyword. If a keyword is linked to more than one topic, a list of these topics is displayed.

Search

Opens the onscreen help manual of UModel with the Search dialog displayed in the left-hand-side pane of

the Help window. To search for a term, enter the term in the input field and press Enter or List Topics. The

Help system performs a full-text search on the entire Help documentation and returns a list of hits. Double-
click any item to display that item.

Software Activation

License your product
After you download your Altova product software, you can license—or activate—it using either a free

evaluation key or a purchased permanent license key.

Note:

Free evaluation license. When you first start the software after downloading and installing it, the
Software Activation dialog will pop up. In it is a button to request a free evaluation license. Enter
your name, company, and e-mail address in the dialog and click Request. A license file is sent to
the e-mail address you entered and should reach you in a few minutes. Save the license file to a
suitable location.

When you clicked Request, an entry field appeared at the bottom of the Request dialog. This field
takes the path to the license file. Browse for or enter the path to the license file and click OK. (In
the Software Activation dialog, you can also click Upload a New License to access a dialog
in which the path to the license file is entered.) The software will be unlocked for a period of 30
days.

Permanent license key. The Software Activation dialog allows you to purchase a permanent
license key. Clicking this button takes you to Altova's online shop, where you can purchase a
permanent license key for your product. Your license will be sent to you by e-mail in the form of a
license file, which contains your license-data.

There are three types of permanent license: installed, concurrent user, and named user. An
installed license unlocks the software on a single computer. If you buy an installed license for N
computers, then the license allows use of the software on up to N computers. A concurrent-user
license for N concurrent users allows N users to run the software concurrently. (The software may
be installed on 10N computers.) A named-user license authorizes a specific user to use the
software on up to 5 different computers. To activate your software, click Upload a New License,
and, in the dialog that appears, enter the path to the license file, and click OK.

For multi-user licenses, each user will be prompted to enter his or her own name.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

516

Menu Reference Help

Your license email and the different ways to license (activate) your Altova product

The license email that you receive from Altova will contain your license file as an attachment.
The license file has a .altova_licenses file extension.

To activate your Altova product, you can do one of the following:

e Sawe the license file (.altova_licenses) to a suitable location, double-click the
license file, enter any requested details in the dialog that appears, and finish by
clicking Apply Keys.

e Sawe the license file (.altova_licenses) to a suitable location. In your Altova
product, select the menu command Help | Software Activation, and then Upload a
New License. Browse for or enter the path to the license file, and click OK.

e Sawe the license file (.altova_licenses) to any suitable location, and upload it from
this location to the license pool of your Altova LicenseServer. You can then either: (i)
acquire the license from your Altova product via the product's Software Activation
dialog (see below) or (ii) assign the license to the product from Altova LicenseServer.
For more information about licensing via LicenseServer, read the rest of this topic.

You can access the Software Activation dialog (screenshot below) at any time by clicking the Help |
Software Activation command.

Activate your software

You can activate the software by registering the license in the Software Activation dialog or by licensing via

Altova LicenseServer (see details below).

Registering the license in the Software Activation dialog. In the dialog, click Upload a New
License and browse for the license file. Click OK to confirm the path to the license file and to
confirm any data you entered (your name in the case of multi-user licenses). Finish by clicking
Save.

Licensing via Altova LicenseServer on your network: To acquire a license via an Altova
LicenseServer on your network, click Use Altova LicenseServer, located at the bottom of the
Software Activation dialog. Select the machine on which the LicenseServer you want to use has
been installed. Note that the auto-discovery of License Servers works by means of a broadcast
sent out on the LAN. As these broadcasts are limited to a subnet, License Server must be on the
same subnet as the client machine for auto-discovery to work. If auto-discovery does not work,
then type in the name of the server. The Altova LicenseServer must have a license for your Altova
product in its license pool. If a license is available in the LicenseServer pool, this is indicated in
the Software Activation dialog (see screenshot below showing the dialog in Altova XMLSpy).
Click Save to acquire the license.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

https://www.altova.com/licenseserver
https://www.altova.com/licenseserver

Menu Reference Help 517

Altova XMLSpy Enterprise Edition 2020 Software Activation

Thank you for choosing Altova XMLSpy Enterprise Edition 2020 and welcome to the software activation process. You can view your assigned
license or select an Altova LicenseServer which provides a license for you. (NOTE: To use this software you must be licensed via Altova
LicenseServer or a valid license from Altova.)

If you do not want to use Altova LicenseServer dick here to upload a license manually = E Upload License ;

To activate your software please enter or select the name of the Altova LicenseServer on your netwark.,

Altova LicenseServer: | DEVO2 “ ‘]

E|° & license is already assigned to you on LicenseServer at DEVD2,
Mame

Company Altova GmbH

User count 50

License type concurrent

Expires in 703

SMP 703 days left

Retum License Check out License Copy Support Code Save Close

Connected to Altova LicenseServer at DEV02

After a machine-specific (aka installed) license has been acquired from LicenseServer, it cannot
be returned to LicenseServer for a period of seven days. After that time, you can return the
machine license to LicenseServer (click Return License) so that this license can be acquired
from LicenseServer by another client. (A LicenseServer administrator, however, can unassign an
acquired license at any time \ia the administrator's Web Ul of LicenseServer.) Note that the
returning of licenses applies only to machine-specific licenses, not to concurrent licenses.

Check out license

You can check out a license from the license pool for a period of up to 30 days so that the license
is stored on the product machine. This enables you to work offline, which is useful, for example, if
you wish to work in an environment where there is no access to your Altova LicenseServer (such
as when your Altova product is installed on a laptop and you are traveling). While the license is
checked out, LicenseServer displays the license as being in use, and the license cannot be used
by any other machine. The license automatically reverts to the checked-in state when the check-
out period ends. Alternatively, a checked-out license can be checked in at any time via the Check
in button of the Software Activation dialog.

To check out a license, do the following: (i) In the Software Activation dialog, click Check out
License (see screenshot above); (ii) In the License Check-out dialog that appears, select the
check-out period you want and click Check out. The license will be checked out. After checking
out a license, two things happen: (i) The Software Activation dialog will display the check-out
information, including the time when the check-out period ends; (ii) The Check out License
button in the dialog changes to a Check In button. You can check the license in again at any
time by clicking Check In. Because the license automatically reverts to the checked-in status
after the check-out period elapses, make sure that the check-out period you select adequately
covers the period during which you will be working offline.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

518 Menu Reference Help

License check-ins must be to the same major version of the Altova product from which the license
was checked out. So make sure to check in a license before you upgrade your Altova product to
the next major version.

Note: For license check-outs to be possible, the check-out functionality must be enabled on
LicenseSenwer. If this functionality has not been enabled, you will get an error message to this
effect when you try to check out. In this event, contact your LicenseServer administrator.

Copy Support Code
Click Copy Support Code to copy license details to the clipboard. This is the data that you will

need to provide when requesting support via the online support form.

Altova LicenseServer provides IT administrators with a real-time oveniew of all Altova licenses on a
network, together with the details of each license as well as client assignments and client usage of
licenses. The advantage of using LicenseServer therefore lies in administrative features it offers for large-
wolume Altova license management. Altova LicenseServer is available free of cost from the Altova website.
For more information about Altova LicenseServer and licensing via Altova LicenseSenver, see the Altova
LicenseServer documentation.

=l Order Form

When you are ready to order a licensed version of the software product, you can use either the Purchase
a Permanent License Key button in the Software Activation dialog (see previous section) or the Order
Form command to proceed to the secure Altova Online Shop.

=l Registration

Opens the Altova Product Registration page in a tab of your browser. Registering your Altova software will
help ensure that you are always kept up to date with the latest product information.

=l Check for Updates

Checks with the Altova server whether a newer version than yours is currently available and displays a
message accordingly.

=l Support Center

A link to the Altova Support Center on the Internet. The Support Center provides FAQs, discussion forums
where problems are discussed, and access to Altova's technical support staff.

=l FAQ on the Web

A link to Altova's FAQ database on the Internet. The FAQ database is constantly updated as Altova
support staff encounter new issues raised by customers.

=l Download Components and Free Tools

A link to Altova's Component Download Center on the Internet. From here you can download a variety of
companion software to use with Altova products. Such software ranges from XSLT and XSL-FO processors
to Application Server Platforms. The software available at the Component Download Center is typically free
of charge.

=I UModel on the Internet

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

https://www.altova.com/support
https://www.altova.com/
https://www.altova.com/manual/AltovaLicenseServer/
https://www.altova.com/manual/AltovaLicenseServer/

Menu Reference Help 519

A link to the Altova website on the Internet. You can learn more about UModel, related technologies and
products on the Altova website.

=l About UModel

Displays the splash window and version number of your product. If you are using the 64-bit version of
UModel, this is indicated with the suffix (x64) after the application name. There is no suffix for the 32-bit
version.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

https://www.altova.com/
https://www.altova.com/

520 SPL Reference

13 SPL Reference

This section gives an ovenview of SPL (Spy Programming Language), the code generator's template language.

It is assumed that you have prior programming experience, and are familiar with operators, functions, variables
and classes, as well as the basics of object-oriented programming - which is used heavily in SPL.

The templates used by UModel are supplied in the ...\UModelspl folder. You can use these files as an aid to
help you in developing your own templates.

How code generator works

Inputs to the code generator are the template files (.spl) and the object model provided by UModel. The
template files contain SPL instructions for creating files, reading information from the object model and
performing calculations, interspersed with literal code fragments in the target programming language.

The template file is interpreted by the code generator and outputs .java, .cs source code files, or any other
type of file depending on the template.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

SPL Reference Basic SPL structure 521

13.1 Basic SPL structure

An SPL file contains literal text to output, interspersed with code generator instructions.

Code generator instructions are enclosed in square brackets T and 7. Multiple statements can be included in a
bracket pair. Additional statements have to be separated by a new line or a colon ":'.

Valid examples are:

[Sx = 42
Sx = S$x + 1]

or

[$x = 42: $x = S$x + 1]

Adding text to files

Text not enclosed by [and], is written directly to the current output file.
To output literal square brackets, escape them with a backslash: \[and \]; to output a backslash use \\.

Comments

Comments inside an instruction block always begin with a ' character, and terminate on the next line, or at a
block close character].

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

522 SPL Reference Variables

13.2 Variables

Any non-trivial SPL file will require variables. Some variables are predefined by the code generator, and new
variables may be created simply by assigning values to them.

The $ character is used when declaring or using a variable, a variable name is always prefixed by $. Variable
names are case sensitive.

Variables types:

integer - also used as boolean, where 0 is false and everything else is true
string

object - provided by UModel

iterator - see foreach® statement

Variable types are declared by first assignment:
[$x = 0]

X is now an integer.

[$x = "teststring"]
X is now treated as a string.

Strings

String constants are always enclosed in double quotes, like in the example abowe. \n and \t inside double
quotes are interpreted as newline and tab, \" is a literal double quote, and \\ is a backslash. String constants
can also span multiple lines.

String concatenation uses the & character:

[$BasePath = Soutputpath & "/" & $JavaPackageDir]

Objects

Objects represent the information contained in the UModel project. Objects have properties, which can be
accessed using the . operator. It is not possible to create new objects in SPL (they are predefined by the code
generator, derived from the input), but it is possible to assign objects to variables.

Example:

class [=$Sclass.Name]

This example outputs the word "class", followed by a space and the value of the Name property of the $class
object.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

SPL Reference

Variables

The following table shows the relationship between UML elements their SPL equivalents along with a short

description.

Predefined variables

on

UML element SPL property Multiplicity UML Attribute / UModel Attribute / Description
Association Association
BehavioralFeature | isAbstract isAbstract:Boolean
BehavioralFeature | raisedException * raisedException: Ty
pe
BehavioralFeature | ow nedParameter * ow nedParameter:P
arameter
BehavioredClassifi | interfaceRealizatio | * interfaceRealizatio
er n n:InterfaceRealizati
on
Class ow nedOperation * ow nedOperation:O
peration
Class nestedClassifier * nestedClassifier:Cl
assifier
Classifier namespace * namespace:Packag | packages with
e code language
<<namespace>>
set
Classifier rootNamespace * project root VB only - root
namespace:String namespace
Classifier generalization * generalization:Gen
eralization
Classifier isAbstract isAbstract:Boolean
ClassifierTemplate | constrainingClassifi | * constrainingClassifi
Parameter er er
Comment body body:String
DataType ow nedAttribute * ow nedAttribute:Pro
perty
DataType ow nedOperation * ow nedOperation:O
peration
Blement kind kind:String
Hement ow ner 0..1 ow ner:Element
Hement appliedStereotype * appliedStereotype: | applied
StereotypeApplicati | stereotypes

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

524 SPL Reference Variables
UML element SPL property Multiplicity UML Attribute / UModel Attribute / Description
Association Association
Eement ow nedComment * ow nedComment:Co
mment
Hementimport importedElement 1 importedElement:Pa
ckageableEement
Enumeration ow nedLiteral * ow nedLiteral:Enum
erationLiteral
Enumeration nestedClassifier * nestedClassifier::Cl
assifier
Enumeration interfaceRealizatio | * interfaceRealizatio
n n:Interface
EnumerationLiteral | ow nedAttribute * ow nedAttribute:Pro
perty
EnumerationLiteral | ow nedOperation * ow nedOperation:O
peration
EnumerationLiteral | nestedClassifier * nestedClassifier:Cl
assifier
Feature isStatic is Static:Boolean
Generalization general 1 general:Classifier
Interface ow nedAttribute * ow nedAttribute:Pro
perty
Interface ow nedOperation * ow nedOperation:O
peration
Interface nestedClassifier * nestedClassifier:Cl
assifier
InterfaceRealizatio | contract 1 contract:interface
n
Multiplicity Hement low erValue 0..1 low erValue:ValueS
pecification
Multiplicity Hement upperValue 0..1 upperValue:ValueS
pecification
NamedHement name name:String
NamedBement visibility visibility:Visibility Kin
d
NamedBement isPublic isPublic:Boolean visibility <public>
NamedEement isProtected isProtected:Boolea | visibility
n <protected>
NamedBement isPrivate isPrivate:Boolean visibility <private>

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

SPL Reference

Variables 525

UML element SPL property Multiplicity UML Attribute / UModel Attribute / Description
Association Association
NamedBement isPackage isPackage:Boolean | visibility <package>
NamedBement namespacePrefix namespacePrefix:S | XSDonly -
tring namespace prefix
w hen exists
NamedBement parseableName parseableName:Stri | CSharp, VB only -
ng name w ith
escaped keyw ords
(@)
Namespace elementimport * elementimport:Hem
entlmport
Operation ow nedReturnPara | 0..1 ow nedReturnPara | parameter with
meter meter:Parameter direction return set
Operation type 0..1 type type of parameter
w ith direction
return set
Operation ow nedOperationPa | * ow nedOperationPa | all parameters
rameter rameter:Parameter | excluding
parameter w ith
direction return set
Operation implementedinterfa | 1 implementedinterfa | CSharp only - the
ce ce:Interface implemented
interface
Operation ow nedOperationim | * implementedOperati | VB only - the
plementations on:Operationimplem | implemented
entation interfaces/operatio
ns
Operationimplemen | implementedOperati | 1 implementedOperati | interface
tation onOw ner onOw ner:Interface | implemented by the
operation
Operationimplemen | implementedOperati name:String name of the
tation onName implemented
operation
Operationimplemen | implementedOperati parseableName:Stri | name of the
tation onParseableName ng implemented
operation w ith
escaped keyw ords
Package namespace * namespace:Packag | packages with
e code language
<<namespace>>
set
PackageableBEleme | ow ningPackage 0..1 ow ningPackage setif owneris a
nt package

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

526 SPL Reference Variables
UML element SPL property Multiplicity UML Attribute / UModel Attribute / Description
Association Association
PackageableEleme | ow ningNamespace | 0..1 ow ningNamespace | ow ning package
nt Package Package:Package w ith code
language
<<namespace>>
set
Parameter direction direction:Parameter
DirectionKind
Parameter isin isin:Boolean direction <in>
Parameter isInOut isInOut:Boolean direction <inout>
Parameter isOut isOut:Boolean direction <out>
Parameter isReturn isReturn:Boolean direction <return>
Parameter isVarArgList isVarArgList:Boole | true if parameter is
an a variable
argument list
Parameter defaultValue 0..1 defaultValue:Value
Specification
Property defaultValue 0..1 defaultValue:Value
Specification
RedefinableElemen | isLeaf isLeaf:Boolean
t
Slot name name:String name of the
defining feature
Slot values * value:ValueSpecifi
cation
Slot value value:String value of the first
value specification
StereotypeApplicat | name name:String name of applied
ion stereotype
StereotypeApplicat | taggedValue * taggedValue:Slot first slot of the
ion instance
specification
StructuralFeature isReadOnly isReadOnly

StructuredClassifie
r

ow nedAttribute

ow nedAttribute:Pro
perty

TemplateBinding signature 1 signature: Template
Signature
TemplateBinding parameterSubstituti | * parameterSubstituti
on on:TemplateParame
terSubstitution

Altova UModel 2023 Basic Edition

© 2016-2022 Altova GmbH

SPL Reference

Variables 527

UML element SPL property Multiplicity UML Attribute / UModel Attribute / Description
Association Association
TemplateParameter | paramDefault paramDefault:Strin | template parameter
g default value
TemplateParameter | ow nedParametere | 1 ow nedParametere
dElement dBElement:Paramete
rableElement
TemplateParameter | parameterSubstituti parameterSubstituti [Java only - code
Substitution on on:String w ildcard handling
TemplateParameter | parameterDimensio parameterDimensio | code dimension
Substitution nCount nCount:Integer count of the actual
parameter
TemplateParameter | actual 1 Ow nedActual:Para
Substitution meterableElement
TemplateParameter | formal 1 formal:TemplatePar
Substitution ameter
TemplateSignature | template 1 template: Templatea
bleElement
TemplateSignature | ow nedParameter * ow nedParameter:T
emplateParameter
TemplateableBleme | isTemplate isTemplate:Boolean | true if template
nt signature set
TemplateableHeme | ow nedTemplateSig | 0..1 ow nedTemplateSig
nt nature nature: TemplateSig
nature
TemplateableBleme | templateBinding * templateBinding:Te
nt mplateBinding
Type typeName * typeName:Package | qualified code type
ableBlement names
TypedBement type 0..1 type:Type
TypedBlement postTypeModifier postTypeModifier:S | postfix code
tring modifiers
ValueSpecification | value value:String string value of the
value specification

Adding a prefix to attributes of a class during code generation

You might need to prefix all new attributes with the "m_" characters in your project.

All new coding elements are written using the SPL templates. For example, if you open UModelSPL\C#[Java]
\Default\Attribute.spl, you can change the way the name is written. Namely, you can replace

© 2016-2022 Altova GmbH

Altova UModel 2023 Basic Edition

528 SPL Reference Variables

write $Property.name
with
write "m " & SProperty.name

It is highly recommended that you immediately update your model from code after code generation, to ensure
that code and model are synchronized.

Note: As previously mentioned, copy the SPL templates one directory higher (i.e. above the default directory
to UModelSPL\C#) before modifying them. This ensures that they are not overwritten when you install
a new version of UModel. Please make sure that the "user-defined override default" check box is
activated in the Code from Model tab of the "Synchronization Settings" dialog box.

SPL Templates

SPL templates can be specified per UModel project using the menu option Project | Project Settings (as
shown in the screenshot below). Relative paths are also supported. Templates which are not found in the
specified directory, are searched for in the local default directory.

e =

Project Settings @

|Java |c# |vB | SPLTemplates | Scripting |

|Update Program Code from UModel Project

Custom SPL template path for code generation:

.ASPLTemplates

0K || Cancel

Global objects

$Options an object holding global options:

generateComments:bool generate doc comments (true/false)

$indent a string used to indent generated code and represent the current nesting level
$IndentStep a string, used to indent generated code and represent one nesting level
$NamespacePrefix XSD only — the target namespace prefix if present

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

SPL Reference Variables 529

String manipulation routines

integer Compare (s)

The return value indicates the lexicographic relation of the string to s (case sensitive):

<0: the string is less than s
0: the string is identical to s
>0: the string is greater than s

integer CompareNoCase (s)

The return value indicates the lexicographic relation of the string to s (case insensitive):

<0: the string is less than s
0: the string is identical to s
>0: the string is greater than s

integer Find(s)

Searches the string for the first match of a substring s. Returns the zero-based index of the first character of s
or -1 if s is not found.

string Left (n)

Returns the first n characters of the string.

integer Length ()

Returns the length of the string.

string MakeUpper ()

Returns a string converted to upper case.

string MakeUpper (n)

Returns a string, with the first n characters converted to upper case.

string MakeLower ()

Returns a string converted to lower case.

string MakeLower (n)

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

530 SPL Reference Variables

Returns a string, with the first n characters converted to lower case.

string Mid(n)

Returns a string starting with the zero-based index position n

string Mid(n,m)

Returns a string starting with the zero-based index position n and the length m

string Removeleft (s)

Returns a string excluding the substring s if Left(s.Length()) is equal to substring s.

string RemovelLeftNoCase (s)

Returns a string excluding the substring s if Left(s.Length()) is equal to substring s (case insensitive).

string RemoveRight (s)

Returns a string excluding the substring s if Right(s.Length()) is equal to substring s.

string RemoveRightNoCase (s)

Returns a string excluding the substring s if Right(s.Length()) is equal to substring s (case insensitive).

string Repeat (s, n)

Returns a string containing substring s repeated n times.

string Right (n)

Returns the last n characters of the string.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

SPL Reference Operators 531

13.3 Operators

Operators in SPL work like in most other programming languages.
List of SPL operators in descending precedence order:

. Access object property

() Expression grouping

true boolean constant "true"

false boolean constant "false"

& String concatenation

- Sign for negative number

not Logical negation

* Multiply

/ Divide

% Modulo

+ Add

- Subtract

<= Less than or equal
< Less than

>= Greater than or equal
> Greater than

= Equal

<> Not equal

and Logical conjunction (with short circuit evaluation)
or Logical disjunction (with short circuit evaluation)

= Assignment

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

532 SPL Reference Conditions

13.4 Conditions

SPL allows you to use standard "if' statements. The syntax is as follows:

if condition
statements
else
statements
endif

or, without else:

if condition
statements
endif

Note: There are no round brackets enclosing the condition.
As in any other programming language, conditions are constructed with logical and comparison operators v,

Example:

[1f Snamespace.ContainsPublicClasses and S$namespace.Prefix <> ""]
whatever you want ['inserts whatever you want, in the resulting file]
[endif]

Switch

SPL also contains a multiple choice statement.

Syntax:

switch Svariable
case X:
statements
case Y:
case Z:

statements
default:

statements
endswitch

The case labels must be constants or variables.

The switch statement in SPL does not fall through the cases (as in C), so there is no need for a "break"
statement.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

SPL Reference Collections and foreach 533

13.5 Collections and foreach

Collections and iterators

A collection contains multiple objects - like a ordinary array. lterators solve the problem of storing and
incrementing array indexes when accessing objects.

Syntax:

foreach iterator in collection

statements
next

Example:

[foreach S$Sclass in S$classes
if not S$class.IsInternal
] class [=$class.Name];
[endif
next]

Example 2:

[foreach $i in 1 To 3
Write "// Step " & $i & "\n"
' Do some work

next]

Foreach steps through all the items in $classes, and executes the code following the instruction, up to the
next statement, for each of them.

In each iteration, $class is assigned to the next class object. You simply work with the class object instead of
using, classesli]->Name(), as you would in C++.

All collection iterators have the following additional properties:

Index The current index, starting with 0

IsFirst true if the current object is the first of the collection (index is 0)
IsLast true if the current object is the last of the collection

Example:

[foreach $enum in S$facet.Enumeration
if not $enum.IsFirst

I, 0

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

534 SPL Reference Collections and foreach

endif
1" [=$enum.Value]" [
next]

Collection manipulation routines:

collection SortByName(bAscending)

returns a collection whose elements are sorted by name (case sensitive) in ascending or descending order.

collection SortByNameNoCase(bAscending)
returns a collection whose elements are sorted by name (case insensitive) in ascending or descending order

Example:

SSortedNestedClassifier = S$Class.nestedClassifier.SortByNameNoCase (true)

collection SortByKind(bAscending)
returns a collection whose elements are sorted by kind names (e.g. “Class”, “Interface”,...) in ascending or
descending order.

collection SortByKindAndName (bAscendingKind, bAscendingName)
returns a collection whose elements are sorted by kind (e.g. “Class”, “Interface”,...) in ascending or descending
order and if the kinds are equal by name (case sensitive in ascending or descending order)

collection SortByKindAndNameNoCase(bAscending)

returns a collection whose elements are sorted by kind (e.g. “Class”, “Interface”,...) in ascending or descending
order and if the kinds are equal by name (case insensitive in ascending or descending order)

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

SPL Reference Subroutines 535

13.6 Subroutines

Code generator supports subroutines in the form of procedures or functions.
Features:

By-value and by-reference passing of values
Local/global parameters (local within subroutines)
Local variables

Recursive invocation (subroutines may call themselves)

13.6.1 Subroutine declaration

Subroutines

Syntax example:

Sub SimpleSub ()

. lines of code
EndSub

Sub is the keyword that denotes the procedure.

SimpleSub is the name assigned to the subroutine.

Round parenthesis can contain a parameter list.

The code block of a subroutine starts immediately after the closing parameter parenthesis.
EndSub denotes the end of the code block.

Note: Recursive or cascaded subroutine declaration is not permitted, i.e. a subroutine may not contain
another subroutine.

Parameters
Parameters can also be passed by procedures using the following syntax:

All parameters must be variables

Variables must be prefixed by the $ character

Local variables are defined in a subroutine

Global variables are declared explicitly, outside of subroutines

Multiple parameters are separated by the comma character "," within round parentheses
Parameters can pass values

Parameters - passing values

Parameters can be passed in two ways, by value and by reference, using the keywords ByVal and ByRef
respectively.

Syntax:

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

536 SPL Reference Subroutines

' define sub CompleteSub ()
[Sub CompleteSub ($param, ByVal S$paramByValue, ByRef S$paramByRef)

]

¢ ByVal specifies that the parameter is passed by value. Note that most objects can only be passed by

reference.
¢ ByRef specifies that the parameter is passed by reference. This is the default if neither ByVal nor

ByRef is specified.

Function return values
To return a value from a subroutine, use the return statement. Such a function can be called from within an

expression.

Example:

' define a function
[Sub MakeQualifiedName (ByVal SnamespacePrefix, ByVal $localName)

if SnamespacePrefix = ""
return $localName

else
return S$namespacePrefix & ":" & S$localName

endif
EndSub
]

13.6.2 Subroutine invocation

Use call to invoke a subroutine, followed by the procedure name and parameters, if any.
Call SimpleSub()

or

Call CompleteSub("FirstParameter", S$ParamByValue, S$ParamByRef)

Function invocation
To invoke a function (any subroutine that contains a return statement), simply use its name inside an
expression. Do not use the call statement to call functions. Example:

SQOName = MakeQualifiedName ($Snamespace, "entry")

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

License Information 537

14 License Information

This section contains information about:
e the distribution of this software product
e software activation and license metering
e the license agreement governing the use of this product

Please read this information carefully. It is binding upon you since you agreed to these terms when you
installed this software product.

To view the terms of any Altova license, go to the Altova Legal Information page at the Altova website.

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

https://www.altova.com/legal
https://www.altova.com/

538 License Information Electronic Software Distribution

14.1 Electronic Software Distribution

This product is available through electronic software distribution, a distribution method that provides the
following unique benefits:

e You can evaluate the software free-of-charge for 30 days before making a purchasing decision. (Note:
Altova Mobile Together Designer is licensed free of charge.)

¢ Once you decide to buy the software, you can place your order online at the Altova website and get a
fully licensed product within minutes.

e When you place an online order, you always get the latest version of our software.

e The product package includes an onscreen help system that can be accessed from within the
application interface. The latest version of the user manual is available at www.altova.com in (i) HTML
format for online browsing, and (ii) PDF format for download (and to print if you prefer to have the
documentation on paper).

30-day evaluation period

After downloading this product, you can evaluate it for a period of up to 30 days free of charge. About 20 days
into the evaluation period, the software will start to remind you that it has not yet been licensed. The reminder
message will be displayed once each time you start the application. If you would like to continue using the
program after the 30-day evaluation period, you must purchase a product license, which is delivered in the form
of a license file containing a key code. Unlock the product by uploading the license file in the Software
Activation dialog of your product.

You can purchase product licenses at https://shop.altova.com/.

Helping Others within Your Organization to Evaluate the Software

If you wish to distribute the evaluation version within your company network, or if you plan to use it on a PC that
is not connected to the Internet, you may distribute only the installer file, provided that this file is not modified in
any way. Any person who accesses the software installer that you have provided must request their own 30-
day evaluation license key code and after expiration of their evaluation period, must also purchase a license in
order to be able to continue using the product.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

https://shop.altova.com/
https://www.altova.com/documentation
https://shop.altova.com/

License Information Software Activation and License Metering 539

14.2 Software Activation and License Metering

As part of Altova’s Software Activation, the software may use your internal network and Internet connection for
the purpose of transmitting license-related data at the time of installation, registration, use, or update to an
Altova-operated license sener and validating the authenticity of the license-related data in order to protect
Altova against unlicensed or illegal use of the software and to improve customer senice. Activation is based on
the exchange of license related data such as operating system, IP address, date/time, software version, and
computer name, along with other information between your computer and an Altova license sener.

Your Altova product has a built-in license metering module that further helps you awid any unintentional
violation of the End User License Agreement. Your product is licensed either as a single-user or multi-user
installation, and the license-metering module makes sure that no more than the licensed number of users use
the application concurrently.

This license-metering technology uses your local area network (LAN) to communicate between instances of the
application running on different computers.

Single license

When the application starts up, as part of the license metering process, the software sends a short broadcast
datagram to find any other instance of the product running on another computer in the same network segment.
If it doesn't get any response, it will open a port for listening to other instances of the application.

Multi-user license

If more than one instance of the application is used within the same LAN, these instances will briefly
communicate with each other on startup. These instances exchange key-codes in order to help you to better
determine that the number of concurrent licenses purchased is not accidentally violated. This is the same kind
of license metering technology that is common in the Unix world and with a number of database development
tools. It allows Altova customers to purchase reasonably-priced concurrent-use multi-user licenses.

We hawe also designed the applications so that they send few and small network packets so as to not put a
burden on your network. The TCP/IP ports (2799) used by your Altova product are officially registered with the
IANA (see the IANA Service Name Regqistry for details) and our license-metering module is tested and proven
technology.

If you are using a firewall, you may notice communications on port 2799 between the computers that are
running Altova products. You are, of course, free to block such traffic between different groups in your
organization, as long as you can ensure by other means, that your license agreement is not violated.

Note about certificates

Your Altova application contacts the Altova licensing senver (1ink.altova.com) Via HTTPS. For this
communication, Altova uses a registered SSL certificate. If this certificate is replaced (for example, by your IT
department or an external agency), then your Altova application will warn you about the connection being
insecure. You could use the replacement certificate to start your Altova application, but you would be doing this
at your own risk. If you see a Non-secure connection warning message, check the origin of the certificate and
consult your IT team (who would be able to decide whether the interception and replacement of the Altova
certificate should continue or not).

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

540 License Information Software Activation and License Metering

If your organization needs to use its own certificate (for example, to monitor communication to and from client
machines), then we recommend that you install Altova's free license management software, Altova
LicenseSenrver, on your network. Under this setup, client machines can continue to use your organization's
certificates, while Altova LicenseServer can be allowed to use the Altova certificate for communication with

Altova.

Altova UModel 2023 Basic Edition © 2016-2022 Altova GmbH

https://www.altova.com/licenseserver
https://www.altova.com/licenseserver

License Information Altova End-User License Agreement 541

14.3 Altova End-User License Agreement

e The Altova End-User License Agreement is available here: https://www.altova.com/legal/eula
e Altova's Privacy Policy is available here: https://www.altova.com/privacy

© 2016-2022 Altova GmbH Altova UModel 2023 Basic Edition

https://www.altova.com/legal/eula
https://www.altova.com/privacy

542

Index

Index

.NET 5,
as UM odel profile, 158

importing types from binaries, 96

support, 11
.NET Core, 11

importing assemblies, 203
.NET Framework, 158

importing assemblies, 203

3

3-way project,
merge, 268

A

Abstract,
class, 27
Activation box,
Execution Specification, 346
Activity,
Add diagram to transition, 308
Add operation, 308
Add to state, 308
create branch / merge, 293
diagram elements, 295
icons, 467
Activity diagram, 289
inserting elements, 290
Actor,
customize, 18
user-defined, 18
Add, 451
diagram to package, 18
new project, 147
package to project, 18
project to source control, 451

to source control, 451
Align,

elements when dragging, 18

snap lines when dragging, 504
All,

expand / collapse, 379
Artifact,

add to node, 55

manifest, 55
Association,

aggregate/composite, 27

as relationship, 130

between classes, 27

changing the properties of, 133

creating, 130, 133

object links, 42

reflexive associations, 133

show typed property, 275

use case, 18

viewing, 133
Association qualifier,

creating, 133
Associations,

viewing, 87
Attribute,

autocomp letion window, 504

coloring, 384

show / hide, 379
Autocomplete,

function, 27
Autocompletion,

window on class editing, 504
Autocompletion of data types,

disabling, 127

triggering, 127
Autogenerate,

reply message, 352

Automatially add operation, 308

B

Ball and socket,
interface notation, 379
Base,
class, 36
Base class,

© 2016-2022 Altova GmbH

Index

543

Base class,
expand, collapse compartments, 379
multiple instances on diagram, 379
overriding, 379
Batch mode,
creating projects, 101
loading projects, 101
saving projects, 101
Behavioral,
diagrams, 289
Binary files,
import into model, 198
Binding,
template, 275
Branch,
create in Activity, 293

C

auto-implemented properties, 171

Q

code generation options, 169
code import options, 188
generate code, 171
generating code, 164
import attributes, 199
import binary files, 198, 203
importing source code, 186
Call,
message, 352
Call message,
go to operation, 352
CallBehavior,
insert, 290
CallOperation,
insert, 290
Catalog,
file - XM LSpy Catalog file, 504
Change provider,
source control, 459
Check In, 449
Check Out, 447
Class,
abstract and concrete, 27
add new, 27
add operations, 27

add properties, 27
associations, 27
base, 36
derived, 36
diagrams, 27
enable autocomp letion window, 504
icons, 469
in component diagram, 49
name changes - synchronization, 214
synchronization, 211
syntax coloring, 384
Class diagram, 379
Class name changing,
effect on code file name, 214
Classifier,
constraining, 273
new, 212
renaming, 212
Code, 214
adding code to sequence diagram, 367
default, 504
generate from sequence diagram, 364
generating sequence diagrams from, 358
Java code and class file names, 214
refactoring, 214
SPL, 520
synchronization, 211
Code engineering,
errors, 91
from code to model, 69
from model to code, 60
generate ComponentRealizations, 212
information messages, 91
move project file to new location, 147
resolving associatons, 136
tutorial samples, 14
warnings, 91
Collaboration,
Composite Structre diagram, 394
Collapse,
class compartments, 379
Collection Association,
creating, 136
prerequisites, 136
resolving to collection templates, 136
Color,
syntax coloring - enable/disable, 384
Combined fragment, 348

© 2016-2022 Altova GmbH

544

Index

Command,

add to toolbar/menu, 495
Command line,

creating projects, 101

Generating program code, 96

Importing binary types, 96

Importing source code, 96

loading projects, 101

Reference, 96

saving projects, 101

Synchronizing code and model, 96
Communication,

icons, 470
Communication diagram, 334

generate from Sequence diagram, 335
Compare source files, 457
Compartment,

expand single / multiple, 379
Compatibility,

updating projects, 211
Component,

diagram, 49

icons, 472

insert class, 49

realization, 49
Component diagram, 396
Component view,

as package, 107
ComponentRealizations,

autogeneration, 212
Composite state, 315

add region, 315
Composite Structure,

icons, 471

insert elements, 394
Composite Structure diagram, 393
Composition,

association - create, 27
Concrete,

class, 27
Constraining,

classifiers, 273
Containment,

drawing in a diagram, 139
Copyright information, 537
CRILF,

for ump file on save, 147
Create,

getter / setter methods, 379
Customize,
actor, 18

toolbar/menu commands, 495

D

Default,
project code, 504
SPL templates, 211
Delete,
command from toolbar, 495
icon from toolbar, 495
toolbar, 496
Dependencies,
viewing, 87
Dependency,
include, 18
usage, 49
Deployment,
diagram, 55
icons, 473
Deployment diagram, 396
Derived,
class, 36
Diagram, 397
- Activity, 289
- Communication, 334
- Component, 396
- Composite structure, 393
- Deployment, 396
- Interaction Overview, 338
- Object, 397
- Package, 397
- Sequence, 343
- State machine, 306
- Timing, 370
- Use Case, 334
Add activity to transition, 308
add to Favorites, 84
adding code to sequence diagram, 367
Additional - XML schema, 416
Class, 379
finding unused elements, 111
generate code from sequence diagram, 364
generate Package dependency diagram, 397

© 2016-2022 Altova GmbH

Index

545

Diagram, 397
icon reference, 79

icons, 466 E
ignore elem. from inluded files, 504

inserting elements into, 105

multiple instances of class, 379 Edit menu,

quick scroll, 89 commands, 487

Element,
save as png, 485)
save open diagrams with project, 504 add to Favorites, 84
styles, 86

styles, 86

viewing an outline of, 89 Elementimport,
XML Schema, 416

Diagram Tree window, 83

Diagram type,

viewing, 87

Elements,
adding to a diagram, 105
adding to the model, 79, 104

identifying, 93
aligning within a diagram, 125

Diagrams, 288
behavioral, 289
changing the appearance of, 123

applying custom images to, 117
autolayout, 125

changing the size of, 123 changing properties of, 85

creating, 93, 119 changing the appearance of, 117

deleting from project, 123 const.ralmng, 112
fit into window, 129 copying, 107

generating, 120 deleting from diagram, 108

generating from Hierarchy window, 87 deleting from project, 108
documenting, 90, 116
finding, 109

finding in a diagram, 111

opening, 122

structural, 379

viewing inside a project, 83
zoom in/out, 129 hyperlinking, 113

Directory, ignore from include files, 504

insert State M achine, 307

change project location, 147
moving, 107

ignoring on merge, 504
Disable source control, 444
Distribution,

of Altova's software products, 537, 538
Documentation,

renaming, 107
replacing, 109
resizing, 125
Enable source control, 444
End User License Agreement, 537, 541

adding to elements, 116
Enhance,

generate from UML project, 277

generating source code with, 116 performance, 163

importing from source code, 116 Entry point, _
Documentation window, 90 add to submachine, 315
Errors,

Download source control project, 441
Drid,

snap lines while dragging, 18
DurationConstraint,

during code engineering, 91
Evaluation period,

of Altova's software products, 537, 538
Timing diagram, 376 Event/Stimulus,

Timing diagram, 375
Exception,

Adding raised exception, 379

© 2016-2022 Altova GmbH

546

Index

Execution specification,
lifeline, 346
Exit point,
add to submachine, 315
Expand,
all class compartments, 379
Export,

UM odel projects to XM1, 434

External applications,
opening from UM odel, 497

F

Favorites window,
adding to, 84
removing from, 84
Fetch file,
source control, 445
File,
merging project files, 268
open from URL, 485
ump, 147
File menu,
commands, 485
Find,
diagrams, 109
elements, 109
text, 109
Folders,
get in source control, 446
Forward engineering, 60

G

Gate,
sequence diagram, 351
General Value lifeline,
Timing diagram, 371
Generalization,
as relationship, 105, 130
creating, 130
Generalizations,
viewing, 87
Generalize,

specialize, 36
Generate,
ComponentRealizations automatically, 212
reply message automatically, 352
Sequence dia from Communication, 335
UML project documentation, 277
Generated documentation,
options, 281
Get,
getter / setter methods, 379
Get file,
source control, 445
Get folders,
source control, 446
Get latest version, 445
Goto,
lifeline, 346
Grid,
snap lines, 504

H

Help menu,

commands, 515
Hide,

show - slot, 379
Hierarchy diagram,

levels shown in documentation, 277
Hierarchy window, 87
History,

show, 455
Hotkeys,

assigning, 501

deleting, 501
Hyperlinks,

in documentation text, 116

Icon,
Activity, 467
add to toolbar/menu, 495
class, 469

Communication, 470

© 2016-2022 Altova GmbH

Index

547

Icon,
component, 472
Composite Stucture, 471
deployment, 473
Interaction Overview, 474
object, 475
Package, 476
Sequence, 479
show large, 503
State machine, 480
Timing, 481
use case, 482
XML Schema, 483
Icons,
visibility, 379
Ignore,
directories, 504
elements in list, 504
Images,
using as element background, 117
Import,
XMI to UM odel, 434
Include,
NET Framework, 158
dependency, 18
UM odel project, 158
Insert, 290
action (CallBehavior), 290
action (CallOperation), 290
Composite Stucture elements, 394
Interaction Overview elements, 339
Package diagram elements, 399
simple state, 308
Timing diagram elements, 371
Instance,
diagram, 42
multiple class, and display of, 379
object, 42
Intelligent,
autocomplete, 27
Interaction operand, 348
multi-line, 348
Interaction operator,
defining, 348
Interaction Overview,
icons, 474
inserting elements, 339
Interaction Overview diagram, 338

Interaction use, 351

J

Java,
code and class file names, 214
code generation options, 169
code import options, 188
generating code, 164, 176
import annotations, 199
import binary files, 205
importing source code, 186

L

Layout menu,
commands, 492
Legal information, 537
License, 541
information about, 537
License metering,
in Altova products, 539
Lifeline, 346
attributes, 346
General Value, 371
typed property as, 346
Lifelline,
goto, 346
Line,
orthogonal, 49
Line break,
in actor text, 18
Lines,
changing the style of, 131
custom, 131
direct, 131
formatting, 42
moving, 131
orthogonal, 131
snap lines, 504
Links,
in generated documentation, 281
Local project, 441
Location,

© 2016-2022 Altova GmbH

548 Index
Location, Multiline, 18
move project, 147 Multi-line,

Mail,
send project, 485
Manifest,
artifact, 55
Menu,
add/delete command, 495
Merge,
3-way manual project merge, 270
3-way project merge, 268
create in Activity, 293
ignore directory, 504
projects, 268
Message, 352
arrows, 352
call, 352
create object, 352
go to operation, 352
inserting, 352
moving, 352
numbering, 352
Timing diagram, 377
Messages window,
reference, 91
Method,
Add raised exception, 379
Methods,
getter / setter, 379
Model,
adding elements to, 79, 104
changing class name - effect in Java, 214
Model Tree window,
expanding or collapsing items, 79
exp loring the project from, 79
icon reference, 79
showing or hiding items, 79
sorting items, 79
Modeling,
enhance performance, 163
Move,
project, 147
Moving message arrows, 352

actor text, 18
interactionOperand, 348

use case, 18

N

Name,

region names - hide / show, 315
New,

classifier, 212
New line,

in Lifeline, 335

ineractionOperand, 348
Node,

add, 55

add artifact, 55

styles, 86
Numbering,

messages, 352

O

Object,
create message, 352
diagram, 42
icons, 475
links - associations, 42
Object diagram, 397
Open Project,
source control, 441
OpenJDK,
importing binaries, 199
Operand,
interaction, 348
Operation,
autocomp letion window, 504
Automatically add on Activity, 308
coloring, 384
goto from call message, 352
overriding, 379
reusing, 36
show / hide, 379

© 2016-2022 Altova GmbH

Index

549

Operation,
template, 275
Operations,
adding, 27
Operator,
interaction, 348
Options,
source control, 504
tools, 504
when generating documentation, 281
Orthogonal,
line, 49
state, 315
Override,
class operations, 379
default SPL templates, 211
Overview window,
scrolling, 89

P

Package,
default packages, 79
icon reference, 79
icons, 476
Package diagram, 397
generating dependency diagram, 397
insert elements, 399
Packagelmport, 399
viewing, 87
PackageMerge, 399
viewing, 87
Parameter,
template, 275
Path,
change project location, 147
SPL template path, 522
Performance,
enhancement, 163
Pretty print,
in exported XMI files, 434
project on save, 147
Print preview,
options, 485
Profiles,
applying to a package, 154, 404

built-in, 404
creating, 404
definition, 403
Project, 147
3-way manual merge, 270
3-way merge, 268
add or remove items, 79
add to source control, 451
create, 147
default code, 504
exploring, 79
file - updating, 211
generating documentation, 277
include UM odel project, 158
insert package, 147
Merge, 268
modularize, 155
move, 147
open last on start, 504
remove from source control, 453
save - pretty print, 147
save open diagrams, 504
send by mail, 485
split into subprojects, 155
styles, 86
workflow, 147
Project menu,
commands, 489
Project open,
source control, 441
Project syntax,
checking, 91
Properties,
adding, 27
source control, 458
Properties window,
adding custom properties, 85
Property,
coloring, 384
reusing, 36
typed - show, 275
typed as lifeline, 346
Provider,
select, 441

© 2016-2022 Altova GmbH

550

Index

R

Raised exception,

Adding, 379
Realization,

component, 49

generate Comp onentRealizations, 212
Refactoring code,

class names - synchronization, 214
Reference, 484
Refresh status,

source control, 459
Region,

add to composite state, 315
Region name,

show / hide, 315
Reject source edits, 449
Relationships,

aggregation, 130

association, 105, 130

changing the style of, 131

composition, 130

dependency, 130

generalization, 105, 130

realization, 130

viewing, 133
Remove,

from source control, 453
Rename,

classifier, 212
Reply,

message - autogenerate, 352
Reset,

toolbar & menu commands, 496
Restore,

toolbars and windows, 494
Reverse engineering, 69
Root,

as package, 107

catalog - XM LSpy, 504

package/class synchronization, 211
Run native interface, 459

S

Save,

diagram as image, 485
SC,

syntax coloring, 384
Search,

diagrams, 109

elements, 109

text, 109
Send by mail,

project, 485
Sequence,

icons, 479
Sequence diagram, 343

adding code to, 367

combined fragment, 348

gate, 351

generate code from, 364

generate from Communication diag., 335

inserting elements, 344

interaction use, 351

lifeline, 346

messages, 352

state invariant, 352
Sequence diagrams,

generating from getters/setters, 362

generating from source code, 358

generating multiple, 362
Set,

getter / setter methods, 379
Setting,

synchronization, 211
Settings,

source control, 504
Share,

from source control, 454
Shortcut,

show in tooltip, 503
Shortcuts,

assigning, 501

deleting, 501
Show,

hide - slot, 379

hide- region name, 315

© 2016-2022 Altova GmbH

Index

551

Show,

property as association, 275
Show differences, 457
Show history, 455
Show/hide,

attributes, operations, 379
Signature,

template, 273, 274
Slot,

show / hide, 379
Snap,

line - when dragging, 504
Snap lines, 18
Socket,

Ball and socket, 379
Software product license, 541
Source control,

add to source control, 451

change provider, 459

Check In, 449

Check Out, 447

commands, 441

enable / disable, 444

get file, 445

get latest version, 445

installing a source-control plug-in, 436

open project, 441
options / settings, 504
properties, 458
refresh status, 459
remove from, 453
run native interface, 459
show differences, 457
show history, 455
Undo Check out, 449
Specialize,
generalize, 36
Speed,
enhancememt, 163
Spelling,
checking, 90
SPL, 520
code blocks, 521
conditions, 532
foreach, 533
subroutines, 535
templates user-defined, 211
SPL templates,

template path, 522
Start,
with previous project, 504
State, 315
add activity, 308
composite, 315
define transition between, 308
insert simple, 308
orthogonal, 315
submachine state, 315
State changes,
defining on a timeline, 371
State invariant, 352
State machine,
composite states, regions, 315
diagram elements, 327
icons, 480
insert elements, 307
states, activities, transitions, 308
State Machine Diagram, 306
Stereotypes,
adding custom icons to, 413
adding custom styles to, 413
adding to the Properties window, 85
applying to elements, 142, 408
creating, 405, 408
definition, 140
example, 408
examples, 140, 403
Structural,
diagrams, 379
Styles,
applying to diagrams, 123
applying to elements, 117
applying to lines, 131
cascading, 117, 123, 131
precedence, 117, 123, 131
Styles window, 86
StyleVision,

customize generated documentation with, 286

customizing generated documentation with, 277

Submachine state,

add entry/exit point, 315
Subproject,

create from main project, 155

reintegrate into main project, 155
Symbols,

visibillity icons, 379

© 2016-2022 Altova GmbH

552

Index

Synchronization, 214
class and code file name, 214
class name changes, 214
settings, 211
Synchronize,
root/package/class, 211
to new location, 147
Syntax coloring, 384

T

Tagged values,
as enumerations, 405, 408
creating, 142, 405
definition, 141
example, 408
examples, 141
showing or hiding, 144
Template,
binding, 275
operation/parameter, 275
signature, 273, 274
Templates,
SPL templates, 522
user-defined SPL, 211
Tick mark,
Timing diagram, 374
TimeConstraint,
Timing diagram, 377
Timeline,
defining state changes, 371
Timing,
icons, 481
Timing diagram, 370, 371
DurationConstraint, 376
Event/Stimuls, 375
General Value lifeline, 371
inserting elements, 371
Lifeline, 371
Message, 377
switch between types, 371
Tick mark, 374
TimeConstraint, 377
Timeline, 371
Toolbar,
activate/deactivate, 496

add command to, 495

create new, 496

reset toolbar & menu commands, 496

show large icons, 503
Toolbars,

restore to default, 494
Tools,

options, 504
Tools menu,

adding custom commands to, 497
Tooltip,

show, 503

show shortcuts in, 503
Transition,

Add Activity diagram to, 308

define between states, 308

define trigger, 308
Trigger,

define transition trigger, 308
Tutorial,

sample files, 14
Type,

property - show, 275
Typed,

property - as lifeline, 346

U

UML,

Diagrams, 288

templates, 273

variables, 522

visibility icons, 379
UModel,

Introduction, 11

M ain features, 11
UModel diagram icons, 466
UModel projects,

opening, saving, creating, 15
UMP, 147

change project location, 147

file extension, 147
Undo Check out, 449
Update,

project file, 211
URL,

© 2016-2022 Altova GmbH

Index 553
URL, source control, 441

open file from, 485
Usage,

dependency, 49
Use case, X

adding, 18

association, 18 XM,

compartments, 18 import and export, 434

XML Schema,

icons, 482

multi-line, 18
Use Case diagram, 334
User defined,

actor, 18
User-defined,

SPL templates, 211

Vv

Variables,
UML, 522
VB.NET,

code generation options, 169

code import options, 188
generating code, 164
import binary files, 198

importing source code, 186

Version control,
commands, 441
View,

to multiple instances of element, 379

View menu,
commands, 493
Visibility,
icons - selecting, 379

W

Warnings,

during code engineering, 91

Windows,

restore to default, 494
Workflow,

project, 147
Working directory,

creating diagrams, 422
declare namespace, 422
diagrams, 416

generating from model, 424
icons, 483

importing into a model, 417
modeling, 422, 424

© 2016-2022 Altova GmbH

	Altova UModel 2023 Basic Edition User Manual
	Table of Contents
	Introduction
	Support Notes

	UModel Tutorial
	Getting Started
	Use Cases
	Class Diagrams
	Creating Derived Classes

	Object Diagrams
	Component Diagrams
	Deployment Diagrams
	Forward Engineering (from Model to Code)
	Reverse Engineering (from Code to Model)

	UModel Graphical User Interface
	Model Tree Window
	Diagram Tree Window
	Favorites Window
	Properties Window
	Styles Window
	Hierarchy Window
	Overview Window
	Documentation Window
	Messages Window
	Diagram Window
	Diagram Pane

	UModel Command Line Interface
	Creating, Loading, and Saving Projects in Batch Mode

	How to Model...
	Elements
	Creating Elements
	Inserting Elements from the Model into a Diagram
	Renaming, Moving, and Copying Elements
	Deleting Elements
	Converting Elements
	Finding and Replacing Text
	Checking Where and If Elements Are Used
	Constraining Elements
	Hyperlinking Elements
	Documenting Elements
	Changing the Style of Elements

	Diagrams
	Creating Diagrams
	Generating Diagrams
	Opening Diagrams
	Deleting Diagrams
	Changing the Style of Diagrams
	Aligning and Resizing Modeling Elements
	Type Autocompletion in Classes
	Zooming into/out of Diagrams

	Relationships
	Creating Relationships
	Changing the Style of Lines and Relationships
	Viewing Element Relationships
	Associations
	Collection Associations
	Containment

	Stereotypes and Tagged Values
	Tagged Values
	Applying Stereotypes
	Showing or Hiding Tagged Values

	Projects and Code Engineering
	Managing UModel Projects
	Creating, Opening, and Saving Projects
	Opening Projects from a URL
	Moving Projects to a New Directory
	Applying UModel Profiles
	Splitting UModel Projects
	Including Subprojects
	Sharing Packages and Diagrams
	Tips for Enhancing Performance

	Generating Program Code
	Setting a Package as Namespace Root
	Adding a Code Engineering Component
	Checking Project Syntax
	Code Generation Options
	Example: Generate C# Code
	Example: Generate Java Code
	SPL Templates

	Importing Source Code
	Code Import Options
	Example: Import a C# Project

	Importing Java, C# and VB.NET Binaries
	Adding Custom Java Runtimes
	Import Binary Options
	Example: Import .NET Assemblies
	Example: Import Java .class Files

	Synchronizing the Model and Source Code
	Synchronization Tips
	Refactoring Code and Synchronization
	Code Synchronization Settings

	UModel Element Mappings
	C# Mappings
	VB.NET Mappings
	Java Mappings
	XML Schema Mappings

	Merging UModel Projects
	3-Way Project Merge
	Example: Manual 3-Way Project Merge

	UML Templates
	Template Signatures
	Template Binding
	Template Usage in Operations and Properties

	Generating UML Documentation
	Documentation Generation Options
	Customizing Output with StyleVision

	UML Diagrams
	Behavioral Diagrams
	Activity Diagram
	Inserting Activity Diagram elements
	Creating branches and merges
	Activity Diagram elements

	State Machine Diagram
	Inserting state machine diagram elements
	Creating states, activities and transitions
	Composite states
	Generating code from State Machine diagrams
	Working with state machine code
	State Machine Diagram elements

	Protocol State Machine
	Inserting Protocol State Machine elements
	Protocol State Machine Diagram elements

	Use Case Diagram
	Communication Diagram
	Inserting Communication Diagam elements

	Interaction Overview Diagram
	Inserting Interaction Overview elements

	Sequence Diagram
	Inserting Sequence Diagram Elements
	Lifeline
	Combined Fragment
	Interaction Use
	Gate
	State Invariant
	Messages

	Generate Sequence Diagrams from Source Code
	Generate Multiple Sequence Diagrams
	Generate Sequence Diagrams from Getters/Setters

	Generate Code from Sequence Diagram
	Adding code to sequence diagrams

	Timing Diagram
	Inserting Timing Diagram elements
	Lifeline
	Tick Mark
	Event/Stimulus
	DurationConstraint
	TimeConstraint
	Message

	Structural Diagrams
	Class Diagram
	Customizing Class Diagrams
	Overriding Base Class Operations and Implementing Interface Operations
	Creating Getter and Setter Methods
	Ball and Socket Notation
	Adding Raised Exceptions to Methods of a Class
	Adding Receptions to a Class
	Generating Class Diagrams

	Composite Structure Diagram
	Inserting Composite Structure Diagram elements

	Component Diagram
	Deployment Diagram
	Object Diagram
	Package Diagram
	Inserting Package Diagram elements
	Generating Package Diagrams

	Profile Diagram
	Creating and Applying Custom Profiles
	Creating Stereotypes
	Example: Creating and Applying Stereotypes
	Example: Customizing Icons and Styles

	Additional Diagrams
	XML Schema Diagrams
	Importing XML Schemas
	Modeling XML Schemas
	Example: Create and Generate an XML Schema

	XMI - XML Metadata Interchange
	Source Control
	Setting Up Source Control
	Supported Source Control Systems
	Source Control Commands
	Open from Source Control
	Enable Source Control
	Get Latest Version
	Get
	Get Folder(s)
	Check Out
	Check In
	Undo Check Out...
	Add to Source Control
	Remove from Source Control
	Share from Source Control
	Show History
	Show Differences
	Show Properties
	Refresh Status
	Source Control Manager
	Change Source Control

	Source Control with Git
	Enabling Git Source Control with GIT SCC Plug-in
	Adding a Project to Git Source Control
	Cloning a Project from Git Source Control

	UModel Diagram icons
	Activity Diagram
	Class Diagram
	Communication diagram
	Composite Structure Diagram
	Component Diagram
	Deployment Diagram
	Interaction Overview diagram
	Object Diagram
	Package diagram
	Profile Diagram
	Protocol State Machine
	Sequence Diagram
	State Machine Diagram
	Timing Diagram
	Use Case diagram
	XML Schema diagram

	Menu Reference
	File
	Edit
	Project
	Layout
	View
	Tools
	User-defined Tools
	Customize
	Commands
	Toolbars
	Tools
	Keyboard
	Menu
	Options

	Restore Toolbars and Windows
	Options
	Java Virtual Machine Settings
	Network Proxy Settings

	Window
	Help

	SPL Reference
	Basic SPL structure
	Variables
	Operators
	Conditions
	Collections and foreach
	Subroutines
	Subroutine declaration
	Subroutine invocation

	License Information
	Electronic Software Distribution
	Software Activation and License Metering
	Altova End-User License Agreement

	Index

