Altova RaptorXML Server 2025

RaptorXML®
SERVER

User & Reference Manual

Altova RaptorXML Server 2025
User & Reference Manual

All rights reserved. No parts of this work may be reproduced in any form or by any
means - graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems - without the written permission of the
publisher.

Products that are referred to in this document may be either trademarks and/or
registered trademarks of the respective owners. The publisher and the author make no
claim to these trademarks.

While every precaution has been taken in the preparation of this document, the
publisher and the author assume no responsibility for errors or omissions, or for
damages resulting from the use of information contained in this document or from the
use of programs and source code that may accompany it. In no event shall the publisher
and the author be liable for anyloss of profit or any other commercial damage caused or
alleged to have been caused directly or indirectly by this document.

Published: 2025

© 2019-2025 Altova GmbH

Table of Contents

1 Introduction 9
2 About RaptorXML Server 10
2.1 Editions and INtEIfACES....................ccoreecsviisssssssseeesess s ssssssssss s sssssssssssssenns 11
22 SYSIEM REQUITEIMENLES...........ooooeeeeeeeceseeeeeeseeeesessese e ssessesesseessseseesssssssesssssesessssesseesssassessssssseees 15
23 FRAMUIES...........ccoooooeeessss bbb 16
24 Supported SPECIfICALIONS...............crrrrrrsiiisisessssssssssssssssss s 18
2.5 INOADIE CRANGES.........ooooeeeeeeeeeeeseeeeeeeteee et ses e ee e see s es e e e see s ses s ses s s s s ses s ss s sees s sneenes 20
3 Installation and Licensing 21
3.1 SEtUP ON WINAOWS.........ooioeoeeeeeee ettt seseesseeeeses s seeeesese s sseseess s sesssssessssseesesssssessessesesseees 22
3141 INSEAIl ON WINAOWS......oorrerreenreeieseiesessessssesss e ssssssssssessnns 22
3.1.2 [nstall On WINAOWS SEIVEE COTE.......uvveerrreereeeesneesssssssssssssesssssssssssssssssssssssssssssssssssanns 23
3.1.3 Install LicenseServer (WINAOWS)...........cewereeemmreessseesssssessssssssssssssssssssssssssssssssssanns 26
3.14 Network and Service Configuration (WiNAOWS)............eeeuemeeeeemmeeeeemmeeeesssseessssesessnnns 27
3.15 Start LicenseServer, RaptorXML Server (WINAOWS)...........cveeuereemereesmeersssseeessseee 28
3.16 Register RaptorXML Server (WINAOWS)..........ccevuueereieeriiseesssessssssessssssssssssssessessanes 30
347 ASSIGN LICENSE (WINAOWS)....ceorurerrmeerseeesseresssesssssesssesesssssesssssssssssssssssssssssssssssssssssssnseses 31
K 1= (1] o I o) I N3 U OO 32
3.21 INSTAI ON LINUX..rvttreiereeeseeessesssessssesesssessssessssssssssssssssessssssssssssssssssssssssssssessssssssssssssnns 32
322 NSl LICENSESEIVET (LINUX)..or urveermueeeesmeeeesmeeesssseesssssssssssssessssssssssssssssssssssssssssssssssssnns 34
323 Start LicenseServer, RaptorXML Server (LINUX)........ccccureeemreeesseeeessmmseessssseesssesseees 35
324 Register RaptorXML SErver (LINUX).........cccueeeeemmreesseeesssssessssessssssssssssssssssssssssssssnns 35
325 ASSIGN LICENSE (LINUX)..crvvverrereermeeesseessseessssseessssssesseses 36
33 SetUp ONMACOS........... s RER RS Es 38
3.31 INSEAIl ON MACOS........ooerereee st ss s ssssans 38
332 Install LicenseServer (MaCOS)......owwreerreeereesssnns 40
3.3.3 Start LicenseServer, RaptorXML Server (MacOS).........occveevieceineesisessisessisessisesenns 40

Altova RaptorXML Server 2025

34
35
36

42
43

5.2

5.3

54

3.34 Register RaptorXML Server (MaCOS)......cc.curvurerieriiseessssessssssssssssssssessssssssssanns 41
3.35 ASSIgN LiCENSE (MACOS)......oouureeiirersseeesieessisseesssssessssssssessssssssssssssssssssssssssssssssees 41
Upgrade RAPIOIXIVIL SEIVETcoooeeeeoeeeeeseeeeeseeseesessessessesesssesesssessssssesssesssssessessesssssssnsenes 43
Migrate RaptorXML Server to @ New Machine.........ooo...cooevvecveenneervcoresseeesssessssnnnee 44
Security CONSIAEIAtIONS...............sssssssssssssssssssssssesssseseeeseeese e ssssssssssssssssssssssssssssssssenes 45
General Procedures 46
XML CAtAIOGS........oeoeoeeeeeeeeeeeeee s seesese s ssessesses s sesseeses s es s st s sessseses s ses s ses s eessseseessesaessseneenes 47
411 HOW Catalogs WOTK..........oreeereereeeeeresnessens 47
412 Catalog Structure in RaptorXML SEIVEN..........orvereereernnresseessessssssessssssssssesssssesssns 48
413 CUStOMIZING YOUF CAtAIOGS.vverrureerrrreesseereesseseessssssesssnees 50
414 Variables for Windows System LOCAtONS...........ccoccuerrvieceiiessiisesisesses s sssessssesenns 52
GIODAI RESOUICES..............ooooovvevmssssssssssssssssmsssssssssssssssssssssssssss s sssssssssssssssssssssssssssssssssssnss 53
SECUNLY ISSUES.........ooeoeeeeeeeeeeseeeeee e s e e s s s ee s ee s eee e e s es s eseseesensene 55
Command Line Interface (CLI) 56
XML, DTD, XSD Validation COmMmMands.............rreereeeeeeeeeeeeeeeeeeeeesssssssssssssssssssssens 58
511 VAIXMI-WINALD (XMoo nnees 58
542 VaIXMIEWINXSA (XSI).uumrveeersmrrreeesssnseseesssssssesssssssssessssssssssssssssssssesssssssssssssssssssssssssssssnnnns 62
Lo T 10 1o I (o (o) OO OO SOOI 69
5.14 VAIXSA (XS0).orrereeessaerusssseeesssseeesssssessssseesssssessssssssesss s ssss s sss s 73
Well-formedness Check COMMEANGS........ccooonecenecennnnnsesssssssssssssssssssssssssssssssseess 80
521 WEKIMI ettt 80
D22 WM ot 84
D23 WIANY ettt 88
XQUETY COMIMEANGS........ooooeeeeeeeeeseeeceseeeeseeeeesse s ssesesseeesessesssssee s sses e sessases s sessessessseeeessesaessssenes 92
5.31 XQUETY ceteesseeese et sesse st seess e ss s bbb bR 92
532 XQUETYUPALEcvevrreeeetsereseessesssse s sss bbb bbbt 100
533 VAIXGUETY. ..ottt 108
534 VAIXQUETYUPAALE........rveveeerrcesreeseesssesesssssssssssssssssssssss st sssss st ssssssssssssssssssssses 114
XSLT COMMANGS......ccovvvvveverssseeseesssssssssssssssssssesssesnes 121
54.1 XSIE et 121
BA2 VAIXSIE oo 129

Altova RaptorXML Server 2025

55 JSON/AVIO/YAML COMMEANGS........ooooooeeeeeeeeeceeeeeeeceeeeesseessseesesessesesesssssssssssssssessssssesssses s 136

5.5.1 L0 TC D r=To] o] 1T 0 o ORI 136
852 JSONZXMIivttrireiiseeessseesesssseeessssesessss e ssss st st 139
553 JSONSCREMAZXSA......oorveerrerrrreisreesserssseessssssessssessnns 144
554 VAIAWIO (BVI0) .. vvvrssrrreessnseessssnsssassssssssssssssssssssssssssssnnneses 149
555 ValaVIOJSON (AVIOJSON)......ouuervveserrrescsssssssissssssessssessssssss s sssssss s st sssssssssssses 152
556 valawroSChema (AIOSCREMA).........rveerreerreeesrseessssseessssssssssssssssssssssssssssssssssssssns 156
55.7 ValjSONSChEMA (JSONSCNEMA).......curveerreeireeeiseeesssseessssssssssssssssssssssssssssssssssssns 159
558 VALJSON (JSON)..vvvtrrereesraseresssseeessseeesssssessssssssssssssssssssssssss s sss s sss s sss s sssssssssssns 164
559 VAIYAMI (YAMI).otrrittrrreseneeesseeessseeess e essss s sss s ss bbbt 168
D50 WISON ettt 172
BT WIYAM L oottt 176
oIS TN D {1 1] o] OO 180
5513 XSUZ2JSONSCNEMA..... ot 184
56 XML Signature COMMENGS...............ccmmiimmmmssssssssssssssesesssssssssssssssssssssssssssssssseesees 191
56.1 XMISIGNATUIE-SIGN.....vvvrrvrrereseeesseessseessse bbb bbbt 191
56.2 XIMUSIGNATUIE-VEIITY......rveverreeeseeesieeessseeesss st ssss s ssssss s s s ssssssnas 195
56.3 XMISIGNATUIE-UPAALEoovvvrveerereteeesisseesiseeesss s sssssssss s sss s 198
564 XMISIGNALUIE-TEMOVE.......oourverrrcerreesesessssseessessssessses 201
57 General COMMANGS........ccoooeveovvvviiisissseessesssssssssssssssesesssssssssssssssssssssssssssssssssssssessssssssssns 203
571 VALANY ...ttt 203
572 o]) OO OPOTO 204
573 DIBID et 205
58 Localization COMMEANGS...................mmmmmmmmmmmmmmmmmmmsssssssssss s 207
5.8.1 EXPOMIESOUICESIINGSvvvuseressersseeessseesseessssessssesss s ss bbb 207
582 SEEABMIANG ...ttt 209
59 License COMMANGS....................mmmmmmmmmmmmmmmmmmmmmmmmmmmss 210
591 [ICENSESEIVEN.....covveersrerseeesseeesseessssessssssssessssssssss s sssssssss s ssssssssssssssssssssassssssssssssssssnnees 210
592 assignlicense (WINAOWS ONIY).....vvcurveerrrerrrreesnessssesssssssssssssssssssssssssssssssssssssneees 211
593 verifylicense (WINAOWS ONIY).......cvurcvrceiessesessssssss s ss s sssssssssssens 213
510 Administration COMMEANGS................cmimimsissssssssss s 215
50T INSHAIL oottt s 216
8.10.2 UNINSIAIL.. oottt 216
0103 SIAM R 217
5104 SEHEMANG. ...t 218

Altova RaptorXML Server 2025

oI TR T 11T = (YT o) AV =Y O OO 219

5106 accepteula (LINUX ONIY)....reeeeceiieeesseeesssseessssseesssseessssssesssssesssssesssssssseess 220
50T GSSIGNIICENSE. ...eourerrreeerreeeseressseessessssessss st sssess st sssssssss st ssssssss st ssssssssssssssssssnns 221
5108 VEIIYICENSE. ..ottt sttt sttt 222
5.10.9 CrEAtBCONTIG. .ccovveverrceirreciserecssssseess s ssss st sssssss st sssssssessssssnenes 223
510.10 eXPOMreSOUrCESIINGS. ...ttt 224
51011 ABDUG .ottt 226
51012 NEIP oo 227
9,103 VBISION....vettreerrierssssesssssssss s sssssss st ss s ss s s 228
BAT OPHONS........cs s sssssss s 230
5111 Catalogs, Global Resources, ZIP Files........ccrereirenreesnsesssssssssssssssssssnns 230
5112 Messages, Errors, Help, Timeout, VErSION..........coreereemeeensesssneesssssessssessssseessans 231
D13 PrOCESSING . ..coieermeeerreeiseeessssessssessseesssssssssssss st ssssssssssssssssssssssssssssssssssssssesssssssssssssssnns 232
BUATA XML ettt st ss s 233
BUATE XSD s 234
BIATE KQUETY.eeerreeetiecesseeeesssseessssssesss st sss st 236
B.ITT XSLT st 238
D18 JSONIAWIO......vveeereritsessseisssssssissssssssssssssss s sss s sss s sss s ssssssss s sssssssssssssssnses 240
5.11.9 XML SIGNAIUIES......vveeeereeseeeesseeesssseessssseessssssessssssessssssssssssssssessssssssssssssssssssessssssnsseees 241
6 Server APIs: HTTP REST, COM/.NET, Java 245
6.1 HTTP REST Client INterface........vvvccviiieeeeeeeseescssssssseeeeessssssssssssssssssssssssssssssssns 247
6.1.1 SEIVET SEIUP.....cvvteereieeesssessi it 248
6.1.2 ClIENT REQUESS......oooreeeeeiscircsescssssesss s sss s sssssssss st sssssssssssssssssssssssnnnes 260
6.1.3 C# EXaMPIE fOr REST APL.....vvorreeeieereesessnsees 284
8.2 COMNET APL.......ooooccetesseeeeessevstissssessessssssssssssssss s sssssssssss s sssssssss s sssssssssas 288
6.2.1 COM INEEITACE.oo v s sssssssssssssssssssssssssssesssss st ssssssssaneees 288
6.2.2 COM EXample: VBSCHIPL........ierveeeeiiesitessssssssses s sssssssssssssssssssssssssssssssssssssnenss 288
6.2.3 INET INEITACE ..ottt 290
6.2.4 NET EXAMPIE: Gttt ssss i st ssssssssssssssssssssssssssssssssnnes 291
6.2.5 NET Example: Visual Basic NETcccorriemieesisessssessssssssssssssssss 294
8.3 JAVA AP 297
6.3.1 OVerview Of the INTEITACE. ...t sssssssssseees 297
6.3.2 EXaMPIE JAVA PIOJECL........eoreeerceerreesreeiseeisssessssssssssssesssssssssssssssssssssssssssssssssssnns 298

Altova RaptorXML Server 2025

6.4

7.1
12

7.3

8.1
8.2
8.3
8.4
8.5

9.1
9.2

SEIVEIN APIREEIEINCE. ... eeee e eee e seecese e es s ssstees s ses s aes s s e s esseseessses s 300

6.4.1 INTETACES/CIASSES. ..ottt bbb bbb 300
6.4.2 ENUMETALIONS........ocetccec sttt 352
Engine APIs: Python and .NET 363
(1o =] 5] [T O 365
VLT I OO 366
7.2 PYINON APLVEISIONS......ooorveeeeeeeneesessesssssssessssssessnnes 367
7122 RaptorXML Server as a Python Package............cccureneerneeeseesiessssssssessssns 369
723 Debugging Server-Side PYthon SCHPLS.........rereemreereeseesseessssesssssesssssssssseessnns 372
724 Debugging Python Scripts in Visual Studio COde.......c..reemrrenreesinreeessnseessnnnns 372
725 FAQS oottt 374
NET FrameWOrK APL......... e sssssssssesssssssssssssssssssssssssssssssssssses 376
Schema Manager 377
RUN SCREM@A MANAJET.............o oot eeseeseeseeesesesseeseseseses s sesssssessesess s ssesseesesseneees 381
STALUS CALEGOTIES.........oooooeeeeeeeeeeeeeeeeee e eeeeessees s ssesese s ssseesesessesaesessesees s seesssseseessseeeees 384
Patch or Install @ SCheMa............cccoooereciesseeeeessesssssssssssssesssssssssssssssssssssssssssssees 386
Uninstall @ Schema, RESEL..................ececsssssseeeeesesssvssssssssssssssesssssssssssssssssssseees 388
Command Line INtErface (CLI).........cooooeeeeeeeee oo sesseeeesseesessesse s ssesseeseesene 389
85.1 DBID e RR R 389
852 N0 e bbbt b e 390
853 IMIALIZE......cevveceve et b bbb 390
854 INSTAIL ..o 391
855 (IS e bR 391
8.5.6 FESEE oottt R st 392
85.7 UNINSTAIL...oov bbb e bbb bbb 393
8.5.8 0010 = (=PSRRI 394
859 00T =T SOOI 394
Additional Information 395
EXIt COUES............cooooieieeeeesseeeevissssssss s sssssssssssssssssssssssssssssssss s sssssssssssssssssssssssssssssssssessnseses 396
Schema LOCAtIoN HINES....................ccooreeeeesveorssssssseeesssssessssssssssssssssssssssssssssssssssesssssssssees 397

Altova RaptorXML Server 2025

10 Engine Information 398

10.1 XSLT and XQuery Engine INfOrmation..............ccoooococomneeeecosseeeeesseeeeesseesssesseesseesseseses 399
1000 XSLT 1.0 eeeteeeeeseseessseseessssesesssssssss st ssss s ssss s ssss s sssssssssssssssssssssssssssssssssns 399
1002 XSLT 2.0ttt ss s ss s ssss s sss s s s sss s s sssssssssnens 399
1013 XSLT B.0.iueeieeeeriieese sttt ss s ss s ss s ss s 401
1014 XQUETY 1.0uucccooeeeeesesissss st s s s ss s s s 402
1045 XQUETY 3.1ttt s ss s st 405
10.2 XSLT and XPath/XQUErY FUNCLIONS...........cooocoroeoreeecoeeeeceeeeeeseeeeeseeeeesseesesseesesseesesseesesesseene 407
10.2.1 Altova EXtENSiON FUNCHONS.......oc.reereersreeiinrecsssesssssssssssesssesssssssssssssssssssssssssssssssssnees 408
10.2.2 Miscellaneous EXtension FUNCHONS........cc..rererreeneesnnesssssessssssssssessssssssessssnees 499
Index 517

Altova RaptorXML Server 2025

Introduction 9

1 Introduction

Altova RaptorXML Server (hereafter also called RaptorXML for short) is Altova's third-generation, hyper-fast
XML and XBRL* processor. It has been built to be optimized for the latest standards and parallel computing
environments. Designed to be highly cross-platform capable, the engine takes advantage of today’s ubiquitous
multi-core computers to deliver lightning fast processing of XML and XBRL data.

RaptorXML”

SERVER

Note: XBRL processing is available only in RaptorXML+XBRL Server, not in RaptorXML Server.

This documentation

This documentation is delivered with the application and is also available online at the Altova website. This
documentation is organized into the following sections:

About RaptorXI\/IL

Setting Up RaptorXI\/IL
Command Line Interface

Senver APIs: HTTP, COM/.NET., Java @@
Engine APIs: Python and .NETED
Additional Information

Engine Information

Altova website: ¢ XML validation server, XML validator

Last updated: 17 March 2025

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

http://www.altova.com
https://www.altova.com/raptorxml
https://www.altova.com/raptorxml

10 About RaptorXML Server

2 About RaptorXML Server

Editions and operating systems

There are two editions of RaptorXML, each suitable for a different set of requirements. These editions are
described in the section Editions and Interfaces €. RaptorXML is available for Windows, Linux, and macOS.
For more details of system support, see the section System Requirements (5§

Features and supported specifications

RaptorXML provides XML validation, XSLT transformations, and XQuery executions, each with a wide range of
powerful options. See the section Features ® for a broad list of available functionality and key features. The
section Supported Speciﬁcationsm provides a detailed list of the specifications to which RaptorXML conforms.
For more information, visit the RaptorXML page at the Altova website.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

https://www.altova.com/raptorxml.html

About RaptorXML Server Editions and Interfaces 1

2.1 Editions and Interfaces

Editions

RaptorXML is available in the following editions:

e RaptorXML Server, which is a fast server-based XML processing engine for the validation and
processing of XML, XML Schema, XML Signature, XSLT, and XQuery documents.

e RaptorXML+XBRL Server, which provides all the functionality of RaptorXML Server plus a wide range of
XBRL processing functionality.

See here‘B for a list of the supported specifications m.

Interfaces
After you install RaptorXML, you can access it in one or more of the following ways:

e Command Line Interface (CLI): available for Windows, Linux, and macOS installations of RaptorXML

e HTTP REST client interface: uses RaptorXML's HTTP interface

e COM/.NET server interface (Windows): uses RaptorXML's (i) COM/.NET APl and (ii) HTTP REST
interface

e Java server interface (Windows, Linux, macOS): uses RaptorXML's (i) Java APl and (ii) HTTP REST
interface

o Altova XMLSpy interface: RaptorXML can be accessed from within the Altova XMLSpy user interface

e Python engine interface: uses (i) a RaptorXML Python-wheel in your Python environment and (ii) the

Python API of RaptorXML in your Python script. In this way, RaptorXML functionality can be used in

Python scripts together with third-party Python packages

.NET engine interface (Windows): uses (i) a RaptorXML DLL and (ii) the .NET API of RaptorXML to

create independent .NET applications that use RaptorXML functionality

These sewven interfaces can be organized into four groups:

Command Line Interface (CLI)@
Senver APIs: HTTP, COM/.NET., Java @@

Engine APls: P*thon and .NET
Altova XMLSpy

CLI, Server APIs, and Altova XMLSpy
Access via the CLI, the Server APIs, and Altova XMLSpy can be visualized as in the figure below.

RaptorXML Sener defines an HTTP REST interface, which is used by clients to dispatch validation jobs to the
sener. Clients can either access the HTTP REST interface directly or use the high-level COM/.NET and Java
Senver APIs. These APIs provide easy to use COM/.NET and Java classes which manage the creation and
dispatch of the HTTP REST requests. Additionally, Altova XMLSpy can be configured to run validation jobs on a
remote RaptorXML Sener.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://www.altova.com/xmlspy-xml-editor
https://www.altova.com/xmlspy-xml-editor

12 About RaptorXML Server Editions and Interfaces

CLl, Server APls, XMLSpy

7)
CLI
- HTTP REST Client
RaptorXML Editions
I-!TI-F REST COM/.NET
* RaptorXML interface
* RaptorXML+XBRL
S

Command line interface (CLI)

e RaptorXML is licensed on the machine on which it is installed and this instance is accessed via the
command line

e Can be installed on Windows, Linux, and macOS

e Provides command line usage@ for validation and processing of XML, XML Schema, XML Signature,
XQuery, and XSLT documents

e Python 3.11.8 is bundled in RaptorXML and will be used when a Python script is invoked with the --
script option

HTTP REST client interface

e RaptorXML is licensed on the machine on which it is installed and this instance is accessed via an
HTTP REST client interface &

e Client requests are made in JSON format. Each request is assigned a job directory on the sener, in
which output files are saved. Server responses to the client include all relevant information about the
job.

e Python 3.11.8 is bundled in RaptorXML and will be used when a Python script is invoked with the --
script option

COM/.NET interface

e Available on Windows only

e RaptorXML is automatically registered as a COM server object when installed, and so can be invoked
from within applications and scripting languages that have programming support for COM calls

e RaptorXML is licensed on the machine on which it is installed

e The .NET interface is built as a wrapper around the COM interface

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

About RaptorXML Server Editions and Interfaces 13

e The COM/.NET Server API€® of RaptorXML provides objects that can be used in COM/.NET scripting
languages to access RaptorXML functionality

e Python 3.11.8 is bundled in RaptorXML and will be used when a Python script is invoked with the --
script option

Java interface

e RaptorXML is licensed on the machine on which it is installed and this instance is accessed via a Java
program

e RaptorXML functionality is available in the Java Server APIED as Java classes that can be used in Java
programs.

e Python 3.11.8 is bundled in RaptorXML and will be used when a Python script is invoked with the --
script option

Altova XMLSpy

e Ifyou haw installed and licensed Altova XMLSpy and if XMLSpy can access RaptorXML Sener across
a network, then you can use RaptorXML Server from withing the XMLSpy GUI to validate XML
documents, as well as run XSLT and XQuery transformations.

¢ You can validate the active document or all the documents in an XMLSpy project folder.

e The validation results are displayed in the Messages window of the XMLSpy GUI.

e In XMLSpy, you can (i) validate documents or (ii) run XSLT/XQuery transformation by using either
XMLSpy's engines or RaptorXML Server.

¢ One of the main advantages of using Raptor is that you can configure individual validations by means of
a large range of validation options. Furthermore, you can store a set of Raptor options as a
"configuration" in XMLSpy, and then select one of your defined configurations for a particular Raptor
validation. Using Raptor is also advantageous when large data collections are to be validated.

Engine APIs

The Engine APIs € are different than the Server APIs in that RaptorXML is contained in the Python wheel and
in the .NET DLL that are used, respectively, by Python programs and .NET applications (see figure below).
These programs/applications must use, respectively, Raptor's Python API€D and Raptor's .NET APIED in
order to access RaptorXML functionality.

Note: The functionality provided by the Python APIED and NET API€D are considerably greater than that
provided by either the CLI or the Server APIs; for example, the ability to read documents and manipulate data.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

14

About RaptorXML Server Editions and Interfaces

Engine APIs

-

* RaptorXML or
* RaptorXML+XBRL P ~

Python Wheel 4—)| Python Program

.NET DLL

* RaptorXML or

* RaptorXML+XBRL

.NET Application 3

Python interface

RaptorXML is available in a Python wheel package that can be installed in your Python 3.11.8

environment
A Python program can then be written that uses objects from RaptorXML's Python APIED This API
provides much more functionality than is available in the CLI, and it can be combined with the

functionality provided by third-party libraries in your Python environment
When RaptorXML functionality is called via RaptorXML's Python wheel, a check is carried out for a valid

RaptorXML license on that machine before the command is executed

.NET interface

RaptorXML is available in a DLL that can be embedded in an application that supports the .NET
Framework. See the section .NET Framework API€D for information about the API.

RaptorXML's .NET AP| €D provides access to RaptorXML. The available functionality is much more
than that which is available in the RaptorXML CLI.

When RaptorXML functionality is called via a .NET application, a check is carried out for a valid
RaptorXML license on that machine

Altova RaptorXML Server 2025

© 2019-2025 Altova GmbH

About RaptorXML Server System Requirements 15

2.2 System Requirements

RaptorXML Sener is supported on the operating systems listed below.

Windows

e Windows 10, Windows 11
e Windows Server 2016 or newer

Linux

Red Hat Enterprise Linux 7 or newer
CentOS 7, CentOS Stream 8
Debian 10 or newer

Ubuntu 20.04, 22.04, 24.04
AlmaLinux 9.0

Rocky Linux 9.0

Prerequisites
e Perform installation either as root user or as a user with sudo privileges.

e The previous version of RaptorXML Server must be uninstalled before a new one is installed.

e Ifyou plan to use Altova's Charts functionality, then at least one font must be installed on your system
to ensure that charts will be rendered correctly. To list installed fonts, use, for example, the fc-1ist
command of the Fontconfig library.

e The following libraries are required as a prerequisite to install and run the application. If the packages
below are not already available on your Linux machine, run the yum command (or apt-get if applicable)
to install them.

CentOS, RedHat Debian Ubuntu

krb5-libs libgssapi-krb5-2 libgssapi-krb5-2

macOS

¢ macOS 12 or newer

RaptorXML is available for both 32-bit and 64-bit machines. Specifically these are x86 and amd64 (x86-64)
instruction-set based cores: Intel Core i5, i7, XEON E5. To use RaptorXML via a COM interface, users should
have privileges to use the COM interface, that is, to register the application and execute the relevant
applications and/or scripts.:

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://www.freedesktop.org/wiki/Software/fontconfig/

16 About RaptorXML Server Features

2.3 Features

RaptorXML provides the functionality listed below. Most functionality is common to command line usage and
COM interface usage. One major difference is that COM interface usage on Windows allows documents to be
constructed from text strings via the application or scripting code (instead of referencing XML, DTD, XML
Schema, XSLT, or XQuery files).

XML Validation

e Validates the supplied XML document against internal or external DTDs or XML Schemas
e Checks well-formedness of XML, DTD, XML Schema, XSLT, and XQuery documents

XSLT Transformations

e Transforms XML using supplied XSLT 1.0, 2.0, or 3.0 document

e XML and XSLT documents can be provided as a file (via a URL) or, in the case of COM usage, as a
text string

e Output is returned as a file (at a named location) or, in the case of COM usage, as a text string

e XSLT parameters can be supplied via the command line and via the COM interface

e Altova extension functions, as well as XBRL, Java and .NET extension functions, enable specialized
processing. This allows, for example, the creation of such features as charts and barcode in output
documents

XQuery Execution

e Executes XQuery 1.0 and 3.0 documents

e XQuery and XML documents can be provided as a file (via a URL) or, in the case of COM usage, as a
text string

e Output is returned as a file (at a named location) or, in the case of COM usage, as a text string

e External XQuery variables can be supplied via the command line and via the COM interface

e Serialization options include: output encoding, output method (that is, whether the output is XML,
XHTML, HTML, or text), omitting the XML declaration, and indentation

JSON and Avro Validation/Conversion

Validation of JSON schema and Awo schema documents

Validation of JSON instances against JSON schemas and Awo schemas
Validation of Awo binaries

Conversion of Avro binaries to Awo schema and Awro data in JSON format
Conversion of Awo JSON data to Awo binary

Hyper-performance Features

e Ultra-high performance code optimizations
o Native instruction-set implementations
o 32-bit or 64-bit version

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

About RaptorXML Server Features 17

Ultra-low memory footprint

o Extremely compact in-memory representation of XML Information Set
o Streaming instance validation

Cross platform capabilities

Highly scalable code for multi-CPU/multi-core/parallel computing
Parallel loading, validation, and processing by design

Developer Features

Superior error reporting capabilities

Windows server mode and Unix daemon mode (via command-line options)

Python 3.x interpreter for scripting included

RaptorXML functionality in a Python package enables import of the functionality as a Python library
.NET Framework API allows access to underlying XML data model

COM API on Windows platform

Java API everywhere

XPath Extension functions Java, .NET, and more

Streaming serialization

Built-in HTTP server with REST validation API

For more information, see the section Supported Speciﬁcations and the Altova website.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://www.altova.com/raptorxml.html

18

About RaptorXML Server

Supported Specifications

24

Supported Specifications

RaptorXML supports the specifications listed below.

W3C Recommendations
Website: World Wide Web Consortium (W3C)

Extensible Markup Language (XML) 1.0 (Fifth Edition)

Extensible Markup Language (XML) 1.1 (Second Edition)
Namespaces in XML 1.0 (Third Edition)

Namespaces in XML 1.1 (Second Edition)

XML Information Set (Second Edition)

XML Base (Second Edition)

XML Inclusions (XInclude) Version 1.0 (Second Edition)

XML Linking Language (XLink) Version 1.0

XML Schema Part 1: Structures Second Edition

XML Schema Part 2: Datatypes Second Edition

W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures
W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes
XPointer Framework
XPointer xmins() Scheme
XPointer element() Scheme
XML Path Language (XPath
XSL Transformations (XSLT
XML Path Language (XPath) 2.0 (Second Edition)

XSL Transformations (XSLT) Version 2.0

XQuery 1.0: An XML Query Language (Second Edition)

XQuery 1.0 and XPath 2.0 Functions and Operators (Second Edition)
XSLT 2.0 and XQuery 1.0 Serialization (Second Edition)

XML Path Language (XPath) 3.0

XML Path Language (XPath) 3.1

XQuery 3.0: An XML Query Language

XQuery Update Facility 1.0

XPath and XQuery Functions and Operators 3.0

XSLT and XQuery Serialization 3.0

Version 1.0
Version 1.0

~ =

W3C Working Drafts & Candidate Recommendations
Website: World Wide Web Consortium (W3C)

XSL Transformations (XSLT) Version 3.0 (subset)
XQuery 3.1: An XML Query Language

XPath and XQuery Functions and Operators 3.1
XQuery Update Facility 3.0

XSLT and XQuery Serialization 3.1

OASIS Standards
Website: OASIS Standards

Altova RaptorXML Server 2025

© 2019-2025 Altova GmbH

http://www.w3.org/
http://www.w3.org/
https://www.oasis-open.org/standards

About RaptorXML Server Supported Specifications 19

e XML Catalogs V 1.1 - OASIS Standard V1.1

JSON/Avro Standards
Websites: JSON Schema and Apache Awro

JSON Schema Draft 4

JSON Schema Draft 6

JSON Schema Draft 7

JSON Schema Draft 2019-09
JSON Schema Draft 2020-12
Apache Avo™ 1.8.1

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

http://json-schema.org/latest/json-schema-validation.html
http://www.apache.org/
http://avro.apache.org/docs/1.8.1/spec.html

20 About RaptorXML Server Notable Changes

2.5 Notable Changes

Given below are changes in each version that might need your attention.

v2024

On the command line, the --network-timeout option takes a value in milliseconds from this release onwards
(instead of in seconds as was the case in previous releases). The option can be set for a number of commands
and, in the description of the command, is listed under Common Options. For an example, see the valxml-

withxsd (xsi)@ command.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Installation and Licensing 21

3 Installation and Licensing

This section describes installation, licensing and other setup procedures. It is organized into the following
sections:

Setup on Windowse
Setup on Linux
Setup on macOS

Upgrade RaptorXML Server
Migrate RaptorXML Server to a New Machine

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

22 Installation and Licensing Setup on Windows

3.1 Setup on Windows

This section describes the installation ® and licensing of RaptorXML Server on Windows systems. The setup
comprises the following steps:

Install RaptorXML Server
Install LicenseServer
Start LicenseServer and RaptorXML Server@

Regqister RaptorXML Server with LicenseServer@
Assign a license to RaptorXML Server

The setup steps described above do not need to occur in exactly the same order in which they are listed.
Howewer, you do need to install before you start. And you do need to register RaptorXML Server with
LicenseSenver before you can assign a license to RaptorXML Server from LicenseSenrwer.

oD~

System requirements (Windows)
Note the following system requirements:

e Windows 10, Windows 11
e Windows Server 2016 or newer

Prerequisites
Note the following prerequisites:

e Perform installation as a user with administrative privileges.

e From version 2021 onwards, a 32-bit version of RaptorXML Server cannot be installed over a 64-bit
version, or a 64-bit version over a 32-bit version. You must either (i) remowe the older version before
installing the newer version or (ii) upgrade to a newer version that is the same bit version as your older
installation.

3.1.1 Install on Windows

Installing RaptorXML Server

RaptorXML Server can be installed on Windows systems as follows:

e As a separate standalone sener product. To install RaptorXML Server , download and run the
RaptorXML Server installer. Follow the on-screen instructions.

e To install RaptorXML Server as part of the ElowForce Server package, download and run the FlowForce
Server installer. Follow the on-screen instructions and make sure you check the option for installing
RaptorXML Server.

The installers of both RaptorXML Server and ElowForce Senver are available at the Altova Download Center
(https://www.altova.com/download.html). You can select your installation language from the box in the lower left
area of the wizard. Note that this selection also sets the default language of RaptorXML Server. You can
change the language later from the command line.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

https://www.altova.com/flowforce.html
https://www.altova.com/flowforce.html
https://www.altova.com/download.html

Installation and Licensing Setup on Windows 23

After installation, the RaptorXML Server executable will be located by default at the following path:
<ProgramFilesFolder>\Altova\RaptorXMLServer2025\bin\RaptorXML.exe

All the necessary registrations to use RaptorXML Server via a COM interface, as a Java interface, and in the
.NET environment will be done by the installer.This includes registering the RaptorXML Server executable as a
COM sener object and adding the Altova.RaptorxML.d11 file to the .NET reference library.

Uninstall RaptorXML Server

Uninstall RaptorXML Server as follows:

Right-click the Windows Start button and select Settings.

Open the Control Panel (start typing "Control Panel" and click the suggested entry).
Under Programs, click Uninstall a program.

In Control Panel, select RaptorXML Server and click Uninstall.

robd=

Evaluation license

During the installation process, you will be given the option of requesting a 30-day evaluation license for
RaptorXML Senrver. After submitting the request, an evaluation license will be sent to the email address you
registered.

3.1.2 Install on Windows Server Core

Windows Server Core is a minimal Windows installation that does not use a number of GUI features. You can
install RaptorXML Server on a Windows Server Core machine as follows:

1. Download the RaptorXML Sener installer executable from the Altova website. This file is named
RaptorXMLServer<version>.exe. Make sure to choose the executable matching your server platform
(32-bit or 64-bit).

2. On a standard Windows machine (not the Windows Server Core machine), run the command

RaptorXMLServer<version>.exe /u. This unpacks the .msi file to the same folder as the installer

executable.

Copy the unpacked .msi file to the Windows Server Core machine.

4. If you are updating an earlier version of RaptorXML Server, shut down RaptorXML Server before carrying
out the next step.

5. Use the .msi file for the installation by running the command msiexec /i RaptorXMLServer.msi.
This starts the installation on Windows Server Core.

w

Note: When upgrading to a major version, you can retain your RaptorXML Server settings by using the
properties listed in the subsections of this section: (i) Webserver Properties, (i) SSL-Webserver
Properties @, and (iii) Senice Properties €.

Important: Keep the MSl file!
Note the following points:

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

24 Installation and Licensing Setup on Windows

e Keep the extracted .msi file in a safe place. You will need it later to uninstall, repair, or modify your
installation.

e [f you want to rename the MSI file, do this before you install RaptorXML Senver.

e The MSI filename is stored in the registry. You can update its name there if the filename has
changed.

Register RaptorXML Server with LiceseServer

If you are installing RaptorXML Senrver for the first time or are upgrading to a major version, you will need to
register RaptorXML Server with an Altova LicenseServer on your network. If you are upgrading to a non-major
version of RaptorXML Senver, then the previous LicenseServer registration will be known to the installation and
there is no need to register RaptorXML Server with LicenseServer. However, if you want to change the
LicenseSener that is used by RaptorXML Server at any time, then you will need to register RaptorXML Server
with the new LicenseServer.

To register RaptorXML Server with an Altova LicenseServer during installation, run the installation command
with the REGISTER WITH-LICENSE SERVER property, as listed below, providing the name or address of the
LicenseServer machine as the value of the property, for example:

msiexec /i RaptorXMLServer.msi REGISTER WITH LICENSE_ SERVER="localhost"

To register RaptorXML Server with an Altova LicenseServer after installation, run the following command:
msiexec /r RaptorXMLServer.msi REGISTER WITH LICENSE SERVER="<MyLS-IPAddress>"

Useful commands
Given below are a set of commands that are useful in the installation context.

To test the return value of the installation, run a script similar to that below. The return code will be in the %
errorlevel$% environment variable. A return code of 0 indicates success.

start /wait msiexec /i RaptorXMLServer.msi /g

echo %errorlevel%

For a silent installation with a return code and a log of the installation process:
start /wait msiexec /i RaptorXMLServer.msi /q /L*v! <pathToInstallLogFile>

To modify the installation:
msiexec /m RaptorXMLServer.msi

To repair the installation:
msiexec /r RaptorXMLServer.msi

To uninstall RaptorXML Server:

msiexec /x RaptorXMLServer.msi

To uninstall RaptorXML Server silently and report the detailed outcome in a log file:
start /wait msiexec /x RaptorXMLServer.msi /g /L*v! <pathToUninstallLogFile>

To install RaptorXML Server using another langauge (available language codes are: German=de; Spanish=es;
French=fr):
msiexec /i RaptorXMLServer.msi INSTALLER LANGUAGE=<languageCode>

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Installation and Licensing Setup on Windows 25

Note: On Windows Server Core, the charts functionality of RaptorXML Server will not be available.

3.1.2.1 Webserver Properties

You can configure the RaptorXML Server web server by using the properties given below. To set a property, run
the installation command with the property setting appended, like this:

msiexec /i RaptorXMLServer.msi RXML WebServer Host=127.0.0.1

List of properties
Properties of the RaptorXML Server web server:

RXML_WebServer Host=<IP4 Address>
Use 127.0.0.1 if you want to access the web server from this machine only. Use 0.0.0.0 to make the
web server accessible globally.

RXML_WebServer Port=<Port Number>
Specifies the port that is used to access the web server.

RXML WebServer Enabled=<0 or 1>
Select 1 to enable listening at the currently set port. Select 0 to disable listening at this port.

3.1.2.2 SSL-Webserver Properties

You can configure the RaptorXML Server SSL web server by using the properties given below. To set a
property, run the installation command with the property setting appended, like this:

msiexec /i RaptorXMLServer.msi RXML SSLWebServer Host=127.0.0.1
List of properties
To configure the RaptorXML Server SSL web server, use the following properties:

RXML_SSLWebServer Host=<IP4 Address>
Use 127.0.0.1 if you want to access the SSL web server (for encrypted transmission) from this machine
only. Use 0.0.0.0 to make the SSL web server accessible globally.

RXML_SSLWebServer Port=<Port Number>
Specifies the port that is used to access the SSL web server (for encrypted transmission).

RXML_SSLWebServer Enabled=<0 or 1>
Select 1 to enable listening at the currently set port. Select 0 to disable listening at this port.

RXML._SSLWebServer Certificate=<Path-to-certificate-file>
Full path to a SSL certificate, enclosed in double-quotes.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

26 Installation and Licensing Setup on Windows

RXML_SSLWebServer PrivateKey=<Path-to-private-key-file>
Full path to a private key file, enclosed in double-quotes.

3.1.2.3 Service Properties

You can configure the RaptorXML Server senice by using the properties given below. To set a property, run the
installation command with the property setting appended, like this:

msiexec /i RaptorXMLServer.msi RXML Service DisplayName=RaptorXMLServer

List of properties
To configure RaptorXML Senrver senices, use the following properties:

RXML_Service_DisplayName=<Serveice Display Name>
Name that will be displayed for the senice. Enclose the name in double quotes.

RXML_Service_StartType=<Startup Type>
Specifies how the senice is started during a system start-up. Values can be one of. auto | auto-
delayed | demand | disabled.

RXML_Service_Username=<UserName>
Specifies the log-on user for the senice. Use one of: LocalSystem | NT Authority\LocalService | NT
Authority\NetworkService | <any user with relevant rights>.

RXML_Service_Password=<Password>
The password of the senvice's start user in plain text.(Hint: Use the installer's user interface to avoid
entering plain text passwords.) No password is required if the user name is any of: LocalSystem | NT
Authority\LocalService | NT Authority\NetworkService.

313 Install LicenseServer (Windows)

In order for RaptorXML Server to work, it must be licensed via an Altova LicenseServer on your network. When
you install RaptorXML Server or FlowForce Server on Windows systems, you can install LicenseServer together
with RaptorXML Server or FlowForce Senrver. If a LicenseServer is already installed on your network, you do not
need to install another one—unless a newer version of LicenseSener is required. (See next point,
LicenseServer versions.)

During the installation process of RaptorXML Server or FlowForce Server, check or uncheck the option for
installing LicenseServer as appropriate.

Note the following points:

e Ifyou hawe not installed LicenseSenver yet, leave the default settings as is. The wizard will install the
latest version on the computer where you are running the wizard.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

https://www.altova.com/manual/en/licenseserver/3.17/index.html

Installation and Licensing Setup on Windows 27

e [fyou have not installed LicenseServer yet and want to install Altova LicenseServer on another
computer and use it from there, then clear the check box Install Altova LicenseServer on this machine
and choose Register Later. In this case, you will need to install LicenseServer separately on the other
machine and register RaptorXML Server afterwards with the LicenseServer on that machine.

e If LicenseSenver has already been installed on your computer but is a lower version than the one that
would be installed by the installation wizard, then leave the wizard's default setting (for upgrading to the
newer version) as is. In this case, the installation wizard will automatically upgrade your LicenseServer
version. The existing registration and licensing information will be carried over to the new version of
LicenseSenver.

e [fLicenseServer has already been installed on your computer or network and has the same version as
the one indicated by the wizard, do the following:

o Clear the check box Install Altova LicenseServer on this machine.

o Under Register this product with, choose the LicenseServer with which you want to register
RaptorXML Sener. Alternatively, choose Register Later. Note that you can always select
Register Later if you want to ignore the LicenseServer associations and carry on with the
installation of RaptorXML Server.

For information, see how to registerm and license €& RaptorXML Server with Altova LicenseServer. Also see
the LicenseServer documentation for more detailed information.

LicenseServer versions

e Altova products must be licensed either (i) with a version of LicenseServer that corresponds to the
installed RaptorXML Server version or (ii) with a later version of LicenseServer.

e The LicenseSenver version that corresponds to the current version of RaptorXML Sener is 3.17.

¢ On Windows, you can install the corresponding version of LicenseServer as part of the RaptorXML
Server installation or install LicenseServer separately. On Linux amd macOS, you must install
LicenseSener separately.

e Before a newer version of LicenseServer is installed, any older one must be de-installed.

e At the time of LicenseServer de-installation, all registration and licensing information held in the older
version of LicenseSenrver will be saved to a database on your server machine. This data will be imported
automatically into the newer version when the newer version is installed.

e LicenseServer versions are backwards compatible. They will work with older versions of RaptorXML
Sernver.

e The latest version of LicenseServer available on the Altova website. This version will work with any
current or older version of RaptorXML Server.

e The version number of the currently installed LicenseSener is given at the bottom of the LicenseServer

configuration page (all tabs).

3.1.4 Network and Service Configuration (Windows)

During the installation of RaptorXML Server, you can configure settings for accessing RaptorXML Server via the
network and for running RaptorXML Server as a Windows seniice.

The settings listed below are available. Leave the default settings as they are if they are acceptable to you or if
you are not sure about them. If you wish to change a setting, select its Change button (see screenshot
above).

e The port to use for unencrypted communication with RaptorXML Server.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://www.altova.com/manual/en/licenseserver/3.17/index.html
https://www.altova.com/manual/en/licenseserver/3.17/
https://www.altova.com/manual/en/licenseserver/3.17/alsconfig.html
https://www.altova.com/manual/en/licenseserver/3.17/alsconfig.html

28 Installation and Licensing Setup on Windows

e Whether secure (SSL-encrypted) connections to RaptorXML Server are allowed. If yes, then on which
port. By default, secure connections are disabled. For more information, see the section about setting
up SSL enctyption.

¢ Windows senice settings. These include:

o The way RaptorXML Server should start as a Windows senice: automatic, on demand, delayed
automatic, or disabled.

o The user account to be used by RaptorXML Server for the Windows senice: Local System, Local
Service, Network Service, or Other User. If you select Other User, you can set the username and
password of this user, similar to how this is done in the Windows Senvices management console.
Note that the selected user must have read/write access to C:\ProgramData\Altova. Otherwise,
the installation or startup could fail.

You can change the settings after installation. To modify the Windows senice configuration, open the Windows
Senices management console (by typing services.msc in @ command line window) and change the required
senice from there.

3.1.5 Start LicenseServer, RaptorXML Server (Windows)

Altova LicenseServer (LicenseServer for short) and RaptorXML Server are both started via Altova
SeniceController.

Altova ServiceController

Altova SeniceController (SeniceController for short) is an application for conveniently starting, stopping and
configuring Altova senices on Windows systems. SeniceController is installed with Altova LicenseServer and
with Altova server products that are installed as senices (DiffDog Server, FlowForce Server, Mobile Together
Server, and RaptorXML(+XBRL) Server). SenviceController can be accessed via the system tray (screenshot
below).

SEE L

To specify that SeniceController starts automatically on logging in to the system, click the ServiceController
icon in the system tray to display the ServiceController menu (screenshot below), and then toggle on the
command Run Altova ServiceController at Startup. (This command is toggled on by default.) To exit
SeniceController, click the ServiceController icon in the system tray and, in the menu that appears (see
screenshot below), click Exit Altova ServiceController.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Installation and Licensing

Setup on Windows 29

Altova FlowForce 2015

Altova FlowForce Web 2019

Altova LicenseServer 2.8

Altova MobileTogether Server
Altova RaptorXhL Server 2019
Altova RaptorXML+XEBRL Server 2019

Exit Altova ServiceController

|. Run Altova ServiceController at startup

Start LicenseServer

To start LicenseSenwer, click the ServiceController icon in the system tray, hover over Altova LicenseServer
in the menu that pops up (see screenshot below), and then select Start Service from the LicenseServer
submenu. If LicenseServer is already running, then the Start Service option will be disabled. You can also stop

the senice via SenviceController.

m Altova FlowForce Server
ﬁ Altova FlowForce Web

| Altova Licenseserver

P|| Configure

- Altova MobileTogether Server
Altova RaptorXML=XERL Server

o

)
iy

Exit Altova ServiceController

Run Altova ServiceController at startup

[<]

EN T () 11:00 AM

Start RaptorXML Server

Start service

Stop service

[|

To start RaptorXML Senwer, click the ServiceController icon in the system tray, hover over Altova
RaptorXML Server in the menu that pops up (see screenshot below), and then select Start Service from the
RaptorXML Server submenu. If RaptorXML Sener is already running, the Start Service option will be disabled.
You can also stop the senice via SenviceController.

© 2019-2025 Altova GmbH

Altova RaptorXML Server 2025

30 Installation and Licensing Setup on Windows

ﬂ Altova FlowForce Server k
ﬁ Altova FlowForce Web L4
Altova LicenseServer »
¥ Altova MobileTogether Server 4
|@ Altova RaptorXML Server Pl Start service
Exit Altova ServiceController Stop service
Run Altova ServiceController at startup

m (K

Mo a Y) 11:00 AM E

Note: If RaptorXML Server has been licensed to run only single-thread executions (typically because your
machine is multiple-core, but your license is single-core), then you can use only one instance of RaptorXML
Server at a time: either as a senice or from the command line. This is because the single-core license will be
assigned automatically to the first instance that is started and is currently running. The second instance cannot
be started until the first instance stops running.

¢ If you wish to use RaptorXML Server from the command line, but the senice is already running, you
must stop the senice before using the command line.

¢ If you wish to start RaptorXML Server as a senice, make sure that no command line action is
currently being executed. Otherwise, you will not be able to start the senvice.

3.1.6 Register RaptorXML Server (Windows)

To be able to license RaptorXML Server from Altova LicenseServer, RaptorXML Server must be registered with
LicenseSenrver. To register RaptorXML Server from the command line interface, use the 1icenseserver
command and supply the address of the LicenseServer machine (see below).

RaptorXML licenseserver [options] ServerName-Or-IP-Address

For example, if localhost is the name of the server on which LicenseServer is installed, use the following
command:

RaptorXML licenseserver localhost

If RaptorXML Server was installed as part of a FlowForce Server installation, registering FlowForce Server with
LicenseServer will automatically also register RaptorXML Server. Essentially: (i) Start Altova FlowForce Web as
a senvice via SenviceController (see previous point); (i) Enter your password to access the Setup page; (iii)
Select the LicenseServer name or address and click Register with LicenseServer. For more information, see

Reaqister FlowForce Server.
After successful registration, go to the Client Management tab of LicenseServer's configuration page to assign

a license to RaptorXML Server.

For more information about registering Altova products with LicenseServer, see the LicenseServer user manual.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

https://www.altova.com/flowforce.html
https://www.altova.com/manual/en/licenseserver/3.17/alsregister_flowforceserver.html
https://www.altova.com/manual/en/licenseserver/3.17/alsconfig_clientmgmt.html
https://www.altova.com/manual/en/licenseserver/3.17/alsregister.html

Installation and Licensing Setup on Windows 31

3.1.7 Assign License (Windows)

After successfully registering RaptorXML Senwer, it will be listed in the Client Management tab of the
configuration page of LicenseServer. Go there and assign a license to RaptorXML Server.

The licensing of Altova server products is based on the number of processor cores available on the product
machine. For example, a dual-core processor has two cores, a quad-core processor four cores, a hexa-core
processor six cores, and so on. The number of cores licensed for a product must be greater than or equal to
the number of cores available on that server machine, whether the server is a physical or virtual machine. For
example, if a server has eight cores (an octa-core processor), you must purchase at least one 8-core license.
You can also combine licenses to achieve the core count. So, two 4-core licenses can also be used for an
octa-core senver instead of one 8-core license.

If you are using a computer server with a large number of CPU cores but only have a low volume to process,
you may also create a virtual machine that is allocated a smaller number of cores and purchase a license for
that number. Such a deployment, of course, would have less processing speed than if all available cores on the
server were utilized.

Note: Each Altova server product license can be used for only one client machine at a time, even if the license
has unused licensing capacity. (A client machine is the machine on which the Altova server product is
installed.) For example, if a 10-core license is used for a client machine that has 6 CPU cores, then the
remaining 4 cores of licensing capacity cannot be used simultaneously for another client machine.

Single-thread execution
If an Altova server product allows single-thread execution, an option for Single-thread execution will be available.

In these cases, if an Altova server-product license for only one core is available in the license pool, a machine
with multiple cores can be assigned this one-core license. In such a case, the machine will run that product on
a single core. Processing will therefore be slower, because multi-threading (which is possible on multiple cores)
will not be available. The product will be executed in single thread mode on that machine.

To assign a single-core license to a multiple-core machine in LicenseSenver, select the Limit to single thread
execution check box for that product.

Estimate of core requirements
There are various external factors that influence the data volumes and processing times your server can handle

(for example: the hardware, the current load on the CPU, and memory allocation of other applications running
on the senver). In order to measure performance as accurately as possible, test the applications in your
environment with data volumes and in conditions that approximate as closely as possible to real business
situations.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://www.altova.com/manual/en/licenseserver/3.17/alsassignlicenses.html

32

Installation and Licensing Setup on Linux

3.2

Setup on Linux

This section describes the installation ® and licensing of RaptorXML Server on Linux systems (Debian,
Ubuntu, CentOS, RedHat). The setup comprises the following steps:

oD~

Install RaptorXML Server
Install LicenseServer
Start LicenseServer

Regqister RaptorXML Server with LicenseServer@
Assign a license to RaptorXML Server

The setup steps described above do not need to occur in exactly the same order in which they are listed.
Howewer, you do need to install before you start. And you do need to register RaptorXML Server with
LicenseSenver before you can assign a license to RaptorXML Server from LicenseSenrwer.

System requirements (Linux)

Red Hat Enterprise Linux 7 or newer
CentOS 7, CentOS Stream 8
Debian 10 or newer

Ubuntu 20.04, 22.04, 24.04
AlmaLinux 9.0

Rocky Linux 9.0

Prerequisites

3.21

Perform installation either as root user or as a user with sudo privileges.

The previous version of RaptorXML Server must be uninstalled before a new one is installed.

If you plan to use Altova's Charts functionality, then at least one font must be installed on your system
to ensure that charts will be rendered correctly. To list installed fonts, use, for example, the fc-1list
command of the Fontconfig library.

The following libraries are required as a prerequisite to install and run the application. If the packages
below are not already available on your Linux machine, run the yum command (or apt-get if applicable)
to install them.

CentOS, RedHat Debian Ubuntu

krb5-libs libgssapi-krb5-2 libgssapi-krb5-2

Install on Linux

RaptorXML Server is available for installation on Linux systems. Do the installation either as root user or a
user with sudo privileges.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

https://www.freedesktop.org/wiki/Software/fontconfig/

Installation and Licensing Setup on Linux 33

Integration of FlowForce Server and other Altova server products

If you are installing RaptorXML Server together with FlowForce Server, it is recommended that you install
FlowForce Senrwer first. If you install RaptorXML Server before FlowForce Server, then, after having installed both
RaptorXML Server and FlowForce Server, run the following command:

cp /opt/Altova/RaptorXMLServer2025/etc/*.tool /opt/Altova/FlowForceServer2025/tools

This command copies the . tool file from /etc directory of RaptorXML Server to the FlowForce Server /tools
directory. The . tool file is required by FlowForce Senver. It contains the path to the RaptorXML Server
executable. You do not need to run this command if you install FlowForce Server before installing RaptorXML
Senver.

Uninstall RaptorXML Server
Before you install RaptorXML Server, you should uninstall any older version.
To check which Altova server products are installed:

[Debian, Ubuntu]: dpkg --list | grep Altova
[CentOS, RedHat]: rpm -ga | grep server

To uninstall an old version of RaptorXML Server:

[Debian, Ubuntu]: sudo dpkg --remove raptorxmlserver
[CentOS, RedHat]: sudo rpm -e raptorxmlserver

On Debian and Ubuntu systems, it might happen that RaptorXML Server still appears in the list of installed
products after it has been uninstalled. In this case, run the purge command to clear RaptorXML Server from the
list. You can also use the purge command instead of the remove command listed above.

[Debian, Ubuntu]: sudo dpkg --purge raptorxmlserver

Download the RaptorXML Server Linux package
RaptorXML Sener installation packages for the following Linux systems are available at the Altova website.

Distribution Package extension
Debian .deb
Ubuntu .deb
CentOS .rpm
RedHat .rpm

After downloading the Linux package, copy it to any directory on the Linux system. Since you will need to
license RaptorXML Server with an Altova LicenseServer, you may want to download LicenseSener from the
Altova website at the same time as you download RaptorXML Sener.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://www.altova.com/download.html
https://www.altova.com/manual/en/licenseserver/3.17/index.html
https://www.altova.com/download.html

34 Installation and Licensing Setup on Linux

Install RaptorXML Server
In a terminal window, switch to the directory where you copied the Linux package. For example, if you copied it
to a user directory called Myaltova that is located in the /home/User directory, switch to this directory as
follows:

cd /home/User/MyAltova

Install RaptorXML Server using the relevant command:

[Debian]: sudo dpkg --install raptorxml-2025-debian.deb
[Ubuntu] : sudo dpkg --install raptorxml-2025-ubuntu.deb
[CentOS]: sudo rpm -ivh raptorxml-2025-1.x86_64.rpm
[RedHat]: sudo rpm -ivh raptorxml-2025-1.x86_64.rpm

You may need to adjust the name of the package above to match the current release or senice pack version.
The RaptorXML Server package will be installed in the following folder:

/opt/Altova/RaptorXMLServer2025

3.2.2 Install LicenseServer (Linux)

In order for RaptorXML Server to work, it must be licensed via an Altova LicenseServer on your network.
Download LicenseSenver from the Altova website and copy the package to any directory. Install it just like you
installed RaptorXML Server (see previous togic@).

[Debian]: sudo dpkg --install licenseserver-3.l17-debian.deb
[Ubuntu] : sudo dpkg --install licenseserver-3.17-ubuntu.deb
[CentOS] : sudo rpm -ivh licenseserver-3.17-1.x86_64.rpm
[RedHat]: sudo rpm -ivh licenseserver-3.17-1.x86_64.rpm

The LicenseSenrver package will be installed at the following path:
/opt/Altova/LicenseServer

For information, see how to register and license € RaptorXML Server with Altova LicenseServer. Also see
the LicenseServer documentation for more detailed information.

LicenseServer versions

e Altova products must be licensed either (i) with a version of LicenseServer that corresponds to the
installed RaptorXML Server version or (ii) with a later version of LicenseServer.

e The LicenseServer version that corresponds to the current version of RaptorXML Sener is 3.17.

¢ On Windows, you can install the corresponding version of LicenseServer as part of the RaptorXML
Senver installation or install LicenseServer separately. On Linux amd macOS, you must install
LicenseSenver separately.

e Before a newer version of LicenseServer is installed, any older one must be de-installed.

e At the time of LicenseServer de-installation, all registration and licensing information held in the older

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

https://www.altova.com/manual/en/licenseserver/3.17/index.html
https://www.altova.com/
https://www.altova.com/manual/en/licenseserver/3.17/index.html
https://www.altova.com/manual/en/licenseserver/3.17/

Installation and Licensing Setup on Linux 35

version of LicenseServer will be saved to a database on your server machine. This data will be imported
automatically into the newer version when the newer version is installed.

e LicenseSenver versions are backwards compatible. They will work with older versions of RaptorXML
Senver.

e The latest version of LicenseServer available on the Altova website. This version will work with any
current or older version of RaptorXML Server.

e The version number of the currently installed LicenseServer is given at the bottom of the LicenseServer

configuration page (all tabs).

3.2.3 Start LicenseServer, RaptorXML Server (Linux)

Start Altova LicenseServer and RaptorXML Senver either as root user or a user with sudo privileges.

Start LicenseServer

To correctly register and license RaptorXML Server with LicenseSener, LicenseServer must be running as a
daemon on the network. Start LicenseSenrver as a daemon with the following command:

sudo systemctl start licenseserver

If at any time you need to stop LicenseServer, replace start with stop in the command abowve. For example:
sudo systemctl stop licenseserver

Start RaptorXML Server

Start RaptorXML Server as a daemon with the following command:

sudo systemctl start raptorxmlserver

If at any time you need to stop RaptorXML Sener, replace start with stop in the command above. For
example:

sudo systemctl stop raptorxmlserver

Check status of daemons

To check if a daemon is running, run the following command, replacing <servicename> with the name of the
daemon you want to check:

sudo service <servicename> status

3.24 Register RaptorXML Server (Linux)

To be able to license RaptorXML Server from Altova LicenseServer, RaptorXML Server must be registered with
LicenseSenver.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://www.altova.com/manual/en/licenseserver/3.17/alsconfig.html
https://www.altova.com/manual/en/licenseserver/3.17/alsconfig.html

36 Installation and Licensing Setup on Linux

To register RaptorXML Senwer, go to its CLI and use the 1icenseserver command:

sudo /opt/Altova/RaptorXMLServer2025/bin/raptorxml licenseserver [options] ServerName-
Or-IP-Address

For example, if Llocalhost is the name of the server on which LicenseSenver is installed:
sudo /opt/Altova/RaptorXMLServer2025/bin/raptorxml licenseserver localhost

In the command abowe, localhost is the name of the server on which LicenseSenver is installed. Notice also
that the location of the RaptorXML Server executable is:

/opt/Altova/RaptorXMLServer2025/bin/

After successful registration, go to the Client Management tab of LicenseServer's configuration page to assign
a license to RaptorXML Server.

For more information about registering Altova products with LicenseServer, see the LicenseServer user manual.

3.2.5 Assign License (Linux)

After successfully registering RaptorXML Sener, it will be listed in the Client Management tab of the
configuration page of LicenseServer. Go there and assign a license to RaptorXML Server.

The licensing of Altova server products is based on the number of processor cores available on the product
machine. For example, a dual-core processor has two cores, a quad-core processor four cores, a hexa-core
processor six cores, and so on. The number of cores licensed for a product must be greater than or equal to
the number of cores available on that server machine, whether the server is a physical or virtual machine. For
example, if a server has eight cores (an octa-core processor), you must purchase at least one 8-core license.
You can also combine licenses to achieve the core count. So, two 4-core licenses can also be used for an
octa-core server instead of one 8-core license.

If you are using a computer server with a large number of CPU cores but only have a low volume to process,
you may also create a virtual machine that is allocated a smaller number of cores and purchase a license for
that number. Such a deployment, of course, would have less processing speed than if all available cores on the
server were utilized.

Note: Each Altova server product license can be used for only one client machine at a time, even if the license
has unused licensing capacity. (A client machine is the machine on which the Altova server product is
installed.) For example, if a 10-core license is used for a client machine that has 6 CPU cores, then the
remaining 4 cores of licensing capacity cannot be used simultaneously for another client machine.

Single-thread execution
If an Altova server product allows single-thread execution, an option for Single-thread execution will be available.

In these cases, if an Altova server-product license for only one core is available in the license pool, a machine
with multiple cores can be assigned this one-core license. In such a case, the machine will run that product on
a single core. Processing will therefore be slower, because multi-threading (which is possible on multiple cores)
will not be available. The product will be executed in single thread mode on that machine.

To assign a single-core license to a multiple-core machine in LicenseSenver, select the Limit to single thread

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

https://www.altova.com/manual/en/licenseserver/3.17/alsconfig_clientmgmt.html
https://www.altova.com/manual/en/licenseserver/3.17/alsregister.html
https://www.altova.com/manual/en/licenseserver/3.17/alsassignlicenses.html

Installation and Licensing Setup on Linux 37

execution check box for that product.

Estimate of core requirements
There are various external factors that influence the data volumes and processing times your server can handle

(for example: the hardware, the current load on the CPU, and memory allocation of other applications running
on the server). In order to measure performance as accurately as possible, test the applications in your
environment with data volumes and in conditions that approximate as closely as possible to real business
situations.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

38 Installation and Licensing Setup on macOS

3.3 Setup on macOS

This section describes the installation ® and licensing of RaptorXML Server on macOS systems. The setup
comprises the following steps:

Install RaptorXML Server@
Install LicenseServer
Start LicenseServer

Regqister RaptorXML Server with LicenseServer
Assign a license to RaptorXML Server

The setup steps described above do not need to occur in exactly the same order in which they are listed.
Howewer, you do need to install before you start. And you do need to register RaptorXML Server with
LicenseSenver before you can assign a license to RaptorXML Server from LicenseSenrwer.

oD~

System Requirements (macOS)
Note the following system requirement:

¢ macOS 12 or newer

Prerequisites
Note the following prerequisites:

Ensure that Altova LicenseServer has been installed and is running.

Perform installation either as the root user or as a user with sudo privileges.

The previous version of RaptorXML Server must be uninstalled before a new one is installed.

If you plan to use Altova's Charts functionality, then at least one font must be installed on your system
to ensure that charts will be rendered correctly. To list installed fonts, use, for example, the fc-1list
command of the Fontconfig library.

e The macOS machine must be configured so that its name resolves to an IP address. This means that
you must be able to successfully ping the host name from the Terminal using the command ping

<hostname>.

3.31 Install on macOS

This topic describes the installation and setup of RaptorXML Server on macOS systems.

Integration with FlowForce

If you are installing RaptorXML Server together with FlowForce Senver, it is recommended that you install
FlowForce Server first. If you install RaptorXML Server before FlowForce Server, then, after having installed
both, run the following command:

cp /usr/local/Altova/RaptorXMLServer2025/etc/*.tool /usr/local/Altova/FlowForceServer2025/t
ools

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

https://www.freedesktop.org/wiki/Software/fontconfig/

Installation and Licensing Setup on macOS 39

This command copies the . tool file from /etc directory of RaptorXML Server to the FlowForce Server /tools
directory. The . tool file is required by FlowForce Server. It contains the path to the RaptorXML Server
executable. You do not need to run this command if you install FlowForce Server before installing RaptorXML
Server.

Uninstall RaptorXML Server

Before uninstalling RaptorXML Server, stop the senice with the following command:
sudo launchctl unload /Library/LaunchDaemons/com.altova.RaptorXMLServer2025.plist

To check whether the senice has been stopped, open the Activity Monitor in Finder and make sure that
RaptorXML Sener is not in the list. In the Applications folder in Finder, right-click the RaptorXML Server icon
and select Move to Trash. The application will be moved to Trash. You will, however, still need to remove the
application from the usr folder. Do this with the following command:

sudo rm -rf /usr/local/Altova/RaptorXMLServer2025/

If you need to uninstall an old version of Altova LicenseServer, you must first stop it running as a senice. Do
this with the following command:

sudo launchctl unload /Library/LaunchDaemons/com.altova.LicenseServer.plist

To check whether the senice has been stopped, open the Activity Monitor in Finder and make sure that
LicenseSener is not in the list. Then proceed to uninstall in the same way as described above for RaptorXML
Senver.

Install RaptorXML Server
To install RaptorXML Server, do the following:

1. Download the disk image (.dmg) file of RaptorXML Server from the Altova website
(https://www.altova.com/download.html).

2. Click to open the downloaded disk image (.dmg). This causes the RaptorXML Server installer to appear

as a new virtual drive on your computer.

On the new virtual drive, double-click the installer package (.pkg).

4. Go through the successive steps of the installer wizard. These are self-explanatory and include one
step in which you have to agree to the license agreement before being able to proceed.

5. To eject the drive after installation, right-click it and select Eject.

w

The RaptorXML Server package will be installed in the folder:

/usr/local/Altova/RaptorXMLServer2025 (application binaries)
/var/Altova/RaptorXMLServer (data files: database and logs)

The RaptorXML Server server daemon starts automatically after installation and a re-boot of the machine. You
can always start RaptorXML Senrver as a daemon with the following command:

sudo launchctl load /Library/LaunchDaemons/com.altova.RaptorXMLServer2025.plist

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://www.altova.com/download.html

40 Installation and Licensing Setup on macOS

3.3.2 Install LicenseServer (macOS)

Altova LicenseServer can be downloaded from the Altova website (https://www.altova.com/download.html).
Carry out the installation as described here €.

The LicenseSenrver package will be installed in the following folder:

/usr/local/Altova/LicenseServer

For information, see how to register and license @ RaptorXML Server with Altova LicenseServer. Also see
the LicenseServer documentation for more detailed information.

LicenseServer versions

e Altova products must be licensed either (i) with a version of LicenseServer that corresponds to the
installed RaptorXML Server version or (ii) with a later version of LicenseServer.

e The LicenseSenrver version that corresponds to the current version of RaptorXML Sener is 3.17.

¢ On Windows, you can install the corresponding version of LicenseSenver as part of the RaptorXML
Senver installation or install LicenseServer separately. On Linux amd macOS, you must install
LicenseSenver separately.

e Before a newer version of LicenseServer is installed, any older one must be de-installed.

e At the time of LicenseServer de-installation, all registration and licensing information held in the older
version of LicenseSenrver will be saved to a database on your server machine. This data will be imported
automatically into the newer version when the newer version is installed.

e LicenseSener versions are backwards compatible. They will work with older versions of RaptorXML
Senver.

e The latest version of LicenseServer available on the Altova website. This version will work with any
current or older version of RaptorXML Senwer.

e The version number of the currently installed LicenseSener is given at the bottom of the LicenseSenver

configuration page (all tabs).

3.3.3 Start LicenseServer, RaptorXML Server (macOS)

Start Altova LicenseServer and RaptorXML Senver either as root user or a user with sudo privileges.

Start LicenseServer

To correctly register and license RaptorXML Server with LicenseSener, LicenseServer must be running as a
daemon. Start LicenseServer as a daemon with the following command:

sudo launchctl load /Library/LaunchDaemons/com.altova.LicenseServer.plist
If at any time you need to stop LicenseServer, replace 1oad with unload in the command above.

Start RaptorXML Server

RaptorXML Sener server daemon starts automatically after installation and a re-boot of the machine. You can
start RaptorXML Sener as a daemon with the following command:

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

https://www.altova.com/download.html
https://www.altova.com/manual/en/licenseserver/3.17/index.html
https://www.altova.com/manual/en/licenseserver/3.17/
https://www.altova.com/manual/en/licenseserver/3.17/alsconfig.html
https://www.altova.com/manual/en/licenseserver/3.17/alsconfig.html

Installation and Licensing Setup on macOS 41

sudo launchctl load /Library/LaunchDaemons/com.altova.RaptorXMLServer.plist
If at any time you need to stop RaptorXML Senrer, use the following command:

sudo launchctl unload /Library/LaunchDaemons/com.altova.RaptorXMLServer.plist

3.34 Register RaptorXML Server (macOS)

To be able to license RaptorXML Server from Altova LicenseServer, RaptorXML Server must be registered with
LicenseSenver.

To register RaptorXML Server from the command line interface, use the 1icenseserver command:

sudo /usr/local/Altova/RaptorXMLServer2025/bin/RaptorXML licenseserver [options]
ServerName-Or-IP-Address

For example, if 1ocalhost is the name of the server on which LicenseServer is installed:
sudo /usr/local/Altova/RaptorXMLServer2025/bin/RaptorXML licenseserver localhost

In the command above, 1ocalhost is the name of the serer on which LicenseServer is installed. Notice also
that the location of the RaptorXML Server executable is:

/usr/local/Altova/RaptorXMLServer2025/bin/

After successful registration, go to the Client Management tab of LicenseServer's configuration page to assign
a license to RaptorXML Server.

For more information about registering Altova products with LicenseServer, see the LicenseServer user manual.

3.3.5 Assign License (macOS)

After successfully registering RaptorXML Senrwer, it will be listed in the Client Management tab of the
configuration page of LicenseServer. Go there and assign a license to RaptorXML Server.

The licensing of Altova server products is based on the number of processor cores available on the product
machine. For example, a dual-core processor has two cores, a quad-core processor four cores, a hexa-core
processor six cores, and so on. The number of cores licensed for a product must be greater than or equal to
the number of cores available on that server machine, whether the server is a physical or virtual machine. For
example, if a server has eight cores (an octa-core processor), you must purchase at least one 8-core license.
You can also combine licenses to achieve the core count. So, two 4-core licenses can also be used for an
octa-core server instead of one 8-core license.

If you are using a computer server with a large number of CPU cores but only have a low volume to process,
you may also create a virtual machine that is allocated a smaller number of cores and purchase a license for
that number. Such a deployment, of course, would have less processing speed than if all available cores on the
server were utilized.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://www.altova.com/manual/en/licenseserver/3.17/alsconfig_clientmgmt.html
https://www.altova.com/manual/en/licenseserver/3.17/alsregister.html
https://www.altova.com/manual/en/licenseserver/3.17/alsassignlicenses.html

42 Installation and Licensing Setup on macOS

Note: Each Altova server product license can be used for only one client machine at a time, even if the license
has unused licensing capacity. (A client machine is the machine on which the Altova server product is
installed.) For example, if a 10-core license is used for a client machine that has 6 CPU cores, then the
remaining 4 cores of licensing capacity cannot be used simultaneously for another client machine.

Single-thread execution
If an Altova server product allows single-thread execution, an option for Single-thread execution will be available.

In these cases, if an Altova server-product license for only one core is available in the license pool, a machine
with multiple cores can be assigned this one-core license. In such a case, the machine will run that product on
a single core. Processing will therefore be slower, because multi-threading (which is possible on multiple cores)
will not be available. The product will be executed in single thread mode on that machine.

To assign a single-core license to a multiple-core machine in LicenseSenrver, select the Limit to single thread
execution check box for that product.

Estimate of core requirements
There are various external factors that influence the data volumes and processing times your server can handle

(for example: the hardware, the current load on the CPU, and memory allocation of other applications running
on the server). In order to measure performance as accurately as possible, test the applications in your
environment with data volumes and in conditions that approximate as closely as possible to real business
situations.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Installation and Licensing Upgrade RaptorXML Server 43

3.4 Upgrade RaptorXML Server

The simplest way to carry over a license from the previous version of RaptorXML Server to a newer version is via
the installation process. The key steps during installation are:

1. Register the new version of RaptorXML Server with the LicenseSener that holds the license of the older
version of RaptorXML Sener.

2. Accept the license agreement of RaptorXML Server. (If you do not accept the agreement, the new
version will not be installed.)

Note: If you do not register RaptorXML Server with LicenseServer during the installation process, you can do
this later and then complete the licensing process.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

44 Installation and Licensing Migrate RaptorXML Server to a New Machine

3.5 Migrate RaptorXML Server to a New Machine

If you want to migrate RaptorXML Server from one machine to another (including across supported platforms),
follow the guidelines below.

Migrating RaptorXML Server to a new machine consists of re-assigning the license from the old machine to the
new machine. Do this as follows:

1. Install RaptorXML Server on the new machine. If it has already been installed as part of FlowForce
Sener installation, ignore this step.

2. On the new machine, register RaptorXML Senrver with Altova LicenseSenver.

3. On the old machine, make sure no clients are using the server.

4. Open the Altova LicenseServer administration page. Deactivate the license from the old RaptorXML
Senver machine and re-assign it to the new machine.

Note: Migrate the server configuration file in order to keep your previous configuration settings.

Note: If you were using XML catalogs on the old machine, migrate these to the new machine.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Installation and Licensing Security Considerations 45

3.6 Security Considerations

XSLT, XPath, XQuery are Turing-complete functional programming languages with local and remote file access
and dynamic execution possibility — therefore, it is recommended to only permit access to them for
transformations and/or file processing in a safe and regulated environment, where one has control over the input
files and can ensure to execute only previously audited scripts. Should there be a need to access them from an
external/public network (or a non-secure sub-network), then it is recommended to limit access with a reverse
proxy that implements user authentication and authorization. Furthermore, it is recommended to run the
process with a separate user account with access control configured at OS-level to restrict access only to
authorized parts of the file system.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

46 General Procedures

4 General Procedures

RaptorXML has special options that support XML Catalogs and Altova global resources , both of which
enhance portability and modularity. You can leverage the use of these features in your environment to

considerable advantage.

This section describes the following:

e How to use XML Catalogs @
e How to work with Altova global resources (5: }
e Security issues related to RaptorXML procedures and how to deal with them.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

General Procedures XML Catalogs 47

4.1 XML Catalogs

The XML catalog mechanism enables files to be retrieved from local folders, thus increasing the overall
processing speed, as well as improving the portability of documents—since only the catalog file URIs then
need to be changed. See the section How Catalogs Work @ for details.

Altova's XML products use a catalog mechanism to quickly access and load commonly used files, such as
DTDs and XML Schemas. This catalog mechanism can be customized and extended by the user, and it is

described in the sections Catalog Structure in RaptorXML Server® and Customizing your Catalogs . The
section Variables for System Locations list Windows variables for common system locations. These

variables can be used in catalog files to locate commonly used folders.

This section is organized into the following sub-sections:

How Catalogs Work
Catalog Structure in RaptorXML Server¢B
Customizing your Catalogs

Variables for Windows System Locations

For more information on catalogs, see the XML Catalogs specification.

Installing schemas via Schema Manager

Schema Manager enables you to quickly and conweniently install important schemas and set up catalog
files to correctly access these installed schemas. See the Schema Manager section for more information.

If a document is validated against a schema that is not installed but is available via Schema Manager, then
the installation via Schema Manager will be triggered automatically. However, if the schema package to be
installed via Schema Manager contains namespace mappings, then there will be no automatic installation; in
this case, you must start Schema Manager, select the package/s you want to install, and run the installation.
If, after installation, RaptorXML Serwver is not able to correctly locate a schema component, then restart
RaptorXML Sener and try again.

411 How Catalogs Work

Catalogs can be used to redirect both DTDs and XML Schemas. While the concept behind the mechanisms of
both cases is the same, the details are different and are explained below.

DTDs

Catalogs are commonly used to redirect a call to a DTD to a local URI. This is achieved by mapping, in the
catalog file, public or system identifiers to the required local URI. So when the pocTYPE declaration in an XML
file is read, its public or system identifier locates the required local resource via the catalog file mapping.

For popular schemas, the puBLIC identifier is usually pre-defined, thus requiring only that the URI in the catalog
file map the puBLIC identifier to the correct local copy. When the XML document is parsed, the PUBLIC
identifier in it is read. If this identifier is found in a catalog file, then the corresponding URL in the catalog file will
be looked up and the schema will be read from this location. So, for example, if the following SVG file is
opened in RaptorXML Senver:

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

48 General Procedures XML Catalogs

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">

<svg width="20" height="20" xml:space="preserve">
<g style="fill:red; stroke:#000000">
<rect x="0" y="0" width="15" height="15"/>
<rect x="5" y="5" width="15" height="15"/>
</g>
</svg>

The catalog is searched for the PUBLIC identifier of this SVG file. Let's say the catalog file contains the
following entry:

<catalog>
<public publicId="-//W3C//DTD SVG 1.1//EN" uri="schemas/svg/svgll.dtd"/>
</catalog>

In this case, there is a match for the puBLIC identifier. As a result, the lookup for the SVG DTD is redirected to
the URL schemas/svg/svgll.dtd (which is relative to the catalog file). This is a local file that will be used as
the DTD for the SVG file. If there is no mapping for the public ID in the catalog, then the URL in the XML
document will be used (in the SVG fie example abowe, this is the Internet URL:
http://www.w3.org/Graphics/SVG/1.1/DTD/svgll.dtd).

XML Schemas

In RaptorXML Server, you can also use catalogs with XML Schemas. In the XML instance file, the reference to
the schema will occur in the xsi: schemaLocation attribute of the XML document's top-level element. For
example,

xsi:schemalLocation="http://www.xmlspy.com/schemas/orgchart OrgChart.xsd"

The value of the xsi:schemalLocation attribute has two parts: a namespace part (green above) and a URI part
(highlighted). The namespace part is used in the catalog to map to the alternative resource. For example, the
following catalog entry redirects the schema reference above to a schema at an alternative location.

<uri name="http://www.xmlspy.com/schemas/orgchart" uri="C:\MySchemas\OrgChart.xsd"/>
Normally, the URI part of the xsi : schemalocation attribute's value is a path to the actual schema location.
However, if the schema is referenced via a catalog, the URI part need not point to an actual XML Schema but

must exist so that the lexical validity of the xsi: schemaLocation attribute is maintained. A value of foo, for
example, would be sufficient for the URI part of the attribute's value to be valid.

4.1.2 Catalog Structure in RaptorXML Server

When RaptorXML Server starts, it loads a file called RootCatalog.xml (structure shown in listing below), which
contains a list of catalog files that will be looked up. You can modify this file and enter as many catalog files to

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

General Procedures XML Catalogs 49

look up as you like, each of which is referenced in a nextCatalog element. These catalog files are looked up
and the URIs in them are resolved according to their mappings.

Listing of RootCatalog.xml

<?xml version="1.0" encoding="UTF-8"7?>

<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog"
xmlns:spy="http://www.altova.com/catalog ext"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
%si:schemalocation="urn:oasis:names:tc:entity:xmlns:xml:catalog Catalog.xsd">
<nextCatalog catalog="%PersonalFolder%/Altova/%$AppAndVersionName%/CustomCatalog.xml" />
<!-- Include all catalogs under common schemas folder on the first directory level -->
<nextCatalog spy:recurseFrom="%CommonSchemasFolder%" catalog="catalog.xml"

spy:depth="1"/>
<nextCatalog spy:recurseFrom="%ApplicationWritableDataFolder%/pkgs/.cache"

catalog="remapping.xml" spy:depth="0"/>
<nextCatalog catalog="CoreCatalog.xml"/>

</catalog>

The listing above references a custom catalog (named CustomCatalog.xml) and a set of catalogs that locate
commonly used schemas (such as W3C XML Schemas and the SVG schema).

e CustomCatalog.xml is located in the RaptorXML Senrver application folder's etc subfolder. You must
create it from a template file named CustomCatalog_template.xml. It is a skeleton file in which you
can create your own mappings. You can add mappings to CustomCatalog.xml for any schema you
require that is not addressed by the catalog files in the Common Schemas Folder. Do this by using the
supported elements of the OASIS catalog mechanism (see next section).

e The Common Schemas Folder (located via the variable $CommonSchemasFolder%) contains a set of
commonly used schemas. Inside each of these schema folders is a catalog.xml file that maps public
and/or system identifiers to URIs that point to locally saved copies of the respective schemas.

e CoreCatalog.xml is located in the RaptorXML Sener application folder, and is used to locate
schemas and stylesheets used by RaptorXML Sener-specific processes, such as StyleVision Power
Stylesheets which are stylesheets used to generate Altova's Authentic View of XML documents.

Note the following:

e During a new installation of the same major version (same or different minor versions), the template file
will be replaced by a new template file, but CustomCatalog.xml will be left untouched.

e Howevwer, if you are installing a new major version over a previous major version, then the previous major
version folder will be deleted—together with its CustomCatalog.xml. So, if you want to continue using
CustomCatalog.xml, make sure that you save CustomCatalog.xml from the previous major version
folder to a safe place. After the new major version has been installed, you can copy the
CustomCatalog.xml that you saved to the etc folder of the new major version and edit it there as
required.

Location variables
The variables that are used in RootCatalog.xml (listing above) have the following values:

Personal folder of the current user, for example C:
$PersonalFolder$% \Users\<name>\Documents

$CommonSchemasFolder% C:\ProgramData\Altova\Common2025\Schemas

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

50 General Procedures XML Catalogs

o

ApplicationWritableDataFolde
r% C:\ProgramData\Altova

Location of catalog files and schemas
Note the locations of the various catalog files.

[RootCatalog.xml,CustomCatalog.xml,CustomCatalog_template.xml,anchoreCatalog.xmléme
in the RaptorXML Server application folder.

e The catalog.xml files are each in a specific schema folder, these schema folders being inside the
Common Schemas Folder.

41.3 Customizing your Catalogs

When creating entries in CustomCatalog.xml (or any other catalog file that is to be read by RaptorXML Server),
use only the following elements of the OASIS catalog specification. Each of the elements below is listed with
an explanation of their attribute values. For a more detailed explanation, see the XML Catalogs specification.
Note that each element can take the xml :base attribute, which is used to specify the base URI of that element.

e <public publicId="PublicID of Resource" uri="URL of local file"/>

e <system systemId="SystemID of Resource" uri="URL of local file"/>

e <uri name="filename" uri="URL of file identified by filename"/>

e <rewriteURI uriStartString="StartString of URI to rewrite" rewritePrefix="String to

replace StartString"/>
e <rewriteSystem systemIdStartString="StartString of SystemID"
rewritePrefix="Replacement string to locate resource locally"/>

Note the following points:

e In cases where there is no public identifier, as with most stylesheets, the system identifier can be
directly mapped to a URL via the system element.

e A URI can be mapped to another URI using the uri element.

e The rewriteURI and rewriteSystem elements enable the rewriting of the starting part of a URI or
system identifier, respectively. This allows the start of a filepath to be replaced and consequently
enables the targeting of another directory. For more information on these elements, see the XML

Catalogs specification.

From release 2014 onwards, RaptorXML Serer adheres closely to the XML Catalogs specification (OASIS
Standard V1.1, 7 October 2005) specification. This specification strictly separates external-identifier look-ups
(those with a Public ID or System ID) from URI look-ups (URIs that are not Public IDs or System IDs).
Namespace URIs must therefore be considered simply URIs—not Public IDs or System IDs—and must be
used as URI look-ups rather than external-identifier look-ups. In RaptorXML Server versions prior to version
2014, schema namespace URIs were translated through <public> mappings. From version 2014 onwards,

<uri> mappings have to be used.

Prior to v2014: <public publicID="http://www.MyMapping.com/ref"
uri="file:///C:/MyDocs/Catalog/test.xsd"/>

V-2014 onwards: <uri name="http://www.MyMapping.com/ref"
uri="file:///C:/MyDocs/Catalog/test.xsd"/>

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

General Procedures XML Catalogs 51

How RaptorXML Server finds a referenced schema

A schema is referenced in an XML document via the xsi:scemaLocation attribute (shown below). The value of
the xsi:schemaLocation attribute has two parts: a namespace part (green) and a URI part (highlighted).

xsi:schemalocation="http://www.xmlspy.com/schemas/orgchart OrgChart.xsd"

The set of steps that is followed to find a referenced schema depends on the validation options --
schemalocation-hints and --schema-mapping. Given below are the procedures for each value of the two
options:

e -—-schemalocation-hints=load-by-schemalocation | load-by-namespace | load-combining-
both | ignore
Specifies the behavior of the xsi: schemaLocation and xsi:noNamespaceSchemaLocation
attributes: whether to load a schema document and, if yes, which information should be used to
find it; (the default is 1load-by-schemalocation).
+* load-by-schemalocation
1. Ifthe URI part of the xsi:schemaLocation is mapped in a catalog, load the resulting URI
2. Load the URI directly
+* load-by-namespace
1. If the namespace part of the xsi:schemalocation is mapped in a catalog, load the resulting
URI.
2. Load nothing.
+* load-combining-both
1. Ifthe URI part of the xsi:schemaLocation is mapped in a catalog, load the resulting URI.
2. Ifthe namespace part of the xsi:schemaLocation is mapped in a catalog, load the resulting
URI.
3. Load the URI part directly.

e --schema-mapping=prefer-schemalocation | prefer-namespace
If schema location and namespace are both used to find a schema document, then this option
specifies which of the two should be preferred during catalog lookup; (the default is prefer-
schemalocation). This option is used to change the order of the first two steps in the 1oad-
combining-both variant abowe.

XML Schema specifications

XML Schema specification information is built into RaptorXML Server and the validity of XML Schema (. xsd)
documents is checked against this internal information. In an XML Schema document, therefore, no references
should be made to any schema that defines the XML Schema specification.

The catalog.xml file in the 3AltovaCommonSchemasFolder$\Schemas\schema folder contains references to
DTDs that implement older XML Schema specifications. You should not validate your XML Schema documents
against these schemas. The referenced files are included solely to provide RaptorXML Server with entry helper
info for editing purposes should you wish to create documents according to these older recommendations.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

52 General Procedures

XML Catalogs

41.4

Variables for Windows System Locations

Shell environment variables can be used in the nextCatalog element to specify the path to various system
locations (see RootCatalog.xml listing above). The following shell environment variables are supported:

%PersonalFolder$%

o\

CommonSchemasFolder

oo

S

ApplicationWritableD
ataFolder%

$AltovaCommonFolder$
%DesktopFolder%
$ProgramMenuFolder%
%StartMenuFolder$
sStartUpFolders

sTemplateFolder$%

$AdminToolsFolder$%

%AppDataFolder%

$CommonAppDataFolder

o©

$FavoritesFolder%
%PersonalFolder%
%SendToFolder%
%FontsFolder$%
$ProgramFilesFolder%
%CommonFilesFolder%
$WindowsFolder$

%SystemFolder%

%LocalAppDataFolder$

$MyPicturesFolder$

Full path to the Personal folder of the current user, for example c:
\Users\<name>\Documents

C:\ProgramData\Altova\Common2025\Schemas

C:\ProgramData\Altova

C:\Program Files\Altova\Common2025

Full path to the Desktop folder of the current user.

Full path to the Program Menu folder of the current user.
Full path to Start Menu folder of the current user.

Full path to Start Up folder of the current user.

Full path to the Template folder of the current user.

Full path to the file system directory that stores administrative tools of the current
user.

Full path to the Application Data folder of the current user.

Full path to the file directory containing application data of all users.
Full path of the Favorites folder of the current user.

Full path to the Personal folder of the current user.

Full path to the SendTo folder of the current user.

Full path to the System Fonts folder.

Full path to the Program Files folder of the current user.

Full path to the Common Files folder of the current user.

Full path to the Windows folder of the current user.

Full path to the System folder of the current user.

Full path to the file system directory that serves as the data repository for local
(nonroaming) applications.

Full path to the MyPictures folder.

Altova RaptorXML Server 2025

© 2019-2025 Altova GmbH

General Procedures Global Resources 53

4.2 Global Resources

This section:

e About global resourcesE
e Using global resources

About global resources

An Altova global resource file maps an alias to multiple resources via different configurations, as shown in the
diagram below. An alias can therefore be switched to access a different resource by switching its configuration.

. Configuration 1
Alias Mame |+ Resource 1

L 4

Configuration 2
Resource 2

L 4

Configuration 3
Resource 3

Global resources are defined in Altova products, such as Altova XMLSpy, and are saved in a global resources
XML file. RaptorXML is able to use global resources as inputs. To do this, it requires the name and location of
the global resources file, and the alias and configuration to be used.

The advantage of using global resources is that the resource can be changed merely by switching the name of
the configuration. When using RaptorXML, this means that by providing a different value of the --
globalresourcesconfig | --gc option, a different resource can be used. (See the example below.)

Using global resources with RaptorXML

To specify a global resource as an input for a RaptorXML command, the following parameters are required:

e The global resources XML file (specified on the CLI with the option --globalresourcesfile | --gr)

e The required configuration (specified on the CLI with the option --globalresourcesconfig | --gc)

e The alias. This can be specified directly on the CLI where a file name is required, or it can be at a
location inside an XML file where RaptorXML looks for a filename (such as in an xsi:schemalLocation
attribute).

For example, if you wish to transform input.xml with transform.xslt t0 output.html, this would typically be
achieved on the CLI with the following command that uses filenames:

raptorxml xslt --input=input.xml --output=output.html transform.xslt

If, howewver, you have a global resource definition that matches the alias MyInput to the file resource
FirstInput.xml Via a configuration called FirstConfig, then you could use the alias MyInput on the CLI as
follows:

raptorxml xslt --input=altova://file resource/MyInput --gr=C:\MyGlobalResources.xml --
gc=FirstConfig --output=Output.html transform.xslt

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

54 General Procedures Global Resources

Now, if you have another file resource, say SecondInput.xml, that is matched to the alias MyInput via a
configuration called secondConfig, then this resource can be used by changing only the --gc option of the
previous command:

raptorxml xslt --input=altova://file resource/MyInput --gr=C:\MyGlobalResources.xml --
gc=SecondConfig --output=Output.html transform.xslt

Note: In the example above a file resource was used; a file resource must be prefixed with
altova://file_resource/. You can also use global resources that are folders. To identify a folder resource, use:
altova://folder_resource/AliasName. Note that, on the CLI, you can also use folder resources as part of a
filepath. For example: altova://folder_resource/AliasName/input.xml.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

General Procedures Security Issues 55

4.3 Security Issues

This section:
e Security concerns related to the HTTP interfac:eE
e Making Python scripts safe

Some interface features of RaptorXML Server pose security concerns. These are described below together with
their solutions.

Security concerns related to the HTTP REST interface

The HTTP REST interface, by default, allows result documents to be written to any location specified by the
client (that is accessible with the HTTP protocol). It is important therefore to consider this security aspect when
configuring RaptorXML Sener.

If there is a concern that security might be compromised or that the interface might be misused, the server can
be configured to write result documents to a dedicated output directory on the server itself. This is specified by
setting the server.unrestricted-filesystem-access option of the server configuration file to false.
When access is restricted in this way, the client can download result documents from the dedicated output
directory with GET requests. Alternatively, an administrator can copy/upload result document files from the
sener to the target location.

Making Python scripts safe

When a Python script is specified in a command via HTTP to RaptorXML Senrver, the script will only work if it is
located in the trusted directou@. The script is executed from the trusted directory. Specifying a Python script
from any other directory will result in an error. The trusted directory is specified in the server.script-root-
E@ setting of the server configuration ﬁle, and a trusted directory must be specified if you wish to use
Python scripts. Make sure that all Python scripts to be used are saved in this directory.

Though all output generated by the server for HTTP job requests is written to the job output directou (which
is a sub-directory of the output-root-directory“¥), this limitation does not apply to Python scripts, which
can write to any location. The server administrator must review the Python scripts in the trusted directou for
potential wilnerability issues.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

56 Command Line Interface (CLI)

5 Command Line Interface (CLI)

The RaptorXML Server executable provides application functionality that can be called from the command line
interface (CLI). The path to the executable is:

Linux /opt/Altova/RaptorxXMLServer2025/bin/raptorxml
Mac /usr/local/Altova/RaptorXMLServer2025/bin/raptorxml

Windo <pProgramFilesFolder>\Altova\RaptorxMLServer2025\bin\RaptorXML.exe
ws

Usage

The command line syntax is:

raptorxml --h | --help | --version | <command> [options] [arguments]

e -—-help (short form --h) displays the help text of the given command. If no command is named, then
all commands of the executable are listed, each with a brief description of the command.

e -—-version displays the version number of RaptorXML Server.

e <command> is the command to execute. Commands are described in the sub-sections of this section
(see list below).

e [options] are the options of a command; they are listed and described with their respective
commands.

e [arguments] are the arguments of a command; they are listed and described with their respective
commands.

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

CLIcommands

The commands have been organized by their functionality as listed below, and are described in the sub-
sections of this section.

e XML. DTD. XSD Validation Commands &
e Well-formedness Check Commands@

e XQuery Commands
e XSLT Commands
e JSON/Awro Commands

e XML Signature Commands@
e General Commands

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI)

57

e |ocalization Commands
e License Commands
e Administration Commands@

© 2019-2025 Altova GmbH

Altova RaptorXML Server 2025

58 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

5.1 XML, DTD, XSD Validation Commands

XML validation commands can be used to validate the following types of document:

valxml-withdtd € Validates an XML instance document against a DTD
valxml-withxsd ©: Validates an XML instance document against an XML Schema
valdtdm: Validates a DTD document

valxsd ®: Validates a W3C XML Schema (XSD) document.

5.1.1 valxml-withdtd (xml)
The valxml-withdtd | xml command validates one or more XML instance documents against a DTD.
raptorxml valxml-withdtd | xml [options] InputFile

e The 1nputFile argument is the XML document to validate. If a reference to a DTD exists in the XML
document, the --dtd option is not required.

e To validate multiple documents, either: (i) list the files to be validated on the CLI, with each file
separated from the next by a space; or (ii) list the files to be validated in a text file (. txt file), with one
filename per line, and supply this text file as the InputFile argument together with the —-
listri1c @D option set to true (see the Options list below).

Examples
Examples of the valxml-withdtd command:

raptorxml valxml-withdtd --dtd=c:\MyDTD.dtd c:\Test.xml
raptorxml xml c:\Test.xml

raptorxml xml --verbose=true c:\Test.xml

raptorxml xml --listfile=true c:\FileList.txt

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

¥ Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XML, DTD, XSD Validation Commands 59

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\ll.

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

* Validation and processing
* dtd

--dtd = FILE
Specifies the external DTD document to use for validation. If a reference to an external DTD is
present in the XML document, then the CLI option overrides the external reference.

 |istfile

--listfile = true|false

If true, treats the command's TnputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

* nhamespaces

--namespaces = true|false

Enables namespace-aware processing. This is useful for checking the XML instance for errors due to
incorrect namespaces. Default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder lewvels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

¥ script

--script = FILE
Executes the Python script in the submitted file after validation has been completed. Add the option
multiple times to specify more than one script.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

60 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

¥ script-api-version
--api, --script-api-version = 1; 2; 2.1 to 2.4; 2.4.1; 2.5 to 2.8; 2.8.1 to 2.8.6;
2.9.0; 2.10.0; 2.11.0
Specifies the Python API version to be used for the script. The default value is the latest version,
currently 2.11.0. Instead of integer values such as 1 and 2, you can also use the corresponding
values 1.0 and 2.0. Simila% you can use the three-digit 2.5.0 for the two-digit 2. 5. Also see the

topic Python APl Versions

w script-output

--script-output = FILE
Writes the script's standard output to the file named in FILE.

¥ script-param
--script-param = KEY:VALUE
Additional user-specified parameters that can be accessed during the execution of Python scripts.
Add the option multiple times to specify more than one script parameter.

¥ streaming
--streaming = true|false
Enables streaming validation. Default is true. In streaming mode, data stored in memory is
minimized and processing is faster. The downside is that information that might be required
subsequently—for example, a data model of the XML instance document—will not be available. In
situations where this is significant, streaming mode will need to be turned off (by giving --streaming
a value of false). When using the --script option with the valxml-withxsd command, disable
streaming. Note that the --streaming option is ignored if --parallel-assessment is set to true.
Note: Boolean option values are set to true if the option is specified without a value.

w Catalogs and global resources

w catalog
--catalog = FILE
Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default

value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML

Catalogs, for information about working with catalogs.

¥ user-catalog

--user-catalog = FILE
Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the

section, XML Catalogs ¥, for information about working with catalogs.

¥ enable-globalresources

--enable-globalresources = true|false

Enables global resources & Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XML, DTD, XSD Validation Commands 61

¥ globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE
Specifies the active configuration of the global resource & (and enables global resources).

w globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources)@.

* Common options
¥ error-format

--error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with 1ongxml generating more detail.

* error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

* info-limit
--info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

* help

--help
Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

- listfile

--listfile = true|false

If true, treats the command's TnputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

¥ log-output

--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

+* network-timeout

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

62 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

--network-timeout = VALUE
Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder lewvels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

* \erbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* \verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

¥ \ersion

--version
Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

* warning-limit
--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.1.2 valxml-withxsd (xsi)

The valxml-withxsd | xsi command validates one or more XML instance documents according to the W3C
XML Schema Definition Language (XSD) 1.0 and 1.1 specifications.

raptorxml valxml-withxsd | xsi [options] InputFile

e The InputFile argument is the XML document to validate. The ——schemalocation—hints option
specifies what mechanism is used to find the schema. The ——xsd=FILE ED option specifies the
schema/s to use if the XML file contains no schema reference.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XML, DTD, XSD Validation Commands 63

e To validate multiple documents, either: (i) list the files to be validated on the CLI, with each file
separated from the next by a space; or (ii) list the files to be validated in a text file (. txt file), with one
filename per line, and supply this text file as the rnputFiie argument together with the --
1istfilc @ option set to true (see the Options list below).

Note: If using the --script option to run Python scripts@, make sure to also specify --streaming=false.

Examples
Examples of the valxml-withxsd command:

e raptorxml valxml-withxsd --schemalocation-hints=load-by-schemalocation --xsd=c:
\MyXSD.xsd c:\HasNoXSDRef.xml

e raptorxml xsi c:\HasXSDRef.xml

e raptorxml xsi --xsd-version=1.1 --listfile=true c:\FileList.txt

w Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

+ Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

+ Validation and processing
* assessment-mode

--assessment-mode = lax|strict
Specifies the schema-validity assessment mode as defined in the XSD specifications. Default value
is strict. The XML instance document will be validated according to the mode specified with this

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

64 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

option.

* ct-restrict-mode

--ct-restrict-mode = 1.0|1.1|default

Specifies how to check complex type restrictions. A value of 1.0 checks complex type restrictions
as defined in the XSD 1.0 specification—even in XSD 1.1 validation mode. A value of 1.1 checks
complex type restrictions as defined in the XSD 1.1 specification—even in XSD 1.0 validation mode.
A value of default checks complex type restrictions as defined in the XSD specification of the
current validation mode (1.0 or 1.1). The default value is default.

- listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies

only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

* parallel-assessment [pa]

--pa | --parallel-assessment = true|false

If set to true, schema validity assessment is carried out in parallel. This means that if there are more
than 128 elements at any lewel, these elements are processed in parallel using multiple threads. Very
large XML files can therefore be processed faster if this option is enabled. Parallel assessment takes
place on one hierarchical level at a time, but can occur at multiple levels within a single infoset. Note
that parallel assessment does not work in streaming mode. For this reason, the --streaming option
is ignored if --parallel-assessment is set to true. Also, memory usage is higher when the —-
parallel-assessment option is used. The default setting is false. Short form for the option is --pa.
Note: Boolean option values are set to true if the option is specified without a value.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

¥ report-import-namespace-mismatch-as-warning
--report-import-namespace-mismatch-as-warning = true|false
Downgrades namespace or target-namespace mismatch errors when importing schemas with
xs:import from errors to warnings. The default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* schema-imports
--schema-imports = load-by-schemalocation | load-preferring-schemalocation | load-
by-namespace | load-combining-both | license-namespace-only

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XML, DTD, XSD Validation Commands 65

Specifies the behaviour of xs: import elements, each of which has an optional namespace attribute
and an optional schemal.ocation attribute: <import namespace="someNS"
schemalocation="someURL">. The option specifies whether to load a schema document or just
license a namespace, and, if a schema document is to be loaded, which information should be used
to find it. Default: 1ocad-preferring-schemalocation.

The behavior is as follows:

® load-by-schemalocation: The value of the schemalocation attribute is used to locate the
schema, taking account of catalog mappings @ ifthe namespace attribute is present, the
namespace is imported (licensed).

® load-preferring-schemalocation: If the schemalocation attribute is present, it is used,
taking account of catalog mappings. If N0 schemalocation attribute is present, then the
value of the namespace attribute is used via a Mgmppi_ng. This is the default value.

® load-by-namespace: The value of the namespace attribute is used to locate the schema via a
catalog mapping &,

® load-combining-both: If either the namespace or schemalocation attribute has a catalog
mapping, then the mapping is used. If both have catalog mappings, then the value of the
—--schema-mapping option (XML/XSD option) decides which mapping is used. If no catalog
mapping is present, the schemalLocation attribute is used.

® license-namespace-only: The namespace is imported. No schema document is imported.

* schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace | load-
combining-both | ignore

Specifies the behavior of the xsi:schemalocation and xsi:noNamespaceSchemaLocation
attributes: Whether to load a schema document, and, if yes, which information should be used to find
it. Default: 1oad-by-schemalocation.

e The load-by-schemalocation value uses the URL of the schema location®® in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML instance
documents. This is the default value.

e The load-by-namespace Vvalue takes the namespace part of xsi:schemaLocation and an
empty string in the case of xsi :noNamespaceSchemaLocation and locates the schema via a

catalog mapping.
e If load-combining-both is used and if either the namespace part or the URL part has a

catalog mapping“#, then the catalog mapping is used. If both have catalog mappings,
then the value of the --schema-mapping option (XML/XSD option) decides which mapping is
used. If neither the namespace nor URL has a catalog mapping, the URL is used.

o If the option's value is ignore, then the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

¥ schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

If schema location and namespace are both used to find a schema document, specifies which of
them should be preferred during catalog lookup. (If either the --schemalocation-hints or the --
schema-imports option has a value of 1oad-combining-both, and if the namespace and URL parts
involved both have catalog mappings , then the value of this option specifies which of the two
mappings to use (namespace mapping or URL mapping; the prefer-schemalocation value refers to
the URL mapping).) Default is prefer-schemalocation.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

66 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

* script
--script = FILE
Executes the Python script in the submitted file after validation has been completed. Add the option
multiple times to specify more than one script.

¥ script-api-version
--api, --script-api-version = 1; 2; 2.1 to 2.4; 2.4.1; 2.5 to 2.8; 2.8.1 to 2.8.6;

2.9.0; 2.10.0; 2.11.0
Specifies the Python API version to be used for the script. The default value is the latest version,

currently 2.11.0. Instead of integer values such as 1 and 2, you can also use the corresponding
values 1.0 and 2.0. Simila& you can use the three-digit 2.5.0 for the two-digit 2. 5. Also see the

topic Python APl Versions

¥ script-output

--script-output = FILE
Writes the script's standard output to the file named in FILE.

* script-param
--script-param = KEY:VALUE
Additional user-specified parameters that can be accessed during the execution of Python scripts.
Add the option multiple times to specify more than one script parameter.

* streaming

--streaming = true|false

Enables streaming validation. Default is true. In streaming mode, data stored in memory is
minimized and processing is faster. The downside is that information that might be required
subsequently—for example, a data model of the XML instance document—will not be available. In
situations where this is significant, streaming mode will need to be turned off (by giving --streaming
a value of false). When using the --script option with the valxml-withxsd command, disable
streaming. Note that the --streaming option is ignored if --parallel-assessment is set to true.
Note: Boolean option values are set to true if the option is specified without a value.

* xinclude
--xinclude = true|false
Enables XML Inclusions (XInclude) support. Default value is false. When false, XInclude's include

elements are ignored.
Note: Boolean option values are set to true if the option is specified without a value.

* xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use for the XML instance document: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each instance document loaded during processing references a DTD. If no DTD

exists, an error is reported.

* xml-mode-for-schemas

--xml-mode-for-schemas = wf|id|valid

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XML, DTD, XSD Validation Commands 67

Specifies the XML processing mode to use for XML schema documents: wr=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each schema document loaded during processing references a DTD. If no DTD
exists, an error is reported.

* xsd

--xsd = FILE
Specifies one or more XML Schema documents to use for the validation of XML instance documents.
Add the option multiple times to specify more than one schema document.

* xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This option can
also be useful to find out in what ways a schema which is 1.0-compatible is not 1.1-compatible. The
detect option is an Altova-specific feature. It enables the version of the XML Schema document (1.0
or 1.1) to be detected by reading the value of the vc:minversion attribute of the document's
<xs:schema> element. If the value of the @vc:minversion attribute is 1.1, the schema is detected
as being version 1.1. For any other value, or if the @vc:minversion attribute is absent, the schema
is detected as being version 1.0.

* Catalogs and global resources
* catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorxXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs, for information about working with catalogs.

¥ user-catalog

--user-catalog = FILE
Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs ¥, for information about working with catalogs.

4

enable-globalresources

--enable-globalresources = true|false
Enables global resources & Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE
Specifies the active configuration of the global resource & (and enables global resources).

* globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources).

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

68 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

* Common options
* error-format

--error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with 1ongxm1 generating more detail.

* error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

* info-limit
--info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

* help

--help
Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

 listfile

--listfile = true]|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

¥ |og-output

--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

+* network-timeout

--network-timeout = VALUE
Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

¥ recurse

--recurse = true|false
Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XML, DTD, XSD Validation Commands 69

zip\test.xml" Will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

* verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

¥ \ersion

--version

Displays the version of RaptorXML Senver. If used with a command, place --version before the
command.

* warning-limit
--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

51.3 valdtd (dtd)

The valdtd | dtd command validates one or more DTD documents according to the XML 1.0 or XML 1.1
specification.

raptorxml valdtd | dtd [options] InputFile

e The 1nputFile argument is the DTD document to validate.

e To validate multiple documents, either: (i) list the files to be validated on the CLI, with each file
separated from the next by a space; or (i) list the files to be validated in a text file (. txt file), with one
filename per line, and supply this text file as the rnputFiie argument together with the --
1istrilc @ option set to true (see the Options list below).

Examples
Examples of the valdtd command:

e raptorxml valdtd c:\Test.dtd
e raptorxml dtd --verbose=true c:\Test.dtd

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

70 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

e raptorxml dtd --listfile=true c:\FilelList.txt

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorxML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

+ Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (i)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

* Validation and processing
* listfile

--listfile = true]|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" Will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XML, DTD, XSD Validation Commands 7

* script
--script = FILE
Executes the Python script in the submitted file after validation has been completed. Add the option
multiple times to specify more than one script.

¥ script-api-version
--api, --script-api-version = 1; 2; 2.1 to 2.4; 2.4.1; 2.5 to 2.8; 2.8.1 to 2.8.6;

2.9.0; 2.10.0; 2.11.0
Specifies the Python API version to be used for the script. The default value is the latest version,

currently 2.11.0. Instead of integer values such as 1 and 2, you can also use the corresponding
values 1.0 and 2.0. Simila& you can use the three-digit 2.5.0 for the two-digit 2. 5. Also see the

topic Python APl Versions

¥ script-output

--script-output = FILE
Writes the script's standard output to the file named in FILE.

* script-param

--script-param = KEY:VALUE
Additional user-specified parameters that can be accessed during the execution of Python scripts.
Add the option multiple times to specify more than one script parameter.

w Catalogs and global resources
w catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs, for information about working with catalogs.

¥ user-catalog

--user-catalog = FILE
Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the

section, XML Catalogs ¥, for information about working with catalogs.

¥ enable-globalresources

--enable-globalresources = true|false

Enables global resources & Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

¥ globalresourceconfig [gc]
--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource & (and enables global resources)@.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

72 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

* globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources)@.

* Common options
* error-format

--error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with 1ongxm1 generating more detail.

* error-limit
--error-limit = N | unlimited
Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

* info-limit
--info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

* help
--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

 |istfile

--listfile = true|false

If true, treats the command's TnputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

¥ |og-output
--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

+* network-timeout
--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

¥ recurse

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XML, DTD, XSD Validation Commands 73

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

¥ verbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

¥ \ersion

--version
Displays the version of RaptorXML Senver. If used with a command, place --version before the
command.

* warning-limit
--warning-limit = N | unlimited
Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

514 valxsd (xsd)

The valxsd | xsd command validates one or more XML Schema documents (XSD documents) according to
the W3C XML Schema Definition Language (XSD) 1.0 or 1.1 specification. Note that it is the schema itself that
is validated against the XML Schema specification, not an XML instance document against an XML Schema.

raptorxml valxsd | xsd [options] InputFile

e The InputFile argument is the XML Schema document to validate. The --xsd-version=1.0/1.1]|
detect @ option specifies the XSD version to validate against, with the default being 1. 0.

e To validate multiple documents, either: (i) list the files to be validated on the CLI, with each file
separated from the next by a space; or (i) list the files to be validated in a text file (. txt file), with one
filename per line, and supply this text file as the rnputFiie argument together with the --
1istrilc @ option set to true (see the Options list below).

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

74 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

Examples
Examples of the valxsd command:

e raptorxml valxsd c:\Test.xsd
e raptorxml xsd --verbose=true c:\Test.xsd
e raptorxml xsd --listfile=true c:\FilelList.txt

w Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

+ Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

+ Validation and processing
¥ ct-restrict-mode

--ct-restrict-mode = 1.0|1.1|default

Specifies how to check complex type restrictions. A value of 1.0 checks complex type restrictions
as defined in the XSD 1.0 specification—even in XSD 1.1 validation mode. A value of 1.1 checks
complex type restrictions as defined in the XSD 1.1 specification—ewven in XSD 1.0 validation mode.
A value of default checks complex type restrictions as defined in the XSD specification of the
current validation mode (1.0 or 1.1). The default value is default.

 listfile

--listfile = true]|false

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XML, DTD, XSD Validation Commands 75

If true, treats the command's TnputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and 2 may be used. So, *.xm1 will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

¥ report-import-namespace-mismatch-as-warning
--report-import-namespace-mismatch-as-warning = true|false
Downgrades namespace or target-namespace mismatch errors when importing schemas with
xs: import from errors to warnings. The default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

¥ schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation | load-
by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs: import elements, each of which has an optional namespace attribute
and an optional schemal.ocation attribute: <import namespace="someNS"
schemaLocation="someURL">. The option specifies whether to load a schema document or just
license a namespace, and, if a schema document is to be loaded, which information should be used
to find it. Default: 1oad-preferring-schemalocation.

The behavior is as follows:

e load-by-schemalocation: The value of the schemaLocation attribute is used to locate the
schema, taking account of catalog mappings. If the namespace attribute is present, the
namespace is imported (licensed).

® load-preferring-schemalocation: If the schemaLocation attribute is present, it is used,
taking account of catalog mappings. If N0 schemaLocation attribute is present, then the
value of the namespace attribute is used via a catalog mapping. This is the default value.

e load-by-namespace: The value of the namespace attribute is used to locate the schema via a
catalog mapping “#.

e load-combining-both: If either the namespace or schemaLocation attribute has a catalog
mapping, then the mapping is used. If both have catalog mappings, then the value of the
—--schema-mapping option (XML/XSD option) decides which mapping is used. If no catalog
mapping “# is present, the schemaLocation attribute is used.

e license-namespace-only: The namespace is imported. No schema document is imported.

+ schemalocation-hints

--schemalocation-hints = load-by-schemalocation load-by-namespace | load-

combining-both | ignore

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

76 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

Specifies the behavior of the xsi:schemalocation and xsi:noNamespaceSchemaLocation
attributes: Whether to load a schema document, and, if yes, which information should be used to find
it. Default: 1oad-by-schemalocation.

e The load-by-schemalocation value uses the URL of the schema location®? in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML instance
documents. This is the default value.

e The load-by-namespace value takes the namespace part of xsi:schemaLocation and an
empty string in the case of xsi:noNamespaceSchemalocation and locates the schema via a

Mmapi_ng-
o If load-combining-both is used and if either the namespace part or the URL part has a

catalog mapping“#, then the catalog mapping is used. If both have catalog mappings,
then the value of the --schema-mapping option (XML/XSD option@) decides which mapping is
used. If neither the namespace nor URL has a catalog mapping, the URL is used.

o If the option's value is ignore, then the xsi:schemalocation and
xsi:noNamespaceSchemalocation attributes are both ignored.

* schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

If schema location and namespace are both used to find a schema document, specifies which of
them should be preferred during catalog lookup. (If either the --schemalocation-hints or the --
schema-imports option has a value of 1oad-combining-both, and if the namespace and URL parts
involved both have catalog mappings , then the value of this option specifies which of the two
mappings to use (namespace mapping or URL mapping; the prefer-schemalocation value refers to
the URL mapping).) Default is prefer-schemalocation.

* script
--script = FILE
Executes the Python script in the submitted file after validation has been completed. Add the option
multiple times to specify more than one script.

¥ script-api-version
--api, --script-api-version = 1; 2; 2.1 to 2.4; 2.4.1; 2.5 to 2.8; 2.8.1 to 2.8.6;
2.9.0; 2.10.0; 2.11.0
Specifies the Python API version to be used for the script. The default value is the latest version,
currently 2.11.0. Instead of integer values such as 1 and 2, you can also use the corresponding
values 1.0 and 2.0. Simila% you can use the three-digit 2.5.0 for the two-digit 2. 5. Also see the
topic Python APl Versions <&,

w script-output

--script-output = FILE
Writes the script's standard output to the file named in FILE.

¥ script-param

--script-param = KEY:VALUE
Additional user-specified parameters that can be accessed during the execution of Python scripts.
Add the option multiple times to specify more than one script parameter.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XML, DTD, XSD Validation Commands 77

* Xinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false, XInclude's include
elements are ignored.

Note: Boolean option values are set to true if the option is specified without a value.

* xml-mode-for-schemas

--xml-mode-for-schemas = wf|id|valid

Specifies the XML processing mode to use for XML schema documents: wr=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each schema document loaded during processing references a DTD. If no DTD
exists, an error is reported.

* xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This option can
also be useful to find out in what ways a schema which is 1.0-compatible is not 1.1-compatible. The
detect option is an Altova-specific feature. It enables the version of the XML Schema document (1.0
or 1.1) to be detected by reading the value of the vc:minversion attribute of the document's
<xs:schema> element. If the value of the @vc:minversion attribute is 1.1, the schema is detected
as being version 1.1. For any other value, or if the @vc:minversion attribute is absent, the schema
is detected as being version 1.0.

* Catalogs and global resources
* catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs, for information about working with catalogs.

¥ user-catalog

--user-catalog = FILE
Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs ¥, for information about working with catalogs.

¥ enable-globalresources

--enable-globalresources = true|false

Enables global resources & . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource & (and enables global resources).

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

78 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

* globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources)@.

* Common options
* error-format

--error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with 1ongxm1 generating more detail.

* error-limit
--error-limit = N | unlimited
Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

* info-limit
--info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

* help
--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

 |istfile

--listfile = true|false

If true, treats the command's TnputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

¥ |og-output
--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

+* network-timeout
--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

¥ recurse

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XML, DTD, XSD Validation Commands 79

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

¥ verbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

¥ \ersion

--version
Displays the version of RaptorXML Senver. If used with a command, place --version before the
command.

* warning-limit

--warning-limit = N | unlimited
Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

80 Command Line Interface (CLI) Well-formedness Check Commands

5.2 Well-formedness Check Commands

The well-formedness check commands can be used to check the well-formedness of XML documents and
DTDs. These commands are listed below and described in detail in the sub-sections of this section:

o wixml®D: Checks the well-formedness of XML documents
o widtd®: Checks the well-formedness of DTDs
) wfanym: Checks the well-formedness of an XML document or DTD. Type is detected automatically

5.2.1 wfxml

The wfxml command checks one or more XML documents for well-formedness according to the XML 1.0 or
XML 1.1 specification.

raptorxml wfxml [options] InputFile

e The InputFile argument is the XML document to check for well-formedness.

e To check multiple documents, either: (i) list the files to be checked on the CLI, with each file separated
from the next by a space; or (ii) list the files to be checked in a text file (. txt file), with one filename
per line, and supply this text file as the TnputFile argument together with the —1istfri1. @D option
set to true (see the Options list below).

Examples
Examples of the wfxml command:

e raptorxml wfxml c:\Test.xml
e raptorxml wfxml --verbose=true c:\Test.xml
e raptorxml wfxml --listfile=true c:\FilelList.txt

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

* Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "c:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) Well-formedness Check Commands 81

\".

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

+ Validation and processing
* dtd

--dtd = FILE
Specifies the external DTD document to use for validation. If a reference to an external DTD is
present in the XML document, then the CLI option overrides the external reference.

 listfile

--listfile = true]|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

* nhamespaces

--namespaces = true|false

Enables namespace-aware processing. This is useful for checking the XML instance for errors due to
incorrect namespaces. Default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder lewvels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

¥ script

--script = FILE
Executes the Python script in the submitted file after validation has been completed. Add the option
multiple times to specify more than one script.

¥ script-api-version

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

82 Command Line Interface (CLI) Well-formedness Check Commands

--api, --script-api-version = 1; 2; 2.1 to 2.4; 2.4.1; 2.5 to 2.8; 2.8.1 to 2.8.6;

2.9.0; 2.10.0; 2.11.0
Specifies the Python API version to be used for the script. The default value is the latest version,

currently 2.11.0. Instead of integer values such as 1 and 2, you can also use the corresponding
values 1.0 and 2.0. Simila& you can use the three-digit 2.5.0 for the two-digit 2. 5. Also see the

topic Python APl Versions

* script-output

--script-output = FILE
Writes the script's standard output to the file named in FILE.

¥ script-param
--script-param = KEY:VALUE
Additional user-specified parameters that can be accessed during the execution of Python scripts.
Add the option multiple times to specify more than one script parameter.

* streaming
--streaming = true|false
Enables streaming validation. Default is true. In streaming mode, data stored in memory is
minimized and processing is faster. The downside is that information that might be required
subsequently—for example, a data model of the XML instance document—will not be available. In
situations where this is significant, streaming mode will need to be turned off (by giving --streaming
a value of false). When using the --script option with the valxml-withxsd command, disable
streaming. Note that the --streaming option is ignored if -—-parallel-assessment is set to true.
Note: Boolean option values are set to true if the option is specified without a value.

¥ Catalogs and global resources

w catalog

--catalog = FILE
Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default

value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML

Catalogs, for information about working with catalogs.

w user-catalog

--user-catalog = FILE
Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the

section, XML Catalogs ¥, for information about working with catalogs.

¥ enable-globalresources

--enable-globalresources = true|false

Enables global resources €. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* globalresourceconfig [gc]

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) Well-formedness Check Commands 83

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource & (and enables global resources)@.

¥ globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources)@.

* Common options
* error-format

--error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with 1ongxml generating more detail.

* error-limit
-—error-limit = N | unlimited
Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

* info-limit
--info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

* help
--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

* listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfi1le option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

* |og-output

--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

* network-timeout
--network-timeout = VALUE

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

84 Command Line Interface (CLI) Well-formedness Check Commands

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder lewvels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

* \erbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* \verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

¥ \ersion
--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

* warning-limit
--warning-limit = N | unlimited
Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.2.2 wfdtd

The wfdtd command checks one or more DTD documents for well-formedness according to the XML 1.0 or
XML 1.1 specification.

raptorxml wfdtd [options] InputFile

e The InputFile argument is the DTD document to check for well-formedness.

e To check multiple documents, either: (i) list the files to be checked on the CLI, with each file separated
from the next by a space; or (ii) list the files to be checked in a text file (. txt file), with one filename
per line, and supply this text file as the TnputFile argument together with the —1istfri1. @D option
set to true (see the Options list below).

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) Well-formedness Check Commands 85

Examples
Examples of the wEdtd command:

e raptorxml wfdtd c:\Test.dtd
e raptorxml wfdtd --verbose=true c:\Test.dtd
e raptorxml wfdtd --listfile=true c:\FileList.txt

w Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

+ Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

+ Validation and processing
* listfile

--listfile = true|false

If true, treats the command's TnputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

¥ recurse

--recurse = true|false

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

86 Command Line Interface (CLI) Well-formedness Check Commands

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

* Catalogs and global resources

* catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs, for information about working with catalogs.

* user-catalog

--user-catalog = FILE
Specifies the absolute E?'th to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs “#, for information about working with catalogs.

¥ enable-globalresources

--enable-globalresources = true|false
Enables global resources & Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource & (and enables global resources).

w globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources).

* Common options
¥ error-format

--error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with 1ongxml generating more detail.

* error-limit

--error-limit = N | unlimited
Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) Well-formedness Check Commands 87

validation/transformation.

* info-limit
-—-info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

* help
--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

- listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies

only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

¥ |og-output
--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

* network-timeout

--network-timeout = VALUE
Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder lewvels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

* \erbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

88 Command Line Interface (CLI) Well-formedness Check Commands

¥ \ersion

--version

Displays the version of RaptorXML Senver. If used with a command, place --version before the
command.

* warning-limit
--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.2.3 wfany

The wfany command checks an XML or DTD document for well-formedness according to the respective
specification/s. The type of document is detected automatically.

raptorxml wfany [options] InputFile

e The InputFile argument is the document to check for well-formedness.
¢ Note that only one document can be submitted as the argument of the command. The type of the
submitted document is detected automatically.

Examples
Examples of the wEany command:

e raptorxml wfany c:\Test.xml
. raptorxml wfany --error-format=text c:\Test.xml

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorxML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

+ Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) Well-formedness Check Commands 89

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\u.

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (i)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

¥ Processing
* listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

w Catalogs and global resources
w catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs, for information about working with catalogs.

¥ user-catalog

--user-catalog = FILE
Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs ¥, for information about working with catalogs.

¥ enable-globalresources

--enable-globalresources = true|false

Enables global resources & Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

¥ globalresourceconfig [gc]
--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource & (and enables global resources)@.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

90 Command Line Interface (CLI) Well-formedness Check Commands

* globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources)@.

* Common options
* error-format

--error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with 1ongxm1 generating more detail.

* error-limit
--error-limit = N | unlimited
Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

* info-limit
--info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

* help
--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

 |istfile

--listfile = true|false

If true, treats the command's TnputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

¥ |og-output
--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

+* network-timeout
--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

¥ recurse

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) Well-formedness Check Commands 91

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

¥ verbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

¥ \ersion

--version
Displays the version of RaptorXML Senver. If used with a command, place --version before the
command.

* warning-limit

--warning-limit = N | unlimited
Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

92 Command Line Interface (CLI) XQuery Commands

5.3 XQuery Commands

The XQuery commands are:

) xgueu: for executing XQuery documents, optionally with an input document

o xguemupdate@: for executing an XQuery update, using an XQuery document and, optionally, the
input XML document to update

o valxguem@: for validating XQuery documents

o valxguemupdate: for validating an XQuery (update) document

5.3.1 xquery

The xquery command takes an XQuery file as its single argument and executes it with an optional input file to
produce an output file. The input and output files are specified as options.

raptorxml xquery [options] XQuery-File

e The argument xQuery-File is the path and name of the XQuery file to be executed.
e You can use XQuery 1.0 or 3.0. By default XQuery 3.0 is used.

Examples
Examples of the xquery command:

. raptorxml xquery --output=c:\Output.xml c:\TestQuery.xq

e raptorxml xquery --input=c:\Input.xml --output=c:\Output.xml --
param=company:"Altova" --p=date:"2006-01-01" c:\TestQuery.xq

. raptorxml xquery --input=c:\Input.xml --output=c:\Output.xml --param=source:"
doc ('c:\test\books.xml')//book "

. raptorxml xquery --output=c:\Output.xml --omit-xml-declaration=false --output-
encoding=ASCII c:\TestQuery.xq

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorxML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

+ Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XQuery Commands 93

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\u.

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (i)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

* XQuery Processing
* indent-characters

--indent-characters = VALUE
Specifies the character string to be used as indentation.

¥ input

--input = FILE
The URL of the XML file to be transformed.

* omit-xml-declaration

--omit-xml-declaration = true|false

Serialization option to specify whether the XML declaration should be omitted from the output or not.
If true, there will be no XML declaration in the output document. If false, an XML declaration will be
included. Default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

* output, xsltoutput

output = FILE, xsltoutput = FILE

The URL of the primary-output file. For example, in the case of multiple-file HTML output, the primary-
output file will be the location of the entry point HTML file. Additional output files, such as generated
image files, are reported as xslt-additional-output-files. If N0 -—output Or --xsltoutput
option is specified, output is written to standard output.

* output-encoding

--output-encoding = VALUE
The value of the encoding attribute in the output document. Valid values are names in the IANA
character set registry. Default value is uTF-8.

* output-indent

--output-indent = true|false

If true, the output will be indented according to its hierarchic structure. If false, there will be no
hierarchical indentation. Default is false.

Note: Boolean option values are set to true if the option is specified without a value.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

94 Command Line Interface (CLI) XQuery Commands

* output-method

--output-method = xml|html|xhtml|text
Specifies the output format. Default value is xm1.

* param [p]

--p | —-param = KEY:VALUE
=I XQuery

Specifies the value of an external parameter. An external parameter is declared in the XQuery
document with the declare variable declaration followed by a variable name and then the
external keyword followed by the trailing semi-colon. For example:

declare variable $foo as xs:string external;
The external keyword $foo becomes an external parameter, the value of which is passed at
runtime from an external source. The external parameter is given a value with the CLI command.
For example:

—-—-param=foo: 'MyName'
In the description statement above, Kty is the external parameter name, VALUE is the value of
the external parameter, given as an XPath expression. Parameter names used on the CLI must
be declared in the XQuery document. If multiple external parameters are passed values on the
CLlI, each must be given a separate —--param option. Double quotes must be used if the XPath
expression contains spaces.

=| XSLT

Specifies a global stylesheet parameter. key is the parameter name, varLue is an XPath
expression that provides the parameter value. Parameter names used on the CLI must be
declared in the stylesheet. If multiple parameters are used, the —-param switch must be used
before each parameter. Double quotes must be used around the XPath expression if it contains
a space—whether the space is in the XPath expression itself or in a string literal in the
expression. For example:

raptorxml xslt --input=c:\Test.xml --output=c:\Output.xml --
param=date://node[1]/@Rattl —--p=title:'stringwithoutspace' --
param=title:"'string with spaces'" --p=amount:456 c:\Test.xslt

w xpath-static-type-errors-as-warnings
--xpath-static-type-errors-as-warnings = true|false
If true, downgrades to warnings any type errors that are detected in the XPath static context.

Whereas an error would cause the execution to fail, a warning would enable processing to continue.
Default is false.

¥ Xxquery-version

--xquery-version = 1[(1.0|3|3.0]3.1
Specifies whether the XQuery processor should use XQuery 1.0 or XQuery 3.0. Default value is 3.1.

+ XML Schema and XML instance

¥ |oad-xml-with-psvi

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XQuery Commands 95

--load-xml-with-psvi = true|false
Enables validation of input XML files and generates post-schema-validation information for them.
Default is: true.

¥ schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation | load-
by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs: import elements, each of which has an optional namespace attribute
and an optional schemalLocation attribute: <import namespace="someNS"
schemaLocation="someURL">. The option specifies whether to load a schema document or just
license a namespace, and, if a schema document is to be loaded, which information should be used
to find it. Default: 1oad-preferring-schemalocation.

The behavior is as follows:

e load-by-schemalocation: The value of the schemaLocation attribute is used to locate the
schema, taking account of catalog mappings @ i the namespace attribute is present, the
namespace is imported (licensed).

® load-preferring-schemalocation: If the schemaLocation attribute is present, it is used,
taking account of catalog mappings. If N0 schemaLocation attribute is present, then the
value of the namespace attribute is used via a catalog mapping. This is the default value.

e load-by-namespace: The value of the namespace attribute is used to locate the schema via a

catalog mapping.
e load-combining-both: If either the namespace or schemalLocation attribute has a catalog

mapping, then the mapping is used. If both have catalog mappings, then the value of the
—--schema-mapping option (XML/XSD option) decides which mapping is used. If no catalog

mapping“# is present, the schemaLocation attribute is used.
e license-namespace-only: The namespace is imported. No schema document is imported.

* schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace | load-
combining-both | ignore

Specifies the behavior of the xsi:schemalocation and xsi:noNamespaceSchemaLocation
attributes: Whether to load a schema document, and, if yes, which information should be used to find
it. Default: 1oad-by-schemalocation.

e The load-by-schemalocation value uses the URL of the schema location € in the
xsi:schemalocation and xsi:noNamespaceSchemaLocation attributes in XML instance
documents. This is the default value.

e The load-by-namespace value takes the namespace part of xsi:schemaLocation and an
empty string in tcase of xsi :noNamespaceSchemalLocation and locates the schema via a

catalog mapping ¥,
o If load-combining-both is used and if either the namespace part or the URL part has a

catalog mapping ¥, then the catalog mapping is used. If both have catalog mappings,
then the value of the --schema-mapping option (XML/XSD option) decides which mapping is
used. If neither the namespace nor URL has a catalog mapping, the URL is used.

o [f the option's value is ignore, then the xsi:schemalocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

¥ schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

96

Command Line Interface (CLI) XQuery Commands

If schema location and namespace are both used to find a schema document, specifies which of
them should be preferred during catalog lookup. (If either the --schemalocation-hints or the --
schema-imports option has a value of 1oad-combining-both, and if the namespace and URL parts
involved both have catalog mappings , then the value of this option specifies which of the two
mappings to use (namespace mapping or URL mapping; the prefer-schemalocation value refers to
the URL mapping).) Default is prefer-schemalocation.

Xinclude

--xinclude = true]|false

Enables XML Inclusions (XInclude) support. Default value is false. When false, XInclude's include
elements are ignored.

Note: Boolean option values are set to true if the option is specified without a value.

xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use for the XML instance document: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each instance document loaded during processing references a DTD. If no DTD
exists, an error is reported.

xml-mode-for-schemas

--xml-mode-for-schemas = wf|id|valid

Specifies the XML processing mode to use for XML schema documents: wr=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each schema document loaded during processing references a DTD. If no DTD
exists, an error is reported.

xml-validation-error-as-warning

--xml-validation-error-as-warning = true|false
If true, treats validation errors as warnings. If errors are treated as warnings, additional processing,
such as XSLT transformations, will continue regardless of errors. Default is false.

xpath-static-type-errors-as-warnings
--xpath-static-type-errors-as-warnings = true|false
If true, downgrades to warnings any type errors that are detected in the XPath static context.

Whereas an error would cause the execution to fail, a warning would enable processing to continue.
Default is false.

xsd

--xsd = FILE
Specifies one or more XML Schema documents to use for the validation of XML instance documents.
Add the option multiple times to specify more than one schema document.

xsd-version

--xsd-version = 1.0|1.1|detect
Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This option can

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XQuery Commands 97

also be useful to find out in what ways a schema which is 1.0-compatible is not 1.1-compatible. The
detect option is an Altova-specific feature. It enables the version of the XML Schema document (1.0
or 1.1) to be detected by reading the value of the vc:minversion attribute of the document's
<xs:schema> element. If the value of the @vc:minversion attribute is 1.1, the schema is detected
as being version 1.1. For any other value, or if the @vc:minversion attribute is absent, the schema
is detected as being version 1.0.

* Catalogs and global resources
* catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs, for information about working with catalogs.

¥ user-catalog

--user-catalog = FILE
Specifies the absolute E?'th to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs “#, for information about working with catalogs.

¥ enable-globalresources

--enable-globalresources = true|false
Enables global resources €. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE
Specifies the active configuration of the global resource & (and enables global resources).

* globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources).

* Extensions

These options define the handling of special extension functions that are available in a number of
Enterprise-level Altova products (such as XMLSpy Enterprise Edition). Their use is described in the user
manuals of these products.

* chartext-disable

--chartext-disable = true|false
Disables chart extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* dotnetext-disable

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

98 Command Line Interface (CLI) XQuery Commands

--dotnetext-disable = true|false
Disables .NET extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* jyn-location
--jvm-location = FILE
FILE specifies the location of the Java Virtual Machine (DLL on Windows, shared object on Linux).

The JVM is needed if you use Java extension functions € in your XSLT/XQuery code. Default is
false.

¥ javaext-barcode-location

--javaext-barcode-location = FILE
Specifies the path to the folder that contains the barcode extension file
AltovaBarcodeExtension.jar. The path must be given in one of the following forms:

o A file URI, for example: --javaext-barcode-location="file:///C:/Program
Files/Altova/RaptorXMLServer2025/etc/jar/"

o A Windows path with backslashes escaped, for example: --javaext-barcode-location="C:
\\Program Files\\Altova\\RaptorXMLServer2025\\etc\\jar\\"

¥ javaext-disable

--javaext-disable = true|false
Disables Java extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* Common options
* error-format

--error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with 1ongxml generating more detail.

* error-limit

-—error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

* info-limit
--info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

¥ help

--help
Displays help text for the command. For example, valany --h. (Alternatively the help command

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XQuery Commands 99

can be used with an argument. For example: help valany.)

 listfile

--listfile = true]|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

¥ |og-output
--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

+* network-timeout

--network-timeout = VALUE
Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

+ \erbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

w verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

* \ersion

--version
Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

* warning-limit

--warning-limit = N | unlimited
Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

100 Command Line Interface (CLI) XQuery Commands

5.3.2 xqueryupdate

The xqueryupdate command takes an XQuery or XQuery Update file as its single argument and executes it. If
an optional input XML file is specified, then this XML file is processed with the XQuery Update commands
submitted in the xXguery (Update) -File. In this case, the updates can be applied directly to the input file or the
updated XML data can be written to an output XML file. The input and output files are specified as options. If the
XQuery (Update) -File contains only XQuery instructions and no XQuery Update instructions, then the
command carries out a straightforward XQuery execution.

raptorxml xqueryupdate [options] XQuery (Update)-File

e The argument xQuery (Update) -File is the path and name of the XQuery file (.xq) or XQuery Update
(.xqu) file to be executed. If the file contains XQuery Update instructions, then these are executed on
the input XML file. Otherwise, the command works as an XQuery execution command.

e You can specify whether XQuery Update 1.0 or 3.0 should be used. By default XQuery Update 3.0 is
used.

Examples
Examples of the xqueryupdate command:

e raptorxml xqueryupdate —-output=c:\Output.xml c:\TestQuery.xq (Writes the output of the
XQuery file to the output file.)

. raptorxml xqueryupdate --input=c:\Input.xml --output=c:\Output.xml --updated-
xml=asmainresult c:\UpdateFile.xqu (Updates Input.xml using the update instructions in
UpdateFile.xqu, and writes the update to output.xml.)

e raptorxml xqueryupdate --input=c:\Input.xml --output=c:\Output.xml --updated-
xml=writeback c:\UpdateFile.xq (Updates Input.xml using the update instructions in
UpdateFile.xq. The file output.xml is not created.)

. raptorxml xqueryupdate --input=c:\Input.xml --output=c:\Output.xml --updated-
xml=discard c:\TestQuery.xqu (Updates are discarded. The input file is not modified. The file
output.xml will be created, but will not contain any updated XML.)

L] raptorxml xqueryupdate --input=c:\Input.xml --output=c:\Output.xml c:\TestQuery.xqu
(Updates are discarded as in the previous example. This is because the default value of the --
updated-xml option is discard.)

¥ Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorxmMr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XQuery Commands 101

* Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

* XQuery Update Processing
¥ indent-characters

--indent-characters = VALUE
Specifies the character string to be used as indentation.

* input

--input = FILE
The URL of the XML file to be transformed.

* omit-xml-declaration

--omit-xml-declaration = true|false

Serialization option to specify whether the XML declaration should be omitted from the output or not.
If true, there will be no XML declaration in the output document. If false, an XML declaration will be
included. Default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

* output, xsltoutput

output = FILE, xsltoutput = FILE

The URL of the primary-output file. For example, in the case of multiple-file HTML output, the primary-
output file will be the location of the entry point HTML file. Additional output files, such as generated
image files, are reported as xslt-additional-output-files. If N0 --output Or --xsltoutput
option is specified, output is written to standard output.

* output-encoding

--output-encoding = VALUE
The value of the encoding attribute in the output document. Valid values are names in the IANA

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

102 Command Line Interface (CLI) XQuery Commands

character set registry. Default value is UTF-8.

* output-indent

--output-indent = true|false

If true, the output will be indented according to its hierarchic structure. If false, there will be no
hierarchical indentation. Default is false.

Note: Boolean option values are set to true if the option is specified without a value.

* output-method

--output-method = xml |html|xhtml |text
Specifies the output format. Default value is xm1.

* param [p]

--p | —--param = KEY:VALUE
=| XQuery

Specifies the value of an external parameter. An external parameter is declared in the XQuery
document with the declare variable declaration followed by a variable name and then the
external keyword followed by the trailing semi-colon. For example:

declare variable $foo as xs:string external;
The external keyword sfoo becomes an external parameter, the value of which is passed at
runtime from an external source. The external parameter is given a value with the CLI command.
For example:

—--param=foo: 'MyName'
In the description statement abowe, key is the external parameter name, VALUE is the value of
the external parameter, given as an XPath expression. Parameter names used on the CLI must
be declared in the XQuery document. If multiple external parameters are passed values on the
CLI, each must be given a separate --param option. Double quotes must be used if the XPath
expression contains spaces.

=l XSLT

Specifies a global stylesheet parameter. key is the parameter name, VALUE is an XPath
expression that provides the parameter value. Parameter names used on the CLI must be
declared in the stylesheet. If multiple parameters are used, the --param switch must be used
before each parameter. Double quotes must be used around the XPath expression if it contains
a space—whether the space is in the XPath expression itself or in a string literal in the
expression. For example:

raptorxml xslt --input=c:\Test.xml --output=c:\Output.xml --
param=date://node[l]/@attl --p=title:'stringwithoutspace' --
param=title:"'string with spaces'" --p=amount:456 c:\Test.xslt

¥ Xxpath-static-type-errors-as-warnings

--xpath-static-type-errors-as-warnings = true|false

If true, downgrades to warnings any type errors that are detected in the XPath static context.
Whereas an error would cause the execution to fail, a warning would enable processing to continue.
Default is false.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XQuery Commands 103

¥ Xxquery-update-version
-—-xquery-update-version = 1[(1.0[3[3.0]|
Specifies whether the XQuery processor should use XQuery Update Facility 1.0 or XQuery Update
Facility 3.0. Default value is 3.

¥ keep-formatting
--keep-formatting = true|false
Keeps the formatting of the target document to the maximum extent that this is possible. Default is:

true.

* updated-xml

--updated-xml = discard|writeback|asmainresult

Specifies how the updated XML file should be handled.

e discard: The update is discarded and not written to file. Neither the input file nor the output
file will be updated. Note that this is the default.

e writeback: Writes the update back to the input XML file that is specified with the —--input
option.

e asmainresult: Writes the update to the output XML file that is specified with the --output
option. If the --output option is not specified, then the update is written to the standard
output. In both cases, the input XML file will not be modified.

Default is discard

* XML Schema and XML instance
* |oad-xml-with-psvi
--load-xml-with-psvi = true|false
Enables validation of input XML files and generates post-schema-validation information for them.
Default is: true.

* schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation | load-
by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs: import elements, each of which has an optional namespace attribute
and an optional schemal.ocation attribute: <import namespace="someNS"
schemalLocation="someURL">. The option specifies whether to load a schema document or just
license a namespace, and, if a schema document is to be loaded, which information should be used
to find it. Default: 1oad-preferring-schemalocation.

The behavior is as follows:

e load-by-schemalocation: The value of the schemalLocation attribute is used to locate the
schema, taking account of catalog mappings. If the namespace attribute is present, the
namespace is imported (licensed).

® load-preferring-schemalocation: If the schemaLocation attribute is present, it is used,
taking account of catalog mappings. If N0 schemaLocation attribute is present, then the
value of the namespace attribute is used via a catalog mapping. This is the default value.

e load-by-namespace: The value of the namespace attribute is used to locate the schema via a

catalog mapping .

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

104 Command Line Interface (CLI) XQuery Commands

® load-combining-both: If either the namespace or schemalocation attribute has a catalog
mapping, then the mapping is used. If both have catalog mappings, then the value of the
—--schema-mapping option (XML/XSD option) decides which mapping is used. If no catalog
mapping is present, the schemalLocation attribute is used.

® license-namespace-only: The namespace is imported. No schema document is imported.

* schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace | load-
combining-both | ignore

Specifies the behavior of the xsi:schemalocation and xsi:noNamespaceSchemaLocation
attributes: Whether to load a schema document, and, if yes, which information should be used to find
it. Default: 1oad-by-schemalocation.

e The load-by-schemalocation value uses the URL of the schema location®? in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML instance
documents. This is the default value.

e The load-by-namespace Vvalue takes the namespace part of xsi:schemaLocation and an
empty string in the case of xsi :noNamespaceSchemaLocation and locates the schema via a
catalog mapping.

e If load-combining-both is used and if either the namespace part or the URL part has a
catalog mapping“#, then the catalog mapping is used. If both have catalog mappings,
then the value of the --schema-mapping option (XML/XSD option@) decides which mapping is
used. If neither the namespace nor URL has a catalog mapping, the URL is used.

o If the option's value is ignore, then the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

¥ schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

If schema location and namespace are both used to find a schema document, specifies which of
them should be preferred during catalog lookup. (If either the --schemalocation-hints or the --
schema-imports option has a value of 1oad-combining-both, and if the namespace and URL parts
involved both have catalog mappings , then the value of this option specifies which of the two
mappings to use (namespace mapping or URL mapping; the prefer-schemalocation value refers to
the URL mapping).) Default is prefer-schemalocation.

* Xxinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false, XInclude's include
elements are ignored.

Note: Boolean option values are set to true if the option is specified without a value.

* xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use for the XML instance document: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each instance document loaded during processing references a DTD. If no DTD
exists, an error is reported.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XQuery Commands 105

* xml-mode-for-schemas

--xml-mode-for-schemas = wf|id|valid

Specifies the XML processing mode to use for XML schema documents: wr=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each schema document loaded during processing references a DTD. If no DTD
exists, an error is reported.

* xml-validation-error-as-warning

--xml-validation-error-as-warning = true|false
If true, treats validation errors as warnings. If errors are treated as warnings, additional processing,
such as XSLT transformations, will continue regardless of errors. Default is false.

* xsd

--xsd = FILE
Specifies one or more XML Schema documents to use for the validation of XML instance documents.
Add the option multiple times to specify more than one schema document.

* xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This option can
also be useful to find out in what ways a schema which is 1.0-compatible is not 1.1-compatible. The
detect option is an Altova-specific feature. It enables the version of the XML Schema document (1.0
or 1.1) to be detected by reading the value of the vc:minversion attribute of the document's
<xs:schema> element. If the value of the evc:minversion attribute is 1.1, the schema is detected
as being version 1.1. For any other value, or if the @vc:minversion attribute is absent, the schema
is detected as being version 1.0.

¥ Catalogs and global resources
w catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs, for information about working with catalogs.

w user-catalog

--user-catalog = FILE
Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs ¥, for information about working with catalogs.

¥ enable-globalresources

--enable-globalresources = true|false
Enables global resources €. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

106 Command Line Interface (CLI) XQuery Commands

¥ globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE
Specifies the active configuration of the global resource & (and enables global resources).

w globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources)@.

+ Extensions

These options define the handling of special extension functions that are available in a number of
Enterprise-level Altova products (such as XMLSpy Enterprise Edition). Their use is described in the user
manuals of these products.

* chartext-disable

--chartext-disable = true|false
Disables chart extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

+ dotnetext-disable

--dotnetext-disable = true|false
Disables .NET extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* jvym-location
--jvm-location = FILE
FILE specifies the location of the Java Virtual Machine (DLL on Windows, shared object on Linux).

The JVM is needed if you use Java extension functions in your XSLT/XQuery code. Default is
false.

¥ javaext-barcode-location

--javaext-barcode-location = FILE
Specifies the path to the folder that contains the barcode extension file
AltovaBarcodeExtension.jar. The path must be given in one of the following forms:

¢ A file URI, for example: --javaext-barcode-location="file:///C:/Program
Files/Altova/RaptorXMLServer2025/etc/jar/"

e A Windows path with backslashes escaped, for example: --javaext-barcode-location="C:
\\Program Files\\Altova\\RaptorXMLServer2025\\etc\\jar\\"

* javaext-disable

--javaext-disable = true|false
Disables Java extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* Common options

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XQuery Commands 107

-

error-format

--error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with 1ongxml generating more detail.

error-limit

-—error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help
Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

* |og-output

--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

* network-timeout

--network-timeout = VALUE
Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" Will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and 2 may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

108 Command Line Interface (CLI) XQuery Commands

* verbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

¥ \ersion

--version
Displays the version of RaptorXML Senver. If used with a command, place --version before the
command.

* warning-limit
--warning-limit = N | unlimited
Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.3.3 valxquery
The valxquery command takes an XQuery file as its single argument and validates it.
raptorxml valxquery [options] XQuery-File

e The xXguery-File argument is the path and name of the XQuery file to be validated.

Examples
Examples of the valxquery command:

. raptorxml valxquery c:\Test.xquery
e raptorxml valxquery --xquery-version=1 c:\Test.xquery

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XQuery Commands 109

* Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "c:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\ll.

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

* XQuery processing
* omit-xml-declaration

--omit-xml-declaration = true|false

Serialization option to specify whether the XML declaration should be omitted from the output or not.
If true, there will be no XML declaration in the output document. If false, an XML declaration will be
included. Default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

¥ Xquery-version

--xquery-version = 1[1.0|3|3.0]3.1
Specifies whether the XQuery processor should use XQuery 1.0 or XQuery 3.0. Default value is 3.1.

* XML Schema and XML instance
* |load-xml-with-psvi
--load-xml-with-psvi = true|false

Enables validation of input XML files and generates post-schema-validation information for them.
Default is: true.

¥ schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation | load-
by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs: import elements, each of which has an optional namespace attribute
and an optional schemalocation attribute: <import namespace="someNS"
schemalocation="someURL">. The option specifies whether to load a schema document or just

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

110 Command Line Interface (CLI) XQuery Commands

license a namespace, and, if a schema document is to be loaded, which information should be used
to find it. Default: 1oad-preferring-schemalocation.
The behavior is as follows:

® load-by-schemalocation: The value of the schemalocation attribute is used to locate the
schema, taking account of catalog mappings @ ifthe namespace attribute is present, the
namespace is imported (licensed).

® load-preferring-schemalocation: If the schemalocation attribute is present, it is used,
taking account of catalog mappings. If N0 schemalocation attribute is present, then the
value of the namespace attribute is used via a Mgmppi_ng. This is the default value.

® load-by-namespace: The value of the namespace attribute is used to locate the schema via a
catalog mapping @@,

® load-combining-both: If either the namespace or schemalocation attribute has a catalog
mapping, then the mapping is used. If both have catalog mappings, then the value of the
—--schema-mapping option (XML/XSD option) decides which mapping is used. If no catalog
mapping is present, the schemalLocation attribute is used.

® license-namespace-only: The namespace is imported. No schema document is imported.

* schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace | load-
combining-both | ignore

Specifies the behavior of the xsi:schemalocation and xsi:noNamespaceSchemaLocation
attributes: Whether to load a schema document, and, if yes, which information should be used to find
it. Default: 1oad-by-schemalocation.

e The load-by-schemalocation value uses the URL of the schema location®® in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML instance
documents. This is the default value.

e The load-by-namespace Vvalue takes the namespace part of xsi:schemaLocation and an
empty string in the case of xsi :noNamespaceSchemaLocation and locates the schema via a

catalog mapping.
e If load-combining-both is used and if either the namespace part or the URL part has a

catalog mapping“#, then the catalog mapping is used. If both have catalog mappings,
then the value of the --schema-mapping option (XML/XSD option) decides which mapping is
used. If neither the namespace nor URL has a catalog mapping, the URL is used.

o If the option's value is ignore, then the xsi:schemalLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

¥ schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

If schema location and namespace are both used to find a schema document, specifies which of
them should be preferred during catalog lookup. (If either the --schemalocation-hints or the --
schema-imports option has a value of 1oad-combining-both, and if the namespace and URL parts
involved both have catalog mappings , then the value of this option specifies which of the two
mappings to use (namespace mapping or URL mapping; the prefer-schemalocation value refers to
the URL mapping).) Default is prefer-schemalocation.

* Xxinclude

--xinclude = true|false

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XQuery Commands 111

Enables XML Inclusions (XInclude) support. Default value is false. When false, XInclude's include
elements are ignored.
Note: Boolean option values are set to true if the option is specified without a value.

* xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use for the XML instance document: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each instance document loaded during processing references a DTD. If no DTD
exists, an error is reported.

+* xml-mode-for-schemas

--xml-mode-for-schemas = wf|id|valid

Specifies the XML processing mode to use for XML schema documents: wr=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wt. Note that a value of
valid requires that each schema document loaded during processing references a DTD. If no DTD
exists, an error is reported.

* xpath-static-type-errors-as-warnings
--xpath-static-type-errors-as-warnings = true|false
If true, downgrades to warnings any type errors that are detected in the XPath static context.

Whereas an error would cause the execution to fail, a warning would enable processing to continue.
Default is false.

* xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This option can
also be useful to find out in what ways a schema which is 1.0-compatible is not 1.1-compatible. The
detect option is an Altova-specific feature. It enables the version of the XML Schema document (1.0
or 1.1) to be detected by reading the value of the vc:minversion attribute of the document's
<xs:schema> element. If the value of the evc:minversion attribute is 1.1, the schema is detected
as being version 1.1. For any other value, or if the @vc:minversion attribute is absent, the schema
is detected as being version 1.0.

* Catalogs and global resources
w catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorxMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs, for information about working with catalogs.

¥ user-catalog

--user-catalog = FILE
Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

112 Command Line Interface (CLI) XQuery Commands

section, XML Catalogs , for information about working with catalogs.

¥ enable-globalresources

--enable-globalresources = true|false
Enables global resources & Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

¥ globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE
Specifies the active configuration of the global resource & (and enables global resources).

* globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources).

+ Extensions

These options define the handling of special extension functions that are available in a number of
Enterprise-level Altova products (such as XMLSpy Enterprise Edition). Their use is described in the user
manuals of these products.

¥ chartext-disable

--chartext-disable = true|false
Disables chart extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

+ dotnetext-disable

--dotnetext-disable = true|false
Disables .NET extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* jym-location
--jvm-location = FILE

FILE specifies the location of the Java Virtual Machine (DLL on Windows, shared object on Linux).

The JVM is needed if you use Java extension functions in your XSLT/XQuery code. Default is
false.

¥ javaext-barcode-location

--javaext-barcode-location = FILE
Specifies the path to the folder that contains the barcode extension file
AltovaBarcodeExtension.jar. The path must be given in one of the following forms:

o A file URI, for example: --javaext-barcode-location="file:///C:/Program
Files/Altova/RaptorXMLServer2025/etc/jar/"

o A Windows path with backslashes escaped, for example: —--javaext-barcode-location="C:
\\Program Files\\Altova\\RaptorxXMLServer2025\\etc\\jar\\"

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XQuery Commands 113

* javaext-disable

--javaext-disable = true|false
Disables Java extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* Common options
* error-format

--error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with 1ongxm1 generating more detail.

* error-limit
--error-limit = N | unlimited
Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

* info-limit
--info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

* help
--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

 |istfile

--listfile = true|false

If true, treats the command's TnputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

¥ |og-output
--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

* network-timeout

--network-timeout = VALUE
Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

114 Command Line Interface (CLI) XQuery Commands

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

* verbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

¥ \ersion

--version
Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

* warning-limit
--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.3.4 valxqueryupdate
The valxqueryupdate command takes an XQuery file as its single argument and validates it.
raptorxml valxqueryupdate [options] XQuery-File

e The Xguery-File argument is the path and name of the XQuery file to be validated.
Examples
Examples of the valxqueryupdate command:

. raptorxml valxqueryupdate c:\Test.xqu
. raptorxml valxqueryupdate --xquery-update-version=1 c:\Test.xqu

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XQuery Commands 115

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorxML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

+ Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

* XQuery processing
 omit-xml-declaration

--omit-xml-declaration = true|false

Serialization option to specify whether the XML declaration should be omitted from the output or not.
If true, there will be no XML declaration in the output document. If false, an XML declaration will be
included. Default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

¥ Xxquery-update-version
--xquery-update-version = 1|1.0[3[3.0]|
Specifies whether the XQuery processor should use XQuery Update Facility 1.0 or XQuery Update
Facility 3.0. Default value is 3.

* XML Schema and XML instance
* |oad-xml-with-psvi

--load-xml-with-psvi = true|false
Enables validation of input XML files and generates post-schema-validation information for them.
Default is: true.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

116 Command Line Interface (CLI) XQuery Commands

¥ schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation | load-
by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs: import elements, each of which has an optional namespace attribute
and an optional schemalLocation attribute: <import namespace="someNS"
schemaLocation="someURL">. The option specifies whether to load a schema document or just
license a namespace, and, if a schema document is to be loaded, which information should be used
to find it. Default: 1oad-preferring-schemalocation.

The behavior is as follows:

e load-by-schemalocation: The value of the schemaLocation attribute is used to locate the
schema, taking account of catalog mappings @ ifthe namespace attribute is present, the
namespace is imported (licensed).

® load-preferring-schemalocation: If the schemaLocation attribute is present, it is used,
taking account of catalog mappings. If N0 schemaLocation attribute is present, then the
value of the namespace attribute is used via a catalog mapping. This is the default value.

e load-by-namespace: The value of the namespace attribute is used to locate the schema via a

catalog mapping.
® load-combining-both: If either the namespace or schemalLocation attribute has a catalog

mapping, then the mapping is used. If both have catalog mappings, then the value of the
—--schema-mapping option (XML/XSD option) decides which mapping is used. If no catalog

mapping “# is present, the schemaLocation attribute is used.
e license-namespace-only: The namespace is imported. No schema document is imported.

* schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace | load-
combining-both | ignore

Specifies the behavior of the xsi:schemalocation and xsi:noNamespaceSchemaLocation
attributes: Whether to load a schema document, and, if yes, which information should be used to find
it. Default: 1oad-by-schemalocation.

e The load-by-schemalocation value uses the URL of the schema location € in the
xsi:schemalocation and xsi:noNamespaceSchemaLocation attributes in XML instance
documents. This is the default value.

e The load-by-namespace value takes the namespace part of xsi:schemaLocation and an
empty string in tcase of xsi :noNamespaceSchemalLocation and locates the schema via a

catalog mapping ¥,
o If load-combining-both is used and if either the namespace part or the URL part has a

catalog mapping ¥, then the catalog mapping is used. If both have catalog mappings,
then the value of the --schema-mapping option (XML/XSD option@) decides which mapping is
used. If neither the namespace nor URL has a catalog mapping, the URL is used.

o [f the option's value is ignore, then the xsi:schemalocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

¥ schema-mapping
--schema-mapping = prefer-schemalocation | prefer-namespace

If schema location and namespace are both used to find a schema document, specifies which of
them should be preferred during catalog lookup. (If either the --schemalocation-hints or the --

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XQuery Commands 117

schema-imports option has a value of 1oad-combining-both, and if the namespace and URL parts
involved both have catalog mappings , then the value of this option specifies which of the two
mappings to use (namespace mapping or URL mapping; the prefer-schemalocation value refers to
the URL mapping).) Default is prefer-schemalocation.

* Xxinclude

--xinclude = true]|false

Enables XML Inclusions (XInclude) support. Default value is false. When false, XInclude's include
elements are ignored.

Note: Boolean option values are set to true if the option is specified without a value.

* xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use for the XML instance document: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wt. Note that a value of
valid requires that each instance document loaded during processing references a DTD. If no DTD
exists, an error is reported.

* xml-mode-for-schemas

--xml-mode-for-schemas = wf|id|valid

Specifies the XML processing mode to use for XML schema documents: wr=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each schema document loaded during processing references a DTD. If no DTD
exists, an error is reported.

w xpath-static-type-errors-as-warnings
--xpath-static-type-errors-as-warnings = true|false
If true, downgrades to warnings any type errors that are detected in the XPath static context.
Whereas an error would cause the execution to fail, a warning would enable processing to continue.
Default is false.

* xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This option can
also be useful to find out in what ways a schema which is 1.0-compatible is not 1.1-compatible. The
detect option is an Altova-specific feature. It enables the version of the XML Schema document (1.0
or 1.1) to be detected by reading the value of the vc:minversion attribute of the document's
<xs:schema> element. If the value of the @vc:minversion attribute is 1.1, the schema is detected
as being version 1.1. For any other value, or if the @vc:minversion attribute is absent, the schema
is detected as being version 1.0.

* Catalogs and global resources
* catalog

--catalog = FILE
Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

118 Command Line Interface (CLI) XQuery Commands

value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs, for information about working with catalogs.

* user-catalog

--user-catalog = FILE
Specifies the absolute E?'th to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs “#, for information about working with catalogs.

1

enable-globalresources

--enable-globalresources = true|false
Enables global resources & . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE
Specifies the active configuration of the global resource & (and enables global resources).

w globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources).

+ Extensions

These options define the handling of special extension functions that are available in a number of
Enterprise-level Altova products (such as XMLSpy Enterprise Edition). Their use is described in the user
manuals of these products.

* chartext-disable

--chartext-disable = true|false
Disables chart extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

+ dotnetext-disable

--dotnetext-disable = true|false
Disables .NET extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* jvym-location
--jvm-location = FILE
FILE specifies the location of the Java Virtual Machine (DLL on Windows, shared object on Linux).

The JVM is needed if you use Java extension functions in your XSLT/XQuery code. Default is
false.

¥ javaext-barcode-location

--javaext-barcode-location = FILE

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XQuery Commands 119

Specifies the path to the folder that contains the barcode extension file
AltovaBarcodeExtension.jar. The path must be given in one of the following forms:

o A file URI, for example: --javaext-barcode-location="file:///C:/Program
Files/Altova/RaptorXMLServer2025/etc/jar/"

o A Windows path with backslashes escaped, for example: --javaext-barcode-location="C:
\\Program Files\\Altova\\RaptorxXMLServer2025\\etc\\jar\\"

* javaext-disable

--javaext-disable = true|false
Disables Java extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* Common options
* error-format

--error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with 1ongxml generating more detail.

* error-limit

-—error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

* info-limit
--info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

* help

--help
Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

* listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfi1le option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

* |og-output
--log-output = FILE

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

120 Command Line Interface (CLI) XQuery Commands

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

* network-timeout

--network-timeout = VALUE
Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and 2 may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

+ \erbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

w \verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

¥ \ersion

--version
Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

* warning-limit

--warning-limit = N | unlimited
Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XSLT Commands 121

54 XSLT Commands

The XSLT commands are:

) <: for transforming XML documents with an XSLT document
o valxsit®: for validating XSLT documents

54.1 xslt

The xs1t command takes an XSLT file as its single argument and uses it to transform an input XML file to
produce an output file. The input and output files are specified as options.

raptorxml xslt [options] XSLT-File

e The xsLT-File argument is the path and name of the XSLT file to use for the transformation.

e Aninput XML file (——input@) or a named template entry point (——template—entry—point) is
required.

e To transform JSON data, load the JSON data via the json-doc ($path) function of XPath 3.1, and use
the xs1t command's --initial-match-selection option. See the last item in the examples given
below.

e Ifno ——outgut@ option is specified, output is written to standard output. You can use XSLT 1.0, 2.0,
or 3.0. By default XSLT 3.0 is used.

Examples
Examples of the xs1t command:

e raptorxml xslt --input=c:\Test.xml --output=c:\Output.xml c:\Test.xslt
e raptorxml xslt --template-entry-point=StartTemplate —--output=c:\Output.xml c:

\Test.xslt

e raptorxml xslt —--input=c:\Test.xml —--output=c:\Output.xml --
param=date://node[1l]/Q@attl --p=title:'stringwithoutspace' --param=title:"'string
with spaces'" --p=amount:456 c:\Test.xslt

e raptorxml xslt --initial-match-selection=json-
doc ('MyData.json',map{'liberal':true()}) --output=c:\MyData.xml c:\Test.xslt

e raptorxml xslt --initial-match-selection="json-doc('MyData.json',
map{'liberal':true()})" --output=c:\MyData.xml c:\Test.xslt (Ifthe json-doc argument

string contains spaces, then enclose the entire json-doc value in quotes.)

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorxmMr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://www.w3.org/TR/xpath-functions-31/#func-json-doc

122 Command Line Interface (CLI) XSLT Commands

* Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

* XSLT processing
* indent-characters

--indent-characters = VALUE
Specifies the character string to be used as indentation.

* function-param

--function-param = VALUE
Specifies the functions that will be passed to the initial function. To specify more than one function,
use the option multiple times. Note, howewer, that order is important.

¥ global-context-item

--global-context-item = VALUE
Specifies the context item that is to be used to evaluate global variables.

* initial-function

--initial-function = VALUE
The name of a function that is to be executed as the entry point of the transformation.

* jnitial-match-selection

--initial-match-selection = VALUE
Specifies the value (sequence) of the initial match selection.

* initial-mode, template-mode

--initial-mode, --template-mode = VALUE
Specifies the template mode to use for the transformation.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command L

ine Interface (CLI) XSLT Commands

123

* initial-template, template-entry-point

--initial-template, --template-entry-point = VALUE
Gives the name of a named template in the XSLT stylesheet that is the entry point of the
transformation.

* input

--input = FILE

The

URL of the XML file to be transformed.

* output, xsltoutput

output = FILE, xsltoutput = FILE
The URL of the primary-output file. For example, in the case of multiple-file HTML output, the primary-
output file will be the location of the entry point HTML file. Additional output files, such as generated
image files, are reported as xslt-additional-output-files. If N0 -—output Or --xsltoutput
option is specified, output is written to standard output.

 param [p]

--P

| --param = KEY:VALUE

=l XQuery

Specifies the value of an external parameter. An external parameter is declared in the XQuery
document with the declare variable declaration followed by a variable name and then the
external keyword followed by the trailing semi-colon. For example:

declare variable $foo as xs:string external;
The external keyword sfoo becomes an external parameter, the value of which is passed at

runtime from an external source. The external parameter is given a value with the CLI command.

For example:

—--param=foo: 'MyName'
In the description statement above, ey is the external parameter name, varLuE is the value of
the external parameter, given as an XPath expression. Parameter names used on the CLI must
be declared in the XQuery document. If multiple external parameters are passed values on the
CLI, each must be given a separate --param option. Double quotes must be used if the XPath
expression contains spaces.

=l XSLT

Specifies a global stylesheet parameter. key is the parameter name, VALUE is an XPath
expression that provides the parameter value. Parameter names used on the CLI must be
declared in the stylesheet. If multiple parameters are used, the --param switch must be used
before each parameter. Double quotes must be used around the XPath expression if it contains
a space—whether the space is in the XPath expression itself or in a string literal in the
expression. For example:

raptorxml xslt --input=c:\Test.xml --output=c:\Output.xml --
param=date://node[l]/@attl --p=title:'stringwithoutspace' --
param=title:"'string with spaces'" --p=amount:456 c:\Test.xslt

¥ streaming-serialization-enabled

--streaming-serialization-enabled = true|false

© 2019-2025 Altova GmbH

Altova RaptorXML Server 2025

124 Command Line Interface (CLI) XSLT Commands

Enables streaming serialization. Default value is true.
Note: Boolean option values are set to true if the option is specified without a value.

* template-param

--template-param = KEY:VALUE
Specifies parameters that will be passed to the initial template only (and not to any descending
template call). To specify multiple parameters, use the option once for each parameter.

* tunnel-param

-—-tunnel-param = KEY:VALUE
Specifies parameters that will be passed to the initial template and to descending template calls. To
specify multiple parameters, use the option once for each parameter.

* xpath-static-type-errors-as-warnings
--xpath-static-type-errors-as-warnings = true|false
If true, downgrades to warnings any type errors that are detected in the XPath static context.
Whereas an error would cause the execution to fail, a warning would enable processing to continue.
Default is false.

* xslt-version

--xslt-version = 1]/1.0(2|2.0]3]3.0(3.1
Specifies whether the XSLT processor should use XSLT 1.0, XSLT 2.0, or XSLT 3.0. Default value is
3.

* XML Schema and XML instance
* |load-xml-with-psvi
--load-xml-with-psvi = true|false
Enables validation of input XML files and generates post-schema-validation information for them.
Default is: true.

¥ schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation | load-
by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs: import elements, each of which has an optional namespace attribute
and an optional schemalocation attribute: <import namespace="someNS"
schemalocation="someURL">. The option specifies whether to load a schema document or just
license a namespace, and, if a schema document is to be loaded, which information should be used
to find it. Default: 1oad-preferring-schemalocation.

The behavior is as follows:

e load-by-schemalocation: The value of the schemalLocation attribute is used to locate the
schema, taking account ofwgpi_ngg. If the namespace attribute is present, the
namespace is imported (licensed).

e load-preferring-schemalocation: If the schemaLocation attribute is present, it is used,
taking account of catalog mappings €D if no schemaLocation attribute is present, then the

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XSLT Commands 125

value of the namespace attribute is used via a Mgmppi_ng. This is the default value.

® load-by-namespace: The value of the namespace attribute is used to locate the schema via a
catalog mapping @@,

® load-combining-both: If either the namespace or schemalocation attribute has a catalog
mapping, then the mapping is used. If both have catalog mappings, then the value of the
—--schema-mapping option XML/XSD option) decides which mapping is used. If no catalog
mapping is present, the schemaLocation attribute is used.

® license-namespace-only: The namespace is imported. No schema document is imported.

* schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace | load-
combining-both | ignore

Specifies the behavior of the xsi:schemalocation and xsi:noNamespaceSchemaLocation
attributes: Whether to load a schema document, and, if yes, which information should be used to find
it. Default: 1oad-by-schemalocation.

e The load-by-schemalocation value uses the URL of the schema location®? in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML instance
documents. This is the default value.

e The load-by-namespace Value takes the namespace part of xsi:schemaLocation and an
empty string in the case of xsi :noNamespaceSchemaLocation and locates the schema via a

catalog mapping.
e If load-combining-both is used and if either the namespace part or the URL part has a

catalog mapping“#, then the catalog mapping is used. If both have catalog mappings,
then the value of the --schema-mapping option (XML/XSD option@) decides which mapping is
used. If neither the namespace nor URL has a catalog mapping, the URL is used.

o If the option's value is ignore, then the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

¥ schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

If schema location and namespace are both used to find a schema document, specifies which of
them should be preferred during catalog lookup. (If either the --schemalocation-hints or the --
schema-imports option has a value of 1oad-combining-both, and if the namespace and URL parts
involved both have catalog mappings , then the value of this option specifies which of the two
mappings to use (namespace mapping or URL mapping; the prefer-schemalocation value refers to
the URL mapping).) Default is prefer-schemalocation.

* Xxinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false, XInclude's include
elements are ignored.

Note: Boolean option values are set to true if the option is specified without a value.

* xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use for the XML instance document: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each instance document loaded during processing references a DTD. If no DTD

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

126 Command Line Interface (CLI) XSLT Commands

exists, an error is reported.

* xml-mode-for-schemas

--xml-mode-for-schemas = wf|id|valid

Specifies the XML processing mode to use for XML schema documents: wr=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each schema document loaded during processing references a DTD. If no DTD
exists, an error is reported.

* xml-validation-error-as-warning

--xml-validation-error-as-warning = true|false
If true, treats validation errors as warnings. If errors are treated as warnings, additional processing,
such as XSLT transformations, will continue regardless of errors. Default is false.

* xsd

--xsd = FILE
Specifies one or more XML Schema documents to use for the validation of XML instance documents.
Add the option multiple times to specify more than one schema document.

* xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This option can
also be useful to find out in what ways a schema which is 1.0-compatible is not 1.1-compatible. The
detect option is an Altova-specific feature. It enables the version of the XML Schema document (1.0
or 1.1) to be detected by reading the value of the vc:minversion attribute of the document's
<xs:schema> element. If the value of the evc:minversion attribute is 1.1, the schema is detected
as being version 1.1. For any other value, or if the @vc:minversion attribute is absent, the schema
is detected as being version 1.0.

w Catalogs and global resources
* catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorxMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs, for information about working with catalogs.

¥ user-catalog

--user-catalog = FILE
Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

¥ enable-globalresources

--enable-globalresources = true|false

Enables global resources@. Default value is false.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XSLT Commands 127

Note: Boolean option values are set to true if the option is specified without a value.

* globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE
Specifies the active configuration of the global resource & (and enables global resources).

* globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources).

+ Extensions

These options define the handling of special extension functions that are available in a number of
Enterprise-level Altova products (such as XMLSpy Enterprise Edition). Their use is described in the user
manuals of these products.

* chartext-disable

--chartext-disable = true|false
Disables chart extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

+ dotnetext-disable

--dotnetext-disable = true|false
Disables .NET extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* jym-location
--jvm-location = FILE
FILE specifies the location of the Java Virtual Machine (DLL on Windows, shared object on Linux).

The JVM is needed if you use Java extension functions © in your XSLT/XQuery code. Default is
false.

¥ javaext-barcode-location

--javaext-barcode-location = FILE
Specifies the path to the folder that contains the barcode extension file
AltovaBarcodeExtension.jar. The path must be given in one of the following forms:

o A file URI, for example: --javaext-barcode-location="file:///C:/Program
Files/Altova/RaptorXMLServer2025/etc/jar/"

o A Windows path with backslashes escaped, for example: --javaext-barcode-location="C:
\\Program Files\\Altova\\RaptorXMLServer2025\\etc\\jar\\"

* javaext-disable

--javaext-disable = true|false
Disables Java extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

128 Command Line Interface (CLI) XSLT Commands

* Common options
* error-format

-—-error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with 1longxml generating more detail.

* error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or un1imited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

* info-limit
--info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

* help

--help
Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

- listfile

--listfile = true]|false

If true, treats the command's rnputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

¥ |og-output

--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

* network-timeout

--network-timeout = VALUE
Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder lewvels of the zip folder. References to

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XSLT Commands 129

ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* verbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

¥ \ersion

--version
Displays the version of RaptorXML Senver. If used with a command, place --version before the
command.

* warning-limit

--warning-limit = N | unlimited
Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

54.2 valxslt

The valxslt command takes an XSLT file as its single argument and validates it.
raptorxml valxslt [options] XSLT-File

e The xsLT-File argument is the path and name of the XSLT file to be validated.
e Validation can be according to the XSLT 1.0, 2.0, or 3.0 specification. By default XSLT 3.0 is the
specification used.

Examples
Examples of the valxs1t command:

e raptorxml valxslt c:\Test.xslt
e raptorxml valxslt --xslt-version=2 c:\Test.xslt

* Casing and slashes on the command line
RaptorXML (and RaptorXMLServer for administration commands) on Windows

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

130 Command Line Interface (CLI) XSLT Commands

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

* Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (i)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

w* XSLT processing
¥ initial-mode, template-mode

--initial-mode, --template-mode = VALUE
Specifies the template mode to use for the transformation.

* initial-template, template-entry-point

--initial-template, --template-entry-point = VALUE
Gives the name of a named template in the XSLT stylesheet that is the entry point of the
transformation.

* Xxslt-version

--xslt-version = 1/1.0(2(2.0(3(3.0]3.1
Specifies whether the XSLT processor should use XSLT 1.0, XSLT 2.0, or XSLT 3.0. Default value is
3.

* XML Schema and XML instance
* |oad-xml-with-psvi

--load-xml-with-psvi = true|false
Enables validation of input XML files and generates post-schema-validation information for them.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XSLT Commands 131

Default is: true.

¥ schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation | load-
by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs: import elements, each of which has an optional namespace attribute
and an optional schemalLocation attribute: <import namespace="someNS"
schemaLocation="someURL">. The option specifies whether to load a schema document or just
license a namespace, and, if a schema document is to be loaded, which information should be used
to find it. Default: 1oad-preferring-schemalocation.

The behavior is as follows:

e load-by-schemalocation: The value of the schemaLocation attribute is used to locate the
schema, taking account of catalog mappings @ ifthe namespace attribute is present, the
namespace is imported (licensed).

® load-preferring-schemalocation: If the schemaLocation attribute is present, it is used,
taking account of catalog mappings. If N0 schemaLocation attribute is present, then the
value of the namespace attribute is used via a catalog mapping. This is the default value.

e load-by-namespace: The value of the namespace attribute is used to locate the schema via a

catalog mapping.
® load-combining-both: If either the namespace or schemalLocation attribute has a catalog

m pping, then the mapping is used. If both have catalog mappings, then the value of the
—--schema-mapping option (XML/XSD option) decides which mapping is used. If no catalog
mapping “# is present, the schemaLocation attribute is used.

e license-namespace-only: The namespace is imported. No schema document is imported.

* schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace | load-
combining-both | ignore

Specifies the behavior of the xsi:schemalocation and xsi:noNamespaceSchemaLocation
attributes: Whether to load a schema document, and, if yes, which information should be used to find
it. Default: 1oad-by-schemalocation.

e The load-by-schemalocation value uses the URL of the schema location € in the
xsi:schemalocation and xsi:noNamespaceSchemaLocation attributes in XML instance
documents. This is the default value.

e The load-by-namespace value takes the namespace part of xsi:schemaLocation and an
empty string in the case of xsi:noNamespaceSchemalocation and locates the schema via a
catalog mapping.

o If load-combining-both is used and if either the namespace part or the URL part has a
catalog mapping “*, then the catalog mapping is used. If both have catalog mappings,
then the value of the --schema-mapping option (XML/XSD option) decides which mapping is
used. If neither the namespace nor URL has a catalog mapping, the URL is used.

o [f the option's value is ignore, then the xsi:schemalocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

¥ schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace
If schema location and namespace are both used to find a schema document, specifies which of

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

132 Command Line Interface (CLI) XSLT Commands

them should be preferred during catalog lookup. (If either the --schemalocation-hints or the --
schema-imports option has a value of 1oad-combining-both, and if the namespace and URL parts
involved both have catalog mappings , then the value of this option specifies which of the two
mappings to use (namespace mapping or URL mapping; the prefer-schemalocation value refers to
the URL mapping).) Default is prefer-schemalocation.

* Xxinclude

--xinclude = true]|false

Enables XML Inclusions (XInclude) support. Default value is false. When false, XInclude's include
elements are ignored.

Note: Boolean option values are set to true if the option is specified without a value.

* xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use for the XML instance document: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wt. Note that a value of
valid requires that each instance document loaded during processing references a DTD. If no DTD
exists, an error is reported.

* xml-mode-for-schemas

--xml-mode-for-schemas = wf|id|valid

Specifies the XML processing mode to use for XML schema documents: wr=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each schema document loaded during processing references a DTD. If no DTD
exists, an error is reported.

w xpath-static-type-errors-as-warnings

--xpath-static-type-errors-as-warnings = true|false

If true, downgrades to warnings any type errors that are detected in the XPath static context.
Whereas an error would cause the execution to fail, a warning would enable processing to continue.
Default is false.

* xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This option can
also be useful to find out in what ways a schema which is 1.0-compatible is not 1.1-compatible. The
detect option is an Altova-specific feature. It enables the version of the XML Schema document (1.0
or 1.1) to be detected by reading the value of the vc:minversion attribute of the document's
<xs:schema> element. If the value of the @vc:minversion attribute is 1.1, the schema is detected
as being version 1.1. For any other value, or if the @vc:minversion attribute is absent, the schema
is detected as being version 1.0.

* Catalogs and global resources
* catalog

--catalog = FILE

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XSLT Commands 133

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs, for information about working with catalogs.

* user-catalog

--user-catalog = FILE
Specifies the absolute E?'th to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs “#, for information about working with catalogs.

1

enable-globalresources

--enable-globalresources = true|false
Enables global resources & Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE
Specifies the active configuration of the global resource & (and enables global resources).

w globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources).

+ Extensions

These options define the handling of special extension functions that are available in a number of
Enterprise-level Altova products (such as XMLSpy Enterprise Edition). Their use is described in the user
manuals of these products.

* chartext-disable

--chartext-disable = true|false
Disables chart extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

+ dotnetext-disable

--dotnetext-disable = true|false
Disables .NET extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* jvym-location
--jvm-location = FILE
FILE specifies the location of the Java Virtual Machine (DLL on Windows, shared object on Linux).

The JVM is needed if you use Java extension functions in your XSLT/XQuery code. Default is
false.

¥ javaext-barcode-location

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

134 Command Line Interface (CLI) XSLT Commands

--javaext-barcode-location = FILE
Specifies the path to the folder that contains the barcode extension file
AltovaBarcodeExtension.jar. The path must be given in one of the following forms:

o A file URI, for example: --javaext-barcode-location="file:///C:/Program
Files/Altova/RaptorXMLServer2025/etc/jar/"

o A Windows path with backslashes escaped, for example: --javaext-barcode-location="C:
\\Program Files\\Altova\\RaptorxXMLServer2025\\etc\\jar\\"

* javaext-disable

--javaext-disable = true|false
Disables Java extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* Common options
* error-format

--error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with 1ongxml generating more detail.

* error-limit
-—error-limit = N | unlimited
Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

* info-limit
--info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

* help

--help
Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

* listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfi1le option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

* |og-output

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XSLT Commands 135

--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

* network-timeout

--network-timeout = VALUE
Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and 2 may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

+ \erbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

w \verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

¥ \ersion

--version
Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

* warning-limit

--warning-limit = N | unlimited
Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

136 Command Line Interface (CLI) JSON/Awo/YAML Commands

5.5 JSON/Avro/YAML Commands

The JSON commands can be used to check the validity and well-formedness of JSON schema and instance
documents. These commands are listed below and described in detail in the sub-sections of this section:

awroextractschema ®: Extracts the Awo schema from an Avro binary file

'|son2xmlm: Converts a JSON instance document to an XML instance document.
'|sonschema2xsd: Converts a JSON Schema document to an XML Schema document.
valawo ““Y: Validates the data in one or more Awro binaries against the respective Awo schema of each
binary

valawrojson : Validates one or more JSON data files against an Awo schema
valawroschema @: Validates an Awo schema against the Awo schema specification
valisonschema: Checks the validity of JSON schema documents

valjson“s¥: Checks the validity of JSON documents

valyaml: Checks the validity of YAML documents

wiison“*¥: Checks the well-formedness of JSON documents

Myaml: Checks the well-formedness of YAML documents

xmi2json ®: Converts an XML instance document to a JSON instance document.
xsd2jsonschema®®: Converts an XML Schema document to a JSON Schema document.

551 avroextractschema

An Awvro binary file contains an Awo data block preceded by the Awo schema that defines the structure of the
data block. The avroextractschema command extracts the Awo schema from the Awo binary and serializes
the Awro schema as JSON.

raptorxml avroextractschema [options] --avrooutput=AvroSchemaFile AvroBinaryFile

e The AvroBinaryFile argument specifies the Avro binary file from which the Awo schema is to be

extracted.
e The --avrooutput option specifies the location of the extracted Awo schema.

Example
Example of the avroextractschema command:

. raptorxml avroextractschema --avrooutput=c:\MyAvroSchema.avsc c:\MyAvroBinary.avro

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and

Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

w Backslashes, spaces, and special characters on Windows systems

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 137

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "c:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\"_

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

¥ Processing
w* output, avrooutput

--output = FILE, --avrooutput = FILE
Sets the location of the Awro output file.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

* Catalogs and global resources
* catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs, for information about working with catalogs.

* user-catalog

--user-catalog = FILE
Specifies the absolute E?'th to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs “#, for information about working with catalogs.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

138 Command Line Interface (CLI) JSON/Awo/YAML Commands

¥ enable-globalresources

--enable-globalresources = true|false
Enables global resources & . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

w globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE
Specifies the active configuration of the global resource & (and enables global resources)@.

* globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources).

* Common options
* error-format

--error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with 1ongxm1 generating more detail.

* error-limit

-—error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

* info-limit
--info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

* help

--help
Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

- listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

¥ |og-output

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 139

--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

* network-timeout

--network-timeout = VALUE
Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and 2 may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

+ \erbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

w \verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

¥ \ersion

--version
Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

* warning-limit
--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.5.2 json2xml

The json2xml command converts a JSON instance document to an XML document.

raptorxml json2xml [options] JSONFile

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

140 Command Line Interface (CLI) JSON/Awo/YAML Commands

e The JsonFile argument is the JSON file to convert.
e Use the --conversion-output option to specify the location of the generated XML file.

Example
Example of the json2xm1 command:

. raptorxml json2xml --conversion-output=c:\MyXMLData.xml c:\MyJSONData.json

¥ Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorxmMr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

* Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "Cc:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

* JSON to XML conversion options

These options define the handling of specific conversion-related details in conversions between XML and
JSON.
¥ array-element

--array-element = VALUE
Specifies the name of the element to be converted to an array item.

+ attributes

--attributes = true|false
If set to true, then conversion between XML attributes and JSSON @-prefixed properties occurs.
Otherwise, XML attributes and JSON @-properties will not be converted. The default is true.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 141

Note: Boolean option values are set to true if the option is specified without a value.

* comments

--comments = true|false

If set to true, then conversion between XML comments and JSON #-prefixed properties occurs.
Otherwise, XML attributes and JSON #-properties will not be converted. The default is true.
Note: Boolean option values are set to true if the option is specified without a value.

¥ conwersion-output, o

--o, --conversion-output = FILE
Sets the path and name of the file to which the result of the conversion is sent.

* create-array-container

--create-array-container = true|false

If set to true, creates a container element in the generated XML file for every JSON array in the
source JSON document. The default is false.

Note: Boolean option values are set to true if the option is specified without a value.

* encode-colons

--encode-colons = true|false

If set to true, colons in JSON property names are encoded in the generated XML document. The
default is true.

Note: Boolean option values are set to true if the option is specified without a value.

¥ json-type-hints
--json-type-hints = true|false
If set to true, adds attributes in the generated XML document for type-hints in the source JSON
document. The default is true.
Note: Boolean option values are set to true if the option is specified without a value.

- pi
--pi = truelfalse
If set to true, then conversion between XML processing instructions and JSON ?-prefixed properties
occurs. Otherwise, XML attributes and JSON ?-properties will not be converted. The default is true.
Note: Boolean option values are set to true if the option is specified without a value.

* pretty-print

--pp, —-pretty-print = true|false
If set to true, pretty-prints the generated output document. The default is false.
Note: Boolean option values are set to true if the option is specified without a value.

* text

--text = true|false
If set to true, then conversion between XML text content and JSON $-prefixed properties occurs.
Otherwise, XML attributes and JSON $-properties will not be converted. The default is true.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

142 Command Line Interface (CLI) JSON/Awo/YAML Commands

Note: Boolean option values are set to true if the option is specified without a value.

* Common options
* error-format

--error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with 1ongxm1 generating more detail.

* error-limit
--error-limit = N | unlimited
Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

* info-limit
--info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

* help
--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

 listfile

--listfile = true]|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

¥ |og-output
--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

+* network-timeout

--network-timeout = VALUE
Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

¥ recurse

--recurse = true|false
Used to select files within sub-directories, including in ZIP archives. If true, the command's

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 143

InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

* verbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

¥ \ersion

--version
Displays the version of RaptorXML Senver. If used with a command, place --version before the
command.

* warning-limit

--warning-limit = N | unlimited
Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

w Catalogs and global resources
* catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorxXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs, for information about working with catalogs.

¥ user-catalog

--user-catalog = FILE
Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs ¥, for information about working with catalogs.

¥ enable-globalresources

--enable-globalresources = true|false

Enables global resources & Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

¥ globalresourceconfig [gc]

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

144 Command Line Interface (CLI) JSON/Awo/YAML Commands

--gc | --globalresourceconfig = VALUE
Specifies the active configuration of the global resource & (and enables global resources)@.

¥ globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources)@.

5.5.3 jsonschema2xsd

The jsonschema2xsd command converts a JSON Schema document to an XML Schema document that
conforms with the rules of the W3C XSD 1.0 and 1.1 specifications.

raptorxml jsonschema2xsd [options] JSONSchemaFile

e The JUsoNSchemaFile argument is the JSON Schema file to conwert.
e Use the --schema-conversion-output option to specify the location of the generated XSD file.

Example
Example of the jsonschema2xsd command:

e raptorxml jsonschema2xsd --schema-conversion-output=c:\MyXMLSchema.xsd c:
\MyJSONSchema. json

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

* Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "c:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 145

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

* JSON validation options

These are options for validating the source JSON Schema document.

-

1

additional-schema

--additional-schema = FILE
Specifies URIs of an additional schema document. The additional schema will be loaded by the main
schema and can be referenced from the main schema by the additional schemas id or $id property.

disable-format-checks

--disable-format-checks = true|false
Disables the semantic validation imposed by the format attribute. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

jsonschema-format

--jsonschema-format = json|yaml

Specifies the format in which the JSON Schema is written: JSON or YAML. Default is §son.

jsonschema-version

--jsonschema-version = draft04|draft06|draft07[2019-09|2020-12|oas-3.1|latest]|

detect
Specifies which version of the JSON Schema specification draft version to use. Default is detect.

strict-integer-checks

--strict-integer-checks = true|false

Specifies whether the stricter integer checks of draft-04 should be used with later schemas—where
integer checks are looser. For example, 1.0 is not a valid integer in draft-04, but is a valid integer in
later drafts. This option has no effect for draft-04 schemas. The default value of the option is false.
Note: Boolean option values are set to true if the option is specified without a value.

* Conversion from JSON Schema to XSD

These are options to specify details of the JSON Schema to XSD conwersion.
* at-to-attributes

--at-to-attributes = true|false

If set to true, then properties prefixed with @ in the JSON Schema document are converted to
attributes in the generated XSD document. The default is true.

Note: Boolean option values are set to true if the option is specified without a value.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

146 Command Line Interface (CLI) JSON/Awo/YAML Commands

* consider-format

--consider-format = true|false

If set to true, datatypes in the source schema are converted, if possible, to the corresponding type
in the target schema. The default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

* dollar-to-text

--dollar-to-text = true|false

If set to true, then $-prefixed properties in the JSON Schema document are converted to text in the
generated XSD document. The default is true.

Note: Boolean option values are set to true if the option is specified without a value.

¥ ignore-comments

--ignore-comments = true|false
If set to true, ignores properties in the source JSON Schema named '#'. The default is true.
Note: Boolean option values are set to true if the option is specified without a value.

¥ ignore-pi-proprties
--ignore-pi-properties = true|false
If set to true, ignores properties in the source JSON Schema document that start with '2'. The
default is true.
Note: Boolean option values are set to true if the option is specified without a value.

¥ ignore-xmins-proprties

--ignore-xmlns-properties = true|false

If set to true, ignores properties in the source JSON Schema document that start with '@xmins"'.
The default is true.

Note: Boolean option values are set to true if the option is specified without a value.

¥ ignore-xsi-proprties
--ignore-xsi-properties = true|false
If set to true, ignores properties in the source JSON Schema document that start with 'exsi'. The
default is true.
Note: Boolean option values are set to true if the option is specified without a value.

* schema-conversion-output, o

--o, --schema-converson-output = FILE
Sets the path and name of the file to which the result of the conversion is sent.

* Common options
* error-format

-—-error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 147

* error-limit
--error-limit = N | unlimited
Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

* info-limit
--info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

* help

--help
Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

 |istfile

--listfile = true|false

If true, treats the command's TnputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

¥ |og-output
--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

* network-timeout

--network-timeout = VALUE
Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and 2 may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

+ \erbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

148 Command Line Interface (CLI) JSON/Awo/YAML Commands

Note: Boolean option values are set to true if the option is specified without a value.
* \verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

* \ersion

--version
Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

* warning-limit
--warning-limit = N | unlimited
Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

* Catalogs and global resources
w catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs, for information about working with catalogs.

w user-catalog

--user-catalog = FILE
Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs ¥, for information about working with catalogs.

1

enable-globalresources

--enable-globalresources = true|false
Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE
Specifies the active configuration of the global resource & (and enables global resources).

* globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources).

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 149

5.5.4 valavro (avro)

The valavro | avro command validates the data block in one or more Avro binary files against the respective
Awro schemas in each binary file.

raptorxml valavro | avro [options] AvroBinaryFile

e The AvroBinaryFile argument specifies one or more Awo binary files to validate. Specifically, the
data block in each Awvro binary file is validated against the Awo schema in that binary file.

e To validate multiple Awo binaries, either: (i) list the files to be validated on the CLI, with each file
separated from the next by a space; or (ii) list the files to be validated in a text file (. txt file), with one
filename per line, and supply this text file as the AvroBinaryFile argument together with the —-
1istfi1c @ option set to true (see the Options list below).

Examples
Examples of the valavro command:

e raptorxml valavro c:\MyAvroBinary.avro
e raptorxml valavro c:\MyAvroBinary0Ol.avro c:\MyAvroBinary02.avro
e raptorxml avro --listfile=true c:\MyFileList.txt

¥ Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorxMrL) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

* Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "c:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

150

Command Line Interface (CLI) JSON/Awo/YAML Commands

when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

* Processing

- listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

* Catalogs and global resources

* catalog

-

--catalog = FILE
Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorxXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs, for information about working with catalogs.

user-catalog

--user-catalog = FILE
Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs ¥, for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources & Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]
--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource & (and enables global resources)@.

globalresourcefile [gr]

Altova RaptorXML Server 2025

© 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 151

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources)@.

* Common options
* error-format

--error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with 1ongxm1 generating more detail.

* error-limit
--error-limit = N | unlimited
Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

* info-limit

--info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

* help

--help
Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

 listfile

--listfile = true]|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

¥ |og-output
--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

+* network-timeout

--network-timeout = VALUE
Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

¥ recurse

--recurse = true|false

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

152 Command Line Interface (CLI) JSON/Awo/YAML Commands

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

¥ verbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

¥ \ersion

--version

Displays the version of RaptorXML Senver. If used with a command, place --version before the
command.

* warning-limit
--warning-limit = N | unlimited
Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.5.5 valavrojson (avrojson)
The valavrojson | avrojson command validates a JSON document against an Awo schema.
raptorxml valavrojson | avrojson [options] --avroschema=AvroSchema JSONFile

e The JsonFile argument specifies the JSON document to validate.

e The --avroschema option specifies the Awo schema against which the JSON document is to be
validated.

e To validate multiple JSON files, either: (i) list the files on the CLI, with each file separated from the next
by a space; or (ii) list the files to validate in a text file (. txt file), with one filename per line, and supply
this text file as the Jsonriie argument together with the —-1istri1c @ option set to true (see the
Options list below).

Examples
Examples of the valavrojson command:

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 153

e raptorxml valavrojson --avroschema=c:\MyAvroSchema.avsc c:\MyJSONDataFile.json
e raptorxml avrojson --avroschema=c:\MyAvroSchema.avsc c:\MyJSONDataFile.json

¥ Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorxML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

+ Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (i)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

¥ Processing
* listfile

--listfile = true]|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" Will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

154 Command Line Interface (CLI) JSON/Awo/YAML Commands

Note: Boolean option values are set to true if the option is specified without a value.

* Catalogs and global resources
* catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs, for information about working with catalogs.

¥ user-catalog

--user-catalog = FILE
Specifies the absolute %th to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs “#, for information about working with catalogs.

1

enable-globalresources

--enable-globalresources = true|false
Enables global resources €. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource & (and enables global resources).

¥ globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources)@.

* Common options
* error-format

--error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with 1ongxml generating more detail.

* error-limit

-—error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

* info-limit

--info-limit = N | unlimited

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 155

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

* help
--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

* listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfi1le option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

* |og-output
--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

* network-timeout

--network-timeout = VALUE
Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

¥ verbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

¥ \ersion

--version
Displays the version of RaptorXML Senver. If used with a command, place --version before the

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

156 Command Line Interface (CLI) JSON/Awo/YAML Commands

command.

* warning-limit
--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.5.6 valavroschema (avroschema)

The valavroschema | avroschema command validates one or more Awo schema documents against the Awo
schema specification.

raptorxml valavroschema | avroschema [options] AvroSchema

e The AvroSchema argument is the Awo schema document to validate.

e To validate multiple Awo schemas, either: (i) list the files to be validated on the CLI, with each file
separated from the next by a space; or (i) list the files to be validated in a text file (. txt file), with one
filename per line, and supply this text file as the Avroschema argument together with the —-
listfi1c @ option set to true (see the Options list below).

Examples
Examples of the valavroschema command:

e raptorxml valavroschema c:\MyAvroSchema.avsc

e raptorxml valavroschema c:\MyAvroSchemaOl.avsc c:\MyAvroSchema02.avsc
e raptorxml avroschema --listfile=true c:\MyFileList.txt

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

* Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 157

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\ll.

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

¥ Processing
* listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies

only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

* Catalogs and global resources
* catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorxXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs, for information about working with catalogs.

¥ user-catalog

--user-catalog = FILE
Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs ¥, for information about working with catalogs.

¥ enable-globalresources

--enable-globalresources = true|false

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

158 Command Line Interface (CLI) JSON/Awo/YAML Commands

Enables global resources & Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE
Specifies the active configuration of the global resource & (and enables global resources)@.

* globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources).

* Common options
¥ error-format

-—-error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

* error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or un1imited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

* info-limit
--info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

* help

--help
Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

- listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

¥ |og-output

--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 159

location.

* network-timeout

--network-timeout = VALUE
Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and 2 may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

+ \erbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

w \verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

¥ \ersion

--version
Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

* warning-limit
--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.5.7 valjsonschema (jsonschema)

The valjsonschema | jsonschema command validates one or more JSON schema documents according to
the various JSON Schema specifications (set via the jsonschema-version option.

raptorxml valjsonschema | jsonschema [options] InputFile

e The InputFile argument is the JSON schema document to validate.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

160 Command Line Interface (CLI) JSON/Awo/YAML Commands

e To validate multiple documents, either: (i) list the files to be validated on the CLI, with each file
separated from the next by a space; or (ii) list the files to be validated in a text file (. txt file), with one
filename per line, and supply this text file as the rnputFiie argument together with the --
1istfilc @ option set to true (see the Options list below).

Examples
Examples of the valjsonschema command:

. raptorxml valjsonschema c:\MyJSONSchema.json
. raptorxml jsonschema c:\MyJSONSchema-01l.json c:\MyJSONSchema-02.json
e raptorxml jsonschema --listfile=true c:\FileList.txt

¥ Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorxmMr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

* Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "Cc:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

* Validation and processing
w listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 161

¥ recurse
--recurse = true|false
Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder lewvels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* JSON validation options
* additional-schema

--additional-schema = FILE
Specifies URIs of an additional schema document. The additional schema will be loaded by the main
schema and can be referenced from the main schema by the additional schemas id or $id property.

+ disable-format-checks

--disable-format-checks = true|false
Disables the semantic validation imposed by the format attribute. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* jsonschema-format

--jsonschema-format = json|yaml

Specifies the format in which the JSON Schema is written: JSON or YAML. Default is §son.

¥ jsonschema-version
--jsonschema-version = draft04|draft06|draft07[2019-09|2020-12|oas-3.1|latest]|

detect
Specifies which version of the JSON Schema specification draft version to use. Default is detect.

* strict-integer-checks
--strict-integer-checks = true|false
Specifies whether the stricter integer checks of draft-04 should be used with later schemas—where
integer checks are looser. For example, 1.0 is not a valid integer in draft-04, but is a valid integer in
later drafts. This option has no effect for draft-04 schemas. The default value of the option is false.
Note: Boolean option values are set to true if the option is specified without a value.

* Catalogs and global resources

* catalog
--catalog = FILE
Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default

value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

162 Command Line Interface (CLI) JSON/Awo/YAML Commands

Catalogs, for information about working with catalogs.

* user-catalog

--user-catalog = FILE
Specifies the absolute E%th to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs “#, for information about working with catalogs.

1

enable-globalresources

--enable-globalresources = true|false
Enables global resources & Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE
Specifies the active configuration of the global resource & (and enables global resources).

w globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources).

* Common options
¥ error-format

--error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with 1ongxml generating more detail.

* error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

* info-limit
--—info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

* help

--help
Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

- listfile

--listfile = true|false

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 163

If true, treats the command's TnputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

* log-output
--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

* network-timeout

--network-timeout = VALUE
Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder lewvels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

* \verbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

¥ \ersion

--version
Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

* warning-limit

--warning-limit = N | unlimited
Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

164 Command Line Interface (CLI) JSON/Awo/YAML Commands

5.5.8 valjson (json)

The valjson | json command validates one or more JSON instance documents according to the JSON
schema supplied with the --schema (--jsonschema) option.

raptorxml valjson | json [options] --jsonschema=File InputFile

e The InputFile argument is the JSON instance document to validate.

e To validate multiple documents, either: (i) list the files to be validated on the CLI, with each file
separated from the next by a space; or (ii) list the files to be validated in a text file (. txt file), with one
filename per line, and supply this text file as the InputFile argument together with the —-
1istfi1c @ option set to true (see the Options list below).

Examples
Examples of the valjson command:

e raptorxml valjson --jsonschema=c:\MyJSONSchema.json c:\MyJSONInstance.json

e raptorxml json —--jsonschema=c:\MyJSONSchema.json c:\MyJSONInstance-01.json c:
\MyJSONInstance-02.json

e raptorxml json --jsonschema=c:\MyJSONSchema.json --listfile=true c:\FileList.txt

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

¥ Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 165

information about the command.

* Validation and processing
* schema, jsonschema

--schema = FILE, --jsonschema = FILE
Specifies the path to the JSON Schema document to use for the validation of JSON instance
documents.

* jsonschema-format

--jsonschema-format = json|yaml

Specifies the format in which the JSON Schema is written: JSON or YAML. Default is json.

¥ jsonschema-version

--jsonschema-version = draft04|draft06|draft07]2019-09]2020-12|cas-3.1|latest|
detect
Specifies which version of the JSON Schema specification draft version to use. Default is detect.

- listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

* additional-schema

--additional-schema = FILE
Specifies URIs of an additional schema document. The additional schema will be loaded by the main
schema and can be referenced from the main schema by the additional schemas id or $id property.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

¥ json5

--json5 = true|false
Enables JSON5 support. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

¥ jsonc

--jsonc = true|false

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

166 Command Line Interface (CLI) JSON/Awo/YAML Commands

Enables support for comments in JSON. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

¥ json-lines
--json-lines = true|false

Enables support for JSON Lines (that is, one JSON value per line). Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

w disable-format-checks

--disable-format-checks = true|false
Disables the semantic validation imposed by the format attribute. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

w strict-integer-checks

--strict-integer-checks = true|false

Specifies whether the stricter integer checks of draft-04 should be used with later schemas—where
integer checks are looser. For example, 1.0 is not a valid integer in draft-04, but is a valid integer in
later drafts. This option has no effect for draft-04 schemas. The default value of the option is false.
Note: Boolean option values are set to true if the option is specified without a value.

¥ Catalogs and global resources
w catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs, for information about working with catalogs.

w user-catalog

--user-catalog = FILE
Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs ¥, for information about working with catalogs.

1

enable-globalresources

--enable-globalresources = true|false
Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE
Specifies the active configuration of the global resource & (and enables global resources).

* globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 167

Specifies the global resource file € (and enables global resources)@.

* Common options
* error-format

--error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with 1ongxm1 generating more detail.

* error-limit
--error-limit = N | unlimited
Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

* info-limit
--info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

* help
--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

 listfile

--listfile = true]|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

¥ |og-output
--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

+* network-timeout

--network-timeout = VALUE
Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

¥ recurse

--recurse = true|false
Used to select files within sub-directories, including in ZIP archives. If true, the command's

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

168 Command Line Interface (CLI) JSON/Awo/YAML Commands

InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

* verbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

¥ \ersion

--version
Displays the version of RaptorXML Senver. If used with a command, place --version before the
command.

* warning-limit
--warning-limit = N | unlimited
Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.5.9 valyaml (yaml)

The valyaml | yaml command validates one or more YAML instance documents against the JSON schema
supplied with the --schema (--jsonschema) option

raptorxml valyaml | yaml [options] --jsonschema=File InputFile

e The 1nputFile argument is the YAML instance document to validate.

e To validate multiple documents, either: (i) list the files to be validated on the CLI, with each file
separated from the next by a space; or (i) list the files to be validated in a text file (. txt file), with one
filename per line, and supply this text file as the rnputFiie argument together with the --
1istrilc @ option set to true (see the Options list below).

Examples
Examples of the valyaml command:

e raptorxml valyaml --jsonschema=c:\MyJSONSchema.json c:\MyYAMLInstance.yaml

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 169

e raptorxml yaml --jsonschema=c:\MyJSONSchema.json c:\MyYAMLInstance-01l.yaml c:
\MyYAMLInstance-02.yaml
e raptorxml yaml --jsonschema=c:\MyJSONSchema.json --listfile=true c:\FileList.txt

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

* Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (i)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

* Validation and processing
* schema, jsonschema

--schema = FILE, --jsonschema = FILE
Specifies the path to the JSON Schema document to use for the validation of JSON instance
documents.

¥ jsonschema-format

--jsonschema-format = json|yaml

Specifies the format in which the JSON Schema is written: JSON or YAML. Default is §son.

¥ jsonschema-version

--jsonschema-version = draft04|draft06|draft07]2019-09]2020-12|cas-3.1|latest|
detect
Specifies which version of the JSON Schema specification draft version to use. Default is detect.

- listfile

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

170

Command Line Interface (CLI) JSON/Awo/YAML Commands

--listfile = true|false

If true, treats the command's TnputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

+ additional-schema

--additional-schema = FILE
Specifies URIs of an additional schema document. The additional schema will be loaded by the main
schema and can be referenced from the main schema by the additional schemas id or $id property.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

w disable-format-checks

--disable-format-checks = true|false
Disables the semantic validation imposed by the format attribute. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

w strict-integer-checks

--strict-integer-checks = true|false

Specifies whether the stricter integer checks of draft-04 should be used with later schemas—where
integer checks are looser. For example, 1.0 is not a valid integer in draft-04, but is a valid integer in
later drafts. This option has no effect for draft-04 schemas. The default value of the option is false.
Note: Boolean option values are set to true if the option is specified without a value.

* Catalogs and global resources

* catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs, for information about working with catalogs.

¥ user-catalog

--user-catalog = FILE
Specifies the absolute E?'th to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs %#, for information about working with catalogs.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 171

¥ enable-globalresources

--enable-globalresources = true|false

Enables global resources &, Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

¥ globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource & (and enables global resources).

* globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources).

* Common options
* error-format

--error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with 1ongxm1 generating more detail.

* error-limit
--error-limit = N | unlimited
Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

* info-limit
--info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

* help

--help
Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

 |istfile

--listfile = true|false

If true, treats the command's TnputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

172 Command Line Interface (CLI) JSON/Awo/YAML Commands

* |log-output
--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

* network-timeout

--network-timeout = VALUE
Specifies the timeout in milliseconds for remote 1/O operations. Default is: 40000.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" Will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

* verbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

¥ \ersion

--version
Displays the version of RaptorXML Senver. If used with a command, place --version before the
command.

* warning-limit

--warning-limit = N | unlimited
Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5510 wfjson

The wfjson command checks one or more JSON documents according to the ECMA-404 specification for well-
formedness.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 173

raptorxml wfjson [options] InputFile

e The InputFile argument is the JSON document (schema or instance) to check for well-formedness.

e To check multiple documents, either: (i) list the files to be checked on the CLI, with each file separated
from the next by a space; or (ii) list the files to be checked in a text file (. txt file), with one filename
per line, and supply this text file as the TnputFile argument together with the —1istfi1.ED option
set to true (see the Options list below).

Examples
Examples of the wfjson command:

e raptorxml wfjson c:\MyJSONFile.json
e raptorxml wfjson c:\MyJSONFile-01l.Jjson c:\MyJSONFile-02.json
e raptorxml wfjson --listfile=true c:\FileList.txt

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

* Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (i)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

* Validation and processing
¥ json5

--json5 = true]|false

Enables JSON5 support. Default value is false.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

174 Command Line Interface (CLI) JSON/Awo/YAML Commands

Note: Boolean option values are set to true if the option is specified without a value.

¥ jsonc
--jsonc = true|false

Enables support for comments in JSON. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

¥ json-lines
--json-lines = true|false
Enables support for JSON Lines (that is, one JSON value per line). Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

- listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

* Catalogs and global resources

* catalog
--catalog = FILE
Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorxXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs, for information about working with catalogs.

¥ user-catalog

--user-catalog = FILE
Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs ¥, for information about working with catalogs.

¥ enable-globalresources

--enable-globalresources = true|false

Enables global resources@. Default value is false.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 175

Note: Boolean option values are set to true if the option is specified without a value.

* globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE
Specifies the active configuration of the global resource & (and enables global resources).

* globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources).

* Common options
¥ error-format

-—-error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with 1longxml generating more detail.

* error-limit
--error-limit = N | unlimited
Specifies the error limit with a value range of 1 to 9999 or un1imited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

* info-limit
--info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

* help

--help
Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

- listfile

--listfile = true]|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

¥ |og-output

--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

176 Command Line Interface (CLI) JSON/Awo/YAML Commands

* network-timeout

--network-timeout = VALUE
Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and 2 may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

+ \erbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

w \verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

¥ \ersion

--version
Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

* warning-limit
--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.5.11 wfyaml

The wfyaml command checks one or more YAML documents according to the YAML 1.2 specification for well-
formedness.

raptorxml wfyaml [options] InputFile

e The InputFile argument is the YAML document to check for well-formedness.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 177

e To check multiple documents, either: (i) list the files to be checked on the CLI, with each file separated
from the next by a space; or (ii) list the files to be checked in a text file (. txt file), with one filename
per line, and supply this text file as the rnputFile argument together with the ——listfile option
set to true (see the Options list below).

Examples
Examples of the wEfyaml command:

e raptorxml wfyaml c:\MyYAMLFile.yaml
e raptorxml wfyaml c:\MyYAMLFile-01l.yaml c:\MyYAMLFile-02.yaml
e raptorxml wfyaml --listfile=true c:\FileList.txt

¥ Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorxmMr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

* Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "Cc:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

* Catalogs and global resources
* catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorxXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs, for information about working with catalogs.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

178 Command Line Interface (CLI) JSON/Awo/YAML Commands

* user-catalog

--user-catalog = FILE
Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs “#, for information about working with catalogs.

4

enable-globalresources

--enable-globalresources = true|false
Enables global resources. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE
Specifies the active configuration of the global resource & (and enables global resources).

* globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources).

* Common options
* error-format

--error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with 1ongxml generating more detail.

* error-limit
--error-limit = N | unlimited
Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.

Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

* info-limit
--info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

¥ help
--help
Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

w listfile

--listfile = true|false
If true, treats the command's TnputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 179

however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

¥ |og-output
--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

+* network-timeout

--network-timeout = VALUE
Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

* verbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

¥ \ersion

--version
Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

* warning-limit
--warning-limit = N | unlimited
Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

180 Command Line Interface (CLI) JSON/Awo/YAML Commands

5512 xml2json

The xm12json command converts an XML instance document to a JSON document.
raptorxml XML2json [options] XMLFile

e The xMLFile argument is the XML file to convert.
e Use the --conversion-output option to specify the location of the generated JSON file.

Example
Example of the xm12json command:

e raptorxml xml2json --conversion-output=c:\MyJSONData.json c:\MyXMLData.xml

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

* Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "c:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

* XML to JSON conversion options

These options define the handling of specific conversion-related details in conversions between XML and
JSON.
* attributes

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 181

--attributes = true|false

If set to true, then conversion between XML attributes and JSSON @-prefixed properties occurs.
Otherwise, XML attributes and JSON @-properties will not be converted. The default is true.
Note: Boolean option values are set to true if the option is specified without a value.

* comments

--comments = true|false

If set to true, then conversion between XML comments and JSON #-prefixed properties occurs.
Otherwise, XML attributes and JSON #-properties will not be converted. The default is true.
Note: Boolean option values are set to true if the option is specified without a value.

¥ conwversion-output, o

--o, --conversion-output = FILE
Sets the path and name of the file to which the result of the conwersion is sent.

¥ ignore-pis
--ignore-pis = true|false
If set to true, ignores processing instructions in the source XML document. The default is false.
Note: Boolean option values are set to true if the option is specified without a value.

* merge-elements

--merge-elements = true|false

If set to true, creates an array in the generated JSON document from same-name, same-level
elements in the XML document. The default is true.

Note: Boolean option values are set to true if the option is specified without a value.

* merge-text
--merge-text = true|false
If set to true, creates an array in the generated JSSON document from same-level text nodes in the
XML document. The default is true.
Note: Boolean option values are set to true if the option is specified without a value.

- pi
--pi = truelfalse
If set to true, then conversion between XML processing instructions and JSON ?-prefixed properties
occurs. Otherwise, XML attributes and JSON ?-properties will not be converted. The default is true.
Note: Boolean option values are set to true if the option is specified without a value.

* pretty-print

--pp, —-pretty-print = true|false
If set to true, pretty-prints the generated output document. The default is false.
Note: Boolean option values are set to true if the option is specified without a value.

* text

--text = true|false

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

182 Command Line Interface (CLI) JSON/Awo/YAML Commands

If set to true, then conversion between XML text content and JSON $-prefixed properties occurs.
Otherwise, XML attributes and JSON $-properties will not be converted. The default is true.
Note: Boolean option values are set to true if the option is specified without a value.

* Common options
* error-format

--error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with 1ongxml generating more detail.

* error-limit
-—error-limit = N | unlimited
Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

* info-limit
--info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

¥ help

--help
Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

* listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfile option applies
only to arguments, and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

* |og-output
--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

* network-timeout
--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

¥ recurse

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 183

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

¥ verbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

¥ \ersion

--version
Displays the version of RaptorXML Senver. If used with a command, place --version before the
command.

* warning-limit
--warning-limit = N | unlimited
Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

w Catalogs and global resources
* catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorxXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs, for information about working with catalogs.

¥ user-catalog

--user-catalog = FILE
Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs ¥, for information about working with catalogs.

¥ enable-globalresources

--enable-globalresources = true|false

Enables global resources & Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

184 Command Line Interface (CLI) JSON/Awo/YAML Commands

¥ globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE
Specifies the active configuration of the global resource & (and enables global resources).

w globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources)@.

5.5.13 xsd2jsonschema

The xsd2jsonschema command converts one or more W3C XML Schema 1.0 or 1.1 documents to a JSON
Schema document.

raptorxml xsd2jsonschema [options] XSDFile

e The xspFile argument is the XML Schema file to convert.
e Use the --schema-conversion-output option to specify the location of the generated XSD file.

Example
Example of the xsd2jsonschema command:

e raptorxml xsd2jsonschema --schema-conversion-output=c:\MyJSONSchema.json c:
\MyXSDSchema .xsd

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorxMrL) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

* Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "c:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 185

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

XML Schema definition options
¥ schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation | load-
by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs: import elements, each of which has an optional namespace attribute
and an optional schemalocation attribute: <import namespace="someNS"
schemalLocation="someURL">. The option specifies whether to load a schema document or just
license a namespace, and, if a schema document is to be loaded, which information should be used
to find it. Default: 1oad-preferring-schemalocation.

The behavior is as follows:

® load-by-schemalocation: The value of the schemalocation attribute is used to locate the
schema, taking account of catalog mappings. If the namespace attribute is present, the
namespace is imported (licensed).

e load-preferring-schemalocation: If the schemaLocation attribute is present, it is used,
taking account of@gmppi_ngg. If nO schemalLocation attribute is present, then the
value of the namespace attribute is used via a catalog mapping. This is the default value.

e load-by-namespace: The value of the namespace attribute is used to locate the schema via a
catalog mapping “#.

® load-combining-both: If either the namespace or schemalocation attribute has a catalog
mapping, then the mapping is used. If both have catalog mappings, then the value of the
—--schema-mapping option (XML/XSD option) decides which mapping is used. If no catalog
mapping is present, the schemalocation attribute is used.

e license-namespace-only: The namespace is imported. No schema document is imported.

* schema-mapping
--schema-mapping = prefer-schemalocation | prefer-namespace
If schema location and namespace are both used to find a schema document, specifies which of
them should be preferred during catalog lookup. (If either the --schemalocation-hints or the --
schema-imports option has a value of 1oad-combining-both, and if the namespace and URL parts
involved both have catalog mappings , then the value of this option specifies which of the two
mappings to use (namespace mapping or URL mapping; the prefer-schemalocation value refers to
the URL mapping).) Default is prefer-schemalocation.

¥ schemalocation-hints
--schemalocation-hints = load-by-schemalocation | load-by-namespace | load-

combining-both | ignore
Specifies the behavior of the xsi:schemalLocation and xsi:noNamespaceSchemaLocation

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

186 Command Line Interface (CLI) JSON/Awo/YAML Commands

attributes: Whether to load a schema document, and, if yes, which information should be used to find
it. Default: 1oad-by-schemalocation.

e The load-by-schemalocation value uses the URL of the schema location € in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML instance
documents. This is the default value.

e The load-by-namespace Value takes the namespace part of xsi:schemalocation and an
empty string in the case of xsi:noNamespaceSchemalocation and locates the schema via a

Mmapi_ng-
o If load-combining-both is used and if either the namespace part or the URL part has a

catalog mapping “#, then the catalog mapping is used. If both have catalog mappings,
then the value of the --schema-mapping option (XML/XSD option@) decides which mapping is
used. If neither the namespace nor URL has a catalog mapping, the URL is used.

o If the option's value is ignore, then the xsi:schemalocation and
xsi:noNamespaceSchemalocation attributes are both ignored.

* XMLSchema processing options
¥ report-import-namespace-mismatch-as-warning
--report-import-namespace-mismatch-as-warning = true|false
Downgrades namespace or target-namespace mismatch errors when importing schemas with
xs: import from errors to warnings. The default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* Xxinclude

--xinclude = true]|false

Enables XML Inclusions (XInclude) support. Default value is false. When false, XInclude's include
elements are ignored.

Note: Boolean option values are set to true if the option is specified without a value.

+* xml-mode-for-schemas

--xml-mode-for-schemas = wf|id|valid

Specifies the XML processing mode to use for XML schema documents: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each schema document loaded during processing references a DTD. If no DTD
exists, an error is reported.

* xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This option can
also be useful to find out in what ways a schema which is 1.0-compatible is not 1.1-compatible. The
detect option is an Altova-specific feature. It enables the version of the XML Schema document (1.0
or 1.1) to be detected by reading the value of the vc:minversion attribute of the document's
<xs:schema> element. If the value of the evc:minversion attribute is 1.1, the schema is detected
as being version 1.1. For any other value, or if the @vc:minversion attribute is absent, the schema
is detected as being version 1.0.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 187

* Conversion from XSD to JSON Schema
¥ array-and-item
--array-and-item = true|false
If set to true, the generated JSON Schema will permit not only arrays but also single items for

particles with maxOccurs > 1. The default is true.
Note: Boolean option values are set to true if the option is specified without a value.

+ consider-format

--consider-format = true|false

If set to true, datatypes in the source schema are converted, if possible, to the corresponding type
in the target schema. The default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

¥ jsonschema-version

--jsonschema-version = draft04|draft06|draft07/2019-09]|2020-12|ocas-3.1|latest]|
detect
Specifies which version of the JSON Schema specification draft version to use. Default is detect.

¥ property-for-comments

--property-for-comments = true|false

If set to true, creates a property named '#' in each sub-schema to support comments. The default
is false.

Note: Boolean option values are set to true if the option is specified without a value.

¥ property-for-pis
--property-for-pis = true|false
If set to true, creates a pattern property matching properties prefixed with '2' to support XML
processing instructions. The default is false.
Note: Boolean option values are set to true if the option is specified without a value.

¥ property-for-xmlns
--property-for-xmlns = true|false
If set to true, creates a pattern property matching properties prefixed with '@xmins' in each sub-
schema to support namespace declaration. The default is false.
Note: Boolean option values are set to true if the option is specified without a value.

w property-for-xsi
--property-for-xsi = truelfalse
If set to true, creates a pattern property matching properties prefixed with 'eéxsi' in each sub-
schema to support xsi: * attributes, such as xsi:schemaLocation. The default is false.
Note: Boolean option values are set to true if the option is specified without a value.

¥ simple-content-pure-object
--simple-content-pure-object= true|false
If set to true, creates a pure object for complex types with simple content. The default is false.
Note: Boolean option values are set to true if the option is specified without a value.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

188 Command Line Interface (CLI) JSON/Awo/YAML Commands

¥ schema-conversion-output, o

--o0, --schema-converson-output = FILE
Sets the path and name of the file to which the result of the conwersion is sent.

* simplify-occurrence-constraints

--simplify-occurrence-constraints = true|false

If set to true: (i) occurrence definitions in the XML Schema are simplified to either required or
optional in the JSON Schema: (ii) repeatable elements in the XML Schema are simplified to arrays
with unbounded maxItems. The default is false.

Note: Boolean option values are set to true if the option is specified without a value.

* xmins

--xml-mode = wf|id|valid
Specifies prefix URI mappings for the namespaces in the XML Schema.

* Common options
* error-format

--error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML
formats, with 1ongxml generating more detail.

* error-limit
-—error-limit = N | unlimited
Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

* info-limit
--info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

* help

--help
Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

* listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.
Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --1istfi1le option applies
only to arguments, and not to options.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) JSON/Awo/YAML Commands 189

Note: Boolean option values are set to true if the option is specified without a value.

¥ |og-output

--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

+* network-timeout

--network-timeout = VALUE
Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

¥ recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip]|
zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and » may be used. So, *.xml will
select all .xm1 files in the (zip) folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

* verbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* verbose-output

--verbose-output = FILE
Writes verbose output to FILE.

¥ \ersion

--version
Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

* warning-limit
--warning-limit = N | unlimited
Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

* Catalogs and global resources
* catalog

--catalog = FILE
Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

190 Command Line Interface (CLI) JSON/Awo/YAML Commands

folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs, for information about working with catalogs.

* user-catalog

--user-catalog = FILE
Specifies the absolute E?'th to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs “#, for information about working with catalogs.

1

enable-globalresources

--enable-globalresources = true|false
Enables global resources & Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE
Specifies the active configuration of the global resource & (and enables global resources).

* globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources).

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XML Signature Commands 191

5.6 XML Signature Commands

The XML Signature commands can be used to sign an XML document and to verify a signed document. These
commands are listed below and described in detail in the sub-sections of this section:

) xmlsignature-sign: Creates an XML signature output document from an input document
) xmlsignature-veri&@: Verifies an XML signature document

D.

e xmlsignature-update “*¥: Updates the signature of a (modified) XML document

.

e xmlsignature-remove “*¥: Removes the signature of an XML document

5.6.1 xmlisignature-sign

The xmlsignature-sign | xsign command takes an XML document as input and creates an XML signature
output document using the specified signing options.

raptorxml xmlsignature-sign [options] --output=File --signature-type=Value --
signature-canonicalization-method=Value --certname=Value|hmackey=Value InputFile

e The InputFile argument is the XML document to sign.
e The --output option specifies the location of the document that contains the XML signature.

Example
Example of the xm1signature-sign command:

e raptorxml xsign --output=c:\SignedFile.xml --signature-type=enveloped --signature-
canonicalization-method=xml-cl14nll --hmackey=secretpassword c:\SomeUnsigned.xml

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

¥ Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

192 Command Line Interface (CLI) XML Signature Commands

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

* Common options
¥ output

output = FILE
The URL of the output document that is created with the new XML signature.

w \erbose
--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

XML Signature options
¥ absolute-reference-uri
--absolute-reference-uri = true|false
Specifies whether the URI of the signed document is to be read as absolute (true) or relative

(false). Default is false.
Note: Boolean option values are set to true if the option is specified without a value.

+ certname, certificate-name

--certname, --certificate-name = VALUE
The name of the certificate used for signing.

Windows
This is the Subject name of a certificate from the selected --certificate-store.

Example to list the certificates (under PowerShell)

% ls cert://CurrentUser/My
PSParentPath: Microsoft.PowerShell.Security\Certificate::CurrentUser\My

Thumbprint Subject

CI9DF64BBOAAF5FA73474D78B7CCFFC37C95BFC6C CN=certificatel
. CN=...

Example: --certificate-name==certificatel

Linux/MacOS

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XML Signature Commands 193

--certname specifies the file name of a PEM encoded X509V3 certificate with the private key. Such
files usually have the extension .pem.

xample: --certificate-name==/path/to/certificatel.pem

w certstore, certificate-store

--certstore, --certificate-store = VALUE
The location where the certificate specified with --certificate-name is stored.

Windows

The name of a certificate store under cert://CurrentUser. The available certificate stores can be
listed (under PowerShell) by using $ 1s cert://CurrentUser/. Certificates would then be listed as
follows:

Name : TrustedPublisher
Name : ClientAuthIssuer
Name : Root

Name : UserDS

Name : CA

Name : ACRS

Name : REQUEST

Name : AuthRoot

Name : MSIEHistoryJournal
Name : TrustedPeople

Name : MyCertStore

Name : Local NonRemovable Certificates
Name : SmartCardRoot

Name : Trust

Name : Disallowed

Example: --certificate-store==MyCertStore

Linux/MacOS
The --certstore option is currently not supported.

w digest, digest-method

--digest, --digest-method = shal|sha256|sha384|sha512
The algorithm that is used to compute the digest value over the input XML file. Available values are:
shal|sha256|sha384|shab12.

* hmackey, hmac-secret-key

--hmackey, --hmac-secret-key = VALUE
The HMAC shared secret key; must have a minimum length of six characters.

Example: --hmackey=secretpassword

* hmaclen, hmac-output-length
--hmaclen, --hmac-output-length = LENGTH

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

194 Command Line Interface (CLI) XML Signature Commands

Truncates the output of the HMAC algorithm to 1ength bits. If specified, this value must be
e amultiple of 8
e larger than 80
e larger than half of the underlying hash algorithm's output length

* keyinfo, append-keyinfo

--keyinfo, --append-keyinfo = true|false
Specifies whether to include the keyInfo element in the signature or not. The default is false.

¥ sigc14nmeth, signature-canonicalization-method

--sigcl4nmeth, --signature-canonicalization-method = VALUE
Specifies the canonicalization algorithm to apply to the signedinfo element. The value must be one
of:

(] REC-xml-c14n-20010315
L] xml-cl4nll
(] xml-exc-cldn#

* sigmeth, signature-method

--sigmeth, --signature-method = VALUE
Specifies the algorithm to use for generating the signature.

When a cetrtificate is used

If a certificate is specified, then signatureMethod is optional and the value for this parameter is
derived from the certificate. If specified, it must match the algorithm used by the certificate. Example:
rsa-sha256.

When —-hmac-secret-key is used
When HMACSecretKey is used, then signatureMethod is mandatory. The value must be one of the

supported HMAC algorithms:
® hmac-sha256
® hmac-sha386
® hmac-sha512
e hmac-shal (discouraged by the specification)

Example: hmac-sha256

¥ sigtype, signature-type

--sigtype, --signature-type = detached | enveloping | enveloped
Specifies the type of signature to be generated.

* transforms

--transforms = VALUE
Specifies the XML Signature transformations applied to the input document. The supported values
are:

e REC-xml-c14n-20010315 for Canonical XML 1.0 (omit comments)

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XML Signature Commands 195

xml-c14n11 for Canonical XML 1.1 (omit comments)

xml-exc-cl4n# for Exclusive XML Canonicalization 1.0 (omit comments)
REC-xml-c14n-20010315#WithComments for Canonical XML 1.0 (with comments)
xml-cl4nl1#WithComments for Canonical XML 1.1 (with comments)
xml-exc-cl4n#WithComments for Exclusive XML Canonicalization 1.0 (with comments)
base64

strip-whitespaces Altova extension

Example: --transforms=xml-cl4nll

Note: This option can be specified multiple times. If specified multiple times, then the order of
specification is significant. The first specified transformation receives the input document. The last
specified transformation is used immediately before calculation of the digest value.

+ write-default-attributes

--write-default-attributes = true|false
Specifies whether to include default attribute values from the DTD in the signed document.

+ Help and version options
* help

--help
Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

¥ \ersion
--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

5.6.2 xmlsignature-verify
The xmlsignature-verify | xverify command verifies the XML signature of the input file.
raptorxml xmlsignature-verify [options] InputFile

e The InputFile argument is the signed XML document to verify.
e If the verification is successful, a result="0K" message is displayed; otherwise, a result="Failed"
message is displayed.

Example
Example of the xm1signature-verify command:

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

196 Command Line Interface (CLI) XML Signature Commands

e raptorxml xverify c:\SignedFile.xml

¥ Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorxML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

+ Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (i)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

* Common options
¥ verbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* XML Signature options
+ certname, certificate-name

--certname, --certificate-name = VALUE
The name of the certificate used for signing.

Windows
This is the Subject name of a certificate from the selected --certificate-store.

Example to list the certificates (under PowerShell)

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XML Signature Commands 197

o)

% 1ls cert://CurrentUser/My
PSParentPath: Microsoft.PowerShell.Security\Certificate::CurrentUser\My
Thumbprint Subject

CODF64BBOAAFS5FAT73474D78B7CCFFC37C95BFC6C CN=certificatel
CN=...

Example: --certificate-name==certificatel

Linux/MacOS
--certname specifies the file name of a PEM encoded X509v3 certificate with the private key. Such
files usually have the extension .pem.

xample:. --certificate-name==/path/to/certificatel.pem

* certstore, certificate-store

--certstore, --certificate-store = VALUE
The location where the certificate specified with --certificate-name is stored.

Windows

The name of a certificate store under cert://CurrentUser. The available certificate stores can be
listed (under PowerShell) by using $ 1s cert://CurrentUser/. Certificates would then be listed as
follows:

Name : TrustedPublisher
Name : ClientAuthIssuer
Name : Root

Name : UserDS

Name : CA

Name : ACRS

Name : REQUEST

Name : AuthRoot

Name : MSIEHistoryJournal
Name : TrustedPeople

Name : MyCertStore

Name : Local NonRemovable Certificates
Name : SmartCardRoot

Name : Trust

Name : Disallowed

Example: --certificate-store==MyCertStore

Linux/MacOS
The --certstore option is currently not supported.

* hmackey, hmac-secret-key

--hmackey, --hmac-secret-key = VALUE
The HMAC shared secret key; must have a minimum length of six characters.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

198 Command Line Interface (CLI) XML Signature Commands

Example: --hmackey=secretpassword

¥ ignore-certificate-errors

--i, --ignore-certificate-errors = true|false

If set to true, ignores certificate errors during verification of XML signatures (the signedInfo
elements) in an XML document. The default is false.

Note: Boolean option values are set to true if the option is specified without a value.

* Help and version options
* help

--help
Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

* \ersion

--version
Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

5.6.3 xmlisignature-update

The xmlsignature-update | xupdate command updates the XML signature in the signed input file. If the
document has been modified, the updated XML signature will be different; otherwise, the updated signature will
be the same as the previous signature.

raptorxml xmlsignature-update [options] --output=File SignedFile

e The SignedFile argument is the signed XML document to update.

e Either (i) the hmac-secret-key option or (ii) the certificate-name and certificate-store options
must be specified.

o [fthe certificate-name and certificate-store options are specified, then they must match those
that were used to sign the XML document previously. (Note that the certificate-store option is
currently not supported on Linux and macOS.)

Examples
Examples of the xmlsignature-update command:

e raptorxml xupdate --output=c:\UpdatedSignedFile.xml --certname=certificatel --
certstore=MyCertStore c:\SomeSignedFile.xml

. raptorxml xupdate --output=c:\UpdatedSignedFile.xml --hmackey=SecretPassword c:
\SomeSignedFile.xml

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XML Signature Commands 199

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorxML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

+ Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

* Common options
* output

output = FILE
The URL of the output document that is created with the new XML signature.

* \verbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* XML Signature options
w certname, certificate-name

--certname, --certificate-name = VALUE
The name of the certificate used for signing.

Windows

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

200 Command Line Interface (CLI) XML Signature Commands

This is the Subject name of a certificate from the selected --certificate-store.

Example to list the certificates (under PowerShell
% 1ls cert://CurrentUser/My
PSParentPath: Microsoft.PowerShell.Security\Certificate::CurrentUser\My

Thumbprint Subject

CODF64BBOAAFS5FAT73474D78B7CCFFC37C95BFC6C CN=certificatel
CN=...

Example: --certificate-name==certificatel

Linux/MacOS
--certname specifies the file name of a PEM encoded X509v3 certificate with the private key. Such
files usually have the extension .pem.

xample: --certificate-name==/path/to/certificatel.pem

w certstore, certificate-store

--certstore, --certificate-store = VALUE
The location where the certificate specified with --certificate-name is stored.

Windows

The name of a certificate store under cert://CurrentUser. The available certificate stores can be
listed (under PowerShell) by using $ 1s cert://CurrentUser/. Certificates would then be listed as
follows:

Name : TrustedPublisher
Name : ClientAuthIssuer
Name : Root

Name : UserDS

Name : CA

Name : ACRS

Name : REQUEST

Name : AuthRoot

Name : MSIEHistoryJournal
Name : TrustedPeople

Name : MyCertStore

Name : Local NonRemovable Certificates
Name : SmartCardRoot

Name : Trust

Name : Disallowed

Example: --certificate-store==MyCertStore

Linux/MacOS
The --certstore option is currently not supported.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) XML Signature Commands 201

* hmackey, hmac-secret-key

--hmackey, --hmac-secret-key = VALUE
The HMAC shared secret key; must have a minimum length of six characters.

Example: --hmackey=secretpassword

* Help and version options
* help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

¥ \ersion

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

5.6.4 xmlisignature-remove

The xmlsignature-remove | xremove command removes the XML signature of the signed input file, and
saves the resulting unsigned document to an output location that you specify.

raptorxml xmlsignature-remove [options] --output=File SignedFile

e The signedFile argument is the signed XML document from which you want to remove the XML
signature.
e The --output option specifies the location of the unsigned XML document that is generated.

Example
Example of the xmlsignature-remove command:

e raptorxml xremove --output=c:\UnsignedFile.xml c:\SignedFile.xml

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

* Backslashes, spaces, and special characters on Windows systems

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

202 Command Line Interface (CLI) XML Signature Commands

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "c:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

* Common options
w* output

output = FILE
The URL of the output document that is created with the XML signature removed.

* \erbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* Help and version options
* help

--help
Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

¥ \ersion

--version
Displays the version of RaptorXML Senver. If used with a command, place --version before the
command.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) General Commands 203

5.7 General Commands

This section contains a description of the following general commands:

) valany: validates the submitted document according to its type

) scrip‘t@: executes a Python script
e help™®¥: displays information about the named command

5.71 valany

The valany command is a general command that validates a document on the basis of what type of document
it is. The type of the input document is detected automatically, and the corresponding validation is carried out
according to the respective specification. The rnputFile argument is the document to validate. Note that only
one document can be submitted as the argument of the command.

raptorxml valany [options] InputFile

The valany command covers the following types of validation. Its options are those that are available for the
corresponding individual validation command. See the description of the respective validation commands for a
list of their respective options.

. valdtd (dtd) &0
(] valxsd (xsd)
(] valxml-withdtd (xml)

(] valxml-withxsd (xsi)

° valxslt

(] valxquery
(] valavrojson (avrojson) @

Examples

e raptorxml valany c:\Test.xsd

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

¥ Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

204 Command Line Interface (CLI) General Commands

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Options

See the description of the respective validation commands for a list of their respective options. Note, however,
that while most individual validation commands accept multiple input documents, the valany command
accepts only one input document. Options such as the --1istfile option will therefore not apply to valany.

5.7.2 script
The script command executes a Python 3.11.8 script that uses the RaptorXML Python API.
raptorxml script [options] PythonScriptFile

The File argument is the path to the Python script you want to execute. Additional options are available for
this command. To obtain a list of these options, run the following command:

raptorxml script [-h | --help]

Examples

e raptorxml script c:\MyPythonScript.py

e raptorxml script -h

e raptorxml script # Without a script file, an interactive Python shell is started

e raptorxml script -m pip # Loads and executes the pip module; see the Options section below

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

* Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "c:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

https://www.altova.com/manual/en/raptorapi/pyapiv2/2.11.0/html/index.html

Command Line Interface (CLI) General Commands 205

sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\"_

Options
Any options and arguments after the script command are forwarded directly to the Python interpreter. Please

consult the Python documentation page https://docs.python.org/3.11/using/cmdline.html for a complete listing
of available options.

5.7.3 help

Syntax and description

The help command takes a single argument (Command), which is the name of the command for which help is
required. It displays the command's syntax, its options, and other relevant information. If the Command argument
is not specified, then all commands of the executable are listed, with each having a brief text description. The
help command can be called from either executable: raptorxml or raptorxmlserver.

raptorxml help Command
raptorxmlserver help Command

w Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Example

Examples of the help command to display information about the 1icenserver command (this command is
available in both executables):

raptorxml help licenseserver
raptorxmlserver help licenseserver

The --help option
Help information about a command is also available by using the --he1p option of the command for which help
information is required. The two commands below produce the same results:

raptorxml licenseserver --help

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://docs.python.org/3.7/using/cmdline.html

206 Command Line Interface (CLI)

General Commands

The command above uses the --help option of the 1icenseserver command.

raptorxml help licenseserver

The help command takes licenseserver as its argument.

Both commands display help information about the 1icenseserver command.

Altova RaptorXML Server 2025

© 2019-2025 Altova GmbH

Command Line Interface (CLI) Localization Commands 207

5.8 Localization Commands

You can create a localized version of the RaptorXML application for any language of your choice. Five localized
versions (English, German, Spanish, French, and Japanese) are already available in the
<ProgramFilesFolder>\Altova\RaptorxMLServer2025\bin\ folder. These five language versions therefore
do not need to be created.

Create a localized version in another language as follows:

1. Generate an XML file containing the resource strings. Do this with the exportresourcestrings
command. The resource strings in the generated XML file will be one of the five supported languages:
English (en), German (de), Spanish (es), French (fr), or Japanese (ja), according to the argument
used with the command.

2. Translate the resource strings from the language of the generated XML file into the target language. The
resource strings are the contents of the <string> elements in the XML file. Do not translate variables
in curly brackets, such as {option} Or {product}.

3. Contact Altova Support to generate a localized RaptorXML DLL file from your translated XML file.

4. After you receive your localized DLL file from Altova Support, save the DLL in the
<ProgramFilesFolder>\Altova\RaptorxMLServer2025\bin\ folder. Your DLL file will have a name
of the form RaptorxMLserver 1c.dll. The 1c part of the name contains the language code. For
example, in RaptorxMLServer de.dll, the de part is the language code for German (Deutsch).

5. Run the setdeflang@ command to set your localized DLL file as the RaptorXML application to use.
For the argument of the setdeflang@ command, use the language code that is part of the DLL
name.

Note: Altova RaptorXML Senrver is delivered with support for five languages: English, German, Spanish, French,
and Japanese. So you do not need to create a localized version of these languages. To set any of these five
languages as the default language, use the CLI's Setdeflang@ command.

5.8.1 exportresourcestrings

Syntax and description

The exportresourcestrings command outputs an XML file containing the resource strings of the RaptorXML
Senver application in the specified language. Available export languages are English (en), German (de), Spanish
(es), French (fr), and Japanese (5a).

raptorxml exportresourcestrings [options] LanguageCode XMLOutputFile
raptorxmlserver exportresourcestrings [options] LanguageCode XMLOutputFile

¢ The LanguageCode argument gives the language of the resource strings in the output XML file; this is
the export language. Allowed export languages (with their language codes in parentheses) are: English
(en), German, (de), Spanish (es), French (fr), and Japanese (ja).

e The xMLoutputFile argument specifies the path and name of the output XML file.

e The exportresourcestrings command can be called from either executable: raptorxml or
raptorxmlserver.

How to create localizations is described below.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://www.altova.com/support
https://www.altova.com/support

208

Command Line Interface (CLI) Localization Commands

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorxML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

+ Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Examples
Examples of the exportresourcestrings command:

raptorxml exportresourcestrings de c:\Strings.xml

raptorxmlserver exportresourcestrings de c:\Strings.xml

The first command above creates a file called strings.xml at c:\ that contains the resource strings of
RaptorXML Server in German.
The second command calls the server-executable to do the same thing as the first example.

Creating localized versions of RaptorXML Server

You can create a localized version of RaptorXML Server for any language of your choice. Five localized versions
(English, German, Spanish, French, and Japanese) are already available in the C:\Program Files (x86)
\Altova\RaptorxMLServer2025\bin folder, and therefore do not need to be created.

Create a localized version as follows:

1.

w

Generate an XML file containing the resource strings by using the exportresourcestrings command
(see command syntax above). The resource strings in this XML file will be one of the five supported
languages: English (en), German (de), Spanish (es), French (fr), or Japanese (ja), according to the
LanguageCode argument used with the command.

Translate the resource strings from one of the five supported languages into the target language. The
resource strings are the contents of the <string> elements in the XML file. Do not translate variables
in curly brackets, such as {option} or {product}.

Contact Altova Support to generate a localized RaptorXML Server DLL file from your translated XML file.
After you receive your localized DLL file from Altova Support, save the DLL in the C:\Program Files
(x86) \Altova\RaptorxMLServer2025\bin folder. Your DLL file will have a name of the form
RaptorxML2025 1lc.dll. The 1c part of the name contains the language code. For example, in

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

https://www.altova.com/support
https://www.altova.com/support

Command Line Interface (CLI) Localization Commands 209

RaptorxML2025 de.dll, the de part is the language code for German (Deutsch).

5. Run the setdeflang command to set your localized DLL file as the RaptorXML Server application to
use. For the argument of the setdeflang command, use the language code that is part of the DLL
name.

Note: Altova RaptorXML Server is delivered with support for five languages: English, German, Spanish, French,
and Japanese. So you do not need to create a localized version of these languages. To set any of these
languages as the default language, use RaptorXML Senrver's setdeflang command.

5.8.2 setdeflang

Syntax and description

The setdeflang command (short form is sd1) sets the default language of RaptorXML Sener. Available

languages are English (en), German (de), Spanish (es), French (fr), and Japanese (5a). The command takes a
mandatory LanguageCode argument.

raptorxml setdeflang [options] LanguageCode
raptorxmlserver setdeflang [options] LanguageCode

e The LanguageCode argument is required and sets the default language of RaptorXML Server. The
respective values to use are: en, de, es, fr, ja.

e The setdeflang command can be called from either executable: raptorxml or raptorxmlserver.

e Usethe --h, --help option to display information about the command.

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorxMrL) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Examples
Examples of the setdeflang (sd1) command:

raptorxml sdl de
raptorxml setdeflang es
raptorxmlserver setdeflang es

e The first command sets the default language of RaptorXML Serer to German.
e The second command sets the default language of RaptorXML Server to Spanish.
e The third command is the same as the second command, but is executed by the sener-executable.

Options

Use the --h, --help option to display information about the command.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

210 Command Line Interface (CLI) License Commands

5.9 License Commands

This section describes commands that can be used for licensing RaptorXML Serwer:
o licenseserver® to register RaptorXML Server with Altova LicenseServer on your network
) assignlicense to upload a license file to LicenseServer (Windows only)
e \erifylicense to verify whether RaptorXML Server is licensed (Windows only)
Note: These commands can also be executed via the server executable for administration commands &5 .

For more information about licensing Altova products with Altova LicenseSener, see the Altova LicenseServer
documentation.

59.1 licenseserver

Syntax and description

The licenseserver command registers RaptorXML Server with the Altova LicenseServer specified by the
Server-Or-IP-Address argument. For the 1icenseserver command to be executed successfully, the two
seners (RaptorXML Server and LicenseServer) must be on the same network and LicenseServer must be
running. You must also have administrator privileges in order to register RaptorXML Server with LicenseSenver.

raptorxml licenseserver [options] Server-Or-IP-Address
raptorxmlserver licenseserver [options] Server-Or-IP-Address

e The Server-0r-1P-Address argument takes the name or IP address of the LicenseServer machine.
e The licenseserver command can be called from either executable: raptorxml or raptorxmlserver.

Once RaptorXML Sener has been successfully registered with LicenseServer, you will receive a message to
this effect. The message will also display the URL of the LicenseSenrver. You can now go to LicenseSener to
assign RaptorXML Server a license. For details about licensing, see the LicenseServer documentation

(https://www.altova.com/manual/en/licenseserver/3.17/).

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

¥ Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

https://www.altova.com/manual/en/licenseserver/3.17/
https://www.altova.com/manual/en/licenseserver/3.17/
https://www.altova.com/manual/en/licenseserver/3.17/

Command Line Interface (CLI) License Commands 211

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\n.

Examples
Examples of the 1icenseserver command:

raptorxml licenseserver DOC.altova.com
raptorxml licenseserver localhost
raptorxml licenseserver 127.0.0.1
raptorxmlserver licenseserver 127.0.0.1

The commands abowve specify, respectively, the machine named poc.altova.com, and the user's machine
(Localhost and 127.0.0.1) as the machine running Altova LicenseServer. In each case, the command
registers RaptorXML Server with the LicenseServer on the machine specified. The last command calls the
sener-executable to execute the command.

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

* json [j]
--j, --Jjson = true|false
Values are true|false. If true, prints the result of the registration attempt as a machine-parsable JSON
object.

5.9.2 assignlicense (Windows only)

Syntax and description

The assignlicense command uploads a license file to the Altova LicenseServer with which RaptorXML Server
is registered (see the 1icenseserver command), and assigns the license to RaptorXML Seneer. It takes the
path of a license file as its argument. The command also allows you to test the validity of a license.

raptorxml assignlicense [options] FILE
raptorxmlserver assignlicense [options] FILE

e The FILE argument takes the path of the license file.

e The --test-only option uploads the license file to LicenseServer and validates the license, but does
not assign the license to RaptorXML Seneer.

e The assignlicense command can be called from either executable: raptorxml or raptorxmlserver.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

212 Command Line Interface (CLI) License Commands

For details about licensing, see the LicenseServer documentation

(https://www.altova.com/manual/en/licenseserver/3.17/).

¥ Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorxML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

+ Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Examples
Examples of the assignlicense command:

raptorxml assignlicense C:\licensepool\mylicensekey.altova licenses
raptorxmlserver assignlicense C:\licensepool\mylicensekey.altova licenses
raptorxml assignlicense --test-only=true C:\licensepool\mylicensekey.altova licenses

e The first command above uploads the specified license to LicenseServer and assigns it to RaptorXML
Server.

e The second command calls the server-executable to do the same thing as the first command.

e The last command uploads the specified license to LicenseServer and validates it, without assigning it
to RaptorXML Server.

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

* test-only [t]

--t, --test-only = true|false
Values are true|false. If true, then the license file is uploaded to LicenseServer and validated, but not
assigned.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

https://www.altova.com/manual/en/licenseserver/3.17/

Command Line Interface (CLI) License Commands 213

5.9.3 verifylicense (Windows only)

Syntax and description

The verifylicense command checks whether the current product is licensed. Additionally, the --1icense-
key option enables you to check whether a specific license key is already assigned to the product.

raptorxml verifylicense [options]
raptorxmlserver verifylicense [options]

e To check whether a specific license is assigned to RaptorXML Senver, supply the license key as the
value of the --1icense-key option.
e The verifylicense command can be called from either executable: raptorxml or raptorxmlserver.

For details about licensing, see the LicenseServer documentation

(https://www.altova.com/manual/en/licenseserver/3.17/).

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorxmMr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Examples
Example of the verifylicense command:

raptorxml verifylicense

raptorxml verifylicense --license-key=ABCD123-ABCD123-ABCD123-ABCD123-ABCD123-ABCD123
raptorxmlserver verifylicense --license-key=ABCD123-ABCD123-ABCD123-ABCD123-ABCD123-
ABCD123

e The first command checks whether RaptorXML Server is licensed.

e The second command checks whether RaptorXML Sener is licensed with the license key specified
with the --1icense-key option.

e The third command is the same as the second command, but is executed by the server-executable.

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://www.altova.com/manual/en/licenseserver/3.17/

214 Command Line Interface (CLI) License Commands

information about the command.

¥ license-key [l]
--1, --license-key = Value
Checks whether RaptorXML Server is licensed with the license key specified as the value of this option.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) Administration Commands 215

5.10 Administration Commands

Administration commands (such as installation-as-senvice and licensing commands) are issued to the server
executable of RaptorXML Server (named RaptorXMLServer). This executable is located by default at:

Windows <ProgramFilesFolder>\Altova\RaptorxXxMLServer2025\bin\RaptorXMLServer.exe
Linux /opt/Altova/RaptorXMLServer2025/bin/raptorxmlserver

Mac /usr/local/Altova/RaptorXMLServer2025/bin/raptorxmlserver

Usage

The command line syntax is:
raptorxmlserver --h | --help | --version | <command> [options] [arguments]

e —-help (short form --1n) displays the help text of the given command. If no command is named, then
all commands of the executable are listed, each with a brief description of the command.

e —-version displays RaptorXML Server version number.

e <command> is the command to execute. Commands are displayed in the sub-sections of this section
(see list below).

e [options] are the options of a command; they are listed and described with their respective
commands.

e [arguments] are the arguments of a command; they are listed and described with their respective
commands.

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Administration commands

Commands of the server executable provide administration functionality. They are listed below and described in
the sub-sections of this section:

. instaII
. uninstall
e start

. setdeﬂang
. Iicenseserver

e accepteula (Linux only)
e assignlicense
e \erifylicense

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

216 Command Line Interface (CLI) Administration Commands

createconfig

exgortresourcestrings
debua
help

5.10.1 install

Syntax and description
The install command installs RaptorXML Server as a senice on the server machine.

raptorxmlserver install [options]

¢ Note that installing RaptorXML Server as a senice does not automatically start the senice. To start the
senice, use the start command.

e To uninstall RaptorXML Senrver as a senice, use the uninstall command.

e Usethe --h, --help option to display information about the command.

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and

Mac), while upper-lower (RaptorxmMr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Example
Example of the install command:

raptorxmlserver install

5.10.2 uninstall

Syntax and description
The uninstall command uninstalls RaptorXML Server as a senice on the server machine.

raptorxmlserver uninstall [options]

To re-install RaptorXML Server as a senvice, use the install command.

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) Administration Commands 217

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorxMrL) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Example
Example of the uninstall command:

raptorxmlserver uninstall

5.10.3 start

Syntax and description
The start command starts RaptorXML Server as a senvice on the server machine.

raptorxmlserver start [options]

e [f RaptorXML Sener is not installed as a senvice, install it first with the install command (before
starting it).

e To uninstall RaptorXML Server as a senvice, use the uninstall command.

e Use the --h, --help option to display information about the command.

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorxML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

+ Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Example
Example of the start command:

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

218 Command Line Interface (CLI) Administration Commands

raptorxmlserver start

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

* config [c]

--c, --config = File
Specifies the path to a configuration file.

 fork

--fork = true|false
Provides the ability to fork when using classic init on Unix servers. The default is false.

¥ port

--port = PortNumber
The port number of the debug instance of RaptorXML Server.

5.10.4 setdeflang

Syntax and description

The setdeflang command (short form is sd1) sets the default language of RaptorXML Senver. Available
languages are English (en), German (de), Spanish (es), French (fr), and Japanese (5a). The command takes a
mandatory LanguageCode argument.

raptorxml setdeflang [options] LanguageCode
raptorxmlserver setdeflang [options] LanguageCode

e The LanguageCode argument is required and sets the default language of RaptorXML Server. The
respective values to use are: en, de, es, fr, ja.

e The setdeflang command can be called from either executable: raptorxml or raptorxmlserver.

e Use the --h, --help option to display information about the command.

w Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) Administration Commands 219

Examples
Examples of the setdeflang (sd1) command:

raptorxml sdl de
raptorxml setdeflang es
raptorxmlserver setdeflang es

e The first command sets the default language of RaptorXML Serer to German.
e The second command sets the default language of RaptorXML Server to Spanish.
e The third command is the same as the second command, but is executed by the sener-executable.

Options

Use the --h, --help option to display information about the command.

5.10.5 licenseserver

Syntax and description

The licenseserver command registers RaptorXML Server with the Altova LicenseServer specified by the
Server-Or-IP-Address argument. For the 1icenseserver command to be executed successfully, the two
seners (RaptorXML Server and LicenseServer) must be on the same network and LicenseServer must be
running. You must also have administrator privileges in order to register RaptorXML Server with LicenseSenver.

raptorxml licenseserver [options] Server-Or-IP-Address
raptorxmlserver licenseserver [options] Server-Or-IP-Address

e The Server-0r-1P-Address argument takes the name or IP address of the LicenseServer machine.
e The licenseserver command can be called from either executable: raptorxml or raptorxmlserver.

Once RaptorXML Sener has been successfully registered with LicenseServer, you will receive a message to
this effect. The message will also display the URL of the LicenseSenrver. You can now go to LicenseSeneer to
assign RaptorXML Server a license. For details about licensing, see the LicenseServer documentation

(https://www.altova.com/manual/en/licenseserver/3.17/).

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and

Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

* Backslashes, spaces, and special characters on Windows systems

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://www.altova.com/manual/en/licenseserver/3.17/

220 Command Line Interface (CLI) Administration Commands

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "c:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Examples
Examples of the 1icenseserver command:

raptorxml licenseserver DOC.altova.com
raptorxml licenseserver localhost
raptorxml licenseserver 127.0.0.1
raptorxmlserver licenseserver 127.0.0.1

The commands above specify, respectively, the machine named poc.altova.com, and the user's machine
(localhost and 127.0.0.1) as the machine running Altova LicenseServer. In each case, the command
registers RaptorXML Server with the LicenseServer on the machine specified. The last command calls the
server-executable to execute the command.

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

¥ json [j]
--j, --json = true|false
Values are true|false. If true, prints the result of the registration attempt as a machine-parsable JSON
object.

5.10.6 accepteula (Linux only)

Syntax and description

In order to be able to run RaptorXML Server, the application's end user license agreement (EULA) must be
accepted. You can accept the application's EULA by running the accepteula command.

This command is useful, for example, if you want to license and run RaptorXML Sener directly via automated
processes that use scripts.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) Administration Commands 221

raptorxml accepteula [options]
raptorxmlserver accepteula [options]

e The command works only for Altova server products that have been installed on Linux machines.

e You must register RaptorXML Sener with LicenseServer before running the accepteula command.
e Usethe --h, --help option to display information about the command.

e Use lowercase raptorxml and raptorxmlserver.

e Use forward slashes on Linux.

Examples
Examples of the accepteula command:

raptorxml accepteula
raptorxmlserver accepteula

Options

Use the --h, --help option to display information about the command.

5.10.7 assignlicense

Syntax and description

The assignlicense command uploads a license file to the Altova LicenseServer with which RaptorXML Server
is registered (see the 1icenseserver command), and assigns the license to RaptorXML Sener. It takes the
path of a license file as its argument. The command also allows you to test the validity of a license.

raptorxml assignlicense [options] FILE
raptorxmlserver assignlicense [options] FILE

e The FILE argument takes the path of the license file.

e The --test-only option uploads the license file to LicenseServer and validates the license, but does
not assign the license to RaptorXML Sener.

e The assignlicense command can be called from either executable: raptorxml or raptorxmlserver.

For details about licensing, see the LicenseServer documentation

(https://www.altova.com/manual/en/licenseserver/3.17/).

¥ Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and

Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

* Backslashes, spaces, and special characters on Windows systems

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://www.altova.com/manual/en/licenseserver/3.17/

222 Command Line Interface (CLI) Administration Commands

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "c:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Examples
Examples of the assignlicense command:

raptorxml assignlicense C:\licensepool\mylicensekey.altova licenses
raptorxmlserver assignlicense C:\licensepool\mylicensekey.altova licenses
raptorxml assignlicense --test-only=true C:\licensepool\mylicensekey.altova licenses

e The first command above uploads the specified license to LicenseServer and assigns it to RaptorXML
Sernver.

e The second command calls the server-executable to do the same thing as the first command.

e The last command uploads the specified license to LicenseServer and validates it, without assigning it
to RaptorXML Senrver.

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

* test-only [t]

--t, --test-only = true|false
Values are true|false. If true, then the license file is uploaded to LicenseServer and validated, but not
assigned.

5.10.8 verifylicense

Syntax and description

The verifylicense command checks whether the current product is licensed. Additionally, the —--1icense-
key option enables you to check whether a specific license key is already assigned to the product.

raptorxml verifylicense [options]
raptorxmlserver verifylicense [options]

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) Administration Commands 223

e To check whether a specific license is assigned to RaptorXML Server, supply the license key as the
value of the --1icense-key option.
e The verifylicense command can be called from either executable: raptorxml or raptorxmlserver.

For details about licensing, see the LicenseServer documentation

(https://www.altova.com/manual/en/licenseserver/3.17/).

w Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Examples
Example of the verifylicense command:

raptorxml verifylicense

raptorxml verifylicense --license-key=ABCD123-ABCD123-ABCD123-ABCD123-ABCD123-ABCD123
raptorxmlserver verifylicense --license-key=ABCD123-ABCD123-ABCD123-ABCD123-ABCD123-
ABCD123

e The first command checks whether RaptorXML Server is licensed.

e The second command checks whether RaptorXML Sener is licensed with the license key specified
with the --1icense-key option.

e The third command is the same as the second command, but is executed by the server-executable.

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

¥ license-key [l]
--1, --license-key = Value
Checks whether RaptorXML Server is licensed with the license key specified as the value of this option.

5.10.9 createconfig

Syntax and description
The createconfig command overwrites the server configuration file with default values.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://www.altova.com/manual/en/licenseserver/3.17/

224 Command Line Interface (CLI) Administration Commands

raptorxmlserver createconfig [options]

e The --1ang option specifies the default language of the server configuration file.
For more information about server configuration files, see Configuring the Server®.

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Examples
Examples of the createconfig command:

raptorxml createconfig
raptorxml createconfig --lang=de

Options

* lang
--lang = en|deles|frl|ja
Specifies the default language of the server configuration file. The following options are available: English
(en), German (de), Spanish (es), French (fr), Japanese (5a). If the option is not specified, English is
chosen as the default language.

Use the --h, --help option to display information about the command.

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

5.10.10 exportresourcestrings

Syntax and description

The exportresourcestrings command outputs an XML file containing the resource strings of the RaptorXML
Server application in the specified language. Available export languages are English (en), German (de), Spanish
(es), French (fr), and Japanese (ja).

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) Administration Commands 225

raptorxml exportresourcestrings [options] LanguageCode XMLOutputFile
raptorxmlserver exportresourcestrings [options] LanguageCode XMLOutputFile

e The LanguageCode argument gives the language of the resource strings in the output XML file; this is
the export language. Allowed export languages (with their language codes in parentheses) are: English
(en), German, (de), Spanish (es), French (fr), and Japanese (ja).

e The xMLoutputFile argument specifies the path and name of the output XML file.

e The exportresourcestrings command can be called from either executable: raptorxml or
raptorxmlserver.

How to create localizations is described below.

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorxML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

+ Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "Cc:\My Directory\
\".

Examples
Examples of the exportresourcestrings command:

raptorxml exportresourcestrings de c:\Strings.xml
raptorxmlserver exportresourcestrings de c:\Strings.xml

e The first command above creates a file called strings.xml at c:\ that contains the resource strings of
RaptorXML Senrver in German.

e The second command calls the server-executable to do the same thing as the first example.

Creating localized versions of RaptorXML Server

You can create a localized version of RaptorXML Server for any language of your choice. Five localized versions
(English, German, Spanish, French, and Japanese) are already available in the C:\Program Files (x86)
\Altova\RaptorxMLServer2025\bin folder, and therefore do not need to be created.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

226 Command Line Interface (CLI) Administration Commands

Create a localized version as follows:

1. Generate an XML file containing the resource strings by using the exportresourcestrings command
(see command syntax above). The resource strings in this XML file will be one of the five supported
languages: English (en), German (de), Spanish (es), French (fr), or Japanese (ja), according to the
LanguageCode argument used with the command.

2. Translate the resource strings from one of the five supported languages into the target language. The

resource strings are the contents of the <string> elements in the XML file. Do not translate variables

in curly brackets, such as {option} or {product}.

Contact Altova Support to generate a localized RaptorXML Server DLL file from your translated XML file.

4. After you receive your localized DLL file from Altova Support, save the DLL in the c:\Program Files
(x86) \Altova\RaptorxMLServer2025\bin folder. Your DLL file will have a name of the form
RaptorxXML2025 1c.dll. The 1c part of the name contains the language code. For example, in
RaptorxML2025 de.dll, the de part is the language code for German (Deutsch).

5. Run the setdeflang command to set your localized DLL file as the RaptorXML Server application to
use. For the argument of the setdeflang command, use the language code that is part of the DLL
name.

w

Note: Altova RaptorXML Senrver is delivered with support for five languages: English, German, Spanish, French,
and Japanese. So you do not need to create a localized version of these languages. To set any of these
languages as the default language, use RaptorXML Server's setdeflang command.

5.10.11 debug

Syntax and description

The debug command starts RaptorXML Server for debugging—not as a senice. To stop RaptorXML Senver in
this mode, press Ctri+C.

raptorxmlserver debug [options]

w Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

+ Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that
a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read
correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to
escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you
need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\
\".

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

https://www.altova.com/support
https://www.altova.com/support

Command Line Interface (CLI) Administration Commands = 227

Example
Example of the debug command:

raptorxmlserver debug

Options

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.
Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display
information about the command.

* config [c]

--c, --config = File
Specifies the path to a configuration file.

¥ port
--port = PortNumber
The port number of the debug instance of RaptorXML Server

5.10.12 help

Syntax and description

The help command takes a single argument (Command), which is the name of the command for which help is
required. It displays the command's syntax, its options, and other relevant information. If the Command argument
is not specified, then all commands of the executable are listed, with each having a brief text description. The
help command can be called from either executable: raptorxml or raptorxmlserver.

raptorxml help Command
raptorxmlserver help Command

* Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (Raptorxmr) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

228 Command Line Interface (CLI) Administration Commands

Example
Examples of the help command to display information about the 1icenserver command (this command is
available in both executables):

raptorxml help licenseserver
raptorxmlserver help licenseserver

The --help option
Help information about a command is also available by using the --he1p option of the command for which help
information is required. The two commands below produce the same results:
raptorxml licenseserver --help
The command above uses the —--help option of the 1icenseserver command.
raptorxml help licenseserver

The help command takes licenseserver as its argument.

Both commands display help information about the 1icenseserver command.

5.10.13 version

Syntax and description

The version command displays the version number of RaptorXML Server. It can be called from either
executable: raptorxml Or raptorxmlserver.

raptorxml version
raptorxmlserver version

w Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows
raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and

Mac), while upper-lower (RaptorxmrL) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Example
Examples of the version command:

raptorxml version

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) Administration Commands 229

raptorxmlserver version

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

230 Command Line Interface (CLI) Options

5.11 Options

This section contains a description of all CLI options, organized by functionality. To find out which options may
be used with each command, see the description of the respective commands.

Catalogs. Global Resources, ZIP Files@
Messages, Errors, Help
Processin

:

e 6 o o o o o o o
&5
[:
g
E

>'c£<><
— 5

240

ig S

2|
)
Z
>
3
E

241

=
2
>
Q)
l—t+
c
D

5111 Catalogs, Global Resources, ZIP Files

* catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default value
is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML Catalogs, for
information about working with catalogs.

¥ user-catalog

--user-catalog = FILE
Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the section,
XML Catalogs , for information about working with catalogs.

¥ enable-globalresources

--enable-globalresources = true|false

Enables global resources €. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource & (and enables global resources).

* globalresourcefile [gr]

--gr | --globalresourcefile = FILE
Specifies the global resource file € (and enables global resources).

¥ recurse

--recurse = true|false
Used to select files within sub-directories, including in ZIP archives. If true, the command's TnputFile

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) Options 231

argument will select the specified file also in subdirectories. For example: "test.zip|zip\test.xml" will
select files named test.xml at all folder lewvels of the zip folder. References to ZIP files must be given in
quotes. The wildcard characters * and ? may be used. So, *.xml will select all .xm1 files in the (zip)
folder. The option's default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

5.11.2 Messages, Errors, Help, Timeout, Version

* error-format

--error-format = text|shortxml|longxml
Specifies the format of the error output. Default value is text. The other options generate XML formats,
with longxml generating more detail.

* error-limit

-—error-limit = N | unlimited
Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100. Processing
stops when the error limit is reached. Useful for limiting processor use during validation/transformation.

* help

--help
Displays help text for the command. For example, valany --h. (Alternatively the help command can be
used with an argument. For example: help valany.)

* info-limit
--info-limit = N | unlimited
Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if the
specified info limit is reached, but further messages are not reported. The default value is 100.

* |og-output

--log-output = FILE
Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

* network-timeout

--network-timeout = VALUE
Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

* verbose

--verbose = true|false
A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* verbose-output

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

232 Command Line Interface (CLI) Options

--verbose-output = FILE
Writes verbose output to FILE.

¥ \ersion

--version
Displays the version of RaptorXML Server. If used with a command, place --version before the command.

* warning-limit
--warning-limit = N | unlimited
Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.11.3 Processing

- listfile

--listfile = true]|false

If true, treats the command's InputFile argument as a text file containing one filename per line. Default
value is false. (An alternative is to list the files on the CLI with a space as separator. Note, however, that
CLls have a maximum-character limitation.) Note that the --1istfile option applies only to arguments,
and not to options.

Note: Boolean option values are set to true if the option is specified without a value.

¥ parallel-assessment [pa]

--pa | --parallel-assessment = true|false

If set to true, schema validity assessment is carried out in parallel. This means that if there are more than
128 elements at any level, these elements are processed in parallel using multiple threads. Very large
XML files can therefore be processed faster if this option is enabled. Parallel assessment takes place on
one hierarchical lewvel at a time, but can occur at multiple levels within a single infoset. Note that parallel
assessment does not work in streaming mode. For this reason, the --streaming option is ignored if --
parallel-assessment iS set to true. Also, memory usage is higher when the --parallel-assessment
option is used. The default setting is false. Short form for the option is --pa.

Note: Boolean option values are set to true if the option is specified without a value.

¥ script
--script = FILE
Executes the Python script in the submitted file after validation has been completed. Add the option
multiple times to specify more than one script.

¥ script-api-version
--api, --script-api-version = 1; 2; 2.1 to 2.4; 2.4.1; 2.5 to 2.8; 2.8.1 to 2.8.6;
2.9.0; 2.10.0; 2.11.0
Specifies the Python API version to be used for the script. The default value is the latest version, currently
2.11.0. Instead of integer values such as 1 and 2, you can also use the corresponding values 1.0 and

2.0. Similarly, you can use the three-digit 2.5. 0 for the two-digit 2.5. Also see the topic Python API

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) Options 233

Versions .

¥ script-param

--script-param = KEY:VALUE
Additional user-specified parameters that can be accessed during the execution of Python scripts. Add
the option multiple times to specify more than one script parameter.

* streaming

--streaming = true|false

Enables streaming validation. Default is true. In streaming mode, data stored in memory is minimized and
processing is faster. The downside is that information that might be required subsequently—for example, a
data model of the XML instance document—will not be available. In situations where this is significant,
streaming mode will need to be turned off (by giving --streaming a value of false). When using the --
script option with the valxml-withxsd command, disable streaming. Note that the --streaming option
is ignored if --parallel-assessment is set to true.

Note: Boolean option values are set to true if the option is specified without a value.

* xml-validation-error-as-warning

--xml-validation-error-as-warning = true|false
If true, treats validation errors as warnings. If errors are treated as warnings, additional processing, such
as XSLT transformations, will continue regardless of errors. Default is false.

5114 XML

* assessment-mode

--assessment-mode = lax|strict
Specifies the schema-validity assessment mode as defined in the XSD specifications. Default value is
strict. The XML instance document will be validated according to the mode specified with this option.

* dtd

--dtd = FILE
Specifies the external DTD document to use for validation. If a reference to an external DTD is present in
the XML document, then the CLI option overrides the external reference.

¥ |oad-xml-with-psvi
--load-xml-with-psvi = true|false

Enables validation of input XML files and generates post-schema-validation information for them. Default is:
true.

¥ namespaces

--namespaces = true|false

Enables namespace-aware processing. This is useful for checking the XML instance for errors due to
incorrect namespaces. Default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

234 Command Line Interface (CLI) Options

* Xxinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false, XInclude's include
elements are ignored.

Note: Boolean option values are set to true if the option is specified without a value.

* xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use for the XML instance document: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of valid
requires that each instance document loaded during processing references a DTD. If no DTD exists, an
error is reported.

* xml-validation-error-as-warning

--xml-validation-error-as-warning = true|false
If true, treats validation errors as warnings. If errors are treated as warnings, additional processing, such
as XSLT transformations, will continue regardless of errors. Default is false.

* xsd

--xsd = FILE
Specifies one or more XML Schema documents to use for the validation of XML instance documents. Add
the option multiple times to specify more than one schema document.

5115 XSD

w assessment-mode

--assessment-mode = lax|strict
Specifies the schema-validity assessment mode as defined in the XSD specifications. Default value is
strict. The XML instance document will be validated according to the mode specified with this option.

+ ct-restrict-mode

--ct-restrict-mode = 1.0|1.1|default

Specifies how to check complex type restrictions. A value of 1.0 checks complex type restrictions as
defined in the XSD 1.0 specification—even in XSD 1.1 validation mode. A value of 1.1 checks complex
type restrictions as defined in the XSD 1.1 specification—even in XSD 1.0 validation mode. A value of
default checks complex type restrictions as defined in the XSD specification of the current validation
mode (1.0 or 1.1). The default value is default.

* nhamespaces

--namespaces = true|false

Enables namespace-aware processing. This is useful for checking the XML instance for errors due to
incorrect namespaces. Default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) Options 235

¥ report-import-namespace-mismatch-as-warning

--report-import-namespace-mismatch-as-warning = true|false

Downgrades namespace or target-namespace mismatch errors when importing schemas with xs: import
from errors to warnings. The default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

* schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation | load-by-
namespace | load-combining-both | license-namespace-only
Specifies the behaviour of xs: import elements, each of which has an optional namespace attribute and an
optional schemal.ocation attribute: <import namespace="someNS" schemalocation="someURL">. The
option specifies whether to load a schema document or just license a namespace, and, if a schema
document is to be loaded, which information should be used to find it. Default: 1cad-preferring-
schemalocation.

The behavior is as follows:

® load-by-schemalocation: The value of the schemalocation attribute is used to locate the
schema, taking account of catalog mappings @ ifthe namespace attribute is present, the
namespace is imported (licensed).

® load-preferring-schemalocation: If the schemalocation attribute is present, it is used, taking
account of catalog mappings. If N0 schemalocation attribute is present, then the value of the
namespace attribute is used via a Mmppi_ng. This is the default value.

® load-by-namespace: The value of the namespace attribute is used to locate the schema via a
catalog mapping €.

® load-combining-both: If either the namespace or schemalocation attribute has a catalog
mapping, then the mapping is used. If both have catalog mappings, then the value of the --
schema-mapping option (XML/XSD option) decides which mapping is used. If no catalog
mapping is present, the schemalLocation attribute is used.

e license-namespace-only: The namespace is imported. No schema document is imported.

+* schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace | load-combining-
both | ignore

Specifies the behavior of the xsi:schemalocation and xsi:noNamespaceSchemaLocation attributes:
Whether to load a schema document, and, if yes, which information should be used to find it. Default:
load-by-schemalocation.

e The load-by-schemalocation value uses the URL of the schema location®? in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML instance
documents. This is the default value.

e The load-by-namespace Vvalue takes the namespace part of xsi:schemaLocation and an
empty string in the case of xsi :noNamespaceSchemalocation and locates the schema via a

catalog mapping.
e If load-combining-both is used and if either the namespace part or the URL part has a catalog

m pp|ng, then the catalog mapping is used. If both have catalog mappings, then the value
of the --schema-mapping option XML/XSD option@) decides which mapping is used. If neither the

namespace nor URL has a catalog mapping, the URL is used.
o If the option's value is ignore, then the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

236 Command Line Interface (CLI) Options

¥ schema-mapping
--schema-mapping = prefer-schemalocation | prefer-namespace
If schema location and namespace are both used to find a schema document, specifies which of them
should be preferred during catalog lookup. (If either the --schemalocation-hints or the --schema-
imports option has a value of 1oad-combining-both, and if the namespace and URL parts involved both
have catalog mappings , then the value of this option specifies which of the two mappings to use
(namespace mapping or URL mapping; the prefer-schemalocation value refers to the URL mapping).)
Default is prefer-schemalocation.

* xml-mode-for-schemas
--xml-mode-for-schemas = wf|id|valid
Specifies the XML processing mode to use for XML schema documents: wr=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of valid
requires that each schema document loaded during processing references a DTD. If no DTD exists, an
error is reported.

* xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This option can also
be useful to find out in what ways a schema which is 1.0-compatible is not 1.1-compatible. The detect
option is an Altova-specific feature. It enables the version of the XML Schema document (1.0 or 1.1) to be
detected by reading the value of the vc:minversion attribute of the document's <xs:schema> element. If
the value of the @vc:minversion attribute is 1.1, the schema is detected as being version 1.1. For any
other value, or if the @vc:minversion attribute is absent, the schema is detected as being version 1. 0.

5.11.6 XQuery

* indent-characters

--indent-characters = VALUE
Specifies the character string to be used as indentation.

* input
--input = FILE
The URL of the XML file to be transformed.

* Kkeep-formatting

--keep-formatting = true|false
Keeps the formatting of the target document to the maximum extent that this is possible. Default is: true.

* omit-xml-declaration

--omit-xml-declaration = true|false
Serialization option to specify whether the XML declaration should be omitted from the output or not. If
true, there will be no XML declaration in the output document. If false, an XML declaration will be

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) Options 237

included. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

w output, xsltoutput

output = FILE, xsltoutput = FILE

The URL of the primary-output file. For example, in the case of multiple-file HTML output, the primary-
output file will be the location of the entry point HTML file. Additional output files, such as generated image
files, are reported as xslt-additional-output-files. If N0 -—output or --xsltoutput option is
specified, output is written to standard output.

* output-encoding

--output-encoding = VALUE
The value of the encoding attribute in the output document. Valid values are names in the IANA character
set registry. Default value is UTF-8.

* output-indent

--output-indent = true|false

If true, the output will be indented according to its hierarchic structure. If false, there will be no
hierarchical indentation. Default is false.

Note: Boolean option values are set to true if the option is specified without a value.

* output-method

--output-method = xml |html|xhtml |text
Specifies the output format. Default value is xm1.

* param [p]

--p | —-param = KEY:VALUE
=| XQuery

Specifies the value of an external parameter. An external parameter is declared in the XQuery
document with the declare variable declaration followed by a variable name and then the
external keyword followed by the trailing semi-colon. For example:

declare variable $foo as xs:string external;
The external keyword sfoo becomes an external parameter, the value of which is passed at runtime
from an external source. The external parameter is given a value with the CLI command. For
example:

—--param=foo: 'MyName'
In the description statement abowe, key is the external parameter name, VALUE is the value of the
external parameter, given as an XPath expression. Parameter names used on the CLI must be
declared in the XQuery document. If multiple external parameters are passed values on the CLI, each
must be given a separate --param option. Double quotes must be used if the XPath expression
contains spaces.

=l XSLT

Specifies a global stylesheet parameter. kY is the parameter name, VALUE is an XPath expression
that provides the parameter value. Parameter names used on the CLI must be declared in the
stylesheet. If multiple parameters are used, the --param switch must be used before each
parameter. Double quotes must be used around the XPath expression if it contains a space—whether

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

238 Command Line Interface (CLI) Options

the space is in the XPath expression itself or in a string literal in the expression. For example:

raptorxml xslt --input=c:\Test.xml --output=c:\Output.xml --
param=date://node[1l]/@attl --p=title:'stringwithoutspace' --param=title:"'string
with spaces'" --p=amount:456 c:\Test.xslt

* updated-xml

--updated-xml = discard|writeback|asmainresult

Specifies how the updated XML file should be handled.

e discard: The update is discarded and not written to file. Neither the input file nor the output file
will be updated. Note that this is the default.
writeback: Writes the update back to the input XML file that is specified with the --input option.
asmainresult: Writes the update to the output XML file that is specified with the --output
option. If the --output option is not specified, then the update is written to the standard output. In
both cases, the input XML file will not be modified.

Default is discard

¥ Xxpath-static-type-errors-as-warnings

--xpath-static-type-errors-as-warnings = true|false
If true, downgrades to warnings any type errors that are detected in the XPath static context. Whereas an
error would cause the execution to fail, a warning would enable processing to continue. Default is false.

¥ Xxquery-update-version
--xquery-update-version = 1|1.0[3[3.0]|
Specifies whether the XQuery processor should use XQuery Update Facility 1.0 or XQuery Update Facility
3.0. Default value is 3.

¥ xquery-version
--xquery-version = 1|1.0|3[3.0]3.1
Specifies whether the XQuery processor should use XQuery 1.0 or XQuery 3.0. Default value is 3.1.

511.7 XSLT

+ chartext-disable

--chartext-disable = true|false
Disables chart extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

w dotnetext-disable

--dotnetext-disable = true|false
Disables .NET extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) Options 239

* indent-characters

--indent-characters = VALUE
Specifies the character string to be used as indentation.

* input

--input = FILE
The URL of the XML file to be transformed.

* javaext-barcode-location

--javaext-barcode-location = FILE
Specifies the path to the folder that contains the barcode extension file AltovaBarcodeExtension.jar.
The path must be given in one of the following forms:

o A file URI, for example: --javaext-barcode-location="file:///C:/Program
Files/Altova/RaptorXMLServer2025/etc/jar/"

¢ A Windows path with backslashes escaped, for example: --javaext-barcode-location="C:\
\Program Files\\Altova\\RaptorxXxMLServer2025\\etc\\jar\\"

* javaext-disable

--javaext-disable = true|false
Disables Java extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* output, xsltoutput

output = FILE, xsltoutput = FILE

The URL of the primary-output file. For example, in the case of multiple-file HTML output, the primary-
output file will be the location of the entry point HTML file. Additional output files, such as generated image
files, are reported as xslt-additional-output-files. If NO ——output or --xsltoutput option is
specified, output is written to standard output.

* param [p]
--p | —-param = KEY:VALUE

=I XQuery

Specifies the value of an external parameter. An external parameter is declared in the XQuery
document with the declare variable declaration followed by a variable name and then the
external keyword followed by the trailing semi-colon. For example:

declare variable $foo as xs:string external;
The external keyword $foo becomes an external parameter, the value of which is passed at runtime
from an external source. The external parameter is given a value with the CLI command. For
example:

—--param=foo: 'MyName'
In the description statement above, kv is the external parameter name, vALUE is the value of the
external parameter, given as an XPath expression. Parameter names used on the CLI must be
declared in the XQuery document. If multiple external parameters are passed values on the CLI, each
must be given a separate --param option. Double quotes must be used if the XPath expression
contains spaces.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

240 Command Line Interface (CLI) Options

=l XSLT

Specifies a global stylesheet parameter. kY is the parameter name, VALUE is an XPath expression
that provides the parameter value. Parameter names used on the CLI must be declared in the
stylesheet. If multiple parameters are used, the --param switch must be used before each

parameter. Double quotes must be used around the XPath expression if it contains a space—whether
the space is in the XPath expression itself or in a string literal in the expression. For example:

raptorxml xslt --input=c:\Test.xml --output=c:\Output.xml --
param=date://node[l]/@attl --p=title:'stringwithoutspace' --param=title:"'string
with spaces'" —--p=amount:456 c:\Test.xslt

¥ streaming

--streaming = true|false

Enables streaming validation. Default is true. In streaming mode, data stored in memory is minimized and
processing is faster. The downside is that information that might be required subsequently—for example, a
data model of the XML instance document—uwill not be available. In situations where this is significant,
streaming mode will need to be turned off (by giving --streaming a value of false). When using the --
script option with the valxml-withxsd command, disable streaming. Note that the --streaming option
is ignored if --parallel-assessment is set to true.

Note: Boolean option values are set to true if the option is specified without a value.

* initial-template, template-entry-point

--initial-template, --template-entry-point = VALUE
Gives the name of a named template in the XSLT stylesheet that is the entry point of the transformation.

¥ initial-mode, template-mode

--initial-mode, --template-mode = VALUE
Specifies the template mode to use for the transformation.

* xpath-static-type-errors-as-warnings

-—-xpath-static-type-errors-as-warnings = true|false
If true, downgrades to warnings any type errors that are detected in the XPath static context. Whereas an
error would cause the execution to fail, a warning would enable processing to continue. Default is false.

* Xxslt-version

--xslt-version = 1/1.0(2(2.0(3(3.0]3.1
Specifies whether the XSLT processor should use XSLT 1.0, XSLT 2.0, or XSLT 3.0. Default value is 3.

5.11.8 JSON/Avro

+ additional-schema

--additional-schema = FILE

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) Options 241

Specifies URIs of an additional schema document. The additional schema will be loaded by the main
schema and can be referenced from the main schema by the additional schemas id or $id property.

w disable-format-checks

--disable-format-checks = true|false
Disables the semantic validation imposed by the format attribute. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

¥ jsonc

--jsonc = true]|false
Enables support for comments in JSON. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

* json-lines
--json-lines = true|false

Enables support for JSON Lines (that is, one JSON value per line). Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

5119 XML Signatures

* absolute-reference-uri

--absolute-reference-uri = true|false
Specifies whether the URI of the signed document is to be read as absolute (true) or relative (false).

Default is false.
Note: Boolean option values are set to true if the option is specified without a value.

+ certname, certificate-name

--certname, --certificate-name = VALUE
The name of the certificate used for signing.

Windows
This is the Subject name of a certificate from the selected --certificate-store.

Example to list the certificates (under PowerShell

% 1ls cert://CurrentUser/My

PSParentPath: Microsoft.PowerShell.Security\Certificate::CurrentUser\My
Thumbprint Subject

CO9DF64BBOAAFS5FA73474D78B7CCFFC37C95BFC6C CN=certificatel
. CN=...

Example: --certificate-name==certificatel

Linux/MacOS

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

242 Command Line Interface (CLI) Options

--certname specifies the file name of a PEM encoded X 509Vv3 certificate with the private key. Such files
usually have the extension .pem.

xample:. --certificate-name==/path/to/certificatel.pem

+ certstore, certificate-store

--certstore, --certificate-store = VALUE
The location where the certificate specified with --certificate-name is stored.

Windows
The name of a certificate store under cert://CurrentUser. The available certificate stores can be listed
(under PowerShell) by using $ 1s cert://CurrentUser/. Certificates would then be listed as follows:

Name : TrustedPublisher
Name : ClientAuthIssuer
Name : Root

Name : UserDS

Name : CA

Name : ACRS

Name : REQUEST

Name : AuthRoot

Name : MSIEHistoryJournal
Name : TrustedPeople

Name : MyCertStore

Name : Local NonRemovable Certificates
Name : SmartCardRoot

Name : Trust

Name : Disallowed

Example: --certificate-store==MyCertStore

Linux/MacOS
The --certstore option is currently not supported.

* digest, digest-method

--digest, --digest-method = shal|sha256|sha384|sha512
The algorithm that is used to compute the digest value over the input XML file. Available values are: shal |
sha256|sha384|shab12.

* hmackey, hmac-secret-key

--hmackey, --hmac-secret-key = VALUE
The HMAC shared secret key; must have a minimum length of six characters.

Example: --hmackey=secretpassword

* hmaclen, hmac-output-length

--hmaclen, --hmac-output-length = LENGTH
Truncates the output of the HMAC algorithm to 1ength bits. If specified, this value must be

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Command Line Interface (CLI) Options 243

e a multiple of 8
e larger than 80
e larger than half of the underlying hash algorithm's output length

* Kkeyinfo, append-keyinfo

--keyinfo, --append-keyinfo = true|false
Specifies whether to include the keyInfo element in the signature or not. The default is false.

¥ sigc14nmeth, signature-canonicalization-method

--sigcl4nmeth, --signature-canonicalization-method = VALUE
Specifies the canonicalization algorithm to apply to the signedinfo element. The value must be one of:

e REC-xml-cl14n-20010315
(] xml-cl4nll
e xml-exc-clédn#

* sigmeth, signature-method

--sigmeth, --signature-method = VALUE
Specifies the algorithm to use for generating the signature.

When a certificate is used

If a certificate is specified, then signatureMethod is optional and the value for this parameter is derived
from the certificate. If specified, it must match the algorithm used by the certificate. Example: rsa-
sha256.

When --hmac-secret-key is used
When HMACSecretKey is used, then signatureMethod is mandatory. The value must be one of the

supported HMAC algorithms:
e hmac-sha256
e hmac-sha386
e hmac-sha512
e hmac-shal (discouraged by the specification)

Example: hmac-sha256

¥ sigtype, signature-type
--sigtype, --signature-type = detached | enveloping | enveloped
Specifies the type of signature to be generated.

* transforms

--transforms = VALUE
Specifies the XML Signature transformations applied to the input document. The supported values are:

REC-xml-c14n-20010315 for Canonical XML 1.0 (omit comments)

xml-c14n11 for Canonical XML 1.1 (omit comments)

xml-exc-cl4n# for Exclusive XML Canonicalization 1.0 (omit comments)
REC-xml-c14n-200103154WithComments for Canonical XML 1.0 (with comments)

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

244 Command Line Interface (CLI) Options

xml-cl4nl1#WithComments for Canonical XML 1.1 (with comments)
xml-exc-cl4n#WithComments for Exclusive XML Canonicalization 1.0 (with comments)
base64

strip-whitespaces Altova extension

Example: --transforms=xml-cl4nll

Note: This option can be specified multiple times. If specified multiple times, then the order of
specification is significant. The first specified transformation receives the input document. The last
specified transformation is used immediately before calculation of the digest value.

w write-default-attributes

--write-default-attributes = true|false
Specifies whether to include default attribute values from the DTD in the signed document.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java 245

6 Server APIs: HTTP REST, COM/.NET, Java

RaptorXML Sener defines an HTTP REST interface, which is used by clients to dispatch jobs to the sener.
Clients can either access the HTTP REST interface directly or use the high-level COM/.NET and Java Server
APIs. These APIs provide easy-to-use COM/.NET and Java classes which manage the creation and dispatch of
the HTTP REST requests. The figure below shows a summary of the available HTTP REST client methods to
communicate with the RaptorXML server.

Server APls
- -, HTTP REST Client
RaptorXML Editions
HTTP REST
* RaptorXML terface COM/.NET
* RaptorXML+XERL
- - Java

There are three server APls that can be used to communicate with RaptorXML via the HTTP REST interface
(also see figure above).

e HTTP REST client interface @9
e COM/NET AP|&S3
e Java API

Note: The server APIs offer similar functionality as the command line interface (CLI)@. This includes validation
and document transformations. If you wish to use advanced functionality, such as reading, extracting, and
analysing data, then use the Engine APIs. The Engine APIs can provide additional information such as the
count of elements, their positions in the document, and complex XBRL data access and manipulation.

Usage

RaptorXML Server should be installed on a machine that is accessible by clients over the local network. Once
the RaptorXML Server senice has been started, clients can connect to the server and issue commands. The
following access methods are labeled as Server APIs because they provide a way to communicate with a
remote RaptorXML sener.

e HTTP REST client interface®®: Client requests are made in JSON format as described in the section
HTTP REST Client Interface®®. Each request is assigned a job directory on the server, in which output
files are saved. The server responds to the client with all the information relevant to the job.

o COM/.NET API®® and Java APIED. Applications and scripts in COM/.NET prog'ramming
languages “? and Java“# applications use objects of the RaptorXML Server API to access
functionality of RaptorXML Server. The RaptorXML Server API will issue the corresponding HTTP
REST requests on behalf of the client. See the respective sub-sections for more information.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

246 Server APIs: HTTP REST, COM/.NET, Java

Licensing
RaptorXML Server is licensed on the machine on which it is installed. Connections to RaptorXML Server are
made via HTTP.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java

HTTP

REST Client Interface 247

6.1

HTTP REST Client Interface

RaptorXML Senrver accepts jobs submitted via HTTP (or H'I'I'PS). The job description as well as the results
are exchanged in JSON format. The basic workflow is as shown in the diagram below.

HTTP Client

RaptorXML Server
as HTTP Server

POST

v

Result-Doc-URI

GET

Job status ol

Result Document

GET

0 L
I=running

Requested Doc/s

DELETE

Y

1) HTTP POST request
with JSON body sent to
RaptorXML Server.

2} BaptorXL retums URI
of result docurment in

JSON format.

3} HTTF GET request for
resuff doc uses sent UR!,
after job sfatus on server
not equal to ‘RUNNING'

4) RaptorXML returns JSON
result doctment,

8} HTTP GET request fo
fetch logs and output
documents listed in
JSON result docurment,

6} RaptorXhL returns
requested document’s,

7) HTTP DELETE request
deletes resource on
server, freeing hard
disk space.

Security concerns related to the HTTP REST interface

The HTTP REST interface, by default, allows result documents to be written to
any location specified by the client (that is accessible with the HTTP protocol).

© 2019-2025 Altova GmbH

Altova RaptorXML Server 2025

248 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

It is important therefore to consider this security aspect when configuring
RaptorXML Sener.

If there is a concern that security might be compromised or that the interface
might be misused, the server can be configured to write result documents to a
dedicated output directory on the server itself. This is specified by setting the
server .unrestricted—filesystem—access option of the server
configuration file to false. When access is restricted in this way, the client can
download result documents from the dedicated output directory with GET
requests. Alternatively, an administrator can copy/upload result document files
from the senver to the target location.

In this section

Before sending a client request, RaptorXML Server must be started and properly configured. How to do this is
described in the section Server Setup. How to send client requests is described in the section Client
Requests {2508 Finally, the section C# Example for REST AP|ED provides a description of the REST API
example file that is installed with your RaptorXML Server package.

6.1.1 Server Setup

RaptorXML must be licensed on the machine on which it is installed. This installation can then be accessed via
an HTTP REST Interface®?. To correctly set up RaptorXML Senrwver, do the following. We assume that
RaptorXML Sener has already been correctly installed® and Jicensed €.

1. RaptorXML Server must be either started as a senice or an application in order for it to be correctly
accessed via HTTP or HTTPS. How to do this differs according to operating system and is described
here: on Windows, on Linux®® on macos @,

2. Use the initial server configuration to test the connection to the server & (The initial server
conﬁguration is the default configuration you get on installation.) You can use a simple HTTP GeT
request like http://localhost:8087/vl/version to test the connection. (The request can also be
typed in the address bar of a browser window.) If the senvice is running you must get a response to an
HTTP test request such as the version request above .

3. Look at the server configuration ﬁle, server config.xml. If you wish to change any settings in
the file, edit the server configuration file and save the changes. HTTPS is disabled by default, and will
need to be enabled in the configuration file &D

4. If you have edited the server configuration ﬁle, then restart RaptorXML Server as a senvice so that
the new configuration settings are applied. Test the connection again to make sure that the senice is

running and accessible.

Note: Senrver startup errors, the server configuration file that is used, and license errors are reported in the
system log. So, refer to the system Iog® if there are problems with the server.

For more information about HTTPS, see the section HTTPS Settings.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface 249

6.1.1.1 Starting the Server
This section:

e | ocation of the Server executable

e Starting RaptorXML as a senice on Windows
e Starting RaptorXML as a senice on Linux
e Starting RaptorXML as a senice on macOS

Location of the Server executable file
The RaptorXML Senrver executable is installed by default in the folder:

<ProgramFilesFolder>\Altova\RaptorXxMLServer2025\bin\RaptorXML.exe

The executable can be used to start RaptorXML Server as a senice.

Starting as a service on Windows

The installation process will have registered RaptorXML Server as a senice on Windows. You must, however,
start RaptorXML Server as a senvice. You can do this in the following ways:

e Via the Altova SeniceController, which is available as an icon in the system tray. If the icon is not
available, you can start Altova SeniceController and add its icon to the system tray by going to the
Start menu, then selecting All Programs | Altova | Altova LicenseServer | Altova
ServiceController.

e Viathe Windows Senices Management Console: Control Panel | All Control Panel Items |
Administrative Tools | Services.

e Via the command prompt started with administrator rights. Use the following command under any
directory: net start "AltovaRaptorXMLServer"

e Via the RaptorXML Server executable in a command prompt window: RaptorXMLServer.exe debug.
This starts the server, with server activity information going directly to the command prompt window.
The display of server activity information can be turned on and off with the http.log—screen setting
of the server configuration file @ To stop the server, press Ctrl+Break (or Ctrl+Pause). When the
server is started this way—rather than as a senice as described in the three previous steps—the
server will stop when the command line console is closed or when the user logs off.

Starting as a service on Linux
Start RaptorXML Server as a senice with the following command:

[< Debian 8] sudo /etc/init.d/raptorxmlserver start
[2 Debian 8] sudo systemctl start raptorxmlserver
[< CentOS 7] sudo initctl start raptorxmlserver

[2 CentOS 7] sudo systemctl start raptorxmlserver
[< Ubuntu 15] sudo initctl start raptorxmlserver

[2 Ubuntu 15] sudo systemctl start raptorxmlserver
[RedHat] sudo initctl start raptorxmlserver

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

250 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

If at any time you need to stop RaptorXML Server, use:

[< Debian 8] sudo /etc/init.d/raptorxmlserver stop
[2 Debian 8] sudo systemctl stop raptorxmlserver
[< CentOSs 7] sudo initctl stop raptorxmlserver

[2 CentOS 7] sudo systemctl stop raptorxmlserver
[< Ubuntu 15] sudo initctl stop raptorxmlserver

[2 Ubuntu 15] sudo systemctl stop raptorxmlserver
[RedHat] sudo initctl stop raptorxmlserver

Starting as a service on macOS
Start RaptorXML Server as a senice with the following command:

sudo launchctl load /Library/LaunchDaemons/com.altova.RaptorXMLServer2025.plist

If at any time you need to stop RaptorXML Server, use:

sudo launchctl unload /Library/LaunchDaemons/com.altova.RaptorXMLServer2025.plist

6.1.1.2 Testing the Connection

This section:

e GET request to test the connection
e Sener response and JSON data structure Iisting

GET request to test the connection

After RaptorXML Server has been started, test the connection using a GET request. (You can also type this
request in the address bar of a browser window.)

http://localhost:8087/vl/version

Note: The interface and port number of RaptorXML Senver is specified in the server configuration file,
server config.xml, which is described in the next section, Server Conﬁguration.

Server response and JSON data structure listing

If the senice is running and the senver is correctly configured, the request should never fail. RaptorXML Server
will return its version information as a JSON data structure (listing below).

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface 251

{

"copyright": "Copyright (c) 1998-2013 Altova GmbH. ..."

"name": "Altova RaptorXML+XBRL Server 2013 rel. 2 spl"

"eula": "http://www.altova.com/server_software_1license_agreement.html"
}

Note: If you modify the server configuration—by editing the server configuration ﬁle—you should test the
connection again.

6.1.1.3 Configuring the Server

This section:

Server configuration file: Ilstlng and settings

Server configuration file: descriEtion of settings
Configuring the server address

Server configuration file: initial settings

RaptorXML Server is configured by means of a configuration file called server config.xml, which is located
by default at:

C:\Program Files (x86)\Altova\RaptorXMLServer2025\etc\server config.xml
The initial configuration for RaptorXML Server defines the following:

e A port number of 8087 as the server's port.

e That the server listens only for local connections (1ocalhost).

e That the server writes output to C:\ProgrambData\Altova\RaptorXMLServer2025\Output\.
Other default settings are shown in the Iisting@ of server config.xml below.

Server configuration file: modifying the initial settings, reverting to initial settings

If you wish to change the initial settings, you must edit the server configuration file, server config.xml (see
listing below@), sawe it, and then restart RaptorXML Server as a senice.

If you wish to recreate the original server configuration file (so that the server is configured with the initial
settings again), run the command createconfig:

RaptorXMLServer.exe createconfig
On running this command, the initial settings file will be recreated and will overwrite the file

server config.xml. The createconfig command is useful if you wish to reset server configuration to the
initial settings.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

252

Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

Server configuration file: listing and settings

The

senver configuration file, server_config.xml, is listed below with initial settings. Settings available in it are

explained below the listing.

server config.xml

<config xmlns="http://www.altova.com/schemas/altova/raptorxml/config"

xsi:schemaLocation="http://www.altova.com/schemas/altova/raptorxml/config
http://www.altova.com/schemas/altova/raptorxml/config.xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<language>en</language>
<server.unrestricted-filesystem-access>true</server.unrestricted-filesystem-access>
<server.output-root-dir>C:
\ProgramData\Altova\RaptorXMLServer2025\output\</server.output-root-dir>
<server.script-root-dir>C:\Program
Files\Altova\RaptorxMLServer2025\etc\scripts\</server.script-root-dir>
<!--<server.default-script-api-version>2</server.default-script-api-version>-->
<!--<server.catalog-file>catalog.xml</server.catalog-file>-=>
<!--<server.log-file>C:
\ProgramData\Altova\RaptorXMLServer2025\Log\server.log</server.log-file>-->

<http.enable>true</http.enable>

<http.environment>production</http.environment>
<http.socket-host>127.0.0.1</http.socket-host>
<http.socket-port>8087</http.socket-port>

<http.log-screen>true</http.log-screen>
<http.access-file>C:\ProgramData\Altova\RaptorxMLServer2025\Log\access.log</http.access-
file>
<http.error-file>C:\ProgramData\Altova\RaptorxMLServer2025\Log\error.log</http.error-
file>

<https.enable>false</https.enable>
<https.socket-host>127.0.0.1</https.socket-host>
<https.socket-port>443</https.socket-port>

<https.private-key>C:\Program
Files\Altova\RaptorxXMLServer2025\etc\cert\key.pem</https.private-key>
<https.certificate>C:\Program
Files\Altova\RaptorxMLServer2025\etc\cert\cert.pem</https.certificate>
<!--<https.certificate-chain>/path/to/chain.pemn</https.certificate-chain>-->

<syslog.enabled>true</syslog.enabled>
<syslog.protocol>BSD UDP</syslog.protocol>
<syslog.host>localhost</syslog.host>
<syslog.port>514</syslog.port>

</config>

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface 253

Settings
The settings are divided into the following parts: (i) General server settings; (ii) HTTP; (iii) HTTPS; (iv) Syslog.

General server settings

language

Sets the language of server messages, in an optional 1anguage element. The default value is en (English).
Allowed values are en|de|es|fr|ja (English, German, Spanish, French, and Japanese, respectively). See
Localization Commands &2 for an overview of how to localize RaptorXML.

server.unrestricted-filesystem-access

e When set to true (the default value), output files will be written directly to the location specified by the
user and in Python scripts (possibly overwriting existing files of the same name). Note, however, that
local file paths cannot be used to access files from a remote machine via HTTP. So, if RaptorXML
Server is running on a remote machine, set the value of this option to false. Setting the value to true
is only viable if the client and server are on the same machine and you want to write the output files to
a directory on that machine.

e When set to false, files will be written to the job's directory in the output directou@, and the URIs of
these files will be included in the result document &P Setting the value to false provides a layer of
security, since files can be written to disk only in a dedicated and known job directory on the server.
Job output files can subsequently be copied by trusted means to other locations.

server.output-root-dir
Directory in which the output of all submitted jobs is saved.

server.script-root-dir

Directory in which trusted Python scripts@ are to be saved. The script option, when used via the HTTP
interface, will only work when scripts from this trusted directory are used. Specifying a Python script from any
other directory will result in an error. See Making Python Scripts Safe’® .

server.default-script-api-version
Default Python API version used to run Python scripts. By default the newest version of the Python APl is
used. Currently supported values are 1 and 2.

server.catalog-file

URL of the XML catalog file to use. By default, the catalog file RootCatalog.xml, which is located in the folder
<ProgramFilesFolder>\Altova\RaptorxMLServer2025\etc, Will be used. Use the server.catalog-file
setting only if you wish to change the default catalog file.

server.log-file

Name and location of the server log file. Events on the server, like Server started/stopped, are logged
continuously in the system's event log and displayed in a system event viewer such as Windows Event Viewer.
In addition to the viewer display, log messages can also be written to the file specified with the server.1log-

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

254 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

file option. The server log file will contain information about all activities on the server, including server startup
errors, the configuration file used, and license errors.

http
http.enable

A boolean value to enable or disable HTTP: true | false. HTTP can be enabled/disabled independently of
HTTPS, and both can be active concurrently.

http.environment
Internal environments of raptorxml: production | development. The Development environment will be more
geared to the needs of dewvelopers, allowing easier debugging than when the Production environment is used.

http.socket-host

The interface via which RaptorXML Senver is accessed. If you wish RaptorXML Server to accept connections
from remote machines, uncomment the element and set its content to: 0.0.0.0, like this: <http.socket-
host>0.0.0.0</http.socket-host>. This hosts the senice on every addressable interface of the server
machine. In this case, ensure that firewall settings are suitably configured. Inbound firewall exceptions for
Altova products must be registered as follows: Altova LicenseServer: port 8088; Altova RaptorXML Server: port
8087; Altova FlowForce Server: port 8082.

http.socket-port
The port via which the senvice is accessed. The port must be fixed and known so that HTTP requests can be
correctly addressed to the senvice.

http.log-screen

If RaptorXML Server is started with the command RaptorxXMLServer.exe debug, (see Starting the Server@)
and if http.log-screen is set to true, then server activity is displayed in the command line console.
Otherwise server activity is not displayed. The log screen is displayed in addition to the writing of log files.

http.access-file
Name and location of the HTTP access file. The access file contains information about access-related activity.
It contains information that is useful for resolving connection issues.

http.error-file
Name and location of the HTTP error file. The error file contains errors related to traffic to and from the senver. If
there are connection problems, this file can provide useful information towards resolving them.

http.max request body size

This option specifies the maximum size, in bytes, of the request body that RaptorXML Server accepts. The
default value is 100 MB. If the size of a request body is larger than the value specified for this option, then the
senver responds with HTTP Error 413: Request entity too large. The option's value must be greater than
or equal to zero. The limit can be disabled by setting http.max request body size=0.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface 255

https

https.enable

A boolean value to enable or disable HTTPS: true | false. HTTPS can be enabled/disabled independently of
HTTP, and both can be active concurrently. HTTPS support is disabled by default and must be enabled by
changing the value of this setting to true.

https.socket-host

Takes a string value which is the host address on which HTTPS connections are accepted. To accept
connections from the local host only, set localhost or 127.0.0.1. If you wish RaptorXML Senrver to accept
connections from all remote machines, set the value to: 0.0.0.0, like this: <https.socket-
host>0.0.0.0</https.socket-host>. This hosts the serice on every addressable interface of the server
machine. In this case, ensure that firewall settings are suitably configured. Inbound firewall exceptions for
Altova products must be registered as follows: Altova LicenseServer: port 8088; Altova RaptorXML Server: port
8087; Altova FlowForce Server: port 8082. You can also use IPv6 addresses such as: '::'.

https.socket-port
An integer value that is the port on which HTTPS is accepted. The port must be fixed and known so that HTTP
requests can be correctly addressed to the senvice.

https.private-key, https.certificate

URIs that are the paths, respectively, to the server's private key and certificate files. Both are required. See
HTTPS Settings and Setting Up SSL Encryption for more information. On Windows machines, you can
also use Windows paths.

https.certificate-chain
An optional setting, this is a URI which locates the intermediate certificate file. If you have two intermediate
certiﬁcatesgimary and secondary), then combine them into one file as described in Step 7 at Setting Up SSL

Encryption™#. See HTTPS Settings@ and Setting Up SSL Encuption for more information.
Syslog

syslog.enabled
A boolean value to enable or disable system logging: true | false. The default is true. When the server is
started with the Debug command, this setting is ignored and logs are shown in the console.

syslog.protocol
The protocol used for remote system logging: Bsb uDP or BSD TCP. The setting is ignored when syslog.host
is localhost (Or 127.0.0.10r ::1).

syslog.host
The name or IP-address of the logging host. The default is 1ocalhost. Logging to 1ocalhost on Windows
systems uses the Windows event logger. Logging to 1ocalhost on other systems uses Syslog (RFC3164).

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

256 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

syslog.port

An integer value that is the port on which the Syslog service accepts connections. The port is typically 514 or
601 or 6514. The default is 514. The setting is ignored when syslog.host iS localhost (Or 127.0.0.1 Or ::1).
Logging to 1ocalhost on Windows systems uses the Windows event logger. Logging to 1ocalhost on other
systems uses a local Unix domain socket connection.

The RaptorXML Server address

The HTTP address of the server consists of the socket-host and socket-port:
http://{socket-host}:{socket-port}/

The address as set up with the initial configuration will be:
http://localhost:8087/

To change the address, modify the http.socket-host and http.socket-port settings in the server

configuration file, server config.xml. For example, say the server machine has an IP address of

123.12.123.1, and that the following server configuration settings have been made:
<http.socket-host>0.0.0.0</http.socket-host>
<http.socket-port>8087</http.socket-port>

RaptorXML Senrver can then be addressed with:
http://123.12.123.1:8087/

Note: After server config.xml has been modified, RaptorXML Server must be restarted for the new values to
be applied.

Note: If there are problems connecting to RaptorXML Server, information in the files named in http.access-
file and http.error-file can help resolve issues.

Note: Messages submitted to RaptorXML Server must contain path names that are valid on the server
machine. Documents on the server machine can be accessed either locally or remotely (in the latter case with
HTTP URIs, for example).

6.1.1.4 HTTPS Settings

RaptorXML Server supports startup not only as an HTTP server, but also as an HTTPS server. Both types of
connection may be active concurrently.

Enabling HTTPS

HTTPS support is disabled by default. To enable HTTPS, in the server configuration ﬁle@,
server config.xml, change the https.enable setting to true. Modify the various HTTPS settings of the
configuration file €D according to your server requirements.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface 257

Private key and certificate
You can obtain a private key and certificate files in one of the following ways:
e From a certificate authority: Follow the steps described in the section Setting Up SSL Enc:yption.
e Create a self-signed certificate by using the following OpenSSL command (suitably modified for your
environment):

openssl req -x509 -newkey rsa:4096 -nodes -keyout key.pem -out cert.pem -days 365 -
subj "/C=AT/ST=vienna/L=vienna/O=Altova Gmbh/OU=dev/CN=www.altova.com"

Testing the connection

A good way to test your connection is via the curl command line tool for transferring data with URLs. You can
use the following command:

curl.exe https://localhost:443/vl/version
If the certificate is not trusted, use the -k option, like this:
curl.exe -k https://localhost:443/vl/version
The following command executes the HTTP Python example that is distributed with RaptorXML Senver:

python3.exe examples\ServerAPI\python\RunRaptorXML.py --host localhost -p 443 -s

6.1.1.5 Setting Up SSL Encryption

If you wish to encrypt your RaptorXML Server data transfers using the SSL protocol, you will need to:

e Generate an SSL private key and create an SSL public key certificate file
e Set up RaptorXML Senver for SSL communication.

The steps to do this are listed below.

This method uses the open-source OpenSSL toolkit to manage SSL encryption. The steps listed below,
therefore, need to be carried out on a computer on which OpenSSL is available. OpenSSL typically comes pre-
installed on most Linux distributions and on macOS machines. It can also be installed on Windows computers.
For download links to installer binaries, see the OpenSSL Wiki.

To generate a private key and obtain a certificate from a certificate authority, do the following:

1. Generate a private key

SSL requires that a private key is installed on RaptorXML Server. This private key will be used to
encrypt all RaptorXML Server data. To create the private key, use the following OpenSSL command:
openssl genrsa -out private.key 2048

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://curl.haxx.se/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
https://www.openssl.org/community/binaries.html
https://wiki.openssl.org/index.php/Binaries

258 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

This creates a file called private.key, which contains your private key. Note where you save the
file. You will need the private key to (i) generate the Certificate Signing Request (CSR), and (ii) be
installed on RaptorXML Senver.

2. Certificate Signing Requests (CSRs)

A Certificate Signing Request (CSR) is sent to a certificate authority (CA), such as VeriSign or

Thawte, to request a public key certificate. The CSR is based on your private key and contains

information about your organization. Create a CSR with the following OpenSSL command (which

provides the private-key file, private.key, that was created in Step 1, as one of its parameters):
openssl req -new -nodes -key private.key -out my.csr

During generation of the CSR you will need to give information about your organization, such as that
listed below. This information will be used by the certificate authority to verify your company's
identity.

e Country

o Locality (the city where your business is located)

e Organization (your company name). Do not use special characters; these will invalidate your
certificate

o Common Name (the DNS name of your server). This must exactly match your server's

official name, that is, the DNS name client apps will use to connect to the server
o A challenge password. Keep this entry blank!

3. Buy an SSL certificate

Purchase an SSL certificate from a recognized certificate authority (CA), such as VeriSign or
Thawte. For the rest of these instructions, we follow the VeriSign procedure. The procedure with
other CAs is similar.

e Go to the VeriSign website.
e Click Buy SSL Certificates.

Different types of SSL certificates are available. For RaptorXML Server, Secure Site or
Secure Site Pro certificates should be sufficient. EV (extended verification) is not necessary,
since there is no "green address bar" for users to see.

e Proceed through the sign-up process, and fill in the information required to place your order.

e When prompted for the CSR (created in Step 2), copy and paste the content of the my.csz
file into the order form.

e Pay for the certificate with your credit card.

Allow time for obtaining a certificate

Obtaining public key certificates from an SSL certificate authority (CA) typically takes two to
three business days. Please take this into account when setting up your RaptorXML Server.

4. Receive public key from CA

Your certificate authority will complete the enroliment process over the next two to three business

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

http://www.verisigninc.com/?loc=en_US
http://www.thawte.com/
http://www.verisigninc.com/?loc=en_US
http://www.thawte.com/
http://www.verisign.com/

Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface 259

days. During this time you might get emails or phone calls to check whether you are authorized to
request an SSL certificate for your DNS domain. Please work with the authority to complete the
process.

Atter the authorization and enrollment process has been completed, you will get an email containing
the public key of your SSL certificate. The public key will be in plain text form or attached as a .cer
file.

5. Sawe public key to file

For use with RaptorXML Senrver, the public key must be saved in a . cer file. If the public key was
supplied as text, copy-paste all the lines from

--BEGIN CERTIFICATE--
-—-END CERTIFICATE--

into a text file that we will call mycertificate.cer.

6. Sawe CA's intermediate certificates to file

To complete your SSL certificate, you will need two additional certificates: the primary and
secondary intermediate certificates. Your certificate authority (CA) will list content of intermediate
certificates on its website.

e Verisign's intermediate certificates: https://knowledge.verisign.com/support/ssl-certificates-
support/index?page=content&id=AR657&actp=LIST&viewlocale=en_US

e \Verisign's intermediate certificates for its Secure Site product:
https://knowledge.verisign.com/support/ssi-certificates-support/index?
page=content&id=AR1735

Copy-paste both intermediate certificates (primary and secondary) into separate text files and save
them on your computer.

7. Optionally combine certificates in one public key certificate file

You now hawe three certificate files:

e Public key (mycertificate.cer)
e Secondary intermediate certificate
e Primary intermediate certificate

You can integrate your intermediate certificates into your public key certificate if you like. How to do
this is described below. (Alternatively, you can use the https.certificate-chain configuration file
setting@ to specify the location of intermediate certificates.)

Each contains text blocks bracketed by lines that look like this:
--BEGIN CERTIFICATE--

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://knowledge.verisign.com/support/ssl-certificates-support/index?page=content&id=AR657&actp=LIST&viewlocale=en_US
https://knowledge.verisign.com/support/ssl-certificates-support/index?page=content&id=AR657&actp=LIST&viewlocale=en_US
https://knowledge.verisign.com/support/ssl-certificates-support/index?page=content&id=AR1735
https://knowledge.verisign.com/support/ssl-certificates-support/index?page=content&id=AR1735

260 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

-—-END CERTIFICATE--

Now copy-paste all three certificates into one file so that they are in sequence. The order of the
sequence is important: (i) public key, (ii) secondary intermediate certificate, (iii) primary intermediate
certificate. Ensure that there are no lines between certificates.
--BEGIN CERTIFICATE--
public key from mycertificate.cer (see Step 5)
-—END CERTIFICATE--
--BEGIN CERTIFICATE--
secondary intermediate certificate (see Step 6)
-—END CERTIFICATE--
--BEGIN CERTIFICATE--
primary intermediate certificate (see Step 6)
-—END CERTIFICATE--

Save the resulting combined certificate text to a file named publickey.cer . This is the public key
certificate file of your SSL certificate. It includes your public key certificate as well as the complete
chain of trust in the form of the intermediate certificates that were used by the CA to sign your
certificate.

6.1.2 Client Requests

After RaptorXML Server has been started as a service, its functionality can be accessed by any HTTP client
which can:

e use the HTTP methods GET, PUT, POST, and DELETE
e set the Content-Type header field

An easy-to-use HTTP client

There are a number of web clients available for download from the Internet. An easy-to-use and reliable
web client we found was Mozilla's RESTClient, which can be added as a Firefox plugin. It's easy to
install, supports the HTTP methods required by RaptorXML, and provides sufficiently good JSON syntax
coloring. If you have no previous experience with HTTP clients, you might want to try RESTClient. Note,
however, that installation and usage of RESTClient is at your own risk.

A typical client request would consist of a series of steps as shown in the diagram below.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

https://addons.mozilla.org/de/firefox/addon/restclient/
https://addons.mozilla.org/de/firefox/addon/restclient/
https://addons.mozilla.org/de/firefox/addon/restclient/

Server APIs: HTTP REST, COM/.NET, Java

HTTP

REST Client Interface 261

HTTP Client

RaptorXML Server
as HTTP Server

POST

Result-Doc-URI

kL J

GET

Job status o

= Ll
=Ly

Result Document

GET

Requested Doc/s

DELETE

Y

1) HTTP POST reqguest
with JSON body sent to
RapforXML Server,

2} RaptorXtL returns URYS
of result docurmant in
JSON format,

3) HTTF GET request for
result doc uses senf URY
after job status on server
not equal to 'RUNNING',

4} RaptorXML returns JSOM
result document.

5) HTTP GET request lo
fetch logs and oulput
documents listed in
JSON rasult docurment,

8) RaptorXML refurns
requested document/s,

7) HTTP DELETE request
deletes resource on
servar, freeing hard
disk space.

The important points about each step are noted below. Key terms are in bold.

1. An HTTP posT method is used to make a reguest, with the body of the request being in JSON
format. The request could be for any functionality of RaptorXML Server. For example, the request
could be for a validation, or for an XSLT transformation. The commands, arguments, and options used

in the request are the same as those used on the command line

. The request is posted to:

http://localhost:8087/v1/queue, assuming localhost:8087 is the address of RaptorXML Server
(the initial address of the server). Such a request is termed a RaptorXML Server job.

2. Ifthe request is received and accepted for processing by RaptorXML Server, a result document
containing the results of the server action will be created after the job has been processed. The URI of
this result document (the Result-Doc-URI in the diagram abowe), is returned to the client®D. Note

© 2019-2025 Altova GmbH

Altova RaptorXML Server 2025

262 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

that the URI will be returned immediately after the job has been accepted (queued) for processing and
ewen if processing has not been completed.

3. The client sends a request for the result document €9 (using the result document URI) in a GET method
to the server. If processing of the job has not yet started or has not yet been completed at the time the
request is received, the server returns a status of Running. The GET request must be repeated till such
time that job processing has been completed and the result document been created.

4. RaptorXML Server returns the result document in JSON format ©. The result document might contain
the URIs of error or output documents produced by RaptorXML Server processing the original
request. Error logs are returned, for example, if a validation returned errors. Primary output documents,
such as the result of an XSLT transformation, are returned if an output-producing job is completed
successfully.

5. The client sends the URIs of the output documents &2 received in Step 4 via an HTTP ceT method to
the server. Each request is sent in a separate GET method.

6. RaptorXML Senrer returns the requested documents € in response to the GET requests made in Step
5.

7. The client can delete unwanted documents on the server & that were generated as a result of a job
request. This is done by submitting, in an HTTP pDELETE method, the URI of the result document in
question. All files on disk related to that job are deleted. This includes the result document file, any
temporary files, and error and output document files. This step is useful for freeing up space on the
senver's hard disk.

The details of each step are described in the sub-sections of this section.

6.1.2.1 Initiating Jobs with POST

This section:

Sending the reguest
JSON syntax for POST reguests@

Uploading files with the POST reguest@
Uploading ZIP_archives

Sending the request
A RaptorXML Senver job is initiated with the HTTP posT method

HTTP Method URI Content-Type Body

POST http://localhost:8087/v1/queue/ application/json JSON

Note the following points:

e The URI abowe has a server address that uses the settings of the initial conﬁguration@.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface 263

e The URIl has a /v1/queue/ path, which must be present in the URI. It can be considered to be an
abstract folder in memory into which the job is placed.

e The correct version number /vN is the one that the server returns (and not necessarily the one in this
documentation). The number that the server returns is the version number of the current HTTP
interface. Previous version numbers indicate older versions of the HTTP interface, which are still
supported for backward compatibility.

e The header must contain the field: content-Type: application/json. However, if you wish to upload
files within the body of the posT request, then the message header must hawve its content type set to
multipart/form—data&e. Content-Type: multipart/form-data). See the section Uploading files
with the POST request for details.

e The body of the request must be in JSON format.

e Files to be processed must be on the server. So files must either be copied to the server before a
request is made, or be uploaded along with the POST reguest@. In this case the message header
must hawe its content type set to multipart/form-data. See the section Uploading files with the
POST reguest@ below for details.

To check the well-formedness of an XML file, the request in JSON format would look something like this:
{
"command": "wfxml", "args": ["file:///c:/Test/Report.xml"]

}

Valid commands, and their arguments and options, are as documented in the Command Line section®.

JSON syntax for HTTP POST requests

"command" : "Command-Name",
"options": {"optl": "optl-value", "opt2": "opt2-value"},
"args" : ["file:///c:/filenamel", "file:///c:/filename2"]

o All black text is fixed and must be included. This includes all braces, double quotes, colons,
commas, and square brackets. Whitespace can be normalized.

¢ Blue italics are placeholders and stand for command names, options and option values, and argument
values. Refer to the command line section © for a description of the commands.

e The command and args keys are mandatory. The options key is optional. Some options keys have
default values; so, of these options, only those for which the default values need to be changed need
be specified.

o All strings must be enclosed in double quotes. Boolean values and numbers must not have quotes.
So: {"error-1imit": "unlimited"} and {"error-limit": 1} is correct usage.

¢ Notice that file URIs—rather than file paths—are recommended and that they use forward slashes.
Windows file paths, if used, take backslashes. Furthermore, Windows file-path backslashes must be

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

264 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

escaped in JSON (with backslash escapes; so "c:\\dir\\filename"). Note that file URIs and file
paths are strings and, therefore, must be in quotes.

Here is an example with options. Notice that some options (like input or xslt-version) take a straight option
value, while others (like param) take a key-value pair as their value, and therefore require a different syntax.

{
"command": "xslt",
"args": [
"file:///C:/Work/Test.xslt"
I
"options": {
"input": "file:///C:/Work/Test.xml",
"xslt-version": "1",
"param": {
"key": "myTestParam",
"value": "SomeParamValue"

}s
"output": "file:///C:/temp/out2.xml"

}

The example below shows a third type of option: that of an array of values (as for the xsd option below). In this
case, the syntax to be used is that of a JSON Array.

{
"command": "xsi",
vvargsu: [
"file:///C:/Work/Test.xml"
J r

"options": {
"xsd"™ : ["file:///C:/Work/Filel.xsd", "file:///C:/Work/File2.xsd"]

}

Uploading files with the POST request

Files to be processed can be uploaded within the body of the pPosT request. In this case, the PosT request
must be made as follows.

Request header
In the request header, set content-Type: multipart/form-data and specify any arbitrary string as the

boundary. Here is an example header:
Content-Type: multipart/form-data; boundary=---PartBoundary

The purpose of the boundary is to set the boundaries of the different form-data parts in the request body (see
below).

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface 265

Request body: Message part
The body of the request has the following form-data parts, separated by the boundary string specified in the
request header (see above):

e Mandatory form-data parts: msg, which specifies the processing action requested, and args, which
contains the files to be uploaded as the argument/s of the command specified in the msg form-data
part. See the listing below.

e Optional form-data part: A form-data part name additional-files, which contains files referenced

from files in the msg or args form-data parts. Additionally form-data parts named after an option of the
command can also contain files to be uploaded.

Note: All uploaded files are created in a single virtual directory.

See Example-1 (with CaIIouts!: Validate XML E for a detailed explanation of the code, and Example-2: Using a
Catalog to Find the Schema**¥.

Testing with CURL

You can use a third-party data-transfer application such as CURL (http://curl.haxx.se/) to test the POST
request. CURL provides a helpful trace option that generates and lists the part boundaries of the
requests. This will save you the task of manuallécreating the part boundaries. How you can use CURL
is described in the section, Testing with CURL =+,

Uploading ZIP archives

ZIP archives can also be uploaded, and files within a ZIP can be referenced by using the additional-files
scheme. For example:

additional-files:///mybigarchive.zip%7Czip/biginstance.xml
Note: The | zip/ part needs to be URI-escaped as $7czip/ in order to conform to the URI RFC since the pipe
| symbol is not directly allowed. The use of glob patterns (* and ?) is also allowed. So you can use something
like this to validate all XML files within the ZIP archive:
{"command": "xsi", "args": ["additional-files:///mybigarchive.zip%7Czip/*.xml"], "options":

{...1}

See Example-3: Using ZIP Archives € for a listing of example code.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

http://curl.haxx.se/

266 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

6.1.2.1.1 Example-1 (with Callouts): Validate XML

Given below is a listing of the body of a pPosT request. It has numbered callouts that are explained below. The
command submitted in the listing request would have the following CLI equivalent:

raptorxml xsi First.xml Second.xml --xsd=Demo.xsd

The request is for the validation of two XML files according to a schema. The body of the request would look
something like this, assuming that ---pPartBoundary has been specified in the header as the boundary string
(see Request Header€® above).

————— PartBoundary 1
Content-Disposition: form-data; name="msg"
Content-Type: application/json

{"command": "xsi", "options": {} , "args": []} 2

————— PartBoundary 3
Content-Disposition: attachment; filename="First.xml"; name="args"
Content-Type: application/octet-stream

<?xml version="1.0" encoding="UTF-8"?> 4
<test xsi:noNamespaceSchemalLocation="Demo.xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">42</test>

————— PartBoundary 5
Content-Disposition: attachment; filename="Second.xml"; name="args"
Content-Type: application/octet-stream

<?xml version="1.0" encoding="UTF-8"?> 6
<test xsi:noNamespaceSchemalocation="Demo.xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">35</test>

————— PartBoundary 7
Content-Disposition: attachment; filename="Demo.xsd"; name="additional-files"
Content-Type: application/octet-stream

<?xml version="1.0" encoding="UTF-8"7?> 8
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="test" type="xs:int"/>
</xs:schema>

————— PartBoundary-- o)

1 The name of the main form-data part boundaries are declared in the request header® . The
part boundary separator must be a unique string that will not occur anywhere in the

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

267

embedded documents. It is prefixed with two dashes and is used to separate the multiple
parts. The first form-data part in this example is msg. Note that the content type is
application/json.

2 This is the standard syntax for HTTP POST requests e args contains a reference to a file
and if additional files are uploaded, both sets of files will be passed to the server.

3 The first member of the args array is a file attachment called First.xml.

4 The text of the file First.xml. It contains a reference to a schema called Demo . xsd, which
will also be uploaded—in the additional-files form-data part.

5 The second member of the args array is an attachment called second. xm1.

6 The text of the file second.xml. It too contains a reference to the schema bemo.xsd. See
callout 7.

7 The first additional files part contains the bemo. xsd attachment metadata.
8 The text of the file bemo. xsd.

9 The end of the pemo . xsd additional files part, and the additional-files form-data part.
Note that the last part boundary separator is both prefixed and postfixed with two dashes.

6.1.2.1.2 Example-2: Use a Catalog to Find the Schema

In this example, a catalog file is used to find the XML schema that is referenced by the XML files to be
validated.

————— PartBoundary
Content-Disposition: form-data; name="msg"
Content-Type: application/json

{"command": "xsi", "args": ["additional-files:///First.xml", "additional-
files:///Second.xml"], "options": {"user-catalog": "additional-files:///catalog.xml"}}

————— PartBoundary
Content-Disposition: attachment; filename="First.xml"; name="additional-files"
Content-Type: application/octet-stream

<?xml version="1.0" encoding="UTF-8"?>
<test xsi:noNamespaceSchemalocation="http://example.com/Demo.xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">42</test>

————— PartBoundary
Content-Disposition: attachment; filename="Second.xml"; name="additional-files"
Content-Type: application/octet-stream

<?xml version="1.0" encoding="UTF-8"?>
<test xsi:noNamespaceSchemalocation="http://example.com/Demo.xsd"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">35</test>

————— PartBoundary

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

268 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

Content-Disposition: attachment; filename="Demo.xsd"; name="additional-files"
Content-Type: application/octet-stream

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:element name="test" type="xs:int"/>
</xs:schema>

————— PartBoundary
Content-Disposition: attachment; filename='"catalog.xml"; name="additional-files"
Content-Type: application/octet-stream

<?xml version='1.0"' encoding='UTF-8'?>

<catalog xmlns='urn:oasis:names:tc:entity:xmlns:xml:catalog’

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'’

xsi:schemaLocation="urn:oasis:names:tc:entity:xmlns:xml:catalog Catalog.xsd'>
<uri name="http://example.com/Demo.xsd" uri="additional-

files:///Demo.xsd" />

</catalog>

————— PartBoundary--

6.1.2.1.3 Example-3: Use ZIP Archives

ZIP archives can also be uploaded, and files within a ZIP can be referenced by using the additional-files
scheme. For example:

additional-files:///mybigarchive.zip%7Czip/biginstance.xml

Note: The | zip/ part needs to be URI-escaped as $7czip/ in order to conform to the URI RFC since the pipe
| symbol is not directly allowed. The use of glob patterns (* and ?) is also allowed. So you can use something
like this to validate all XML files within the ZIP archive:

{“command”: “xsi”, “args”: [“additional-files:///mybigarchive.zip%7Czip/*.xml”], “options”:
{..}}

Note: 'Content-Disposition: form-data' is also valid, in addition to 'Content-Disposition:
attachment'. Since seweral tools generate form-data as content-disposition, the value form-data is
accepted as valid.

=I Example: Validating all XML files in a ZIP archive

In this example, it is assumed that all schema references are relative paths and that all schemas are
contained within the zip.

————— PartBoundary
Content-Disposition: form-data; name="msg"
Content-Type: application/json

{"command": "xsi", "args": ["additional-files:///Demo.zip%7Czip/*.xml"], "options": {}}

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

269

————— PartBoundary
Content-Disposition: attachment; filename="Demo.zip"; name="additional-files"
Content-Type: application/octet-stream

Binary content of Demo.zip archive

————— PartBoundary--

=I Example: Validating XML files in a ZIP archive containing references to external schemas

In this example, the XML files in a ZIP archive are validated using references to an external schema, which is

provided in a second ZIP archive.

————— PartBoundary
Content-Disposition: form-data; name="msg"
Content-Type: application/json

"command": "xsi", "args": ["additional-files:///Instances.zip%7Czip/*.xml"], "options":

{"user-catalog": "additional-files:///Schemas.zip%7Czip/catalog.xml"}}

————— PartBoundary

Content-Disposition: attachment; filename="Instances.zip"; name="additional-files"
Content-Type: application/octet-stream

Binary content of Instances.zip archive

————— PartBoundary
Content-Disposition: attachment; filename="Schemas.zip"; name="additional-files"
Content-Type: application/octet-stream

Binary content of Schemas.zip archive

————— PartBoundary--

6.1.2.14 Testwith CURL

The third-party application CURL (http://curl.haxx.se/) is a command line utility that you can use to test the
pPosT request. CURL provides a very useful trace option that generates and lists the part boundaries of
requests, which you can use directly in your requests or as a reference.

Given below is a sample test scenario in which an XML file is validated against an XML Schema. We assume

the following:

¢ the commands below are executed from the folder in which the files to be submitted for validation are

located; (this enables us to write simple relative paths to these files). If you have installed Altova's

XMLSpy application, the files used in this example can be found in the application's Examples folder,

which is located by default at: c:\Users\<username>\Documents\Altova\XMLSpy2025\Examples
e RaptorXML Server is running locally on port 8087

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

http://curl.haxx.se/

270 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

For more information about the CURL command line options, see the CURL Help.

Call CURL with the validation command on Windows

[input: powershell]
\path\to\curl.exe -F 'msg={\"command\": \"xsi\", \"args\":[\"additional-
files:///PurchaseOrder.zip%7Czip/ipo.xml\"], \"options\":{}};type=application/json' -F
"additional-files=QPurchaseOrder.zip;type=application/octet-stream"
http://localhost:8087/v1/queue

Note: In powershell, if quotes occur within quotes, different types of quotes (single/double) must be used.

[input: cmd]
\path\to\curl.exe -F "msg={\"command\": \"xsi\", \"args\":[\"additional-
files:///PurchaseOrder.zip%7Czip/ipo.xml\"], \"options\":{}};type=application/json" -F
"additional-files=QPurchaseOrder.zip;type=application/octet-stream"
http://localhost:8087/v1/queue

[output]
{"jobid": "058F9E97-CB95-43EF-ACOA-496CD3AC43A3", "result": "/vl/results/058F9E97-CB95-
43EF-ACOA-496CD3AC43A3"}

Use the URL of "result" to fetch the result

[input]
\path\to\curl.exe http://localhost:8087/vl/results/058F9E97-CB95-43EF-ACOA-496CD3AC43A3

[output]
{"jobid":"058F9E97-CB95-43EF-ACOA-496CD3AC43A3", "state" : "OK", "error":{}, "jobs":
[{"file":"additional-files:///PurchaseOrder.zip%7Czip/ipo.xml", "jobid" :"D4B91CBO-CF03~
4D29-B563-B6506E123A06", "output":{}, "state":"OK", "error":{}}1]}

CURL's trace option

CURL has a trace option (--trace-ascii), which traces the HTTP traffic sent to and from the server. The
option is very useful since it lists the part boundaries that are required for initiating jobs with POST. You can
use the information in the trace, either directly or as a reference, to create the part boundaries. The listing
below shows the trace obtained by running the command given above.

=l Trace listing

== Info: Trying ::1...

== Info: Connected to localhost (::1) port 8087 (#0)
=> Send header, 217 bytes (0xd9)

0000: POST /vl/queue HTTP/1.1

0019: Host: localhost:8087

002f: User-Agent: curl/7.42.1

0048: Accept: */*

0055: Content-Length: 2939

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface 271

006b: Expect: 100-continue

0081: Content-Type: multipart/form-data; boundary=--------——-——-————————
00cl: ----d887ed58324015c3

00d7:

<= Recv header, 23 bytes (0x17)

0000: HTTP/1.1 100 Continue

=> Send data, 393 bytes (0x189)

0000: ——=—==—————————— d887ed58324015c3

002c: Content-Disposition: form-data; name="msg"

0058: Content-Type: application/json

0078:

007a: {"command": "xsi", "args":["additional-files:///PurchaseOrder.zi
O0Oba: p%7Czip/ipo.xml"], "options":{}}

00dc: --—===———————————— - d887ed58324015c3

0108: Content-Disposition: form-data; name="additional-files"; filenam
0148: e="PurchaseOrder.zip"
015f: Content-Type: application/octet-stream

0187:

=> Send data, 2498 bytes (0x9c2)

0000: PK...uou... "..6}.Cc..... Meo.o.o... ipo.xsd.T.N.@.}N....O 5v.}..S....(
0040: .JU/...$Y..5{.E.e I*...g...Y. ..\ Zime . P.A.Ct....e.
0940: "..6lg...... L s e address.xsdPK.......
0980 R ipo.xmlPK. . oo iiiie i
09c0:

=> Send data, 48 bytes (0x30)

0000:

0002: —=—=—=————— d887ed58324015c3--

<= Recv header, 22 bytes (0x16)

0000: HTTP/1.1 201 Created

<= Recv header, 13 bytes (0xd)

0000: Allow: POST

<= Recv header, 32 bytes (0x20)

0000: Content-Type: application/json

<= Recv header, 37 bytes (0x25)

0000: Date: Fri, 24 Jul 2015 16:58:08 GMT

<= Recv header, 24 bytes (0x18)

0000: Server: CherryPy/3.6.0

<= Recv header, 21 bytes (0x15)

0000: Content-Length: 111

<= Recv header, 2 bytes (0x2)

0000:

<= Recv data, 111 bytes (0x6f)

0000: {"jobid": "058F9E97-CB95-43EF-ACO0A-496CD3AC43A3", "result": "/vl
0040: /results/058F9E97-CB95-43EF-ACOA-496CD3AC43A3"}
== Info: Connection #0 to host localhost left intact

Note: Notice from the above listing that 'Content-Disposition: form-data' is also valid, in addition
t0 'Content-Disposition: attachment'.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

272 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

Call CURL with the well-formed-check command on Linux

/path/to/curl -F 'msg={"command": "wfxml", "args":[]};type=application/json' -F
"args=Qipo.xml; type=application/octet-stream" http://localhost:8087/v1/queue

/path/to/curl -F 'msg={"command": "wfxml", "args":["additional-files:///ipo.zip%
7Czip/ipo.xml"]};type=application/json' -F "additional-
files=Qipo.zip;type=application/octet-stream" http://localhost:8087/v1/queue

6.1.2.1.5 Example-6: XQuery Execution

This example uses PowerShell on Windows to execute an XQuery document on an XML document. Both
documents are located in the examples folder of your application folder (RaptorXMLServer2025).

Note: The use of quotes may be different on other shells (‘bash' works with the example when one uses 'curl’
instead of 'curl.exe’).

Submit the Inline-XBRL-validation POST request using CURL

Given below is an example CURL command for submitting an Inline XBRL validation request.

curl.exe -F 'msg={"command": "xquery", "args": ["additional-files:///CopyInput.xg"],
"options": {"input": "additional-files:///simple.xml", "output":
"MyQueryResult"}};type=application/json' -F "additional-

files=QCopyInput.xq; type=text/plain" -F "additional-

files=@simple.xml; type=application/xml" http://localhost:8087/v1l/queue

For easier readability:

(1) -F 'msg={

(2 "command": "xquery",

(3 "args": ["additional-files:///CopyInput.xq"],

(4 "options": {"input": "additional-files:///simple.xml", "output":
!

)
)
)
)
MyQueryResult"}
)
)
)
)

(5) };type=application/json'
(6) -F "additional-files=@CopyInput.xq;type=text/plain"
(7) -F "additional-files=@simple.xml;type=application/xml"
(7) http://localhost:8087/v1/queue
Input

The different parts of the CURL command are explained below, keyed to the callouts in the listing abowe.

(1) -F 'msg={...}' specifies a form field with name 'msg"’

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface 273

The -F option: (i) causes CURL to generate a multipart form post with Content-Type: multipart/form-data
and (i) causes this form field to be automatically added to the request header. We use a JSON object to
describe the command that RaptorXML Server should execute.

Content-Type: multipart/form-data; boundary=----—--————-—————————— Ce
CURL translates this option in the HTTP request to:

Content-Disposition: form-data; name="msg"

Content-Type: application/json

{"command": "xquery", "args": ["additional-files:///CopyInput.xq"], "options": {"input":
"additional-files:///simple.xml", "output": "MyQueryResult"}}

(2) The RaptorXML Server command to execute on the server. See the Command Line Interface (CLI)@
section for information about the commands that can be accepted here. In our example, the command for
XQuery execution is XQuerx@.

(3) The command's arguments (as accepted by the RaptorXML Server command line) are encoded as a JSON
array. RaptorXML Server uses an explicit scheme additional-files:// to reference additional resources
inside a separate additional-files form field. In our example, we reference the XQuery document
CopylInput.xq.

Note: All resources in the args array must be available on the server or submitted with the request, similar to
(6 and 7).

(4) The command's options (as accepted by the RaptorXML Server command Iin%are encoded as a JSON
object. If the default values of options are as you want them (see the CLI section¥), then this part can be left
out. In our example, we specify (i) the XML file on which the XQuery is to be executed and (i) the file where the
output of the XQuery execution will be stored.

(5) The Content-Type of the msg form field is specified after the definition of the form field and is separated from
it by a semicolon. In our example, the Content-Type of msg is given by: type=application/json.

(6, 7) Files that contain additional resources for the command can be specified using the additional-files
form field. In our example, we specify two additional resources: (i) @CopyInput.xq, followed by a semicolon
separator and then its Content-Type, which we give as type=text/plain; (i) simple.xml, followed by a
semicolon separator and then its Content-Type, which we give as type=application/xml.

Note: Prefix the filename with @ to instruct CURL to (i) use the file name as the value of the £ilename property
and (ii) the content of the file as the form's value. The additional-files form field can be supplied multiple times,
once for each additional resource required by the command. CURL translates this option into the following in
the HTTP request:

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

274 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

Content-Disposition: form-data; name="additional-files"; filename="CopyInput.xq"
Content-Type: text/plain
<<content of CopyInput.xg>>

Content-Disposition: form-data; name="additional-files"; filename="simple.xml"
Content-Type: application/xml
<<content of simple.xml>>

Note: Files in other folders can be supplied by putting the relative path in front of the filename, like this: -F
"additional-files=QExamples/CopyInput.xq;type=text/plain". However, when an additional file from
another folder is specified in this way, it must be referenced using the file name only. For example:

curl.exe -F 'msg={"command": "xquery", "args": ["additional-files:///CopyInput.xq"l],
"options": {"output": "MyQueryResult"}};type=application/json' -F "additional-
files=@Examples/CopyInput.xq; type=text/plain" http://localhost:8087/v1/queue

If you want to preserve a folder structure, put the files in a ZIP folder and reference the files in the usual
way for ZIP folders €.

Output
The RaptorXML Server output is a JSON object:

{"jobid": "42B8AT75E-0180-4E05-B28F-7B46C6A0C686", "result": "/vl/results/42B8AT75E-0180-
4E05-B28F-7B46C6A0C686" }

The JSON object contains a jobid key and a result key. The value of the result key is the path to the
result. This path must be appended to the <scheme>: //<host>:<port> part used to submit the request. In our
example, the full result URL would be: http://localhost:8087/vl/results/42B8A75E-0180-4E05-B28F-
7B46C6A0C686. The result URL is also used to ask for the result of the command execution. See Getting the
Result Document€® .

Get error/message/output of the POST request

The input command that is sent to get the error/message/output of the POST request (see Getting
Error/Message/Output Documents <=') would be something like this:

curl.exe http://localhost:8087/v1/results/42B8A75E-0180-4E05-B28F-7B46C6A0C686
In our example, this command returns the following JSON object:

{"jobid":"42B8A75E-0180-4E05-B28F-7B46C6A0C686", "state":"OK", "error":{}, "jobs":
[{"file":"additional-files:///simple.xml", "jobid":"768656F9-F4A1-4492-9676~-
C6226E30D998", "output": {"result.trace file":["/vl/results/768656F9-F4A1-4492-9676-
C6226E30D998/output/trace.log"], "xquery.main output files":["/v1/results/768656F9-F4Al-
4492-9676-C6226E30D998/output/1"], "xquery.additional output files":

[1},"state":"OK", "output-mapping":{"/vl/results/768656F9-F4A1-4492-9676-
C6226E30D998/output/1":"file:///C:/ProgramData/Altova/RaptorXMLXBRLServer2016/Output/768
656F9-F4A1-4492-9676-C6226E30D998/MyQueryResult"}, "error": {}}1}

This is transcribed on separate lines below for easier readability and with callouts for easier referencing:

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface 275

(1) |
(2) "Jjobid":"42B8A75E-0180-4E05-B28F-7B46C6A0C686",
(3) "state":"OK",
(4) "error":{},
(5) "Jobs": [{
(6) "file":["additional-files:///simple.xml"],
(7) "jJobid":"768656F9-F4A1-4492-9676-C6226E30D998",
(8) "output": {
(9) "result.trace file":["/vl/results/768656F9-F4A1-4492-9676~
C6226E30D998/output/trace.log"],
(10) "xquery.main output files":["/vl/results/768656F9-F4A1-4492-9676-
C6226E30D998/output/1"],
(11) "xquery.additional output files":[]},
12) "state":"OK",
13 "output-mapping": {
14 "/vl/results/768656F9-F4A1-4492-9676-C6226E30D998/output/1":
15 "file:///C:/ProgramData/Altova/RaptorXMLXBRLServer2016/Output/768656F9-

by
"error":{}

(
(13)
(14)
(15)
F4A1-4492-9676-C6226E30D998/MyQueryResult”
(16)
(17)
(18) }]

(19)

1
1
1
1

O 0 J o

}

Given below is an explanation of this listing:
(1) The result is returned as a JSON object.
(2) The jobid on the first level is the main job identifier.

(3) The state for this job is OK. Possible states are: none; Dispatched; Running; Canceled; Crashed; OK;
Failed.

(4) The JSON error object in our example is empty. It may contain the JSON serialization of the error as
reported by RaptorXML Server.

(5) The main job (on the first level) generates sub-jobs (for example, one per argument).
(6) The argument for the this job is the XML instance file: additional-files:///simple.xml.

(7) Sub-jobs also have a job identifier that can be used to query the state or fetch the results. Job execution is
asynchronous. As a result short jobs submitted after longer jobs may finish earlier.

(8) to (16) The JSON output object contains keys for the server-generated output files that can be requested
via HTTP. Some keys (such as xquery.main_output_files) specify URLs to the generated files stored on the
sener. These sener-local paths can be mapped to names, which can be used as JSON output-mapping
objects in HTTP URLs. Such URLs are used to fetch output files via HTTP and are constituted as follows:

<scheme>: //<host>:<port>/<output-mapping-value>
Our example to fetch the main XQuery output file would therefore look like this:

curl.exe http://localhost:8087/vl/results/768656F9-F4A1-4492-9676-C6226E30D998/output/1

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

276 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

Note that in the output-mapping object (13), the first value (14), is the mapping value that we have keyed to
the XQuery output (15), £ile:///C:/ProgramData/Altova/RaptorXMLXBRLServer2016/Output/768656F9-
F4A1-4492-9676-C6226E30D998/MyQueryResult. This enables us to use the mapping vaue to reference the
file.

6.1.2.2 Server Response to POST Request
This section:

Oveniew of possible server responses
Response: Request failed. no response from server

Response: Request communicated, but job rejected by server
Response: Job executed (with positive or negative result)

When a posT request is made successfully to the server, the job is placed in the server queue. A 201 Created
message and a result document URI are returned. The job will be processed at the earliest. In the meantime, if
the result document is reguested, a "status": "Running" message is returned if the job has been started
but has not been completed; the client should try again at a later time. A Dispatched state indicates that the
job is in the server queue but has not yet been started.

The result of the job (for example, a validation request) may be negative (validation failed) or positive (validation
successful). In either case a 201 Created message is returned and a result document is generated. It is also
possible that the posT request was not communicated to the server (Request failed), or the request was
communicated but the job was rejected by the server (Request communicated, but job rejected). The various
possible outcomes are shown in the diagram below.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface 277

POST Request
The Possible Server Responses (1 to 4)
1 3 4
h J v L
Request Failed Job Done with Result Failed Job Done with Result OK
No Response from Server 201 Created; Response 2071 Created: Response
404 (Path) Not Found contains Resul-Doc-URI contains Result-Doc-UR!
405 Meathod Not Allowed
415 Unsupporfed Media Type GET GET
v
Error Document/'s Output Document/s
2 200 OK, URIs of LongXML, 200 OK. URIs of output doc's,
ShortXML, Text error docs ifany
r
Request Communicated,
Job Rejected by Server GET GET
400 Bad Request {bad crmd)
Gt B;d Request (json error) Error Document Qutput Document/s
08 SERN et Eoun Conlains error message KXSELT Transformations, et

Request failed, no response from server
When requests cannot be made successfully to the server, the most common errors are those listed below:

Message Explanation

404 Not Found The correct path is: http://localhost:8087/v1/queue/

405 Method Not Allowed Specified method is invalid for this resource. Use the posT method.
415 Unsupported Media Type The message header should be Content-Type:application/json.

Request communicated, but job rejected by server
When requests are made successfully to the sener, the server could reject them for the following reasons:

Message Explanation
400 Bad Request (bad cmd) The RaptorXML command ® is incorrect.
400 Bad Request (json error) The request body has a JSON syntax error.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

278 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

404 File Not Found Check file URI (or filepath) syntax of all files named in the
command.

Job executed (with positive or negative result)

When a job (for example, a validation job) is executed, its result can be positive (OK) or negative (Failed). For
example, the result of a validation job is positive (OK) when the document to be validated is valid, negative
(Failed) if the document is invalid.

In both cases, the job has been executed, but with different results. A 201 Created message is returned in
both cases as soon as the job is successfully placed in the queue. Also, in both cases a result document URI
is returned to the HTTP client that made the request. After the result document has been created, it can be
fetched with an HTTP GET request.

The result document itself might not yet have been created if processing of the job has not yet started or
completed. If the result document is requested during this time, a "status": "Running" message is returned
if the job has been started but has not been completed; a pispatched state indicates that the job is in the
sener queue but has not yet been started.

In addition to the result document, other documents may be generated also, as follows:

e Job executed with result ‘Failed”: An error log is created in three formats: text, long XML, and short
XML. The URIs of these three documents are sent in the result document (which is in JSON format).
The URIs can be used in an HTTP GET request to fetch the error documents 222}
e Job executed with result 'OK" The job is processed successfully and output documents—such as the
output produced by an XSLT transformation—are created. If output files have been generated, their
URIs are sent in the JSSON-format result document. The URIs can then be used in an HTTP GET
request to fetch the output documents. Note that not all jobs will have output files; for example, a
validation job. Also a job can finish with a state of 'OK’, but there might have been warnings and/or
other messages that were written to error files. In this case, error file URIs are also sent in the result
document (that is, in addition to output documents).
See Getting the Result Document & and Getting Error/Output Documents & for a description of these
documents and how to access them.

6.1.2.3 Getting the Result Document

This section:

e The Result Document URI

e Fetching the Result Document
¢ Result Document containing URIs of error documents

¢ Result Document containing URIs of output documents
e Result Document containing no URI

e Accessing error and output documents listed in the Result Document

The Result Document URI

A result document will be created every time a job is created, no matter whether the result of a job (for
example, a validation) is positive (document valid) or negative (document invalid). In both cases a 201 Created

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface 279

message is returned. This message will be in JSON format and will contain a relative URI of the result
document. The JSON fragment will look something like this:

{
"result": "/vl/results/E6C4262D-8ADB-49CB-8693-990DF79EABER",
"jobid": "E6C4262D-8ADB-49CB-8693-990DF79EABEB"

}

The result object contains the relative URI of the result document. The URI is relative to the server address &
. For example, if the server address is http://localhost:8087/ (the initial configuration address@), then the
expanded URI of the result document specified in the listing above will be:

http://localhost:8087/vl/results/E6C4262D-8ADB-49CB-8693-990DF79EABER

Note: The correct version number /vN is the one that the server returns (and is not necessarily the one in this
documentation). The number that the server returns is the version number of the current HTTP interface.
Previous version numbers indicate older versions of the HTTP interface, which, however, are still supported for
backward compatibility.

Fetching the Result Document
278

To get the result document submit the document's expanded URI (see above.), in an HTTP ceT request. The
result document is returned and could be one of the generic types described below.

Note: When a job is successfully placed in the server queue, the server returns the URI of the result document.
If the client requests the result before the job has been started (it is still in the queue), a "status":
"Dispatched" message will be returned. If the job has been started but not completed (say, because it is a
large job), a "status": "Running" message will be returned. In these two situations, the client should wait for
some time before making a fresh request for the result document.

Note: The example documents below all assume restricted client access €D 50 error documents, message
documents, and output documents are all assumed to be saved in the relevant job directory on the serer. The
URIs for them in the result document are therefore all relative URIs. None is a file URI (which would be the kind
of URI generated in cases of unrestricted client access). For the details of these URIs, see the section

Getting Error/Message/Output Documents <=

Result document containing URIs of error documents
If the requested job finished with a state of Failed, then the job returned a negative result. For example, a

validation job returned a document-invalid result. The errors encountered while executing the job are stored in
error logs, created in three file formats: (i) text, (ii) long-XML (detailed error log), and (iii) short-XML (less-
detailed error log). See the JSON listing below.

{
"jobid": "6B4EE31B-FAC9-4834-B50A-582FABF47B58",
"state": "Failed",
"error":

"text": "/v1/results/6B4EE31B-FAC9-4834-B50A-582FABF47B58/error/error. txt",
"longxm1": "/vi/results/6B4EE31B-FAC9-4834-B50A-582FABF47B58/error/long.xml",
"shortxml": "/v1/results/6B4EE31B-FAC9-4834-B50A-582FABF47B58/error/short.xml"

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

280 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

"jobs":

{
"file": "file:///c:/Test/ExpReport.xml",
"jobid": "20008201-219F-4790-BB59-C091C276FED2",
"output":

1,
"state": "Failed",
"error":

"text": "/v1/results/20008201-219F-4790-BB59-C091C276FED2/error/error.txt",
"Tongxm1": "/vi/results/20008201-219F-4790-BB59-C091C276FED2/error/long.xml1",
"shortxml": "/v1/results/20008201-219F-4790-BB59-C091C276FED2/error/short.xml"

Note the following:

e Jobs have sub-jobs.

e Errors at sub-job level propagate up to the top-level job. The state of the top-level job will be OK only if
all of its sub-jobs have a state of OK.

e Each job or sub-job has its own error log.

e Error logs include warning logs. So, even though a job finishes with a state of OK, it might have URIs of
error files.

e The URIs of the error files are relative to the server address (see above “¥),

Result document containing URIs of output documents
If the requested job finished with a state of OK, then the job returned a positive result. For example, a validation

job returned a document-valid result. If the job produced an output document—for example, the result of an
XSLT transformation—then the URI of the output document is returned. See the JSON listing below.

"jobid": "5E47A3E9-D229-42F9-83B4-CC11F8366466",
"state": "OK",
"error":

IIJ"ObSII:
: {
"file": "file:///c:/Test/SimpleExample.xml",

"jobid": "D34B5684-C6FF-4A7A-BF35-EBB9ASA8C2C8",
i['output":

'Exs1t—output—f1'1e":

"/v1/results/D34B5684-C6FF-4A7A-BF35-EBB9ASA8C2C8/output/1"

1,
"state": "OKt,
i{'output—mapm ng":

"/v1/results/D34B5684-C6FF-4A7A-BF35-EBB9ASA8C2C8/output/1":
"file:///c:/temp/test.html"

error':

{

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface 281

Note the following:

e The output file is created in the output folder of the job. You can use its relative URI to access the file.

e The URIs of the output files are relative to the server address (see above).

e The output-mapping item maps the output document in the job directory on the server to the file
location specified by the client in the job request. Notice that only output documents specified by the
client in the job request have a mapping; job-related files generated by the server (such as error files)
have no mapping.

e Alternatively, it is possible to retrieve all the generated result documents for a specific job as a zip
archive using the URL "/v1/results/JOBID/output/zip". This feature is not available in unrestricted
filesystem mode. Please note that the zip archive will contain mangled file names, which need to be
mapped back to the actual names using the ocutput-mapping object.

Result document containing no URI

If the requested job finished with a state of OK, then the job returned a positive result. For example, a validation
job returned a document-valid result. Some jobs—such as a validation or well-formed-test—produce no output
document. If a job of this type finishes with a state of OK, then the result document will have neither the URI of
an output document nor the URI of an error log. See the JSON listing below.

{
"jobid": "3FC8B90E-A2E5-427B-B9E9-27CB7BB6B405",
Ilstatell: IIOKII’
"error":
Iljobsll:
: {
"file": "file:///c:/Test/SimpleExample.xml",
"jobid": "532F14A9-F9F8-4FED-BCDA-16A17A848FEA",
"output":
{
1,
"state": "OK",
"error":
}
}
]
}

Note the following:

e Both the output and error components of the sub-job in the listing above are empty.

e A job could finish with a state of OK but still contain warnings or other messages, which are logged in
error files. In such cases, the result document will contain URIs of error files even though the job
finished with a state of OK.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

282 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

Accessing error and output documents listed in the Result Document

Error and output documents can be accessed with HTTP GET requests. These are described in the next
section, Getting Error/Output Documents &2.

6.1.2.4 Getting Error/Message/Output Documents

A result document ® can contain the file URIs or relative URIs of error documents, message documents
(such as logs), and/or output documents €. (There are some situations in which a result document might
not contain any URI.) The various kinds of URIs are described below

To access these documents via HTTP, do the following:

1. Expand the relative URI of the file in the result document to its absolute URI
2. Use the expanded URI in an HTTP GET reguest to access the file

URIs (in the result document) of error/message/output documents

The result document contains URIs of error, message, and/or output documents. Error and message
documents are job-related documents that are generated by the server; they are always saved in the job
directory on the server. Output documents (such as the output of XSLT transformations) can be saved to one of
the following locations:

e To any file location accessible to the server. For output files to be saved to any location, the server
must be configured to allow the client unrestricted access access & (the default setting).
e To the job directory on the sener. The server is conﬁgured to restrict client access.

If a client specifies that an output file be created, the location to which the output file is saved will be
determined by the server.unrestricted-files stem-access & option of the server configuration file.

e [faccess is unrestricted, the file will be saved to the location specified by the client and the URI
returned for the document will be a file URI.

e [faccess is restricted, the file will be saved to the job directory and its URI will be a relative URI.
Additionally, there will be a mapping of this relative URI to the file URL specified by the client. (See the

listing of Result document containing URIs of output documents.)

In summary, therefore, the following kinds of URIs will be encountered:

File URI of error/message documents
These documents are saved in the job directory on the sener. File URIs will have this form:

file:///<output-root-dir>/JOBID/message.doc

File URI of output documents
These documents are saved at any location. File URIs will have this form:

file:///<path-to-file>/output.doc

HTTP URI of error/message/output documents
These documents are saved in the job directory on the sener. URIs are relative to the server address and must

be expanded to the full HTTP URI. The relative will have this form:

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface 283

/vN/results/JOBID/error/error.txt for error documents
/vN/results/JOBID/output/verbose.log for message documents
/vN/results/JOBID/output/1 for output documents

In the case of output documents, output mappings are given (see example Iisting). These mappings map
each output document URI in the result document to the corresponding document in the client request.

Expand the relative URI

Expand the relative URI in the result document € to an absolute HTTP URI by prefixing the relative URI with
the server address. For example, if the server address is:

http://localhost:8087/ (the initial configuration address)

and the relative URI of an error file in the result document is:

/v1/results/20008201-219F-4790-BB59-C091C276FED2/error/error. txt
then the expanded absolute address will be
http://localhost:8087/v1/results/20008201-219F-4790-BB59-C091C276FED2/error/error.txt

For more related information, see the sections: Configuring the Server and Getting the Result Document.

Use an HTTP cer request to access the file

Use the expanded URI in an HTTP GET request to obtain the required file. RaptorXML Server returns the
requested document.

6.1.2.5 Freeing Server Resources after Processing

RaptorXML Sener keeps the result document file, temporary files, and error and output document files related
to a processed job on hard disk. These files can be deleted in one of two ways:

e By providing the URI of the result document ©® with the HTTP pELETE method. This deletes all files
related to the job indicated by the submitted result-document URI, including error and output
documents.

e Manual deletion of individual files on the server by an administrator.

The structure of the URI to use with the HTTP DELETE method is as shown below. Notice that the full URI
consists of the server address plus the relative URI of the result document.

HTTP Method URI

DELETE http://localhost:8087/v1/result/D405A84A-AB96-482A-96E7-4399885FABOF

To locate the output directory of a job on disk, construct the URI as follows:

[<server.output-root-dir> See senver configuration fi/e} + [jobid]

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

284 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

Note: Since a large number of error and output document files can be created, it is advisable to monitor hard
disk usage and schedule deletions according to your environment and requirements.

6.1.3 C# Example for REST API

Your RaptorXML Sener installation contains a C# project that accesses RaptorXML Server's REST client
interface to execute a set of jobs. The example project consists of two parts:

e RaptorXMLREST.cs: A wrapper class in C# that implements the REST mechanism to communicate
with RaptorXML Server via HTTP.

e Program.cs. The C# program code that defines the jobs to be sent to RaptorXML Senrer via the REST
wrapper.

These two parts are described in the subsections of this section: C# Wrapper for REST AP1ED and Program
Code for REST Requests &,

Note that you can use any suitable REST wrapper for C# code. The main reason that we have created our own
wrapper is so that the C# program code can be more tightly integrated with the wrapper class, thereby making
an understanding of RaptorXML Sener's REST interface easier.

Location and use of the C# example

The example project is located in the folder C:\Program Files (x86)\Altova\RaptorXML
Server2025\examples\REST API\C# RaptorREST API

The example project was created using Visual Studio 2019, so you should use this version or later to build and
run the project. Note that the C# example files are located in the Program Files folder, so you will need to open
Visual Studio with administrator rights in order to access the files. Alternatively, you can copy the example
project to another location and make relevant amendments to the project.

6.1.3.1 C# Wrapper for REST API

The wrapper class is defined in the C# file named RaptorXMLREST . cs, and it is named RaptorXMLRESTAPI.
It defines the following key classes for sending HTTP requests and receiving HTTP responses via REST:
Command

MultiPartCommand
CommandResponse

ResultDocument
It defines the following functions:
pollCommandResult

fetchCommandResult
sendRequest

cleanupResults

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface 285

To see how the wrapper implements the REST API, read the Client Reguests@ section to understand how the
REST API works. After that you can read the C# code of the wrapper class to see how the wrapper implements
C# code for the REST API.

For example, if you want to see how a command is sent to RaptorXML Server from C# code, you could do the
following:

e The REST interface enables a command to be sent to RaptorXML Server via a HTTP POST request. This
mechanism is described in the topic MM@.

e The next question is: How would the wrapper pass the command to the REST API? The mechanism for
this is defined in the wrapper's Command class. Open the file RaptorXMLREST.cs to see the code of the
Command class.

e Finally, to see how the program code & instantiates the wrapper's Command class, see the code of the
three jobs in the program code @

6.1.3.2 Program Code for REST Requests

The C# program code containing the jobs for RaptorXML Server is defined in the C# file named Program.cs.

The code uses the classes defined in the C# Wrapper for REST API®D {0 create the REST requests that are
sent to RaptorXML Server.

In the program code, there are three use cases to demonstrate how to use RaptorXML Server's REST API :

e Validation of a referenced XML file & with RaptorXML Senver's valanz command. The schema file
is referenced from within the XML file and does not need to be provided as an argument of the
command.

o Two XML files are validated & using RaptorXML Sener's valanx@ command. Both XML files, as well
as the schema file used for the validation, are uploaded with the command as string attachments. The
result of the validations are returned together after both validations have completed.

e An XML file is uploaded and transformed by an XSLT file ©_ Both files are uploaded via REST. The
command used is RaptorXML Server's xs1t“¥. The document resulting from the transformation is
retrieved by the program..

The code for these three use cases is discussed in more detail below.

Error handling

In the event that an error is returned, an error handler function (named HandleError) at the bottom of the code
retrieves the error message from the server response.

Case 1: Validate a referenced XML file (simple command)

The program code for this case uses classes and functions from the REST API wrapper to set up and execute
the HTTP communication with RaptorXML Sener. The logic of the code is as follows:

RaptorXMLRESTAPI . Command Specifies the RaptorXML Server command to call, which is valany, and
the file to be submitted as the argument of the valany command.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

286

Server APIs: HTTP REST, COM/.NET, Java

HTTP REST Client Interface

RaptorXMLRESTAPI .CommandResp
onse

or "Failed" @D

Puts the server's response to the validation request into the
jsonResponse variable. Note that validation jobs are reported as "OK"

RaptorXMLRESTAPI.ResultDocum
ent

Fetches the result document returned by the server and, if there are no
errors, displays the validation result.

Case 2: Validate two uploaded XML files against an uploaded XSD (multipart command)

The program code for this case uses the MultiPartCommand class of the REST API wrapper to set up and
execute the HTTP communication with RaptorXML Server. Since we want to upload files within the body of the

POST request, the message header must have its content type set to multipart/form-data

. The wrapper's

MultiPartCommand class is used to set up the REST HTTP communication accordingly. The code for this use

case is organized as follows:

RaptorXMLRESTAPI .MultiPartCo
mmand

Specifies the RaptorXML Server command to call, which is valany, and
then uses the Appendattachment function of the class to upload the
two XML files and the schema file. The files are submitted as strings.
The server response returns the validation result of both files and this
response is stored in the jsonResponse variable

RaptorXMLRESTAPI . fetchComman
dResult

Fetches the result document returned by the server and, if there are no
errors, displays the validation results.

RaptorXMLRESTAPI.cleanupResu
1ts

This function of the wrapper uses the bELETE method of HTTP to delete
the result document file, temporary files, and error and output document
files related to the job.

Case 3: XSLT transformation of uploaded XML and XSLT (multipart command)

The program code for this case is similar to that of Case 2 abowe. It uses the MultiPartCommand class to set
up an XSLT transformation and display the result document in a message box. The XML and XSLT files for the
transformation are uploaded with the request. Additionally, the XxsL.T command of RaptorXML Server also takes
options, so this case shows how you could add options via the REST interface (in the example, this is done
with the RaptorXMLRESTAPI . AppendOption function. Important points about the code are given below.

RaptorXMLRESTAPI .MultiPartCo
mmand

Specifies the RaptorXML Server command to call, which is xsLT, and
then uses (i) the Appendattachment function of the class to upload the
XML and XSLT files, and (ii) the AppendOption function to provide
options for the RaptorXML Server command line. The uploaded files are
submitted as strings. The server response returns the validation result
of both files and this response is stored in the jsonResponse variable

Fetches the result document returned by the server and, if there are no
errors, displays the validation results.

RaptorXMLRESTAPI . fetchComman
dResult

RaptorXMLRESTAPI.cleanupResu
1ts

This function of the wrapper uses the bELETE method of HTTP to clean
up the result document file, temporary files, and error and output

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java

HTTP REST Client Interface 287

document files related to the job.

© 2019-2025 Altova GmbH

Altova RaptorXML Server 2025

288 Server APIs: HTTP REST, COM/.NET, Java COM/.NET API

6.2 COM/.NET API

RaptorXML Sener is licensed on the machine on which it is installed. The .NET interface is built as a wrapper
around the COM interface. The COM and .NET interfaces of RaptorXML Sener use a single API: the COM/.NET
API of RaptorXML Server (abject reference here@).

You can use RaptorXML Server with:

e Scripting languages, such as JavaScript, via the COM interface
e Programming languages, such as C#, via the .NET Framework interface

6.2.1 COM Interface

RaptorXML Sener is automatically registered as a COM server object when RaptorXML Sener is installed. So it
can be invoked from within applications and scripting languages that have programming support for COM calls.
If you wish to change the location of the RaptorXML Senver installation package, it is best to de-install
RaptorXML Senrver and then re-install it at the required location. In this way the necessary de-registration and
registration are carried out by the installer process.

Check the success of the registration

If the registration was successful, the Registry will contain the RaptorXML. Server classes. These classes will
typically be found under HKEY LOCAI MACHINE\SOFTWARE\Classes.

Code examples

e A VBScript example showing how the RaptorXML API can be used via its COM interface is listed in
the following topic.

¢ An example file corresponding to this listing is available in the examples/ap1 folder of the RaptorXML
application folder.

6.2.2 COM Example: VBScript

The VBScript example below is structured into the following parts:

288

Set up and initialize the RaptorxML COM obiect.
Validate an XML file

Perform an XSLT transformation, return the result as a string
Process an XQuery document, save the result in a file

Set up the execution sequence of the script and its entry point@

' The RaptorXML COM object
dim objRaptor

' Initialize the RaptorXML COM object

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java COM/.NET APl 289

sub Init

objRaptor = Null
On Error Resume Next

v

Try to load the 32-bit COM object; do not throw exceptions if object is not found

Set objRaptor = WScript.GetObject("", "RaptorXML.Server")

On Error Goto 0

if (IsNull(objRaptor)) then
' Try to load the 64-bit object (exception will be thrown if not found)
Set objRaptor = WScript.GetObject("", "RaptorXML x64.Server")

end if

' Configure the server: error reporting, HTTP server name and port (IPv6 localhost

in this example)

objRaptor.ErrorLimit = 1
objRaptor.ReportOptionalWarnings = true
objRaptor.ServerName = "::1"
objRaptor.ServerPort = 8087

end sub

' Validate one file
sub ValidateXML

' Get a validator instance from the Server object

dim objXMLValidator
Set objXMLValidator = objRaptor.GetXMLValidator ()

' Configure input data
objXMLValidator.InputFileName = "MyXMLFile.xml"

' Validate; in case of invalid file report the problem returned by RaptorXML
if (objXMLValidator.IsValid()) then
MsgBox ("Input string is wvalid")
else
MsgBox (objXMLValidator.LastErrorMessage)
end if

end sub

v

Perform a transformation; return the result as a string

sub RunXSLT

errors

' Get an XSLT engine instance from the Server object

dim objXSLT

set objXSLT = objRaptor.GetXSLT
' Configure input data
O0bjXSLT.InputXMLFileName = "MyXMLFile.xml"
O0bjXSLT.XSLFileName = "MyTransformation.xsl"

' Run the transformation; in case of success the result will be returned, in case of

the engine returns an error listing
MsgBox (objXSLT.ExecuteAndGetResultAsString())

end sub

v

Execute an XQuery; save the result in a file

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

290 Server APIs: HTTP REST, COM/.NET, Java COM/.NET API

sub RunXQuery
' Get an XQuery engine instance from the Server object
dim objXQ
set objXQ = objRaptor.GetXQuery ()

' Configure input data

0bjXQ.InputXMLFileName = "MyXMLFile.xml"

objXQ.XQueryFileName = "MyQuery.xq"

' Configure serialization (optional - for fine-tuning the result's formatting)
objXQ.0OutputEncoding = "UTEF8"

objXQ.0OutputIndent = true
objXQ.0OutputMethod = "xml"
0bjXQ.0OutputOmitXMLDeclaration = false

' Run the query; the result will be serialized to the given path
call objXQ.Execute("MyQueryResult.xml")
end sub

' Perform all sample functions
sub main

Init

ValidateXML

RunXSLT

RunXQuery
end sub

' Script entry point; run the main function
main

6.2.3 .NET Interface

The .NET interface is built as a wrapper around the RaptorXML Server COM interface. It is provided as a primary
interop assembly signed by Altova; it uses the namespace Altova.RaptorXMLServer.

Adding the RaptorXML DLL as a reference to a Visual Studio .NET project

In order to use RaptorXML Server in your .NET project, add a reference to the RaptorXML DLL
(rltova.RaptorxMLServer.dl11) in your project. Your RaptorXML Server installation contains a signed DLL file,
named Altova.RaptorXMLServer.dl1l. This DLL file will automatically be added to the global assembly cache
(GAC) when RaptorXML Server is installed using the RaptorXML Server installer. The GAC is typically in the
folder: C:\WINDOWS\assembly.

To add the RaptorXML DLL as a reference in a .NET project, do the following:

1. With the .NET project open, click Project | Add Reference. The Add Reference dialog (screenshot
below) pops up.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java COM/.NET APl 291

i o)

o2 Add Reference @
| MNET | COM | Projects | Browse | Recent|
Lookin: | bin ~ Q@ T o
Mame : Date modified Type il
¢ 7| Altova.RaptorXMLServer.dll 08/27/201312:00 ... DLLFile |=
|7 events.dll 08/26/201311:08 ... DLL File
|7 icudtdd.dll 08/26/201311:17 .. DLLFile
|7 icuindg.dll 08/26/201311:17 ... DLLFile
|7 icuucdd.dil 08/26/201311:17 .. DLLFile
|7 libeay32.dll 08/26/201311:17 ... DLLFile
msveol00.dll 06/10/201111:58... DLLFile 7
] m P
File name: Altova.Raptor¥MLServer.dll -
Files of type: |Component Fles (*.dl:* b olb;” ocx” exe;” manifest) "]
0K l ’ Cancel]

2. In the Browse tab, go to the folder: <rRaptorxML application folder>/bin, select the RaptorXML
DLL Altova.RaptorxMLServer.dll, and click OK.
3. Select the command View | Object Browser to see the objects of the RaptorXML API.

Once the Altova.RaptorxMLServer.dll is available to the .NET interface and RaptorXML has been registered
as a COM server object, RaptorXML functionality will be available in your .NET project.

Note: RaptorXML will automatically be registered as a COM server object during installation. There is no need
for a manual registration.

Note: If you receive an access error, check that permissions are correctly set. Go to Component Senices and
give permissions to the same account that runs the application pool containing RaptorXML.

Code examples

A C# example and a Visual Basic .NET example@ showing how the RaptorXML API can be used via its
.NET interface are listed in the following topics. The files corresponding to these listings are available in the
examples/serverAPI folder of the RaptorXML application folder.

6.2.4 .NET Example: C#

The C# example below does the following:

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

292 Server APIs: HTTP REST, COM/.NET, Java COM/.NET API
e Set up and initialize the RaptorXML .NET obiect
e Validate an XML file
e Perform an XSLT transformation, return the result as a string
e Process an XQuery document, save the result in a file
e Set up the execution sequence of the code and its entry point

using System;

using System.Text;
using Altova.RaptorXMLServer;

namespace RaptorXMLRunner

{

class Program

{

// The RaptorXML Server .NET object
static ServerClass objRaptorXMLServer;

//

Initialize the RaptorXML Server .NET object
static void Init()

{

// Allocate a RaptorXML Server object
objRaptorXMLServer = new ServerClass();

/7
/7

/7

Configure the server: error reporting, HITTP server name and port

(IPv6 localhost in this example)

objRaptorXMLServer.ErrorLimit = 1;

objRaptorXMLServer.ReportOptionalWarnings = true;

objRaptorXMLServer.ServerName = "::1"

objRaptorXMLServer.ServerPort = 8087

Validate one file
static void ValidateXML ()

{
/7

//

//

Get a validator engine instance from the Server object
XMLValidator objXMLValidator = objRaptorXMLServer.GetXMLValidator () ;

Configure input data
objXMLValidator.InputFileName = "MyXMLFile.xml";

Validate,; in case of invalid file,
report the problem returned by RaptorXML
if (objXMLValidator.IsValid())
Console.WritelLine("Input string is valid");
else
Console.WritelLine (objXMLValidator.LastErrorMessage);

Altova RaptorXML Server 2025

© 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java COM/.NET APl 293

// Perform an XSLT transformation, and
// return the result as a string
static void RunXSLT ()
{
// Get an XSLT engine instance from the Server object
XSLT objXSLT = objRaptorXMLServer.GetXSLT () ;

// Configure input data
0bjXSLT.InputXMLFileName = "MyXMLFile.xml";
O0bjXSLT.XSLFileName = "MyTransformation.xsl";

// Run the transformation.
// In case of success, the result 1is returned.
// In case of errors, an error listing
Console.WritelLine (objXSLT.ExecuteAndGetResultAsString());

// Execute an XQuery, save the result in a file
static void RunXQuery ()
{
// Get an XQuery engine instance from the Server object
XQuery objXQuery = objRaptorXMLServer.GetXQuery () ;

// Configure input data
objXQuery.InputXMLFileName = exampleFolder + "simple.xml";
objXQuery.XQueryFileName = exampleFolder + "Copylnput.xg";

// Configure serialization (optional, for better formatting)
objXQuery.OutputEncoding = "UTEF8"
objXQuery.OutputIndent = true
objXQuery.OutputMethod = "xml"
objXQuery.OutputOmitXMLDeclaration = false

// Run the query,; result serialized to given path
objXQuery.Execute ("MyQueryResult.xml");

static void Main(string[] args)
{
try
{
// Entry point. Perform all functions
Init();
ValidateXML () ;
RunXSLT () ;
RunXQuery () ;
}

catch (System.Exception ex)

{

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

294 Server APIs: HTTP REST, COM/.NET, Java COM/.NET API

Console.WritelLine (ex.Message);
Console.WritelLine (ex.ToString());

6.2.5 .NET Example: Visual Basic .NET

The Visual Basic example below does the following:

Set up and initialize the RaptorXML .NET object &
Validate an XML file ®

Perform an XSLT transformation, return the result as a string
Process an XQuery document, save the result in a ﬁle
Set up the execution sequence of the code and its entry point

Option Explicit On
Imports Altova.RaptorXMLServer

Module RaptorXMLRunner

' The RaptorXML .NET object
Dim objRaptor As Server

' Initialize the RaptorXML .NET object
Sub Init ()

' Allocate a RaptorXML object
objRaptor = New Server ()

' Configure the server: error reporting, HTTP server name and port (IPv6 localhost in

this example)
objRaptor.ErrorLimit = 1
objRaptor.ReportOptionalWarnings = True

objRaptor.ServerName = "::1"
objRaptor.ServerPort = 8087
End Sub

Validate one file
Sub ValidateXML ()

Get a validator instance from the RaptorXML object
Dim objXMLValidator As XMLValidator
objXMLValidator = objRaptor.GetXMLValidator ()

Configure input data
objXMLValidator.InputFileName = "MyXMLFile.xml"

' Validate; in case of invalid file report the problem returned by RaptorXML

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java COM/.NET APl 295

If (objXMLValidator.IsValid()) Then
Console.WritelLine ("Input string is wvalid")
Else
Console.WritelLine (objXMLValidator.LastErrorMessage)
End If
End Sub

' Perform a transformation; return the result as a string
Sub RunXSLT ()

' Get an XSLT engine instance from the Server object
Dim objXSLT As XSLT
0bjXSLT = objRaptor.GetXSLT ()

' Configure input data
O0bjXSLT.InputXMLFileName = "MyXMLFile.xml"
0bjXSLT.XSLFileName = "MyTransformation.xsl"

' Run the transformation; in case of success the result will be returned, in case of
errors the engine returns an error listing
Console.WriteLine (0bJjXSLT.ExecuteAndGetResultAsString())
End Sub

' Execute an XQuery; save the result in a file
Sub RunXQuery ()

' Get an XQuery engine instance from the Server object
Dim objXQ As XQuery
0bjXQ = objRaptor.GetXQuery ()

' Configure input data

0bjXQ.InputXMLFileName = "MyXMLFile.xml"
0bjXQ.XQueryFileName = "MyQuery.xq"

' Configure serialization (optional - for fine-tuning the result's formatting)
objXQ.0OutputEncoding = "UTE8"

objXQ.OutputIndent = true
objXQ.0OutputMethod = "xml"
objXQ.0OutputOmitXMLDeclaration = false

' Run the query; the result will be serialized to the given path
objXQ.Execute ("MyQueryResult.xml")
End Sub

Sub Main ()
' Entry point; perform all sample functions
Init ()
ValidateXML ()
RunXSLT ()
RunXQuery ()
End Sub

End Module

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

296 Server APIs: HTTP REST, COM/.NET, Java COM/.NET API

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Java APl 297

6.3 Java API

The RaptorXML Server API can be accessed from Java code. To access RaptorXML Server from Java code, the
libraries listed below must be listed in the classpath. These libraries are installed in the bin folder of the
installation folder.

e RaptorXMLServer.jar: The library that communicates with the RaptorXML server using HTTP
requests
e RaptorXMLServer JavaDoc.zip: A Javadoc file containing help documentation for the Java API

Note: In order to use the Java API, the Jar file must be on the Java Classpath. You may copy the Jar file to any
location if this fits your project setup better than referencing it from the installed location.

6.3.1 Overview of the Interface

The Java APl is packaged in the com.altova.raptorxml package. The RaptorXML class provides an entry-
point method called getFactory (), which returns RaptorXMLFactory@ objects. So, a RaptorXMLFactory
instance can be created with the call: RaptorXML.getFactory ().

The RaptorXMLFactory@ interface provides methods for getting engine objects for validation and other
processing functionality (such as XSLT transformation).

RaptorXMLFactory

The public RaptorXMLFactory@ interface is described by the following listing:

public interface RaptorXMLFactory

{
public XMLValidator getXMLValidator() ;

public XMLDSiiEnJ getXMLDSig() ;
public XQueri getXQuery () ;
public XSLT getXSLT () ;

public void setServerName (String name) throws RaptorXMLExceptionenD;

public void setServerPath (String path) throws RaptorXMLException ;

public void setServerPort(int port) throws RaptorXMLException ;

public void setGlobalCatalog(String catalog);

public void setUserCatalog (String catalog);

public void setGlobalResourcesFile (String file);

public void setGlobalResourceConfig(String config);
public void setErrorFormat (RaptorXMLException format) ;

public void setErrorLimit(int limit);
public void setReportOptionalWarnings (boolean report);
}

For more details, see the descriptions of RaptorXMLFactory@ and the respective Java methods. Also see the
Example Java Proiect@.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

298 Server APIs: HTTP REST, COM/.NET, Java Java API

6.3.2 Example Java Project

The Java code listing below shows how basic functionality can be accessed. It is structured into the following
parts:

e Locate the examples folder, and create a RaptorXML COM object instance@
e Validate an XML file

e Perform an XSLT transformation, return the result as a strina

e Process an XQuegz document, return the result as a string

¢ Run the project

This basic functionality is included in the files in the examples/APT folder of the RaptorXML Server application
folder.

public class RunRaptorXML
{
// Locate samples installed with the product
// (will be two levels higher from examples/API/Java)
// REMARK: You might need to modify this path
static final String strExamplesFolder = System.getProperty("user.dir") + "/../../" ;

static com.altova.raptorxml.RaptorXMLFactory rxml;

static void ValidateXML () throws com.altova.raptorxml.RaptorXMLException
{
com.altova.raptorxml.XMLValidator xmlValidator = rxml.getXMLValidator();
System.out.println ("RaptorXML Java - XML validation");
xmlValidator.setInputFromText ("<!DOCTYPE root [<!ELEMENT root (#PCDATA)>]>
<root>simple input document</root>");
if(xmlValidator.isWellFormed())
System.out.println("The input string is well-formed");
else
System.out.println("Input string is not well-formed: " +
xmlValidator.getLastErrorMessage ());

if(xmlValidator.isValid())
System.out.println("The input string is valid");
else
System.out.println("Input string is not valid: " +
xmlValidator.getLastErrorMessage ());

static void RunXSLT () throws com.altova.raptorxml.RaptorXMLException

{
System.out.println ("RaptorXML Java - XSL Transformation");
com.altova.raptorxml.XSLT xsltEngine = rxml.getXSLT();
xsltEngine.setInputXMLFileName (strExamplesFolder + "simple.xml");

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Java APl 299

xsltEngine.setXSLFileName (strExamplesFolder + "transform.xsl");
String result = xsltEngine.executeAndGetResultAsString() ;

if(result == null)

System.out.println("Transformation failed: " +
xsltEngine.getlLastErrorMessage ());
else

System.out.println("Result is " + result);

static void RunXQuery () throws com.altova.raptorxml.RaptorXMLException
{
System.out.println ("RaptorXML Java - XQuery execution");
com.altova.raptorxml.XQuery xgkEngine = rxml.getXQuery () ;
xgEngine.setInputXMLFileName (strExamplesFolder + "simple.xml");
xgEngine.setXQueryFileName (strExamplesFolder + "CopylInput.xqg");
System result = xgEngine.executeAndGetResultAsString();
if(result == null)
System.out.println("Execution failed: " + xgEngine.getLastErrorMessage());
else
System.out.println("Result is " + result);

public static void main(String[] args)

{
try
{
rxml = com.altova.raptorxml.RaptorXML.getFactory();
rxml.setErrorLimit (3);

ValidateXML () ;
RunXSLT () ;
RunXQuery () ;

catch(com.altova.raptorxml.RaptorXMLException e)

{

e.printStackTrace () ;

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

300 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

6.4 Server APl Reference

This section describes the RaptorXML Sener API: its object model and the details of its interfaces and
enumerations. The API description applies to both the COM/.NET and Java interfaces. While the structure of
the APl is the same for both interfaces, the names of methods and properties are different. For this reason,
each method, property, and enumeration is described with a separate signature for COM/.NET and Java.

The starting point for using the functionality of RaptorXML Server is the 1server & interface (COM/.NET) or
RaptorXMLFactor € class (Java).

6.4.1 Interfaces/Classes

The starting point for using the functionality of RaptorXML is the 1server & interface (COM/.NET) or
RaptorXMLFactor @ class (Java). This object contains the objects that provide the RaptorXML functionality:
XML validation, XQuery document and XML Signature processing, and XSLT transformations.

The hierarchy of the object model is shown below, and the interfaces are described in detail in the
corresponding sections. The methods and properties of each interface are described in the section for that
interface.

IServer (COM/.NET) / RaptorXMLFactory (Java)
| -- IXMLDSig (COM/.NET) / XMLDSig (Java)
| -- IXMLValidator (COM/.NET) / XMLValidator (Java)
| -- IXSLT (COM/.NET) / XSLT (Java)
| -- IXQuery (COM/.NET) / XQuery (Java)

6.4.1.1 |IServer/RaptorXMLFactory

Use the IServer/RaptorXMLFactory interface to access the RaptorXML engine that you want. Note that the
name of the interface in the COM/.NET APl is different than that of the interface in the Java API:

e In COM/.NET: IServer
e In Java: RaptorXMLFactory

The methods and properties of I1Server/RaptorXMLFactory are described in this section.

Java APl entry-point method

The Java APl is packaged in the com.altova.raptorxml package. The RaptorXML class provides an entry-
point method called getFactory (), which returns RaptorXMLFactor objects. So, a RaptorXMLFactory
instance can be created with the call: RaptorXML.getFactory ().

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP| Reference 301

6.4.1.1.1 Methods

The methods of the 1server (COM/.NET) and RaptorxXMLFactory (Java) interfaces return an instance of the
respective RaptorXML engine or class: XMLDSig, XML Validator, XSLT, and XQuery.

COM/.NET Java
GetXMLDsig@ (for XML getXMLDsiq@ (for XML Signatures)
Signatures)

GetXML\/’alj_datorm getXMLValidator
GetXQuery@ getXQuery
GetxsyT €D getXSLT

6.4.1.1.1.1 GetXMLDsig (for XML Signatures)
Returns an instance of the XML Signature interface/class (XMLDSig).

COMand .NET

Signature: IXMLDSig GetXMLDSig ()

Java

Signature: public XMLDSig getXMLDSig ()

6.4.1.1.1.2 GetXMLValidator

Returns an instance of the XML Validator Engine.

COM and .NET

Signature: IXMLValidator GetXMLValidator ()

Java

Signature: public XMLValidator &P getXMLValidator ()

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

302 Server APIs: HTTP REST, COM/.NET, Java

Server API Reference

6.4.1.1.1.3 GetXQuery

Returns an instance of the XQuery Engine.

COMand .NET

Signature: IXQuery_ GetXQuery ()

Java

Signature: public XQuerz getXQuery ()

6.4.1.1.1.4 GetXSLT

Returns an instance of the XSLT Engine.

COM and .NET

Signature: IXSLT GetXSLT ()

Java

Signature: public xsuT &P getXSLT ()

6.4.1.1.2 Properties

The properties of the Iserver (COM/.NET) and RaptorXMLFactory (Java) interfaces are described in this

section.
COM/.NET Java
Z—\PIMajorVersion getAPIMaj orVersion
APIMinorVersion getAPIMinorVersion

APIServicePackVersion@

getAPIServicePackVersion@

ErrorFormat@ setErrorFormat@
ErrorLimit@ setErrorLimit@
GlobalCatalog@ setGlobalCatalog

Altova RaptorXML Server 2025

© 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java

Server AP| Reference 303

GlobalResourceConfig@

setGlobalResourceConfig@

GlobalResourcesFile@

setGlobalResourcesFile

Is64Bit@ ss64Bit@

Maj or\/ersionm getMajorVersion
MinorVersion@ getMinorVersion
ProductName getProductName

ProductNameAndVers ion

getProductNameAndVersion

ReportOptionalWarnings

setReportOptionalWarnings

ServerName@ setServerName@
ServerPath@ setServerPath@
ServerPort@ setServerPort@

ServicePackVersion@

getServicePackVersion@

UserCatalog@

setUserCatalog@

6.4.1.1.2.1 APIMajorVersion

Returns the major version of the API as an integer. The APl major version can be different from the product's

major version

COM and .NET

Signature: int APIMajorVersion ()

Java

if the APl is connected to another senrver.

Signature: public int getAPIMajorVersion ()

6.4.1.1.2.2 APIMinorVersion

Returns the minor version of the APl as an integer. The API minor version can be different from the product's

minor version

COMand .NET

Signature: int APIMinorVersion ()

if the APl is connected to another server.

© 2019-2025 Altova GmbH

Altova RaptorXML Server 2025

304 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

Java

Signature: public int getAPIMinorVersion ()

6.4.1.1.2.3 APIServicePackVersion

Returns the senvice pack version of the APl as an integer. The senice pack version of the API can be different
from the product's senice pack version € if the API is connected to another server.

COMand .NET

Signature: int APIServicePackVersion ()

Java

Signature: public int getAPIServicePackVersion ()

6.4.1.1.2.4 ErrorFormat
Sets the RaptorXML error format to one of the ENUMErrorFormat & literals (Text, ShortXML, LongXML).

COMand .NET

Signature: ExrrorFormat (ENUMErrorForma t format)

Java

Signature: public void setErrorFormat(ENUMErrorFormat format)

6.4.1.1.2.5 ErrorLimit

Sets the RaptorXML validation error limit. The 1imit parameter is of type int (Java), uint (COM/.NET), and
specifies the number of errors to be reported before execution is halted. Use -1 to set 1imit to be unlimited
(that is, all errors will be reported). The default value is 100.

COMand .NET

Signature: ExrrorLimit (uint limit)

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP| Reference 305

Java

Signature: public int setErrorLimit(int limit)

6.4.1.1.2.6 GlobalCatalog

Sets the location, as a URL, of the main (entry-point) catalog file. The supplied string must be an absolute URL
that gives the exact location of the main catalog file to use.

COMand .NET

Signature: GlobalCatalog(string catalog)

Java

Signature: public void setGlobalCatalog(string catalog)

6.4.1.1.2.7 GlobalResourceConfig

Sets the active configuration of the global resource. The config parameter is of type string, and specifies the
name of the configuration used by the active global resource.

COMand .NET

Signature: GlobalResourceConfig(string config)

Java

Signature: public void setGlobalResourceConfig(string config)

6.4.1.1.2.8 GlobalResourcesFile

Sets the location, as a URL, of the Global Resources XML File. The supplied string must be an absolute URL
that gives the exact location of the Global Resources XML File.

COMand .NET

Signature: GlobalResourcesFile (string url)

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

306 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

Java

Signature: public void setGlobalResourcesFile(string url)

6.4.1.1.2.9 Is64Bit

Checks if the application is a 64-bit executable. Returns boolean true if the application is 64 bit, false ifitis
not. Example: For Altova RaptorXML Server 2025r2spl (x64), returns true. If an error occurs, a
RaptorXMLException is raised.

COMand .NET

Signature: boolean Is64Bit()

Java

Signature: public boolean is64Bit ()

6.4.1.1.2.10 MajorVersion

Returns the major version of the product as an integer. Example: For Altova RaptorXML Server
2018r2spl (x64), returns 20 (the difference between the major version (2018) and the initial year 1998). If an
€rror occurs, a RaptorXMLException is raised.

COMand .NET

Signature: int MajorVersion ()

Java

Signature: public int getMajorVersion ()

6.4.1.1.2.11 MinorVersion

Returns the minor version of the product as an integer. Example: For Altova RaptorXML Server
2025r2spl (x64), returns 2 (from the minor version number r2). If an error occurs, a RaptorXMLException@
is raised.

COMand .NET

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server API| Reference 307

Signature: int MinorVersion ()

Java

Signature: public int getMinorVersion ()

6.4.1.1.2.12 ProductName

Returns the name of the product as a string. Example: For Altova RaptorXML Server 2025r2spl (x64),
returns Altova RaptorXML Server. If an error occurs, a RaptorXMLException is raised.

COMand .NET

Signature: string ProductName ()

Java

Signature: public string getProductName ()

6.4.1.1.2.13 ProductNameAndVersion

Returns the product name, major version, minor version, and senice pack version of the product as a string.
Example: For Altova RaptorXML Server 2025r2spl (x64), returns Altova RaptorXML Server
2025r2spl (x64). If an error occurs, a RaptorXMLException is raised.

COMand .NET

Signature: string ProductNameAndVersion ()

Java

Signature: public string getProductNameAndVersion ()

6.4.1.1.2.14 ReportOptionalWarnings

Enables/disables the reporting of warnings. A value of true enables warnings; false disables them.

COMand .NET

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

308 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

Signature: ReportOptionalWarnings (boolean report)

Java

Signature: public void setReportOptionalWarnings (boolean report)

6.4.1.1.2.15 ServerName

Sets the name of the HTTP server through which the connection to RaptorXML Sener is made. The input
parameter is a string that gives the name of the HTTP server. If an error occurs, a RaptorXMLException is
raised.

COMand .NET

Signature: serverName (string name)

Java

Signature: public void setServerName (string name)

6.4.1.1.2.16 ServerPath
Specifies, in the form of a URL, the path to the HTTP server.

COMand .NET

Signature: serverPath (string path)

Java

Signature: public void setServerPath(string path)

6.4.1.1.2.17 ServerPort

Sets the port on the HTTP server via which the senvice is accessed. The port must be fixed and known so that
HTTP requests can be correctly addressed to the senice. The input parameter is an integer that specifies the
access port on the HTTP sener. If an error occurs, a RaptorXMLException is raised.

COMand .NET

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP| Reference 309

Signature: ServerPort (int port)

Java

Signature: public void setServerPort(int port)

6.4.1.1.2.18 ServicePackVersion

Returns the senice pack version of the product as an integer. Example: For RaptorXML Server
2025r2spl (x64), returns 1 (from the senice pack version number sp1). If an error occurs, a
RaptorXMLException is raised.

COMand .NET

Signature: int ServicePackVersion ()

Java

Signature: public int getServicePackVersion ()

6.4.1.1.2.19 UserCatalog

Sets the location, as a URL, of the custom user catalog file. The supplied string must be an absolute URL that
gives the exact location of the custom catalog file to use.

COMand .NET

Signature: UserCatalog(string userCatalog)

Java

Signature: public void setUserCatalog(string userCatalog)

6.4.1.2 RaptorXMLException

Generates an exception that contains information about an error that occurs during processing. The message
parameter provides information about the error.

COM and .NET

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

310 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

Signature: RaptorXMLException (string message)

Java

Signature: public void RaptorXMLException (string message)

6.4.1.3 XMLDSig (for XML Signatures)

Methods of the IXMLDSig/XMLDSig interface/class can be used to sign XML documents, verify signed
documents, update (with a new signature) previously signed documents that have been modified, and remove
signatures.

Note that the name of the interface in the COM/.NET APl is different than that of the class in the Java API:

e In COM/.NET: IXMLDSig
e InJava: xXMILDSig

6.4.1.3.1 Methods

The methods of the IxMLDSig interface (COM/.NET) and xMLDSig class (Java) are described in this section.

6.4.1.3.1.1 ExecuteRemove

Remowes the XML signature of the signed XML file, and saves the resulting unsigned document to an output
location defined by outputPath, which is a string that provides the URL of the file location. The result is true
on success, false on failure.

COM and .NET

Signature: boolean ExecuteRemove (string outputPath)

Java

Signature: public boolean executeRemove (string outputPath)

6.4.1.3.1.2 ExecuteSign

Signs the XML document according to the specified signing options (given in the signatureType and
canonicalizationMethod parameters; see the xmisignature-sign CLI command for available values). The
output file is defined by outputPath, which is a string that provides the URL of the output file. The result is
true On success, false on failure.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP| Reference 311

COMand .NET

Signature: boolean ExecuteSign (string outputPath, string signatureType,string
canonicalizationMethod)

Java

Signature: public boolean executeSign(string outputPath, string signatureType,string
canonicalizationMethod)

6.4.1.3.1.3 ExecuteUpdate

Updates the XML signature in the signed XML file. If the document has been modified, the updated XML
signature will be different; otherwise, the updated signature will be the same as the previous signature. The
output file is specified with outputpPath, which is a string that provides the URL of the file with the updated
signature. The result is true on success, false on failure.

Either (i) the HMAC secret key property or (ii) the certificate-name € and_certificate-store & properties

must be specified. If the certificate options are specified, then they must match those that were used to sign
the XML document previously. (Note that the certificate-store option is currently not supported on Linux and

macQOS.)

COMand .NET

Signature: boolean ExecuteUpdate (string outputPath)

Java

Signature: public boolean executeUpdate (string outputPath)

6.4.1.3.1.4 ExecuteVerify

Returns the result of the signature verification: true if verification is successful, false otherwise.

COM and .NET

Signature: boolean ExecuteVerify ()

Java

Signature: public boolean executeVerify ()

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

312 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

6.4.1.3.2 Properties

The properties of the IxMLDSig interface (COM/.NET) and xMLDsig class (Java) are described in this section.

6.4.1.3.2.1 AbsoluteReferenceUri

Specifies whether the URI of the signed document is to be read as absolute (true) or relative (false). Default
is false.

COMand .NET

Signature: AbsoluteReferenceUri (boolean absoluteuri)

Java

Signature: public void setAbsoluteReferenceUri (boolean absoluteuri)

6.4.1.3.2.2 AppendKeyinfo

Specifies whether to include the keyinfo element in the signature or not. The default is false.

COM and .NET

Signature: AppendKeyInfo (boolean include)

Java

Signature: public void setAppendKeyInfo (boolean inlude)

6.4.1.3.2.3 CertificateName

The name of the certificate used for signing.

Windows
This is the Subject name of a certificate from the selected --certificate-store.

Example to list the certificates (under PowerShell)

o)

% 1ls cert://CurrentUser/My

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP| Reference 313

PSParentPath: Microsoft.PowerShell.Security\Certificate::CurrentUser\My
Thumbprint Subject

CO9DF64BBOAAFS5FAT3474D78B7CCFFC37C95BFC6C CN=certificatel
CN=...

Example: --certificate-name==certificatel

Linux/MacOS
--certname specifies the file name of a PEM encoded X 509v3 certificate with the private key. Such files
usually have the extension .pem.

Example: --certificate-name==/path/to/certificatel.pem

COM and .NET

Signature: CertificateName (string name)

Java

Signature: public void setCertificateName (string name)

6.4.1.3.2.4 CertificateStore

The location where the certificate specified with --certificate-name is stored.

Windows
The name of a certificate store under cert://CurrentUser. The available certificate stores can be listed (under
PowerShell) by using $ 1s cert://CurrentUser/. Certificates would then be listed as follows:

Name : TrustedPublisher
Name : ClientAuthIssuer
Name : Root

Name : UserDS

Name : CA

Name : ACRS

Name : REQUEST

Name : AuthRoot

Name : MSIEHistoryJournal
Name : TrustedPeople

Name : MyCertStore

Name : Local NonRemovable Certificates
Name : SmartCardRoot

Name : Trust

Name : Disallowed

Example: --certificate-store==MyCertStore

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

314 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

Linux/MacOS
The --certstore option is currently not supported.

COMand .NET

Signature: CertificateStore (string filelocation)

Java

Signature: public void setCertificateStore(string filelocation)

6.4.1.3.2.5 DigestMethod

The algorithm that is used to compute the digest value over the input XML file. Available values are: shal |
sha256|sha384|shab12.

COMand .NET

Signature: bigestMethod (string algo)

Java

Signature: public void setDigestMethod (string algo)

6.4.1.3.2.6 HMACOutputLength

Truncates the output of the HMAC algorithm to 1ength bits. If specified, this value must be
e a multiple of 8
e larger than 80
e larger than half of the underlying hash algorithm's output length

COMand .NET

Signature: HMACOutputLength (int length)

Java

Signature: public void setHMACOutputLength (int length)

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP| Reference 315

6.4.1.3.2.7 HMACSecretKey

The HMAC shared secret key; must have a minimum length of six characters.

COMand .NET

Signature: HMACSecretKey (string key)

Java

Signature: public void setHMACSecretKey (string key)

6.4.1.3.2.8 InputXMLFileName

Sets the location, as a URL, of the XML document to process. The supplied string must be an absolute URL
that gives the exact location of the XML file.

COM and .NET

Signature: InputXMLFileName (string filepath)

Java

Signature: public void setInputXMLFileName (string filepath)

6.4.1.3.2.9 LastErrorMessage

Retrieves a string that is the last error message from the RaptorXML engine.

COMand .NET

Signature: string LastErrorMessage ()

Java

Signature: public string getLastErrorMessage ()

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

316 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

6.4.1.3.2.10 SignatureMethod

Specifies the algorithm to use for generating the signature.
When a cettificate is used

If a certificate is specified, then signatureMethod is optional and the value for this parameter is derived from
the certificate. If specified, it must match the algorithm used by the certificate. Example: rsa-sha256.

When --hmac-secret-key is used
When HMACSecretKey is used, then signatureMethod is mandatory. The value must be one of the supported

HMAC algorithms:
® hmac-sha256
e hmac-sha386
® hmac-shabl2
e hmac-shal (discouraged by the specification)

Example: hmac-sha256

COMand .NET

Signature: signatureMethod (string algo)

Java

Signature: public void setSignatureMethod (string algo)

6.4.1.3.2.11 Transforms

Specifies the XML Signature transformations applied to the input document. The supported values are:

e REC-xml-c14n-20010315 for Canonical XML 1.0 (omit comments)
e xml-cl4nl1 for Canonical XML 1.1 (omit comments)
e xml-exc-clan# for Exclusive XML Canonicalization 1.0 (omit comments)
e REC-xml-cl4n-20010315#WithComments for Canonical XML 1.0 (with comments)
e xml-cl4nll#WithComments for Canonical XML 1.1 (with comments)
e xml-exc-cl4n#WithComments for Exclusive XML Canonicalization 1.0 (with comments)
® Dbaseb64d
e strip-whitespaces Altova extension
COM and .NET

Signature: Transforms (string value)

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP| Reference 317

Java

Signature: public void setTransforms (string value)

6.4.1.3.2.12 WriteDefaultAttributes

Specifies whether to include default attribute values from the DTD in the signed document.

COMand .NET

Signature: WriteDefaultAttributes (boolean write)

Java

Signature: public void setWriteDefaultAttributes (boolean write)

6.4.1.4 XMLValidator

The IxMLValidator/XMLValidator interface/class provides methods to (i) validate various types of
documents, (ii) check documents for well-formedness, and (iii) extract an Awo schema from an Awo binary.
You can also provide additional processing via a Python script.

Note that the name of the interface in the COM/.NET APl is different than that of the class in the Java API:

e In COM/.NET: IXMLValidator
e InJava: xXMLValidator

6.4.1.4.1 Methods

The methods of the IXMLValidator interface (COM/.NET) and xMLvalidator class (Java) are described in this
section.

6.4.1.4.1.1 AddPythonScriptFile

Specifies the Python script file that provides additional processing of the file submitted for validation. The
supplied string must be an absolute URL of the Python script. The Python script will be processed with a
Python package that is bundled with RaptorXML Server. The bundled Python package is version 3.11.8.

COMand .NET

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

318 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

Signature: AddPythonScriptFile (string filepath)

Java

Signature: public void addPythonScriptFile(string filepath)

6.4.1.4.1.2 ClearPythonScriptFile

Clears Python script files added with the AddPythonScriptFile method or PythonScriptFile property.

COMand .NET

Signature: ClearPythonScriptFile ()

Java

Signature: public void clearPythonScriptFile ()

6.4.1.4.1.3 ExtractAvroSchema

Extracts an Awo schema from a binary file. The outputpPath parameter is an absolute URL that specifies the
output location. The result is true on success, false on failure. If an error occurs, a RaptorXMLException
is raised. Use LastErrorMessage to access additional information.

COMand .NET

Signature: ExtractAvroSchema (string outputPath)

Java

Signature: public void extractAvroSchema(string outputPath)

6.4.1.4.1.4 IsValid

Returns the result of validating the XML document, schema document, or DTD document. The type of
document to validate is specified by the type parameter, which takes an ENUMValidationType literal as its
value. The result is true on success, false on failure. If an error occurs, a RaptorXMLException is raised.
Use LastErrorMessage t0 access additional information.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP| Reference 319

COMand .NET

Signature: boolean IsValid(ENUMValidationT pe type)

Java

Signature: public boolean isValid(ENUMValidationType@ type)

6.4.1.4.1.5 IsWellFormed

Returns the result of checking the XML document or DTD document for well-formedness. The type of document
to check is specified by the type parameter, which takes an ENUMWellformedCheckType@ literal as its value.
The result is true on success, false on failure. If an error occurs, a RaptorXMLException is raised. Use
LastErrorMessage to access additional information.

COMand .NET

Signature: boolean isWellFormed(ENUMWellformedCheckType@ type)

Java

Signature.‘ public boolean isWellFormed(ENUMWellformedCheckType type)

6.4.14.2 Properties

The properties of the IxMLvalidator interface (COM/.NET) and xMLValidator class (Java) are described in
this section.

6.4.1.4.2.1 AssessmentMode

Sets the assessment mode of the XML validation (strict/Lax), which is given by an ENUMAsses smentMode &
literal.

COM and .NET

Signature: AssessmentMode (ENUMAssessmentMode mode)

Java

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

320 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

Signature: public void setAssessmentMode(ENUMAssessmentMode mode)

6.4.1.4.2.2 AvroSchemafFileName

Sets the location, as a URL, of the external Awo Schema to use. The supplied string must be an absolute URL
that gives the exact location of the Awo Schema file.

COMand .NET

Signature: AvroSchemaFileName (string url)

Java

Signature: public void setAvroSchemaFileName (string url)

6.4.1.4.2.3 AvroSchemaFromText

Supplies a string that is the text content of the Awvo Schema document to use.

COMand .NET

Signature: AvroSchemaFromText (string avroschema)

Java

Signature: public void setAvroSchemaFromText (string avroschema)

6.4.1.4.2.4 DTDFileName

Sets the location, as a URL, of the DTD document to use for validation. The supplied string must be an
absolute URL that gives the exact location of the DTD document.

COMand .NET

Signature: DTDFileName (string url)

Java

Signature: public void setDTDFileName (string url)

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP| Reference 321

6.4.1.4.2.5 DTDFromText

Supplies a string that is the text content of the DTD document to use for validation.

COM and .NET
Signature: DTDFromText (string dtdtext)

Java

Signature: public void setDTDFromText (string dtdtext)

6.4.1.4.2.6 EnableNamespaces

Enables namespace-aware processing. This is useful for checking the XML instance for errors due to incorrect
namespaces. A value of true enables namespace-aware processing; false disables it. The default is false.

COM and .NET
Signature: EnableNamespaces (boolean enableNS)

Java

Signature: public void setEnableNamespaces (boolean enableNS)

6.4.1.4.2.7 InputFileArray

Provides an array of URLs of the files to be used as input data. The array is an object containing the strings of
the absolute URLs of each of the input files.

COMand .NET

Signature: InputFileArray (object fileArray)

Java

Signature: public void setInputFileArray(object fileArray)

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

322 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

6.4.1.4.2.8 InputFileName

Sets the location, as a URL, of the input data file to process. The supplied string must be an absolute URL that
gives the location of the input file.

COMand .NET

Signature: InputFileName (string filepath)

Java

Signature: public void setInputFileName (string filepath)

6.4.1.4.2.9 InputFromText

Supplies a string that is the text content of the document to process.

COM and .NET

Signature: InputFromText (string doc)

Java

Signature: public void setInputFromText (string doc)

6.4.1.4.2.10 InputTextArray

Provides an array of the URLs of the text-files to be used as input data. The property supplies an object
containing, as strings, the absolute URLs of each of the text files.

COMand .NET

Signature: InputTextArray (object textfileArray)

Java

Signature: public void setInputTextArray (object textfileArray)

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP| Reference 323

6.4.1.4.2.11 InputXMLFileName

Sets the location, as a URL, of the XML document to process. The supplied string must be an absolute URL
that gives the exact location of the XML file.

COMand .NET

Signature: InputXMLFileName (string url)

Java

Signature: public void setInputXMLFileName (string url)

6.4.1.4.2.12 InputXMLFromText

Supplies a string that is the text content of the XML document to process.

COM and .NET

Signature: InputXMLFromText (string xml)

Java

Signature: public void setInputXMLFromText (string xml)

6.4.1.4.2.13 Jsonb
If set to true, enables JSON 5 support.

COMand .NET

Signature: Json5 (boolean json5)

Java

Signature: public void setJson5(boolean json5)

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

324 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

6.4.1.4.2.14 JSONSchemaFileName

Sets the location, as a URL, of the JSON Schema file that will be used for JSON instance-document validation.
The supplied string must be an absolute URL that gives the exact location of the JSON Schema file.

COMand .NET

Signature: JSONSchemaFileName (string url)

Java

Signature: public void setJSONSchemaFileName (string url)

6.4.1.4.2.15 JSONSchemaFromText

Supplies a string that is the text content of the JSSON Schema document that will be used for validation of the
JSON instance document.

COM and .NET

Signature: JSONSchemaFromText (string jsonschema)

Java

Signature: public void setJSONSchemaFromText (string jsonschema)

6.4.1.4.2.16 LastErrorMessage

Retrieves a string that is the last error message from the RaptorXML engine.

COMand .NET

Signature: string LastErrorMessage ()

Java

Signature: public string getLastErrorMessage ()

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP Reference

325

6.4.1.4.2.17 ParallelAssessment
Enables/disables parallel schema validity assessment.

COMand .NET

Signature: ParallelAssessment (boolean enable)

Java

Signature: public void setParallelAssessment (boolean enable)

6.4.1.4.2.18 PythonScriptFile

Specifies the Python script file that provides additional processing of the file submitted for validation. The
supplied string must be an absolute URL of the Python script. The Python script will be processed with a
Python package that is bundled with RaptorXML Server. The bundled Python package is version 3.11.8.

COM and .NET

Signature: PythonScriptFile (string filepath)

Java

Signature: public void setPythonScriptFile(string filepath)

6.4.1.4.2.19 SchemaFileArray

Supplies the collection of XML Schema files that will be used as external XML Schemas. The files are identified

by their URLs. The input is a collection of strings, each of which is the absolute URL of an XML Schema file

COMand .NET

Signature: schemaFileArray (object urlArray)

Java

Signature: public void setSchemaFileArray (object urlArray)

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

326 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

6.4.1.4.2.20 SchemafFileName

Sets the location, as a URL, of the XML Schema document to be used for validation. The supplied string must
be an absolute URL that gives the exact location of the XML Schema file.

COMand .NET

Signature: schemaFileName (string filepath)

Java

Signature: public void setSchemaFileName (string filepath)

6.4.1.4.2.21 SchemaFromText

Supplies a string that is the text content of the XML Schema document to use for validation of the XML
instance document.

COM and .NET

Signature: schemaFileName (string xsdText)

Java

Signature: public void setSchemaFileName (string xsdText)

6.4.1.4.2.22 Schemalmports

Specifies how schema imports are to be handled based on the attribute values of the xs:import elements. The
kind of handling is specified by the ENUMSchemaTImports literal that is submitted.

COMand .NET

Signature: schemaImports (ENUMSchemaImports@ importOption)

Java

Signature: public void setSchemaImports (ENUMSchemaImports importOption)

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP| Reference 327

6.4.1.4.2.23 SchemalocationHints

Specifies the mechanism to use to locate the schema. The mechanism is specified by the
ENUMLoadSchemalocation literal that is selected.

COMand .NET

Signature.‘ SchemalocationHints (ENUMLoadS chemalocation hint)

Java

Signature: public void setSchemalocationHints (ENUMLoadSchemalocation hint)

6.4.1.4.2.24 SchemaMapping

Sets what mapping to use in order to locate the schema. The mapping is specified by the ENUMSchemaMapping
literal that is selected.

COM and .NET

Signature: schemaMapping (ENUMSchemaMapp ing@ mappingOption)

Java

Signature: public void setSchemaMapping(ENUMSchemaMapping mappingOption)

6.4.1.4.2.25 SchemaTextArray

Supplies the content of multiple XML Schema files. The input is a collection of strings, each of which is the
content of an XML Schema document.

COMand .NET

Signature: schemaTextArray (object schemaDocs)

Java

Signature: public void setSchemaTextArray (object schemaDocs)

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

328 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

6.4.1.4.2.26 Streaming

Enables streaming validation. In streaming mode, data that is stored in memory is minimized and processing is
faster. A value of true enables streaming; false disables it. Default is true.

COMand .NET

Signature: streaming(boolean enable)

Java

Signature: public void setStreaming(boolean enable)

6.4.1.4.2.27 XincludeSupport

Enables or disables the use of xInclude elements. A value of true enables Xinclude support; false disables
it. The default value is false.

COM and .NET

Signature: XincludeSupport (boolean xinclude)

Java

Signature: public void setXincludeSupport (boolean xinclude)

6.4.1.4.2.28 XMLValidationMode

Sets the XML validation mode, which is an enumeration literal of ENUMXMLValidationMode@ that determines
whether to check validity or well-formedness.

COMand .NET

Signature: xXMLValidationMode (ENUMXMLValidationMode@ valMode)

Java

Signature: public void setXMLValidationMode(ENUMXMLValidationMode@ valMode)

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP| Reference 329

6.4.1.4.2.29 XSDVersion

Sets the XML Schema version against which the XML document will be validated. Value is an enumeration
literal of ENUMXSDVersion <&,

COMand .NET

Signature: XSDVersion (ENUMXSDVers ion@ version)

Java

Signature: public void setXSDVersion(ENUMXSDVersion version)
g P

6.4.1.5 XQuery

The IxXQuery/XQuery interface/class provides methods to (i) execute XQuery documents and XQuery updates,
and (ii) validate XQuery-related documents. You can also provide data for the executions via external variables.

Note that the name of the interface in the COM/.NET API is different than that of the class in the Java API:

e In COM/.NET: IXQuery
e InJava: XQuery

6.4.1.5.1 Methods

The methods of the 1xXQuery interface (COM/.NET) and xXQuery class (Java) are described in this section.

6.4.1.5.1.1 AddExternalVariable

Adds the name and value of a new external variable. Each external variable and its value is to be specified in a
separate call to the method. Variables must be declared in the XQuery document (with an optional type
declaration). If the variable value is a string, enclose the value in single quotes. The name parameter holds the
name of the variable, which is a QName, as a string. The value parameter holds the value of the variable as a
string.

COMand .NET

Signature: AddExternalVariable (string name, string wvalue)

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

330 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

Java

Signature: public void addExternalVariable(string name, string wvalue)

6.4.1.5.1.2 ClearExternalVariableList

Clears the external variables list created by the AddExternalvariable & method.

COMand .NET

Signature: ClearExternalVariableList ()

Java

Signature: public void clearExternalVariableList ()

6.4.1.5.1.3 Execute
333

Executes the XQuery transformation according to the XQuery version named in the Engine\]ersion.
property, and saves the result to the output file named in the outputFile parameter. The parameter is a string
that provides the location (path and filename) of the output file. The result is true on success, false on failure.
If an error occurs, a RaptorxXMLException is raised. Use the LastErrorMessage property to access
additional information.

COM and .NET

Signature: boolean Execute (string outputFile)

Java

Signature: public boolean €xecute (string outputFile)

6.4.1.5.1.4 ExecuteAndGetResultAsString

Executes the XQuery update according to the XQuery Update specification named in the EngineVersion
property, and returns the result as a string. This method does not produce additional result files, such as charts
or secondary results. It also does not hold binary results such as .docx OOXML files. If additional output files
are needed, use the Execute & method.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP| Reference 331

COMand .NET

Signature: string ExecuteAndGetResultAsString ()

Java

Signature: public string executeAndGetResultAsString()

6.4.1.5.1.5 ExecuteUpdate

Executes the XQuery update according to the XQuery Update specification named in the
XQueryUpdateVersion property, and saves the result to the output file named in the outputFile
parameter. The parameter is a string that provides the location (path and ﬁlenam%ﬁthe output file. The result
is true on success, false on failure. If an error occurs, a RaptorXMLException is raised. Use the
LastErrorMessage property to access additional information.

COMand .NET

Signature: boolean ExecuteUpdate (string outputFile)

Java

Signature: public boolean executeUpdate (string outputFile)

6.4.1.5.1.6 ExecuteUpdateAndGetResultAsString

Executes the XQuery u&%ﬂte according to the XQuery Update specification named in the
XQueryUpdateVersion property, and returns the result as a string. This method does not produce additional
result files, such as charts or secondary results. It also does not hold binary results such as .docx OOXML
files.

COMand .NET

Signature: string ExecuteUpdateAndGetResultAsString ()

Java

Signature: public string executeUpdateAndGetResultAsString()

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

332 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

6.4.1.5.1.7 IsValid

Returns the result of validating the XQuery document according to the XQuery specification named in the
Engineversion & property. The result is true on success, false on failure. If an error occurs, a
RaptorXMLException is raised. Use the LastErrorMessage property to access additional information.

COMand .NET

Signature: boolean IsValid()

Java

Signature: public boolean isValid()

6.4.1.5.1.8 IsValidUpdate

Returns the result of validating the XQuery Update document according to the XQuery Update specification
named in the XxQueryUpdateversion property. The result is true on success, false on failure. If an error
occurs, a RaptorXMLException@_iS raised. Use the LastErrorMessage property to access additional
information.

COM and .NET

Signature: boolean IsValidUpdate ()

Java

Signature: public boolean isValidUpdate ()

6.4.1.5.2 Properties

The properties of the IxQuery interface (COM/.NET) and XQuery class (Java) are described in this section.

6.4.1.5.2.1 Additional Outputs

Returns the additional outputs of the last executed job.

COMand .NET

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP| Reference 333

Signature: string AdditionalOutputs ()

Java

Signature: public string getAdditionalOutputs ()

6.4.1.5.2.2 ChartExtensionsEnabled

Enables or disables Altova's chart extension functions. A value of true enables chart extensions; false
disables them. Default value is true.

COMand .NET

Signature: ChartExtensionsEnabled (boolean enable)

Java

Signature: public void setChartExtensionsEnabled (boolean enable)

6.4.1.5.2.3 DotNetExtensionsEnabled

Enables or disables .NET extension functions. A value of t rue enables .NET extensions; false disables them.
Default value is true.

COMand .NET

Signature: DotNetExtensionsEnabled (boolean enable)

Java

Signature: public void setDotNetExtensionsEnabled(boolean enable)

6.4.1.5.2.4 EngineVersion

Specifies the XQuery version to use. The property value is an ENUND«;)_ueryversionega literal.

COM and .NET

Signature: EngineVersion (ENUMXQuer version & version)

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

334 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

Java

Signature: public void setEngineVersion (ENUMXQueryVersion@ version)

6.4.1.5.2.5 IndentCharacters

Submits the character string that will be used as indentation in the output.

COMand .NET

Signature: IndentCharacters(string indentChars)

Java

Signature: public void setIndentCharacters(string indentChars)

6.4.1.5.2.6 InputXMLFileName

Sets the location, as a URL, of the XML document to process. The supplied string must be an absolute URL
that gives the exact location of the XML file.

COMand .NET

Signature: InputXMLFileName (string url)

Java

Signature: public void setInputXMLFileName (string url)

6.4.1.5.2.7 InputXMLFrom Text

Supplies a string that is the text content of the XML document to process.

COMand .NET

Signature: InputXMLFromText (string xml)

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP| Reference 335

Java

Signature: public void setInputXMLFromText (string xml)

6.4.1.5.2.8 JavaBarcodeExtensionlLocation

Specifies the location of the barcode extension file. See the section on Altova's barcode extension functions &
for more information. The supplied string must be an absolute URL that gives the base location of the file to
use.

COMand .NET

Signature: JavaBarcodeExtensionLocation (string url)

Java

Signature: public void setJavaBarcodeExtensionLocation (string url)

6.4.1.5.2.9 JavaExtensionsEnabled

Enables or disables Java extension functions. A value of true enables Java extensions; false disables them.
Default value is true.

COMand .NET

Signature: JavaExtensionsEnabled (boolean enable)

Java

Signature: public void setJavaExtensionsEnabled(boolean enable)

6.4.1.5.2.10 KeepFormatting

Specifies whether the formatting of the original document should be kept (as far as possible) or not. A value of
true keeps formatting; false does not keep formatting. Default value is true.

COMand .NET

Signature: KeepFormatting (boolean keep)

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

336 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

Java

Signature: public void setKeepFormatting(boolean keep)

6.4.1.5.2.11 LastErrorMessage

Retrieves a string that is the last error message from the RaptorXML engine.

COMand .NET

Signature: string LastErrorMessage ()

Java

Signature: public string getLastErrorMessage ()

6.4.1.5.2.12 LoadXMLWithPSVI

Enables validation of input XML files and generates post-schema-validation info for them. A value of true
enables XML validation and generates post-schema-validation info for the XML files; false disables validation.
Default value is true.

COMand .NET

Signature: LoadXMLWithPSVI (boolean enable)

Java

Signature: public void setLoadXMLWithPSVI (boolean enable)

6.4.1.5.2.13 MainOutput

Returns the main output of the last executed job.

COMand .NET

Signature: string MainOutput ()

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server API| Reference 337

Java

Signature: public string getMainOutput ()

6.4.1.5.2.14 OutputEncoding

Sets the encoding for the result document. Use an official IANA encoding name, such as UTF-8, UTF-16, US-
ASCIT, IS0-8859-1, as a string.

COMand .NET

Signature: OutputEncoding (string encoding)

Java

Signature: public void setOutputEncoding(string encoding)

6.4.1.5.2.15 Outputindent

Enables or disables indentation in the output document. A value of true enables indentation; false disables it.

COMand .NET

Signature: outputIndent (boolean outputIndent)

Java

Signature: public void setOutputIndent(boolean outputIndent)

6.4.1.5.2.16 OutputMethod

Specifies the serialization of the output document. Valid values are: xml | xhtml |html | text. Default value is
xml.

COMand .NET

Signature: outputMethod (string format)

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

338 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

Java

Signature: public void setOutputMethod(string format)

6.4.1.5.2.17 OutputOmitXMLDeclaraton

Enables/disables the inclusion of the XML declaration in the result document. A value of true omits the
declaration; false includes it. Default value is false.

COMand .NET

Signature: OutputOmitXMLDeclaration (boolean omitDeclaration)

Java

Signature: public void setOutputOmitXMLDeclaration (boolean omitDeclaration)

6.4.1.56.2.18 UpdatedXMLWriteMode

Specifies how updates to the XML file are handled. The property value is an ENUMXQuer UpdatedXML literal.

COMand .NET

Signature: UpdateXMLWriteMode (ENUMXQueryUpdatedXML updateMode)

Java

Signature: public void setUpdateXMLWriteMode(ENUMXQueryUpdatedXML updateMode)

6.4.1.5.2.19 XincludeSupport

Enables or disables the use of xInclude elements. A value of true enables Xinclude support; false disables
it. The default value is false.

COMand .NET

Signature: XincludeSupport (boolean xinclude)

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP| Reference 339

Java

Signature: public void setXincludeSupport (boolean xinclude)

6.4.1.5.2.20 XMLValidationErrorsAsWarnings

Enables the treating of XML validation errors as warnings. Takes boolean true or false.

COMand .NET

Signature: XxMLValidationErrorsAsWarnings (boolean enable)

Java

Signature: public void setXMLValidationErrorsAsWarnings (boolean enable)

6.4.1.5.2.21 XMLValidationMode

Sets the XML validation mode, which is an enumeration literal of ENUMXMLValidationMode@ that determines
whether to check validity or well-formedness.

COMand .NET

Signature: xMLValidationMode (ENUMXMLValidationMode@ valMode)

Java

Signature: public void setXMLValidationMode(ENUMXMLValidationMode@ valMode)

6.4.1.5.2.22 XQueryFileName

Specifies the XQuery file to use. The supplied string must be an absolute URL that gives the location of the
XQuery file to use.

COMand .NET

Signature: XQueryFileName (string fileurl)

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

340 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

Java

Signature: public void setXQueryFileName (string fileurl)

6.4.1.5.2.23 XQueryFromText

Supplies, as a text string, the contents of the XQuery document to use

COMand .NET

Signature: XQueryFromText (string xgtext)

Java

Signature: public void setXQueryFromText (string xgtext)

6.4.1.56.2.24 XQueryUpdateVersion

Specifies the XQuery Update version to use. The property value is an ENUMXQueryVersion@ literal.

COMand .NET

Signature: XQueryUpdateVersion(ENUMXQueryVersion@ version)

Java

Signature: public void setXQueryUpdateVersion(ENUMXQueryVersion@ version)

6.4.1.5.2.25 XSDVersion

Sets the XML Schema version against which the XML document will be validated. Value is an enumeration
literal of ENUMXSDVersion <&,

COMand .NET

Signature: XsDVersion (ENUMXSDVersion@ version)

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP| Reference 341

Java

Signature: public void setXSDVersion(ENUMXSDVersion version)
P

6.4.1.6 XSLT

The IXSLT/XSLT interface/class provides methods to execute XSLT transformations and validate XSLT-related
documents. You can also provide data for the transformation via external parameters.

Note that the name of the interface in the COM/.NET APl is different than that of the class in the Java API:

e In COM/.NET: IXSLT
e In Java: XSLT

6.4.1.6.1 Methods

The methods of the IxsLT interface (COM/.NET) and XSLT class (Java) are described in this section.

6.4.1.6.1.1 AddExternalParameter

Adds the name and value of a new external parameter. Each external parameter and its value is to be specified
in a separate call to the method. Parameters must be declared in the XSLT document. Since parameter values
are XPath expressions, parameter values that are strings must be enclosed in single quotes. The name
parameter holds the name of the variable, which is a QName, as a string. The value parameter holds the value
of the variable as a string.

COMand .NET

Signature: AddExternalParameter (string name, string value)

Java

Signature: public void addExternalParameter (string name, string value)

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

342 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

6.4.1.6.1.2 ClearExternalParameterList

Clears the external parameters list created by the AddExternalparameter &9 method.

COMand .NET

Signature: ClearExternalParameterList ()

Java

Signature: public void clearExternalParameterList ()

6.4.1.6.1.3 Execute

Executes the XSLT transformation according to the XSLT specification named in the EngineVersion
property, and saves the result to the output file named in the outputFile parameter. If an error occurs, a
RaptorXMLException is raised. Use the LastErrorMessage property to access additional information.

COM and .NET

Signature: boolean Execute (string outputFile)

Java

Signature: public boolean execute (string outputFile)

6.4.1.6.1.4 ExecuteAndGetResultAsString

Executes the XSLT transformation according to the XSLT specification named in the EngineVersion
property, and returns the result as a string. This method does not produce additional result files, such as charts
or secondary results. It also does not hold binary results such as .docx OOXML files. If additional output files
are needed, use the Execute method. If an error occurs, a RaptorXMLException@ is raised. Use the
LastErrorMessage property to access additional information.

COMand .NET

Signature: string ExecuteAndGetResultAsString ()

Java

Signature: public string executeAndGetResultAsString()

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP| Reference 343

6.4.1.6.1.5 ExecuteAndGetResultAsStringWithBaseOutputURI

Executes the XSLT transformation according to the XSLT specification named in the Engine\/ersionea
property, and returns the result as a string at the location defined by the base URI. The baseURI parameter is a
string that provides a URI. This method does not produce additional result files, such as charts or secondary
results. It also does not hold binary results such as .docx OOXML files. If additional output files are needed,
use the Execute @ method. If an error occurs, a RaptorXMLException@ is raised. Use the
LastErrorMessage property to access additional information.

COMand .NET

Signature: string ExecuteAndGetResultAsStringWithBaseOutputURI (string baseURTI)

Java

Signature: public string ExecuteAndGetResultAsStringWithBaseOutputURI (string baseURTI)

6.4.1.6.1.6 IsValid

Returns the result of validating the XSLT document according to the XSLT specification named in the
Engine\/ersioneB pr%@erty. The result is true on success, false on failure. If an error occurs, a

RaptorxXMLException is raised. Use the LastErrorMessage property to access additional information.

COM and .NET

Signature: boolean IsValid()

Java

Signature: public boolean isValid()

6.4.1.6.2 Properties

The properties of the IXsSLT interface (COM/.NET) and XsLT class (Java) are described in this section.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

344 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

6.4.1.6.2.1 AdditionalOutputs

Returns the additional outputs of the last executed job.

COMand .NET

Signature: string AdditionalOutputs ()

Java

Signature: public string getAdditionalOutputs ()

6.4.1.6.2.2 ChartExtensionsEnabled

Enables or disables Altova's chart extension functions. A value of t rue enables chart extensions; false
disables them. Default value is true.

COM and .NET

Signature: ChartExtensionsEnabled (boolean enable)

Java

Signature: public void setChartExtensionsEnabled(boolean enable)

6.4.1.6.2.3 DotNetExtensionsEnabled

Enables or disables .NET extension functions. A value of true enables .NET extensions; false disables them.
Default value is true.

COMand .NET

Signature: DotNetExtensionsEnabled (boolean enable)

Java

Signature: public void setDotNetExtensionsEnabled(boolean enable)

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP Reference

345

6.4.1.6.2.4 EngineVersion

Specifies the XSLT version to use. The property value is an ENUMXSLTVersion €D literal.

COMand .NET

Signature: EngineVersion ENUMXSLTVersion version
g

Java

Signature: public void setEngineVersion (ENUMXSLTVersion@ version)

6.4.1.6.2.5 IndentCharacters

Submits the character string that will be used as indentation in the output.

COM and .NET

Signature: IndentCharacters(string indentChars)

Java

Signature: public void setIndentCharacters(string indentChars)

6.4.1.6.2.6 InitialTemplateMode

Sets the initial mode for XSLT processing. Templates with a mode value equal to the submitted string will be

processed.

COMand .NET

Signature: InitialTemplateMode (string mode)

Java

Signature: public void setInitialTemplateMode (string mode)

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

346 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

6.4.1.6.2.7 InputXMLFileName

Sets the location, as a URL, of the XML document to process. The supplied string must be an absolute URL
that gives the exact location of the XML file.

COMand .NET

Signature: InputXMLFileName (string url)

Java

Signature: public void setInputXMLFileName (string url)

6.4.1.6.2.8 InputXMLFrom T Text

Supplies a string that is the text content of the XML document to process.

COM and .NET

Signature: InputXMLFromText (string xml)

Java

Signature: public void setInputXMLFromText (string xml)

6.4.1.6.2.9 JavaBarcodeExtensionlLocation

Specifies the location of the barcode extension file. See the section on Altova's barcode extension functions @
for more information. The supplied string must be an absolute URL that gives the base location of the file to
use.

COMand .NET

Signature: JavaBarcodeExtensionLocation (string url)

Java

Signature: public void setJavaBarcodeExtensionLocation (string url)

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP| Reference 347

6.4.1.6.2.10 JavaExtensionsEnabled

Enables or disables Java extension functions. A value of true enables Java extensions; false disables them.
Default value is true.

COMand .NET

Signature: JavaExtensionsEnabled (boolean enable)

Java

Signature: public void setJavaExtensionsEnabled(boolean enable)

6.4.1.6.2.11 LastErrorMessage

Retrieves a string that is the last error message from the RaptorXML engine.

COM and .NET

Signature: string LastErrorMessage ()

Java

Signature: public string getLastErrorMessage ()

6.4.1.6.2.12 LoadXMLWithPSVI

Enables validation of input XML files and generates post-schema-validation info for them. A value of true
enables XML validation and generates post-schema-validation info for the XML files; false disables validation.
Default value is true.

COMand .NET

Signature: LoadXMLWithPSVI (boolean enable)

Java

Signature: public void setLoadXMLWithPSVI (boolean enable)

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

348 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

6.4.1.6.2.13 MainOutput

Returns the main output of the last executed job.

COMand .NET

Signature: string MainOutput ()

Java

Signature: public string getMainOutput ()

6.4.1.6.2.14 NamedTemplateEntryPoint

Specifies the name, as a string, of the named template to use as an entry point for the transformation.

COM and .NET

Signature: NamedTemplateEntryPoint (string template)

Java

Signature: public void setNamedTemplateEntryPoint(string template)

6.4.1.6.2.15 Schemalmports

Specifies how schema imports are to be handled based on the attribute values of the xs:import elements. The
kind of handling is specified by the ENUMSchemaTImports literal that is submitted.

COMand .NET

Signature: schemaImports (ENUMSchemaImports importOption)

Java

Signature: public void setSchemaImports (ENUMSchemaImports importOption)

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP| Reference 349

6.4.1.6.2.16 SchemalocationHints

Specifies the mechanism to use to locate the schema. The mechanism is specified by the
ENUMLoadSchemalocation literal that is selected.

COMand .NET

Signature.‘ SchemalocationHints (ENUMLoadS chemalocation hint)

Java

Signature: public void setSchemalocationHints (ENUMLoadSchemalocation hint)

6.4.1.6.2.17 SchemaMapping

Sets what mapping to use in order to locate the schema. The mapping is specified by the ENUMSchemaMapping
literal that is selected.

COM and .NET

Signature: schemaMapping (ENUMSchemaMapp ing@ mappingOption)

Java

Signature: public void setSchemaMapping(ENUMSchemaMapping mappingOption)

6.4.1.6.2.18 StreamingSerialization

Enables streaming serialization. In streaming mode, data stored in memory is minimized and processing is
faster. A value of true enables streaming serialization; false disables it.

COMand .NET

Signature: streamingSerialization(boolean enable)

Java

Signature: public void setStreamingSerialization(boolean enable)

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

350 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

6.4.1.6.2.19 XincludeSupport

Enables or disables the use of xInclude elements. A value of true enables Xinclude support; false disables
it. The default value is false.

COMand .NET

Signature: XincludeSupport (boolean xinclude)

Java

Signature: public void setXincludeSupport (boolean xinclude)

6.4.1.6.2.20 XMLValidationErrorsAsWarnings

Enables the treating of XML validation errors as warnings. Takes boolean true or false.

COM and .NET

Signature: XMLValidationErrorsAsWarnings (boolean enable)

Java

Signature: public void setXMLValidationErrorsAsWarnings (boolean enable)

6.4.1.6.2.21 XMLValidationMode

Sets the XML validation mode, which is an enumeration literal of ENUMXMLValidationMode@ that determines
whether to check validity or well-formedness.

COMand .NET

Signature: xXMLValidationMode (ENUMXMLValidationMode@ valMode)

Java

Signature: public void setXMLValidationMode(ENUMXMLValidationMode@ valMode)

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP| Reference 351

6.4.1.6.2.22 XSDVersion

Sets the XML Schema version against which the XML document will be validated. Value is an enumeration
literal of ENUMXSDVersion <&,

COMand .NET

Signature.‘ XSDVersion(ENUMXSDVersion version)

Java

Signature: public void setXSDVersion(ENUMXSDVersion version)
g P

6.4.1.6.2.23 XSLFileName

Specifies the XSLT file to use. The supplied string must be an absolute URL that gives the location of the XSLT
file to use.

COM and .NET

Signature: XSLFileName (string fileurl)

Java

Signature: public void setXSLFileName (string fileurl)

6.4.1.6.2.24 XSLFromText

Supplies, as a text string, the contents of the XSLT document to use

COMand .NET

Signature: XSLFromText (string xsltext)

Java

Signature: public void setXSLFromText (string xsltext)

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

352 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

6.4.2 Enumerations

Enumerations of the COM/.NET and Java Server APIs are described in this section. Each description includes
links to the methods or properties that use the enumeration.

ENUMAssessmentMode
ENUME rrorFormat
ENUMLoadSchemancation

ENUMSchemalmports
ENUMSchemaMappinE@
ENUMValidationType
ENUMWeIIformedCheckTyEe@
ENUMXML ValidationMode
ENUMXQueryUpdatedXviL €
ENUMXQueryVersion
ENUMXSDVersion

ENUMXSL TVersion &2

6.4.2.1 ENUMAssessmentMode

Defines the assessment mode of the XML Validator to be strict or lax:

e eAssessmentModeStrict: Sets the schema-validity assessment mode to strict. This is the default

value.
e eAssessmentModelax: Sets the schema-validity assessment mode to Lax.

COM and .NET

eAssessmentModeStrict (= 0
eAssessmentModeLax =1

Used by

Interface Property
IXMLValidator AssessmentMode
Java

public enum ENUMAssessmentMode {
eAssessmentModeLax

eAssessmentModeStrict }
Used by
Class Method

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java

Server AP Reference

353

| XMLValidator

| setAssessmentMode

6.4.2.2 ENUMErrorFormat

Specifies the format of the error output:

e eFormatText: Sets the error output format to Text. The default value.

e eFormatShortXML: Sets the error output format to shortxmML. This format is an abbreviated form of the

LongxML format.

e eFormatLongXML: Sets the error output format to LongxML. This format provides the most detail of all
three output formats.

COM and .NET

eFormatText =0

eFormatShortXML =1

eFormatLongXML =2

Used by

Interface Property

IServer@ ErrorFormat@

Java

public enum ENUMErrorFormat ({
eFormatText
eFormatShortXML

eFormatLongXML }

Used by
Class Method
RaptorXMLFactory@ setErrorFormat@

6.4.2.3 ENUMLoadSchemalocation

Indicates how the schema's location should be determined. The selection is based on the schema location

attribute of the XML instance document. This attribute could be xsi:schemaLocation or
xsi:noNamespaceSchemalocation.

e eSHLoadBySchemalocation uses the URL of the schema location attribute in the XML instance

document. This enumeration literal is the default value.

© 2019-2025 Altova GmbH

Altova RaptorXML Server 2025

354 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

e eSHLoadByNamespace Uses the namespace part of xsi:schemalocation and an empty string in the
case of xsi:noNamespaceSchemalocation to locate the schema via a catalog mapping.

e eSHLoadCombiningBoth: If either the namespace URL or schema location URL has a catalog mapping,
then the catalog mapping is used. If both have catalog mappings, then the value of
ENUMSchemaMapping decides which mapping is used. If neither the namespace nor schema
location has a catalog mapping, the schema location URL is used.

e eSHLoadIgnore: The xsi:schemalocation and xsi:noNamespaceSchemaLocation attributes are both

ignored.
COM and .NET
eSHLoadBySchemalocation =0
eSHLoadByNamespace =1
eSHLoadCombiningBoth =2
eSHLoadIgnore =3
Used by
Interface Property
IXMLValidator SchemalocationHints
IXSLT SchemalocationHints@

Java

public enum ENUMLoadSchemalocation {
eSHLoadBySchemalocation
eSHLoadByNamespace
eSHLoadCombiningBoth
eSHLoadIgnore }

Used by

Class Method

XMLValidator setSchemalocationHints &2
XSLT@ setSchemalocationHints@

6.4.2.4 ENUMSchemalmports

Defines the behavior of the schema's xs:import elements, each of which has an optional namespace attribute
and an optional schemalLocation attribute.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP| Reference 355

eSILoadBySchemalocation uses the value of the schemaLocation attribute to locate the schema,
taking account of catalog mappings. If the namespace attribute is present, the namespace is imported
(licensed).

eSILoadPreferringSchemalocation: If the schemalocation attribute is present, it is used, taking
account of catalog mappings. If no schemalocation attribute is present, then the value of the
namespace attribute is used via a catalog mapping. This enumeration literal is the default value.
eSILoadByNamespace Uses the value of the namespace attribute to locate the schema via a catalog
mapping.

eSILoadCombiningBoth! If either the namespace URL or schemalocation URL has a catalog mapping,
then the catalog mapping is used. If both have catalog mappings, then the value of
ENUMSchemaMapping decides which mapping is used. If neither the namespace nor

schemaLocation URL has a catalog mapping, the schemalLocation URL is used.
eSILicenseNamespaceOnly: The namespace is imported. No schema document is imported.

COM and .NET

eSILoadBySchemalocation =0
eSILoadPreferringSchemalocation =1
eSILoadByNamespace =2
eSICombiningBoth =3
eSILicenseNamespaceOnly =4

Used by

Interface Property
IXMLValidator Schemalmports
IXSLTen Schemalmports@
Java

public enum ENUMSchemaImports {

eSILoadBySchemalocation
eSILoadPreferringSchemalocation
eSILoadByNamespace
eSILoadCombiningBoth
eSILicenseNamespaceOnly }

Used by

Class

Method

XMLValidator setSchemaImports

XSLT@ setSchemaImports@

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

356 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

6.4.2.5 ENUMSchemaMapping

Specifies which of two catalog mappings is preferred: namespaces or schema-location URLs. This enumeration
is useful for disambiguating ENUMLoadSchemalocation % and ENUMSchemaImports@.

e eSMPreferNamespace: Selects the namespace.
e eSMPreferSchemalocation: Selects the schema location. This is the default value.

COMand .NET

eSMPreferSchemalocation =0
eSMPreferNamespace =1

Used by

Interface Property
IXMLValidator SchemaMapping
IXSLT SchemaMapping@
Java

public enum ENUMSchemaMapping {
eSMPreferSchemalocation

eSMPreferNamespace }
Used by
Class Method
IXMLValidator setSchemaMapping
IXSLTen setSchemaMapping@

6.4.2.6 ENUMValidationType

Specifies what validation to carry out and, in the case of XML documents, whether validation is against a DTD
or XSD.

e evValidateAny: The document type (for example, XML or XSD) is detected, and validation is set
automatically for that document type.

e eValidateXMLWithDTD: Specifies validation of an XML document against a DTD.

e eValidateXMLWithxsSD: Specifies validation of an XML document against an XSD (XML Schema).

e eValidateDTD: Specifies validation of a DTD document.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java Server AP| Reference 357

e eValidateXsD: Specifies validation of an XSD (W3C XMLSchema) document.

e eValidateJSON: Specifies validation of a JSON instance document.

e eValidateJSONSchema: Specifies validation of a JSON Schema document according to JSON Schema
4.

e eValidateAvro: Specifies validation of an Awo binary file. The Awo data in the binary file is validated
against the Awo Schema contained in the binary file.

e eValidateAvroSchema: Specifies validation of an Awo schema against the Awo schema specification.

e eValidateAvroJsSON: Specifies validation of a JSON-serialized Awo data file against an Awo schema.

COM and .NET
eValidateAny =0
eValidateXMLWithDTD =1
eValidateXMLWithXSD =2
eValidateDTD =3
eValidateXSD =4
eValidateJSON =5
eValidateJSONSchema =6
eValidateAvro =17
eValidateAvroSchema =8
eValidateAvroJSON =9
Used by
Interface Method
IXMLValidator isValid@
Java
public enum ENUMValidationType {
eValidateAny
eValidateXMLWithDTD
eValidateXMLWithXSD
eValidateDTD
eValidateXSD
eValidateJSON
eValidateJSONSchema
eValidateAvro

eValidateAvroSchema
eValidateAvroJSON }

Used by
Class Method
XMLValidator sl isValid

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

358 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

6.4.2.7 ENUMWellformedCheckType
Specifies the type of well-formed check to make (for XML, DTD, or JSON).

e eWellformedAny: The document type is detected, and the type of check is set automatically.
e eWellformedxML: Checks an XML document for well-formedness.

e eWellformedDTD: Checks a DTD document for well-formedness.

e eWellformedJSON: Checks a JSON document for well-formedness.

COM and .NET
eWellFormedAny =0
eWellFormedXML =1
eWellFormedDTD = 2
eWellFormedJSON =3
Used by
Interface Method
IXMLValidator isWellFormed
Java
public enum ENUMWellformedCheckType {
eWellformedAny
eWellformedXML
eWellformedDTD

eWellformedJSON }

Used by
Class Method
XMLValidator isWellFormed

6.4.2.8 ENUMXMLValidationMode

Specifies the type of XML validation to perform (validation or well-formedness check).

e eProcessingModeWF: Sets the XML processing mode to wellformed. This is the default value.
e eProcessingModevValid: Sets the XML processing mode to validation.
e eProcessingModeID: Internal, not for use.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java

Server AP Reference

359

COMand .NET

eXMLValidationModeWF =0
eXMLValidationModeID =1
eXMLValidationModeValid = 2

Used by

Interface Property
IXMLValidator XMLValidationMode
IXQuery XMLValidationMode
IXSLT XMLValidationMode@

Java

public enum ENUMXMLValidationMode {

eProcessingModeValid

eProcessingModeWF
eProcessingModelID

Used by

Class Method

XMLValidator setXMLValidationMode
XQuery setXMLValidationMode
XSLT@ setXMLValidationMode@

6.4.2.9 ENUMXQueryUpdated XML

Specifies how XQuery updates are handled.

e eUpdatedDiscard: Updates are discarded and not written to file.

e cUpdatedWriteback: Updates are written to the input XML file specified with (set)

e eUpdatedAsMainResult: Updates are written to the location specified by the outputFile parameter of

InputXMLFileName .

ExecuteUpdate .
COMand .NET
eUpdatedDiscard 1
eUpdatedWriteback 2

© 2019-2025 Altova GmbH

Altova RaptorXML Server 2025

360 Server APIs: HTTP REST, COM/.NET, Java

Server API Reference

eUpdatedAsMainResult =3

Used by

Interface Property

IXQuery UpdatedXMLWriteMode@

Java

public enum ENUMXQueryUpdatedXML {
eUpdatedDiscard
eUpdatedWriteback

eeUpdatedAsMainResult }

Used by
Class Method
XQuery setUpdatedXMLWriteMode@

6.4.2.10 ENUMXQueryVersion

Sets the XQuery version to be used for processing (execution or validation).

e eXQVersionlO: Sets the XQuery version to XQuery 1.0.

e eXQVersion30: Sets the XQuery version to XQuery 3.0. The default value.

e eXQVersion31: Sets the XQuery version to XQuery 3.1.

Note: The Java enumeration literals are differently named than the COM/.NET literals. See below.

COMand .NET
eXQVersionlO =1
eXQVersion30 =3
eXQVersion3l = 31
Used by
Interface Property
IXQuery Engine\/ersion
Java
public enum ENUMXQueryVersion {
eVersionlO
eVersion30

Altova RaptorXML Server 2025

© 2019-2025 Altova GmbH

Server APIs: HTTP REST, COM/.NET, Java

Server AP| Reference 361

eVersion3l }

Used by
Class Method
XQuery setEngineVersion

6.4.2.11 ENUMXSDVersion

Specifies the XML Schema version to use for validation.

e eXSDVersionAuto: The XML Schema version is detected automatically from the XSD document's
vc:minVersion attribute. If this attribute's value is 1.1, then the document is considered to be XSD
1.1. If the attribute has any other value, or if no value exists, then the document is considered to be

XSD 1.0.

e eXSDVersionlO:
e eXSDVersionll:

Sets the XML Schema version for validation to XML Schema 1.0.
Sets the XML Schema version for validation to XML Schema 1.1.

COM and .NET
eXSDVersionAuto =0
eXSDVersionlO =1
eXSDVersionll =2
Used by
Interface Property
IXMLValidator XSDVersion
IXQuerx XSDVersion
IXSLT@ XSDVersion
Java
public enum ENUMXSDVersion {
eXSDVersionAuto
eXSDVersionl0
eXSDVersionll }
Used by
Class Method
XMLValidator s setXSDVersion
XQuery setXSDVeJ:sioneD
XSLT setXSDVersion

© 2019-2025 Altova GmbH

Altova RaptorXML Server 2025

362 Server APIs: HTTP REST, COM/.NET, Java

Server API Reference

6.4.2.12 ENUMXSLTVersion

Sets the XSLT version to be used for processing (validation or XSLT transformation).

e eVersionl0: Sets the XSLT version to XSLT 1.0.
e eVersion20: Sets the XSLT version to XSLT 2.0.
e eVersion30: Sets the XSLT version to XSLT 3.0.

COMand .NET

eVersionlO

eVersion20

eVersion30

Used by

Interface

Property

IXSLT

EngineVersion

Java

public enum ENUMXSLTVersion {

eVersionlO
eVersion20
eVersion30 }

Used by
Class Method
XSLT setEngineVersion@

Altova RaptorXML Server 2025

© 2019-2025 Altova GmbH

Engine APIs: Python and .NET 363

7 Engine APIs: Python and .NET

RaptorXML Sener provides two engine APls:

e a Python wheel file (.wh1), which is the Python Engine API: raptorxml<versiondetails>.whl
e a .NETDLL file (.d11), which is the .NET Engine API: raptorxmlapi.dll

These two engine APIs provide the RaptorXML Server functionality as separate packages that are standalone
and independent from RaptorXML Senrver (see figure below). Each package must be installed on the user's
machine before it can be imported as a Python module or integrated into a custom .NET application. Because
all processing is performed locally on the user’'s machine, the Python and .NET engine APIs provide detailed
access to the data models of any valid XML and XBRL instances, XSD schemas and XBRL taxonomies. The
APIs expose a rich set of methods to iterate over the content of XBRL instances or allow to retrieve specific bits
of information from XBRL taxonomies with a few lines of code.

Engine APIs

i ™y
Python Wheel (_4 Python Program

* RaptorXML or
* RaptorXML+XERL - o
L) .NET DLL

* RaptorXML or
* RaptorXML+XBRL

.NET Application €

Note the following points about the Engine APls:

e After you install RaptorXML Server, both engine APIs will be located in the bin folder of the RaptorXML
Server installation folder.

e The engine APIs provide additional advanced processing via more versatile objects in their APls.

e Inorder to use an engine API, a licensed version of RaptorXML Server must be installed on the
machine on which the Python program or .NET application is executed (see Usage below).

Usage

You can create a Python program or .NET application as follows:

Python program
A Python program can access RaptorXML functionality by using Python API obiects@ (see here@). When

the Python program is executed, it will use the RaptorXML library that has been installed in your Python

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

364 Engine APIs: Python and .NET

environment when you install the Python wheel. Note that the Python wheel is compatible with Python version
3.11.8 only.

NET application
A .NET application can access RaptorXML functionality by using .NET API obiects (see here). When the

.NET application is executed, it will use the RaptorXML that is contained in the .NET API DLL.

Licensing

In order to use an engine API, a licensed version of RaptorXML Server must be installed on the machine on
which the Python program or .NET application is executed. See the section Licensing@ for more detailed
information.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Engine APIs: Python and .NET Licensing 365

7.1 Licensing

In order for an API package to run on a client machine, that machine will have to be licensed as a RaptorXML
Senver client. Licensing consists of two steps:

1. Registering the machine as a RaptorXML Server client with Altova LicenseServer
2. Assigning a RaptorXML Server license from LicenseServer to that machine.

If you plan to use the API package from a given machine, then two possible situations arise:

e [fthe client machine is already running a licensed installation of RaptorXML Server, then the API
package can be run without you needing to take any additional steps. This is because the machine is
already licensed to run RaptorXML Server. Consequently, use of the APl package on this machine is
cowered by the license assigned to RaptorXML Server on that machine.

e [f RaptorXML Sener is not installed on the client machine and you do not want to install RaptorXML
Senver on that machine for whatever reason. In this case, you can still register the machine as a
RaptorXML Sener client and assign it a RaptorXML Server license. How to do this is described below.

To register a machine (on which RaptorXML Sener is not installed) as a RaptorXML Sener client, use the
command line application registerlicense.exe, Which is located in the application's bin folder:

Windows |Program Files\Altova\RaptorXMLServer2025\bin
Linux /opt/Altova/RaptorXMLServer2025/bin

Mac /usr/local/Altova/RaptorXMLServer2025/bin

On the command line run the command:
registerlicense <LicenseServer>
where <LicenseServer> is the IP address or host name of the LicenseServer machine.

This command will register the machine as a RaptorXML Senrver client with Altova LicenseServer. For
information about how to assign a RaptorXML Server license to the machine and for more information about
licensing, see the Altova LicenseServer documentation.

Deploying on Linux

To deploy the registerlicense application with your Python wheel package, the shared libraries that are
listed below need to be present in a sibling 1ib directory. The shared libraries can be copied from your Raptor
installation folder:

/opt/Altova/RaptorXMLServerRaptorXMLServer2025/1ib

libcrypto.so.1.0.0
libssl.so0.1.0.0
libstdc++.s0.6
libtbb.so.2

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

366 Engine APIs: Python and .NET Python API

7.2 Python API

The RaptorXML Python API enables data in XML documents and XML Schema documents to be accessed
and manipulated in Python scripts. Some typical use cases of the Python API include:

implement custom validation rules and error messages

export content from XML documents to a database

export content from XML documents to custom data formats

interactively navigate and query the data model of XML documents within a Python shell or Jupyter

notebook (http://jupyter.org/)

The Python APls

The Python APIs (for XML and XSD) provide access to the meta-information, structural information, and data
contained in XML and XSD documents. As a result, Python scripts can be created that make use of the APlIs
to access and process document information. For example, a Python script can be passed to RaptorXML
Server that writes data from an XML document to a database or to a CSV file.

Example scripts for Raptor's Python APIs are available at: https://github.com/altova

The Python APIs are described in their API references:

e Python API v1 Reference
e Python API V2 Reference

Note: Raptor's Python API v1 is deprecated. Please use Python API 2.

RaptorXML Server package for Python

In your installation of RaptorXML Server, you will also find a Python package in wheel format. You can use
Python's pip command to install this package as a module of your Python installation. After the RaptorXML
module has been installed, you can use the module's functions within your code. In this way, RaptorXML's
functionality can be used easily in any Python program you write, together with other third-party Python
libraries, such as graphics libraries.

For information about how to use RaptorXML Senrver's Python package, see the section RaptorXML Server as a
Python Package@.

Note: The Python wheel in v2024r2 and later is compatible with Python version 3.11.8 and higher.

Python scripts

A user-created Python script is submitted with the --script parameter of a number of commands, including
the following:

(] valxml-withxsd (xsi) @
° valxsd (xsd)

These commands invoking Python scripts can be used both on the Command Line Interface (CLI1ea and via
the HTTP Interface @, The usage of Python scripts with the Python APIs of RaptorXML Server are described

at: https://github.com/altova.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

http://jupyter.org/
https://github.com/altova
https://www.altova.com/manual/en/raptorapi/pyapiv1/html/index.html
https://www.altova.com/manual/en/raptorapi/pyapiv2/2.11.0/html/index.html
https://pypi.python.org/pypi/wheel
https://github.com/altova

Engine APIs: Python and .NET Python APl 367

Making Python scripts safe

When a Python script is specified in a command via HTTP to RaptorXML Server, the script will only work if it is
located in the trusted directoty. The script is executed from the trusted directory. Specifying a Python script
from any other directory will result in an error. The trusted directory is specified in the server.script-root-
MQ setting of the server configuration ﬁle, and a trusted directory must be specified if you wish to use
Python scripts. Make sure that all Python scripts to be used are saved in this directory.

Though all output generated by the server for HTTP job requests is written to the job output directogy@ (which
is a sub-directory of the output-root-directory“¥), this limitation does not apply to Python scripts, which
can write to any location. The server administrator must review the Python scripts in the trusted directo:y for
potential wilnerability issues.

7.21 Python API Versions

RaptorXML Senrver supports multiple Python API versions. Any previous Python API version is also supported
by the current version of RaptorXML Sener. The Python API version is selected by the --script-api-
version=MAJOR VERSION command line flag. The default of the MAJOR VERSION argument is always the current
version. A new RaptorXML Server Python API MAJOR VERSION is introduced when incompatible changes or
major enhancements are introduced. Users of the API do not need to upgrade their existing scripts when a new
major version is released.

It is recommended that:

e You use the --script-api-version=MAJOR VERSION flag to invoke utility scripts from the RaptorXML
Senver command-line (or Web-API). This ensures that scripts still work as expected after RaptorXML
Server updates—even if a new APl MAJOR VERSION has been released.

e You use the latest version of the API for new projects, even though previous versions will be supported
by future RaptorXML Server releases.

The Python API versions listed below are currently available. The documentation of the different APIs are
available online at the locations given below.

Example files
For examples of scripts that use Raptor's Python APIs, go to https://github.com/altova.

Python APl version 1
Introduced with RaptorXML Server V2014

Command line flag: --script-api-version=1

Documentation: Python AP| Version 1 Reference

This is the original RaptorXML Server Python API. It covers support to access the internal model of RaptorXML
Server for:

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://github.com/altova
https://www.altova.com/manual/en/raptorapi/pyapiv1/html/index.html

368 Engine APIs: Python and .NET

Python API

e XML 1.0 and XML 1.1 (APl module xm1)

e XMLSchema 1.0 and XMLSchema 1.1 (API module xsd)

e XBRL 2.1 (APl module xbrl)

The API can be used through callback functions which are implemented in a Python script file.

on xsi valid
on xsd valid
on dts valid

on xbrl valid

A script is specified with the --script option on the command line. The callback functions are invoked only if
the validation succeeds. Details about the callback functions and the API are described in the RaptorXML

Senrver Python API version 1 reference.

Note: Raptor's Python API v1 is deprecated. Please use Python API 2.

Python APl version 2

Introduced with RaptorXML Server V2015r3. The latest API version is 2.11.0.

Command line flag Release
--script-api-version=2 v 2015r3
--script-api-version=2. v 2015r4
--script-api-version=2. v 2016
--script-api-version=2. v 2016r2
--script-api-version=2. v 2017
--script-api-version=2. v 2018
--script-api-version=2. v 2018r2
--script-api-version=2. v 2019
--script-api-version=2. v2019r3
--script-api-version=2. v2020
--script-api-version=2. v2020r2
--script-api-version=2. v2021
--script-api-version=2. v2021r2
--script-api-version=2. v2022r2
--script-api-version=2. v2023r2sp1
--script-api-version=2. v2024
--script-api-version=2. v2024r2

Altova RaptorXML Server 2025

© 2019-2025 Altova GmbH

Engine APIs: Python and .NET Python APl 369

--script-api-version=2.10.0 v2025

--script-api-version=2.11.0 v2025r2

Documentation: Python APl Version 2 Reference

This API version introduces over 300 new classes and reorganizes the modules from the RaptorXML Server
Python API version 1 in such a way that frequently used information (for example, PSVI data) can be accessed
more simply and related APIs are grouped logically together (fr example, xbrl.taxonomy, xbrl.formula,
xbrl.table). In this version, the callback functions are invoked not only if validation succeeds, but also if
validation fails. To reflect this behavior, the name of the callback functions are changed to:

on xsi finished
on xsd finished
on _dts finished
on xbrl finished

To enable modularization, RaptorXML Server now supports multiple --script options. The callbacks
implemented in these Python script files are executed in the order specified on the command line.

7.2.2 RaptorXML Server as a Python Package

Starting with RaptorXML Server 2024, the Python API is available as a native Python wheel package for Python
3.11.8. The Python wheel package can be installed as an extension module in your favored Python 3.11.8
distribution (for example, from python.org). Some Python 3 distributions (for example, from jupyter.org,
anaconda.org and SciPy.org) include a wide range of extension modules for big data, mathematics, science,
engineering and graphics. These modules now become available to RaptorXML Server without the need to build
these modules specifically for RaptorXML Server. Otherwise, the wheel package works the same way as the

RaptorXMLXBRL-python.exe application that is included with RaptorXML Server.

Note: The Python wheel package is a native Python 3.11.8 extension module and is compatible with Python
version 3.11.8.

Note: The Python wheel package does not include the Python API v1.

Note: If you update your version of RaptorXML Server, make sure to update the Python wheel package in your
Python environment.

The information required to correctly install the RaptorXML Server package is given in the sections below:

Name of wheel ﬁle
Location of wheel ﬁle

Installing a wheel with pip <4
Troubleshooting the installation
The root catalog file

The JSON config ﬁle

For information about how to use RaptorXML Server's Python API, see the Python API Reference and
examples € Also see example scripts that use Raptor's Python API at https://github.com/altova.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://www.altova.com/manual/en/raptorapi/pyapiv2/2.11.0/html/index.html
http://www.python.org
http://www.jupyter.org
http://www.anaconda.org
http://www.scipy.org
https://github.com/altova

370 Engine APIs: Python and .NET Python API

Name of wheel file
Wheel files are named according to the following pattern:

raptorxmlserver-{version} (-{build tag})?-{python tag}-{abi tag}-{platform tag}.whl

Example:
raptorxmlserver-2.10.0-cp35-cp35m-win_amd64.whl

Location of wheel file
A wheel file is packaged with your installation of RaptorXML Server. It is located in the application's bin folder:

Windows |Program Files\Altova\RaptorXMLServer2025\bin
Linux /opt/Altova/RaptorXMLServer2025/bin

Mac /usr/local/Altova/RaptorXMLServer2025/bin

Installing a wheel with pip
To install the RaptorXML Server package as a Python module, use the pip command:

pip install <wheel-file>.whl
python -m pip install <wheel-file>.whl

If you hawe installed Python 3.11.8 or later from python.org, then pip will already be installed. Otherwise, you
will need to install pip first. For more information, see https://docs.python.org/3/installing/.

Troubleshooting the installation

In case you are using older versions of the Python interpreter, you might have to adjust your installation to use
the latest veruntime libraries on windows or standard C++ libraries on Unix. These libraries are distributed with
RaptorXML Server and can be used as described below.

Windows

If the veruntime140_1.d11 is missing, copy it from the Program Files\Altova\RaptorxXMLServer2025\bin
folder to the Python installation folder (the folder containing python.exe). (More generally, the Python
interpreter needs to know where to find DLLs or shared libraries.)

Linux

If your system's C++ library is outdated, then your Python interpreter will not know how to find the newer C++
library that is used by the RaptorXML Server Python package and distributed with RaptorXML Senrver. This can
be fixed by using $LD_LIBRARY PATH to point to the newer library in the RaptorXML Server folder, like this: $
export LD LIBRARY PATH=/opt/Altova/RaptorXMLServer2025/1ib.

macOS

If your system's C++ library is outdated, then your Python interpreter will not know how to find the newer C++
library that is used by the RaptorXML Server Python package and distributed with RaptorXML Senrver. This can
be fixed by using $DYLD_LIBRARY PATH to point to the newer library in the RaptorXML Senver folder, like this: $
export DYLD LIBRARY PATH=/usr/local/Altova/RaptorXMLServer2025/1lib.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

https://docs.python.org/3/installing/

Engine APIs: Python and .NET Python APl 371

The root catalog file

The RaptorXML module for Python must be able to locate RootCatalog.xml, the root catalog file that is stored
in your RaptorXML Senrver installation folder. This is so that the RaptorXML module can use the catalog to
correctly locate the various resources, such as schemas and other specifications, that the module references
in order to carry out functions such as validations and transformations. The RaptorXML module will
automatically locate RootCatalog.xml if the catalog's location has not been changed subsequent to the
installation of RaptorXML Server.

In case you mowve or modify your RaptorXML Server environment, or if you move RootCatalog.xml from its
original installed location, then you can specify the catalog's location by means of environment variables and
the RaptorXML module's JSON Config File €D’ See the list below for the various ways in which you can do this.
The RaptorXML module determines the location of RootCatalog.xml by looking up the following resources in
the order given.

1 | Environment variable
ALTOVA RAPTORXML PYTHON CATALOGPATH

Create with a value that is the path to
RootCatalog.xml

HKLM Registry:
SOFTWARE\Altova\RaptorXMLServer\Installation
v2025 x64\Setup\CatalogPath

Location: /opt/Altova/RaptorXMLServer2025/etc/R
ootCatalog.xml

Location: /usr/local/Altova/RaptorXMLServer2025
/etc/RootCatalog.xml

Environment variable
ALTOVA RAPTORXML PYTHON CONFIG

Location: .altova/raptorxml-python.config
Location: ~/.config/altova/raptorxml-
python.config

Location: /etc/altova/altova/raptorxml-
python.config

Registry key is added by RaptorXML Server
installer. Value is the path to
RootCatalog.xml. Windows only

Linux only
Mac only

Create with a value that is the path to the
JSON config file €D

The JSON config file ® in the current working
directory

The JSON config file € in the user's home
directory

The JSON config file € inux and Mac only

The JSON config file

You can create a JSON config file for the RaptorXMLServer module. This file will be used by options 5 to 8 in
the table abowe to locate the root catalog file €D The JSON config file must contain a map with a
"CatalogPath" key that has a value which is the path to the root catalog file <%

Listing of JSON config file

{
"CatalogPath": "/path/to/RootCatalog.xml"

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

372 Engine APIs: Python and .NET Python API

7.2.3 Debugging Server-Side Python Scripts

Most of the debugging functionality—apart the server-specific callbacks—can be used in a standard Python
interpreter or (virtual) environment after the RaptorXML Server module has been installed by using pip:

pip install -upgrade "/path/to/RaptorXML/application-folder/bin/raptorxml-version-cp37-
cp37m-winversion.whl"

Atfter installing the wheel, you should be able to use any Python IDE to debug a script. You could try to extract
the main functionality into a separate function which takes an instance object. This can then be called (i) by the
RaptorXML Senver callbacks, or (ii) by directly executing the script with a Python interpreter.

from altova_api.v2 import xml, xsd, xbrl

def main(instance):
Here goes the application specific logic

Main entry point, will be called by RaptorXML after the XML instance validation job has
finished
def on_xsi_finished(job, instance):
instance object will be None if XML Schema validation was not successful
if instance:
main (instance)

Main entry point, will be called by RaptorXML after the XBRL instance validation job has
finished
def on_xbrl finished(job, instance):

instance object will be None if XBRL 2.1 validation was not successful

if instance:

main (instance)

if _name == ‘_ main ':

parse arguments and create an instance

instance = ..

main (instance)

724 Debugging Python Scripts in Visual Studio Code

We assume an up-to-date Visual Studio Code (VS Code) intallation with the ms-python.python extension
installed. Please read the official Python debug configurations in Visual Studio Code guide for a general

ovenview.

Note the following points:

e This guide uses raptorxml-python as the command to execute RaptorXML Senrer as a Python
interpreter.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

https://code.visualstudio.com/
https://code.visualstudio.com/docs/python/debugging

Engine APIs: Python and .NET Python APl 373

e The raptorxml-python executable is available in the bin folder of your RaptorXML Server application
folder.

Overview
We introduce two methods to use VS Code to debug Python scripts in RaptorXML Senrver.

e Method 1 also works for servers and RaptorXML Python callbacks (--script option).

e Method 2 doesn't require any source code modifications. It is a modified invocation of RaptorXML.
Method 2 doesn't work for servers and RaptorXML Python callbacks (--script option).

e Both methods work with a standard Python interpreter and the imported RaptorXML Python module

('import altova_api.v2 as altova').

Method 1: Change your source code
Carry out the following steps:

1. Run: raptorxml-python -m pip install --upgrade debugpy
2. Add the following lines to your Python source code:

python

import debugpy

debugpy.listen (5678)

debugpy.wait_for client()

debugpy .breakpoint ()

3. Copy this launch configuration to VS Code launch.json (defaults will do for the above values) and
select it for Run.
json5

{
"name": "Python: Remote Attach",
thpe" : prthonll ,
"request": "attach",
"connect": {
"host": "localhost",
"port": 5678
},
"pathMappings": [
{
"localRoot": "${workspaceFolder}",
"remoteRoot": "."

1

}
You can also run by using the menu command Run->Add Configuration...->Python->Remote
Attach with the defaults accepted.

4. Run your Python script (or RaptorXML with --script callbacks) as usual.
5. Start debugging (usually with the shortcut F5).

Method 2: Use a modified command line
Carry out the following steps:

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

374 Engine APIs: Python and .NET Python API

1. Add a launch configuration (as in Method 1 abowe), and select it for Run.

Set a breakpoint in your Python script.

3. Run the command: raptorxml-python -m debugpy --listen 0.0.0.0:5678 --wait-for-client
your-script-.py

4. Start debugging (usually with the shortcut F5).

N

Note: Debugging also works with containers and remote servers. You have to change the host key of the
connect entry in the launch configuration. You may also use other ports as long as code or command line and
launch. json have consistent values.

Setting raptorxml-python.exe as VS Code's default interpreter

It is possible to configure raptorxml-python.exe as the default Python interpreter of VS Code. Do this by
adding the following to your VS Code settigs. json file:

json
"python.defaultInterpreterPath": "/path/to/raptorxml-python.exe"

In this case, it is also possible to use a "Current File" launch configuration that starts the script for debugging.
Consult the official VS Code documentation for details.

7.2.5 FAQs

Q: / want to write a Python script that creates a new XML instance one element at a time while running inside
the raptor server. These need to be serialized to the output with different encodings and formatting depending
on parameters. Is this possible in RaptorXML Server.

A: No, this is currently not possible because we do not have an API for creating arbitrary XML instances.
Howewer, when it comes to generating XBRL instances, we do have a high-level APl which manages a lot of the
technical details (such as awiding writing duplicate contexts/units, and lots more). See

https://www.altova.com/manual/en/raptorapi/pyapiv2/2.11.0/html/xbrl. InstanceDocumentBuilder.html for more
information.

Q: / would like to use Ixml. Can | install Ixml libraries into the Python folder at
"RaptorXMLXBRLServer2024/lib/"?

A: You can install most Python modules directly by running the following command in a terminal that has
administrator rights:

"/path/to/RaptorXML/application-folder/bin/RaptorXMLXBRL-python.exe" -m pip install 1lxml

Q: Would it be all right to create a big string that contains the XML instance, then parse the whole thing and re-
serialize it.

A: That is one possibility. You can parse and validate XML and XBRL instances from a string buffer using the
Python API like this:

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

https://www.altova.com/manual/en/raptorapi/pyapiv2/2.11.0/html/xbrl.InstanceDocumentBuilder.html

Engine APIs: Python and .NET Python APl 375

from altova_api.v2 import xml

txt = '''<?xml version="1.0" encoding="utf-8"?>
<doc>

<elem attr="foo">bar</elem>
</doc>'""

inst = xml.Instance.create_from buffer (txt.encode('utf-8')) .result
print(inst.serialize())

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

376 Engine APIs: Python and .NET .NET Framework API

7.3 .NET Framework API

The .NET Framework API of RaptorXML Server enables you to integrate the RaptorXML engine in
applications written in C# and other .NET languages.

It is implemented as a .NET assembly and puts the RaptorXML engine directly inside an application or a
.NET-framework-based extension mechanism like VSTO (Visual Studio Tools for Office). The API provides fine-
grained access to validate documents and to query their internal data model from RaptorXML Server.

Reference and resources

e API documentation: The latest RaptorXML Server .NET Framework API documentation is located

at https://www.altova.com/manual/en/raptorapi/dotnetapiv2/2.11.0/html/index.html.
e Example code: The example code is hosted at https://qgithub.com/altova/RaptorXML-Examples.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

https://en.wikipedia.org/wiki/Visual_Studio_Tools_for_Office
https://www.altova.com/manual/en/raptorapi/dotnetapiv2/2.11.0/html/index.html
https://github.com/altova/RaptorXML-Examples

Schema Manager 377

8 Schema Manager

XML Schema Manager is an Altova tool that provides a centralized way to install and manage XML schemas
(DTDs for XML and XML Schemas) for use across all Altova's XML-Schema-aware applications, including
RaptorXML Server.

¢ On Windows, Schema Manager has a graphical user interface (screenshot below) and is also available
at the command line. (Altova's desktop applications are available on Windows only; see list below.)

e On Linux and macOS, Schema Manager is available at the command line only. (Altova's server
applications are available on Windows, Linux, and macOS; see list below.)

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

378 Schema Manager

s ¥ML Scherna Manager

(W] CBCR - Country-by-Country Reporting
[[] CML - Chemical Markup Language

[] DITA - OASIS Darwin Information Typing Architecture

[[] DITA (DTD) - OASIS Darwin Information Typing Architecture
DOCBOOK (DTD) - Docbook Markup Language

EPUB - Electronic Publication

(W] HL7v3 ME - Health Level 7 V3, Mormative Edition

[[] HR-XML - Human Resources Open Standards

[J2EE (DTD) - Java 2 Platform Enterprise Edition DTDs

[] MCAXML - National Coffee Association XML

] NEWSML (DTD) - News Markup Language

[] MITF - News Industry Text Format

[] OOXML - Office Open ECMA-376 XML Schema files

[] P3P - Platform for Privacy Preferences Project

[[] RIXML - Research Information Exchange Markup Language
[] SMIL (DTD) - Synchronized Multimedia Integration Language
[] SVG (DTD) - Scalable Vector Graphics

[] TEILITE - Text Encoding Initiative Lite

[] TLD (DTD) - Java Server Pages Tag Library

[] DAISY (DTD) - Document Type Definition files for the Digital Accessible Information System

Select the packages you want to install and then click "Apply".

Patch Selection Deselect All Reset Selection

Apply Close

Altova applications that operate with Schema Manager

Desktop applications (Windows only) Server applications (Windows, Linux, macOS)

XMLSpy (all editions) RaptorXML Server, RaptorXML+XBRL Server

Altova RaptorXML Server 2025

© 2019-2025 Altova GmbH

Schema Manager 379

MapForce (all editions) StyleVision Server

StyleVision (all editions)

Authentic Desktop Enterprise Edition

Installation and de-installation of Schema Manager

Schema Manager is installed automatically when you first install a new version of Altova Mission Kit or of any
of Altova's XML-schema-aware applications (see table above).

Likewise, it is removed automatically when you uninstall the last Altova XML-schema-aware application from
your computer.

Schema Manager features
Schema Manager provides the following features:

e Shows XML schemas installed on your computer and checks whether new versions are available for
download.

e Downloads newer versions of XML schemas independently of the Altova product release cycle. (Altova
stores schemas online, and you can download them via Schema Manager.)

e Install or uninstall any of the multiple versions of a given schema (or all versions if necessary).

e An XML schema may have dependencies on other schemas. When you install or uninstall a particular
schema, Schema Manager informs you about dependent schemas and will automatically install or
remove them as well.

e Schema Manager uses the XML catalog mechanism to map schema references to local files. In the
case of large XML schemas, processing will therefore be faster than if the schemas were at a remote
location.

e All major schemas are available via Schema Manager and are regularly updated for the latest versions.
This provides you with a convenient single resource for managing all your schemas and making them
readily available to all of Altova's XML-schema-aware applications.

¢ Changes made in Schema Manager take effect for all Altova products installed on that machine.

¢ In an Altova product, if you attempt to validate on a schema that is not installed but which is available
via Schema Manager, then installation is triggered automatically. However, if the schema package
contains namespace mappings, then there will be no automatic installation; in this case, you must
start Schema Manager, select the package/s you want to install, and run the installation. If, after
installation, your open Altova application does not restart automatically, then you must restart it
manually.

How it works

Altova stores all XML schemas used in Altova products online. This repository is updated when new versions of
the schemas are released. Schema Manager displays information about the latest available schemas when
invoked in both its GUI form as well as on the CLI. You can then install, upgrade or uninstall schemas via
Schema Manager.

Schema Manager also installs schemas in one other way. At the Altova website
(https://www.altova.com/schema-manager) you can select a schema and its dependent schemas that you want
to install. The website will prepare a file of type .altova xmlschemas for download that contains information
about your schema selection. When you double-click this file or pass it to Schema Manager via the CLI as an
argument of the insta11 €D command, Schema Manager will install the schemas you selected.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://www.oasis-open.org/committees/entity/spec-2001-08-06.html
https://www.altova.com/schema-manager

380 Schema Manager

Local cache: tracking your schemas
All information about installed schemas is tracked in a centralized cache directory on your computer, located

here:

Windows C:\ProgramData\Altova\pkgs\.cache
Linux /var/opt/Altova/pkgs\.cache
macOS /var/Altova/pkgs

This cache directory is updated regularly with the latest status of schemas at Altova's online storage. These
updates are carried out at the following times:

Every time you start Schema Manager.

When you start RaptorXML Server for the first time on a given calendar day.

If RaptorXML Server is open for more than 24 hours, the cache is updated every 24 hours.

You can also update the cache by running the update command at the command line interface.

The cache therefore enables Schema Manager to continuously track your installed schemas against the
schemas available online at the Altova website.

Do not modify the cache manually!

The local cache directory is maintained automatically based on the schemas you install and uninstall. It
should not be altered or deleted manually. If you ever need to reset Schema Manager to its original
"pristine" state, then, on the command line interface (CLI): (i) run the reset & command, and (ii) run the
initialize@ command. (Alternatively, run the reset command with the --i option.)

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Schema Manager Run Schema Manager 381

8.1 Run Schema Manager

Graphical User Interface
You can access the GUI of Schema Manager in any of the following ways:

e During the installation of RaptorXML Server: Towards the end of the installation procedure, select the
check box Invoke Altova XML-Schema Manager to access the Schema Manager GUI straight away.
This will enable you to install schemas during the installation process of your Altova application.

e Viathe .altova xmlschemas file downloaded from the Altova website: Double-click the downloaded file
to run the Schema Manager GUI, which will be set up to install the schemas you selected (at the
website) for installation.

After the Schema Manager GUI (screenshot below) has been opened, already installed schemas will be shown
selected. If you want to install an additional schema, select it. If you want to uninstall an already installed
schema, deselect it. After you have made your selections and/or deselections, you are ready to apply your
changes. The schemas that will be installed or uninstalled will be highlighted and a message about the
upcoming changes will be posted to the Messages pane at the bottom of the Schema Manager window (see
screenshot).

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://www.altova.com/schema-manager

382 Schema Manager Run Schema Manager

XML Scherna Manager >
1) g

= EPUB - Electronic Publication -
XML Schema files for the Electronic Publication file format.

https://www.w3.org/community/epub3/
5|20

B m HL7v3 NE - Health Level 7 V3, Normative Edition
XML schema files for Health Level 7 ¥3 Mormative Editions.

https:/www.hl7.org/implement/standards/
[2010
= 2003

= HR-XML - Human Resources Open Standards
AML scherna files for the Hurnan Resources Open Standards.
https://schemas.liquid-techneologies.com/HR-XML/2007-04-15/

= 2007
[J2EE (DTD) - Java 2 Platform Enterprise Edition DTDs
[] MCAXML - National Coffee Association XML
[NEWSML (DTD) - News Markup Language

B [NITF - Mews Industry Text Format
AML scherna files for the Mews Industry Text Format.
https://iptc.org/std/MNITF/

&34
(] OOXML - Office Open ECMA-376 XML Schema files

[] P3P - Platform for Privacy Preferences Project -

The following packages will be installed:
HR-XML 2007 - Human Rescurces Open Standards
MITF 3.4 - Mews Industry Text Format

Patch Selection Deselect All Reset Selection Apply Cancel

When you click Apply, the progress of the installation is displayed. If there is an error (for example, a
connection error), then an error message is displayed. In this case, click the Advanced button that appears in
the dialog, check the schema selection and retry with Apply.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Schema Manager Run Schema Manager 383

Command line interface

You can run Schema Manager from a command line interface by sending commands to its executable file,
xmlschemamanager .exe.

The xmlschemamanager. exe file is located in the following folder:
e On Windows: C:\ProgramData\Altova\SharedBetweenVersions
e On Linux or macOS (server applications only): $INSTALLDIR%/bin, where $INSTALLDIRS is the
program's installation directory.
You can then use any of the commands listed in the CLI command reference section®®.

To display help for the commands, run the following:

e On Windows: xmlschemamanager.exe --help
e On Linux or macOS (server applications only): sudo ./xmlschemamanager --help

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

384 Schema Manager Status Categories

8.2 Status Categories

Schema Manager categorizes the schemas under its management as follows:

e Installed schemas. These are shown in the GUI with their check boxes selected (in the screenshot
below the checked and blue versions of the EPUB and HL7v3 NE schemas are installed schemas). If
all the versions of a schema are selected, then the selection mark is a tick. If at least one version is
unselected, then the selection mark is a solid colored square. You can deselect an installed schema
to uninstall it; (in the screenshot below, the DocBook DTD is installed and has been deselected,
thereby preparing it for de-installation).

e Uninstalled available schemas. These are shown in the GUI with their check boxes unselected. You
can select the schemas you want to install.

B | CBCR - Country-by-Country Reporting
AML Schema files for the Country-by-Country Reporting.
https:/www.ocecd.org/ctp/country-by- country-reporting-x ml-schema-user-guide-for-tax -administrations.htm

2.0

1.0
[[] CML - Chemical Markup Language
[[] DAISY (DTD) - Document Type Definition files for the Digital Accessible Information System
[] DITA - OASIS Darwin Information Typing Architecture
[] DITA (DTD) - OASIS Darwin Information Typing Architecture
[] DOCBOOK (DTD) - Docbook Markup Language
B EFUB - Electronic Publication

XML Schema files for the Electronic Publication file format.
https:/www.w3.org/ community/epub3/

=120

E m HL7v3 NE - Health Level 7 V3, Normative Edition
XML schema files for Health Level 7 V3 Mormative Editions.
https:/fwww.hl7.org/implement/standards/

O =]2010

22008

e Upgradeable schemas are those which have been revised by their issuers since they were installed.
1
They are indicated in the GUI by a <= icon. You can patch an installed schema with an available
revision.

Points to note

¢ In the screenshot above, both CBCR schemas are checked. The one with the blue background is
already installed. The one with the yellow background is uninstalled and has been selected for
installation. Note that the HL7v3 NE 2010 schema is not installed and has not been selected for
installation.

e A yellow background means that the schema will be modified in some way when the Apply button is
clicked. If a schema is unchecked and has a yellow background, it means that it will be uninstalled
when the Apply button is clicked. In the screenshot above the DocBook DTD has such a status.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Schema Manager Status Categories 385

e When running Schema Manager from the command line, the 115t €D command is used with different
options to list different categories of schemas:

xmlschemamanager.exe list | Lists all installed and available schemas; upgradeables are also
indicated

xmlschemamanager.exe list | Lists installed schemas only; upgradeables are also indicated
-i

xmlschemamanager.exe list | Lists upgradeable schemas
-u

Note: On Linux and macOS, use sudo ./xmlschemamanager list

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

386 Schema Manager Patch or Install a Schema

8.3 Patch or Install a Schema

Patch aninstalled schema

Occasionally, XML schemas may receive patches (upgrades or revisions) from their issuers. When Schema
Manager detects that patches are available, these are indicated in the schema listings of Schema Manager and
you can install the patches quickly.

In the GUI

Patches are indicated by the & icon. (Also see the previous topic about status categories@.) If patches are
available, the Patch Selection button will be enabled. Click it to select and prepare all patches for installation.

In the GUI, the icon of each schema that will be patched changes from & to 33, and the Messages pane at
the bottom of the dialog lists the patches that will be applied. When you are ready to install the selected
patches, click Apply. All patches will be applied together. Note that if you deselect a schema marked for
patching, you will actually be uninstalling that schema.

On the CLI
To apply a patch at the command line interface:

1. Runthe 1ist oD command. This lists any schemas for which upgrades are available.
2. Run the upgrade@ command to install all the patches.

Install an available schema

You can install schemas using either the Schema Manager GUI or by sending Schema Manager the install
instructions via the command line.

Note: If the current schema references other schemas, the referenced schemas are also installed.

In the GUI

To install schemas using the Schema Manager GUI, select the schemas you want to install and click Apply.
You can also select the schemas you want to install at the Altova website and generate a downloadable

.altova_xmlschemas file. When you double-click this file, it will open Schema Manager with the schemas you
wanted pre-selected. All you will now have to do is click Apply.

On the CLI
To install schemas via the command line, run the install@ command:
xmlschemamanager.exe install [options] Schema+

where schema is the schema (or schemas) you want to install or a .altova_xmlschemas file. A schema is
referenced by an identifier of format <name>-<version>. (The identifiers of schemas are displayed when
you run the ﬁ command.) You can enter as many schemas as you like. For details, see the
description of the install ® command.

Note: On Linux or macOS, use the sudo ./xmlschemamanager command.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

https://www.altova.com/schema-manager

Schema Manager Patch or Install a Schema 387

Installing a required schema

When you run an XML-schema-related command in RaptorXML Server and RaptorXML Server discovers that a
schema it needs for executing the command is not present or is incomplete, Schema Manager will display
information about the missing schema/s. You can then directly install any missing schema via Schema
Manager.

In the Schema Manager GUI, you can view all previously installed schemas at any time by running Schema
Manager from Tools | Schema Manager.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

388 Schema Manager Uninstall a Schema, Reset

8.4 Uninstall a Schema, Reset

Uninstall a schema

You can uninstall schemas using either the Schema Manager GUI or by sending Schema Manager the
uninstall instructions via the command line.

Note: If the schema you want to uninstall references other schemas, then the referenced schemas are also
uninstalled.

In the GUI
To uninstall schemas in the Schema Manager GUI, clear their check boxes and click Apply. The selected
schemas and their referenced schemas will be uninstalled.

To uninstall all schemas, click Deselect All and click Apply.

On the CLI

To uninstall schemas via the command line, run the uninstall command:
xmlschemamanager.exe uninstall [options] Schema+

where each Schema argument is a schema you want to uninstall or a .altova_xmlschemas file. A schema
is specified by an identifier that has a format of <name>-<version>. (The identifiers of schemas are
displayed when you run the & command.) You can enter as many schemas as you like. For details,
see the description of the uninstall command.

Note: On Linux or macOS, use the sudo ./xmlschemamanager command.
Reset Schema Manager
You can reset Schema Manager. This removes all installed schemas and the cache directory.
e Inthe GUI, click Reset Selection.
e On the CLI, run the reset & command.
After running this command, make sure to run the initialize @ command in order to recreate the cache
directory. Alternatively, run the reset & command with the -1 option.
Note that reset —i €2 restores the original installation of the product, so it is recommended to run the

update@ command after performing a reset. Alternatively, run the reset & command with the -1 and -u
options.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Schema Manager Command Line Interface (CLI) 389

8.5 Command Line Interface (CLI)

To call Schema Manager at the command line, you need to know the path of the executable. By default, the
Schema Manager executable is installed here:

Windows C:\ProgramData\Altova\SharedBetweenVersions\XMLSchemaManager.exe

Linux /opt/Altova/RaptorxMLServer2025/bin/xmlschemamanager

macOS /usr/local/Altova/RaptorXMLServer2025/bin/xmlschemamanager

Note: On Linux and macOS systems, once you have changed the directory to that containing the executable,
you can call the executable with sudo ./xmlschemamanager. The prefix ./ indicates that the executable is in
the current directory. The prefix sudo indicates that the command must be run with root privileges.

Command line syntax
The general syntax for using the command line is as follows:

<exec> -h | --help | --version | <command> [options] [arguments]
In the listing above, the vertical bar | separates a set of mutually exclusive items. The square brackets []
indicate optional items. Essentially, you can type the executable path followed by either --h, --help, or --

version options, or by a command. Each command may have options and arguments. The list of commands
is described in the following sections.

8.5.1 help

This command provides contextual help about commands pertaining to Schema Manager executable.
Syntax

<exec> help [command]

Where [command] is an optional argument which specifies any valid command name.

Note the following:

e You can invoke help for a command by typing the command followed by -h or --help, for example:
<exec> list -h

e Ifyou type -h or --help directly after the executable and before a command, you will get general help
(not help for the command), for example: <exec> -h 1list

Example
The following command displays help about the 1ist command:

xmlschemamanager help list

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

390 Schema Manager Command Line Interface (CLI)

8.5.2 info

This command displays detailed information for each of the schemas supplied as a Schema argument. This
information for each submitted schema includes the title, version, description, publisher, and any referenced
schemas, as well as whether the schema has been installed or not.

Syntax

<exec> info [options] Schema+

e The schema argument is the name of a schema or a part of a schema's name. (To display a schema's
package ID and detailed information about its installation status, you should use the M
command.)

e Use <exec> info -h to display help for the command.

Example
The following command displays information about the latest DocBook-DTD and NITF schemas:

xmlschemamanager info doc nitf

8.5.3 initialize

This command initializes the Schema Manager environment. It creates a cache directory where information
about all schemas is stored. Initialization is performed automatically the first time a schema-cognizant Altova
application is installed. You would not need to run this command under normal circumstances, but you would
typically need to run it after executing the reset command.

Syntax
<exec> initialize | init [options]

Options
The initialize command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.
--help, --h Display help for the command.

Example

The following command initializes Schema Manager:

xmlschemamanager initialize

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Schema Manager Command Line Interface (CLI) 391

8.54 install

This command installs one or more schemas.

Syntax

<exec> install [options] Schema+
To install multiple schemas, add the schema argument multiple times.
The schema argument is one of the following:

e A schema identifier (having a format of <name>-<version>, for example: eber-2.0). To find out the
schema identifiers of the schemas you want, run the ﬁ command. You can also use an
abbreviated identifier if it is unique, for example docbook. If you use an abbreviated identifier, then the
latest version of that schema will be installed.

e The path to a .altova_xmlschemas file downloaded from the Altova website. For information about

these files, see Introduction to SchemaManager: How It Works.

Options
The install command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.
--help, --h Display help for the command.

Example

The following command installs the CBCR 2.0 (Country-By-Country Reporting) schema and the latest DocBook
DTD:

xmlschemamanager install cbcr-2.0 docbook

8.5.5 list

This command lists schemas under the management of Schema Manager. The list displays one of the
following

All available schemas

Schemas containing in their name the string submitted as a Schema argument
Only installed schemas

e Only schemas that can be upgraded

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

392 Schema Manager Command Line Interface (CLI)

Syntax

<exec> list | 1ls [options] Schema?

If no schema argument is submitted, then all available schemas are listed. Otherwise, schemas are listed as
specified by the submitted options (see example below). Note that you can submit the Schema argument
multiple times.

Options
The 1ist command takes the following options:

--installed, --i List only installed schemas. The default is false.
--upgradeable, --u List only schemas where upgrades (patches) are available. The default is
false.
--help, --h Display help for the command.
Examples

o Tolist all available schemas, run: xmlschemamanager list

e To list installed schemas only, run: xmlschemamanager list -i

e Tolist schemas that contain either "doc" or "nitf" in their name, run: xmlschemamanager list doc
nitf

8.5.6 reset

This command remowes all installed schemas and the cache directory. You will be completely resetting your
schema environment. After running this command, be sure to run the initialize command to recreate the
cache directory. Alternatively, run the reset command with the —i&tion. Since reset -i restores the original
installation of the product, we recommend that you run the update command after performing a reset and
initialization. Alternatively, run the reset command with both the -i and -u options.

Syntax
<exec> reset [options]

Options
The reset command takes the following options:

--init, --1i Initialize Schema Manager after reset. The default is false.

—-update, --u Updates the list of available schemas in the cache. The default is false.
--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Schema Manager Command Line Interface (CLI) 393

--help, --h Display help for the command.

Examples

e To reset Schema Manager, run: xmlschemamanager reset
e To reset Schema Manager and initialize it, run: xmlschemamanager reset -i
¢ To reset Schema Manager, initialize it,and update its schema list, run: xmlschemamanager reset -i

-u

8.5.7 uninstall

This command uninstalls one or more schemas. By default, any schemas referenced by the current one are
uninstalled as well. To uninstall just the current schema and keep the referenced schemas, set the option —-k.

Syntax

<exec> uninstall [options] Schema+
To uninstall multiple schemas, add the schema argument multiple times.
The schema argument is one of the following:

e A schema identifier (having a format of <name>-<version>, for example: eber-2.0). To find out the
schema identifiers of the schemas that are installed, run the 1ist —: € command. You can also use
an abbreviated schema name if it is unique, for example docbook. If you use an abbreviated name, then
all schemas that contain the abbreviation in its name will be uninstalled.

e The path to a .altova_xmlschemas file downloaded from the Altova website. For information about

these files, see Introduction to SchemaManager: How It Works.

Options
The uninstall command takes the following options:

--keep-references, --k Set this option to keep referenced schemas. The default is false.
--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.
--help, --h Display help for the command.
Example

The following command uninstalls the CBCR 2.0 and EPUB 2.0 schemas and their dependencies:
xmlschemamanager uninstall cbcr-2.0 epub-2.0

The following command uninstalls the eba-2.10 schema but not the schemas it references:
xmlschemamanager uninstall --k cbcr-2.0

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

394 Schema Manager Command Line Interface (CLI)

8.5.8 update

This command queries the list of schemas available from the online storage and updates the local cache
directory. You should not need to run this command unless you have performed a reset @ and

initialize &,

Syntax

<exec> update [options]

Options
The update command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.
--help, --h Display help for the command.

Example

The following command updates the local cache with the list of latest schemas:

xmlschemamanager update

8.5.9 upgrade

This command upgrades all installed schemas that can be upgraded to the latest available patched version.
You can identify upgradeable schemas by running the 1ist -u*¥ command.

Note: The upgrade command removes a deprecated schema if no newer version is available.

Syntax

<exec> upgrade [options]

Options
The upgrade command takes the following options:

--silent, --s Display only error messages. The default is false.
--verbose, --v Display detailed information during execution. The default is false.
--help, --h Display help for the command.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Additional Information 395

9 Additional Information

This section contains the following additional information:

e Exit Codes
e Schema Location Hints

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

396 Additional Information Exit Codes

9.1 Exit Codes

The following exit codes are available:

0 Validation successful

1 Validation failed with error / Process interrupted by Ctrl+C/Break/terminal
closed / License expired during execution

11 RaptorXML could not start; the reason is given in the log file

22 Could not load root catalog / Could not load list file

64 Invalid command/options

77 Failed to acquire license during startup

128+n RaptorXML terminated because of signal number n. All exit codes above 128

indicate termination as a result of a received external signal or an internally
triggered signal. For example, if the exit code is 134, then the signal number is
134-128=6 (the number of SIGABRT).

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Additional Information Schema Location Hints 397

9.2 Schema Location Hints

Instance documents can use hints to indicate the schema location. Two attributes are used for hints:

e xsi:schemaLocation for schema documents with target namespaces. The attribute's value is a pair of
items, the first of which is a namespace, the second is a URL that locates a schema document. The
namespace name must match the target namespace of the schema document.
<document xmlns="http://www.altova.com/schemas/test03"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.altova.com/schemas/test03 Test.xsd">

e xsi:noNamespaceSchemaLocation for schema documents without target namespaces. The attribute's
value is the schema document's URL. The referenced schema document must have no target
namespace.
<document xmlns="http://www.altova.com/schemas/test03"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="Test.xsd">

The --schemalocation-hints option specifies how these two attributes are to be used as hints, especially
how the schemalLocation attribute information is to be handled (see the option's description above). Note that
RaptorXML Senrver considers the namespace part of the xsi :noNamespaceSchemaLocation value to be the
empty string.

Schema location hints can also be given in an import statement of an XML Schema document.
<import namespace="someNS" schemalocation="someURL">
In the import statement, too, hints can be given via a namespace that can be mapped to a schema in a

catalog file, or directly as a URL in the schemaLocation attribute. The ——schema—imports option (for XBRL
and XSD/XML) specifies how the schema location is to be selected.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

398 Engine Information

10 Engine Information

This section contains information about the XSLT and XQuery engines contained in RaptorXML Senrver. This
information mostly concerns engine behavior in situations where the specifications leave the decision regarding
behavior up to the implementation. This section also contains information about Altova extension functions for

XPath/XQuery.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Engine Information XSLT and XQuery Engine Information 399

10.1 XSLT and XQuery Engine Information

The XSLT and XQuery engines of RaptorXML Server follow the W3C specifications closely and are therefore
stricter than previous Altova engines—such as those in previous versions of XMLSpy and those of AltovaXML,
the predecessor of RaptorXML. As a result, minor errors that were ignored by previous engines are now flagged
as errors by RaptorXML Senver.

For example:
e ltis atype error (err:xpPTY0018) if the result of a path operator contains both nodes and non-nodes.
e ltis atype error (err:xPTY0019) if E1 in a path expression £1/£2 does not evaluate to a sequence of

nodes.

If you encounter this kind of error, modify either the XSLT/XQuery document or the instance document as
appropriate.

This section describes implementation-specific features of the engines, organized by specification:

e XSLT1.06D
e XSLT20
e XSLT3.0®
e XQuery 1.0
e XQuery 3.1

10.1.1 XSLT 1.0

The XSLT 1.0 Engine of RaptorXML Senrver conforms to the World Wide Web Consortium's (W3C's) XSLT 1.0
Recommendation of 16 November 1999 and XPath 1.0 Recommendation of 16 November 1999. Note the
following information about the implementation.

Notes about the implementation

When the method attribute of xs1:output is set to HTML, or if HTML output is selected by default, then special
characters in the XML or XSLT file are inserted in the HTML document as HTML character references in the
output. For instance, the character U+00AO (the hexadecimal character reference for a non-breaking space) is
inserted in the HTML code either as a character reference (s#160; or s#xA0;) or as an entity reference,

 .

10.1.2 XSLT 2.0

This section:

Engine conformance@
Backward comEatibiIity@
Namespaces

Schema awarenessm

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://www.w3.org/TR/1999/REC-xslt-19991116
https://www.w3.org/TR/1999/REC-xslt-19991116
https://www.w3.org/TR/1999/REC-xpath-19991116/

400 Engine Information XSLT and XQuery Engine Information

e Implementation-specific behavior‘m

Conformance

The XSLT 2.0 engine of RaptorXML Server conforms to the World Wide Web Consortium's (W3C's) XSLT 2.0
Recommendation of 23 January 2007 and XPath 2.0 Recommendation of 14 December 2010.

Backwards Compatibility

The XSLT 2.0 engine is backwards compatible. Typically, the backwards compatibility of the XSLT 2.0 engine
comes into play when using the XSLT 2.0 engine (CLI parameter --xs1t=2%¥) to process an XSLT 1.0
stylesheet or instruction. Note that there could be differences in the outputs produced by the XSLT 1.0 Engine
and the backwards-compatible XSLT 2.0 engine.

Namespaces

Your XSLT 2.0 stylesheet should declare the following namespaces in order for you to be able to use the type
constructors and functions available in XSLT 2.0. The prefixes given below are conventionally used; you could
use alternative prefixes if you wish.

Namespace Name | Prefix Namespace URI

XML Schema types |xs: http://www.w3.0rg/2001/XMLSchema

XPath 2.0 functions fn: http://www.w3.0rg/2005/xpath-functions

Typically, these namespaces will be declared on the xs1:stylesheet Ofr xsl:transform element, as shown in
the following listing:

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:fn="http://www.w3.0rg/2005/xpath-functions"

</xsl:stylesheet>
The following points should be noted:

e The XSLT 2.0 engine uses the XPath 2.0 and XQuery 1.0 Functions namespace (listed in the table
abowe) as its default functions namespace. So you can use XPath 2.0 and XSLT 2.0 functions in
your stylesheet without any prefix. If you declare the XPath 2.0 Functions namespace in your
stylesheet with a prefix, then you can additionally use the prefix assigned in the declaration.

e When using type constructors and types from the XML Schema namespace, the prefix used in the
namespace declaration must be used when calling the type constructor (for example, xs:date).

e Some XPath 2.0 functions have the same name as XML Schema datatypes. For example, for the
XPath functions fn:string and fn:boolean there exist XML Schema datatypes with the same local
names: xs:string and xs:boolean. So if you were to use the XPath expression string ('Hello'),
the expression evaluates as fn:string('Hello')—not as xs:string('Hello').

Schema-awareness

The XSLT 2.0 engine is schema-aware. So you can use user-defined schema types and the xs1:validate
instruction.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/xpath20/

Engine Information XSLT and XQuery Engine Information 401

Implementation-specific behavior

Given below is a description of how the XSLT 2.0 engine handles implementation-specific aspects of certain
XSLT 2.0 functions.

xsl:result-document
Additionally supported encodings are (the Altova-specific): x-basel6tobinary and x-base64tobinary.

function-available
The function tests for the availability of in-scope functions (XSLT, XPath, and extension functions).

unparsed-text

The href argument accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or
without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobasel6
and x-binarytobase64. Example: xs:base64Binary (unparsed-text ('chart.png', 'x-
binarytobase64')).

unparsed-text-available

The href argument accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or
without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobasel6
and x-binarytobase64.

Note: The following encoding values, which were implemented in earlier versions of RaptorXML's predecessor
product, AltovaXML, are now deprecated: baselé6tobinary, base64tobinary, binarytobasel6 and
binarytobase64.

10.1.3 XSLT 3.0

The XSLT 3.0 Engine of RaptorXML Senrer conforms to the World Wide Web Consortium's (W3C's) XSLT 3.0
Recommendation of 8 June 2017 and XPath 3.1 Recommendation of 21 March 2017.

The XSLT 3.0 engine has the same implementation-specific characteristics as the XSLT 2.0 engine@.
Additionally, it includes support for a number of new XSLT 3.0 features: XPath/XQuery 3.1 functions and

operators, and the XPath 3.1 specification.

Note: The optional streaming feature is not supported currently. The entire document will be loaded into
memory regardless of the value of the streamable attribute. If enough memory is available, then: (i) the entire
document will be processed—uwithout streaming, (ii) guaranteed-streamable constructs will be processed
correctly, as if the execution used streaming, and (iii) streaming errors will not be detected. In 64-bit apps, non-
streaming execution should not be a problem. If memory does turn out to be an issue, a solution would be to
add more memory to the system.

Namespaces

Your XSLT 3.0 stylesheet should declare the following namespaces in order for you to be able to use all the
type constructors and functions available in XSLT 3.0. The prefixes given below are conventionally used; you
could use alternative prefixes if you wish.

Namespace Name Prefix Namespace URI

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://www.w3.org/TR/xslt-30/
https://www.w3.org/TR/xslt-30/
https://www.w3.org/TR/xpath-31/
http://www.w3.org/TR/xpath-31/
https://www.w3.org/TR/xslt-30/#streaming-feature
https://www.w3.org/TR/xslt-30/#dt-guaranteed-streamable

402 Engine Information

XSLT and XQuery Engine Information

XML Schema types XS: http://www.w3.0rg/2001/XMLSchema

XPath/XQuery 3.1 fn: http://www.w3.0rg/2005/xpath-functions

functions

Math functions math: http://www.w3.0rg/2005/xpath-functions/math

Map functions map: http://www.w3.0rg/2005/xpath-functions/map

Array functions array: http://www.w3.0rg/2005/xpath-functions/array
XQuery, XSLT, and XPath |[err: http://www.w3.0rg/2005/xpath-functions/xgt-errors
Error Codes

Serialization functions output http://www.w3.0rg/2010/xslt-xquery-serialization

Typically, these namespaces will be declared on the xs1:stylesheet Of xsl:transform element, as shown in

the following listing:

<xsl:stylesheet version="3.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns: fn="http://www.w3.0rg/2005/xpath-functions"

</xsl:stylesheet>

The following points should be noted:

e The XSLT 3.0 engine uses the XPath and XQuery Functions and Operators 3.1 namespace (listed in
the table abowe) as its default functions namespace. So you can use the functions of this
namespace in your stylesheet without any prefix. If you declare the Functions namespace in your
stylesheet with a prefix, then you can additionally use the prefix assigned in the declaration.

¢ When using type constructors and types from the XML Schema namespace, the prefix used in the
namespace declaration must be used when calling the type constructor (for example, xs:date).

e Some XPath/XQuery functions have the same name as XML Schema datatypes. For example, for the
XPath functions fn:string and fn:boolean there exist XML Schema datatypes with the same local
names: xs:string and xs:boolean. So if you were to use the XPath expression string('Hello'),
the expression evaluates as fn:string('Hello')—not as xs:string('Hello"').

10.1.4 XQuery 1.0

This section:

e Engine conformance

e Schema awareness

e Encaoding
e Namespaces

e XML source and vaIidation‘m

e Static and dynamic type checking
e Library modules

e External functions

Altova RaptorXML Server 2025

© 2019-2025 Altova GmbH

Engine Information XSLT and XQuery Engine Information 403

CoIIationstm
Precision of numeric data@
XQuery instructions support

Implementation-specific behavioreB

Conformance

The XQuery 1.0 Engine of RaptorXML Server conforms to the World Wide Web Consortium's (W3C's) XQuery
1.0 Recommendation of 14 December 2010. The XQuery standard gives implementations discretion about how
to implement many features. Given below is a list explaining how the XQuery 1.0 Engine implements these
features.

Schema awareness
The XQuery 1.0 Engine is schema-aware.

Encoding
The UTF-8 and UTF-16 character encodings are supported.

Namespaces
The following namespace URIs and their associated bindings are pre-defined.
Namespace Name | Prefix Namespace URI

XML Schema types |xs: http://www.w3.0rg/2001/XMLSchema

Schema instance xsi: http://www.w3.0rg/2001/XMLSchema-instance
Built-in functions fn: http://www.w3.0rg/2005/xpath-functions

Local functions local: http://www.w3.0rg/2005/xquery-local-functions

The following points should be noted:

e The XQuery 1.0 Engine recognizes the prefixes listed above as being bound to the corresponding
namespaces.

¢ Since the built-in functions namespace listed above (see fn:) is the default functions namespace in
XQuery, the £n: prefix does not need to be used when built-in functions are invoked (for example,
string ("Hello") will call the fn:string function). However, the prefix fn: can be used to call a built-
in function without having to declare the namespace in the query prolog (for example:
fn:string ("Hello")).

¢ You can change the default functions namespace by declaring the default function namespace
expression in the query prolog.

e When using types from the XML Schema namespace, the prefix xs: may be used without having to
explicitly declare the namespaces and bind these prefixes to them in the query prolog. (Example:
xs:date and xs:yearMonthDuration.) If you wish to use some other prefix for the XML Schema
namespace, this must be explicitly declared in the query prolog. (Example: declare namespace alt
= "http://www.w3.0rg/2001/XMLSchema"; alt:date ("2004-10-04").)

¢ Note that the untypedatomic, dayTimeDuration, and yearMonthDuration datatypes have been
moved, with the CRs of 23 January 2007, from the XPath Datatypes namespace to the XML Schema
namespace, soO: xs:yearMonthDuration.

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://www.w3.org/TR/2010/REC-xquery-20101214/
https://www.w3.org/TR/2010/REC-xquery-20101214/

404 Engine Information XSLT and XQuery Engine Information

If namespaces for functions, type constructors, node tests, etc are wrongly assigned, an error is reported.
Note, however, that some functions have the same name as schema datatypes, e.g. fn:string and
fn:boolean. (Both xs:string and xs:boolean are defined.) The namespace prefix determines whether the
function or type constructor is used.

XML source document and validation

XML documents used in executing an XQuery document with the XQuery 1.0 Engine must be well-formed.
However, they do not need to be valid according to an XML Schema. If the file is not valid, the invalid file is
loaded without schema information. If the XML file is associated with an external schema and is valid according
to it, then post-schema validation information is generated for the XML data and will be used for query
evaluation.

Static and dynamic type checking

The static analysis phase checks aspects of the query such as syntax, whether external references (e.g. for
modules) exist, whether invoked functions and variables are defined, and so on. If an error is detected in the
static analysis phase, it is reported and the execution is stopped.

Dynamic type checking is carried out at run-time, when the query is actually executed. If a type is incompatible
with the requirement of an operation, an error is reported. For example, the expression xs:string("1") + 1
returns an error because the addition operation cannot be carried out on an operand of type xs:string.

Library Modules

Library modules store functions and variables so they can be reused. The XQuery 1.0 Engine supports modules
that are stored in a single external XQuery file. Such a module file must contain a module declaration in its
prolog, which associates a target namespace. Here is an example module:

module namespace libns="urn:module-library";
declare variable $libns:company := "Altova";
declare function libns:webaddress() { "http://www.altova.com" };

All functions and variables declared in the module belong to the namespace associated with the module. The
module is used by importing it into an XQuery file with the import module statement in the query prolog. The
import module statement only imports functions and variables declared directly in the library module file. As
follows:

import module namespace modlib = "urn:module-library" at "modulefilename.xq";
if ($Smodlib:company = "Altova")

then modlib:webaddress ()

else error ("No match found.")

External functions
External functions are not supported, i.e. in those expressions using the external keyword, as in:

declare function hoo ($param as xs:integer) as xs:string external;

Collations

The default collation is the Unicode-codepoint collation, which compares strings on the basis of their Unicode
codepoint. Other supported collations are the ICU collations listed here®. To use a specific collation, supply

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

http://site.icu-project.org/

Engine Information XSLT and XQuery Engine Information 405

its URI as given in the list of supported collations @ Any string comparisons, including for the fn:max and
fn:min functions, will be made according to the specified collation. If the collation option is not specified, the
default Unicode-codepoint collation is used.

Precision of numeric types

e The xs:integer datatype is arbitrary-precision, i.e. it can represent any number of digits.
e The xs:decimal datatype has a limit of 20 digits after the decimal point.
e The xs:float and xs:double datatypes have limited-precision of 15 digits.

XQuery Instructions Support
The pragma instruction is not supported. If encountered, it is ignored and the fallback expression is evaluated.

Implementation-specific behavior

Given below is a description of how the XQuery and XQuery Update 1.0 engines handle implementation-specific
aspects of certain functions.

unparsed-text

The href argument accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or
without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobasel6
and x-binarytobase64. Example: xs:base64Binary (unparsed-text ('chart.png', 'x-
binarytobase64')).

unparsed-text-available

The href argument accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or
without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobasel6
and x-binarytobase64.

Note: The following encoding values, which were implemented in earlier versions of RaptorXML's predecessor
product, AltovaXML, are now deprecated: baselé6tobinary, base64tobinary, binarytobasel6 and
binarytobase64.

10.1.5 XQuery 3.1

The XQuery 3.1 Engine of RaptorXML Server conforms to the World Wide Web Consortium's (W3C's) XQuery
3.1 Recommendation of 21 March 2017 and includes support for XPath and XQuery Functions 3.1. The XQuery
3.1 specification is a superset of the 3.0 specification. The XQuery 3.1 engine therefore supports XQuery 3.0
features.

Namespaces

Your XQuery 3.1 document should declare the following namespaces in order for you to be able to use all the
type constructors and functions available in XQuery 3.1. The prefixes given below are conventionally used; you
could use alternative prefixes if you wish.

Namespace Name Prefix Namespace URI

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

http://www.w3.org/TR/xquery-31/
http://www.w3.org/TR/xquery-31/

406 Engine Information XSLT and XQuery Engine Information

XML Schema types XS: http://www.w3.0rg/2001/XMLSchema

XPath/XQuery 3.1 fn: http://www.w3.0rg/2005/xpath-functions

functions

Math functions math: http://www.w3.0rg/2005/xpath-functions/math

Map functions map: http://www.w3.0rg/2005/xpath-functions/map

Array functions array: http://www.w3.0rg/2005/xpath-functions/array
XQuery, XSLT, and XPath |[err: http://www.w3.0rg/2005/xpath-functions/xgt-errors
Error Codes

Serialization functions output http://www.w3.0rg/2010/xslt-xquery-serialization

The following points should be noted:

e The XQuery 3.1 Engine recognizes the prefixes listed above as being bound to the corresponding
namespaces.

e Since the built-in functions namespace listed above (see fn:) is the default functions namespace in
XQuery, the £n: prefix does not need to be used when built-in functions are invoked (for example,
string ("Hello") will call the fn:string function). However, the prefix fn: can be used to call a built-
in function without having to declare the namespace in the query prolog (for example:
fn:string ("Hello"))

¢ You can change the default functions namespace by declaring the default function namespace
expression in the query prolog.

e When using types from the XML Schema namespace, the prefix xs: may be used without having to
explicitly declare the namespaces and bind these prefixes to them in the query prolog. (Example:
xs:date and xs:yearMonthDuration.) If you wish to use some other prefix for the XML Schema
namespace, this must be explicitly declared in the query prolog. (Example: declare namespace alt
= "http://www.w3.0rg/2001/XMLSchema"; alt:date("2004-10-04"))

If namespaces for functions, type constructors, node tests, etc are wrongly assigned, an error is reported.
Note, however, that some functions have the same name as schema datatypes, e.g. fn:string and
fn:boolean. (Both xs:string and xs:boolean are defined.) The namespace prefix determines whether the
function or type constructor is used.

Implementation-specific behavior
Implementation-specific characteristics are the same as for XQuery 1.0

Additionally, the Altova-specific encoding x-base64tobinary can be used to create a binary result document,
such as an image.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Engine Information XSLT and XPath/XQuery Functions 407

10.2 XSLT and XPath/XQuery Functions

This section lists Altova extension functions and other extension functions that can be used in XPath and/or
XQuery expressions. Altova extension functions can be used with Altova's XSLT and XQuery engines, and
provide functionality additional to that available in the function libraries defined in the W3C standards.

This section describes XPath/XQuery extension functions that have been created by Altova to provide additional
operations, as well as other extension functions @ These extension functions @ can be computed by
Altova's XSLT and XQuery engines according to the rules described in this section. For information about the

regular XPath/XQuery functions, see Altova's XPath/XQuery Function Reference.

General points
The following general points should be noted:

e Functions from the core function libraries defined in the W3C specifications can be called without a
prefix. That's because the Altova XSLT and XQuery engines read non-prefixed functions as belonging to
the namespace http://www.w3.0rg/2005/xpath-functions, which is the default functions
namespace specified in the XPath/XQuery functions specifications. If this namespace is explicitly
declared in an XSLT or XQuery document, the prefix used in the namespace declaration can also
optionally be used on function names.

e In general, if a function expects a sequence of one item as an argument, and a sequence of more than
one item is submitted, then an error is returned.

e All string comparisons are done using the Unicode codepoint collation.

e Results that are QNames are serialized in the form [prefix:]localname.

Precision of xs:decimal

The precision refers to the number of digits in the number, and a minimum of 18 digits is required by the
specification. For division operations that produce a result of type xs:decimal, the precision is 19 digits after
the decimal point with no rounding.

Implicit timezone
When two date, time, Or dateTime values need to be compared, the timezones of the values being compared

need to be known. When the timezone is not explicitly given in such a value, the implicit timezone is used. The
implicit timezone is taken from the system clock, and its value can be checked with the implicit-
timezone () function.

Collations

The default collation is the Unicode codepoint collation, which compares strings on the basis of their Unicode
codepoint. The engine uses the Unicode Collation Algorithm. Other supported collations are the ICU collations
listed below; to use one of these, supply its URI as given in the table below. Any string comparisons, including
for the max and min functions, will be made according to the specified collation. If the collation option is not
specified, the default Unicode-codepoint collation is used.

Language URIs

da: Danish da_ DK

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

https://www.altova.com/xpath-xquery-reference
http://site.icu-project.org/

408 Engine Information XSLT and XPath/XQuery Functions

de: German de AT, de BE, de CH, de DE, de LI, de LU

en: English en AS, en AU, en BB, en BE, en BM, en BW, en BZ, en CA, en GB,
en GU, en HK, en IE, en IN, en JM, en MH, en MP, en MT, en MU,
en NA, en NZ, en PH, en PK, en SG, en TT, en UM, en US, en VI,
en ZA, en ZW

es: Spanish es 419, es AR, es BO, es CL, es CO, es CR, es DO, es EC,
es ES, es GQ, es GT, es HN, es MX, es NI, es PA, es PE, es PR,
es PY, es SV, es US, es UY, es VE

fr: French fr BE, fr BF, fr BI, fr BJ, fr BL, fr CA, fr CD, fr CF, fr CG,
fr CH, fr CI, fr CM, fr DJ, fr FR, fr GA, fr GN, fr GP, fr GQ,
fr KM, fr LU, fr MC, fr MF, fr MG, fr ML, fr MQ, fr NE, fr RE,
fr Rw, fr SN, fr TD, fr TG

it: Italian it cH, it IT

ja: Japanese ja_JP

nb: Norwegian Bokmal | nb_ NO

nl: Dutch nl AW, nl BE, nl NL

nn: Nynorsk nn_NO

pt: Portuguese pt RO, pt BR, pt GW, pt MZ, pt PT, pt ST
ru: Russian ru MD, ru RU, ru UA

sv: Swedish sv_FI, sv_SE

Namespace axis
The namespace axis is deprecated in XPath 2.0. Use of the namespace axis is, however, supported. To

access namespace information with XPath 2.0 mechanisms, use the in-scope-prefixes (), namespace-
uri () and namespace-uri-for-prefix () functions.

10.2.1 Altova Extension Functions

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova extension
functions are in the Altova extension functions namespace, http://www.altova.com/xslt-extensions,
and are indicated in this section with the prefix altova:, which is assumed to be bound to this namespace.
Note that, in future versions of your product, support for a function might be discontinued or the behavior of
individual functions might change. Consult the documentation of future releases for information about support for
Altova extension functions in that release.

Functions defined in the W3C's XPath/XQuery Functions specifications can be used in: (i) XPath expressions in
an XSLT context, and (ii) in XQuery expressions in an XQuery document. In this documentation we indicate the
functions that can be used in the former context (XPath in XSLT) with an xp symbol and call them XPath
functions; those functions that can be used in the latter (XQuery) context are indicated with an xQ symbol; they
work as XQuery functions. The W3C's XSLT specifications—not XPath/XQuery Functions specifications—also

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Engine Information XSLT and XPath/XQuery Functions 409

define functions that can be used in XPath expressions in XSLT documents. These functions are marked with
an xsLT symbol and are called XSLT functions. The XPath/XQuery and XSLT versions in which a function can be
used are indicated in the description of the function (see symbols below). Functions from the XPath/XQuery and
XSLT function libraries are listed without a prefix. Extension functions from other libraries, such as Altova
extension functions, are listed with a prefix.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): |xQ1i xQ3.1

Usage of Altova extension functions

In order to use Altova extension functions, you must declare the Altova extension functions namespace (first
highlight in code listing below) and then use the extension functions so that they are resolved as belonging to
this namespace (see second highlight). The example below uses the Altova extension function named age.

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns: fn="http://www.w3.0rg/2005/xpath-functions"
xmlns:altova="http://www.altova.com/xslt-extensions">
<xsl:output method="text" encoding="IS0-8859-1"/>
<xsl:template match="Persons">

<xsl:for-each select="Person">

<xsl:value-of select="concat (Name, ': ')"/>
<xsl:value-of select="altova:age (xs:date (BirthDate))"/>
<xsl:value-of select="' years
'"/>

</xsl:for-each>
</xsl:template>
</xsl:stylesheet>

XSLT functions @

XSLT functions can only be used in XPath expressions in an XSLT context (similarly to XSLT 2.0's current-
group () or key () functions). These functions are not intended for, and will not work in, a non-XSLT context (for
instance, in an XQuery context). Note that XSLT functions for XBRL can be used only with editions of Altova
products that have XBRL support.

XPath/XQuery functions
XPath/XQuery functions can be used both in XPath expressions in XSLT contexts as well as in XQuery
expressions:

. Date/Time
e Geolocation
RL 1

e Image-relate
e Numeric

e Schema

. Seguence

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

410 Engine Information XSLT and XPath/XQuery Functions

. String
. Miscellaneous

Chart functions (Enterprise and Server Editions only)
Altova extension functions for charts € are supported only in the Enterprise and Server Editions of Altova
products and enable charts to be generated from XML data.

Barcode functions
Altova's barcode extension functions ® enable barcodes to be generated and placed in output generated via
XSLT stylesheets.

10.2.1.1 XSLT Functions

XSLT extension functions can be used in XPath expressions in an XSLT context. They will not work in a non-
XSLT context (for instance, in an XQuery context).

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-
extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this
namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): |xQi xQ3.1

General functions
w distinct-nodes [altova:]
altova:distinct-nodes (node () *) as node()* XSLT1 XSLT2 XSLT3

Takes a set of one or more nodes as its input and returns the same set minus nodes with duplicate
values. The comparison is done using the XPath/XQuery function fn:deep-equal.

=I Examples

e altova:distinct-nodes (country) returns all child country nodes less those having duplicate
values.

¥ evaluate [altova:]

altova:evaluate (XPathExpression as xs:string[, ValueOf$pl, ... ValueOf$pN]) XSLT1 XSLT2
XSLT3

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Engine Information XSLT and XPath/XQuery Functions 411

Takes an XPath expression, passed as a string, as its mandatory argument. It returns the output of the
evaluated expression. For example: altova:evaluate('//Name[1] ') returns the contents of the first
Name element in the document. Note that the expression //Name[1] is passed as a string by enclosing it
in single quotes.

The altova:evaluate function can optionally take additional arguments. These arguments are the values
of in-scope variables that have the names p1, p2, p3... pN. Note the following points about usage: (i) The
variables must be defined with names of the form px, where x is an integer; (ii) the altova:evaluate
function's arguments (see signature above), from the second argument onwards, provide the values of the
variables, with the sequence of the arguments corresponding to the numerically ordered sequence of
variables: p1 to pN: The second argument will be the value of the variable p1, the third argument that of the
variable p2, and so on; (iii) The variable values must be of type item*.

= Example
<xsT:variable name="xpath" select=""'$p3, $p2, $p1'" />
<xsT:value-of select="altova:evaluate($xpath, 10, 20, 'hi')" />
outputs "hi 20 10"

In the listing above, notice the following:

o The second argument of the altova:evaluate expression is the value assigned to the
variable $p1, the third argument that assigned to the variable sp2, and so on.

e Notice that the fourth argument of the function is a string value, indicated by its being
enclosed in quotes.

o The select attribute of the xs:variable element supplies the XPath expression. Since this
expression must be of type xs:string, it is enclosed in single quotes.

=I Examples to further illustrate the use of variables

e <xsl:variable name="xpath" select=""$pl'" />
<xsl:value-of select="altova:evaluate($xpath, //Name[1l])" />
Outputs value of the first Name element.

e <xsl:variable name="xpath" select=""$pl'" />
<xs1:value-of select="altova:evaluate($xpath, '//Name[1l]')" />

Outputs "/ /Name [11"

The altova:evaluate () extension function is useful in situations where an XPath expression in the XSLT
stylesheet contains one or more parts that must be evaluated dynamically. For example, consider a
situation in which a user enters his request for the sorting criterion and this criterion is stored in the
attribute UserrReq/@sortkey. In the stylesheet, you could then have the expression: <xsl:sort
select="altova:evaluate(../UserReq/@sortkey)" order="ascending"/>. The altova:evaluate ()
function reads the sortkey attribute of the Userreq child element of the parent of the context node. Say
the value of the sortkey attribute is price, then Price is returned by the altova:evaluate () function
and becomes the value of the select attribute: <xsl:sort select="Price" order="ascending"/>. If
this sort instruction occurs within the context of an element called order, then the order elements will
be sorted according to the values of their price children. Alternatively, if the value of esortkey were, say,
Date, then the order elements would be sorted according to the values of their bate children. So the sort
criterion for order is selected from the sortkey attribute at runtime. This could not have been achieved
with an expression like: <xsl:sort select="../UserReq/@sortkey" order="ascending"/>. In the
case shown above, the sort criterion would be the sortkey attribute itself, not price or bate (or any other

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

mailto:.

412 Engine Information XSLT and XPath/XQuery Functions

current content of sortkey).

Note: The static context includes namespaces, types, and functions—but not variables—from the calling
environment. The base URI and default namespace are inherited.

= More examples

e Static variables: <xs1:value-of select="$i3, $i2, $il" />
Outputs the values of three variables.

e Dynamic XPath expression with dynamic variables:
<xsl:variable name="xpath" select=""'$p3, $p2, $p1'" />
<xsl:value-of select="altova:evaluate($xpath, 10, 20, 30)" />
Outputs "30 20 10"

e Dynamic XPath expression with no dynamic variable:
<xsl:variable name="xpath" select=""'$p3, $p2, $p1'" />
<xsl:value-of select="altova:evaluate($xpath)" />
Outputs error: No variable defined for $p3.

¥ encode-for-rif [altova:]

altova:encode-for-rtf (input as xs:string, preserveallwhitespace as xs:boolean,
preservenewlines as xs:boolean) as xs:string XSLT2 XSLT3

Converts the input string into code for RTF. Whitespace and new lines will be preserved according to the
boolean value specified for their respective arguments.

[Top™]

XBRL functions
Altova XBRL functions can be used only with editions of Altova products that have XBRL support.

* xbrl-footnotes [altova:]

altova:xbrl-footnotes (node()) as node()* XSLT2 XSLT3
Takes a node as its input argument and returns the set of XBRL footnote nodes referenced by the input
node.

w xbrl-labels [altova:]

altova:xbrl-labels (xs:0QOName, xs:string) as node()* XSLT2 XSLT3
Takes two input arguments: a node name and the taxonomy file location containing the node. The function
returns the XBRL label nodes associated with the input node.

Altova RaptorXML Server 2025 © 2019-2025 Altova GmbH

Engine Information XSLT and XPath/XQuery Functions 413

10.2.1.2 XPath/XQuery Functions: Date and Time

Altova's date/time extension functions can be used in XPath and XQuery expressions and provide additional
functionality for the processing of data held as XML Schema's various date and time datatypes. The functions in
this section can be used with Altova's XPath 3.0 and XQuery 3.0 engines. They are available in XPath/XQuery
contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-
extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this
namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): |xQ1i xQ3.1

* Grouped by functionality

Add a duration to xs:dateTime and return xs:date‘ﬁme‘m

Add a duration to xs:date and return xs:date

Add a duration to xs:time and return xs:time

Format and retrieve durations

Remove timezone from functions that generate current date/time @@
Return days, hours, minutes, and seconds from durations
Return weekday as integer from date

Return week number as integer from date
Build date, time, or duration type from lexical components of each type
Construct date, dateTime, or time type from string input

Age-related functions &2

Epoch time (Unix time) functions €

* Listed alphabetically

altova: add—days—to—date
altova:add-days-to-dateTime
altova:add-hours-to-dateTime wll
altova:add-hours-to-time
altova:add-minutes-to-dateTime
altova:add-minutes-to-time
altova: add—months—to—date
altova:add-months-to-dateTime
altova:add-seconds—-to-dateTime
altova:add-seconds-to-time
altova:add-years-to-date
altova: add—&;ars—to—dateTime
altova:age

414

414

414

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

414 Engine Information

XSLT and XPath/XQuery Functions

altova:

age—details

altova

:build-date

altova

:build-duration

424

altova

:build-time

altova

: current—dateTime—no—TZ

altova:

current-date-no-TZ

altova:

altova:

current—ti%no—TZ

date-no-TZ

altova:

dateTime-from-epo ch

altova

: dateTime—from—%ach—no—TZ
altova:

dateTime-no-T7Z

altova:

days—in—month

altova:

epoch-from-dateTime 428

altova

:hours—from—dateTimeDuration—accumulated

altova

- - - 420
:minutes-from-dateTimeDuration-accumulated

altova

:seconds-from-dateTimeDuration-accumulated

altova:

format-duration %

altova

:parse-date

altova

:parse-dateTime

425

altova

:parse-duration

417

altova

:parse-time

altova:

time-no-T7Z

altova

:weekday—from—date

altova

:weekday-from-dateTime

altova

:weeknumber-from-date

altova

:weeknumber—-from-dateTime

Add a duration to xs:dateTime xpz.1 xq3.1

These functions add a duration to xs:dateTime and return xs:dateTime. The xs:dateTime type has a format
of CCYY-MM-DDThh:mm: ss.sss. This is a concatenation of the xs:date and xs:time formats separated by the
letter T. A timezone suffix (+01:00, for example) is optional.

¥ add-years-to-dateTime [altova:]

[Top®]

altova:add-years-to-dateTime (DateTime as xs:dateTime, Years as xs:integer) as
xs:dateTime XP3.1 XQ3.1
Adds a duration in years to an xs:dateTime (See examples below). The second argument is the number of
years to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.

= Examples
® altova:add-years-to-dateTime (xs:dateTime ("2014-01-15T14:00:00"), 10) returns 2024-
01-15T14:00:00
® altova:add-years-to-dateTime (xs:dateTime ("2014-01-15T14:00:00"), -4) returns 2010-

01-15T14:00:00

¥ add-months-to-dateTime [altova:]

altova:add-months-to-dateTime (DateTime as xs:dateTime, Months as xs:integer) as
xs:dateTime XP3.1 XQ3.1

Altova RaptorXML Server 2025

© 2019-2025 Altova GmbH

Engine Information XSLT and XPath/XQuery Functions 415

Adds a duration in months to an xs:dateTime (see examples below). The second argument is the number
of months to be added to the xs:dateTime supplied as the first argument. The result is of type
xs:dateTime.

=| Examples
e altova:add-months-to-dateTime (xs:dateTime ("2014-01-15T14:00:00"), 10) returns 2014-
11-15T14:00:00

e altova:add-months-to-dateTime (xs:dateTime ("2014-01-15T14:00:00"), -2) returns 2013-
11-15T14:00:00

* add-days-to-dateTime [altova:]

altova:add-days-to-dateTime (DateTime as xs:dateTime, Days as xs:integer) as xs:dateTime
XP3.1 XQ3.1

Adds a duration in days to an xs:dateTime (See examples below). The second argument is the number of
days to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.

=| Examples

® altova:add-days-to-dateTime (xs:dateTime ("2014-01-15T14:00:00"), 10) returns 2014-
01-25T14:00:00

® altova:add-days-to-dateTime (xs:dateTime ("2014-01-15T14:00:00"), -8) returns 2014-
01-07T14:00:00

¥ add-hours-to-dateTime [altova:]

altova:add-hours-to-dateTime (DateTime as xs:dateTime, Hours as xs:integer) as
xs:dateTime XP3.1 XQ3.1
Adds a duration in hours to an xs:dateTime (See examples below). The second argument is the number of

hours to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.
=| Examples

e altova:add-hours-to-dateTime (xs:dateTime ("2014-01-15T13:00:00"), 10) returns 2014-
01-15T23:00:00

e altova:add-hours-to-dateTime (xs:dateTime ("2014-01-15T13:00:00"), -8) returns 2014-
01-15T05:00:00

¥ add-minutes-to-dateTime [altova:]

altova:add-minutes-to-dateTime (DateTime as xs:dateTime, Minutes as xs:integer) as
xs:dateTime XP3.1 XQ3.1

Adds a duration in minutes to an xs:dateTime (See examples below). The second argument is the number
of minutes to be added to the xs:dateTime supplied as the first argument. The result is of type
xs:dateTime.

=| Examples
e altova:add-minutes-to-dateTime (xs:dateTime ("2014-01-15T14:10:00"), 45) returns
2014-01-15T14:55:00

e altova:add-minutes-to-dateTime (xs:dateTime ("2014-01-15T14:10:00"), -5) returns
2014-01-15T14:05:00

© 2019-2025 Altova GmbH Altova RaptorXML Server 2025

416 Engine Information XSLT and XPath/XQuery Functions

¥ add-seconds-to-dateTime [altova:]

altova:add-seconds-to-dateTime (DateTime as xs:dateTime, Seconds as xs:integer) as
xs:dateTime XP3.1 XQ3.1

Adds a duration in seconds to an xs:dateTime (See examples below). The second argument is the
number of seconds to be added to the xs:dateTime supplied as the first argument. The result is of type
xs:dateTime.

=I Examples

e altova:add-seconds-to-dateTime (xs:dateTime ("2014-01-15T14:00:10"), 20) returns
2014-01-15T14:00:30

e altova:add-seconds-to-dateTime (xs:dateTime ("2014-01-15T14:00:10"), -5) returns
2014-01-15T14:00:05

@

H
g
=]

Add a duration to xs:date xp3z.1 xqsz.1
These functions