
Altova RaptorXML Server 2025

User & Reference Manual

All rights reserved. No parts of this work may be reproduced in any form or by any
means - graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems - without the written permission of the
publisher.

Products that are referred to in this document may be either trademarks and/or
registered trademarks of the respective owners. The publisher and the author make no
claim to these trademarks.

While every precaution has been taken in the preparation of this document, the
publisher and the author assume no responsibility for errors or omissions, or for
damages resulting from the use of information contained in this document or from the
use of programs and source code that may accompany it. In no event shall the publisher
and the author be liable for any loss of profit or any other commercial damage caused or
alleged to have been caused directly or indirectly by this document.

Published: 2025

© 2019-2025 Altova GmbH

Altova RaptorXML Server 2025
User & Reference Manual

3Altova RaptorXML Server 2025

Table of Contents

1 Introduction 9

2 About RaptorXML Server 10

.. 112.1 Editions and Interfaces

.. 152.2 System Requirements

.. 162.3 Features

.. 182.4 Supported Specifications

.. 202.5 Notable Changes

3 Installation and Licensing 21

.. 223.1 Setup on Windows

.. 223.1.1 Install on Windows

.. 233.1.2 Install on Windows Server Core

.. 263.1.3 Install LicenseServer (Windows)

.. 273.1.4 Network and Service Configuration (Windows)

.. 283.1.5 Start LicenseServer, RaptorXML Server (Windows)

.. 303.1.6 Register RaptorXML Server (Windows)

.. 313.1.7 Assign License (Windows)

.. 323.2 Setup on Linux

.. 323.2.1 Install on Linux

.. 343.2.2 Install LicenseServer (Linux)

.. 353.2.3 Start LicenseServer, RaptorXML Server (Linux)

.. 353.2.4 Register RaptorXML Server (Linux)

.. 363.2.5 Assign License (Linux)

.. 383.3 Setup on macOS

.. 383.3.1 Install on macOS

.. 403.3.2 Install LicenseServer (macOS)

.. 403.3.3 Start LicenseServer, RaptorXML Server (macOS)

Altova RaptorXML Server 20254

.. 413.3.4 Register RaptorXML Server (macOS)

.. 413.3.5 Assign License (macOS)

.. 433.4 Upgrade RaptorXML Server

.. 443.5 Migrate RaptorXML Server to a New Machine

.. 453.6 Security Considerations

4 General Procedures 46

.. 474.1 XML Catalogs

.. 474.1.1 How Catalogs Work

.. 484.1.2 Catalog Structure in RaptorXML Server

.. 504.1.3 Customizing your Catalogs

.. 524.1.4 Variables for Windows System Locations

.. 534.2 Global Resources

.. 554.3 Security Issues

5 Command Line Interface (CLI) 56

.. 585.1 XML, DTD, XSD Validation Commands

.. 585.1.1 valxml-withdtd (xml)

.. 625.1.2 valxml-withxsd (xsi)

.. 695.1.3 valdtd (dtd)

.. 735.1.4 valxsd (xsd)

.. 805.2 Well-formedness Check Commands

.. 805.2.1 wfxml

.. 845.2.2 wfdtd

.. 885.2.3 wfany

.. 925.3 XQuery Commands

.. 925.3.1 xquery

.. 1005.3.2 xqueryupdate

.. 1085.3.3 valxquery

.. 1145.3.4 valxqueryupdate

.. 1215.4 XSLT Commands

.. 1215.4.1 xslt

.. 1295.4.2 valxslt

5Altova RaptorXML Server 2025

.. 1365.5 JSON/Avro/YAML Commands

.. 1365.5.1 avroextractschema

.. 1395.5.2 json2xml

.. 1445.5.3 jsonschema2xsd

.. 1495.5.4 valavro (avro)

.. 1525.5.5 valavrojson (avrojson)

.. 1565.5.6 valavroschema (avroschema)

.. 1595.5.7 valjsonschema (jsonschema)

.. 1645.5.8 valjson (json)

.. 1685.5.9 valyaml (yaml)

.. 1725.5.10 wfjson

.. 1765.5.11 wfyaml

.. 1805.5.12 xml2json

.. 1845.5.13 xsd2jsonschema

.. 1915.6 XML Signature Commands

.. 1915.6.1 xmlsignature-sign

.. 1955.6.2 xmlsignature-verify

.. 1985.6.3 xmlsignature-update

.. 2015.6.4 xmlsignature-remove

.. 2035.7 General Commands

.. 2035.7.1 valany

.. 2045.7.2 script

.. 2055.7.3 help

.. 2075.8 Localization Commands

.. 2075.8.1 exportresourcestrings

.. 2095.8.2 setdeflang

.. 2105.9 License Commands

.. 2105.9.1 licenseserver

.. 2115.9.2 assignlicense (Windows only)

.. 2135.9.3 verifylicense (Windows only)

.. 2155.10 Administration Commands

.. 2165.10.1 install

.. 2165.10.2 uninstall

.. 2175.10.3 start

.. 2185.10.4 setdeflang

Altova RaptorXML Server 20256

.. 2195.10.5 licenseserver

.. 2205.10.6 accepteula (Linux only)

.. 2215.10.7 assignlicense

.. 2225.10.8 verifylicense

.. 2235.10.9 createconfig

.. 2245.10.10 exportresourcestrings

.. 2265.10.11 debug

.. 2275.10.12 help

.. 2285.10.13 version

.. 2305.11 Options

.. 2305.11.1 Catalogs, Global Resources, ZIP Files

.. 2315.11.2 Messages, Errors, Help, T imeout, Version

.. 2325.11.3 Processing

.. 2335.11.4 XML

.. 2345.11.5 XSD

.. 2365.11.6 XQuery

.. 2385.11.7 XSLT

.. 2405.11.8 JSON/Avro

.. 2415.11.9 XML Signatures

6 Server APIs: HTTP REST, COM/.NET, Java 245

.. 2476.1 HTTP REST Client Interface

.. 2486.1.1 Server Setup

.. 2606.1.2 Client Requests

.. 2846.1.3 C# Example for REST API

.. 2886.2 COM/.NET API

.. 2886.2.1 COM Interface

.. 2886.2.2 COM Example: VBScript

.. 2906.2.3 .NET Interface

.. 2916.2.4 .NET Example: C#

.. 2946.2.5 .NET Example: Visual Basic .NET

.. 2976.3 Java API

.. 2976.3.1 Overview of the Interface

.. 2986.3.2 Example Java Project

7Altova RaptorXML Server 2025

.. 3006.4 Server API Reference

.. 3006.4.1 Interfaces/Classes

.. 3526.4.2 Enumerations

7 Engine APIs: Python and .NET 363

.. 3657.1 Licensing

.. 3667.2 Python API

.. 3677.2.1 Python API Versions

.. 3697.2.2 RaptorXML Server as a Python Package

.. 3727.2.3 Debugging Server-Side Python Scripts

.. 3727.2.4 Debugging Python Scripts in Visual Studio Code

.. 3747.2.5 FAQs

.. 3767.3 .NET Framework API

8 Schema Manager 377

.. 3818.1 Run Schema Manager

.. 3848.2 Status Categories

.. 3868.3 Patch or Install a Schema

.. 3888.4 Uninstall a Schema, Reset

.. 3898.5 Command Line Interface (CLI)

.. 3898.5.1 help

.. 3908.5.2 info

.. 3908.5.3 initialize

.. 3918.5.4 install

.. 3918.5.5 list

.. 3928.5.6 reset

.. 3938.5.7 uninstall

.. 3948.5.8 update

.. 3948.5.9 upgrade

9 Additional Information 395

.. 3969.1 Exit Codes

.. 3979.2 Schema Location Hints

Altova RaptorXML Server 20258

10 Engine Information 398

.. 39910.1 XSLT and XQuery Engine Information

.. 39910.1.1 XSLT 1.0

.. 39910.1.2 XSLT 2.0

.. 40110.1.3 XSLT 3.0

.. 40210.1.4 XQuery 1.0

.. 40510.1.5 XQuery 3.1

.. 40710.2 XSLT and XPath/XQuery Functions

.. 40810.2.1 Altova Extension Functions

.. 49910.2.2 Miscellaneous Extension Functions

Index 517

© 2019-2025 Altova GmbH

 9Introduction

Altova RaptorXML Server 2025

1 Introduction

Altova RaptorXML Server (hereafter also called RaptorXML for short) is Altova's third-generation, hyper-fast
XML and XBRL* processor. It has been built to be optimized for the latest standards and parallel computing
environments. Designed to be highly cross-platform capable, the engine takes advantage of today’s ubiquitous
multi-core computers to deliver lightning fast processing of XML and XBRL data.

Note: XBRL processing is available only in RaptorXML+XBRL Server, not in RaptorXML Server.

This documentation
This documentation is delivered with the application and is also available online at the Altova website. This
documentation is organized into the following sections:

· About RaptorXML
· Setting Up RaptorXML
· Command Line Interface
· Server APIs: HTTP, COM/.NET, Java
· Engine APIs: Python and .NET
· Additional Information
· Engine Information

Altova website: XML validation server, XML validator

Last updated: 17 March 2025

10

46

56

245

363

395

398

http://www.altova.com
https://www.altova.com/raptorxml
https://www.altova.com/raptorxml

10 About RaptorXML Server

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

2 About RaptorXML Server

Editions and operating systems
There are two editions of RaptorXML, each suitable for a different set of requirements. These editions are
described in the section Editions and Interfaces . RaptorXML is available for Windows, Linux, and macOS.
For more details of system support, see the section System Requirements .

Features and supported specifications
RaptorXML provides XML validation, XSLT transformations, and XQuery executions, each with a wide range of
powerful options. See the section Features for a broad list of available functionality and key features. The
section Supported Specifications provides a detailed list of the specifications to which RaptorXML conforms.
For more information, visit the RaptorXML page at the Altova website.

11

15

16

18

https://www.altova.com/raptorxml.html

© 2019-2025 Altova GmbH

Editions and Interfaces 11About RaptorXML Server

Altova RaptorXML Server 2025

2.1 Editions and Interfaces

Editions
RaptorXML is available in the following editions:

· RaptorXML Server, which is a fast server-based XML processing engine for the validation and
processing of XML, XML Schema, XML Signature, XSLT, and XQuery documents.

· RaptorXML+XBRL Server, which provides all the functionality of RaptorXML Server plus a wide range of
XBRL processing functionality.

See here for a list of the supported specifications .

Interfaces
After you install RaptorXML, you can access it in one or more of the following ways:

· Command Line Interface (CLI): available for Windows, Linux, and macOS installations of RaptorXML
· HTTP REST client interface: uses RaptorXML's HTTP interface
· COM/.NET server interface (Windows): uses RaptorXML's (i) COM/.NET API and (ii) HTTP REST

interface
· Java server interface (Windows, Linux, macOS): uses RaptorXML's (i) Java API and (ii) HTTP REST

interface
· Altova XMLSpy interface: RaptorXML can be accessed from within the Altova XMLSpy user interface
· Python engine interface: uses (i) a RaptorXML Python-wheel in your Python environment and (ii) the

Python API of RaptorXML in your Python script. In this way, RaptorXML functionality can be used in
Python scripts together with third-party Python packages

· .NET engine interface (Windows): uses (i) a RaptorXML DLL and (ii) the .NET API of RaptorXML to
create independent .NET applications that use RaptorXML functionality

These seven interfaces can be organized into four groups:

· Command Line Interface (CLI)
· Server APIs: HTTP, COM/.NET, Java
· Engine APIs: Python and .NET
· Altova XMLSpy

CLI, Server APIs, and Altova XMLSpy
Access via the CLI, the Server APIs, and Altova XMLSpy can be visualized as in the figure below.

RaptorXML Server defines an HTTP REST interface, which is used by clients to dispatch validation jobs to the
server. Clients can either access the HTTP REST interface directly or use the high-level COM/.NET and Java
Server APIs. These APIs provide easy to use COM/.NET and Java classes which manage the creation and
dispatch of the HTTP REST requests. Additionally, Altova XMLSpy can be configured to run validation jobs on a
remote RaptorXML Server.

18 18

56

245

363

13

https://www.altova.com/xmlspy-xml-editor
https://www.altova.com/xmlspy-xml-editor

12 About RaptorXML Server Editions and Interfaces

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Command line interface (CLI)

· RaptorXML is licensed on the machine on which it is installed and this instance is accessed via the
command line

· Can be installed on Windows, Linux, and macOS
· Provides command line usage for validation and processing of XML, XML Schema, XML Signature,

XQuery, and XSLT documents
· Python 3.11.8 is bundled in RaptorXML and will be used when a Python script is invoked with the --

script option

HTTP REST client interface

· RaptorXML is licensed on the machine on which it is installed and this instance is accessed via an
HTTP REST client interface

· Client requests are made in JSON format. Each request is assigned a job directory on the server, in
which output files are saved. Server responses to the client include all relevant information about the
job.

· Python 3.11.8 is bundled in RaptorXML and will be used when a Python script is invoked with the --
script option

COM/.NET interface

· Available on Windows only
· RaptorXML is automatically registered as a COM server object when installed, and so can be invoked

from within applications and scripting languages that have programming support for COM calls
· RaptorXML is licensed on the machine on which it is installed
· The .NET interface is built as a wrapper around the COM interface

56

247

© 2019-2025 Altova GmbH

Editions and Interfaces 13About RaptorXML Server

Altova RaptorXML Server 2025

· The COM/.NET Server API of RaptorXML provides objects that can be used in COM/.NET scripting
languages to access RaptorXML functionality

· Python 3.11.8 is bundled in RaptorXML and will be used when a Python script is invoked with the --
script option

Java interface

· RaptorXML is licensed on the machine on which it is installed and this instance is accessed via a Java
program

· RaptorXML functionality is available in the Java Server API as Java classes that can be used in Java
programs.

· Python 3.11.8 is bundled in RaptorXML and will be used when a Python script is invoked with the --
script option

Altova XMLSpy

· If you have installed and licensed Altova XMLSpy and if XMLSpy can access RaptorXML Server across
a network, then you can use RaptorXML Server from withing the XMLSpy GUI to validate XML
documents, as well as run XSLT and XQuery transformations.

· You can validate the active document or all the documents in an XMLSpy project folder.
· The validation results are displayed in the Messages window of the XMLSpy GUI.
· In XMLSpy, you can (i) validate documents or (ii) run XSLT/XQuery transformation by using either

XMLSpy's engines or RaptorXML Server.
· One of the main advantages of using Raptor is that you can configure individual validations by means of

a large range of validation options. Furthermore, you can store a set of Raptor options as a
"configuration" in XMLSpy, and then select one of your defined configurations for a particular Raptor
validation. Using Raptor is also advantageous when large data collections are to be validated.

Engine APIs
The Engine APIs are different than the Server APIs in that RaptorXML is contained in the Python wheel and
in the .NET DLL that are used, respectively, by Python programs and .NET applications (see figure below).
These programs/applications must use, respectively, Raptor's Python API and Raptor's .NET API in
order to access RaptorXML functionality.

Note: The functionality provided by the Python API and .NET API are considerably greater than that
provided by either the CLI or the Server APIs; for example, the ability to read documents and manipulate data.

288

297

363

366 376

366 376

14 About RaptorXML Server Editions and Interfaces

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Python interface

· RaptorXML is available in a Python wheel package that can be installed in your Python 3.11.8
environment

· A Python program can then be written that uses objects from RaptorXML's Python API . This API
provides much more functionality than is available in the CLI, and it can be combined with the
functionality provided by third-party libraries in your Python environment

· When RaptorXML functionality is called via RaptorXML's Python wheel, a check is carried out for a valid
RaptorXML license on that machine before the command is executed

.NET interface

· RaptorXML is available in a DLL that can be embedded in an application that supports the .NET
Framework. See the section .NET Framework API for information about the API.

· RaptorXML's .NET API provides access to RaptorXML. The available functionality is much more
than that which is available in the RaptorXML CLI.

· When RaptorXML functionality is called via a .NET application, a check is carried out for a valid
RaptorXML license on that machine

366

376

376

© 2019-2025 Altova GmbH

System Requirements 15About RaptorXML Server

Altova RaptorXML Server 2025

2.2 System Requirements

RaptorXML Server is supported on the operating systems listed below.

Windows

· Windows 10, Windows 11
· Windows Server 2016 or newer

Linux

· Red Hat Enterprise Linux 7 or newer
· CentOS 7, CentOS Stream 8
· Debian 10 or newer
· Ubuntu 20.04, 22.04, 24.04
· AlmaLinux 9.0
· Rocky Linux 9.0

Prerequisites
· Perform installation either as root user or as a user with sudo privileges.
· The previous version of RaptorXML Server must be uninstalled before a new one is installed.
· If you plan to use Altova's Charts functionality, then at least one font must be installed on your system

to ensure that charts will be rendered correctly. To list installed fonts, use, for example, the fc-list

command of the Fontconfig library.
· The following libraries are required as a prerequisite to install and run the application. If the packages

below are not already available on your Linux machine, run the yum command (or apt-get if applicable)
to install them.

CentOS, RedHat Debian Ubuntu

krb5-libs libgssapi-krb5-2 libgssapi-krb5-2

macOS

· macOS 12 or newer

RaptorXML is available for both 32-bit and 64-bit machines. Specifically these are x86 and amd64 (x86-64)
instruction-set based cores: Intel Core i5, i7, XEON E5. To use RaptorXML via a COM interface, users should
have privileges to use the COM interface, that is, to register the application and execute the relevant
applications and/or scripts.:

https://www.freedesktop.org/wiki/Software/fontconfig/

16 About RaptorXML Server Features

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

2.3 Features

RaptorXML provides the functionality listed below. Most functionality is common to command line usage and
COM interface usage. One major difference is that COM interface usage on Windows allows documents to be
constructed from text strings via the application or scripting code (instead of referencing XML, DTD, XML
Schema, XSLT, or XQuery files).

XML Validation

· Validates the supplied XML document against internal or external DTDs or XML Schemas
· Checks well-formedness of XML, DTD, XML Schema, XSLT, and XQuery documents

XSLT Transformations

· Transforms XML using supplied XSLT 1.0, 2.0, or 3.0 document
· XML and XSLT documents can be provided as a file (via a URL) or, in the case of COM usage, as a

text string
· Output is returned as a file (at a named location) or, in the case of COM usage, as a text string
· XSLT parameters can be supplied via the command line and via the COM interface
· Altova extension functions, as well as XBRL, Java and .NET extension functions, enable specialized

processing. This allows, for example, the creation of such features as charts and barcode in output
documents

XQuery Execution

· Executes XQuery 1.0 and 3.0 documents
· XQuery and XML documents can be provided as a file (via a URL) or, in the case of COM usage, as a

text string
· Output is returned as a file (at a named location) or, in the case of COM usage, as a text string
· External XQuery variables can be supplied via the command line and via the COM interface
· Serialization options include: output encoding, output method (that is, whether the output is XML,

XHTML, HTML, or text), omitting the XML declaration, and indentation

JSON and Avro Validation/Conversion

· Validation of JSON schema and Avro schema documents
· Validation of JSON instances against JSON schemas and Avro schemas
· Validation of Avro binaries
· Conversion of Avro binaries to Avro schema and Avro data in JSON format
· Conversion of Avro JSON data to Avro binary

Hyper-performance Features

· Ultra-high performance code optimizations
o Native instruction-set implementations
o 32-bit or 64-bit version

© 2019-2025 Altova GmbH

Features 17About RaptorXML Server

Altova RaptorXML Server 2025

· Ultra-low memory footprint
o Extremely compact in-memory representation of XML Information Set
o Streaming instance validation

· Cross platform capabilities
· Highly scalable code for multi-CPU/multi-core/parallel computing
· Parallel loading, validation, and processing by design

Developer Features

· Superior error reporting capabilities
· Windows server mode and Unix daemon mode (via command-line options)
· Python 3.x interpreter for scripting included
· RaptorXML functionality in a Python package enables import of the functionality as a Python library
· .NET Framework API allows access to underlying XML data model
· COM API on Windows platform
· Java API everywhere
· XPath Extension functions Java, .NET, and more
· Streaming serialization
· Built-in HTTP server with REST validation API

For more information, see the section Supported Specifications and the Altova website.18

https://www.altova.com/raptorxml.html

18 About RaptorXML Server Supported Specifications

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

2.4 Supported Specifications

RaptorXML supports the specifications listed below.

W3C Recommendations
Website: World Wide Web Consortium (W3C)

· Extensible Markup Language (XML) 1.0 (Fifth Edition)
· Extensible Markup Language (XML) 1.1 (Second Edition)
· Namespaces in XML 1.0 (Third Edition)
· Namespaces in XML 1.1 (Second Edition)
· XML Information Set (Second Edition)
· XML Base (Second Edition)
· XML Inclusions (XInclude) Version 1.0 (Second Edition)
· XML Linking Language (XLink) Version 1.0
· XML Schema Part 1: Structures Second Edition
· XML Schema Part 2: Datatypes Second Edition
· W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures
· W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes
· XPointer Framework
· XPointer xmlns() Scheme
· XPointer element() Scheme
· XML Path Language (XPath) Version 1.0
· XSL Transformations (XSLT) Version 1.0
· XML Path Language (XPath) 2.0 (Second Edition)
· XSL Transformations (XSLT) Version 2.0
· XQuery 1.0: An XML Query Language (Second Edition)
· XQuery 1.0 and XPath 2.0 Functions and Operators (Second Edition)
· XSLT 2.0 and XQuery 1.0 Serialization (Second Edition)
· XML Path Language (XPath) 3.0
· XML Path Language (XPath) 3.1
· XQuery 3.0: An XML Query Language
· XQuery Update Facility 1.0
· XPath and XQuery Functions and Operators 3.0
· XSLT and XQuery Serialization 3.0

W3C Working Drafts & Candidate Recommendations
Website: World Wide Web Consortium (W3C)

· XSL Transformations (XSLT) Version 3.0 (subset)
· XQuery 3.1: An XML Query Language
· XPath and XQuery Functions and Operators 3.1
· XQuery Update Facility 3.0
· XSLT and XQuery Serialization 3.1

OASIS Standards
Website: OASIS Standards

http://www.w3.org/
http://www.w3.org/
https://www.oasis-open.org/standards

© 2019-2025 Altova GmbH

Supported Specifications 19About RaptorXML Server

Altova RaptorXML Server 2025

· XML Catalogs V 1.1 - OASIS Standard V1.1

JSON/Avro Standards
Websites: JSON Schema and Apache Avro

· JSON Schema Draft 4
· JSON Schema Draft 6
· JSON Schema Draft 7
· JSON Schema Draft 2019-09
· JSON Schema Draft 2020-12
· Apache Avro™ 1.8.1

http://json-schema.org/latest/json-schema-validation.html
http://www.apache.org/
http://avro.apache.org/docs/1.8.1/spec.html

20 About RaptorXML Server Notable Changes

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

2.5 Notable Changes

Given below are changes in each version that might need your attention.

v2024
On the command line, the --network-timeout option takes a value in milliseconds from this release onwards

(instead of in seconds as was the case in previous releases). The option can be set for a number of commands
and, in the description of the command, is listed under Common Options. For an example, see the valxml-
withxsd (xsi) command.62

© 2019-2025 Altova GmbH

 21Installation and Licensing

Altova RaptorXML Server 2025

3 Installation and Licensing

This section describes installation, licensing and other setup procedures. It is organized into the following
sections:

· Setup on Windows
· Setup on Linux
· Setup on macOS
· Upgrade RaptorXML Server
· Migrate RaptorXML Server to a New Machine

22

32

38

43

44

22 Installation and Licensing Setup on Windows

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

3.1 Setup on Windows

This section describes the installation and licensing of RaptorXML Server on Windows systems. The setup
comprises the following steps:

1. Install RaptorXML Server
2. Install LicenseServer
3. Start LicenseServer and RaptorXML Server
4. Register RaptorXML Server with LicenseServer
5. Assign a license to RaptorXML Server

The setup steps described above do not need to occur in exactly the same order in which they are listed.
However, you do need to install before you start. And you do need to register RaptorXML Server with
LicenseServer before you can assign a license to RaptorXML Server from LicenseServer.

System requirements (Windows)
Note the following system requirements:

· Windows 10, Windows 11
· Windows Server 2016 or newer

Prerequisites
Note the following prerequisites:

· Perform installation as a user with administrative privileges.
· From version 2021 onwards, a 32-bit version of RaptorXML Server cannot be installed over a 64-bit

version, or a 64-bit version over a 32-bit version. You must either (i) remove the older version before
installing the newer version or (ii) upgrade to a newer version that is the same bit version as your older
installation.

3.1.1 Install on Windows

Installing RaptorXML Server
RaptorXML Server can be installed on Windows systems as follows:

· As a separate standalone server product. To install RaptorXML Server , download and run the
RaptorXML Server installer. Follow the on-screen instructions.

· To install RaptorXML Server as part of the FlowForce Server package, download and run the FlowForce
Server installer. Follow the on-screen instructions and make sure you check the option for installing
RaptorXML Server.

The installers of both RaptorXML Server and FlowForce Server are available at the Altova Download Center
(https://www.altova.com/download.html). You can select your installation language from the box in the lower left
area of the wizard. Note that this selection also sets the default language of RaptorXML Server. You can
change the language later from the command line.

22

22

26

28

30

31

https://www.altova.com/flowforce.html
https://www.altova.com/flowforce.html
https://www.altova.com/download.html

© 2019-2025 Altova GmbH

Setup on Windows 23Installation and Licensing

Altova RaptorXML Server 2025

After installation, the RaptorXML Server executable will be located by default at the following path:

<ProgramFilesFolder>\Altova\RaptorXMLServer2025\bin\RaptorXML.exe

All the necessary registrations to use RaptorXML Server via a COM interface, as a Java interface, and in the
.NET environment will be done by the installer.This includes registering the RaptorXML Server executable as a
COM server object and adding the Altova.RaptorXML.dll file to the .NET reference library.

Uninstall RaptorXML Server
Uninstall RaptorXML Server as follows:

1. Right-click the Windows Start button and select Settings.
2. Open the Control Panel (start typing "Control Panel" and click the suggested entry).
3. Under Programs, click Uninstall a program.
4. In Control Panel, select RaptorXML Server and click Uninstall.

Evaluation license
During the installation process, you will be given the option of requesting a 30-day evaluation license for
RaptorXML Server. After submitting the request, an evaluation license will be sent to the email address you
registered.

3.1.2 Install on Windows Server Core

Windows Server Core is a minimal Windows installation that does not use a number of GUI features. You can
install RaptorXML Server on a Windows Server Core machine as follows:

1. Download the RaptorXML Server installer executable from the Altova website. This file is named
RaptorXMLServer<version>.exe. Make sure to choose the executable matching your server platform

(32-bit or 64-bit).
2. On a standard Windows machine (not the Windows Server Core machine), run the command

RaptorXMLServer<version>.exe /u. This unpacks the .msi file to the same folder as the installer

executable.
3. Copy the unpacked .msi file to the Windows Server Core machine.

4. If you are updating an earlier version of RaptorXML Server, shut down RaptorXML Server before carrying
out the next step.

5. Use the .msi file for the installation by running the command msiexec /i RaptorXMLServer.msi.

This starts the installation on Windows Server Core.

Note: When upgrading to a major version, you can retain your RaptorXML Server settings by using the
properties listed in the subsections of this section: (i) Webserver Properties , (ii) SSL-Webserver
Properties , and (iii) Service Properties .

Important: Keep the MSI file!
Note the following points:

25

25 26

24 Installation and Licensing Setup on Windows

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

· Keep the extracted .msi file in a safe place. You will need it later to uninstall, repair, or modify your

installation.
· If you want to rename the MSI file, do this before you install RaptorXML Server.
· The MSI filename is stored in the registry. You can update its name there if the filename has

changed.

Register RaptorXML Server with LiceseServer
If you are installing RaptorXML Server for the first time or are upgrading to a major version, you will need to
register RaptorXML Server with an Altova LicenseServer on your network. If you are upgrading to a non-major
version of RaptorXML Server, then the previous LicenseServer registration will be known to the installation and
there is no need to register RaptorXML Server with LicenseServer. However, if you want to change the
LicenseServer that is used by RaptorXML Server at any time, then you will need to register RaptorXML Server
with the new LicenseServer.

To register RaptorXML Server with an Altova LicenseServer during installation, run the installation command
with the REGISTER_WITH-LICENSE_SERVER property, as listed below, providing the name or address of the

LicenseServer machine as the value of the property, for example:
msiexec /i RaptorXMLServer.msi REGISTER_WITH_LICENSE_SERVER="localhost"

To register RaptorXML Server with an Altova LicenseServer after installation, run the following command:
msiexec /r RaptorXMLServer.msi REGISTER_WITH_LICENSE_SERVER="<MyLS-IPAddress>"

Useful commands
Given below are a set of commands that are useful in the installation context.

To test the return value of the installation, run a script similar to that below. The return code will be in the %
errorlevel% environment variable. A return code of 0 indicates success.

start /wait msiexec /i RaptorXMLServer.msi /q
echo %errorlevel%

For a silent installation with a return code and a log of the installation process:
start /wait msiexec /i RaptorXMLServer.msi /q /L*v! <pathToInstallLogFile>

To modify the installation:
msiexec /m RaptorXMLServer.msi

To repair the installation:
msiexec /r RaptorXMLServer.msi

To uninstall RaptorXML Server:
msiexec /x RaptorXMLServer.msi

To uninstall RaptorXML Server silently and report the detailed outcome in a log file:
start /wait msiexec /x RaptorXMLServer.msi /q /L*v! <pathToUninstallLogFile>

To install RaptorXML Server using another langauge (available language codes are: German=de; Spanish=es;
French=fr):

msiexec /i RaptorXMLServer.msi INSTALLER_LANGUAGE=<languageCode>

© 2019-2025 Altova GmbH

Setup on Windows 25Installation and Licensing

Altova RaptorXML Server 2025

Note: On Windows Server Core, the charts functionality of RaptorXML Server will not be available.

3.1.2.1 Webserver Properties

You can configure the RaptorXML Server web server by using the properties given below. To set a property, run
the installation command with the property setting appended, like this:

msiexec /i RaptorXMLServer.msi RXML_WebServer_Host=127.0.0.1

List of properties
Properties of the RaptorXML Server web server:

RXML_WebServer_Host=<IP4 Address>

Use 127.0.0.1 if you want to access the web server from this machine only. Use 0.0.0.0 to make the

web server accessible globally.

RXML_WebServer_Port=<Port Number>

Specifies the port that is used to access the web server.

RXML_WebServer_Enabled=<0 or 1>

Select 1 to enable listening at the currently set port. Select 0 to disable listening at this port.

3.1.2.2 SSL-Webserver Properties

You can configure the RaptorXML Server SSL web server by using the properties given below. To set a
property, run the installation command with the property setting appended, like this:

msiexec /i RaptorXMLServer.msi RXML_SSLWebServer_Host=127.0.0.1

List of properties
To configure the RaptorXML Server SSL web server, use the following properties:

RXML_SSLWebServer_Host=<IP4 Address>

Use 127.0.0.1 if you want to access the SSL web server (for encrypted transmission) from this machine

only. Use 0.0.0.0 to make the SSL web server accessible globally.

RXML_SSLWebServer_Port=<Port Number>

Specifies the port that is used to access the SSL web server (for encrypted transmission).

RXML_SSLWebServer_Enabled=<0 or 1>

Select 1 to enable listening at the currently set port. Select 0 to disable listening at this port.

RXML_SSLWebServer_Certificate=<Path-to-certificate-file>

Full path to a SSL certificate, enclosed in double-quotes.

26 Installation and Licensing Setup on Windows

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

RXML_SSLWebServer_PrivateKey=<Path-to-private-key-file>

Full path to a private key file, enclosed in double-quotes.

3.1.2.3 Service Properties

You can configure the RaptorXML Server service by using the properties given below. To set a property, run the
installation command with the property setting appended, like this:

msiexec /i RaptorXMLServer.msi RXML_Service_DisplayName=RaptorXMLServer

List of properties
To configure RaptorXML Server services, use the following properties:

RXML_Service_DisplayName=<Serveice Display Name>

Name that will be displayed for the service. Enclose the name in double quotes.

RXML_Service_StartType=<Startup Type>

Specifies how the service is started during a system start-up. Values can be one of: auto | auto-

delayed | demand | disabled.

RXML_Service_Username=<UserName>

Specifies the log-on user for the service. Use one of: LocalSystem | NT Authority\LocalService | NT

Authority\NetworkService | <any user with relevant rights>.

RXML_Service_Password=<Password>

The password of the service's start user in plain text.(Hint: Use the installer's user interface to avoid
entering plain text passwords.) No password is required if the user name is any of: LocalSystem | NT

Authority\LocalService | NT Authority\NetworkService.

3.1.3 Install LicenseServer (Windows)

In order for RaptorXML Server to work, it must be licensed via an Altova LicenseServer on your network. When
you install RaptorXML Server or FlowForce Server on Windows systems, you can install LicenseServer together
with RaptorXML Server or FlowForce Server. If a LicenseServer is already installed on your network, you do not
need to install another one—unless a newer version of LicenseServer is required. (See next point,
LicenseServer versions.)

During the installation process of RaptorXML Server or FlowForce Server, check or uncheck the option for
installing LicenseServer as appropriate.

Note the following points:

· If you have not installed LicenseServer yet, leave the default settings as is. The wizard will install the
latest version on the computer where you are running the wizard.

https://www.altova.com/manual/en/licenseserver/3.17/index.html

© 2019-2025 Altova GmbH

Setup on Windows 27Installation and Licensing

Altova RaptorXML Server 2025

· If you have not installed LicenseServer yet and want to install Altova LicenseServer on another
computer and use it from there, then clear the check box Install Altova LicenseServer on this machine
and choose Register Later. In this case, you will need to install LicenseServer separately on the other
machine and register RaptorXML Server afterwards with the LicenseServer on that machine.

· If LicenseServer has already been installed on your computer but is a lower version than the one that
would be installed by the installation wizard, then leave the wizard's default setting (for upgrading to the
newer version) as is. In this case, the installation wizard will automatically upgrade your LicenseServer
version. The existing registration and licensing information will be carried over to the new version of
LicenseServer.

· If LicenseServer has already been installed on your computer or network and has the same version as
the one indicated by the wizard, do the following:
o Clear the check box Install Altova LicenseServer on this machine.

o Under Register this product with, choose the LicenseServer with which you want to register

RaptorXML Server. Alternatively, choose Register Later. Note that you can always select
Register Later if you want to ignore the LicenseServer associations and carry on with the
installation of RaptorXML Server.

For information, see how to register and license RaptorXML Server with Altova LicenseServer. Also see
the LicenseServer documentation for more detailed information.

LicenseServer versions
· Altova products must be licensed either (i) with a version of LicenseServer that corresponds to the

installed RaptorXML Server version or (ii) with a later version of LicenseServer.
· The LicenseServer version that corresponds to the current version of RaptorXML Server is 3.17.
· On Windows, you can install the corresponding version of LicenseServer as part of the RaptorXML

Server installation or install LicenseServer separately. On Linux amd macOS, you must install
LicenseServer separately.

· Before a newer version of LicenseServer is installed, any older one must be de-installed.
· At the time of LicenseServer de-installation, all registration and licensing information held in the older

version of LicenseServer will be saved to a database on your server machine. This data will be imported
automatically into the newer version when the newer version is installed.

· LicenseServer versions are backwards compatible. They will work with older versions of RaptorXML
Server.

· The latest version of LicenseServer available on the Altova website. This version will work with any
current or older version of RaptorXML Server.

· The version number of the currently installed LicenseServer is given at the bottom of the LicenseServer
configuration page (all tabs).

3.1.4 Network and Service Configuration (Windows)

During the installation of RaptorXML Server, you can configure settings for accessing RaptorXML Server via the
network and for running RaptorXML Server as a Windows service.
The settings listed below are available. Leave the default settings as they are if they are acceptable to you or if
you are not sure about them. If you wish to change a setting, select its Change button (see screenshot
above).

· The port to use for unencrypted communication with RaptorXML Server.

30 31

https://www.altova.com/manual/en/licenseserver/3.17/index.html
https://www.altova.com/manual/en/licenseserver/3.17/
https://www.altova.com/manual/en/licenseserver/3.17/alsconfig.html
https://www.altova.com/manual/en/licenseserver/3.17/alsconfig.html

28 Installation and Licensing Setup on Windows

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

· Whether secure (SSL-encrypted) connections to RaptorXML Server are allowed. If yes, then on which
port. By default, secure connections are disabled. For more information, see the section about setting
up SSL encryption .

· Windows service settings. These include:
o The way RaptorXML Server should start as a Windows service: automatic, on demand, delayed

automatic, or disabled.
o The user account to be used by RaptorXML Server for the Windows service: Local System, Local

Service, Network Service, or Other User. If you select Other User, you can set the username and
password of this user, similar to how this is done in the Windows Services management console.
Note that the selected user must have read/write access to C:\ProgramData\Altova. Otherwise,

the installation or startup could fail.

You can change the settings after installation. To modify the Windows service configuration, open the Windows
Services management console (by typing Services.msc in a command line window) and change the required

service from there.

3.1.5 Start LicenseServer, RaptorXML Server (Windows)

Altova LicenseServer (LicenseServer for short) and RaptorXML Server are both started via Altova
ServiceController.

Altova ServiceController
Altova ServiceController (ServiceController for short) is an application for conveniently starting, stopping and
configuring Altova services on Windows systems. ServiceController is installed with Altova LicenseServer and
with Altova server products that are installed as services (DiffDog Server, FlowForce Server, Mobile Together
Server, and RaptorXML(+XBRL) Server). ServiceController can be accessed via the system tray (screenshot
below).

To specify that ServiceController starts automatically on logging in to the system, click the ServiceController
icon in the system tray to display the ServiceController menu (screenshot below), and then toggle on the
command Run Altova ServiceController at Startup. (This command is toggled on by default.) To exit
ServiceController, click the ServiceController icon in the system tray and, in the menu that appears (see
screenshot below), click Exit Altova ServiceController.

257

© 2019-2025 Altova GmbH

Setup on Windows 29Installation and Licensing

Altova RaptorXML Server 2025

Start LicenseServer
To start LicenseServer, click the ServiceController icon in the system tray, hover over Altova LicenseServer
in the menu that pops up (see screenshot below), and then select Start Service from the LicenseServer
submenu. If LicenseServer is already running, then the Start Service option will be disabled. You can also stop
the service via ServiceController.

Start RaptorXML Server
To start RaptorXML Server, click the ServiceController icon in the system tray, hover over Altova
RaptorXML Server in the menu that pops up (see screenshot below), and then select Start Service from the
RaptorXML Server submenu. If RaptorXML Server is already running, the Start Service option will be disabled.
You can also stop the service via ServiceController.

30 Installation and Licensing Setup on Windows

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Note: If RaptorXML Server has been licensed to run only single-thread executions (typically because your
machine is multiple-core, but your license is single-core), then you can use only one instance of RaptorXML
Server at a time: either as a service or from the command line. This is because the single-core license will be
assigned automatically to the first instance that is started and is currently running. The second instance cannot
be started until the first instance stops running.

· If you wish to use RaptorXML Server from the command line, but the service is already running, you
must stop the service before using the command line.

· If you wish to start RaptorXML Server as a service, make sure that no command line action is
currently being executed. Otherwise, you will not be able to start the service.

3.1.6 Register RaptorXML Server (Windows)

To be able to license RaptorXML Server from Altova LicenseServer, RaptorXML Server must be registered with
LicenseServer. To register RaptorXML Server from the command line interface, use the licenseserver
command and supply the address of the LicenseServer machine (see below).

RaptorXML licenseserver [options] ServerName-Or-IP-Address

For example, if localhost is the name of the server on which LicenseServer is installed, use the following
command:

RaptorXML licenseserver localhost

If RaptorXML Server was installed as part of a FlowForce Server installation, registering FlowForce Server with
LicenseServer will automatically also register RaptorXML Server. Essentially: (i) Start Altova FlowForce Web as
a service via ServiceController (see previous point); (ii) Enter your password to access the Setup page; (iii)
Select the LicenseServer name or address and click Register with LicenseServer. For more information, see
Register FlowForce Server.

After successful registration, go to the Client Management tab of LicenseServer's configuration page to assign
a license to RaptorXML Server.

For more information about registering Altova products with LicenseServer, see the LicenseServer user manual.

https://www.altova.com/flowforce.html
https://www.altova.com/manual/en/licenseserver/3.17/alsregister_flowforceserver.html
https://www.altova.com/manual/en/licenseserver/3.17/alsconfig_clientmgmt.html
https://www.altova.com/manual/en/licenseserver/3.17/alsregister.html

© 2019-2025 Altova GmbH

Setup on Windows 31Installation and Licensing

Altova RaptorXML Server 2025

3.1.7 Assign License (Windows)

After successfully registering RaptorXML Server, it will be listed in the Client Management tab of the
configuration page of LicenseServer. Go there and assign a license to RaptorXML Server.

The licensing of Altova server products is based on the number of processor cores available on the product
machine. For example, a dual-core processor has two cores, a quad-core processor four cores, a hexa-core
processor six cores, and so on. The number of cores licensed for a product must be greater than or equal to
the number of cores available on that server machine, whether the server is a physical or virtual machine. For
example, if a server has eight cores (an octa-core processor), you must purchase at least one 8-core license.
You can also combine licenses to achieve the core count. So, two 4-core licenses can also be used for an
octa-core server instead of one 8-core license.

If you are using a computer server with a large number of CPU cores but only have a low volume to process,
you may also create a virtual machine that is allocated a smaller number of cores and purchase a license for
that number. Such a deployment, of course, would have less processing speed than if all available cores on the
server were utilized.

Note: Each Altova server product license can be used for only one client machine at a time, even if the license
has unused licensing capacity. (A client machine is the machine on which the Altova server product is
installed.) For example, if a 10-core license is used for a client machine that has 6 CPU cores, then the
remaining 4 cores of licensing capacity cannot be used simultaneously for another client machine.

Single-thread execution
If an Altova server product allows single-thread execution, an option for Single-thread execution will be available.
In these cases, if an Altova server-product license for only one core is available in the license pool, a machine
with multiple cores can be assigned this one-core license. In such a case, the machine will run that product on
a single core. Processing will therefore be slower, because multi-threading (which is possible on multiple cores)
will not be available. The product will be executed in single thread mode on that machine.

To assign a single-core license to a multiple-core machine in LicenseServer, select the Limit to single thread
execution check box for that product.

Estimate of core requirements
There are various external factors that influence the data volumes and processing times your server can handle
(for example: the hardware, the current load on the CPU, and memory allocation of other applications running
on the server). In order to measure performance as accurately as possible, test the applications in your
environment with data volumes and in conditions that approximate as closely as possible to real business
situations.

https://www.altova.com/manual/en/licenseserver/3.17/alsassignlicenses.html

32 Installation and Licensing Setup on Linux

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

3.2 Setup on Linux

This section describes the installation and licensing of RaptorXML Server on Linux systems (Debian,
Ubuntu, CentOS, RedHat). The setup comprises the following steps:

1. Install RaptorXML Server
2. Install LicenseServer
3. Start LicenseServer
4. Register RaptorXML Server with LicenseServer
5. Assign a license to RaptorXML Server

The setup steps described above do not need to occur in exactly the same order in which they are listed.
However, you do need to install before you start. And you do need to register RaptorXML Server with
LicenseServer before you can assign a license to RaptorXML Server from LicenseServer.

System requirements (Linux)

· Red Hat Enterprise Linux 7 or newer
· CentOS 7, CentOS Stream 8
· Debian 10 or newer
· Ubuntu 20.04, 22.04, 24.04
· AlmaLinux 9.0
· Rocky Linux 9.0

Prerequisites
· Perform installation either as root user or as a user with sudo privileges.
· The previous version of RaptorXML Server must be uninstalled before a new one is installed.
· If you plan to use Altova's Charts functionality, then at least one font must be installed on your system

to ensure that charts will be rendered correctly. To list installed fonts, use, for example, the fc-list

command of the Fontconfig library.
· The following libraries are required as a prerequisite to install and run the application. If the packages

below are not already available on your Linux machine, run the yum command (or apt-get if applicable)
to install them.

CentOS, RedHat Debian Ubuntu

krb5-libs libgssapi-krb5-2 libgssapi-krb5-2

3.2.1 Install on Linux

RaptorXML Server is available for installation on Linux systems. Do the installation either as root user or a
user with sudo privileges.

32

32

34

35

35

36

https://www.freedesktop.org/wiki/Software/fontconfig/

© 2019-2025 Altova GmbH

Setup on Linux 33Installation and Licensing

Altova RaptorXML Server 2025

Integration of FlowForce Server and other Altova server products
If you are installing RaptorXML Server together with FlowForce Server, it is recommended that you install
FlowForce Server first. If you install RaptorXML Server before FlowForce Server, then, after having installed both
RaptorXML Server and FlowForce Server, run the following command:

cp /opt/Altova/RaptorXMLServer2025/etc/*.tool /opt/Altova/FlowForceServer2025/tools

This command copies the .tool file from /etc directory of RaptorXML Server to the FlowForce Server /tools

directory. The .tool file is required by FlowForce Server. It contains the path to the RaptorXML Server

executable. You do not need to run this command if you install FlowForce Server before installing RaptorXML
Server.

Uninstall RaptorXML Server
Before you install RaptorXML Server, you should uninstall any older version.

To check which Altova server products are installed:

[Debian, Ubuntu]: dpkg --list | grep Altova
[CentOS, RedHat]: rpm -qa | grep server

To uninstall an old version of RaptorXML Server:

[Debian, Ubuntu]: sudo dpkg --remove raptorxmlserver

[CentOS, RedHat]: sudo rpm -e raptorxmlserver

On Debian and Ubuntu systems, it might happen that RaptorXML Server still appears in the list of installed
products after it has been uninstalled. In this case, run the purge command to clear RaptorXML Server from the

list. You can also use the purge command instead of the remove command listed above.

[Debian, Ubuntu]: sudo dpkg --purge raptorxmlserver

Download the RaptorXML Server Linux package
RaptorXML Server installation packages for the following Linux systems are available at the Altova website.

Distribution Package extension

Debian .deb

Ubuntu .deb

CentOS .rpm

RedHat .rpm

After downloading the Linux package, copy it to any directory on the Linux system. Since you will need to
license RaptorXML Server with an Altova LicenseServer, you may want to download LicenseServer from the
Altova website at the same time as you download RaptorXML Server.

https://www.altova.com/download.html
https://www.altova.com/manual/en/licenseserver/3.17/index.html
https://www.altova.com/download.html

34 Installation and Licensing Setup on Linux

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Install RaptorXML Server
In a terminal window, switch to the directory where you copied the Linux package. For example, if you copied it
to a user directory called MyAltova that is located in the /home/User directory, switch to this directory as
follows:

cd /home/User/MyAltova

Install RaptorXML Server using the relevant command:

[Debian]: sudo dpkg --install raptorxml-2025-debian.deb

[Ubuntu]: sudo dpkg --install raptorxml-2025-ubuntu.deb

[CentOS]: sudo rpm -ivh raptorxml-2025-1.x86_64.rpm
[RedHat]: sudo rpm -ivh raptorxml-2025-1.x86_64.rpm

You may need to adjust the name of the package above to match the current release or service pack version.

The RaptorXML Server package will be installed in the following folder:

/opt/Altova/RaptorXMLServer2025

3.2.2 Install LicenseServer (Linux)

In order for RaptorXML Server to work, it must be licensed via an Altova LicenseServer on your network.
Download LicenseServer from the Altova website and copy the package to any directory. Install it just like you
installed RaptorXML Server (see previous topic).

[Debian]: sudo dpkg --install licenseserver-3.17-debian.deb

[Ubuntu]: sudo dpkg --install licenseserver-3.17-ubuntu.deb

[CentOS]: sudo rpm -ivh licenseserver-3.17-1.x86_64.rpm

[RedHat]: sudo rpm -ivh licenseserver-3.17-1.x86_64.rpm

The LicenseServer package will be installed at the following path:

/opt/Altova/LicenseServer

For information, see how to register and license RaptorXML Server with Altova LicenseServer. Also see
the LicenseServer documentation for more detailed information.

LicenseServer versions
· Altova products must be licensed either (i) with a version of LicenseServer that corresponds to the

installed RaptorXML Server version or (ii) with a later version of LicenseServer.
· The LicenseServer version that corresponds to the current version of RaptorXML Server is 3.17.
· On Windows, you can install the corresponding version of LicenseServer as part of the RaptorXML

Server installation or install LicenseServer separately. On Linux amd macOS, you must install
LicenseServer separately.

· Before a newer version of LicenseServer is installed, any older one must be de-installed.
· At the time of LicenseServer de-installation, all registration and licensing information held in the older

32

35 36

https://www.altova.com/manual/en/licenseserver/3.17/index.html
https://www.altova.com/
https://www.altova.com/manual/en/licenseserver/3.17/index.html
https://www.altova.com/manual/en/licenseserver/3.17/

© 2019-2025 Altova GmbH

Setup on Linux 35Installation and Licensing

Altova RaptorXML Server 2025

version of LicenseServer will be saved to a database on your server machine. This data will be imported
automatically into the newer version when the newer version is installed.

· LicenseServer versions are backwards compatible. They will work with older versions of RaptorXML
Server.

· The latest version of LicenseServer available on the Altova website. This version will work with any
current or older version of RaptorXML Server.

· The version number of the currently installed LicenseServer is given at the bottom of the LicenseServer
configuration page (all tabs).

3.2.3 Start LicenseServer, RaptorXML Server (Linux)

Start Altova LicenseServer and RaptorXML Server either as root user or a user with sudo privileges.

Start LicenseServer
To correctly register and license RaptorXML Server with LicenseServer, LicenseServer must be running as a
daemon on the network. Start LicenseServer as a daemon with the following command:

sudo systemctl start licenseserver

If at any time you need to stop LicenseServer, replace start with stop in the command above. For example:

sudo systemctl stop licenseserver

Start RaptorXML Server
Start RaptorXML Server as a daemon with the following command:

sudo systemctl start raptorxmlserver

If at any time you need to stop RaptorXML Server, replace start with stop in the command above. For

example:

sudo systemctl stop raptorxmlserver

Check status of daemons
To check if a daemon is running, run the following command, replacing <servicename> with the name of the

daemon you want to check:

sudo service <servicename> status

3.2.4 Register RaptorXML Server (Linux)

To be able to license RaptorXML Server from Altova LicenseServer, RaptorXML Server must be registered with
LicenseServer.

https://www.altova.com/manual/en/licenseserver/3.17/alsconfig.html
https://www.altova.com/manual/en/licenseserver/3.17/alsconfig.html

36 Installation and Licensing Setup on Linux

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

To register RaptorXML Server, go to its CLI and use the licenseserver command:

sudo /opt/Altova/RaptorXMLServer2025/bin/raptorxml licenseserver [options] ServerName-

Or-IP-Address

For example, if localhost is the name of the server on which LicenseServer is installed:

sudo /opt/Altova/RaptorXMLServer2025/bin/raptorxml licenseserver localhost

In the command above, localhost is the name of the server on which LicenseServer is installed. Notice also
that the location of the RaptorXML Server executable is:

/opt/Altova/RaptorXMLServer2025/bin/

After successful registration, go to the Client Management tab of LicenseServer's configuration page to assign
a license to RaptorXML Server.

For more information about registering Altova products with LicenseServer, see the LicenseServer user manual.

3.2.5 Assign License (Linux)

After successfully registering RaptorXML Server, it will be listed in the Client Management tab of the
configuration page of LicenseServer. Go there and assign a license to RaptorXML Server.

The licensing of Altova server products is based on the number of processor cores available on the product
machine. For example, a dual-core processor has two cores, a quad-core processor four cores, a hexa-core
processor six cores, and so on. The number of cores licensed for a product must be greater than or equal to
the number of cores available on that server machine, whether the server is a physical or virtual machine. For
example, if a server has eight cores (an octa-core processor), you must purchase at least one 8-core license.
You can also combine licenses to achieve the core count. So, two 4-core licenses can also be used for an
octa-core server instead of one 8-core license.

If you are using a computer server with a large number of CPU cores but only have a low volume to process,
you may also create a virtual machine that is allocated a smaller number of cores and purchase a license for
that number. Such a deployment, of course, would have less processing speed than if all available cores on the
server were utilized.

Note: Each Altova server product license can be used for only one client machine at a time, even if the license
has unused licensing capacity. (A client machine is the machine on which the Altova server product is
installed.) For example, if a 10-core license is used for a client machine that has 6 CPU cores, then the
remaining 4 cores of licensing capacity cannot be used simultaneously for another client machine.

Single-thread execution
If an Altova server product allows single-thread execution, an option for Single-thread execution will be available.
In these cases, if an Altova server-product license for only one core is available in the license pool, a machine
with multiple cores can be assigned this one-core license. In such a case, the machine will run that product on
a single core. Processing will therefore be slower, because multi-threading (which is possible on multiple cores)
will not be available. The product will be executed in single thread mode on that machine.

To assign a single-core license to a multiple-core machine in LicenseServer, select the Limit to single thread

https://www.altova.com/manual/en/licenseserver/3.17/alsconfig_clientmgmt.html
https://www.altova.com/manual/en/licenseserver/3.17/alsregister.html
https://www.altova.com/manual/en/licenseserver/3.17/alsassignlicenses.html

© 2019-2025 Altova GmbH

Setup on Linux 37Installation and Licensing

Altova RaptorXML Server 2025

execution check box for that product.

Estimate of core requirements
There are various external factors that influence the data volumes and processing times your server can handle
(for example: the hardware, the current load on the CPU, and memory allocation of other applications running
on the server). In order to measure performance as accurately as possible, test the applications in your
environment with data volumes and in conditions that approximate as closely as possible to real business
situations.

38 Installation and Licensing Setup on macOS

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

3.3 Setup on macOS

This section describes the installation and licensing of RaptorXML Server on macOS systems. The setup
comprises the following steps:

1. Install RaptorXML Server
2. Install LicenseServer
3. Start LicenseServer
4. Register RaptorXML Server with LicenseServer
5. Assign a license to RaptorXML Server

The setup steps described above do not need to occur in exactly the same order in which they are listed.
However, you do need to install before you start. And you do need to register RaptorXML Server with
LicenseServer before you can assign a license to RaptorXML Server from LicenseServer.

System Requirements (macOS)
Note the following system requirement:

· macOS 12 or newer

Prerequisites
Note the following prerequisites:

· Ensure that Altova LicenseServer has been installed and is running.
· Perform installation either as the root user or as a user with sudo privileges.
· The previous version of RaptorXML Server must be uninstalled before a new one is installed.
· If you plan to use Altova's Charts functionality, then at least one font must be installed on your system

to ensure that charts will be rendered correctly. To list installed fonts, use, for example, the fc-list

command of the Fontconfig library.
· The macOS machine must be configured so that its name resolves to an IP address. This means that

you must be able to successfully ping the host name from the Terminal using the command ping

<hostname>.

3.3.1 Install on macOS

This topic describes the installation and setup of RaptorXML Server on macOS systems.

Integration with FlowForce
If you are installing RaptorXML Server together with FlowForce Server, it is recommended that you install
FlowForce Server first. If you install RaptorXML Server before FlowForce Server, then, after having installed
both, run the following command:

cp /usr/local/Altova/RaptorXMLServer2025/etc/*.tool /usr/local/Altova/FlowForceServer2025/t

ools

38

38

40

40

41

41

https://www.freedesktop.org/wiki/Software/fontconfig/

© 2019-2025 Altova GmbH

Setup on macOS 39Installation and Licensing

Altova RaptorXML Server 2025

This command copies the .tool file from /etc directory of RaptorXML Server to the FlowForce Server /tools

directory. The .tool file is required by FlowForce Server. It contains the path to the RaptorXML Server

executable. You do not need to run this command if you install FlowForce Server before installing RaptorXML
Server.

Uninstall RaptorXML Server
Before uninstalling RaptorXML Server, stop the service with the following command:

sudo launchctl unload /Library/LaunchDaemons/com.altova.RaptorXMLServer2025.plist

To check whether the service has been stopped, open the Activity Monitor in Finder and make sure that
RaptorXML Server is not in the list. In the Applications folder in Finder, right-click the RaptorXML Server icon
and select Move to Trash. The application will be moved to Trash. You will, however, still need to remove the
application from the usr folder. Do this with the following command:

sudo rm -rf /usr/local/Altova/RaptorXMLServer2025/

If you need to uninstall an old version of Altova LicenseServer, you must first stop it running as a service. Do
this with the following command:

sudo launchctl unload /Library/LaunchDaemons/com.altova.LicenseServer.plist

To check whether the service has been stopped, open the Activity Monitor in Finder and make sure that
LicenseServer is not in the list. Then proceed to uninstall in the same way as described above for RaptorXML
Server.

Install RaptorXML Server
To install RaptorXML Server, do the following:

1. Download the disk image (.dmg) file of RaptorXML Server from the Altova website

(https://www.altova.com/download.html).
2. Click to open the downloaded disk image (.dmg). This causes the RaptorXML Server installer to appear

as a new virtual drive on your computer.
3. On the new virtual drive, double-click the installer package (.pkg).

4. Go through the successive steps of the installer wizard. These are self-explanatory and include one
step in which you have to agree to the license agreement before being able to proceed.

5. To eject the drive after installation, right-click it and select Eject.

The RaptorXML Server package will be installed in the folder:

/usr/local/Altova/RaptorXMLServer2025 (application binaries)

/var/Altova/RaptorXMLServer (data files: database and logs)

The RaptorXML Server server daemon starts automatically after installation and a re-boot of the machine. You
can always start RaptorXML Server as a daemon with the following command:

sudo launchctl load /Library/LaunchDaemons/com.altova.RaptorXMLServer2025.plist

https://www.altova.com/download.html

40 Installation and Licensing Setup on macOS

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

3.3.2 Install LicenseServer (macOS)

Altova LicenseServer can be downloaded from the Altova website (https://www.altova.com/download.html).
Carry out the installation as described here .

The LicenseServer package will be installed in the following folder:

/usr/local/Altova/LicenseServer

For information, see how to register and license RaptorXML Server with Altova LicenseServer. Also see
the LicenseServer documentation for more detailed information.

LicenseServer versions
· Altova products must be licensed either (i) with a version of LicenseServer that corresponds to the

installed RaptorXML Server version or (ii) with a later version of LicenseServer.
· The LicenseServer version that corresponds to the current version of RaptorXML Server is 3.17.
· On Windows, you can install the corresponding version of LicenseServer as part of the RaptorXML

Server installation or install LicenseServer separately. On Linux amd macOS, you must install
LicenseServer separately.

· Before a newer version of LicenseServer is installed, any older one must be de-installed.
· At the time of LicenseServer de-installation, all registration and licensing information held in the older

version of LicenseServer will be saved to a database on your server machine. This data will be imported
automatically into the newer version when the newer version is installed.

· LicenseServer versions are backwards compatible. They will work with older versions of RaptorXML
Server.

· The latest version of LicenseServer available on the Altova website. This version will work with any
current or older version of RaptorXML Server.

· The version number of the currently installed LicenseServer is given at the bottom of the LicenseServer
configuration page (all tabs).

3.3.3 Start LicenseServer, RaptorXML Server (macOS)

Start Altova LicenseServer and RaptorXML Server either as root user or a user with sudo privileges.

Start LicenseServer
To correctly register and license RaptorXML Server with LicenseServer, LicenseServer must be running as a
daemon. Start LicenseServer as a daemon with the following command:

sudo launchctl load /Library/LaunchDaemons/com.altova.LicenseServer.plist

If at any time you need to stop LicenseServer, replace load with unload in the command above.

Start RaptorXML Server
RaptorXML Server server daemon starts automatically after installation and a re-boot of the machine. You can
start RaptorXML Server as a daemon with the following command:

38

41 41

https://www.altova.com/download.html
https://www.altova.com/manual/en/licenseserver/3.17/index.html
https://www.altova.com/manual/en/licenseserver/3.17/
https://www.altova.com/manual/en/licenseserver/3.17/alsconfig.html
https://www.altova.com/manual/en/licenseserver/3.17/alsconfig.html

© 2019-2025 Altova GmbH

Setup on macOS 41Installation and Licensing

Altova RaptorXML Server 2025

sudo launchctl load /Library/LaunchDaemons/com.altova.RaptorXMLServer.plist

If at any time you need to stop RaptorXML Server, use the following command:

sudo launchctl unload /Library/LaunchDaemons/com.altova.RaptorXMLServer.plist

3.3.4 Register RaptorXML Server (macOS)

To be able to license RaptorXML Server from Altova LicenseServer, RaptorXML Server must be registered with
LicenseServer.

To register RaptorXML Server from the command line interface, use the licenseserver command:

sudo /usr/local/Altova/RaptorXMLServer2025/bin/RaptorXML licenseserver [options]

ServerName-Or-IP-Address

For example, if localhost is the name of the server on which LicenseServer is installed:

sudo /usr/local/Altova/RaptorXMLServer2025/bin/RaptorXML licenseserver localhost

In the command above, localhost is the name of the server on which LicenseServer is installed. Notice also
that the location of the RaptorXML Server executable is:

/usr/local/Altova/RaptorXMLServer2025/bin/

After successful registration, go to the Client Management tab of LicenseServer's configuration page to assign
a license to RaptorXML Server.

For more information about registering Altova products with LicenseServer, see the LicenseServer user manual.

3.3.5 Assign License (macOS)

After successfully registering RaptorXML Server, it will be listed in the Client Management tab of the
configuration page of LicenseServer. Go there and assign a license to RaptorXML Server.

The licensing of Altova server products is based on the number of processor cores available on the product
machine. For example, a dual-core processor has two cores, a quad-core processor four cores, a hexa-core
processor six cores, and so on. The number of cores licensed for a product must be greater than or equal to
the number of cores available on that server machine, whether the server is a physical or virtual machine. For
example, if a server has eight cores (an octa-core processor), you must purchase at least one 8-core license.
You can also combine licenses to achieve the core count. So, two 4-core licenses can also be used for an
octa-core server instead of one 8-core license.

If you are using a computer server with a large number of CPU cores but only have a low volume to process,
you may also create a virtual machine that is allocated a smaller number of cores and purchase a license for
that number. Such a deployment, of course, would have less processing speed than if all available cores on the
server were utilized.

https://www.altova.com/manual/en/licenseserver/3.17/alsconfig_clientmgmt.html
https://www.altova.com/manual/en/licenseserver/3.17/alsregister.html
https://www.altova.com/manual/en/licenseserver/3.17/alsassignlicenses.html

42 Installation and Licensing Setup on macOS

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Note: Each Altova server product license can be used for only one client machine at a time, even if the license
has unused licensing capacity. (A client machine is the machine on which the Altova server product is
installed.) For example, if a 10-core license is used for a client machine that has 6 CPU cores, then the
remaining 4 cores of licensing capacity cannot be used simultaneously for another client machine.

Single-thread execution
If an Altova server product allows single-thread execution, an option for Single-thread execution will be available.
In these cases, if an Altova server-product license for only one core is available in the license pool, a machine
with multiple cores can be assigned this one-core license. In such a case, the machine will run that product on
a single core. Processing will therefore be slower, because multi-threading (which is possible on multiple cores)
will not be available. The product will be executed in single thread mode on that machine.

To assign a single-core license to a multiple-core machine in LicenseServer, select the Limit to single thread
execution check box for that product.

Estimate of core requirements
There are various external factors that influence the data volumes and processing times your server can handle
(for example: the hardware, the current load on the CPU, and memory allocation of other applications running
on the server). In order to measure performance as accurately as possible, test the applications in your
environment with data volumes and in conditions that approximate as closely as possible to real business
situations.

© 2019-2025 Altova GmbH

Upgrade RaptorXML Server 43Installation and Licensing

Altova RaptorXML Server 2025

3.4 Upgrade RaptorXML Server

The simplest way to carry over a license from the previous version of RaptorXML Server to a newer version is via
the installation process. The key steps during installation are:

1. Register the new version of RaptorXML Server with the LicenseServer that holds the license of the older
version of RaptorXML Server.

2. Accept the license agreement of RaptorXML Server. (If you do not accept the agreement, the new
version will not be installed.)

Note: If you do not register RaptorXML Server with LicenseServer during the installation process, you can do
this later and then complete the licensing process.

44 Installation and Licensing Migrate RaptorXML Server to a New Machine

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

3.5 Migrate RaptorXML Server to a New Machine

If you want to migrate RaptorXML Server from one machine to another (including across supported platforms),
follow the guidelines below.

Migrating RaptorXML Server to a new machine consists of re-assigning the license from the old machine to the
new machine. Do this as follows:

1. Install RaptorXML Server on the new machine. If it has already been installed as part of FlowForce
Server installation, ignore this step.

2. On the new machine, register RaptorXML Server with Altova LicenseServer.
3. On the old machine, make sure no clients are using the server.
4. Open the Altova LicenseServer administration page. Deactivate the license from the old RaptorXML

Server machine and re-assign it to the new machine.

Note: Migrate the server configuration file in order to keep your previous configuration settings.

Note: If you were using XML catalogs on the old machine, migrate these to the new machine.

© 2019-2025 Altova GmbH

Security Considerations 45Installation and Licensing

Altova RaptorXML Server 2025

3.6 Security Considerations

XSLT, XPath, XQuery are Turing-complete functional programming languages with local and remote file access
and dynamic execution possibility — therefore, it is recommended to only permit access to them for
transformations and/or file processing in a safe and regulated environment, where one has control over the input
files and can ensure to execute only previously audited scripts. Should there be a need to access them from an
external/public network (or a non-secure sub-network), then it is recommended to limit access with a reverse
proxy that implements user authentication and authorization. Furthermore, it is recommended to run the
process with a separate user account with access control configured at OS-level to restrict access only to
authorized parts of the file system.

46 General Procedures

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

4 General Procedures

RaptorXML has special options that support XML Catalogs and Altova global resources , both of which
enhance portability and modularity. You can leverage the use of these features in your environment to
considerable advantage.

This section describes the following:

· How to use XML Catalogs .
· How to work with Altova global resources .
· Security issues related to RaptorXML procedures and how to deal with them.

47 53

47

53

55

© 2019-2025 Altova GmbH

XML Catalogs 47General Procedures

Altova RaptorXML Server 2025

4.1 XML Catalogs

The XML catalog mechanism enables files to be retrieved from local folders, thus increasing the overall
processing speed, as well as improving the portability of documents—since only the catalog file URIs then
need to be changed. See the section How Catalogs Work for details.

Altova's XML products use a catalog mechanism to quickly access and load commonly used files, such as
DTDs and XML Schemas. This catalog mechanism can be customized and extended by the user, and it is
described in the sections Catalog Structure in RaptorXML Server and Customizing your Catalogs . The
section Variables for System Locations list Windows variables for common system locations. These
variables can be used in catalog files to locate commonly used folders.

This section is organized into the following sub-sections:

· How Catalogs Work
· Catalog Structure in RaptorXML Server
· Customizing your Catalogs
· Variables for Windows System Locations

For more information on catalogs, see the XML Catalogs specification.

Installing schemas via Schema Manager
Schema Manager enables you to quickly and conveniently install important schemas and set up catalog
files to correctly access these installed schemas. See the Schema Manager section for more information.

If a document is validated against a schema that is not installed but is available via Schema Manager , then
the installation via Schema Manager will be triggered automatically. However, if the schema package to be
installed via Schema Manager contains namespace mappings, then there will be no automatic installation; in
this case, you must start Schema Manager, select the package/s you want to install, and run the installation.
If, after installation, RaptorXML Server is not able to correctly locate a schema component, then restart
RaptorXML Server and try again.

4.1.1 How Catalogs Work

Catalogs can be used to redirect both DTDs and XML Schemas. While the concept behind the mechanisms of
both cases is the same, the details are different and are explained below.

DTDs
Catalogs are commonly used to redirect a call to a DTD to a local URI. This is achieved by mapping, in the
catalog file, public or system identifiers to the required local URI. So when the DOCTYPE declaration in an XML

file is read, its public or system identifier locates the required local resource via the catalog file mapping.

For popular schemas, the PUBLIC identifier is usually pre-defined, thus requiring only that the URI in the catalog

file map the PUBLIC identifier to the correct local copy. When the XML document is parsed, the PUBLIC

identifier in it is read. If this identifier is found in a catalog file, then the corresponding URL in the catalog file will
be looked up and the schema will be read from this location. So, for example, if the following SVG file is
opened in RaptorXML Server:

47

48 50

52

47

48

50

52

377

377

377

http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

48 General Procedures XML Catalogs

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg width="20" height="20" xml:space="preserve">

 <g style="fill:red; stroke:#000000">

 <rect x="0" y="0" width="15" height="15"/>

 <rect x="5" y="5" width="15" height="15"/>

 </g>

</svg>

The catalog is searched for the PUBLIC identifier of this SVG file. Let's say the catalog file contains the

following entry:

<catalog>

 ...
 <public publicId="-//W3C//DTD SVG 1.1//EN" uri="schemas/svg/svg11.dtd"/>

 ...
</catalog>

In this case, there is a match for the PUBLIC identifier. As a result, the lookup for the SVG DTD is redirected to

the URL schemas/svg/svg11.dtd (which is relative to the catalog file). This is a local file that will be used as

the DTD for the SVG file. If there is no mapping for the Public ID in the catalog, then the URL in the XML

document will be used (in the SVG fie example above, this is the Internet URL:
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd).

XML Schemas
In RaptorXML Server, you can also use catalogs with XML Schemas. In the XML instance file, the reference to
the schema will occur in the xsi:schemaLocation attribute of the XML document's top-level element. For

example,

xsi:schemaLocation="http://www.xmlspy.com/schemas/orgchart OrgChart.xsd"

The value of the xsi:schemaLocation attribute has two parts: a namespace part (green above) and a URI part

(highlighted). The namespace part is used in the catalog to map to the alternative resource. For example, the
following catalog entry redirects the schema reference above to a schema at an alternative location.

<uri name="http://www.xmlspy.com/schemas/orgchart" uri="C:\MySchemas\OrgChart.xsd"/>

Normally, the URI part of the xsi:schemaLocation attribute's value is a path to the actual schema location.

However, if the schema is referenced via a catalog, the URI part need not point to an actual XML Schema but
must exist so that the lexical validity of the xsi:schemaLocation attribute is maintained. A value of foo, for

example, would be sufficient for the URI part of the attribute's value to be valid.

4.1.2 Catalog Structure in RaptorXML Server

When RaptorXML Server starts, it loads a file called RootCatalog.xml (structure shown in listing below), which

contains a list of catalog files that will be looked up. You can modify this file and enter as many catalog files to

© 2019-2025 Altova GmbH

XML Catalogs 49General Procedures

Altova RaptorXML Server 2025

look up as you like, each of which is referenced in a nextCatalog element. These catalog files are looked up

and the URIs in them are resolved according to their mappings.

Listing of RootCatalog.xml
<?xml version="1.0" encoding="UTF-8"?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog"

 xmlns:spy="http://www.altova.com/catalog_ext"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:oasis:names:tc:entity:xmlns:xml:catalog Catalog.xsd">
 <nextCatalog catalog="%PersonalFolder%/Altova/%AppAndVersionName%/CustomCatalog.xml"/>

 <!-- Include all catalogs under common schemas folder on the first directory level -->

 <nextCatalog spy:recurseFrom="%CommonSchemasFolder%" catalog="catalog.xml"

spy:depth="1"/>
 <nextCatalog spy:recurseFrom="%ApplicationWritableDataFolder%/pkgs/.cache"

catalog="remapping.xml" spy:depth="0"/>

 <nextCatalog catalog="CoreCatalog.xml"/>

</catalog>

The listing above references a custom catalog (named CustomCatalog.xml) and a set of catalogs that locate

commonly used schemas (such as W3C XML Schemas and the SVG schema).

· CustomCatalog.xml is located in the RaptorXML Server application folder's etc subfolder. You must

create it from a template file named CustomCatalog_template.xml. It is a skeleton file in which you

can create your own mappings. You can add mappings to CustomCatalog.xml for any schema you

require that is not addressed by the catalog files in the Common Schemas Folder. Do this by using the
supported elements of the OASIS catalog mechanism (see next section).

· The Common Schemas Folder (located via the variable %CommonSchemasFolder%) contains a set of

commonly used schemas. Inside each of these schema folders is a catalog.xml file that maps public

and/or system identifiers to URIs that point to locally saved copies of the respective schemas.
· CoreCatalog.xml is located in the RaptorXML Server application folder, and is used to locate

schemas and stylesheets used by RaptorXML Server-specific processes, such as StyleVision Power
Stylesheets which are stylesheets used to generate Altova's Authentic View of XML documents.

Note the following:

· During a new installation of the same major version (same or different minor versions), the template file
will be replaced by a new template file, but CustomCatalog.xml will be left untouched.

· However, if you are installing a new major version over a previous major version, then the previous major
version folder will be deleted—together with its CustomCatalog.xml. So, if you want to continue using

CustomCatalog.xml, make sure that you save CustomCatalog.xml from the previous major version

folder to a safe place. After the new major version has been installed, you can copy the
CustomCatalog.xml that you saved to the etc folder of the new major version and edit it there as

required.

Location variables
The variables that are used in RootCatalog.xml (listing above) have the following values:

%PersonalFolder%
Personal folder of the current user, for example C:
\Users\<name>\Documents

%CommonSchemasFolder% C:\ProgramData\Altova\Common2025\Schemas

50 General Procedures XML Catalogs

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

%
ApplicationWritableDataFolde
r% C:\ProgramData\Altova

Location of catalog files and schemas
Note the locations of the various catalog files.

· RootCatalog.xml, CustomCatalog.xml, CustomCatalog_template.xml, and CoreCatalog.xml are

in the RaptorXML Server application folder.
· The catalog.xml files are each in a specific schema folder, these schema folders being inside the

Common Schemas Folder.

4.1.3 Customizing your Catalogs

When creating entries in CustomCatalog.xml (or any other catalog file that is to be read by RaptorXML Server),

use only the following elements of the OASIS catalog specification. Each of the elements below is listed with
an explanation of their attribute values. For a more detailed explanation, see the XML Catalogs specification.
Note that each element can take the xml:base attribute, which is used to specify the base URI of that element.

· <public publicId="PublicID of Resource" uri="URL of local file"/>

· <system systemId="SystemID of Resource" uri="URL of local file"/>

· <uri name="filename" uri="URL of file identified by filename"/>

· <rewriteURI uriStartString="StartString of URI to rewrite" rewritePrefix="String to

replace StartString"/>
· <rewriteSystem systemIdStartString="StartString of SystemID"

rewritePrefix="Replacement string to locate resource locally"/>

Note the following points:

· In cases where there is no public identifier, as with most stylesheets, the system identifier can be
directly mapped to a URL via the system element.

· A URI can be mapped to another URI using the uri element.
· The rewriteURI and rewriteSystem elements enable the rewriting of the starting part of a URI or

system identifier, respectively. This allows the start of a filepath to be replaced and consequently
enables the targeting of another directory. For more information on these elements, see the XML
Catalogs specification.

From release 2014 onwards, RaptorXML Server adheres closely to the XML Catalogs specification (OASIS
Standard V1.1, 7 October 2005) specification. This specification strictly separates external-identifier look-ups
(those with a Public ID or System ID) from URI look-ups (URIs that are not Public IDs or System IDs).
Namespace URIs must therefore be considered simply URIs—not Public IDs or System IDs—and must be
used as URI look-ups rather than external-identifier look-ups. In RaptorXML Server versions prior to version
2014, schema namespace URIs were translated through <public> mappings. From version 2014 onwards,

<uri> mappings have to be used.

Prior to v2014: <public publicID="http://www.MyMapping.com/ref"

uri="file:///C:/MyDocs/Catalog/test.xsd"/>

V-2014 onwards: <uri name="http://www.MyMapping.com/ref"

uri="file:///C:/MyDocs/Catalog/test.xsd"/>

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

© 2019-2025 Altova GmbH

XML Catalogs 51General Procedures

Altova RaptorXML Server 2025

How RaptorXML Server finds a referenced schema
A schema is referenced in an XML document via the xsi:scemaLocation attribute (shown below). The value of

the xsi:schemaLocation attribute has two parts: a namespace part (green) and a URI part (highlighted).

xsi:schemaLocation="http://www.xmlspy.com/schemas/orgchart OrgChart.xsd"

The set of steps that is followed to find a referenced schema depends on the validation options --

schemalocation-hints and --schema-mapping. Given below are the procedures for each value of the two

options:

· --schemalocation-hints=load-by-schemalocation | load-by-namespace | load-combining-

both | ignore

Specifies the behavior of the xsi:schemaLocation and xsi:noNamespaceSchemaLocation

attributes: whether to load a schema document and, if yes, which information should be used to
find it; (the default is load-by-schemalocation).

vload-by-schemalocation

1. If the URI part of the xsi:schemaLocation is mapped in a catalog, load the resulting URI

2. Load the URI directly
vload-by-namespace

1. If the namespace part of the xsi:schemaLocation is mapped in a catalog, load the resulting

URI.
2. Load nothing.

vload-combining-both

1. If the URI part of the xsi:schemaLocation is mapped in a catalog, load the resulting URI.

2. If the namespace part of the xsi:schemaLocation is mapped in a catalog, load the resulting

URI.
3. Load the URI part directly.

· --schema-mapping=prefer-schemalocation | prefer-namespace

If schema location and namespace are both used to find a schema document, then this option
specifies which of the two should be preferred during catalog lookup; (the default is prefer-

schemalocation). This option is used to change the order of the first two steps in the load-

combining-both variant above.

XML Schema specifications
XML Schema specification information is built into RaptorXML Server and the validity of XML Schema (.xsd)
documents is checked against this internal information. In an XML Schema document, therefore, no references
should be made to any schema that defines the XML Schema specification.

The catalog.xml file in the %AltovaCommonSchemasFolder%\Schemas\schema folder contains references to

DTDs that implement older XML Schema specifications. You should not validate your XML Schema documents
against these schemas. The referenced files are included solely to provide RaptorXML Server with entry helper
info for editing purposes should you wish to create documents according to these older recommendations.

52 General Procedures XML Catalogs

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

4.1.4 Variables for Windows System Locations

Shell environment variables can be used in the nextCatalog element to specify the path to various system
locations (see RootCatalog.xml listing above). The following shell environment variables are supported:

%PersonalFolder%
Full path to the Personal folder of the current user, for example C:
\Users\<name>\Documents

%CommonSchemasFolder
% C:\ProgramData\Altova\Common2025\Schemas

%
ApplicationWritableD
ataFolder% C:\ProgramData\Altova

%AltovaCommonFolder% C:\Program Files\Altova\Common2025

%DesktopFolder% Full path to the Desktop folder of the current user.

%ProgramMenuFolder% Full path to the Program Menu folder of the current user.

%StartMenuFolder% Full path to Start Menu folder of the current user.

%StartUpFolder% Full path to Start Up folder of the current user.

%TemplateFolder% Full path to the Template folder of the current user.

%AdminToolsFolder%

Full path to the file system directory that stores administrative tools of the current
user.

%AppDataFolder% Full path to the Application Data folder of the current user.

%CommonAppDataFolder
% Full path to the file directory containing application data of all users.

%FavoritesFolder% Full path of the Favorites folder of the current user.

%PersonalFolder% Full path to the Personal folder of the current user.

%SendToFolder% Full path to the SendTo folder of the current user.

%FontsFolder% Full path to the System Fonts folder.

%ProgramFilesFolder% Full path to the Program Files folder of the current user.

%CommonFilesFolder% Full path to the Common Files folder of the current user.

%WindowsFolder% Full path to the Windows folder of the current user.

%SystemFolder% Full path to the System folder of the current user.

%LocalAppDataFolder%

Full path to the file system directory that serves as the data repository for local
(nonroaming) applications.

%MyPicturesFolder% Full path to the MyPictures folder.

© 2019-2025 Altova GmbH

Global Resources 53General Procedures

Altova RaptorXML Server 2025

4.2 Global Resources

This section:

· About global resources
· Using global resources

About global resources
An Altova global resource file maps an alias to multiple resources via different configurations, as shown in the
diagram below. An alias can therefore be switched to access a different resource by switching its configuration.

Global resources are defined in Altova products, such as Altova XMLSpy, and are saved in a global resources
XML file. RaptorXML is able to use global resources as inputs. To do this, it requires the name and location of
the global resources file, and the alias and configuration to be used.

The advantage of using global resources is that the resource can be changed merely by switching the name of
the configuration. When using RaptorXML, this means that by providing a different value of the --
globalresourcesconfig | --gc option, a different resource can be used. (See the example below.)

Using global resources with RaptorXML
To specify a global resource as an input for a RaptorXML command, the following parameters are required:

· The global resources XML file (specified on the CLI with the option --globalresourcesfile | --gr)
· The required configuration (specified on the CLI with the option --globalresourcesconfig | --gc)
· The alias. This can be specified directly on the CLI where a file name is required, or it can be at a

location inside an XML file where RaptorXML looks for a filename (such as in an xsi:schemaLocation
attribute).

For example, if you wish to transform input.xml with transform.xslt to output.html, this would typically be
achieved on the CLI with the following command that uses filenames:

raptorxml xslt --input=input.xml --output=output.html transform.xslt

If, however, you have a global resource definition that matches the alias MyInput to the file resource
FirstInput.xml via a configuration called FirstConfig, then you could use the alias MyInput on the CLI as
follows:

raptorxml xslt --input=altova://file_resource/MyInput --gr=C:\MyGlobalResources.xml --

gc=FirstConfig --output=Output.html transform.xslt

53

53

54 General Procedures Global Resources

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Now, if you have another file resource, say SecondInput.xml, that is matched to the alias MyInput via a
configuration called SecondConfig, then this resource can be used by changing only the --gc option of the
previous command:

raptorxml xslt --input=altova://file_resource/MyInput --gr=C:\MyGlobalResources.xml --

gc=SecondConfig --output=Output.html transform.xslt

Note: In the example above a file resource was used; a file resource must be prefixed with
altova://file_resource/. You can also use global resources that are folders. To identify a folder resource, use:
altova://folder_resource/AliasName. Note that, on the CLI, you can also use folder resources as part of a
filepath. For example: altova://folder_resource/AliasName/input.xml.

© 2019-2025 Altova GmbH

Security Issues 55General Procedures

Altova RaptorXML Server 2025

4.3 Security Issues

This section:

· Security concerns related to the HTTP interface
· Making Python scripts safe

Some interface features of RaptorXML Server pose security concerns. These are described below together with
their solutions.

Security concerns related to the HTTP REST interface
The HTTP REST interface, by default, allows result documents to be written to any location specified by the
client (that is accessible with the HTTP protocol). It is important therefore to consider this security aspect when
configuring RaptorXML Server.

If there is a concern that security might be compromised or that the interface might be misused, the server can
be configured to write result documents to a dedicated output directory on the server itself. This is specified by
setting the server.unrestricted-filesystem-access option of the server configuration file to false.
When access is restricted in this way, the client can download result documents from the dedicated output
directory with GET requests. Alternatively, an administrator can copy/upload result document files from the
server to the target location.

Making Python scripts safe
When a Python script is specified in a command via HTTP to RaptorXML Server, the script will only work if it is
located in the trusted directory . The script is executed from the trusted directory. Specifying a Python script
from any other directory will result in an error. The trusted directory is specified in the server.script-root-
dir setting of the server configuration file , and a trusted directory must be specified if you wish to use
Python scripts. Make sure that all Python scripts to be used are saved in this directory.

Though all output generated by the server for HTTP job requests is written to the job output directory (which
is a sub-directory of the output-root-directory), this limitation does not apply to Python scripts, which
can write to any location. The server administrator must review the Python scripts in the trusted directory for
potential vulnerability issues.

55

55

253

253

252 251

253

253

253

56 Command Line Interface (CLI)

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

5 Command Line Interface (CLI)

The RaptorXML Server executable provides application functionality that can be called from the command line
interface (CLI). The path to the executable is:

Linux /opt/Altova/RaptorXMLServer2025/bin/raptorxml

Mac /usr/local/Altova/RaptorXMLServer2025/bin/raptorxml

Windo
ws

<ProgramFilesFolder>\Altova\RaptorXMLServer2025\bin\RaptorXML.exe

Usage
The command line syntax is:

raptorxml --h | --help | --version | <command> [options] [arguments]

· --help (short form --h) displays the help text of the given command. If no command is named, then
all commands of the executable are listed, each with a brief description of the command.

· --version displays the version number of RaptorXML Server.
· <command> is the command to execute. Commands are described in the sub-sections of this section

(see list below).
· [options] are the options of a command; they are listed and described with their respective

commands.
· [arguments] are the arguments of a command; they are listed and described with their respective

commands.

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

CLI commands
The commands have been organized by their functionality as listed below, and are described in the sub-
sections of this section.

· XML, DTD, XSD Validation Commands
· Well-formedness Check Commands
· XQuery Commands
· XSLT Commands
· JSON/Avro Commands
· XML Signature Commands
· General Commands

58

80

92

121

136

191

203

© 2019-2025 Altova GmbH

 57Command Line Interface (CLI)

Altova RaptorXML Server 2025

· Localization Commands
· License Commands
· Administration Commands

207

210

215

58 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

5.1 XML, DTD, XSD Validation Commands

XML validation commands can be used to validate the following types of document:

· valxml-withdtd : Validates an XML instance document against a DTD
· valxml-withxsd : Validates an XML instance document against an XML Schema
· valdtd : Validates a DTD document
· valxsd : Validates a W3C XML Schema (XSD) document.

5.1.1 valxml-withdtd (xml)

The valxml-withdtd | xml command validates one or more XML instance documents against a DTD.

raptorxml valxml-withdtd | xml [options] InputFile

· The InputFile argument is the XML document to validate. If a reference to a DTD exists in the XML

document, the --dtd option is not required.
· To validate multiple documents, either: (i) list the files to be validated on the CLI, with each file

separated from the next by a space; or (ii) list the files to be validated in a text file (.txt file), with one
filename per line, and supply this text file as the InputFile argument together with the --

listfile option set to true (see the Options list below).

Examples
Examples of the valxml-withdtd command:

· raptorxml valxml-withdtd --dtd=c:\MyDTD.dtd c:\Test.xml

· raptorxml xml c:\Test.xml

· raptorxml xml --verbose=true c:\Test.xml

· raptorxml xml --listfile=true c:\FileList.txt

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

58

62

69

73

232

© 2019-2025 Altova GmbH

XML, DTD, XSD Validation Commands 59Command Line Interface (CLI)

Altova RaptorXML Server 2025

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

Validation and processing

dtd

--dtd = FILE

Specifies the external DTD document to use for validation. If a reference to an external DTD is
present in the XML document, then the CLI option overrides the external reference.

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

namespaces

--namespaces = true|false

Enables namespace-aware processing. This is useful for checking the XML instance for errors due to
incorrect namespaces. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

script

--script = FILE

Executes the Python script in the submitted file after validation has been completed. Add the option
multiple times to specify more than one script.

60 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

script-api-version

--api, --script-api-version = 1; 2; 2.1 to 2.4; 2.4.1; 2.5 to 2.8; 2.8.1 to 2.8.6;

2.9.0; 2.10.0; 2.11.0

Specifies the Python API version to be used for the script. The default value is the latest version,
currently 2.11.0. Instead of integer values such as 1 and 2, you can also use the corresponding

values 1.0 and 2.0. Similarly, you can use the three-digit 2.5.0 for the two-digit 2.5. Also see the
topic Python API Versions .

script-output

--script-output = FILE

Writes the script's standard output to the file named in FILE.

script-param

--script-param = KEY:VALUE

Additional user-specified parameters that can be accessed during the execution of Python scripts.
Add the option multiple times to specify more than one script parameter.

streaming

--streaming = true|false

Enables streaming validation. Default is true. In streaming mode, data stored in memory is
minimized and processing is faster. The downside is that information that might be required
subsequently—for example, a data model of the XML instance document—will not be available. In
situations where this is significant, streaming mode will need to be turned off (by giving --streaming
a value of false). When using the --script option with the valxml-withxsd command, disable
streaming. Note that the --streaming option is ignored if --parallel-assessment is set to true.
Note: Boolean option values are set to true if the option is specified without a value.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

367

47

47

53

© 2019-2025 Altova GmbH

XML, DTD, XSD Validation Commands 61Command Line Interface (CLI)

Altova RaptorXML Server 2025

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

log-output

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

53 53

53 53

62 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.1.2 valxml-withxsd (xsi)

The valxml-withxsd | xsi command validates one or more XML instance documents according to the W3C

XML Schema Definition Language (XSD) 1.0 and 1.1 specifications.

raptorxml valxml-withxsd | xsi [options] InputFile

· The InputFile argument is the XML document to validate. The --schemalocation-hints option

specifies what mechanism is used to find the schema. The --xsd=FILE option specifies the
schema/s to use if the XML file contains no schema reference.

234

233

© 2019-2025 Altova GmbH

XML, DTD, XSD Validation Commands 63Command Line Interface (CLI)

Altova RaptorXML Server 2025

· To validate multiple documents, either: (i) list the files to be validated on the CLI, with each file
separated from the next by a space; or (ii) list the files to be validated in a text file (.txt file), with one
filename per line, and supply this text file as the InputFile argument together with the --

listfile option set to true (see the Options list below).

Note: If using the --script option to run Python scripts , make sure to also specify --streaming=false.

Examples
Examples of the valxml-withxsd command:

· raptorxml valxml-withxsd --schemalocation-hints=load-by-schemalocation --xsd=c:

\MyXSD.xsd c:\HasNoXSDRef.xml
· raptorxml xsi c:\HasXSDRef.xml

· raptorxml xsi --xsd-version=1.1 --listfile=true c:\FileList.txt

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

Validation and processing

assessment-mode

--assessment-mode = lax|strict

Specifies the schema-validity assessment mode as defined in the XSD specifications. Default value
is strict. The XML instance document will be validated according to the mode specified with this

232

366

64 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

option.

ct-restrict-mode

--ct-restrict-mode = 1.0|1.1|default

Specifies how to check complex type restrictions. A value of 1.0 checks complex type restrictions

as defined in the XSD 1.0 specification—even in XSD 1.1 validation mode. A value of 1.1 checks

complex type restrictions as defined in the XSD 1.1 specification—even in XSD 1.0 validation mode.
A value of default checks complex type restrictions as defined in the XSD specification of the

current validation mode (1.0 or 1.1). The default value is default.

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

parallel-assessment [pa]

--pa | --parallel-assessment = true|false

If set to true, schema validity assessment is carried out in parallel. This means that if there are more
than 128 elements at any level, these elements are processed in parallel using multiple threads. Very
large XML files can therefore be processed faster if this option is enabled. Parallel assessment takes
place on one hierarchical level at a time, but can occur at multiple levels within a single infoset. Note
that parallel assessment does not work in streaming mode. For this reason, the --streaming option
is ignored if --parallel-assessment is set to true. Also, memory usage is higher when the --
parallel-assessment option is used. The default setting is false. Short form for the option is --pa.
Note: Boolean option values are set to true if the option is specified without a value.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

report-import-namespace-mismatch-as-warning

--report-import-namespace-mismatch-as-warning = true|false

Downgrades namespace or target-namespace mismatch errors when importing schemas with
xs:import from errors to warnings. The default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation | load-

by-namespace | load-combining-both | license-namespace-only

© 2019-2025 Altova GmbH

XML, DTD, XSD Validation Commands 65Command Line Interface (CLI)

Altova RaptorXML Server 2025

Specifies the behaviour of xs:import elements, each of which has an optional namespace attribute
and an optional schemaLocation attribute: <import namespace="someNS"
schemaLocation="someURL">. The option specifies whether to load a schema document or just
license a namespace, and, if a schema document is to be loaded, which information should be used
to find it. Default: load-preferring-schemalocation.
The behavior is as follows:

· load-by-schemalocation: The value of the schemaLocation attribute is used to locate the
schema, taking account of catalog mappings . If the namespace attribute is present, the
namespace is imported (licensed).

· load-preferring-schemalocation: If the schemaLocation attribute is present, it is used,
taking account of catalog mappings . If no schemaLocation attribute is present, then the
value of the namespace attribute is used via a catalog mapping . This is the default value.

· load-by-namespace: The value of the namespace attribute is used to locate the schema via a
catalog mapping .

· load-combining-both: If either the namespace or schemaLocation attribute has a catalog
mapping , then the mapping is used. If both have catalog mappings , then the value of the
--schema-mapping option (XML/XSD option) decides which mapping is used. If no catalog
mapping is present, the schemaLocation attribute is used.

· license-namespace-only: The namespace is imported. No schema document is imported.

schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace | load-

combining-both | ignore

Specifies the behavior of the xsi:schemaLocation and xsi:noNamespaceSchemaLocation
attributes: Whether to load a schema document, and, if yes, which information should be used to find
it. Default: load-by-schemalocation.

· The load-by-schemalocation value uses the URL of the schema location in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML instance
documents. This is the default value.

· The load-by-namespace value takes the namespace part of xsi:schemaLocation and an
empty string in the case of xsi:noNamespaceSchemaLocation and locates the schema via a
catalog mapping .

· If load-combining-both is used and if either the namespace part or the URL part has a
catalog mapping , then the catalog mapping is used. If both have catalog mappings ,
then the value of the --schema-mapping option (XML/XSD option) decides which mapping is
used. If neither the namespace nor URL has a catalog mapping, the URL is used.

· If the option's value is ignore, then the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

If schema location and namespace are both used to find a schema document, specifies which of
them should be preferred during catalog lookup. (If either the --schemalocation-hints or the --
schema-imports option has a value of load-combining-both, and if the namespace and URL parts
involved both have catalog mappings , then the value of this option specifies which of the two
mappings to use (namespace mapping or URL mapping; the prefer-schemalocation value refers to
the URL mapping).) Default is prefer-schemalocation.

47

47

47

47

47 47

234

47

397

397

47

47 47 47

234

47

66 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

script

--script = FILE

Executes the Python script in the submitted file after validation has been completed. Add the option
multiple times to specify more than one script.

script-api-version

--api, --script-api-version = 1; 2; 2.1 to 2.4; 2.4.1; 2.5 to 2.8; 2.8.1 to 2.8.6;

2.9.0; 2.10.0; 2.11.0

Specifies the Python API version to be used for the script. The default value is the latest version,
currently 2.11.0. Instead of integer values such as 1 and 2, you can also use the corresponding

values 1.0 and 2.0. Similarly, you can use the three-digit 2.5.0 for the two-digit 2.5. Also see the
topic Python API Versions .

script-output

--script-output = FILE

Writes the script's standard output to the file named in FILE.

script-param

--script-param = KEY:VALUE

Additional user-specified parameters that can be accessed during the execution of Python scripts.
Add the option multiple times to specify more than one script parameter.

streaming

--streaming = true|false

Enables streaming validation. Default is true. In streaming mode, data stored in memory is
minimized and processing is faster. The downside is that information that might be required
subsequently—for example, a data model of the XML instance document—will not be available. In
situations where this is significant, streaming mode will need to be turned off (by giving --streaming
a value of false). When using the --script option with the valxml-withxsd command, disable
streaming. Note that the --streaming option is ignored if --parallel-assessment is set to true.
Note: Boolean option values are set to true if the option is specified without a value.

xinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false, XInclude's include
elements are ignored.
Note: Boolean option values are set to true if the option is specified without a value.

xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use for the XML instance document: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each instance document loaded during processing references a DTD. If no DTD
exists, an error is reported.

xml-mode-for-schemas

--xml-mode-for-schemas = wf|id|valid

367

© 2019-2025 Altova GmbH

XML, DTD, XSD Validation Commands 67Command Line Interface (CLI)

Altova RaptorXML Server 2025

Specifies the XML processing mode to use for XML schema documents: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each schema document loaded during processing references a DTD. If no DTD
exists, an error is reported.

xsd

--xsd = FILE

Specifies one or more XML Schema documents to use for the validation of XML instance documents.
Add the option multiple times to specify more than one schema document.

xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This option can
also be useful to find out in what ways a schema which is 1.0-compatible is not 1.1-compatible. The
detect option is an Altova-specific feature. It enables the version of the XML Schema document (1.0
or 1.1) to be detected by reading the value of the vc:minVersion attribute of the document's
<xs:schema> element. If the value of the @vc:minVersion attribute is 1.1, the schema is detected
as being version 1.1. For any other value, or if the @vc:minVersion attribute is absent, the schema
is detected as being version 1.0.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

47

47

53

53 53

53 53

68 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

log-output

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

© 2019-2025 Altova GmbH

XML, DTD, XSD Validation Commands 69Command Line Interface (CLI)

Altova RaptorXML Server 2025

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.1.3 valdtd (dtd)

The valdtd | dtd command validates one or more DTD documents according to the XML 1.0 or XML 1.1

specification.

raptorxml valdtd | dtd [options] InputFile

· The InputFile argument is the DTD document to validate.

· To validate multiple documents, either: (i) list the files to be validated on the CLI, with each file
separated from the next by a space; or (ii) list the files to be validated in a text file (.txt file), with one
filename per line, and supply this text file as the InputFile argument together with the --

listfile option set to true (see the Options list below).

Examples
Examples of the valdtd command:

· raptorxml valdtd c:\Test.dtd

· raptorxml dtd --verbose=true c:\Test.dtd

232

70 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

· raptorxml dtd --listfile=true c:\FileList.txt

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

Validation and processing

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

© 2019-2025 Altova GmbH

XML, DTD, XSD Validation Commands 71Command Line Interface (CLI)

Altova RaptorXML Server 2025

script

--script = FILE

Executes the Python script in the submitted file after validation has been completed. Add the option
multiple times to specify more than one script.

script-api-version

--api, --script-api-version = 1; 2; 2.1 to 2.4; 2.4.1; 2.5 to 2.8; 2.8.1 to 2.8.6;

2.9.0; 2.10.0; 2.11.0

Specifies the Python API version to be used for the script. The default value is the latest version,
currently 2.11.0. Instead of integer values such as 1 and 2, you can also use the corresponding

values 1.0 and 2.0. Similarly, you can use the three-digit 2.5.0 for the two-digit 2.5. Also see the
topic Python API Versions .

script-output

--script-output = FILE

Writes the script's standard output to the file named in FILE.

script-param

--script-param = KEY:VALUE

Additional user-specified parameters that can be accessed during the execution of Python scripts.
Add the option multiple times to specify more than one script parameter.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

367

47

47

53

53 53

72 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

log-output

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

53 53

© 2019-2025 Altova GmbH

XML, DTD, XSD Validation Commands 73Command Line Interface (CLI)

Altova RaptorXML Server 2025

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.1.4 valxsd (xsd)

The valxsd | xsd command validates one or more XML Schema documents (XSD documents) according to

the W3C XML Schema Definition Language (XSD) 1.0 or 1.1 specification. Note that it is the schema itself that
is validated against the XML Schema specification, not an XML instance document against an XML Schema.

raptorxml valxsd | xsd [options] InputFile

· The InputFile argument is the XML Schema document to validate. The --xsd-version=1.0|1.1|

detect option specifies the XSD version to validate against, with the default being 1.0.
· To validate multiple documents, either: (i) list the files to be validated on the CLI, with each file

separated from the next by a space; or (ii) list the files to be validated in a text file (.txt file), with one
filename per line, and supply this text file as the InputFile argument together with the --

listfile option set to true (see the Options list below).

234

232

74 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Examples
Examples of the valxsd command:

· raptorxml valxsd c:\Test.xsd

· raptorxml xsd --verbose=true c:\Test.xsd

· raptorxml xsd --listfile=true c:\FileList.txt

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

Validation and processing

ct-restrict-mode

--ct-restrict-mode = 1.0|1.1|default

Specifies how to check complex type restrictions. A value of 1.0 checks complex type restrictions

as defined in the XSD 1.0 specification—even in XSD 1.1 validation mode. A value of 1.1 checks

complex type restrictions as defined in the XSD 1.1 specification—even in XSD 1.0 validation mode.
A value of default checks complex type restrictions as defined in the XSD specification of the

current validation mode (1.0 or 1.1). The default value is default.

listfile

--listfile = true|false

© 2019-2025 Altova GmbH

XML, DTD, XSD Validation Commands 75Command Line Interface (CLI)

Altova RaptorXML Server 2025

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

report-import-namespace-mismatch-as-warning

--report-import-namespace-mismatch-as-warning = true|false

Downgrades namespace or target-namespace mismatch errors when importing schemas with
xs:import from errors to warnings. The default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation | load-

by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs:import elements, each of which has an optional namespace attribute
and an optional schemaLocation attribute: <import namespace="someNS"
schemaLocation="someURL">. The option specifies whether to load a schema document or just
license a namespace, and, if a schema document is to be loaded, which information should be used
to find it. Default: load-preferring-schemalocation.
The behavior is as follows:

· load-by-schemalocation: The value of the schemaLocation attribute is used to locate the
schema, taking account of catalog mappings . If the namespace attribute is present, the
namespace is imported (licensed).

· load-preferring-schemalocation: If the schemaLocation attribute is present, it is used,
taking account of catalog mappings . If no schemaLocation attribute is present, then the
value of the namespace attribute is used via a catalog mapping . This is the default value.

· load-by-namespace: The value of the namespace attribute is used to locate the schema via a
catalog mapping .

· load-combining-both: If either the namespace or schemaLocation attribute has a catalog
mapping , then the mapping is used. If both have catalog mappings , then the value of the
--schema-mapping option (XML/XSD option) decides which mapping is used. If no catalog
mapping is present, the schemaLocation attribute is used.

· license-namespace-only: The namespace is imported. No schema document is imported.

schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace | load-

combining-both | ignore

47

47

47

47

47 47

234

47

76 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Specifies the behavior of the xsi:schemaLocation and xsi:noNamespaceSchemaLocation
attributes: Whether to load a schema document, and, if yes, which information should be used to find
it. Default: load-by-schemalocation.

· The load-by-schemalocation value uses the URL of the schema location in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML instance
documents. This is the default value.

· The load-by-namespace value takes the namespace part of xsi:schemaLocation and an
empty string in the case of xsi:noNamespaceSchemaLocation and locates the schema via a
catalog mapping .

· If load-combining-both is used and if either the namespace part or the URL part has a
catalog mapping , then the catalog mapping is used. If both have catalog mappings ,
then the value of the --schema-mapping option (XML/XSD option) decides which mapping is
used. If neither the namespace nor URL has a catalog mapping, the URL is used.

· If the option's value is ignore, then the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

If schema location and namespace are both used to find a schema document, specifies which of
them should be preferred during catalog lookup. (If either the --schemalocation-hints or the --
schema-imports option has a value of load-combining-both, and if the namespace and URL parts
involved both have catalog mappings , then the value of this option specifies which of the two
mappings to use (namespace mapping or URL mapping; the prefer-schemalocation value refers to
the URL mapping).) Default is prefer-schemalocation.

script

--script = FILE

Executes the Python script in the submitted file after validation has been completed. Add the option
multiple times to specify more than one script.

script-api-version

--api, --script-api-version = 1; 2; 2.1 to 2.4; 2.4.1; 2.5 to 2.8; 2.8.1 to 2.8.6;

2.9.0; 2.10.0; 2.11.0

Specifies the Python API version to be used for the script. The default value is the latest version,
currently 2.11.0. Instead of integer values such as 1 and 2, you can also use the corresponding

values 1.0 and 2.0. Similarly, you can use the three-digit 2.5.0 for the two-digit 2.5. Also see the
topic Python API Versions .

script-output

--script-output = FILE

Writes the script's standard output to the file named in FILE.

script-param

--script-param = KEY:VALUE

Additional user-specified parameters that can be accessed during the execution of Python scripts.
Add the option multiple times to specify more than one script parameter.

397

397

47

47 47 47

234

47

367

© 2019-2025 Altova GmbH

XML, DTD, XSD Validation Commands 77Command Line Interface (CLI)

Altova RaptorXML Server 2025

xinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false, XInclude's include
elements are ignored.
Note: Boolean option values are set to true if the option is specified without a value.

xml-mode-for-schemas

--xml-mode-for-schemas = wf|id|valid

Specifies the XML processing mode to use for XML schema documents: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each schema document loaded during processing references a DTD. If no DTD
exists, an error is reported.

xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This option can
also be useful to find out in what ways a schema which is 1.0-compatible is not 1.1-compatible. The
detect option is an Altova-specific feature. It enables the version of the XML Schema document (1.0
or 1.1) to be detected by reading the value of the vc:minVersion attribute of the document's
<xs:schema> element. If the value of the @vc:minVersion attribute is 1.1, the schema is detected
as being version 1.1. For any other value, or if the @vc:minVersion attribute is absent, the schema
is detected as being version 1.0.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

47

47

53

53 53

78 Command Line Interface (CLI) XML, DTD, XSD Validation Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

log-output

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

53 53

© 2019-2025 Altova GmbH

XML, DTD, XSD Validation Commands 79Command Line Interface (CLI)

Altova RaptorXML Server 2025

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

80 Command Line Interface (CLI) Well-formedness Check Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

5.2 Well-formedness Check Commands

The well-formedness check commands can be used to check the well-formedness of XML documents and
DTDs. These commands are listed below and described in detail in the sub-sections of this section:

· wfxml : Checks the well-formedness of XML documents
· wfdtd : Checks the well-formedness of DTDs
· wfany : Checks the well-formedness of an XML document or DTD. Type is detected automatically

5.2.1 wfxml

The wfxml command checks one or more XML documents for well-formedness according to the XML 1.0 or

XML 1.1 specification.

raptorxml wfxml [options] InputFile

· The InputFile argument is the XML document to check for well-formedness.

· To check multiple documents, either: (i) list the files to be checked on the CLI, with each file separated
from the next by a space; or (ii) list the files to be checked in a text file (.txt file), with one filename
per line, and supply this text file as the InputFile argument together with the --listfile option

set to true (see the Options list below).

Examples
Examples of the wfxml command:

· raptorxml wfxml c:\Test.xml

· raptorxml wfxml --verbose=true c:\Test.xml

· raptorxml wfxml --listfile=true c:\FileList.txt

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

80

84

88

232

© 2019-2025 Altova GmbH

Well-formedness Check Commands 81Command Line Interface (CLI)

Altova RaptorXML Server 2025

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

Validation and processing

dtd

--dtd = FILE

Specifies the external DTD document to use for validation. If a reference to an external DTD is
present in the XML document, then the CLI option overrides the external reference.

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

namespaces

--namespaces = true|false

Enables namespace-aware processing. This is useful for checking the XML instance for errors due to
incorrect namespaces. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

script

--script = FILE

Executes the Python script in the submitted file after validation has been completed. Add the option
multiple times to specify more than one script.

script-api-version

82 Command Line Interface (CLI) Well-formedness Check Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

--api, --script-api-version = 1; 2; 2.1 to 2.4; 2.4.1; 2.5 to 2.8; 2.8.1 to 2.8.6;

2.9.0; 2.10.0; 2.11.0

Specifies the Python API version to be used for the script. The default value is the latest version,
currently 2.11.0. Instead of integer values such as 1 and 2, you can also use the corresponding

values 1.0 and 2.0. Similarly, you can use the three-digit 2.5.0 for the two-digit 2.5. Also see the
topic Python API Versions .

script-output

--script-output = FILE

Writes the script's standard output to the file named in FILE.

script-param

--script-param = KEY:VALUE

Additional user-specified parameters that can be accessed during the execution of Python scripts.
Add the option multiple times to specify more than one script parameter.

streaming

--streaming = true|false

Enables streaming validation. Default is true. In streaming mode, data stored in memory is
minimized and processing is faster. The downside is that information that might be required
subsequently—for example, a data model of the XML instance document—will not be available. In
situations where this is significant, streaming mode will need to be turned off (by giving --streaming
a value of false). When using the --script option with the valxml-withxsd command, disable
streaming. Note that the --streaming option is ignored if --parallel-assessment is set to true.
Note: Boolean option values are set to true if the option is specified without a value.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

367

47

47

53

© 2019-2025 Altova GmbH

Well-formedness Check Commands 83Command Line Interface (CLI)

Altova RaptorXML Server 2025

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

log-output

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

--network-timeout = VALUE

53 53

53 53

84 Command Line Interface (CLI) Well-formedness Check Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.2.2 wfdtd

The wfdtd command checks one or more DTD documents for well-formedness according to the XML 1.0 or

XML 1.1 specification.

raptorxml wfdtd [options] InputFile

· The InputFile argument is the DTD document to check for well-formedness.

· To check multiple documents, either: (i) list the files to be checked on the CLI, with each file separated
from the next by a space; or (ii) list the files to be checked in a text file (.txt file), with one filename
per line, and supply this text file as the InputFile argument together with the --listfile option

set to true (see the Options list below).

232

© 2019-2025 Altova GmbH

Well-formedness Check Commands 85Command Line Interface (CLI)

Altova RaptorXML Server 2025

Examples
Examples of the wfdtd command:

· raptorxml wfdtd c:\Test.dtd

· raptorxml wfdtd --verbose=true c:\Test.dtd

· raptorxml wfdtd --listfile=true c:\FileList.txt

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

Validation and processing

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

recurse

--recurse = true|false

86 Command Line Interface (CLI) Well-formedness Check Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during

47

47

53

53 53

53 53

© 2019-2025 Altova GmbH

Well-formedness Check Commands 87Command Line Interface (CLI)

Altova RaptorXML Server 2025

validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

log-output

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

88 Command Line Interface (CLI) Well-formedness Check Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.2.3 wfany

The wfany command checks an XML or DTD document for well-formedness according to the respective

specification/s. The type of document is detected automatically.

raptorxml wfany [options] InputFile

· The InputFile argument is the document to check for well-formedness.

· Note that only one document can be submitted as the argument of the command. The type of the
submitted document is detected automatically.

Examples
Examples of the wfany command:

· raptorxml wfany c:\Test.xml

· raptorxml wfany --error-format=text c:\Test.xml

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

© 2019-2025 Altova GmbH

Well-formedness Check Commands 89Command Line Interface (CLI)

Altova RaptorXML Server 2025

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

Processing

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

47

47

53

53 53

90 Command Line Interface (CLI) Well-formedness Check Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

log-output

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

53 53

© 2019-2025 Altova GmbH

Well-formedness Check Commands 91Command Line Interface (CLI)

Altova RaptorXML Server 2025

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

92 Command Line Interface (CLI) XQuery Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

5.3 XQuery Commands

The XQuery commands are:

· xquery : for executing XQuery documents, optionally with an input document
· xqueryupdate : for executing an XQuery update, using an XQuery document and, optionally, the

input XML document to update
· valxquery : for validating XQuery documents
· valxqueryupdate : for validating an XQuery (update) document

5.3.1 xquery

The xquery command takes an XQuery file as its single argument and executes it with an optional input file to

produce an output file. The input and output files are specified as options.

raptorxml xquery [options] XQuery-File

· The argument XQuery-File is the path and name of the XQuery file to be executed.

· You can use XQuery 1.0 or 3.0. By default XQuery 3.0 is used.

Examples
Examples of the xquery command:

· raptorxml xquery --output=c:\Output.xml c:\TestQuery.xq

· raptorxml xquery --input=c:\Input.xml --output=c:\Output.xml --

param=company:"Altova" --p=date:"2006-01-01" c:\TestQuery.xq
· raptorxml xquery --input=c:\Input.xml --output=c:\Output.xml --param=source:"

doc('c:\test\books.xml')//book "
· raptorxml xquery --output=c:\Output.xml --omit-xml-declaration=false --output-

encoding=ASCII c:\TestQuery.xq

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

92

100

108

114

© 2019-2025 Altova GmbH

XQuery Commands 93Command Line Interface (CLI)

Altova RaptorXML Server 2025

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

XQuery Processing

indent-characters

--indent-characters = VALUE

Specifies the character string to be used as indentation.

input

--input = FILE

The URL of the XML file to be transformed.

omit-xml-declaration

--omit-xml-declaration = true|false

Serialization option to specify whether the XML declaration should be omitted from the output or not.
If true, there will be no XML declaration in the output document. If false, an XML declaration will be
included. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

output, xsltoutput

output = FILE, xsltoutput = FILE

The URL of the primary-output file. For example, in the case of multiple-file HTML output, the primary-
output file will be the location of the entry point HTML file. Additional output files, such as generated
image files, are reported as xslt-additional-output-files. If no --output or --xsltoutput
option is specified, output is written to standard output.

output-encoding

--output-encoding = VALUE

The value of the encoding attribute in the output document. Valid values are names in the IANA
character set registry. Default value is UTF-8.

output-indent

--output-indent = true|false

If true, the output will be indented according to its hierarchic structure. If false, there will be no
hierarchical indentation. Default is false.
Note: Boolean option values are set to true if the option is specified without a value.

94 Command Line Interface (CLI) XQuery Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

output-method

--output-method = xml|html|xhtml|text

Specifies the output format. Default value is xml.

param [p]

--p | --param = KEY:VALUE

XQuery

Specifies the value of an external parameter. An external parameter is declared in the XQuery
document with the declare variable declaration followed by a variable name and then the
external keyword followed by the trailing semi-colon. For example:

 declare variable $foo as xs:string external;

The external keyword $foo becomes an external parameter, the value of which is passed at
runtime from an external source. The external parameter is given a value with the CLI command.
For example:

 --param=foo:'MyName'
In the description statement above, KEY is the external parameter name, VALUE is the value of

the external parameter, given as an XPath expression. Parameter names used on the CLI must
be declared in the XQuery document. If multiple external parameters are passed values on the
CLI, each must be given a separate --param option. Double quotes must be used if the XPath
expression contains spaces.

XSLT

Specifies a global stylesheet parameter. KEY is the parameter name, VALUE is an XPath

expression that provides the parameter value. Parameter names used on the CLI must be
declared in the stylesheet. If multiple parameters are used, the --param switch must be used
before each parameter. Double quotes must be used around the XPath expression if it contains
a space—whether the space is in the XPath expression itself or in a string literal in the
expression. For example:

raptorxml xslt --input=c:\Test.xml --output=c:\Output.xml --

param=date://node[1]/@att1 --p=title:'stringwithoutspace' --
param=title:"'string with spaces'" --p=amount:456 c:\Test.xslt

xpath-static-type-errors-as-warnings

--xpath-static-type-errors-as-warnings = true|false

If true, downgrades to warnings any type errors that are detected in the XPath static context.
Whereas an error would cause the execution to fail, a warning would enable processing to continue.
Default is false.

xquery-version

--xquery-version = 1|1.0|3|3.0|3.1

Specifies whether the XQuery processor should use XQuery 1.0 or XQuery 3.0. Default value is 3.1.

XML Schema and XML instance

load-xml-with-psvi

© 2019-2025 Altova GmbH

XQuery Commands 95Command Line Interface (CLI)

Altova RaptorXML Server 2025

--load-xml-with-psvi = true|false

Enables validation of input XML files and generates post-schema-validation information for them.
Default is: true.

schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation | load-

by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs:import elements, each of which has an optional namespace attribute
and an optional schemaLocation attribute: <import namespace="someNS"
schemaLocation="someURL">. The option specifies whether to load a schema document or just
license a namespace, and, if a schema document is to be loaded, which information should be used
to find it. Default: load-preferring-schemalocation.
The behavior is as follows:

· load-by-schemalocation: The value of the schemaLocation attribute is used to locate the
schema, taking account of catalog mappings . If the namespace attribute is present, the
namespace is imported (licensed).

· load-preferring-schemalocation: If the schemaLocation attribute is present, it is used,
taking account of catalog mappings . If no schemaLocation attribute is present, then the
value of the namespace attribute is used via a catalog mapping . This is the default value.

· load-by-namespace: The value of the namespace attribute is used to locate the schema via a
catalog mapping .

· load-combining-both: If either the namespace or schemaLocation attribute has a catalog
mapping , then the mapping is used. If both have catalog mappings , then the value of the
--schema-mapping option (XML/XSD option) decides which mapping is used. If no catalog
mapping is present, the schemaLocation attribute is used.

· license-namespace-only: The namespace is imported. No schema document is imported.

schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace | load-

combining-both | ignore

Specifies the behavior of the xsi:schemaLocation and xsi:noNamespaceSchemaLocation
attributes: Whether to load a schema document, and, if yes, which information should be used to find
it. Default: load-by-schemalocation.

· The load-by-schemalocation value uses the URL of the schema location in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML instance
documents. This is the default value.

· The load-by-namespace value takes the namespace part of xsi:schemaLocation and an
empty string in the case of xsi:noNamespaceSchemaLocation and locates the schema via a
catalog mapping .

· If load-combining-both is used and if either the namespace part or the URL part has a
catalog mapping , then the catalog mapping is used. If both have catalog mappings ,
then the value of the --schema-mapping option (XML/XSD option) decides which mapping is
used. If neither the namespace nor URL has a catalog mapping, the URL is used.

· If the option's value is ignore, then the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

47

47

47

47

47 47

234

47

397

397

47

47 47 47

234

96 Command Line Interface (CLI) XQuery Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

If schema location and namespace are both used to find a schema document, specifies which of
them should be preferred during catalog lookup. (If either the --schemalocation-hints or the --
schema-imports option has a value of load-combining-both, and if the namespace and URL parts
involved both have catalog mappings , then the value of this option specifies which of the two
mappings to use (namespace mapping or URL mapping; the prefer-schemalocation value refers to
the URL mapping).) Default is prefer-schemalocation.

xinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false, XInclude's include
elements are ignored.
Note: Boolean option values are set to true if the option is specified without a value.

xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use for the XML instance document: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each instance document loaded during processing references a DTD. If no DTD
exists, an error is reported.

xml-mode-for-schemas

--xml-mode-for-schemas = wf|id|valid

Specifies the XML processing mode to use for XML schema documents: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each schema document loaded during processing references a DTD. If no DTD
exists, an error is reported.

xml-validation-error-as-warning

--xml-validation-error-as-warning = true|false

If true, treats validation errors as warnings. If errors are treated as warnings, additional processing,
such as XSLT transformations, will continue regardless of errors. Default is false.

xpath-static-type-errors-as-warnings

--xpath-static-type-errors-as-warnings = true|false

If true, downgrades to warnings any type errors that are detected in the XPath static context.
Whereas an error would cause the execution to fail, a warning would enable processing to continue.
Default is false.

xsd

--xsd = FILE

Specifies one or more XML Schema documents to use for the validation of XML instance documents.
Add the option multiple times to specify more than one schema document.

xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This option can

47

© 2019-2025 Altova GmbH

XQuery Commands 97Command Line Interface (CLI)

Altova RaptorXML Server 2025

also be useful to find out in what ways a schema which is 1.0-compatible is not 1.1-compatible. The
detect option is an Altova-specific feature. It enables the version of the XML Schema document (1.0
or 1.1) to be detected by reading the value of the vc:minVersion attribute of the document's
<xs:schema> element. If the value of the @vc:minVersion attribute is 1.1, the schema is detected
as being version 1.1. For any other value, or if the @vc:minVersion attribute is absent, the schema
is detected as being version 1.0.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

Extensions

These options define the handling of special extension functions that are available in a number of
Enterprise-level Altova products (such as XMLSpy Enterprise Edition). Their use is described in the user
manuals of these products.

chartext-disable

--chartext-disable = true|false

Disables chart extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

dotnetext-disable

47

47

53

53 53

53 53

98 Command Line Interface (CLI) XQuery Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

--dotnetext-disable = true|false

Disables .NET extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

jvm-location

--jvm-location = FILE

FILE specifies the location of the Java Virtual Machine (DLL on Windows, shared object on Linux).

The JVM is needed if you use Java extension functions in your XSLT/XQuery code. Default is
false.

javaext-barcode-location

--javaext-barcode-location = FILE

Specifies the path to the folder that contains the barcode extension file
AltovaBarcodeExtension.jar. The path must be given in one of the following forms:

· A file URI, for example: --javaext-barcode-location="file:///C:/Program
Files/Altova/RaptorXMLServer2025/etc/jar/"

· A Windows path with backslashes escaped, for example: --javaext-barcode-location="C:
\\Program Files\\Altova\\RaptorXMLServer2025\\etc\\jar\\"

javaext-disable

--javaext-disable = true|false

Disables Java extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command

499

© 2019-2025 Altova GmbH

XQuery Commands 99Command Line Interface (CLI)

Altova RaptorXML Server 2025

can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

log-output

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

100 Command Line Interface (CLI) XQuery Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

5.3.2 xqueryupdate

The xqueryupdate command takes an XQuery or XQuery Update file as its single argument and executes it. If

an optional input XML file is specified, then this XML file is processed with the XQuery Update commands
submitted in the XQuery(Update)-File. In this case, the updates can be applied directly to the input file or the

updated XML data can be written to an output XML file. The input and output files are specified as options. If the
XQuery(Update)-File contains only XQuery instructions and no XQuery Update instructions, then the

command carries out a straightforward XQuery execution.

raptorxml xqueryupdate [options] XQuery(Update)-File

· The argument XQuery(Update)-File is the path and name of the XQuery file (.xq) or XQuery Update

(.xqu) file to be executed. If the file contains XQuery Update instructions, then these are executed on

the input XML file. Otherwise, the command works as an XQuery execution command.
· You can specify whether XQuery Update 1.0 or 3.0 should be used. By default XQuery Update 3.0 is

used.

Examples
Examples of the xqueryupdate command:

· raptorxml xqueryupdate --output=c:\Output.xml c:\TestQuery.xq (Writes the output of the

XQuery file to the output file.)
· raptorxml xqueryupdate --input=c:\Input.xml --output=c:\Output.xml --updated-

xml=asmainresult c:\UpdateFile.xqu (Updates Input.xml using the update instructions in
UpdateFile.xqu, and writes the update to Output.xml.)

· raptorxml xqueryupdate --input=c:\Input.xml --output=c:\Output.xml --updated-

xml=writeback c:\UpdateFile.xq (Updates Input.xml using the update instructions in
UpdateFile.xq. The file Output.xml is not created.)

· raptorxml xqueryupdate --input=c:\Input.xml --output=c:\Output.xml --updated-

xml=discard c:\TestQuery.xqu (Updates are discarded. The input file is not modified. The file
Output.xml will be created, but will not contain any updated XML.)

· raptorxml xqueryupdate --input=c:\Input.xml --output=c:\Output.xml c:\TestQuery.xqu

(Updates are discarded as in the previous example. This is because the default value of the --
updated-xml option is discard.)

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

© 2019-2025 Altova GmbH

XQuery Commands 101Command Line Interface (CLI)

Altova RaptorXML Server 2025

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

XQuery Update Processing

indent-characters

--indent-characters = VALUE

Specifies the character string to be used as indentation.

input

--input = FILE

The URL of the XML file to be transformed.

omit-xml-declaration

--omit-xml-declaration = true|false

Serialization option to specify whether the XML declaration should be omitted from the output or not.
If true, there will be no XML declaration in the output document. If false, an XML declaration will be
included. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

output, xsltoutput

output = FILE, xsltoutput = FILE

The URL of the primary-output file. For example, in the case of multiple-file HTML output, the primary-
output file will be the location of the entry point HTML file. Additional output files, such as generated
image files, are reported as xslt-additional-output-files. If no --output or --xsltoutput
option is specified, output is written to standard output.

output-encoding

--output-encoding = VALUE

The value of the encoding attribute in the output document. Valid values are names in the IANA

102 Command Line Interface (CLI) XQuery Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

character set registry. Default value is UTF-8.

output-indent

--output-indent = true|false

If true, the output will be indented according to its hierarchic structure. If false, there will be no
hierarchical indentation. Default is false.
Note: Boolean option values are set to true if the option is specified without a value.

output-method

--output-method = xml|html|xhtml|text

Specifies the output format. Default value is xml.

param [p]

--p | --param = KEY:VALUE

XQuery

Specifies the value of an external parameter. An external parameter is declared in the XQuery
document with the declare variable declaration followed by a variable name and then the
external keyword followed by the trailing semi-colon. For example:

 declare variable $foo as xs:string external;

The external keyword $foo becomes an external parameter, the value of which is passed at
runtime from an external source. The external parameter is given a value with the CLI command.
For example:

 --param=foo:'MyName'
In the description statement above, KEY is the external parameter name, VALUE is the value of

the external parameter, given as an XPath expression. Parameter names used on the CLI must
be declared in the XQuery document. If multiple external parameters are passed values on the
CLI, each must be given a separate --param option. Double quotes must be used if the XPath
expression contains spaces.

XSLT

Specifies a global stylesheet parameter. KEY is the parameter name, VALUE is an XPath

expression that provides the parameter value. Parameter names used on the CLI must be
declared in the stylesheet. If multiple parameters are used, the --param switch must be used
before each parameter. Double quotes must be used around the XPath expression if it contains
a space—whether the space is in the XPath expression itself or in a string literal in the
expression. For example:

raptorxml xslt --input=c:\Test.xml --output=c:\Output.xml --

param=date://node[1]/@att1 --p=title:'stringwithoutspace' --
param=title:"'string with spaces'" --p=amount:456 c:\Test.xslt

xpath-static-type-errors-as-warnings

--xpath-static-type-errors-as-warnings = true|false

If true, downgrades to warnings any type errors that are detected in the XPath static context.
Whereas an error would cause the execution to fail, a warning would enable processing to continue.
Default is false.

© 2019-2025 Altova GmbH

XQuery Commands 103Command Line Interface (CLI)

Altova RaptorXML Server 2025

xquery-update-version

--xquery-update-version = 1|1.0|3|3.0|

Specifies whether the XQuery processor should use XQuery Update Facility 1.0 or XQuery Update
Facility 3.0. Default value is 3.

keep-formatting

--keep-formatting = true|false

Keeps the formatting of the target document to the maximum extent that this is possible. Default is:
true.

updated-xml

--updated-xml = discard|writeback|asmainresult

Specifies how the updated XML file should be handled.

· discard: The update is discarded and not written to file. Neither the input file nor the output
file will be updated. Note that this is the default.

· writeback: Writes the update back to the input XML file that is specified with the --input
option.

· asmainresult: Writes the update to the output XML file that is specified with the --output
option. If the --output option is not specified, then the update is written to the standard

output. In both cases, the input XML file will not be modified.

Default is discard.

XML Schema and XML instance

load-xml-with-psvi

--load-xml-with-psvi = true|false

Enables validation of input XML files and generates post-schema-validation information for them.
Default is: true.

schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation | load-

by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs:import elements, each of which has an optional namespace attribute
and an optional schemaLocation attribute: <import namespace="someNS"
schemaLocation="someURL">. The option specifies whether to load a schema document or just
license a namespace, and, if a schema document is to be loaded, which information should be used
to find it. Default: load-preferring-schemalocation.
The behavior is as follows:

· load-by-schemalocation: The value of the schemaLocation attribute is used to locate the
schema, taking account of catalog mappings . If the namespace attribute is present, the
namespace is imported (licensed).

· load-preferring-schemalocation: If the schemaLocation attribute is present, it is used,
taking account of catalog mappings . If no schemaLocation attribute is present, then the
value of the namespace attribute is used via a catalog mapping . This is the default value.

· load-by-namespace: The value of the namespace attribute is used to locate the schema via a
catalog mapping .

47

47

47

47

104 Command Line Interface (CLI) XQuery Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

· load-combining-both: If either the namespace or schemaLocation attribute has a catalog
mapping , then the mapping is used. If both have catalog mappings , then the value of the
--schema-mapping option (XML/XSD option) decides which mapping is used. If no catalog
mapping is present, the schemaLocation attribute is used.

· license-namespace-only: The namespace is imported. No schema document is imported.

schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace | load-

combining-both | ignore

Specifies the behavior of the xsi:schemaLocation and xsi:noNamespaceSchemaLocation
attributes: Whether to load a schema document, and, if yes, which information should be used to find
it. Default: load-by-schemalocation.

· The load-by-schemalocation value uses the URL of the schema location in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML instance
documents. This is the default value.

· The load-by-namespace value takes the namespace part of xsi:schemaLocation and an
empty string in the case of xsi:noNamespaceSchemaLocation and locates the schema via a
catalog mapping .

· If load-combining-both is used and if either the namespace part or the URL part has a
catalog mapping , then the catalog mapping is used. If both have catalog mappings ,
then the value of the --schema-mapping option (XML/XSD option) decides which mapping is
used. If neither the namespace nor URL has a catalog mapping, the URL is used.

· If the option's value is ignore, then the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

If schema location and namespace are both used to find a schema document, specifies which of
them should be preferred during catalog lookup. (If either the --schemalocation-hints or the --
schema-imports option has a value of load-combining-both, and if the namespace and URL parts
involved both have catalog mappings , then the value of this option specifies which of the two
mappings to use (namespace mapping or URL mapping; the prefer-schemalocation value refers to
the URL mapping).) Default is prefer-schemalocation.

xinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false, XInclude's include
elements are ignored.
Note: Boolean option values are set to true if the option is specified without a value.

xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use for the XML instance document: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each instance document loaded during processing references a DTD. If no DTD
exists, an error is reported.

47 47

234

47

397

397

47

47 47 47

234

47

© 2019-2025 Altova GmbH

XQuery Commands 105Command Line Interface (CLI)

Altova RaptorXML Server 2025

xml-mode-for-schemas

--xml-mode-for-schemas = wf|id|valid

Specifies the XML processing mode to use for XML schema documents: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each schema document loaded during processing references a DTD. If no DTD
exists, an error is reported.

xml-validation-error-as-warning

--xml-validation-error-as-warning = true|false

If true, treats validation errors as warnings. If errors are treated as warnings, additional processing,
such as XSLT transformations, will continue regardless of errors. Default is false.

xsd

--xsd = FILE

Specifies one or more XML Schema documents to use for the validation of XML instance documents.
Add the option multiple times to specify more than one schema document.

xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This option can
also be useful to find out in what ways a schema which is 1.0-compatible is not 1.1-compatible. The
detect option is an Altova-specific feature. It enables the version of the XML Schema document (1.0
or 1.1) to be detected by reading the value of the vc:minVersion attribute of the document's
<xs:schema> element. If the value of the @vc:minVersion attribute is 1.1, the schema is detected
as being version 1.1. For any other value, or if the @vc:minVersion attribute is absent, the schema
is detected as being version 1.0.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

47

47

53

106 Command Line Interface (CLI) XQuery Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

Extensions

These options define the handling of special extension functions that are available in a number of
Enterprise-level Altova products (such as XMLSpy Enterprise Edition). Their use is described in the user
manuals of these products.

chartext-disable

--chartext-disable = true|false

Disables chart extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

dotnetext-disable

--dotnetext-disable = true|false

Disables .NET extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

jvm-location

--jvm-location = FILE

FILE specifies the location of the Java Virtual Machine (DLL on Windows, shared object on Linux).

The JVM is needed if you use Java extension functions in your XSLT/XQuery code. Default is
false.

javaext-barcode-location

--javaext-barcode-location = FILE

Specifies the path to the folder that contains the barcode extension file
AltovaBarcodeExtension.jar. The path must be given in one of the following forms:

· A file URI, for example: --javaext-barcode-location="file:///C:/Program
Files/Altova/RaptorXMLServer2025/etc/jar/"

· A Windows path with backslashes escaped, for example: --javaext-barcode-location="C:
\\Program Files\\Altova\\RaptorXMLServer2025\\etc\\jar\\"

javaext-disable

--javaext-disable = true|false

Disables Java extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

Common options

53 53

53 53

499

© 2019-2025 Altova GmbH

XQuery Commands 107Command Line Interface (CLI)

Altova RaptorXML Server 2025

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

log-output

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

108 Command Line Interface (CLI) XQuery Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.3.3 valxquery

The valxquery command takes an XQuery file as its single argument and validates it.

raptorxml valxquery [options] XQuery-File

· The XQuery-File argument is the path and name of the XQuery file to be validated.

Examples
Examples of the valxquery command:

· raptorxml valxquery c:\Test.xquery

· raptorxml valxquery --xquery-version=1 c:\Test.xquery

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

© 2019-2025 Altova GmbH

XQuery Commands 109Command Line Interface (CLI)

Altova RaptorXML Server 2025

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

XQuery processing

omit-xml-declaration

--omit-xml-declaration = true|false

Serialization option to specify whether the XML declaration should be omitted from the output or not.
If true, there will be no XML declaration in the output document. If false, an XML declaration will be
included. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

xquery-version

--xquery-version = 1|1.0|3|3.0|3.1

Specifies whether the XQuery processor should use XQuery 1.0 or XQuery 3.0. Default value is 3.1.

XML Schema and XML instance

load-xml-with-psvi

--load-xml-with-psvi = true|false

Enables validation of input XML files and generates post-schema-validation information for them.
Default is: true.

schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation | load-

by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs:import elements, each of which has an optional namespace attribute
and an optional schemaLocation attribute: <import namespace="someNS"
schemaLocation="someURL">. The option specifies whether to load a schema document or just

110 Command Line Interface (CLI) XQuery Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

license a namespace, and, if a schema document is to be loaded, which information should be used
to find it. Default: load-preferring-schemalocation.
The behavior is as follows:

· load-by-schemalocation: The value of the schemaLocation attribute is used to locate the
schema, taking account of catalog mappings . If the namespace attribute is present, the
namespace is imported (licensed).

· load-preferring-schemalocation: If the schemaLocation attribute is present, it is used,
taking account of catalog mappings . If no schemaLocation attribute is present, then the
value of the namespace attribute is used via a catalog mapping . This is the default value.

· load-by-namespace: The value of the namespace attribute is used to locate the schema via a
catalog mapping .

· load-combining-both: If either the namespace or schemaLocation attribute has a catalog
mapping , then the mapping is used. If both have catalog mappings , then the value of the
--schema-mapping option (XML/XSD option) decides which mapping is used. If no catalog
mapping is present, the schemaLocation attribute is used.

· license-namespace-only: The namespace is imported. No schema document is imported.

schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace | load-

combining-both | ignore

Specifies the behavior of the xsi:schemaLocation and xsi:noNamespaceSchemaLocation
attributes: Whether to load a schema document, and, if yes, which information should be used to find
it. Default: load-by-schemalocation.

· The load-by-schemalocation value uses the URL of the schema location in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML instance
documents. This is the default value.

· The load-by-namespace value takes the namespace part of xsi:schemaLocation and an
empty string in the case of xsi:noNamespaceSchemaLocation and locates the schema via a
catalog mapping .

· If load-combining-both is used and if either the namespace part or the URL part has a
catalog mapping , then the catalog mapping is used. If both have catalog mappings ,
then the value of the --schema-mapping option (XML/XSD option) decides which mapping is
used. If neither the namespace nor URL has a catalog mapping, the URL is used.

· If the option's value is ignore, then the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

If schema location and namespace are both used to find a schema document, specifies which of
them should be preferred during catalog lookup. (If either the --schemalocation-hints or the --
schema-imports option has a value of load-combining-both, and if the namespace and URL parts
involved both have catalog mappings , then the value of this option specifies which of the two
mappings to use (namespace mapping or URL mapping; the prefer-schemalocation value refers to
the URL mapping).) Default is prefer-schemalocation.

xinclude

--xinclude = true|false

47

47

47

47

47 47

234

47

397

397

47

47 47 47

234

47

© 2019-2025 Altova GmbH

XQuery Commands 111Command Line Interface (CLI)

Altova RaptorXML Server 2025

Enables XML Inclusions (XInclude) support. Default value is false. When false, XInclude's include
elements are ignored.
Note: Boolean option values are set to true if the option is specified without a value.

xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use for the XML instance document: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each instance document loaded during processing references a DTD. If no DTD
exists, an error is reported.

xml-mode-for-schemas

--xml-mode-for-schemas = wf|id|valid

Specifies the XML processing mode to use for XML schema documents: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each schema document loaded during processing references a DTD. If no DTD
exists, an error is reported.

xpath-static-type-errors-as-warnings

--xpath-static-type-errors-as-warnings = true|false

If true, downgrades to warnings any type errors that are detected in the XPath static context.
Whereas an error would cause the execution to fail, a warning would enable processing to continue.
Default is false.

xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This option can
also be useful to find out in what ways a schema which is 1.0-compatible is not 1.1-compatible. The
detect option is an Altova-specific feature. It enables the version of the XML Schema document (1.0
or 1.1) to be detected by reading the value of the vc:minVersion attribute of the document's
<xs:schema> element. If the value of the @vc:minVersion attribute is 1.1, the schema is detected
as being version 1.1. For any other value, or if the @vc:minVersion attribute is absent, the schema
is detected as being version 1.0.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the

47

112 Command Line Interface (CLI) XQuery Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

section, XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

Extensions

These options define the handling of special extension functions that are available in a number of
Enterprise-level Altova products (such as XMLSpy Enterprise Edition). Their use is described in the user
manuals of these products.

chartext-disable

--chartext-disable = true|false

Disables chart extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

dotnetext-disable

--dotnetext-disable = true|false

Disables .NET extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

jvm-location

--jvm-location = FILE

FILE specifies the location of the Java Virtual Machine (DLL on Windows, shared object on Linux).

The JVM is needed if you use Java extension functions in your XSLT/XQuery code. Default is
false.

javaext-barcode-location

--javaext-barcode-location = FILE

Specifies the path to the folder that contains the barcode extension file
AltovaBarcodeExtension.jar. The path must be given in one of the following forms:

· A file URI, for example: --javaext-barcode-location="file:///C:/Program
Files/Altova/RaptorXMLServer2025/etc/jar/"

· A Windows path with backslashes escaped, for example: --javaext-barcode-location="C:
\\Program Files\\Altova\\RaptorXMLServer2025\\etc\\jar\\"

47

53

53 53

53 53

499

© 2019-2025 Altova GmbH

XQuery Commands 113Command Line Interface (CLI)

Altova RaptorXML Server 2025

javaext-disable

--javaext-disable = true|false

Disables Java extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

log-output

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

114 Command Line Interface (CLI) XQuery Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.3.4 valxqueryupdate

The valxqueryupdate command takes an XQuery file as its single argument and validates it.

raptorxml valxqueryupdate [options] XQuery-File

· The XQuery-File argument is the path and name of the XQuery file to be validated.

Examples
Examples of the valxqueryupdate command:

· raptorxml valxqueryupdate c:\Test.xqu

· raptorxml valxqueryupdate --xquery-update-version=1 c:\Test.xqu

© 2019-2025 Altova GmbH

XQuery Commands 115Command Line Interface (CLI)

Altova RaptorXML Server 2025

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

XQuery processing

omit-xml-declaration

--omit-xml-declaration = true|false

Serialization option to specify whether the XML declaration should be omitted from the output or not.
If true, there will be no XML declaration in the output document. If false, an XML declaration will be
included. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

xquery-update-version

--xquery-update-version = 1|1.0|3|3.0|

Specifies whether the XQuery processor should use XQuery Update Facility 1.0 or XQuery Update
Facility 3.0. Default value is 3.

XML Schema and XML instance

load-xml-with-psvi

--load-xml-with-psvi = true|false

Enables validation of input XML files and generates post-schema-validation information for them.
Default is: true.

116 Command Line Interface (CLI) XQuery Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation | load-

by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs:import elements, each of which has an optional namespace attribute
and an optional schemaLocation attribute: <import namespace="someNS"
schemaLocation="someURL">. The option specifies whether to load a schema document or just
license a namespace, and, if a schema document is to be loaded, which information should be used
to find it. Default: load-preferring-schemalocation.
The behavior is as follows:

· load-by-schemalocation: The value of the schemaLocation attribute is used to locate the
schema, taking account of catalog mappings . If the namespace attribute is present, the
namespace is imported (licensed).

· load-preferring-schemalocation: If the schemaLocation attribute is present, it is used,
taking account of catalog mappings . If no schemaLocation attribute is present, then the
value of the namespace attribute is used via a catalog mapping . This is the default value.

· load-by-namespace: The value of the namespace attribute is used to locate the schema via a
catalog mapping .

· load-combining-both: If either the namespace or schemaLocation attribute has a catalog
mapping , then the mapping is used. If both have catalog mappings , then the value of the
--schema-mapping option (XML/XSD option) decides which mapping is used. If no catalog
mapping is present, the schemaLocation attribute is used.

· license-namespace-only: The namespace is imported. No schema document is imported.

schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace | load-

combining-both | ignore

Specifies the behavior of the xsi:schemaLocation and xsi:noNamespaceSchemaLocation
attributes: Whether to load a schema document, and, if yes, which information should be used to find
it. Default: load-by-schemalocation.

· The load-by-schemalocation value uses the URL of the schema location in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML instance
documents. This is the default value.

· The load-by-namespace value takes the namespace part of xsi:schemaLocation and an
empty string in the case of xsi:noNamespaceSchemaLocation and locates the schema via a
catalog mapping .

· If load-combining-both is used and if either the namespace part or the URL part has a
catalog mapping , then the catalog mapping is used. If both have catalog mappings ,
then the value of the --schema-mapping option (XML/XSD option) decides which mapping is
used. If neither the namespace nor URL has a catalog mapping, the URL is used.

· If the option's value is ignore, then the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

If schema location and namespace are both used to find a schema document, specifies which of
them should be preferred during catalog lookup. (If either the --schemalocation-hints or the --

47

47

47

47

47 47

234

47

397

397

47

47 47 47

234

© 2019-2025 Altova GmbH

XQuery Commands 117Command Line Interface (CLI)

Altova RaptorXML Server 2025

schema-imports option has a value of load-combining-both, and if the namespace and URL parts
involved both have catalog mappings , then the value of this option specifies which of the two
mappings to use (namespace mapping or URL mapping; the prefer-schemalocation value refers to
the URL mapping).) Default is prefer-schemalocation.

xinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false, XInclude's include
elements are ignored.
Note: Boolean option values are set to true if the option is specified without a value.

xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use for the XML instance document: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each instance document loaded during processing references a DTD. If no DTD
exists, an error is reported.

xml-mode-for-schemas

--xml-mode-for-schemas = wf|id|valid

Specifies the XML processing mode to use for XML schema documents: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each schema document loaded during processing references a DTD. If no DTD
exists, an error is reported.

xpath-static-type-errors-as-warnings

--xpath-static-type-errors-as-warnings = true|false

If true, downgrades to warnings any type errors that are detected in the XPath static context.
Whereas an error would cause the execution to fail, a warning would enable processing to continue.
Default is false.

xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This option can
also be useful to find out in what ways a schema which is 1.0-compatible is not 1.1-compatible. The
detect option is an Altova-specific feature. It enables the version of the XML Schema document (1.0
or 1.1) to be detected by reading the value of the vc:minVersion attribute of the document's
<xs:schema> element. If the value of the @vc:minVersion attribute is 1.1, the schema is detected
as being version 1.1. For any other value, or if the @vc:minVersion attribute is absent, the schema
is detected as being version 1.0.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default

47

118 Command Line Interface (CLI) XQuery Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

Extensions

These options define the handling of special extension functions that are available in a number of
Enterprise-level Altova products (such as XMLSpy Enterprise Edition). Their use is described in the user
manuals of these products.

chartext-disable

--chartext-disable = true|false

Disables chart extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

dotnetext-disable

--dotnetext-disable = true|false

Disables .NET extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

jvm-location

--jvm-location = FILE

FILE specifies the location of the Java Virtual Machine (DLL on Windows, shared object on Linux).

The JVM is needed if you use Java extension functions in your XSLT/XQuery code. Default is
false.

javaext-barcode-location

--javaext-barcode-location = FILE

47

47

53

53 53

53 53

499

© 2019-2025 Altova GmbH

XQuery Commands 119Command Line Interface (CLI)

Altova RaptorXML Server 2025

Specifies the path to the folder that contains the barcode extension file
AltovaBarcodeExtension.jar. The path must be given in one of the following forms:

· A file URI, for example: --javaext-barcode-location="file:///C:/Program
Files/Altova/RaptorXMLServer2025/etc/jar/"

· A Windows path with backslashes escaped, for example: --javaext-barcode-location="C:
\\Program Files\\Altova\\RaptorXMLServer2025\\etc\\jar\\"

javaext-disable

--javaext-disable = true|false

Disables Java extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

log-output

--log-output = FILE

120 Command Line Interface (CLI) XQuery Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

© 2019-2025 Altova GmbH

XSLT Commands 121Command Line Interface (CLI)

Altova RaptorXML Server 2025

5.4 XSLT Commands

The XSLT commands are:

· xslt : for transforming XML documents with an XSLT document
· valxslt : for validating XSLT documents

5.4.1 xslt

The xslt command takes an XSLT file as its single argument and uses it to transform an input XML file to

produce an output file. The input and output files are specified as options .

raptorxml xslt [options] XSLT-File

· The XSLT-File argument is the path and name of the XSLT file to use for the transformation.

· An input XML file (--input) or a named template entry point (--template-entry-point) is
required.

· To transform JSON data, load the JSON data via the json-doc($path) function of XPath 3.1, and use

the xslt command's --initial-match-selection option. See the last item in the examples given

below.
· If no --output option is specified, output is written to standard output. You can use XSLT 1.0, 2.0,

or 3.0. By default XSLT 3.0 is used.

Examples
Examples of the xslt command:

· raptorxml xslt --input=c:\Test.xml --output=c:\Output.xml c:\Test.xslt

· raptorxml xslt --template-entry-point=StartTemplate --output=c:\Output.xml c:

\Test.xslt
· raptorxml xslt --input=c:\Test.xml --output=c:\Output.xml --

param=date://node[1]/@att1 --p=title:'stringwithoutspace' --param=title:"'string
with spaces'" --p=amount:456 c:\Test.xslt

· raptorxml xslt --initial-match-selection=json-

doc('MyData.json',map{'liberal':true()}) --output=c:\MyData.xml c:\Test.xslt

· raptorxml xslt --initial-match-selection="json-doc('MyData.json',

map{'liberal':true()})" --output=c:\MyData.xml c:\Test.xslt (If the json-doc argument

string contains spaces, then enclose the entire json-doc value in quotes.)

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

121

129

238

238 238

238

https://www.w3.org/TR/xpath-functions-31/#func-json-doc

122 Command Line Interface (CLI) XSLT Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

XSLT processing

indent-characters

--indent-characters = VALUE

Specifies the character string to be used as indentation.

function-param

--function-param = VALUE

Specifies the functions that will be passed to the initial function. To specify more than one function,
use the option multiple times. Note, however, that order is important.

global-context-item

--global-context-item = VALUE

Specifies the context item that is to be used to evaluate global variables.

initial-function

--initial-function = VALUE

The name of a function that is to be executed as the entry point of the transformation.

initial-match-selection

--initial-match-selection = VALUE

Specifies the value (sequence) of the initial match selection.

initial-mode, template-mode

--initial-mode, --template-mode = VALUE

Specifies the template mode to use for the transformation.

© 2019-2025 Altova GmbH

XSLT Commands 123Command Line Interface (CLI)

Altova RaptorXML Server 2025

initial-template, template-entry-point

--initial-template, --template-entry-point = VALUE

Gives the name of a named template in the XSLT stylesheet that is the entry point of the
transformation.

input

--input = FILE

The URL of the XML file to be transformed.

output, xsltoutput

output = FILE, xsltoutput = FILE

The URL of the primary-output file. For example, in the case of multiple-file HTML output, the primary-
output file will be the location of the entry point HTML file. Additional output files, such as generated
image files, are reported as xslt-additional-output-files. If no --output or --xsltoutput
option is specified, output is written to standard output.

param [p]

--p | --param = KEY:VALUE

XQuery

Specifies the value of an external parameter. An external parameter is declared in the XQuery
document with the declare variable declaration followed by a variable name and then the
external keyword followed by the trailing semi-colon. For example:

 declare variable $foo as xs:string external;

The external keyword $foo becomes an external parameter, the value of which is passed at
runtime from an external source. The external parameter is given a value with the CLI command.
For example:

 --param=foo:'MyName'
In the description statement above, KEY is the external parameter name, VALUE is the value of

the external parameter, given as an XPath expression. Parameter names used on the CLI must
be declared in the XQuery document. If multiple external parameters are passed values on the
CLI, each must be given a separate --param option. Double quotes must be used if the XPath
expression contains spaces.

XSLT

Specifies a global stylesheet parameter. KEY is the parameter name, VALUE is an XPath

expression that provides the parameter value. Parameter names used on the CLI must be
declared in the stylesheet. If multiple parameters are used, the --param switch must be used
before each parameter. Double quotes must be used around the XPath expression if it contains
a space—whether the space is in the XPath expression itself or in a string literal in the
expression. For example:

raptorxml xslt --input=c:\Test.xml --output=c:\Output.xml --

param=date://node[1]/@att1 --p=title:'stringwithoutspace' --
param=title:"'string with spaces'" --p=amount:456 c:\Test.xslt

streaming-serialization-enabled

--streaming-serialization-enabled = true|false

124 Command Line Interface (CLI) XSLT Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Enables streaming serialization. Default value is true.
Note: Boolean option values are set to true if the option is specified without a value.

template-param

--template-param = KEY:VALUE

Specifies parameters that will be passed to the initial template only (and not to any descending
template call). To specify multiple parameters, use the option once for each parameter.

tunnel-param

--tunnel-param = KEY:VALUE

Specifies parameters that will be passed to the initial template and to descending template calls. To
specify multiple parameters, use the option once for each parameter.

xpath-static-type-errors-as-warnings

--xpath-static-type-errors-as-warnings = true|false

If true, downgrades to warnings any type errors that are detected in the XPath static context.
Whereas an error would cause the execution to fail, a warning would enable processing to continue.
Default is false.

xslt-version

--xslt-version = 1|1.0|2|2.0|3|3.0|3.1

Specifies whether the XSLT processor should use XSLT 1.0, XSLT 2.0, or XSLT 3.0. Default value is
3.

XML Schema and XML instance

load-xml-with-psvi

--load-xml-with-psvi = true|false

Enables validation of input XML files and generates post-schema-validation information for them.
Default is: true.

schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation | load-

by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs:import elements, each of which has an optional namespace attribute
and an optional schemaLocation attribute: <import namespace="someNS"
schemaLocation="someURL">. The option specifies whether to load a schema document or just
license a namespace, and, if a schema document is to be loaded, which information should be used
to find it. Default: load-preferring-schemalocation.
The behavior is as follows:

· load-by-schemalocation: The value of the schemaLocation attribute is used to locate the
schema, taking account of catalog mappings . If the namespace attribute is present, the
namespace is imported (licensed).

· load-preferring-schemalocation: If the schemaLocation attribute is present, it is used,
taking account of catalog mappings . If no schemaLocation attribute is present, then the

47

47

© 2019-2025 Altova GmbH

XSLT Commands 125Command Line Interface (CLI)

Altova RaptorXML Server 2025

value of the namespace attribute is used via a catalog mapping . This is the default value.
· load-by-namespace: The value of the namespace attribute is used to locate the schema via a

catalog mapping .
· load-combining-both: If either the namespace or schemaLocation attribute has a catalog

mapping , then the mapping is used. If both have catalog mappings , then the value of the
--schema-mapping option (XML/XSD option) decides which mapping is used. If no catalog
mapping is present, the schemaLocation attribute is used.

· license-namespace-only: The namespace is imported. No schema document is imported.

schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace | load-

combining-both | ignore

Specifies the behavior of the xsi:schemaLocation and xsi:noNamespaceSchemaLocation
attributes: Whether to load a schema document, and, if yes, which information should be used to find
it. Default: load-by-schemalocation.

· The load-by-schemalocation value uses the URL of the schema location in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML instance
documents. This is the default value.

· The load-by-namespace value takes the namespace part of xsi:schemaLocation and an
empty string in the case of xsi:noNamespaceSchemaLocation and locates the schema via a
catalog mapping .

· If load-combining-both is used and if either the namespace part or the URL part has a
catalog mapping , then the catalog mapping is used. If both have catalog mappings ,
then the value of the --schema-mapping option (XML/XSD option) decides which mapping is
used. If neither the namespace nor URL has a catalog mapping, the URL is used.

· If the option's value is ignore, then the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

If schema location and namespace are both used to find a schema document, specifies which of
them should be preferred during catalog lookup. (If either the --schemalocation-hints or the --
schema-imports option has a value of load-combining-both, and if the namespace and URL parts
involved both have catalog mappings , then the value of this option specifies which of the two
mappings to use (namespace mapping or URL mapping; the prefer-schemalocation value refers to
the URL mapping).) Default is prefer-schemalocation.

xinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false, XInclude's include
elements are ignored.
Note: Boolean option values are set to true if the option is specified without a value.

xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use for the XML instance document: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each instance document loaded during processing references a DTD. If no DTD

47

47

47 47

234

47

397

397

47

47 47 47

234

47

126 Command Line Interface (CLI) XSLT Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

exists, an error is reported.

xml-mode-for-schemas

--xml-mode-for-schemas = wf|id|valid

Specifies the XML processing mode to use for XML schema documents: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each schema document loaded during processing references a DTD. If no DTD
exists, an error is reported.

xml-validation-error-as-warning

--xml-validation-error-as-warning = true|false

If true, treats validation errors as warnings. If errors are treated as warnings, additional processing,
such as XSLT transformations, will continue regardless of errors. Default is false.

xsd

--xsd = FILE

Specifies one or more XML Schema documents to use for the validation of XML instance documents.
Add the option multiple times to specify more than one schema document.

xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This option can
also be useful to find out in what ways a schema which is 1.0-compatible is not 1.1-compatible. The
detect option is an Altova-specific feature. It enables the version of the XML Schema document (1.0
or 1.1) to be detected by reading the value of the vc:minVersion attribute of the document's
<xs:schema> element. If the value of the @vc:minVersion attribute is 1.1, the schema is detected
as being version 1.1. For any other value, or if the @vc:minVersion attribute is absent, the schema
is detected as being version 1.0.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.

47

47

53

© 2019-2025 Altova GmbH

XSLT Commands 127Command Line Interface (CLI)

Altova RaptorXML Server 2025

Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

Extensions

These options define the handling of special extension functions that are available in a number of
Enterprise-level Altova products (such as XMLSpy Enterprise Edition). Their use is described in the user
manuals of these products.

chartext-disable

--chartext-disable = true|false

Disables chart extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

dotnetext-disable

--dotnetext-disable = true|false

Disables .NET extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

jvm-location

--jvm-location = FILE

FILE specifies the location of the Java Virtual Machine (DLL on Windows, shared object on Linux).

The JVM is needed if you use Java extension functions in your XSLT/XQuery code. Default is
false.

javaext-barcode-location

--javaext-barcode-location = FILE

Specifies the path to the folder that contains the barcode extension file
AltovaBarcodeExtension.jar. The path must be given in one of the following forms:

· A file URI, for example: --javaext-barcode-location="file:///C:/Program
Files/Altova/RaptorXMLServer2025/etc/jar/"

· A Windows path with backslashes escaped, for example: --javaext-barcode-location="C:
\\Program Files\\Altova\\RaptorXMLServer2025\\etc\\jar\\"

javaext-disable

--javaext-disable = true|false

Disables Java extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

53 53

53 53

499

128 Command Line Interface (CLI) XSLT Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

log-output

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to

© 2019-2025 Altova GmbH

XSLT Commands 129Command Line Interface (CLI)

Altova RaptorXML Server 2025

ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.4.2 valxslt

The valxslt command takes an XSLT file as its single argument and validates it.

raptorxml valxslt [options] XSLT-File

· The XSLT-File argument is the path and name of the XSLT file to be validated.

· Validation can be according to the XSLT 1.0, 2.0, or 3.0 specification. By default XSLT 3.0 is the
specification used.

Examples
Examples of the valxslt command:

· raptorxml valxslt c:\Test.xslt

· raptorxml valxslt --xslt-version=2 c:\Test.xslt

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

130 Command Line Interface (CLI) XSLT Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

XSLT processing

initial-mode, template-mode

--initial-mode, --template-mode = VALUE

Specifies the template mode to use for the transformation.

initial-template, template-entry-point

--initial-template, --template-entry-point = VALUE

Gives the name of a named template in the XSLT stylesheet that is the entry point of the
transformation.

xslt-version

--xslt-version = 1|1.0|2|2.0|3|3.0|3.1

Specifies whether the XSLT processor should use XSLT 1.0, XSLT 2.0, or XSLT 3.0. Default value is
3.

XML Schema and XML instance

load-xml-with-psvi

--load-xml-with-psvi = true|false

Enables validation of input XML files and generates post-schema-validation information for them.

© 2019-2025 Altova GmbH

XSLT Commands 131Command Line Interface (CLI)

Altova RaptorXML Server 2025

Default is: true.

schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation | load-

by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs:import elements, each of which has an optional namespace attribute
and an optional schemaLocation attribute: <import namespace="someNS"
schemaLocation="someURL">. The option specifies whether to load a schema document or just
license a namespace, and, if a schema document is to be loaded, which information should be used
to find it. Default: load-preferring-schemalocation.
The behavior is as follows:

· load-by-schemalocation: The value of the schemaLocation attribute is used to locate the
schema, taking account of catalog mappings . If the namespace attribute is present, the
namespace is imported (licensed).

· load-preferring-schemalocation: If the schemaLocation attribute is present, it is used,
taking account of catalog mappings . If no schemaLocation attribute is present, then the
value of the namespace attribute is used via a catalog mapping . This is the default value.

· load-by-namespace: The value of the namespace attribute is used to locate the schema via a
catalog mapping .

· load-combining-both: If either the namespace or schemaLocation attribute has a catalog
mapping , then the mapping is used. If both have catalog mappings , then the value of the
--schema-mapping option (XML/XSD option) decides which mapping is used. If no catalog
mapping is present, the schemaLocation attribute is used.

· license-namespace-only: The namespace is imported. No schema document is imported.

schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace | load-

combining-both | ignore

Specifies the behavior of the xsi:schemaLocation and xsi:noNamespaceSchemaLocation
attributes: Whether to load a schema document, and, if yes, which information should be used to find
it. Default: load-by-schemalocation.

· The load-by-schemalocation value uses the URL of the schema location in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML instance
documents. This is the default value.

· The load-by-namespace value takes the namespace part of xsi:schemaLocation and an
empty string in the case of xsi:noNamespaceSchemaLocation and locates the schema via a
catalog mapping .

· If load-combining-both is used and if either the namespace part or the URL part has a
catalog mapping , then the catalog mapping is used. If both have catalog mappings ,
then the value of the --schema-mapping option (XML/XSD option) decides which mapping is
used. If neither the namespace nor URL has a catalog mapping, the URL is used.

· If the option's value is ignore, then the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

If schema location and namespace are both used to find a schema document, specifies which of

47

47

47

47

47 47

234

47

397

397

47

47 47 47

234

132 Command Line Interface (CLI) XSLT Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

them should be preferred during catalog lookup. (If either the --schemalocation-hints or the --
schema-imports option has a value of load-combining-both, and if the namespace and URL parts
involved both have catalog mappings , then the value of this option specifies which of the two
mappings to use (namespace mapping or URL mapping; the prefer-schemalocation value refers to
the URL mapping).) Default is prefer-schemalocation.

xinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false, XInclude's include
elements are ignored.
Note: Boolean option values are set to true if the option is specified without a value.

xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use for the XML instance document: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each instance document loaded during processing references a DTD. If no DTD
exists, an error is reported.

xml-mode-for-schemas

--xml-mode-for-schemas = wf|id|valid

Specifies the XML processing mode to use for XML schema documents: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each schema document loaded during processing references a DTD. If no DTD
exists, an error is reported.

xpath-static-type-errors-as-warnings

--xpath-static-type-errors-as-warnings = true|false

If true, downgrades to warnings any type errors that are detected in the XPath static context.
Whereas an error would cause the execution to fail, a warning would enable processing to continue.
Default is false.

xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This option can
also be useful to find out in what ways a schema which is 1.0-compatible is not 1.1-compatible. The
detect option is an Altova-specific feature. It enables the version of the XML Schema document (1.0
or 1.1) to be detected by reading the value of the vc:minVersion attribute of the document's
<xs:schema> element. If the value of the @vc:minVersion attribute is 1.1, the schema is detected
as being version 1.1. For any other value, or if the @vc:minVersion attribute is absent, the schema
is detected as being version 1.0.

Catalogs and global resources

catalog

--catalog = FILE

47

© 2019-2025 Altova GmbH

XSLT Commands 133Command Line Interface (CLI)

Altova RaptorXML Server 2025

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

Extensions

These options define the handling of special extension functions that are available in a number of
Enterprise-level Altova products (such as XMLSpy Enterprise Edition). Their use is described in the user
manuals of these products.

chartext-disable

--chartext-disable = true|false

Disables chart extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

dotnetext-disable

--dotnetext-disable = true|false

Disables .NET extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

jvm-location

--jvm-location = FILE

FILE specifies the location of the Java Virtual Machine (DLL on Windows, shared object on Linux).

The JVM is needed if you use Java extension functions in your XSLT/XQuery code. Default is
false.

javaext-barcode-location

47

47

53

53 53

53 53

499

134 Command Line Interface (CLI) XSLT Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

--javaext-barcode-location = FILE

Specifies the path to the folder that contains the barcode extension file
AltovaBarcodeExtension.jar. The path must be given in one of the following forms:

· A file URI, for example: --javaext-barcode-location="file:///C:/Program
Files/Altova/RaptorXMLServer2025/etc/jar/"

· A Windows path with backslashes escaped, for example: --javaext-barcode-location="C:
\\Program Files\\Altova\\RaptorXMLServer2025\\etc\\jar\\"

javaext-disable

--javaext-disable = true|false

Disables Java extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

log-output

© 2019-2025 Altova GmbH

XSLT Commands 135Command Line Interface (CLI)

Altova RaptorXML Server 2025

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

136 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

5.5 JSON/Avro/YAML Commands

The JSON commands can be used to check the validity and well-formedness of JSON schema and instance
documents. These commands are listed below and described in detail in the sub-sections of this section:

· avroextractschema : Extracts the Avro schema from an Avro binary file
· json2xml : Converts a JSON instance document to an XML instance document.
· jsonschema2xsd : Converts a JSON Schema document to an XML Schema document.
· valavro : Validates the data in one or more Avro binaries against the respective Avro schema of each

binary
· valavrojson : Validates one or more JSON data files against an Avro schema
· valavroschema : Validates an Avro schema against the Avro schema specification
· valjsonschema : Checks the validity of JSON schema documents
· valjson : Checks the validity of JSON documents
· valyaml : Checks the validity of YAML documents
· wfjson : Checks the well-formedness of JSON documents
· wfyaml : Checks the well-formedness of YAML documents
· xml2json : Converts an XML instance document to a JSON instance document.
· xsd2jsonschema : Converts an XML Schema document to a JSON Schema document.

5.5.1 avroextractschema

An Avro binary file contains an Avro data block preceded by the Avro schema that defines the structure of the
data block. The avroextractschema command extracts the Avro schema from the Avro binary and serializes

the Avro schema as JSON.

raptorxml avroextractschema [options] --avrooutput=AvroSchemaFile AvroBinaryFile

· The AvroBinaryFile argument specifies the Avro binary file from which the Avro schema is to be

extracted.
· The --avrooutput option specifies the location of the extracted Avro schema.

Example
Example of the avroextractschema command:

· raptorxml avroextractschema --avrooutput=c:\MyAvroSchema.avsc c:\MyAvroBinary.avro

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

136

139

144

149

152

156

159

164

168

172

176

180

184

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 137Command Line Interface (CLI)

Altova RaptorXML Server 2025

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

Processing

output, avrooutput

--output = FILE, --avrooutput = FILE

Sets the location of the Avro output file.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

47

47

138 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

log-output

53

53 53

53 53

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 139Command Line Interface (CLI)

Altova RaptorXML Server 2025

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.5.2 json2xml

The json2xml command converts a JSON instance document to an XML document.

raptorxml json2xml [options] JSONFile

140 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

· The JSONFile argument is the JSON file to convert.

· Use the --conversion-output option to specify the location of the generated XML file.

Example
Example of the json2xml command:

· raptorxml json2xml --conversion-output=c:\MyXMLData.xml c:\MyJSONData.json

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

JSON to XML conversion options

These options define the handling of specific conversion-related details in conversions between XML and
JSON.

array-element

--array-element = VALUE

Specifies the name of the element to be converted to an array item.

attributes

--attributes = true|false

If set to true, then conversion between XML attributes and JSON @-prefixed properties occurs.

Otherwise, XML attributes and JSON @-properties will not be converted. The default is true.

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 141Command Line Interface (CLI)

Altova RaptorXML Server 2025

Note: Boolean option values are set to true if the option is specified without a value.

comments

--comments = true|false

If set to true, then conversion between XML comments and JSON #-prefixed properties occurs.

Otherwise, XML attributes and JSON #-properties will not be converted. The default is true.

Note: Boolean option values are set to true if the option is specified without a value.

conversion-output, o

--o, --conversion-output = FILE

Sets the path and name of the file to which the result of the conversion is sent.

create-array-container

--create-array-container = true|false

If set to true, creates a container element in the generated XML file for every JSON array in the

source JSON document. The default is false.

Note: Boolean option values are set to true if the option is specified without a value.

encode-colons

--encode-colons = true|false

If set to true, colons in JSON property names are encoded in the generated XML document. The

default is true.

Note: Boolean option values are set to true if the option is specified without a value.

json-type-hints

--json-type-hints = true|false

If set to true, adds attributes in the generated XML document for type-hints in the source JSON

document. The default is true.

Note: Boolean option values are set to true if the option is specified without a value.

pi

--pi = true|false

If set to true, then conversion between XML processing instructions and JSON ?-prefixed properties

occurs. Otherwise, XML attributes and JSON ?-properties will not be converted. The default is true.

Note: Boolean option values are set to true if the option is specified without a value.

pretty-print

--pp, --pretty-print = true|false

If set to true, pretty-prints the generated output document. The default is false.

Note: Boolean option values are set to true if the option is specified without a value.

text

--text = true|false

If set to true, then conversion between XML text content and JSON $-prefixed properties occurs.

Otherwise, XML attributes and JSON $-properties will not be converted. The default is true.

142 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Note: Boolean option values are set to true if the option is specified without a value.

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

log-output

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 143Command Line Interface (CLI)

Altova RaptorXML Server 2025

InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

47

47

53

144 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

5.5.3 jsonschema2xsd

The jsonschema2xsd command converts a JSON Schema document to an XML Schema document that

conforms with the rules of the W3C XSD 1.0 and 1.1 specifications.

raptorxml jsonschema2xsd [options] JSONSchemaFile

· The JSONSchemaFile argument is the JSON Schema file to convert.

· Use the --schema-conversion-output option to specify the location of the generated XSD file.

Example
Example of the jsonschema2xsd command:

· raptorxml jsonschema2xsd --schema-conversion-output=c:\MyXMLSchema.xsd c:

\MyJSONSchema.json

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

53 53

53 53

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 145Command Line Interface (CLI)

Altova RaptorXML Server 2025

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

JSON validation options

These are options for validating the source JSON Schema document.
additional-schema

--additional-schema = FILE

Specifies URIs of an additional schema document. The additional schema will be loaded by the main
schema and can be referenced from the main schema by the additional schemas id or $id property.

disable-format-checks

--disable-format-checks = true|false

Disables the semantic validation imposed by the format attribute. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

jsonschema-format

--jsonschema-format = json|yaml

Specifies the format in which the JSON Schema is written: JSON or YAML. Default is json.

jsonschema-version

--jsonschema-version = draft04|draft06|draft07|2019-09|2020-12|oas-3.1|latest|

detect

Specifies which version of the JSON Schema specification draft version to use. Default is detect.

strict-integer-checks

--strict-integer-checks = true|false

Specifies whether the stricter integer checks of draft-04 should be used with later schemas—where
integer checks are looser. For example, 1.0 is not a valid integer in draft-04, but is a valid integer in

later drafts. This option has no effect for draft-04 schemas. The default value of the option is false.
Note: Boolean option values are set to true if the option is specified without a value.

Conversion from JSON Schema to XSD

These are options to specify details of the JSON Schema to XSD conversion.
at-to-attributes

--at-to-attributes = true|false

If set to true, then properties prefixed with @ in the JSON Schema document are converted to

attributes in the generated XSD document. The default is true.

Note: Boolean option values are set to true if the option is specified without a value.

146 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

consider-format

--consider-format = true|false

If set to true, datatypes in the source schema are converted, if possible, to the corresponding type

in the target schema. The default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

dollar-to-text

--dollar-to-text = true|false

If set to true, then $-prefixed properties in the JSON Schema document are converted to text in the

generated XSD document. The default is true.

Note: Boolean option values are set to true if the option is specified without a value.

ignore-comments

--ignore-comments = true|false

If set to true, ignores properties in the source JSON Schema named '#'. The default is true.

Note: Boolean option values are set to true if the option is specified without a value.

ignore-pi-proprties

--ignore-pi-properties = true|false

If set to true, ignores properties in the source JSON Schema document that start with '?'. The

default is true.

Note: Boolean option values are set to true if the option is specified without a value.

ignore-xmlns-proprties

--ignore-xmlns-properties = true|false

If set to true, ignores properties in the source JSON Schema document that start with '@xmlns'.

The default is true.

Note: Boolean option values are set to true if the option is specified without a value.

ignore-xsi-proprties

--ignore-xsi-properties = true|false

If set to true, ignores properties in the source JSON Schema document that start with '@xsi'. The

default is true.

Note: Boolean option values are set to true if the option is specified without a value.

schema-conversion-output, o

--o, --schema-converson-output = FILE

Sets the path and name of the file to which the result of the conversion is sent.

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 147Command Line Interface (CLI)

Altova RaptorXML Server 2025

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

log-output

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.

148 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

47

47

53

53 53

53 53

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 149Command Line Interface (CLI)

Altova RaptorXML Server 2025

5.5.4 valavro (avro)

The valavro | avro command validates the data block in one or more Avro binary files against the respective

Avro schemas in each binary file.

raptorxml valavro | avro [options] AvroBinaryFile

· The AvroBinaryFile argument specifies one or more Avro binary files to validate. Specifically, the

data block in each Avro binary file is validated against the Avro schema in that binary file.
· To validate multiple Avro binaries, either: (i) list the files to be validated on the CLI, with each file

separated from the next by a space; or (ii) list the files to be validated in a text file (.txt file), with one
filename per line, and supply this text file as the AvroBinaryFile argument together with the --

listfile option set to true (see the Options list below).

Examples
Examples of the valavro command:

· raptorxml valavro c:\MyAvroBinary.avro

· raptorxml valavro c:\MyAvroBinary01.avro c:\MyAvroBinary02.avro
· raptorxml avro --listfile=true c:\MyFileList.txt

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)

232

150 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

Processing

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

globalresourcefile [gr]

47

47

53

53 53

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 151Command Line Interface (CLI)

Altova RaptorXML Server 2025

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

log-output

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

--recurse = true|false

53 53

152 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.5.5 valavrojson (avrojson)

The valavrojson | avrojson command validates a JSON document against an Avro schema.

raptorxml valavrojson | avrojson [options] --avroschema=AvroSchema JSONFile

· The JSONFile argument specifies the JSON document to validate.

· The --avroschema option specifies the Avro schema against which the JSON document is to be

validated.
· To validate multiple JSON files, either: (i) list the files on the CLI, with each file separated from the next

by a space; or (ii) list the files to validate in a text file (.txt file), with one filename per line, and supply
this text file as the JSONFile argument together with the --listfile option set to true (see the

Options list below).

Examples
Examples of the valavrojson command:

232

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 153Command Line Interface (CLI)

Altova RaptorXML Server 2025

· raptorxml valavrojson --avroschema=c:\MyAvroSchema.avsc c:\MyJSONDataFile.json

· raptorxml avrojson --avroschema=c:\MyAvroSchema.avsc c:\MyJSONDataFile.json

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

Processing

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.

154 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Note: Boolean option values are set to true if the option is specified without a value.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

47

47

53

53 53

53 53

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 155Command Line Interface (CLI)

Altova RaptorXML Server 2025

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

log-output

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the

156 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.5.6 valavroschema (avroschema)

The valavroschema | avroschema command validates one or more Avro schema documents against the Avro

schema specification.

raptorxml valavroschema | avroschema [options] AvroSchema

· The AvroSchema argument is the Avro schema document to validate.

· To validate multiple Avro schemas, either: (i) list the files to be validated on the CLI, with each file
separated from the next by a space; or (ii) list the files to be validated in a text file (.txt file), with one
filename per line, and supply this text file as the AvroSchema argument together with the --

listfile option set to true (see the Options list below).

Examples
Examples of the valavroschema command:

· raptorxml valavroschema c:\MyAvroSchema.avsc

· raptorxml valavroschema c:\MyAvroSchema01.avsc c:\MyAvroSchema02.avsc
· raptorxml avroschema --listfile=true c:\MyFileList.txt

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

232

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 157Command Line Interface (CLI)

Altova RaptorXML Server 2025

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

Processing

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

47

47

158 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

log-output

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output

53

53 53

53 53

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 159Command Line Interface (CLI)

Altova RaptorXML Server 2025

location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.5.7 valjsonschema (jsonschema)

The valjsonschema | jsonschema command validates one or more JSON schema documents according to

the various JSON Schema specifications (set via the jsonschema-version option.

raptorxml valjsonschema | jsonschema [options] InputFile

· The InputFile argument is the JSON schema document to validate.

160 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

· To validate multiple documents, either: (i) list the files to be validated on the CLI, with each file
separated from the next by a space; or (ii) list the files to be validated in a text file (.txt file), with one
filename per line, and supply this text file as the InputFile argument together with the --

listfile option set to true (see the Options list below).

Examples
Examples of the valjsonschema command:

· raptorxml valjsonschema c:\MyJSONSchema.json

· raptorxml jsonschema c:\MyJSONSchema-01.json c:\MyJSONSchema-02.json

· raptorxml jsonschema --listfile=true c:\FileList.txt

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

Validation and processing

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

232

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 161Command Line Interface (CLI)

Altova RaptorXML Server 2025

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

JSON validation options

additional-schema

--additional-schema = FILE

Specifies URIs of an additional schema document. The additional schema will be loaded by the main
schema and can be referenced from the main schema by the additional schemas id or $id property.

disable-format-checks

--disable-format-checks = true|false

Disables the semantic validation imposed by the format attribute. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

jsonschema-format

--jsonschema-format = json|yaml

Specifies the format in which the JSON Schema is written: JSON or YAML. Default is json.

jsonschema-version

--jsonschema-version = draft04|draft06|draft07|2019-09|2020-12|oas-3.1|latest|

detect

Specifies which version of the JSON Schema specification draft version to use. Default is detect.

strict-integer-checks

--strict-integer-checks = true|false

Specifies whether the stricter integer checks of draft-04 should be used with later schemas—where
integer checks are looser. For example, 1.0 is not a valid integer in draft-04, but is a valid integer in

later drafts. This option has no effect for draft-04 schemas. The default value of the option is false.
Note: Boolean option values are set to true if the option is specified without a value.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML

162 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

47

47

53

53 53

53 53

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 163Command Line Interface (CLI)

Altova RaptorXML Server 2025

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

log-output

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

164 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

5.5.8 valjson (json)

The valjson | json command validates one or more JSON instance documents according to the JSON

schema supplied with the --schema (--jsonschema) option.

raptorxml valjson | json [options] --jsonschema=File InputFile

· The InputFile argument is the JSON instance document to validate.

· To validate multiple documents, either: (i) list the files to be validated on the CLI, with each file
separated from the next by a space; or (ii) list the files to be validated in a text file (.txt file), with one
filename per line, and supply this text file as the InputFile argument together with the --

listfile option set to true (see the Options list below).

Examples
Examples of the valjson command:

· raptorxml valjson --jsonschema=c:\MyJSONSchema.json c:\MyJSONInstance.json

· raptorxml json --jsonschema=c:\MyJSONSchema.json c:\MyJSONInstance-01.json c:

\MyJSONInstance-02.json
· raptorxml json --jsonschema=c:\MyJSONSchema.json --listfile=true c:\FileList.txt

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

232

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 165Command Line Interface (CLI)

Altova RaptorXML Server 2025

information about the command.

Validation and processing

schema, jsonschema

--schema = FILE, --jsonschema = FILE

Specifies the path to the JSON Schema document to use for the validation of JSON instance
documents.

jsonschema-format

--jsonschema-format = json|yaml

Specifies the format in which the JSON Schema is written: JSON or YAML. Default is json.

jsonschema-version

--jsonschema-version = draft04|draft06|draft07|2019-09|2020-12|oas-3.1|latest|

detect

Specifies which version of the JSON Schema specification draft version to use. Default is detect.

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

additional-schema

--additional-schema = FILE

Specifies URIs of an additional schema document. The additional schema will be loaded by the main
schema and can be referenced from the main schema by the additional schemas id or $id property.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

json5

--json5 = true|false

Enables JSON5 support. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

jsonc

--jsonc = true|false

166 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Enables support for comments in JSON. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

json-lines

--json-lines = true|false

Enables support for JSON Lines (that is, one JSON value per line). Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

disable-format-checks

--disable-format-checks = true|false

Disables the semantic validation imposed by the format attribute. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

strict-integer-checks

--strict-integer-checks = true|false

Specifies whether the stricter integer checks of draft-04 should be used with later schemas—where
integer checks are looser. For example, 1.0 is not a valid integer in draft-04, but is a valid integer in

later drafts. This option has no effect for draft-04 schemas. The default value of the option is false.
Note: Boolean option values are set to true if the option is specified without a value.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

47

47

53

53 53

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 167Command Line Interface (CLI)

Altova RaptorXML Server 2025

Specifies the global resource file (and enables global resources) .

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

log-output

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's

53 53

168 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.5.9 valyaml (yaml)

The valyaml | yaml command validates one or more YAML instance documents against the JSON schema

supplied with the --schema (--jsonschema) option.

raptorxml valyaml | yaml [options] --jsonschema=File InputFile

· The InputFile argument is the YAML instance document to validate.

· To validate multiple documents, either: (i) list the files to be validated on the CLI, with each file
separated from the next by a space; or (ii) list the files to be validated in a text file (.txt file), with one
filename per line, and supply this text file as the InputFile argument together with the --

listfile option set to true (see the Options list below).

Examples
Examples of the valyaml command:

· raptorxml valyaml --jsonschema=c:\MyJSONSchema.json c:\MyYAMLInstance.yaml

232

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 169Command Line Interface (CLI)

Altova RaptorXML Server 2025

· raptorxml yaml --jsonschema=c:\MyJSONSchema.json c:\MyYAMLInstance-01.yaml c:

\MyYAMLInstance-02.yaml
· raptorxml yaml --jsonschema=c:\MyJSONSchema.json --listfile=true c:\FileList.txt

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

Validation and processing

schema, jsonschema

--schema = FILE, --jsonschema = FILE

Specifies the path to the JSON Schema document to use for the validation of JSON instance
documents.

jsonschema-format

--jsonschema-format = json|yaml

Specifies the format in which the JSON Schema is written: JSON or YAML. Default is json.

jsonschema-version

--jsonschema-version = draft04|draft06|draft07|2019-09|2020-12|oas-3.1|latest|

detect

Specifies which version of the JSON Schema specification draft version to use. Default is detect.

listfile

170 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

additional-schema

--additional-schema = FILE

Specifies URIs of an additional schema document. The additional schema will be loaded by the main
schema and can be referenced from the main schema by the additional schemas id or $id property.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

disable-format-checks

--disable-format-checks = true|false

Disables the semantic validation imposed by the format attribute. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

strict-integer-checks

--strict-integer-checks = true|false

Specifies whether the stricter integer checks of draft-04 should be used with later schemas—where
integer checks are looser. For example, 1.0 is not a valid integer in draft-04, but is a valid integer in

later drafts. This option has no effect for draft-04 schemas. The default value of the option is false.
Note: Boolean option values are set to true if the option is specified without a value.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

47

47

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 171Command Line Interface (CLI)

Altova RaptorXML Server 2025

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

53

53 53

53 53

172 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

log-output

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.5.10 wfjson

The wfjson command checks one or more JSON documents according to the ECMA-404 specification for well-

formedness.

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 173Command Line Interface (CLI)

Altova RaptorXML Server 2025

raptorxml wfjson [options] InputFile

· The InputFile argument is the JSON document (schema or instance) to check for well-formedness.

· To check multiple documents, either: (i) list the files to be checked on the CLI, with each file separated
from the next by a space; or (ii) list the files to be checked in a text file (.txt file), with one filename
per line, and supply this text file as the InputFile argument together with the --listfile option

set to true (see the Options list below).

Examples
Examples of the wfjson command:

· raptorxml wfjson c:\MyJSONFile.json

· raptorxml wfjson c:\MyJSONFile-01.json c:\MyJSONFile-02.json

· raptorxml wfjson --listfile=true c:\FileList.txt

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

Validation and processing

json5

--json5 = true|false

Enables JSON5 support. Default value is false.

232

174 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Note: Boolean option values are set to true if the option is specified without a value.

jsonc

--jsonc = true|false

Enables support for comments in JSON. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

json-lines

--json-lines = true|false

Enables support for JSON Lines (that is, one JSON value per line). Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.

47

47

53

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 175Command Line Interface (CLI)

Altova RaptorXML Server 2025

Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

log-output

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

53 53

53 53

176 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.5.11 wfyaml

The wfyaml command checks one or more YAML documents according to the YAML 1.2 specification for well-

formedness.

raptorxml wfyaml [options] InputFile

· The InputFile argument is the YAML document to check for well-formedness.

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 177Command Line Interface (CLI)

Altova RaptorXML Server 2025

· To check multiple documents, either: (i) list the files to be checked on the CLI, with each file separated
from the next by a space; or (ii) list the files to be checked in a text file (.txt file), with one filename
per line, and supply this text file as the InputFile argument together with the --listfile option

set to true (see the Options list below).

Examples
Examples of the wfyaml command:

· raptorxml wfyaml c:\MyYAMLFile.yaml

· raptorxml wfyaml c:\MyYAMLFile-01.yaml c:\MyYAMLFile-02.yaml

· raptorxml wfyaml --listfile=true c:\FileList.txt

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

232

47

178 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,

47

53

53 53

53 53

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 179Command Line Interface (CLI)

Altova RaptorXML Server 2025

however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

log-output

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

180 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

5.5.12 xml2json

The xml2json command converts an XML instance document to a JSON document.

raptorxml XML2json [options] XMLFile

· The XMLFile argument is the XML file to convert.

· Use the --conversion-output option to specify the location of the generated JSON file.

Example
Example of the xml2json command:

· raptorxml xml2json --conversion-output=c:\MyJSONData.json c:\MyXMLData.xml

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

XML to JSON conversion options

These options define the handling of specific conversion-related details in conversions between XML and
JSON.

attributes

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 181Command Line Interface (CLI)

Altova RaptorXML Server 2025

--attributes = true|false

If set to true, then conversion between XML attributes and JSON @-prefixed properties occurs.

Otherwise, XML attributes and JSON @-properties will not be converted. The default is true.

Note: Boolean option values are set to true if the option is specified without a value.

comments

--comments = true|false

If set to true, then conversion between XML comments and JSON #-prefixed properties occurs.

Otherwise, XML attributes and JSON #-properties will not be converted. The default is true.

Note: Boolean option values are set to true if the option is specified without a value.

conversion-output, o

--o, --conversion-output = FILE

Sets the path and name of the file to which the result of the conversion is sent.

ignore-pis

--ignore-pis = true|false

If set to true, ignores processing instructions in the source XML document. The default is false.

Note: Boolean option values are set to true if the option is specified without a value.

merge-elements

--merge-elements = true|false

If set to true, creates an array in the generated JSON document from same-name, same-level

elements in the XML document. The default is true.

Note: Boolean option values are set to true if the option is specified without a value.

merge-text

--merge-text = true|false

If set to true, creates an array in the generated JSON document from same-level text nodes in the

XML document. The default is true.

Note: Boolean option values are set to true if the option is specified without a value.

pi

--pi = true|false

If set to true, then conversion between XML processing instructions and JSON ?-prefixed properties

occurs. Otherwise, XML attributes and JSON ?-properties will not be converted. The default is true.

Note: Boolean option values are set to true if the option is specified without a value.

pretty-print

--pp, --pretty-print = true|false

If set to true, pretty-prints the generated output document. The default is false.

Note: Boolean option values are set to true if the option is specified without a value.

text

--text = true|false

182 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

If set to true, then conversion between XML text content and JSON $-prefixed properties occurs.

Otherwise, XML attributes and JSON $-properties will not be converted. The default is true.

Note: Boolean option values are set to true if the option is specified without a value.

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

log-output

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 183Command Line Interface (CLI)

Altova RaptorXML Server 2025

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

47

47

53

184 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

5.5.13 xsd2jsonschema

The xsd2jsonschema command converts one or more W3C XML Schema 1.0 or 1.1 documents to a JSON

Schema document.

raptorxml xsd2jsonschema [options] XSDFile

· The XSDFile argument is the XML Schema file to convert.

· Use the --schema-conversion-output option to specify the location of the generated XSD file.

Example
Example of the xsd2jsonschema command:

· raptorxml xsd2jsonschema --schema-conversion-output=c:\MyJSONSchema.json c:

\MyXSDSchema.xsd

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

53 53

53 53

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 185Command Line Interface (CLI)

Altova RaptorXML Server 2025

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

XML Schema definition options

schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation | load-

by-namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs:import elements, each of which has an optional namespace attribute
and an optional schemaLocation attribute: <import namespace="someNS"
schemaLocation="someURL">. The option specifies whether to load a schema document or just
license a namespace, and, if a schema document is to be loaded, which information should be used
to find it. Default: load-preferring-schemalocation.
The behavior is as follows:

· load-by-schemalocation: The value of the schemaLocation attribute is used to locate the
schema, taking account of catalog mappings . If the namespace attribute is present, the
namespace is imported (licensed).

· load-preferring-schemalocation: If the schemaLocation attribute is present, it is used,
taking account of catalog mappings . If no schemaLocation attribute is present, then the
value of the namespace attribute is used via a catalog mapping . This is the default value.

· load-by-namespace: The value of the namespace attribute is used to locate the schema via a
catalog mapping .

· load-combining-both: If either the namespace or schemaLocation attribute has a catalog
mapping , then the mapping is used. If both have catalog mappings , then the value of the
--schema-mapping option (XML/XSD option) decides which mapping is used. If no catalog
mapping is present, the schemaLocation attribute is used.

· license-namespace-only: The namespace is imported. No schema document is imported.

schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

If schema location and namespace are both used to find a schema document, specifies which of
them should be preferred during catalog lookup. (If either the --schemalocation-hints or the --
schema-imports option has a value of load-combining-both, and if the namespace and URL parts
involved both have catalog mappings , then the value of this option specifies which of the two
mappings to use (namespace mapping or URL mapping; the prefer-schemalocation value refers to
the URL mapping).) Default is prefer-schemalocation.

schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace | load-

combining-both | ignore

Specifies the behavior of the xsi:schemaLocation and xsi:noNamespaceSchemaLocation

47

47

47

47

47 47

234

47

47

186 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

attributes: Whether to load a schema document, and, if yes, which information should be used to find
it. Default: load-by-schemalocation.

· The load-by-schemalocation value uses the URL of the schema location in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML instance
documents. This is the default value.

· The load-by-namespace value takes the namespace part of xsi:schemaLocation and an
empty string in the case of xsi:noNamespaceSchemaLocation and locates the schema via a
catalog mapping .

· If load-combining-both is used and if either the namespace part or the URL part has a
catalog mapping , then the catalog mapping is used. If both have catalog mappings ,
then the value of the --schema-mapping option (XML/XSD option) decides which mapping is
used. If neither the namespace nor URL has a catalog mapping, the URL is used.

· If the option's value is ignore, then the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

XMLSchema processing options

report-import-namespace-mismatch-as-warning

--report-import-namespace-mismatch-as-warning = true|false

Downgrades namespace or target-namespace mismatch errors when importing schemas with
xs:import from errors to warnings. The default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

xinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false, XInclude's include
elements are ignored.
Note: Boolean option values are set to true if the option is specified without a value.

xml-mode-for-schemas

--xml-mode-for-schemas = wf|id|valid

Specifies the XML processing mode to use for XML schema documents: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of
valid requires that each schema document loaded during processing references a DTD. If no DTD
exists, an error is reported.

xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This option can
also be useful to find out in what ways a schema which is 1.0-compatible is not 1.1-compatible. The
detect option is an Altova-specific feature. It enables the version of the XML Schema document (1.0
or 1.1) to be detected by reading the value of the vc:minVersion attribute of the document's
<xs:schema> element. If the value of the @vc:minVersion attribute is 1.1, the schema is detected
as being version 1.1. For any other value, or if the @vc:minVersion attribute is absent, the schema
is detected as being version 1.0.

397

397

47

47 47 47

234

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 187Command Line Interface (CLI)

Altova RaptorXML Server 2025

Conversion from XSD to JSON Schema

array-and-item

--array-and-item = true|false

If set to true, the generated JSON Schema will permit not only arrays but also single items for

particles with maxOccurs > 1. The default is true.

Note: Boolean option values are set to true if the option is specified without a value.

consider-format

--consider-format = true|false

If set to true, datatypes in the source schema are converted, if possible, to the corresponding type

in the target schema. The default value is false.

Note: Boolean option values are set to true if the option is specified without a value.

jsonschema-version

--jsonschema-version = draft04|draft06|draft07|2019-09|2020-12|oas-3.1|latest|

detect

Specifies which version of the JSON Schema specification draft version to use. Default is detect.

property-for-comments

--property-for-comments = true|false

If set to true, creates a property named '#' in each sub-schema to support comments. The default

is false.

Note: Boolean option values are set to true if the option is specified without a value.

property-for-pis

--property-for-pis = true|false

If set to true, creates a pattern property matching properties prefixed with '?' to support XML

processing instructions. The default is false.

Note: Boolean option values are set to true if the option is specified without a value.

property-for-xmlns

--property-for-xmlns = true|false

If set to true, creates a pattern property matching properties prefixed with '@xmlns' in each sub-

schema to support namespace declaration. The default is false.

Note: Boolean option values are set to true if the option is specified without a value.

property-for-xsi

--property-for-xsi = true|false

If set to true, creates a pattern property matching properties prefixed with '@xsi' in each sub-

schema to support xsi:* attributes, such as xsi:schemaLocation. The default is false.

Note: Boolean option values are set to true if the option is specified without a value.

simple-content-pure-object

--simple-content-pure-object= true|false

If set to true, creates a pure object for complex types with simple content. The default is false.

Note: Boolean option values are set to true if the option is specified without a value.

188 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

schema-conversion-output, o

--o, --schema-converson-output = FILE

Sets the path and name of the file to which the result of the conversion is sent.

simplify-occurrence-constraints

--simplify-occurrence-constraints = true|false

If set to true: (i) occurrence definitions in the XML Schema are simplified to either required or

optional in the JSON Schema: (ii) repeatable elements in the XML Schema are simplified to arrays
with unbounded maxItems. The default is false.

Note: Boolean option values are set to true if the option is specified without a value.

xmlns

--xml-mode = wf|id|valid

Specifies prefix URI mappings for the namespaces in the XML Schema.

Common options

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML
formats, with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100.
Processing stops when the error limit is reached. Useful for limiting processor use during
validation/transformation.

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if
the specified info limit is reached, but further messages are not reported. The default value is 100.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line.

Default value is false. (An alternative is to list the files on the CLI with a space as separator. Note,
however, that CLIs have a maximum-character limitation.) Note that the --listfile option applies
only to arguments, and not to options.

© 2019-2025 Altova GmbH

JSON/Avro/YAML Commands 189Command Line Interface (CLI)

Altova RaptorXML Server 2025

Note: Boolean option values are set to true if the option is specified without a value.

log-output

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's
InputFile argument will select the specified file also in subdirectories. For example: "test.zip|

zip\test.xml" will select files named test.xml at all folder levels of the zip folder. References to
ZIP files must be given in quotes. The wildcard characters * and ? may be used. So, *.xml will
select all .xml files in the (zip) folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

Catalogs and global resources

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default
value is the absolute path to the installed root catalog file (<installation-

190 Command Line Interface (CLI) JSON/Avro/YAML Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML
Catalogs , for information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the
section, XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

47

47

53

53 53

53 53

© 2019-2025 Altova GmbH

XML Signature Commands 191Command Line Interface (CLI)

Altova RaptorXML Server 2025

5.6 XML Signature Commands

The XML Signature commands can be used to sign an XML document and to verify a signed document. These
commands are listed below and described in detail in the sub-sections of this section:

· xmlsignature-sign : Creates an XML signature output document from an input document
· xmlsignature-verify : Verifies an XML signature document
· xmlsignature-update : Updates the signature of a (modified) XML document
· xmlsignature-remove : Removes the signature of an XML document

5.6.1 xmlsignature-sign

The xmlsignature-sign | xsign command takes an XML document as input and creates an XML signature

output document using the specified signing options.

raptorxml xmlsignature-sign [options] --output=File --signature-type=Value --

signature-canonicalization-method=Value --certname=Value|hmackey=Value InputFile

· The InputFile argument is the XML document to sign.

· The --output option specifies the location of the document that contains the XML signature.

Example
Example of the xmlsignature-sign command:

· raptorxml xsign --output=c:\SignedFile.xml --signature-type=enveloped --signature-
canonicalization-method=xml-c14n11 --hmackey=secretpassword c:\SomeUnsigned.xml

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

191

195

191

191

192 Command Line Interface (CLI) XML Signature Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

Common options

output

output = FILE

The URL of the output document that is created with the new XML signature.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

XML Signature options

absolute-reference-uri

--absolute-reference-uri = true|false

Specifies whether the URI of the signed document is to be read as absolute (true) or relative
(false). Default is false.
Note: Boolean option values are set to true if the option is specified without a value.

certname, certificate-name

--certname, --certificate-name = VALUE

The name of the certificate used for signing.

Windows
This is the Subject name of a certificate from the selected --certificate-store.

Example to list the certificates (under PowerShell)
% ls cert://CurrentUser/My
PSParentPath: Microsoft.PowerShell.Security\Certificate::CurrentUser\My
Thumbprint Subject
---------- -------
C9DF64BB0AAF5FA73474D78B7CCFFC37C95BFC6C CN=certificate1
... CN=...

Example: --certificate-name==certificate1

Linux/MacOS

© 2019-2025 Altova GmbH

XML Signature Commands 193Command Line Interface (CLI)

Altova RaptorXML Server 2025

--certname specifies the file name of a PEM encoded X.509v3 certificate with the private key. Such

files usually have the extension .pem.

Example: --certificate-name==/path/to/certificate1.pem

certstore, certificate-store

--certstore, --certificate-store = VALUE

The location where the certificate specified with --certificate-name is stored.

Windows
The name of a certificate store under cert://CurrentUser. The available certificate stores can be

listed (under PowerShell) by using % ls cert://CurrentUser/. Certificates would then be listed as

follows:

Name : TrustedPublisher
Name : ClientAuthIssuer
Name : Root
Name : UserDS
Name : CA
Name : ACRS
Name : REQUEST
Name : AuthRoot
Name : MSIEHistoryJournal
Name : TrustedPeople
Name : MyCertStore

Name : Local NonRemovable Certificates
Name : SmartCardRoot
Name : Trust
Name : Disallowed

Example: --certificate-store==MyCertStore

Linux/MacOS
The --certstore option is currently not supported.

digest, digest-method

--digest, --digest-method = sha1|sha256|sha384|sha512

The algorithm that is used to compute the digest value over the input XML file. Available values are:
sha1|sha256|sha384|sha512.

hmackey, hmac-secret-key

--hmackey, --hmac-secret-key = VALUE

The HMAC shared secret key; must have a minimum length of six characters.

Example: --hmackey=secretpassword

hmaclen, hmac-output-length

--hmaclen, --hmac-output-length = LENGTH

194 Command Line Interface (CLI) XML Signature Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Truncates the output of the HMAC algorithm to length bits. If specified, this value must be
· a multiple of 8
· larger than 80
· larger than half of the underlying hash algorithm's output length

keyinfo, append-keyinfo

--keyinfo, --append-keyinfo = true|false

Specifies whether to include the KeyInfo element in the signature or not. The default is false.

sigc14nmeth, signature-canonicalization-method

--sigc14nmeth, --signature-canonicalization-method = VALUE

Specifies the canonicalization algorithm to apply to the SignedInfo element. The value must be one

of:

· REC-xml-c14n-20010315
· xml-c14n11
· xml-exc-c14n#

sigmeth, signature-method

--sigmeth, --signature-method = VALUE

Specifies the algorithm to use for generating the signature.

When a certificate is used
If a certificate is specified, then SignatureMethod is optional and the value for this parameter is
derived from the certificate. If specified, it must match the algorithm used by the certificate. Example:
rsa-sha256.

When --hmac-secret-key is used
When HMACSecretKey is used, then SignatureMethod is mandatory. The value must be one of the
supported HMAC algorithms:

· hmac-sha256
· hmac-sha386
· hmac-sha512
· hmac-sha1 (discouraged by the specification)

Example: hmac-sha256

sigtype, signature-type

--sigtype, --signature-type = detached | enveloping | enveloped

Specifies the type of signature to be generated.

transforms

--transforms = VALUE

Specifies the XML Signature transformations applied to the input document. The supported values
are:

· REC-xml-c14n-20010315 for Canonical XML 1.0 (omit comments)

© 2019-2025 Altova GmbH

XML Signature Commands 195Command Line Interface (CLI)

Altova RaptorXML Server 2025

· xml-c14n11 for Canonical XML 1.1 (omit comments)
· xml-exc-c14n# for Exclusive XML Canonicalization 1.0 (omit comments)
· REC-xml-c14n-20010315#WithComments for Canonical XML 1.0 (with comments)
· xml-c14n11#WithComments for Canonical XML 1.1 (with comments)
· xml-exc-c14n#WithComments for Exclusive XML Canonicalization 1.0 (with comments)
· base64

· strip-whitespaces Altova extension

Example: --transforms=xml-c14n11

Note: This option can be specified multiple times. If specified multiple times, then the order of
specification is significant. The first specified transformation receives the input document. The last
specified transformation is used immediately before calculation of the digest value.

write-default-attributes

--write-default-attributes = true|false

Specifies whether to include default attribute values from the DTD in the signed document.

Help and version options

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

5.6.2 xmlsignature-verify

The xmlsignature-verify | xverify command verifies the XML signature of the input file.

raptorxml xmlsignature-verify [options] InputFile

· The InputFile argument is the signed XML document to verify.

· If the verification is successful, a result="OK" message is displayed; otherwise, a result="Failed"

message is displayed.

Example
Example of the xmlsignature-verify command:

196 Command Line Interface (CLI) XML Signature Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

· raptorxml xverify c:\SignedFile.xml

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

Common options

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

XML Signature options

certname, certificate-name

--certname, --certificate-name = VALUE

The name of the certificate used for signing.

Windows
This is the Subject name of a certificate from the selected --certificate-store.

Example to list the certificates (under PowerShell)

© 2019-2025 Altova GmbH

XML Signature Commands 197Command Line Interface (CLI)

Altova RaptorXML Server 2025

% ls cert://CurrentUser/My
PSParentPath: Microsoft.PowerShell.Security\Certificate::CurrentUser\My
Thumbprint Subject
---------- -------
C9DF64BB0AAF5FA73474D78B7CCFFC37C95BFC6C CN=certificate1
... CN=...

Example: --certificate-name==certificate1

Linux/MacOS
--certname specifies the file name of a PEM encoded X.509v3 certificate with the private key. Such

files usually have the extension .pem.

Example: --certificate-name==/path/to/certificate1.pem

certstore, certificate-store

--certstore, --certificate-store = VALUE

The location where the certificate specified with --certificate-name is stored.

Windows
The name of a certificate store under cert://CurrentUser. The available certificate stores can be

listed (under PowerShell) by using % ls cert://CurrentUser/. Certificates would then be listed as

follows:

Name : TrustedPublisher
Name : ClientAuthIssuer
Name : Root
Name : UserDS
Name : CA
Name : ACRS
Name : REQUEST
Name : AuthRoot
Name : MSIEHistoryJournal
Name : TrustedPeople
Name : MyCertStore

Name : Local NonRemovable Certificates
Name : SmartCardRoot
Name : Trust
Name : Disallowed

Example: --certificate-store==MyCertStore

Linux/MacOS
The --certstore option is currently not supported.

hmackey, hmac-secret-key

--hmackey, --hmac-secret-key = VALUE

The HMAC shared secret key; must have a minimum length of six characters.

198 Command Line Interface (CLI) XML Signature Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Example: --hmackey=secretpassword

ignore-certificate-errors

--i, --ignore-certificate-errors = true|false

If set to true, ignores certificate errors during verification of XML signatures (the SignedInfo

elements) in an XML document. The default is false.

Note: Boolean option values are set to true if the option is specified without a value.

Help and version options

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

5.6.3 xmlsignature-update

The xmlsignature-update | xupdate command updates the XML signature in the signed input file. If the

document has been modified, the updated XML signature will be different; otherwise, the updated signature will
be the same as the previous signature.

raptorxml xmlsignature-update [options] --output=File SignedFile

· The SignedFile argument is the signed XML document to update.

· Either (i) the hmac-secret-key option or (ii) the certificate-name and certificate-store options
must be specified.

· If the certificate-name and certificate-store options are specified, then they must match those
that were used to sign the XML document previously. (Note that the certificate-store option is
currently not supported on Linux and macOS.)

Examples
Examples of the xmlsignature-update command:

· raptorxml xupdate --output=c:\UpdatedSignedFile.xml --certname=certificate1 --
certstore=MyCertStore c:\SomeSignedFile.xml

· raptorxml xupdate --output=c:\UpdatedSignedFile.xml --hmackey=SecretPassword c:
\SomeSignedFile.xml

© 2019-2025 Altova GmbH

XML Signature Commands 199Command Line Interface (CLI)

Altova RaptorXML Server 2025

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

Common options

output

output = FILE

The URL of the output document that is created with the new XML signature.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

XML Signature options

certname, certificate-name

--certname, --certificate-name = VALUE

The name of the certificate used for signing.

Windows

200 Command Line Interface (CLI) XML Signature Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

This is the Subject name of a certificate from the selected --certificate-store.

Example to list the certificates (under PowerShell)
% ls cert://CurrentUser/My
PSParentPath: Microsoft.PowerShell.Security\Certificate::CurrentUser\My
Thumbprint Subject
---------- -------
C9DF64BB0AAF5FA73474D78B7CCFFC37C95BFC6C CN=certificate1
... CN=...

Example: --certificate-name==certificate1

Linux/MacOS
--certname specifies the file name of a PEM encoded X.509v3 certificate with the private key. Such

files usually have the extension .pem.

Example: --certificate-name==/path/to/certificate1.pem

certstore, certificate-store

--certstore, --certificate-store = VALUE

The location where the certificate specified with --certificate-name is stored.

Windows
The name of a certificate store under cert://CurrentUser. The available certificate stores can be

listed (under PowerShell) by using % ls cert://CurrentUser/. Certificates would then be listed as

follows:

Name : TrustedPublisher
Name : ClientAuthIssuer
Name : Root
Name : UserDS
Name : CA
Name : ACRS
Name : REQUEST
Name : AuthRoot
Name : MSIEHistoryJournal
Name : TrustedPeople
Name : MyCertStore

Name : Local NonRemovable Certificates
Name : SmartCardRoot
Name : Trust
Name : Disallowed

Example: --certificate-store==MyCertStore

Linux/MacOS
The --certstore option is currently not supported.

© 2019-2025 Altova GmbH

XML Signature Commands 201Command Line Interface (CLI)

Altova RaptorXML Server 2025

hmackey, hmac-secret-key

--hmackey, --hmac-secret-key = VALUE

The HMAC shared secret key; must have a minimum length of six characters.

Example: --hmackey=secretpassword

Help and version options

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

5.6.4 xmlsignature-remove

The xmlsignature-remove | xremove command removes the XML signature of the signed input file, and

saves the resulting unsigned document to an output location that you specify.

raptorxml xmlsignature-remove [options] --output=File SignedFile

· The SignedFile argument is the signed XML document from which you want to remove the XML

signature.
· The --output option specifies the location of the unsigned XML document that is generated.

Example
Example of the xmlsignature-remove command:

· raptorxml xremove --output=c:\UnsignedFile.xml c:\SignedFile.xml

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

202 Command Line Interface (CLI) XML Signature Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

Common options

output

output = FILE

The URL of the output document that is created with the XML signature removed.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

Help and version options

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command
can be used with an argument. For example: help valany.)

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the
command.

© 2019-2025 Altova GmbH

General Commands 203Command Line Interface (CLI)

Altova RaptorXML Server 2025

5.7 General Commands

This section contains a description of the following general commands:

· valany : validates the submitted document according to its type
· script : executes a Python script
· help : displays information about the named command

5.7.1 valany

The valany command is a general command that validates a document on the basis of what type of document

it is. The type of the input document is detected automatically, and the corresponding validation is carried out
according to the respective specification. The InputFile argument is the document to validate. Note that only

one document can be submitted as the argument of the command.

raptorxml valany [options] InputFile

The valany command covers the following types of validation. Its options are those that are available for the

corresponding individual validation command. See the description of the respective validation commands for a
list of their respective options.

· valdtd (dtd)
· valxsd (xsd)
· valxml-withdtd (xml)
· valxml-withxsd (xsi)
· valxslt
· valxquery
· valavrojson (avrojson)

Examples

· raptorxml valany c:\Test.xsd

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

203

204

205

69

73

58

62

129

108

152

204 Command Line Interface (CLI) General Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
See the description of the respective validation commands for a list of their respective options. Note, however,
that while most individual validation commands accept multiple input documents, the valany command

accepts only one input document. Options such as the --listfile option will therefore not apply to valany.

5.7.2 script

The script command executes a Python 3.11.8 script that uses the RaptorXML Python API.

raptorxml script [options] PythonScriptFile

The File argument is the path to the Python script you want to execute. Additional options are available for

this command. To obtain a list of these options, run the following command:

raptorxml script [-h | --help]

Examples

· raptorxml script c:\MyPythonScript.py

· raptorxml script -h

· raptorxml script # Without a script file, an interactive Python shell is started

· raptorxml script -m pip # Loads and executes the pip module; see the Options section below

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape

https://www.altova.com/manual/en/raptorapi/pyapiv2/2.11.0/html/index.html

© 2019-2025 Altova GmbH

General Commands 205Command Line Interface (CLI)

Altova RaptorXML Server 2025

sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Options
Any options and arguments after the script command are forwarded directly to the Python interpreter. Please
consult the Python documentation page https://docs.python.org/3.11/using/cmdline.html for a complete listing
of available options.

5.7.3 help

Syntax and description
The help command takes a single argument (Command), which is the name of the command for which help is

required. It displays the command's syntax, its options, and other relevant information. If the Command argument
is not specified, then all commands of the executable are listed, with each having a brief text description. The
help command can be called from either executable: raptorxml or raptorxmlserver.

raptorxml help Command

raptorxmlserver help Command

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Example
Examples of the help command to display information about the licenserver command (this command is

available in both executables):

raptorxml help licenseserver

raptorxmlserver help licenseserver

The --help option
Help information about a command is also available by using the --help option of the command for which help
information is required. The two commands below produce the same results:

raptorxml licenseserver --help

https://docs.python.org/3.7/using/cmdline.html

206 Command Line Interface (CLI) General Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

The command above uses the --help option of the licenseserver command.

raptorxml help licenseserver

The help command takes licenseserver as its argument.

Both commands display help information about the licenseserver command.

© 2019-2025 Altova GmbH

Localization Commands 207Command Line Interface (CLI)

Altova RaptorXML Server 2025

5.8 Localization Commands

You can create a localized version of the RaptorXML application for any language of your choice. Five localized
versions (English, German, Spanish, French, and Japanese) are already available in the
<ProgramFilesFolder>\Altova\RaptorXMLServer2025\bin\ folder. These five language versions therefore

do not need to be created.

Create a localized version in another language as follows:

1. Generate an XML file containing the resource strings. Do this with the exportresourcestrings
command. The resource strings in the generated XML file will be one of the five supported languages:
English (en), German (de), Spanish (es), French (fr), or Japanese (ja), according to the argument
used with the command.

2. Translate the resource strings from the language of the generated XML file into the target language. The
resource strings are the contents of the <string> elements in the XML file. Do not translate variables
in curly brackets, such as {option} or {product}.

3. Contact Altova Support to generate a localized RaptorXML DLL file from your translated XML file.
4. After you receive your localized DLL file from Altova Support, save the DLL in the

<ProgramFilesFolder>\Altova\RaptorXMLServer2025\bin\ folder. Your DLL file will have a name

of the form RaptorXMLServer_lc.dll. The _lc part of the name contains the language code. For
example, in RaptorXMLServer_de.dll, the de part is the language code for German (Deutsch).

5. Run the setdeflang command to set your localized DLL file as the RaptorXML application to use.
For the argument of the setdeflang command, use the language code that is part of the DLL
name.

Note: Altova RaptorXML Server is delivered with support for five languages: English, German, Spanish, French,
and Japanese. So you do not need to create a localized version of these languages. To set any of these five
languages as the default language, use the CLI's setdeflang command.

5.8.1 exportresourcestrings

Syntax and description
The exportresourcestrings command outputs an XML file containing the resource strings of the RaptorXML

Server application in the specified language. Available export languages are English (en), German (de), Spanish
(es), French (fr), and Japanese (ja).

raptorxml exportresourcestrings [options] LanguageCode XMLOutputFile

raptorxmlserver exportresourcestrings [options] LanguageCode XMLOutputFile

· The LanguageCode argument gives the language of the resource strings in the output XML file; this is

the export language. Allowed export languages (with their language codes in parentheses) are: English
(en), German, (de), Spanish (es), French (fr), and Japanese (ja).

· The XMLOutputFile argument specifies the path and name of the output XML file.

· The exportresourcestrings command can be called from either executable: raptorxml or

raptorxmlserver.

How to create localizations is described below.

207

209

209

209

https://www.altova.com/support
https://www.altova.com/support

208 Command Line Interface (CLI) Localization Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Examples
Examples of the exportresourcestrings command:

raptorxml exportresourcestrings de c:\Strings.xml

raptorxmlserver exportresourcestrings de c:\Strings.xml

· The first command above creates a file called Strings.xml at c:\ that contains the resource strings of
RaptorXML Server in German.

· The second command calls the server-executable to do the same thing as the first example.

Creating localized versions of RaptorXML Server
You can create a localized version of RaptorXML Server for any language of your choice. Five localized versions
(English, German, Spanish, French, and Japanese) are already available in the C:\Program Files (x86)
\Altova\RaptorXMLServer2025\bin folder, and therefore do not need to be created.

Create a localized version as follows:

1. Generate an XML file containing the resource strings by using the exportresourcestrings command
(see command syntax above). The resource strings in this XML file will be one of the five supported
languages: English (en), German (de), Spanish (es), French (fr), or Japanese (ja), according to the
LanguageCode argument used with the command.

2. Translate the resource strings from one of the five supported languages into the target language. The
resource strings are the contents of the <string> elements in the XML file. Do not translate variables
in curly brackets, such as {option} or {product}.

3. Contact Altova Support to generate a localized RaptorXML Server DLL file from your translated XML file.
4. After you receive your localized DLL file from Altova Support, save the DLL in the C:\Program Files

(x86)\Altova\RaptorXMLServer2025\bin folder. Your DLL file will have a name of the form
RaptorXML2025_lc.dll. The _lc part of the name contains the language code. For example, in

https://www.altova.com/support
https://www.altova.com/support

© 2019-2025 Altova GmbH

Localization Commands 209Command Line Interface (CLI)

Altova RaptorXML Server 2025

RaptorXML2025_de.dll, the de part is the language code for German (Deutsch).
5. Run the setdeflang command to set your localized DLL file as the RaptorXML Server application to

use. For the argument of the setdeflang command, use the language code that is part of the DLL
name.

Note: Altova RaptorXML Server is delivered with support for five languages: English, German, Spanish, French,
and Japanese. So you do not need to create a localized version of these languages. To set any of these
languages as the default language, use RaptorXML Server's setdeflang command.

5.8.2 setdeflang

Syntax and description
The setdeflang command (short form is sdl) sets the default language of RaptorXML Server. Available

languages are English (en), German (de), Spanish (es), French (fr), and Japanese (ja). The command takes a
mandatory LanguageCode argument.

raptorxml setdeflang [options] LanguageCode

raptorxmlserver setdeflang [options] LanguageCode

· The LanguageCode argument is required and sets the default language of RaptorXML Server. The

respective values to use are: en, de, es, fr, ja.
· The setdeflang command can be called from either executable: raptorxml or raptorxmlserver.

· Use the --h, --help option to display information about the command.

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Examples
Examples of the setdeflang (sdl) command:

raptorxml sdl de
raptorxml setdeflang es

raptorxmlserver setdeflang es

· The first command sets the default language of RaptorXML Server to German.
· The second command sets the default language of RaptorXML Server to Spanish.
· The third command is the same as the second command, but is executed by the server-executable.

Options
Use the --h, --help option to display information about the command.

210 Command Line Interface (CLI) License Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

5.9 License Commands

This section describes commands that can be used for licensing RaptorXML Server:

· licenseserver to register RaptorXML Server with Altova LicenseServer on your network
· assignlicense to upload a license file to LicenseServer (Windows only)
· verifylicense to verify whether RaptorXML Server is licensed (Windows only)

Note: These commands can also be executed via the server executable for administration commands .

For more information about licensing Altova products with Altova LicenseServer, see the Altova LicenseServer
documentation.

5.9.1 licenseserver

Syntax and description
The licenseserver command registers RaptorXML Server with the Altova LicenseServer specified by the

Server-Or-IP-Address argument. For the licenseserver command to be executed successfully, the two

servers (RaptorXML Server and LicenseServer) must be on the same network and LicenseServer must be
running. You must also have administrator privileges in order to register RaptorXML Server with LicenseServer.

raptorxml licenseserver [options] Server-Or-IP-Address

raptorxmlserver licenseserver [options] Server-Or-IP-Address

· The Server-Or-IP-Address argument takes the name or IP address of the LicenseServer machine.

· The licenseserver command can be called from either executable: raptorxml or raptorxmlserver.

Once RaptorXML Server has been successfully registered with LicenseServer, you will receive a message to
this effect. The message will also display the URL of the LicenseServer. You can now go to LicenseServer to
assign RaptorXML Server a license. For details about licensing, see the LicenseServer documentation
(https://www.altova.com/manual/en/licenseserver/3.17/).

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

210

211

213

215

https://www.altova.com/manual/en/licenseserver/3.17/
https://www.altova.com/manual/en/licenseserver/3.17/
https://www.altova.com/manual/en/licenseserver/3.17/

© 2019-2025 Altova GmbH

License Commands 211Command Line Interface (CLI)

Altova RaptorXML Server 2025

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Examples
Examples of the licenseserver command:

raptorxml licenseserver DOC.altova.com

raptorxml licenseserver localhost
raptorxml licenseserver 127.0.0.1

raptorxmlserver licenseserver 127.0.0.1

The commands above specify, respectively, the machine named DOC.altova.com, and the user's machine
(localhost and 127.0.0.1) as the machine running Altova LicenseServer. In each case, the command
registers RaptorXML Server with the LicenseServer on the machine specified. The last command calls the
server-executable to execute the command.

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

json [j]

--j, --json = true|false

Values are true|false. If true, prints the result of the registration attempt as a machine-parsable JSON
object.

5.9.2 assignlicense (Windows only)

Syntax and description
The assignlicense command uploads a license file to the Altova LicenseServer with which RaptorXML Server

is registered (see the licenseserver command), and assigns the license to RaptorXML Server. It takes the
path of a license file as its argument. The command also allows you to test the validity of a license.

raptorxml assignlicense [options] FILE

raptorxmlserver assignlicense [options] FILE

· The FILE argument takes the path of the license file.

· The --test-only option uploads the license file to LicenseServer and validates the license, but does
not assign the license to RaptorXML Server.

· The assignlicense command can be called from either executable: raptorxml or raptorxmlserver.

212 Command Line Interface (CLI) License Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

For details about licensing, see the LicenseServer documentation
(https://www.altova.com/manual/en/licenseserver/3.17/).

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Examples
Examples of the assignlicense command:

raptorxml assignlicense C:\licensepool\mylicensekey.altova_licenses

raptorxmlserver assignlicense C:\licensepool\mylicensekey.altova_licenses

raptorxml assignlicense --test-only=true C:\licensepool\mylicensekey.altova_licenses

· The first command above uploads the specified license to LicenseServer and assigns it to RaptorXML
Server.

· The second command calls the server-executable to do the same thing as the first command.
· The last command uploads the specified license to LicenseServer and validates it, without assigning it

to RaptorXML Server.

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

test-only [t]

--t, --test-only = true|false

Values are true|false. If true, then the license file is uploaded to LicenseServer and validated, but not
assigned.

https://www.altova.com/manual/en/licenseserver/3.17/

© 2019-2025 Altova GmbH

License Commands 213Command Line Interface (CLI)

Altova RaptorXML Server 2025

5.9.3 verifylicense (Windows only)

Syntax and description
The verifylicense command checks whether the current product is licensed. Additionally, the --license-

key option enables you to check whether a specific license key is already assigned to the product.

raptorxml verifylicense [options]

raptorxmlserver verifylicense [options]

· To check whether a specific license is assigned to RaptorXML Server, supply the license key as the
value of the --license-key option.

· The verifylicense command can be called from either executable: raptorxml or raptorxmlserver.

For details about licensing, see the LicenseServer documentation
(https://www.altova.com/manual/en/licenseserver/3.17/).

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Examples
Example of the verifylicense command:

raptorxml verifylicense

raptorxml verifylicense --license-key=ABCD123-ABCD123-ABCD123-ABCD123-ABCD123-ABCD123
raptorxmlserver verifylicense --license-key=ABCD123-ABCD123-ABCD123-ABCD123-ABCD123-

ABCD123

· The first command checks whether RaptorXML Server is licensed.
· The second command checks whether RaptorXML Server is licensed with the license key specified

with the --license-key option.
· The third command is the same as the second command, but is executed by the server-executable.

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

https://www.altova.com/manual/en/licenseserver/3.17/

214 Command Line Interface (CLI) License Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

information about the command.

license-key [l]

--l, --license-key = Value

Checks whether RaptorXML Server is licensed with the license key specified as the value of this option.

© 2019-2025 Altova GmbH

Administration Commands 215Command Line Interface (CLI)

Altova RaptorXML Server 2025

5.10 Administration Commands

Administration commands (such as installation-as-service and licensing commands) are issued to the server
executable of RaptorXML Server (named RaptorXMLServer). This executable is located by default at:

Windows <ProgramFilesFolder>\Altova\RaptorXMLServer2025\bin\RaptorXMLServer.exe

Linux /opt/Altova/RaptorXMLServer2025/bin/raptorxmlserver

Mac /usr/local/Altova/RaptorXMLServer2025/bin/raptorxmlserver

Usage
The command line syntax is:

raptorxmlserver --h | --help | --version | <command> [options] [arguments]

· --help (short form --h) displays the help text of the given command. If no command is named, then
all commands of the executable are listed, each with a brief description of the command.

· --version displays RaptorXML Server version number.
· <command> is the command to execute. Commands are displayed in the sub-sections of this section

(see list below).
· [options] are the options of a command; they are listed and described with their respective

commands.
· [arguments] are the arguments of a command; they are listed and described with their respective

commands.

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Administration commands
Commands of the server executable provide administration functionality. They are listed below and described in
the sub-sections of this section:

· install
· uninstall
· start
· setdeflang
· licenseserver
· accepteula (Linux only)
· assignlicense
· verifylicense

216

216

217

218

219

220

221

222

216 Command Line Interface (CLI) Administration Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

· createconfig
· exportresourcestrings
· debug
· help

5.10.1 install

Syntax and description
The install command installs RaptorXML Server as a service on the server machine.

raptorxmlserver install [options]

· Note that installing RaptorXML Server as a service does not automatically start the service. To start the
service, use the start command.

· To uninstall RaptorXML Server as a service, use the uninstall command.

· Use the --h, --help option to display information about the command.

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Example
Example of the install command:

raptorxmlserver install

5.10.2 uninstall

Syntax and description
The uninstall command uninstalls RaptorXML Server as a service on the server machine.

raptorxmlserver uninstall [options]

To re-install RaptorXML Server as a service, use the install command.

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

223

224

226

227

© 2019-2025 Altova GmbH

Administration Commands 217Command Line Interface (CLI)

Altova RaptorXML Server 2025

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Example
Example of the uninstall command:

raptorxmlserver uninstall

5.10.3 start

Syntax and description
The start command starts RaptorXML Server as a service on the server machine.

raptorxmlserver start [options]

· If RaptorXML Server is not installed as a service, install it first with the install command (before

starting it).
· To uninstall RaptorXML Server as a service, use the uninstall command.

· Use the --h, --help option to display information about the command.

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Example
Example of the start command:

218 Command Line Interface (CLI) Administration Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

raptorxmlserver start

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

config [c]

--c, --config = File

Specifies the path to a configuration file.

fork

--fork = true|false

Provides the ability to fork when using classic init on Unix servers. The default is false.

port

--port = PortNumber

The port number of the debug instance of RaptorXML Server.

5.10.4 setdeflang

Syntax and description
The setdeflang command (short form is sdl) sets the default language of RaptorXML Server. Available

languages are English (en), German (de), Spanish (es), French (fr), and Japanese (ja). The command takes a
mandatory LanguageCode argument.

raptorxml setdeflang [options] LanguageCode

raptorxmlserver setdeflang [options] LanguageCode

· The LanguageCode argument is required and sets the default language of RaptorXML Server. The

respective values to use are: en, de, es, fr, ja.
· The setdeflang command can be called from either executable: raptorxml or raptorxmlserver.

· Use the --h, --help option to display information about the command.

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

© 2019-2025 Altova GmbH

Administration Commands 219Command Line Interface (CLI)

Altova RaptorXML Server 2025

Examples
Examples of the setdeflang (sdl) command:

raptorxml sdl de
raptorxml setdeflang es

raptorxmlserver setdeflang es

· The first command sets the default language of RaptorXML Server to German.
· The second command sets the default language of RaptorXML Server to Spanish.
· The third command is the same as the second command, but is executed by the server-executable.

Options
Use the --h, --help option to display information about the command.

5.10.5 licenseserver

Syntax and description
The licenseserver command registers RaptorXML Server with the Altova LicenseServer specified by the

Server-Or-IP-Address argument. For the licenseserver command to be executed successfully, the two

servers (RaptorXML Server and LicenseServer) must be on the same network and LicenseServer must be
running. You must also have administrator privileges in order to register RaptorXML Server with LicenseServer.

raptorxml licenseserver [options] Server-Or-IP-Address

raptorxmlserver licenseserver [options] Server-Or-IP-Address

· The Server-Or-IP-Address argument takes the name or IP address of the LicenseServer machine.

· The licenseserver command can be called from either executable: raptorxml or raptorxmlserver.

Once RaptorXML Server has been successfully registered with LicenseServer, you will receive a message to
this effect. The message will also display the URL of the LicenseServer. You can now go to LicenseServer to
assign RaptorXML Server a license. For details about licensing, see the LicenseServer documentation
(https://www.altova.com/manual/en/licenseserver/3.17/).

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

https://www.altova.com/manual/en/licenseserver/3.17/

220 Command Line Interface (CLI) Administration Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Examples
Examples of the licenseserver command:

raptorxml licenseserver DOC.altova.com

raptorxml licenseserver localhost
raptorxml licenseserver 127.0.0.1

raptorxmlserver licenseserver 127.0.0.1

The commands above specify, respectively, the machine named DOC.altova.com, and the user's machine
(localhost and 127.0.0.1) as the machine running Altova LicenseServer. In each case, the command
registers RaptorXML Server with the LicenseServer on the machine specified. The last command calls the
server-executable to execute the command.

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

json [j]

--j, --json = true|false

Values are true|false. If true, prints the result of the registration attempt as a machine-parsable JSON
object.

5.10.6 accepteula (Linux only)

Syntax and description
In order to be able to run RaptorXML Server, the application's end user license agreement (EULA) must be
accepted. You can accept the application's EULA by running the accepteula command.

This command is useful, for example, if you want to license and run RaptorXML Server directly via automated
processes that use scripts.

© 2019-2025 Altova GmbH

Administration Commands 221Command Line Interface (CLI)

Altova RaptorXML Server 2025

raptorxml accepteula [options]

raptorxmlserver accepteula [options]

· The command works only for Altova server products that have been installed on Linux machines.
· You must register RaptorXML Server with LicenseServer before running the accepteula command.

· Use the --h, --help option to display information about the command.

· Use lowercase raptorxml and raptorxmlserver.
· Use forward slashes on Linux.

Examples
Examples of the accepteula command:

raptorxml accepteula

raptorxmlserver accepteula

Options
Use the --h, --help option to display information about the command.

5.10.7 assignlicense

Syntax and description
The assignlicense command uploads a license file to the Altova LicenseServer with which RaptorXML Server

is registered (see the licenseserver command), and assigns the license to RaptorXML Server. It takes the
path of a license file as its argument. The command also allows you to test the validity of a license.

raptorxml assignlicense [options] FILE

raptorxmlserver assignlicense [options] FILE

· The FILE argument takes the path of the license file.

· The --test-only option uploads the license file to LicenseServer and validates the license, but does
not assign the license to RaptorXML Server.

· The assignlicense command can be called from either executable: raptorxml or raptorxmlserver.

For details about licensing, see the LicenseServer documentation
(https://www.altova.com/manual/en/licenseserver/3.17/).

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

https://www.altova.com/manual/en/licenseserver/3.17/

222 Command Line Interface (CLI) Administration Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Examples
Examples of the assignlicense command:

raptorxml assignlicense C:\licensepool\mylicensekey.altova_licenses

raptorxmlserver assignlicense C:\licensepool\mylicensekey.altova_licenses

raptorxml assignlicense --test-only=true C:\licensepool\mylicensekey.altova_licenses

· The first command above uploads the specified license to LicenseServer and assigns it to RaptorXML
Server.

· The second command calls the server-executable to do the same thing as the first command.
· The last command uploads the specified license to LicenseServer and validates it, without assigning it

to RaptorXML Server.

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

test-only [t]

--t, --test-only = true|false

Values are true|false. If true, then the license file is uploaded to LicenseServer and validated, but not
assigned.

5.10.8 verifylicense

Syntax and description
The verifylicense command checks whether the current product is licensed. Additionally, the --license-

key option enables you to check whether a specific license key is already assigned to the product.

raptorxml verifylicense [options]

raptorxmlserver verifylicense [options]

© 2019-2025 Altova GmbH

Administration Commands 223Command Line Interface (CLI)

Altova RaptorXML Server 2025

· To check whether a specific license is assigned to RaptorXML Server, supply the license key as the
value of the --license-key option.

· The verifylicense command can be called from either executable: raptorxml or raptorxmlserver.

For details about licensing, see the LicenseServer documentation
(https://www.altova.com/manual/en/licenseserver/3.17/).

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Examples
Example of the verifylicense command:

raptorxml verifylicense

raptorxml verifylicense --license-key=ABCD123-ABCD123-ABCD123-ABCD123-ABCD123-ABCD123
raptorxmlserver verifylicense --license-key=ABCD123-ABCD123-ABCD123-ABCD123-ABCD123-

ABCD123

· The first command checks whether RaptorXML Server is licensed.
· The second command checks whether RaptorXML Server is licensed with the license key specified

with the --license-key option.
· The third command is the same as the second command, but is executed by the server-executable.

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

license-key [l]

--l, --license-key = Value

Checks whether RaptorXML Server is licensed with the license key specified as the value of this option.

5.10.9 createconfig

Syntax and description
The createconfig command overwrites the server configuration file with default values.

https://www.altova.com/manual/en/licenseserver/3.17/

224 Command Line Interface (CLI) Administration Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

raptorxmlserver createconfig [options]

· The --lang option specifies the default language of the server configuration file.

For more information about server configuration files, see Configuring the Server .

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Examples
Examples of the createconfig command:

raptorxml createconfig
raptorxml createconfig --lang=de

Options

lang

--lang = en|de|es|fr|ja

Specifies the default language of the server configuration file. The following options are available: English
(en), German (de), Spanish (es), French (fr), Japanese (ja). If the option is not specified, English is
chosen as the default language.

Use the --h, --help option to display information about the command.

Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

5.10.10 exportresourcestrings

Syntax and description
The exportresourcestrings command outputs an XML file containing the resource strings of the RaptorXML

Server application in the specified language. Available export languages are English (en), German (de), Spanish
(es), French (fr), and Japanese (ja).

251

© 2019-2025 Altova GmbH

Administration Commands 225Command Line Interface (CLI)

Altova RaptorXML Server 2025

raptorxml exportresourcestrings [options] LanguageCode XMLOutputFile

raptorxmlserver exportresourcestrings [options] LanguageCode XMLOutputFile

· The LanguageCode argument gives the language of the resource strings in the output XML file; this is

the export language. Allowed export languages (with their language codes in parentheses) are: English
(en), German, (de), Spanish (es), French (fr), and Japanese (ja).

· The XMLOutputFile argument specifies the path and name of the output XML file.

· The exportresourcestrings command can be called from either executable: raptorxml or

raptorxmlserver.

How to create localizations is described below.

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

Examples
Examples of the exportresourcestrings command:

raptorxml exportresourcestrings de c:\Strings.xml

raptorxmlserver exportresourcestrings de c:\Strings.xml

· The first command above creates a file called Strings.xml at c:\ that contains the resource strings of
RaptorXML Server in German.

· The second command calls the server-executable to do the same thing as the first example.

Creating localized versions of RaptorXML Server
You can create a localized version of RaptorXML Server for any language of your choice. Five localized versions
(English, German, Spanish, French, and Japanese) are already available in the C:\Program Files (x86)
\Altova\RaptorXMLServer2025\bin folder, and therefore do not need to be created.

226 Command Line Interface (CLI) Administration Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Create a localized version as follows:

1. Generate an XML file containing the resource strings by using the exportresourcestrings command
(see command syntax above). The resource strings in this XML file will be one of the five supported
languages: English (en), German (de), Spanish (es), French (fr), or Japanese (ja), according to the
LanguageCode argument used with the command.

2. Translate the resource strings from one of the five supported languages into the target language. The
resource strings are the contents of the <string> elements in the XML file. Do not translate variables
in curly brackets, such as {option} or {product}.

3. Contact Altova Support to generate a localized RaptorXML Server DLL file from your translated XML file.
4. After you receive your localized DLL file from Altova Support, save the DLL in the C:\Program Files

(x86)\Altova\RaptorXMLServer2025\bin folder. Your DLL file will have a name of the form
RaptorXML2025_lc.dll. The _lc part of the name contains the language code. For example, in
RaptorXML2025_de.dll, the de part is the language code for German (Deutsch).

5. Run the setdeflang command to set your localized DLL file as the RaptorXML Server application to
use. For the argument of the setdeflang command, use the language code that is part of the DLL
name.

Note: Altova RaptorXML Server is delivered with support for five languages: English, German, Spanish, French,
and Japanese. So you do not need to create a localized version of these languages. To set any of these
languages as the default language, use RaptorXML Server's setdeflang command.

5.10.11 debug

Syntax and description
The debug command starts RaptorXML Server for debugging—not as a service. To stop RaptorXML Server in

this mode, press Ctrl+C.

raptorxmlserver debug [options]

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Backslashes, spaces, and special characters on Windows systems

On Windows systems: When spaces or special characters occur in strings (for example in file or folder
names, or company, person or product names), use quotes: for example, "My File". Note, however, that

a backslash followed by a double-quotation mark (for example, "C:\My directory\") might not be read

correctly. This is because the backslash character is also used to indicate the start of an escape
sequence, and the escape sequence \" stands for the double-quotation mark character. If you want to

escape this sequence of characters, use a preceding backslash, like this: \\". To summarize: If you

need to write a file path that contains spaces or an end backslash, write it like this: "C:\My Directory\

\".

https://www.altova.com/support
https://www.altova.com/support

© 2019-2025 Altova GmbH

Administration Commands 227Command Line Interface (CLI)

Altova RaptorXML Server 2025

Example
Example of the debug command:

raptorxmlserver debug

Options
Options are listed in short form (if available) and long form. You can use one or two dashes for both short and
long forms. An option may or may not take a value. If it takes a value, it is written like this: --option=value.

Values can be specified without quotes except in two cases: (i) when the value string contains spaces, or (ii)
when explicitly stated in the description of the option that quotes are required. If an option takes a Boolean
value and no value is specified, then the option's default value is TRUE. Use the --h, --help option to display

information about the command.

config [c]

--c, --config = File

Specifies the path to a configuration file.

port

--port = PortNumber

The port number of the debug instance of RaptorXML Server

5.10.12 help

Syntax and description
The help command takes a single argument (Command), which is the name of the command for which help is

required. It displays the command's syntax, its options, and other relevant information. If the Command argument
is not specified, then all commands of the executable are listed, with each having a brief text description. The
help command can be called from either executable: raptorxml or raptorxmlserver.

raptorxml help Command

raptorxmlserver help Command

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

228 Command Line Interface (CLI) Administration Commands

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Example
Examples of the help command to display information about the licenserver command (this command is

available in both executables):

raptorxml help licenseserver

raptorxmlserver help licenseserver

The --help option
Help information about a command is also available by using the --help option of the command for which help
information is required. The two commands below produce the same results:

raptorxml licenseserver --help

The command above uses the --help option of the licenseserver command.

raptorxml help licenseserver

The help command takes licenseserver as its argument.

Both commands display help information about the licenseserver command.

5.10.13 version

Syntax and description
The version command displays the version number of RaptorXML Server. It can be called from either

executable: raptorxml or raptorxmlserver.

raptorxml version

raptorxmlserver version

Casing and slashes on the command line

RaptorXML (and RaptorXMLServer for administration commands) on Windows

raptorxml (and raptorxmlserver for administration commands) on Windows and Unix (Linux, Mac)

* Note that lowercase (raptorxml and raptorxmlserver) works on all platforms (Windows, Linux, and
Mac), while upper-lower (RaptorXML) works only on Windows and Mac.
* Use forward slashes on Linux and Mac, backslashes on Windows.

Example
Examples of the version command:

raptorxml version

© 2019-2025 Altova GmbH

Administration Commands 229Command Line Interface (CLI)

Altova RaptorXML Server 2025

raptorxmlserver version

230 Command Line Interface (CLI) Options

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

5.11 Options

This section contains a description of all CLI options, organized by functionality. To find out which options may
be used with each command, see the description of the respective commands.

· Catalogs, Global Resources, ZIP Files
· Messages, Errors, Help
· Processing
· XML
· XSD
· XQuery
· XSLT
· JSON/Avro
· XML Signatures

5.11.1 Catalogs, Global Resources, ZIP Files

catalog

--catalog = FILE

Specifies the absolute path to a root catalog file that is not the installed root catalog file. The default value
is the absolute path to the installed root catalog file (<installation-
folder>\Altova\RaptorXMLServer2025\etc\RootCatalog.xml). See the section, XML Catalogs , for
information about working with catalogs.

user-catalog

--user-catalog = FILE

Specifies the absolute path to an XML catalog to be used in addition to the root catalog. See the section,
XML Catalogs , for information about working with catalogs.

enable-globalresources

--enable-globalresources = true|false

Enables global resources . Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

globalresourceconfig [gc]

--gc | --globalresourceconfig = VALUE

Specifies the active configuration of the global resource (and enables global resources) .

globalresourcefile [gr]

--gr | --globalresourcefile = FILE

Specifies the global resource file (and enables global resources) .

recurse

--recurse = true|false

Used to select files within sub-directories, including in ZIP archives. If true, the command's InputFile

230

231

232

233

234

236

238

240

241

47

47

53

53 53

53 53

© 2019-2025 Altova GmbH

Options 231Command Line Interface (CLI)

Altova RaptorXML Server 2025

argument will select the specified file also in subdirectories. For example: "test.zip|zip\test.xml" will
select files named test.xml at all folder levels of the zip folder. References to ZIP files must be given in
quotes. The wildcard characters * and ? may be used. So, *.xml will select all .xml files in the (zip)
folder. The option's default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

5.11.2 Messages, Errors, Help, Timeout, Version

error-format

--error-format = text|shortxml|longxml

Specifies the format of the error output. Default value is text. The other options generate XML formats,
with longxml generating more detail.

error-limit

--error-limit = N | unlimited

Specifies the error limit with a value range of 1 to 9999 or unlimited. The default value is 100. Processing
stops when the error limit is reached. Useful for limiting processor use during validation/transformation.

help

--help

Displays help text for the command. For example, valany --h. (Alternatively the help command can be
used with an argument. For example: help valany.)

info-limit

--info-limit = N | unlimited

Specifies the information message limit in the range 1-65535 or unlimited. Processing continues if the
specified info limit is reached, but further messages are not reported. The default value is 100.

log-output

--log-output = FILE

Writes the log output to the specified file URL. Ensure that the CLI has write permission to the output
location.

network-timeout

--network-timeout = VALUE

Specifies the timeout in milliseconds for remote I/O operations. Default is: 40000.

verbose

--verbose = true|false

A value of true enables output of additional information during validation. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

verbose-output

232 Command Line Interface (CLI) Options

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

--verbose-output = FILE

Writes verbose output to FILE.

version

--version

Displays the version of RaptorXML Server. If used with a command, place --version before the command.

warning-limit

--warning-limit = N | unlimited

Specifies the warning limit in the range 1-65535 or unlimited. Processing continues if this limit is
reached, but further warnings are not reported. The default value is 100.

5.11.3 Processing

listfile

--listfile = true|false

If true, treats the command's InputFile argument as a text file containing one filename per line. Default

value is false. (An alternative is to list the files on the CLI with a space as separator. Note, however, that
CLIs have a maximum-character limitation.) Note that the --listfile option applies only to arguments,
and not to options.
Note: Boolean option values are set to true if the option is specified without a value.

parallel-assessment [pa]

--pa | --parallel-assessment = true|false

If set to true, schema validity assessment is carried out in parallel. This means that if there are more than
128 elements at any level, these elements are processed in parallel using multiple threads. Very large
XML files can therefore be processed faster if this option is enabled. Parallel assessment takes place on
one hierarchical level at a time, but can occur at multiple levels within a single infoset. Note that parallel
assessment does not work in streaming mode. For this reason, the --streaming option is ignored if --
parallel-assessment is set to true. Also, memory usage is higher when the --parallel-assessment
option is used. The default setting is false. Short form for the option is --pa.
Note: Boolean option values are set to true if the option is specified without a value.

script

--script = FILE

Executes the Python script in the submitted file after validation has been completed. Add the option
multiple times to specify more than one script.

script-api-version

--api, --script-api-version = 1; 2; 2.1 to 2.4; 2.4.1; 2.5 to 2.8; 2.8.1 to 2.8.6;

2.9.0; 2.10.0; 2.11.0

Specifies the Python API version to be used for the script. The default value is the latest version, currently
2.11.0. Instead of integer values such as 1 and 2, you can also use the corresponding values 1.0 and

2.0. Similarly, you can use the three-digit 2.5.0 for the two-digit 2.5. Also see the topic Python API

© 2019-2025 Altova GmbH

Options 233Command Line Interface (CLI)

Altova RaptorXML Server 2025

Versions .

script-param

--script-param = KEY:VALUE

Additional user-specified parameters that can be accessed during the execution of Python scripts. Add
the option multiple times to specify more than one script parameter.

streaming

--streaming = true|false

Enables streaming validation. Default is true. In streaming mode, data stored in memory is minimized and
processing is faster. The downside is that information that might be required subsequently—for example, a
data model of the XML instance document—will not be available. In situations where this is significant,
streaming mode will need to be turned off (by giving --streaming a value of false). When using the --
script option with the valxml-withxsd command, disable streaming. Note that the --streaming option
is ignored if --parallel-assessment is set to true.
Note: Boolean option values are set to true if the option is specified without a value.

xml-validation-error-as-warning

--xml-validation-error-as-warning = true|false

If true, treats validation errors as warnings. If errors are treated as warnings, additional processing, such
as XSLT transformations, will continue regardless of errors. Default is false.

5.11.4 XML

assessment-mode

--assessment-mode = lax|strict

Specifies the schema-validity assessment mode as defined in the XSD specifications. Default value is
strict. The XML instance document will be validated according to the mode specified with this option.

dtd

--dtd = FILE

Specifies the external DTD document to use for validation. If a reference to an external DTD is present in
the XML document, then the CLI option overrides the external reference.

load-xml-with-psvi

--load-xml-with-psvi = true|false

Enables validation of input XML files and generates post-schema-validation information for them. Default is:
true.

namespaces

--namespaces = true|false

Enables namespace-aware processing. This is useful for checking the XML instance for errors due to
incorrect namespaces. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

367

234 Command Line Interface (CLI) Options

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

xinclude

--xinclude = true|false

Enables XML Inclusions (XInclude) support. Default value is false. When false, XInclude's include
elements are ignored.
Note: Boolean option values are set to true if the option is specified without a value.

xml-mode

--xml-mode = wf|id|valid

Specifies the XML processing mode to use for the XML instance document: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of valid
requires that each instance document loaded during processing references a DTD. If no DTD exists, an
error is reported.

xml-validation-error-as-warning

--xml-validation-error-as-warning = true|false

If true, treats validation errors as warnings. If errors are treated as warnings, additional processing, such
as XSLT transformations, will continue regardless of errors. Default is false.

xsd

--xsd = FILE

Specifies one or more XML Schema documents to use for the validation of XML instance documents. Add
the option multiple times to specify more than one schema document.

5.11.5 XSD

assessment-mode

--assessment-mode = lax|strict

Specifies the schema-validity assessment mode as defined in the XSD specifications. Default value is
strict. The XML instance document will be validated according to the mode specified with this option.

ct-restrict-mode

--ct-restrict-mode = 1.0|1.1|default

Specifies how to check complex type restrictions. A value of 1.0 checks complex type restrictions as

defined in the XSD 1.0 specification—even in XSD 1.1 validation mode. A value of 1.1 checks complex

type restrictions as defined in the XSD 1.1 specification—even in XSD 1.0 validation mode. A value of
default checks complex type restrictions as defined in the XSD specification of the current validation

mode (1.0 or 1.1). The default value is default.

namespaces

--namespaces = true|false

Enables namespace-aware processing. This is useful for checking the XML instance for errors due to
incorrect namespaces. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

© 2019-2025 Altova GmbH

Options 235Command Line Interface (CLI)

Altova RaptorXML Server 2025

report-import-namespace-mismatch-as-warning

--report-import-namespace-mismatch-as-warning = true|false

Downgrades namespace or target-namespace mismatch errors when importing schemas with xs:import

from errors to warnings. The default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

schema-imports

--schema-imports = load-by-schemalocation | load-preferring-schemalocation | load-by-

namespace | load-combining-both | license-namespace-only

Specifies the behaviour of xs:import elements, each of which has an optional namespace attribute and an
optional schemaLocation attribute: <import namespace="someNS" schemaLocation="someURL">. The
option specifies whether to load a schema document or just license a namespace, and, if a schema
document is to be loaded, which information should be used to find it. Default: load-preferring-
schemalocation.
The behavior is as follows:

· load-by-schemalocation: The value of the schemaLocation attribute is used to locate the
schema, taking account of catalog mappings . If the namespace attribute is present, the
namespace is imported (licensed).

· load-preferring-schemalocation: If the schemaLocation attribute is present, it is used, taking
account of catalog mappings . If no schemaLocation attribute is present, then the value of the
namespace attribute is used via a catalog mapping . This is the default value.

· load-by-namespace: The value of the namespace attribute is used to locate the schema via a
catalog mapping .

· load-combining-both: If either the namespace or schemaLocation attribute has a catalog
mapping , then the mapping is used. If both have catalog mappings , then the value of the --
schema-mapping option (XML/XSD option) decides which mapping is used. If no catalog
mapping is present, the schemaLocation attribute is used.

· license-namespace-only: The namespace is imported. No schema document is imported.

schemalocation-hints

--schemalocation-hints = load-by-schemalocation | load-by-namespace | load-combining-

both | ignore

Specifies the behavior of the xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes:
Whether to load a schema document, and, if yes, which information should be used to find it. Default:
load-by-schemalocation.

· The load-by-schemalocation value uses the URL of the schema location in the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes in XML instance
documents. This is the default value.

· The load-by-namespace value takes the namespace part of xsi:schemaLocation and an
empty string in the case of xsi:noNamespaceSchemaLocation and locates the schema via a
catalog mapping .

· If load-combining-both is used and if either the namespace part or the URL part has a catalog
mapping , then the catalog mapping is used. If both have catalog mappings , then the value
of the --schema-mapping option (XML/XSD option) decides which mapping is used. If neither the
namespace nor URL has a catalog mapping, the URL is used.

· If the option's value is ignore, then the xsi:schemaLocation and
xsi:noNamespaceSchemaLocation attributes are both ignored.

47

47

47

47

47 47

234

47

397

397

47

47 47 47

234

236 Command Line Interface (CLI) Options

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

schema-mapping

--schema-mapping = prefer-schemalocation | prefer-namespace

If schema location and namespace are both used to find a schema document, specifies which of them
should be preferred during catalog lookup. (If either the --schemalocation-hints or the --schema-
imports option has a value of load-combining-both, and if the namespace and URL parts involved both
have catalog mappings , then the value of this option specifies which of the two mappings to use
(namespace mapping or URL mapping; the prefer-schemalocation value refers to the URL mapping).)
Default is prefer-schemalocation.

xml-mode-for-schemas

--xml-mode-for-schemas = wf|id|valid

Specifies the XML processing mode to use for XML schema documents: wf=wellformed check;
id=wellformed with ID/IDREF checks; valid=validation. Default value is wf. Note that a value of valid
requires that each schema document loaded during processing references a DTD. If no DTD exists, an
error is reported.

xsd-version

--xsd-version = 1.0|1.1|detect

Specifies the W3C Schema Definition Language (XSD) version to use. Default is 1.0. This option can also
be useful to find out in what ways a schema which is 1.0-compatible is not 1.1-compatible. The detect
option is an Altova-specific feature. It enables the version of the XML Schema document (1.0 or 1.1) to be
detected by reading the value of the vc:minVersion attribute of the document's <xs:schema> element. If
the value of the @vc:minVersion attribute is 1.1, the schema is detected as being version 1.1. For any
other value, or if the @vc:minVersion attribute is absent, the schema is detected as being version 1.0.

5.11.6 XQuery

indent-characters

--indent-characters = VALUE

Specifies the character string to be used as indentation.

input

--input = FILE

The URL of the XML file to be transformed.

keep-formatting

--keep-formatting = true|false

Keeps the formatting of the target document to the maximum extent that this is possible. Default is: true.

omit-xml-declaration

--omit-xml-declaration = true|false

Serialization option to specify whether the XML declaration should be omitted from the output or not. If
true, there will be no XML declaration in the output document. If false, an XML declaration will be

47

© 2019-2025 Altova GmbH

Options 237Command Line Interface (CLI)

Altova RaptorXML Server 2025

included. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

output, xsltoutput

output = FILE, xsltoutput = FILE

The URL of the primary-output file. For example, in the case of multiple-file HTML output, the primary-
output file will be the location of the entry point HTML file. Additional output files, such as generated image
files, are reported as xslt-additional-output-files. If no --output or --xsltoutput option is
specified, output is written to standard output.

output-encoding

--output-encoding = VALUE

The value of the encoding attribute in the output document. Valid values are names in the IANA character
set registry. Default value is UTF-8.

output-indent

--output-indent = true|false

If true, the output will be indented according to its hierarchic structure. If false, there will be no
hierarchical indentation. Default is false.
Note: Boolean option values are set to true if the option is specified without a value.

output-method

--output-method = xml|html|xhtml|text

Specifies the output format. Default value is xml.

param [p]

--p | --param = KEY:VALUE

XQuery

Specifies the value of an external parameter. An external parameter is declared in the XQuery
document with the declare variable declaration followed by a variable name and then the
external keyword followed by the trailing semi-colon. For example:

 declare variable $foo as xs:string external;

The external keyword $foo becomes an external parameter, the value of which is passed at runtime
from an external source. The external parameter is given a value with the CLI command. For
example:

 --param=foo:'MyName'
In the description statement above, KEY is the external parameter name, VALUE is the value of the

external parameter, given as an XPath expression. Parameter names used on the CLI must be
declared in the XQuery document. If multiple external parameters are passed values on the CLI, each
must be given a separate --param option. Double quotes must be used if the XPath expression
contains spaces.

XSLT

Specifies a global stylesheet parameter. KEY is the parameter name, VALUE is an XPath expression

that provides the parameter value. Parameter names used on the CLI must be declared in the
stylesheet. If multiple parameters are used, the --param switch must be used before each
parameter. Double quotes must be used around the XPath expression if it contains a space—whether

238 Command Line Interface (CLI) Options

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

the space is in the XPath expression itself or in a string literal in the expression. For example:

raptorxml xslt --input=c:\Test.xml --output=c:\Output.xml --

param=date://node[1]/@att1 --p=title:'stringwithoutspace' --param=title:"'string
with spaces'" --p=amount:456 c:\Test.xslt

updated-xml

--updated-xml = discard|writeback|asmainresult

Specifies how the updated XML file should be handled.

· discard: The update is discarded and not written to file. Neither the input file nor the output file
will be updated. Note that this is the default.

· writeback: Writes the update back to the input XML file that is specified with the --input option.
· asmainresult: Writes the update to the output XML file that is specified with the --output

option. If the --output option is not specified, then the update is written to the standard output. In

both cases, the input XML file will not be modified.

Default is discard.

xpath-static-type-errors-as-warnings

--xpath-static-type-errors-as-warnings = true|false

If true, downgrades to warnings any type errors that are detected in the XPath static context. Whereas an
error would cause the execution to fail, a warning would enable processing to continue. Default is false.

xquery-update-version

--xquery-update-version = 1|1.0|3|3.0|

Specifies whether the XQuery processor should use XQuery Update Facility 1.0 or XQuery Update Facility
3.0. Default value is 3.

xquery-version

--xquery-version = 1|1.0|3|3.0|3.1

Specifies whether the XQuery processor should use XQuery 1.0 or XQuery 3.0. Default value is 3.1.

5.11.7 XSLT

chartext-disable

--chartext-disable = true|false

Disables chart extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

dotnetext-disable

--dotnetext-disable = true|false

Disables .NET extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

© 2019-2025 Altova GmbH

Options 239Command Line Interface (CLI)

Altova RaptorXML Server 2025

indent-characters

--indent-characters = VALUE

Specifies the character string to be used as indentation.

input

--input = FILE

The URL of the XML file to be transformed.

javaext-barcode-location

--javaext-barcode-location = FILE

Specifies the path to the folder that contains the barcode extension file AltovaBarcodeExtension.jar.
The path must be given in one of the following forms:

· A file URI, for example: --javaext-barcode-location="file:///C:/Program
Files/Altova/RaptorXMLServer2025/etc/jar/"

· A Windows path with backslashes escaped, for example: --javaext-barcode-location="C:\
\Program Files\\Altova\\RaptorXMLServer2025\\etc\\jar\\"

javaext-disable

--javaext-disable = true|false

Disables Java extensions. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

output, xsltoutput

output = FILE, xsltoutput = FILE

The URL of the primary-output file. For example, in the case of multiple-file HTML output, the primary-
output file will be the location of the entry point HTML file. Additional output files, such as generated image
files, are reported as xslt-additional-output-files. If no --output or --xsltoutput option is
specified, output is written to standard output.

param [p]

--p | --param = KEY:VALUE

XQuery

Specifies the value of an external parameter. An external parameter is declared in the XQuery
document with the declare variable declaration followed by a variable name and then the
external keyword followed by the trailing semi-colon. For example:

 declare variable $foo as xs:string external;

The external keyword $foo becomes an external parameter, the value of which is passed at runtime
from an external source. The external parameter is given a value with the CLI command. For
example:

 --param=foo:'MyName'
In the description statement above, KEY is the external parameter name, VALUE is the value of the

external parameter, given as an XPath expression. Parameter names used on the CLI must be
declared in the XQuery document. If multiple external parameters are passed values on the CLI, each
must be given a separate --param option. Double quotes must be used if the XPath expression
contains spaces.

240 Command Line Interface (CLI) Options

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

XSLT

Specifies a global stylesheet parameter. KEY is the parameter name, VALUE is an XPath expression

that provides the parameter value. Parameter names used on the CLI must be declared in the
stylesheet. If multiple parameters are used, the --param switch must be used before each
parameter. Double quotes must be used around the XPath expression if it contains a space—whether
the space is in the XPath expression itself or in a string literal in the expression. For example:

raptorxml xslt --input=c:\Test.xml --output=c:\Output.xml --

param=date://node[1]/@att1 --p=title:'stringwithoutspace' --param=title:"'string
with spaces'" --p=amount:456 c:\Test.xslt

streaming

--streaming = true|false

Enables streaming validation. Default is true. In streaming mode, data stored in memory is minimized and
processing is faster. The downside is that information that might be required subsequently—for example, a
data model of the XML instance document—will not be available. In situations where this is significant,
streaming mode will need to be turned off (by giving --streaming a value of false). When using the --
script option with the valxml-withxsd command, disable streaming. Note that the --streaming option
is ignored if --parallel-assessment is set to true.
Note: Boolean option values are set to true if the option is specified without a value.

initial-template, template-entry-point

--initial-template, --template-entry-point = VALUE

Gives the name of a named template in the XSLT stylesheet that is the entry point of the transformation.

initial-mode, template-mode

--initial-mode, --template-mode = VALUE

Specifies the template mode to use for the transformation.

xpath-static-type-errors-as-warnings

--xpath-static-type-errors-as-warnings = true|false

If true, downgrades to warnings any type errors that are detected in the XPath static context. Whereas an
error would cause the execution to fail, a warning would enable processing to continue. Default is false.

xslt-version

--xslt-version = 1|1.0|2|2.0|3|3.0|3.1

Specifies whether the XSLT processor should use XSLT 1.0, XSLT 2.0, or XSLT 3.0. Default value is 3.

5.11.8 JSON/Avro

additional-schema

--additional-schema = FILE

© 2019-2025 Altova GmbH

Options 241Command Line Interface (CLI)

Altova RaptorXML Server 2025

Specifies URIs of an additional schema document. The additional schema will be loaded by the main
schema and can be referenced from the main schema by the additional schemas id or $id property.

disable-format-checks

--disable-format-checks = true|false

Disables the semantic validation imposed by the format attribute. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

jsonc

--jsonc = true|false

Enables support for comments in JSON. Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

json-lines

--json-lines = true|false

Enables support for JSON Lines (that is, one JSON value per line). Default value is false.
Note: Boolean option values are set to true if the option is specified without a value.

5.11.9 XML Signatures

absolute-reference-uri

--absolute-reference-uri = true|false

Specifies whether the URI of the signed document is to be read as absolute (true) or relative (false).
Default is false.
Note: Boolean option values are set to true if the option is specified without a value.

certname, certificate-name

--certname, --certificate-name = VALUE

The name of the certificate used for signing.

Windows
This is the Subject name of a certificate from the selected --certificate-store.

Example to list the certificates (under PowerShell)
% ls cert://CurrentUser/My
PSParentPath: Microsoft.PowerShell.Security\Certificate::CurrentUser\My
Thumbprint Subject
---------- -------
C9DF64BB0AAF5FA73474D78B7CCFFC37C95BFC6C CN=certificate1
... CN=...

Example: --certificate-name==certificate1

Linux/MacOS

242 Command Line Interface (CLI) Options

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

--certname specifies the file name of a PEM encoded X.509v3 certificate with the private key. Such files

usually have the extension .pem.

Example: --certificate-name==/path/to/certificate1.pem

certstore, certificate-store

--certstore, --certificate-store = VALUE

The location where the certificate specified with --certificate-name is stored.

Windows
The name of a certificate store under cert://CurrentUser. The available certificate stores can be listed

(under PowerShell) by using % ls cert://CurrentUser/. Certificates would then be listed as follows:

Name : TrustedPublisher
Name : ClientAuthIssuer
Name : Root
Name : UserDS
Name : CA
Name : ACRS
Name : REQUEST
Name : AuthRoot
Name : MSIEHistoryJournal
Name : TrustedPeople
Name : MyCertStore

Name : Local NonRemovable Certificates
Name : SmartCardRoot
Name : Trust
Name : Disallowed

Example: --certificate-store==MyCertStore

Linux/MacOS
The --certstore option is currently not supported.

digest, digest-method

--digest, --digest-method = sha1|sha256|sha384|sha512

The algorithm that is used to compute the digest value over the input XML file. Available values are: sha1|
sha256|sha384|sha512.

hmackey, hmac-secret-key

--hmackey, --hmac-secret-key = VALUE

The HMAC shared secret key; must have a minimum length of six characters.

Example: --hmackey=secretpassword

hmaclen, hmac-output-length

--hmaclen, --hmac-output-length = LENGTH

Truncates the output of the HMAC algorithm to length bits. If specified, this value must be

© 2019-2025 Altova GmbH

Options 243Command Line Interface (CLI)

Altova RaptorXML Server 2025

· a multiple of 8
· larger than 80
· larger than half of the underlying hash algorithm's output length

keyinfo, append-keyinfo

--keyinfo, --append-keyinfo = true|false

Specifies whether to include the KeyInfo element in the signature or not. The default is false.

sigc14nmeth, signature-canonicalization-method

--sigc14nmeth, --signature-canonicalization-method = VALUE

Specifies the canonicalization algorithm to apply to the SignedInfo element. The value must be one of:

· REC-xml-c14n-20010315
· xml-c14n11
· xml-exc-c14n#

sigmeth, signature-method

--sigmeth, --signature-method = VALUE

Specifies the algorithm to use for generating the signature.

When a certificate is used
If a certificate is specified, then SignatureMethod is optional and the value for this parameter is derived
from the certificate. If specified, it must match the algorithm used by the certificate. Example: rsa-
sha256.

When --hmac-secret-key is used
When HMACSecretKey is used, then SignatureMethod is mandatory. The value must be one of the
supported HMAC algorithms:

· hmac-sha256
· hmac-sha386
· hmac-sha512
· hmac-sha1 (discouraged by the specification)

Example: hmac-sha256

sigtype, signature-type

--sigtype, --signature-type = detached | enveloping | enveloped

Specifies the type of signature to be generated.

transforms

--transforms = VALUE

Specifies the XML Signature transformations applied to the input document. The supported values are:

· REC-xml-c14n-20010315 for Canonical XML 1.0 (omit comments)
· xml-c14n11 for Canonical XML 1.1 (omit comments)
· xml-exc-c14n# for Exclusive XML Canonicalization 1.0 (omit comments)
· REC-xml-c14n-20010315#WithComments for Canonical XML 1.0 (with comments)

244 Command Line Interface (CLI) Options

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

· xml-c14n11#WithComments for Canonical XML 1.1 (with comments)
· xml-exc-c14n#WithComments for Exclusive XML Canonicalization 1.0 (with comments)
· base64

· strip-whitespaces Altova extension

Example: --transforms=xml-c14n11

Note: This option can be specified multiple times. If specified multiple times, then the order of
specification is significant. The first specified transformation receives the input document. The last
specified transformation is used immediately before calculation of the digest value.

write-default-attributes

--write-default-attributes = true|false

Specifies whether to include default attribute values from the DTD in the signed document.

© 2019-2025 Altova GmbH

 245Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

6 Server APIs: HTTP REST, COM/.NET, Java

RaptorXML Server defines an HTTP REST interface, which is used by clients to dispatch jobs to the server.
Clients can either access the HTTP REST interface directly or use the high-level COM/.NET and Java Server
APIs. These APIs provide easy-to-use COM/.NET and Java classes which manage the creation and dispatch of
the HTTP REST requests. The figure below shows a summary of the available HTTP REST client methods to
communicate with the RaptorXML server.

There are three server APIs that can be used to communicate with RaptorXML via the HTTP REST interface
(also see figure above).

· HTTP REST client interface
· COM/.NET API
· Java API

Note: The server APIs offer similar functionality as the command line interface (CLI) . This includes validation
and document transformations. If you wish to use advanced functionality, such as reading, extracting, and
analysing data, then use the Engine APIs. The Engine APIs can provide additional information such as the
count of elements, their positions in the document, and complex XBRL data access and manipulation.

Usage
RaptorXML Server should be installed on a machine that is accessible by clients over the local network. Once
the RaptorXML Server service has been started, clients can connect to the server and issue commands. The
following access methods are labeled as Server APIs because they provide a way to communicate with a
remote RaptorXML server.

· HTTP REST client interface : Client requests are made in JSON format as described in the section
HTTP REST Client Interface . Each request is assigned a job directory on the server, in which output
files are saved. The server responds to the client with all the information relevant to the job.

· COM/.NET API and Java API : Applications and scripts in COM/.NET programming
languages and Java applications use objects of the RaptorXML Server API to access
functionality of RaptorXML Server. The RaptorXML Server API will issue the corresponding HTTP
REST requests on behalf of the client. See the respective sub-sections for more information.

247

288

297

56

247

247

288 297

288 297 300

300

246 Server APIs: HTTP REST, COM/.NET, Java

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Licensing
RaptorXML Server is licensed on the machine on which it is installed. Connections to RaptorXML Server are
made via HTTP.

© 2019-2025 Altova GmbH

HTTP REST Client Interface 247Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

6.1 HTTP REST Client Interface

RaptorXML Server accepts jobs submitted via HTTP (or HTTPS). The job description as well as the results
are exchanged in JSON format. The basic workflow is as shown in the diagram below.

Security concerns related to the HTTP REST interface
The HTTP REST interface, by default, allows result documents to be written to
any location specified by the client (that is accessible with the HTTP protocol).

256

248 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

It is important therefore to consider this security aspect when configuring
RaptorXML Server.

If there is a concern that security might be compromised or that the interface
might be misused, the server can be configured to write result documents to a
dedicated output directory on the server itself. This is specified by setting the
server.unrestricted-filesystem-access option of the server
configuration file to false. When access is restricted in this way, the client can
download result documents from the dedicated output directory with GET
requests. Alternatively, an administrator can copy/upload result document files
from the server to the target location.

In this section
Before sending a client request, RaptorXML Server must be started and properly configured. How to do this is
described in the section Server Setup . How to send client requests is described in the section Client
Requests . Finally, the section C# Example for REST API provides a description of the REST API
example file that is installed with your RaptorXML Server package.

6.1.1 Server Setup

RaptorXML must be licensed on the machine on which it is installed. This installation can then be accessed via
an HTTP REST Interface . To correctly set up RaptorXML Server, do the following. We assume that
RaptorXML Server has already been correctly installed and licensed .

1. RaptorXML Server must be either started as a service or an application in order for it to be correctly
accessed via HTTP or HTTPS. How to do this differs according to operating system and is described
here: on Windows , on Linux , on macOS .

2. Use the initial server configuration to test the connection to the server . (The initial server
configuration is the default configuration you get on installation.) You can use a simple HTTP GET
request like http://localhost:8087/v1/version to test the connection. (The request can also be
typed in the address bar of a browser window.) If the service is running you must get a response to an
HTTP test request such as the version request above .

3. Look at the server configuration file , server_config.xml. If you wish to change any settings in
the file, edit the server configuration file and save the changes. HTTPS is disabled by default, and will
need to be enabled in the configuration file .

4. If you have edited the server configuration file , then restart RaptorXML Server as a service so that
the new configuration settings are applied. Test the connection again to make sure that the service is
running and accessible.

Note: Server startup errors, the server configuration file that is used, and license errors are reported in the
system log. So, refer to the system log if there are problems with the server.

For more information about HTTPS, see the section HTTPS Settings .

253

248

260 284

247

46 46

249

249 249 250

251 250

251

251 253

251

251

253

256

© 2019-2025 Altova GmbH

HTTP REST Client Interface 249Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

6.1.1.1 Starting the Server

This section:

· Location of the Server executable
· Starting RaptorXML as a service on Windows
· Starting RaptorXML as a service on Linux
· Starting RaptorXML as a service on macOS

Location of the Server executable file
The RaptorXML Server executable is installed by default in the folder:

<ProgramFilesFolder>\Altova\RaptorXMLServer2025\bin\RaptorXML.exe

The executable can be used to start RaptorXML Server as a service.

Starting as a service on Windows
The installation process will have registered RaptorXML Server as a service on Windows. You must, however,
start RaptorXML Server as a service. You can do this in the following ways:

· Via the Altova ServiceController, which is available as an icon in the system tray. If the icon is not
available, you can start Altova ServiceController and add its icon to the system tray by going to the
Start menu, then selecting All Programs | Altova | Altova LicenseServer | Altova
ServiceController.

· Via the Windows Services Management Console: Control Panel | All Control Panel Items |
Administrative Tools | Services.

· Via the command prompt started with administrator rights. Use the following command under any
directory: net start "AltovaRaptorXMLServer"

· Via the RaptorXML Server executable in a command prompt window: RaptorXMLServer.exe debug.

This starts the server, with server activity information going directly to the command prompt window.
The display of server activity information can be turned on and off with the http.log-screen setting
of the server configuration file . To stop the server, press Ctrl+Break (or Ctrl+Pause). When the
server is started this way—rather than as a service as described in the three previous steps—the
server will stop when the command line console is closed or when the user logs off.

Starting as a service on Linux
Start RaptorXML Server as a service with the following command:

[< Debian 8] sudo /etc/init.d/raptorxmlserver start

Debian 8] sudo systemctl start raptorxmlserver

[< CentOS 7] sudo initctl start raptorxmlserver

CentOS 7] sudo systemctl start raptorxmlserver

[< Ubuntu 15] sudo initctl start raptorxmlserver

Ubuntu 15] sudo systemctl start raptorxmlserver

[RedHat] sudo initctl start raptorxmlserver

249

249

249

250

253

251

250 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

If at any time you need to stop RaptorXML Server, use:

[< Debian 8] sudo /etc/init.d/raptorxmlserver stop

Debian 8] sudo systemctl stop raptorxmlserver

[< CentOS 7] sudo initctl stop raptorxmlserver

CentOS 7] sudo systemctl stop raptorxmlserver

[< Ubuntu 15] sudo initctl stop raptorxmlserver

Ubuntu 15] sudo systemctl stop raptorxmlserver

[RedHat] sudo initctl stop raptorxmlserver

Starting as a service on macOS
Start RaptorXML Server as a service with the following command:

sudo launchctl load /Library/LaunchDaemons/com.altova.RaptorXMLServer2025.plist

If at any time you need to stop RaptorXML Server, use:

sudo launchctl unload /Library/LaunchDaemons/com.altova.RaptorXMLServer2025.plist

6.1.1.2 Testing the Connection

This section:

· GET request to test the connection
· Server response and JSON data structure listing

GET request to test the connection
After RaptorXML Server has been started, test the connection using a GET request. (You can also type this
request in the address bar of a browser window.)

http://localhost:8087/v1/version

Note: The interface and port number of RaptorXML Server is specified in the server configuration file,
server_config.xml, which is described in the next section, Server Configuration .

Server response and JSON data structure listing
If the service is running and the server is correctly configured, the request should never fail. RaptorXML Server
will return its version information as a JSON data structure (listing below).

251

251

251

© 2019-2025 Altova GmbH

HTTP REST Client Interface 251Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

{
"copyright": "Copyright (c) 1998-2013 Altova GmbH. ...",
"name": "Altova RaptorXML+XBRL Server 2013 rel. 2 sp1",
"eula": "http://www.altova.com/server_software_license_agreement.html"

}

Note: If you modify the server configuration—by editing the server configuration file —you should test the
connection again.

6.1.1.3 Configuring the Server

This section:

· Server configuration file: initial settings
· Server configuration file: modifying the initial settings, reverting to initial settings
· Server configuration file: listing and settings
· Server configuration file: description of settings
· Configuring the server address

Server configuration file: initial settings
RaptorXML Server is configured by means of a configuration file called server_config.xml, which is located
by default at:

C:\Program Files (x86)\Altova\RaptorXMLServer2025\etc\server_config.xml

The initial configuration for RaptorXML Server defines the following:

· A port number of 8087 as the server's port.
· That the server listens only for local connections (localhost).
· That the server writes output to C:\ProgramData\Altova\RaptorXMLServer2025\Output\.

Other default settings are shown in the listing of server_config.xml below.

Server configuration file: modifying the initial settings, reverting to initial settings
If you wish to change the initial settings, you must edit the server configuration file, server_config.xml (see
listing below), save it, and then restart RaptorXML Server as a service.

If you wish to recreate the original server configuration file (so that the server is configured with the initial
settings again), run the command createconfig:

RaptorXMLServer.exe createconfig

On running this command, the initial settings file will be recreated and will overwrite the file
server_config.xml. The createconfig command is useful if you wish to reset server configuration to the
initial settings.

251

251

251

252

253

256

252

252

252 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Server configuration file: listing and settings
The server configuration file, server_config.xml, is listed below with initial settings. Settings available in it are

explained below the listing.

server_config.xml

<config xmlns="http://www.altova.com/schemas/altova/raptorxml/config"

xsi:schemaLocation="http://www.altova.com/schemas/altova/raptorxml/config

http://www.altova.com/schemas/altova/raptorxml/config.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<language>en</language>

<server.unrestricted-filesystem-access>true</server.unrestricted-filesystem-access>

<server.output-root-dir>C:

\ProgramData\Altova\RaptorXMLServer2025\output\</server.output-root-dir>

<server.script-root-dir>C:\Program

Files\Altova\RaptorXMLServer2025\etc\scripts\</server.script-root-dir>

<!--<server.default-script-api-version>2</server.default-script-api-version>-->

<!--<server.catalog-file>catalog.xml</server.catalog-file>-->

<!--<server.log-file>C:

\ProgramData\Altova\RaptorXMLServer2025\Log\server.log</server.log-file>-->

<http.enable>true</http.enable>

<http.environment>production</http.environment>

<http.socket-host>127.0.0.1</http.socket-host>

<http.socket-port>8087</http.socket-port>

<http.log-screen>true</http.log-screen>

<http.access-file>C:\ProgramData\Altova\RaptorXMLServer2025\Log\access.log</http.access-

file>

<http.error-file>C:\ProgramData\Altova\RaptorXMLServer2025\Log\error.log</http.error-

file>

<https.enable>false</https.enable>

<https.socket-host>127.0.0.1</https.socket-host>

<https.socket-port>443</https.socket-port>

<https.private-key>C:\Program

Files\Altova\RaptorXMLServer2025\etc\cert\key.pem</https.private-key>

<https.certificate>C:\Program

Files\Altova\RaptorXMLServer2025\etc\cert\cert.pem</https.certificate>

<!--<https.certificate-chain>/path/to/chain.pem</https.certificate-chain>-->

<syslog.enabled>true</syslog.enabled>

<syslog.protocol>BSD_UDP</syslog.protocol>

<syslog.host>localhost</syslog.host>

<syslog.port>514</syslog.port>

</config>

© 2019-2025 Altova GmbH

HTTP REST Client Interface 253Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

Settings
The settings are divided into the following parts: (i) General server settings; (ii) HTTP; (iii) HTTPS; (iv) Syslog.

General server settings
language

Sets the language of server messages, in an optional language element. The default value is en (English).
Allowed values are en|de|es|fr|ja (English, German, Spanish, French, and Japanese, respectively). See
Localization Commands for an overview of how to localize RaptorXML.

server.unrestricted-filesystem-access

· When set to true (the default value), output files will be written directly to the location specified by the
user and in Python scripts (possibly overwriting existing files of the same name). Note, however, that
local file paths cannot be used to access files from a remote machine via HTTP. So, if RaptorXML
Server is running on a remote machine, set the value of this option to false. Setting the value to true

is only viable if the client and server are on the same machine and you want to write the output files to
a directory on that machine.

· When set to false, files will be written to the job's directory in the output directory , and the URIs of
these files will be included in the result document . Setting the value to false provides a layer of
security, since files can be written to disk only in a dedicated and known job directory on the server.
Job output files can subsequently be copied by trusted means to other locations.

server.output-root-dir

Directory in which the output of all submitted jobs is saved.

server.script-root-dir

Directory in which trusted Python scripts are to be saved. The script option, when used via the HTTP
interface, will only work when scripts from this trusted directory are used. Specifying a Python script from any
other directory will result in an error. See 'Mak ing Python Scripts Safe' .

server.default-script-api-version

Default Python API version used to run Python scripts. By default the newest version of the Python API is
used. Currently supported values are 1 and 2.

server.catalog-file

URL of the XML catalog file to use. By default, the catalog file RootCatalog.xml, which is located in the folder
<ProgramFilesFolder>\Altova\RaptorXMLServer2025\etc, will be used. Use the server.catalog-file

setting only if you wish to change the default catalog file.

server.log-file

Name and location of the server log file. Events on the server, like Server started/stopped, are logged
continuously in the system's event log and displayed in a system event viewer such as Windows Event Viewer.
In addition to the viewer display, log messages can also be written to the file specified with the server.log-

207

253

278

366

366

254 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

file option. The server log file will contain information about all activities on the server, including server startup
errors, the configuration file used, and license errors.

http
http.enable

A boolean value to enable or disable HTTP: true | false. HTTP can be enabled/disabled independently of
HTTPS, and both can be active concurrently.

http.environment

Internal environments of raptorxml: production | development. The Development environment will be more
geared to the needs of developers, allowing easier debugging than when the Production environment is used.

http.socket-host

The interface via which RaptorXML Server is accessed. If you wish RaptorXML Server to accept connections
from remote machines, uncomment the element and set its content to: 0.0.0.0, like this: <http.socket-
host>0.0.0.0</http.socket-host>. This hosts the service on every addressable interface of the server
machine. In this case, ensure that firewall settings are suitably configured. Inbound firewall exceptions for
Altova products must be registered as follows: Altova LicenseServer: port 8088; Altova RaptorXML Server: port
8087; Altova FlowForce Server: port 8082.

http.socket-port

The port via which the service is accessed. The port must be fixed and known so that HTTP requests can be
correctly addressed to the service.

http.log-screen

If RaptorXML Server is started with the command RaptorXMLServer.exe debug, (see Starting the Server)
and if http.log-screen is set to true, then server activity is displayed in the command line console.
Otherwise server activity is not displayed. The log screen is displayed in addition to the writing of log files.

http.access-file

Name and location of the HTTP access file. The access file contains information about access-related activity.
It contains information that is useful for resolving connection issues.

http.error-file

Name and location of the HTTP error file. The error file contains errors related to traffic to and from the server. If
there are connection problems, this file can provide useful information towards resolving them.

http.max_request_body_size

This option specifies the maximum size, in bytes, of the request body that RaptorXML Server accepts. The
default value is 100 MB. If the size of a request body is larger than the value specified for this option, then the
server responds with HTTP Error 413: Request entity too large. The option's value must be greater than
or equal to zero. The limit can be disabled by setting http.max_request_body_size=0.

249

© 2019-2025 Altova GmbH

HTTP REST Client Interface 255Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

https
https.enable

A boolean value to enable or disable HTTPS: true | false. HTTPS can be enabled/disabled independently of
HTTP, and both can be active concurrently. HTTPS support is disabled by default and must be enabled by
changing the value of this setting to true.

https.socket-host

Takes a string value which is the host address on which HTTPS connections are accepted. To accept
connections from the local host only, set localhost or 127.0.0.1. If you wish RaptorXML Server to accept

connections from all remote machines, set the value to: 0.0.0.0, like this: <https.socket-
host>0.0.0.0</https.socket-host>. This hosts the service on every addressable interface of the server
machine. In this case, ensure that firewall settings are suitably configured. Inbound firewall exceptions for
Altova products must be registered as follows: Altova LicenseServer: port 8088; Altova RaptorXML Server: port
8087; Altova FlowForce Server: port 8082. You can also use IPv6 addresses such as: '::'.

https.socket-port

An integer value that is the port on which HTTPS is accepted. The port must be fixed and known so that HTTP
requests can be correctly addressed to the service.

https.private-key, https.certificate

URIs that are the paths, respectively, to the server's private key and certificate files. Both are required. See
HTTPS Settings and Setting Up SSL Encryption for more information. On Windows machines, you can
also use Windows paths.

https.certificate-chain

An optional setting, this is a URI which locates the intermediate certificate file. If you have two intermediate
certificates (primary and secondary), then combine them into one file as described in Step 7 at Setting Up SSL
Encryption . See HTTPS Settings and Setting Up SSL Encryption for more information.

Syslog
syslog.enabled

A boolean value to enable or disable system logging: true | false. The default is true. When the server is
started with the Debug command, this setting is ignored and logs are shown in the console.

syslog.protocol

The protocol used for remote system logging: BSD_UDP or BSD_TCP. The setting is ignored when syslog.host

is localhost (or 127.0.0.1 or ::1).

syslog.host

The name or IP-address of the logging host. The default is localhost. Logging to localhost on Windows
systems uses the Windows event logger. Logging to localhost on other systems uses Syslog (RFC3164).

256 257

257 256 257

256 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

syslog.port

An integer value that is the port on which the Syslog service accepts connections. The port is typically 514 or
601 or 6514. The default is 514. The setting is ignored when syslog.host is localhost (or 127.0.0.1 or ::1).

Logging to localhost on Windows systems uses the Windows event logger. Logging to localhost on other
systems uses a local Unix domain socket connection.

The RaptorXML Server address
The HTTP address of the server consists of the socket-host and socket-port:

http://{socket-host}:{socket-port}/

The address as set up with the initial configuration will be:
http://localhost:8087/

To change the address, modify the http.socket-host and http.socket-port settings in the server
configuration file, server_config.xml. For example, say the server machine has an IP address of
123.12.123.1, and that the following server configuration settings have been made:

<http.socket-host>0.0.0.0</http.socket-host>
<http.socket-port>8087</http.socket-port>

RaptorXML Server can then be addressed with:
http://123.12.123.1:8087/

Note: After server_config.xml has been modified, RaptorXML Server must be restarted for the new values to
be applied.

Note: If there are problems connecting to RaptorXML Server, information in the files named in http.access-
file and http.error-file can help resolve issues.

Note: Messages submitted to RaptorXML Server must contain path names that are valid on the server
machine. Documents on the server machine can be accessed either locally or remotely (in the latter case with
HTTP URIs, for example).

6.1.1.4 HTTPS Settings

RaptorXML Server supports startup not only as an HTTP server, but also as an HTTPS server. Both types of
connection may be active concurrently.

Enabling HTTPS
HTTPS support is disabled by default. To enable HTTPS, in the server configuration file ,
server_config.xml, change the https.enable setting to true. Modify the various HTTPS settings of the

configuration file according to your server requirements.

251

251

© 2019-2025 Altova GmbH

HTTP REST Client Interface 257Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

Private key and certificate
You can obtain a private key and certificate files in one of the following ways:

· From a certificate authority: Follow the steps described in the section Setting Up SSL Encryption .
· Create a self-signed certificate by using the following OpenSSL command (suitably modified for your

environment):

openssl req -x509 -newkey rsa:4096 -nodes -keyout key.pem -out cert.pem -days 365 -

subj "/C=AT/ST=vienna/L=vienna/O=Altova Gmbh/OU=dev/CN=www.altova.com"

Testing the connection
A good way to test your connection is via the curl command line tool for transferring data with URLs. You can
use the following command:

curl.exe https://localhost:443/v1/version

If the certificate is not trusted, use the -k option, like this:

curl.exe -k https://localhost:443/v1/version

The following command executes the HTTP Python example that is distributed with RaptorXML Server:

python3.exe examples\ServerAPI\python\RunRaptorXML.py --host localhost -p 443 -s

6.1.1.5 Setting Up SSL Encryption

If you wish to encrypt your RaptorXML Server data transfers using the SSL protocol, you will need to:

· Generate an SSL private key and create an SSL public key certificate file
· Set up RaptorXML Server for SSL communication.

The steps to do this are listed below.

This method uses the open-source OpenSSL toolkit to manage SSL encryption. The steps listed below,
therefore, need to be carried out on a computer on which OpenSSL is available. OpenSSL typically comes pre-
installed on most Linux distributions and on macOS machines. It can also be installed on Windows computers.
For download links to installer binaries, see the OpenSSL Wiki.

To generate a private key and obtain a certificate from a certificate authority, do the following:

1. Generate a private key

SSL requires that a private key is installed on RaptorXML Server. This private key will be used to
encrypt all RaptorXML Server data. To create the private key, use the following OpenSSL command:

openssl genrsa -out private.key 2048

257

https://curl.haxx.se/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
https://www.openssl.org/community/binaries.html
https://wiki.openssl.org/index.php/Binaries

258 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

This creates a file called private.key, which contains your private key. Note where you save the

file. You will need the private key to (i) generate the Certificate Signing Request (CSR), and (ii) be
installed on RaptorXML Server.

2. Certificate Signing Requests (CSRs)

A Certificate Signing Request (CSR) is sent to a certificate authority (CA), such as VeriSign or
Thawte, to request a public key certificate. The CSR is based on your private key and contains
information about your organization. Create a CSR with the following OpenSSL command (which
provides the private-key file, private.key, that was created in Step 1, as one of its parameters):

openssl req -new -nodes -key private.key -out my.csr

During generation of the CSR you will need to give information about your organization, such as that
listed below. This information will be used by the certificate authority to verify your company's
identity.

· Country
· Locality (the city where your business is located)
· Organization (your company name). Do not use special characters; these will invalidate your

certificate
· Common Name (the DNS name of your server). This must exactly match your server's

official name, that is, the DNS name client apps will use to connect to the server
· A challenge password. Keep this entry blank!

3. Buy an SSL certificate

Purchase an SSL certificate from a recognized certificate authority (CA), such as VeriSign or
Thawte. For the rest of these instructions, we follow the VeriSign procedure. The procedure with
other CAs is similar.

· Go to the VeriSign website.
· Click Buy SSL Certificates.
· Different types of SSL certificates are available. For RaptorXML Server, Secure Site or

Secure Site Pro certificates should be sufficient. EV (extended verification) is not necessary,
since there is no "green address bar" for users to see.

· Proceed through the sign-up process, and fill in the information required to place your order.
· When prompted for the CSR (created in Step 2), copy and paste the content of the my.csr

file into the order form.
· Pay for the certificate with your credit card.

Allow time for obtaining a certificate
Obtaining public key certificates from an SSL certificate authority (CA) typically takes two to
three business days. Please take this into account when setting up your RaptorXML Server.

4. Receive public key from CA

Your certificate authority will complete the enrollment process over the next two to three business

http://www.verisigninc.com/?loc=en_US
http://www.thawte.com/
http://www.verisigninc.com/?loc=en_US
http://www.thawte.com/
http://www.verisign.com/

© 2019-2025 Altova GmbH

HTTP REST Client Interface 259Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

days. During this time you might get emails or phone calls to check whether you are authorized to
request an SSL certificate for your DNS domain. Please work with the authority to complete the
process.

After the authorization and enrollment process has been completed, you will get an email containing
the public key of your SSL certificate. The public key will be in plain text form or attached as a .cer

file.

5. Save public key to file

For use with RaptorXML Server, the public key must be saved in a .cer file. If the public key was

supplied as text, copy-paste all the lines from

--BEGIN CERTIFICATE--
 ...
--END CERTIFICATE--

into a text file that we will call mycertificate.cer.

6. Save CA's intermediate certificates to file

To complete your SSL certificate, you will need two additional certificates: the primary and
secondary intermediate certificates. Your certificate authority (CA) will list content of intermediate
certificates on its website.

· Verisign's intermediate certificates: https://knowledge.verisign.com/support/ssl-certificates-
support/index?page=content&id=AR657&actp=LIST&viewlocale=en_US

· Verisign's intermediate certificates for its Secure Site product:
https://knowledge.verisign.com/support/ssl-certificates-support/index?
page=content&id=AR1735

Copy-paste both intermediate certificates (primary and secondary) into separate text files and save
them on your computer.

7. Optionally combine certificates in one public key certificate file

You now have three certificate files:

· Public key (mycertificate.cer)
· Secondary intermediate certificate
· Primary intermediate certificate

You can integrate your intermediate certificates into your public key certificate if you like. How to do
this is described below. (Alternatively, you can use the https.certificate-chain configuration file

setting to specify the location of intermediate certificates.)

Each contains text blocks bracketed by lines that look like this:
--BEGIN CERTIFICATE--
 ...

253

https://knowledge.verisign.com/support/ssl-certificates-support/index?page=content&id=AR657&actp=LIST&viewlocale=en_US
https://knowledge.verisign.com/support/ssl-certificates-support/index?page=content&id=AR657&actp=LIST&viewlocale=en_US
https://knowledge.verisign.com/support/ssl-certificates-support/index?page=content&id=AR1735
https://knowledge.verisign.com/support/ssl-certificates-support/index?page=content&id=AR1735

260 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

--END CERTIFICATE--

Now copy-paste all three certificates into one file so that they are in sequence. The order of the
sequence is important: (i) public key, (ii) secondary intermediate certificate, (iii) primary intermediate
certificate. Ensure that there are no lines between certificates.

--BEGIN CERTIFICATE--
 public key from mycertificate.cer (see Step 5)
--END CERTIFICATE--
--BEGIN CERTIFICATE--
 secondary intermediate certificate (see Step 6)
--END CERTIFICATE--
--BEGIN CERTIFICATE--
 primary intermediate certificate (see Step 6)
--END CERTIFICATE--

Save the resulting combined certificate text to a file named publickey.cer . This is the public key

certificate file of your SSL certificate. It includes your public key certificate as well as the complete
chain of trust in the form of the intermediate certificates that were used by the CA to sign your
certificate.

6.1.2 Client Requests

After RaptorXML Server has been started as a service , its functionality can be accessed by any HTTP client
which can:

· use the HTTP methods GET, PUT, POST, and DELETE
· set the Content-Type header field

An easy-to-use HTTP client
There are a number of web clients available for download from the Internet. An easy-to-use and reliable
web client we found was Mozilla's RESTClient, which can be added as a Firefox plugin. It's easy to
install, supports the HTTP methods required by RaptorXML, and provides sufficiently good JSON syntax
coloring. If you have no previous experience with HTTP clients, you might want to try RESTClient. Note,
however, that installation and usage of RESTClient is at your own risk.

A typical client request would consist of a series of steps as shown in the diagram below.

249

https://addons.mozilla.org/de/firefox/addon/restclient/
https://addons.mozilla.org/de/firefox/addon/restclient/
https://addons.mozilla.org/de/firefox/addon/restclient/

© 2019-2025 Altova GmbH

HTTP REST Client Interface 261Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

The important points about each step are noted below. Key terms are in bold.

1. An HTTP POST method is used to make a request , with the body of the request being in JSON
format. The request could be for any functionality of RaptorXML Server. For example, the request
could be for a validation, or for an XSLT transformation. The commands, arguments, and options used
in the request are the same as those used on the command line . The request is posted to:
http://localhost:8087/v1/queue, assuming localhost:8087 is the address of RaptorXML Server

(the initial address of the server). Such a request is termed a RaptorXML Server job.

2. If the request is received and accepted for processing by RaptorXML Server, a result document
containing the results of the server action will be created after the job has been processed. The URI of
this result document (the Result-Doc-URI in the diagram above), is returned to the client . Note

262

56

256

278

262 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

that the URI will be returned immediately after the job has been accepted (queued) for processing and
even if processing has not been completed.

3. The client sends a request for the result document (using the result document URI) in a GET method
to the server. If processing of the job has not yet started or has not yet been completed at the time the
request is received, the server returns a status of Running. The GET request must be repeated till such
time that job processing has been completed and the result document been created.

4. RaptorXML Server returns the result document in JSON format . The result document might contain
the URIs of error or output documents produced by RaptorXML Server processing the original
request. Error logs are returned, for example, if a validation returned errors. Primary output documents,
such as the result of an XSLT transformation, are returned if an output-producing job is completed
successfully.

5. The client sends the URIs of the output documents received in Step 4 via an HTTP GET method to
the server. Each request is sent in a separate GET method.

6. RaptorXML Server returns the requested documents in response to the GET requests made in Step
5.

7. The client can delete unwanted documents on the server that were generated as a result of a job
request. This is done by submitting, in an HTTP DELETE method, the URI of the result document in
question. All files on disk related to that job are deleted. This includes the result document file, any
temporary files, and error and output document files. This step is useful for freeing up space on the
server's hard disk.

The details of each step are described in the sub-sections of this section.

6.1.2.1 Initiating Jobs with POST

This section:

· Sending the request
· JSON syntax for POST requests
· Uploading files with the POST request
· Uploading ZIP archives

Sending the request
A RaptorXML Server job is initiated with the HTTP POST method

HTTP Method URI Content-Type Body

POST http://localhost:8087/v1/queue/ application/json JSON

Note the following points:

· The URI above has a server address that uses the settings of the initial configuration .

278

279

282

282

283

262

262

264

265

251

© 2019-2025 Altova GmbH

HTTP REST Client Interface 263Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

· The URI has a /v1/queue/ path, which must be present in the URI. It can be considered to be an
abstract folder in memory into which the job is placed.

· The correct version number /vN is the one that the server returns (and not necessarily the one in this
documentation). The number that the server returns is the version number of the current HTTP
interface. Previous version numbers indicate older versions of the HTTP interface, which are still
supported for backward compatibility.

· The header must contain the field: Content-Type: application/json. However, if you wish to upload
files within the body of the POST request, then the message header must have its content type set to
multipart/form-data (i.e. Content-Type: multipart/form-data). See the section Uploading files
with the POST request for details.

· The body of the request must be in JSON format.
· Files to be processed must be on the server. So files must either be copied to the server before a

request is made, or be uploaded along with the POST request . In this case the message header
must have its content type set to multipart/form-data. See the section Uploading files with the
POST request below for details.

To check the well-formedness of an XML file, the request in JSON format would look something like this:

{
 "command": "wfxml", "args": ["file:///c:/Test/Report.xml"]

}

Valid commands, and their arguments and options, are as documented in the Command Line section .

JSON syntax for HTTP POST requests

{

"command": "Command-Name",

"options": {"opt1": "opt1-value", "opt2": "opt2-value"},

"args" : ["file:///c:/filename1", "file:///c:/filename2"]

 }

· All black text is fixed and must be included. This includes all braces, double quotes, colons,
commas, and square brackets. Whitespace can be normalized.

· Blue italics are placeholders and stand for command names, options and option values, and argument
values. Refer to the command line section for a description of the commands.

· The command and args keys are mandatory. The options key is optional. Some options keys have
default values; so, of these options, only those for which the default values need to be changed need
be specified.

· All strings must be enclosed in double quotes. Boolean values and numbers must not have quotes.
So: {"error-limit": "unlimited"} and {"error-limit": 1} is correct usage.

· Notice that file URIs—rather than file paths—are recommended and that they use forward slashes.
Windows file paths, if used, take backslashes. Furthermore, Windows file-path backslashes must be

264

264

264

56

56

264 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

escaped in JSON (with backslash escapes; so "c:\\dir\\filename"). Note that file URIs and file
paths are strings and, therefore, must be in quotes.

Here is an example with options. Notice that some options (like input or xslt-version) take a straight option
value, while others (like param) take a key-value pair as their value, and therefore require a different syntax.

{
 "command": "xslt",
 "args": [
 "file:///C:/Work/Test.xslt"

],
 "options": {

 "input": "file:///C:/Work/Test.xml",

 "xslt-version": "1",

 "param": {

 "key": "myTestParam",
 "value": "SomeParamValue"
 },
 "output": "file:///C:/temp/out2.xml"

 }
}

The example below shows a third type of option: that of an array of values (as for the xsd option below). In this
case, the syntax to be used is that of a JSON Array.

{
 "command": "xsi",
 "args": [
 "file:///C:/Work/Test.xml"
],
 "options": {
 "xsd" : ["file:///C:/Work/File1.xsd", "file:///C:/Work/File2.xsd"]
 }
}

Uploading files with the POST request
Files to be processed can be uploaded within the body of the POST request. In this case, the POST request
must be made as follows.

Request header
In the request header, set Content-Type: multipart/form-data and specify any arbitrary string as the
boundary. Here is an example header:

Content-Type: multipart/form-data; boundary=---PartBoundary

The purpose of the boundary is to set the boundaries of the different form-data parts in the request body (see
below).

© 2019-2025 Altova GmbH

HTTP REST Client Interface 265Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

Request body: Message part
The body of the request has the following form-data parts, separated by the boundary string specified in the
request header (see above):

· Mandatory form-data parts: msg, which specifies the processing action requested, and args, which

contains the files to be uploaded as the argument/s of the command specified in the msg form-data
part. See the listing below.

· Optional form-data part: A form-data part name additional-files, which contains files referenced

from files in the msg or args form-data parts. Additionally form-data parts named after an option of the
command can also contain files to be uploaded.

Note: All uploaded files are created in a single virtual directory.

See Example-1 (with Callouts): Validate XML for a detailed explanation of the code, and Example-2: Using a
Catalog to Find the Schema .

Testing with CURL
You can use a third-party data-transfer application such as CURL (http://curl.haxx.se/) to test the POST
request. CURL provides a helpful trace option that generates and lists the part boundaries of the
requests. This will save you the task of manually creating the part boundaries. How you can use CURL
is described in the section, Testing with CURL .

Uploading ZIP archives
ZIP archives can also be uploaded, and files within a ZIP can be referenced by using the additional-files

scheme. For example:

additional-files:///mybigarchive.zip%7Czip/biginstance.xml

Note: The |zip/ part needs to be URI-escaped as %7Czip/ in order to conform to the URI RFC since the pipe

| symbol is not directly allowed. The use of glob patterns (* and ?) is also allowed. So you can use something

like this to validate all XML files within the ZIP archive:

{"command": "xsi", "args": ["additional-files:///mybigarchive.zip%7Czip/*.xml"], "options":

{...}}

See Example-3: Using ZIP Archives for a listing of example code.

266

267

269

268

http://curl.haxx.se/

266 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

6.1.2.1.1 Example-1 (with Callouts): Validate XML

Given below is a listing of the body of a POST request. It has numbered callouts that are explained below. The
command submitted in the listing request would have the following CLI equivalent:

raptorxml xsi First.xml Second.xml --xsd=Demo.xsd

The request is for the validation of two XML files according to a schema. The body of the request would look
something like this, assuming that ---PartBoundary has been specified in the header as the boundary string
(see Request Header above).

-----PartBoundary

Content-Disposition: form-data; name="msg"

Content-Type: application/json

1

{"command": "xsi", "options": {} , "args": []} 2

-----PartBoundary

Content-Disposition: attachment; filename="First.xml"; name="args"

Content-Type: application/octet-stream

3

<?xml version="1.0" encoding="UTF-8"?>
<test xsi:noNamespaceSchemaLocation="Demo.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">42</test>

4

-----PartBoundary

Content-Disposition: attachment; filename="Second.xml"; name="args"

Content-Type: application/octet-stream

5

<?xml version="1.0" encoding="UTF-8"?>
<test xsi:noNamespaceSchemaLocation="Demo.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">35</test>

6

-----PartBoundary

Content-Disposition: attachment; filename="Demo.xsd"; name="additional-files"

Content-Type: application/octet-stream

7

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="test" type="xs:int"/>
</xs:schema>

8

-----PartBoundary-- 9

1 The name of the main form-data part boundaries are declared in the request header . The
part boundary separator must be a unique string that will not occur anywhere in the

264

264

© 2019-2025 Altova GmbH

HTTP REST Client Interface 267Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

embedded documents. It is prefixed with two dashes and is used to separate the multiple
parts. The first form-data part in this example is msg. Note that the content type is

application/json.

2 This is the standard syntax for HTTP POST requests . If args contains a reference to a file
and if additional files are uploaded, both sets of files will be passed to the server.

3 The first member of the args array is a file attachment called First.xml.

4 The text of the file First.xml. It contains a reference to a schema called Demo.xsd, which
will also be uploaded—in the additional-files form-data part.

5 The second member of the args array is an attachment called Second.xml.

6 The text of the file Second.xml. It too contains a reference to the schema Demo.xsd. See
callout 7.

7 The first additional files part contains the Demo.xsd attachment metadata.

8 The text of the file Demo.xsd.

9 The end of the Demo.xsd additional files part, and the additional-files form-data part.
Note that the last part boundary separator is both prefixed and postfixed with two dashes.

6.1.2.1.2 Example-2: Use a Catalog to Find the Schema

In this example, a catalog file is used to find the XML schema that is referenced by the XML files to be
validated.

-----PartBoundary

Content-Disposition: form-data; name="msg"

Content-Type: application/json

{"command": "xsi", "args": ["additional-files:///First.xml", "additional-

files:///Second.xml"], "options": {"user-catalog": "additional-files:///catalog.xml"}}

-----PartBoundary

Content-Disposition: attachment; filename="First.xml"; name="additional-files"

Content-Type: application/octet-stream

<?xml version="1.0" encoding="UTF-8"?>
<test xsi:noNamespaceSchemaLocation="http://example.com/Demo.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">42</test>

-----PartBoundary

Content-Disposition: attachment; filename="Second.xml"; name="additional-files"

Content-Type: application/octet-stream

<?xml version="1.0" encoding="UTF-8"?>
<test xsi:noNamespaceSchemaLocation="http://example.com/Demo.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">35</test>

-----PartBoundary

263

268 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Content-Disposition: attachment; filename="Demo.xsd"; name="additional-files"

Content-Type: application/octet-stream

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="test" type="xs:int"/>
</xs:schema>

-----PartBoundary

Content-Disposition: attachment; filename="catalog.xml"; name="additional-files"

Content-Type: application/octet-stream

<?xml version='1.0' encoding='UTF-8'?>
<catalog xmlns='urn:oasis:names:tc:entity:xmlns:xml:catalog'
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:schemaLocation='urn:oasis:names:tc:entity:xmlns:xml:catalog Catalog.xsd'>
 <uri name="http://example.com/Demo.xsd" uri="additional-
files:///Demo.xsd"/>
</catalog>

-----PartBoundary--

6.1.2.1.3 Example-3: Use ZIP Archives

ZIP archives can also be uploaded, and files within a ZIP can be referenced by using the additional-files

scheme. For example:

additional-files:///mybigarchive.zip%7Czip/biginstance.xml

Note: The |zip/ part needs to be URI-escaped as %7Czip/ in order to conform to the URI RFC since the pipe

| symbol is not directly allowed. The use of glob patterns (* and ?) is also allowed. So you can use something

like this to validate all XML files within the ZIP archive:
{“command”: “xsi”, “args”: [“additional-files:///mybigarchive.zip%7Czip/*.xml”], “options”:

{…}}

Note: 'Content-Disposition: form-data' is also valid, in addition to 'Content-Disposition:
attachment'. Since several tools generate form-data as content-disposition, the value form-data is
accepted as valid.

Example: Validating all XML files in a ZIP archive

In this example, it is assumed that all schema references are relative paths and that all schemas are
contained within the zip.

-----PartBoundary

Content-Disposition: form-data; name="msg"

Content-Type: application/json

{"command": "xsi", "args": ["additional-files:///Demo.zip%7Czip/*.xml"], "options": {}}

© 2019-2025 Altova GmbH

HTTP REST Client Interface 269Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

-----PartBoundary

Content-Disposition: attachment; filename="Demo.zip"; name="additional-files"

Content-Type: application/octet-stream

Binary content of Demo.zip archive

-----PartBoundary--

Example: Validating XML files in a ZIP archive containing references to external schemas

In this example, the XML files in a ZIP archive are validated using references to an external schema, which is
provided in a second ZIP archive.

-----PartBoundary

Content-Disposition: form-data; name="msg"

Content-Type: application/json

{"command": "xsi", "args": ["additional-files:///Instances.zip%7Czip/*.xml"], "options":

{"user-catalog": "additional-files:///Schemas.zip%7Czip/catalog.xml"}}

-----PartBoundary

Content-Disposition: attachment; filename="Instances.zip"; name="additional-files"

Content-Type: application/octet-stream

Binary content of Instances.zip archive

-----PartBoundary

Content-Disposition: attachment; filename="Schemas.zip"; name="additional-files"

Content-Type: application/octet-stream

Binary content of Schemas.zip archive

-----PartBoundary--

6.1.2.1.4 Test with CURL

The third-party application CURL (http://curl.haxx.se/) is a command line utility that you can use to test the
POST request. CURL provides a very useful trace option that generates and lists the part boundaries of
requests, which you can use directly in your requests or as a reference.

Given below is a sample test scenario in which an XML file is validated against an XML Schema. We assume
the following:

· the commands below are executed from the folder in which the files to be submitted for validation are
located; (this enables us to write simple relative paths to these files). If you have installed Altova's
XMLSpy application, the files used in this example can be found in the application's Examples folder,

which is located by default at: C:\Users\<username>\Documents\Altova\XMLSpy2025\Examples
· RaptorXML Server is running locally on port 8087

http://curl.haxx.se/

270 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

For more information about the CURL command line options, see the CURL Help.

Call CURL with the validation command on Windows

[input: powershell]

\path\to\curl.exe -F 'msg={\"command\": \"xsi\", \"args\":[\"additional-

files:///PurchaseOrder.zip%7Czip/ipo.xml\"], \"options\":{}};type=application/json' -F

"additional-files=@PurchaseOrder.zip;type=application/octet-stream"

http://localhost:8087/v1/queue

Note: In powershell, if quotes occur within quotes, different types of quotes (single/double) must be used.

[input: cmd]

\path\to\curl.exe -F "msg={\"command\": \"xsi\", \"args\":[\"additional-

files:///PurchaseOrder.zip%7Czip/ipo.xml\"], \"options\":{}};type=application/json" -F

"additional-files=@PurchaseOrder.zip;type=application/octet-stream"

http://localhost:8087/v1/queue

[output]

{"jobid": "058F9E97-CB95-43EF-AC0A-496CD3AC43A3", "result": "/v1/results/058F9E97-CB95-

43EF-AC0A-496CD3AC43A3"}

Use the URL of "result" to fetch the result

[input]

\path\to\curl.exe http://localhost:8087/v1/results/058F9E97-CB95-43EF-AC0A-496CD3AC43A3

[output]

{"jobid":"058F9E97-CB95-43EF-AC0A-496CD3AC43A3","state":"OK","error":{},"jobs":

[{"file":"additional-files:///PurchaseOrder.zip%7Czip/ipo.xml","jobid":"D4B91CB0-CF03-

4D29-B563-B6506E123A06","output":{},"state":"OK","error":{}}]}

CURL's trace option
CURL has a trace option (--trace-ascii), which traces the HTTP traffic sent to and from the server. The

option is very useful since it lists the part boundaries that are required for initiating jobs with POST. You can
use the information in the trace, either directly or as a reference, to create the part boundaries. The listing
below shows the trace obtained by running the command given above.

Trace listing

== Info: Trying ::1...
== Info: Connected to localhost (::1) port 8087 (#0)
=> Send header, 217 bytes (0xd9)
0000: POST /v1/queue HTTP/1.1
0019: Host: localhost:8087
002f: User-Agent: curl/7.42.1
0048: Accept: */*
0055: Content-Length: 2939

© 2019-2025 Altova GmbH

HTTP REST Client Interface 271Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

006b: Expect: 100-continue
0081: Content-Type: multipart/form-data; boundary=--------------------
00c1: ----d887ed58324015c3
00d7:
<= Recv header, 23 bytes (0x17)
0000: HTTP/1.1 100 Continue
=> Send data, 393 bytes (0x189)
0000: --------------------------d887ed58324015c3
002c: Content-Disposition: form-data; name="msg"
0058: Content-Type: application/json
0078:
007a: {"command": "xsi", "args":["additional-files:///PurchaseOrder.zi
00ba: p%7Czip/ipo.xml"], "options":{}}
00dc: --------------------------d887ed58324015c3
0108: Content-Disposition: form-data; name="additional-files"; filenam
0148: e="PurchaseOrder.zip"
015f: Content-Type: application/octet-stream
0187:
=> Send data, 2498 bytes (0x9c2)
0000: PK........"..6}.c.....M.......ipo.xsd.T.N.@.}N....O 5v.}..S....(
0040: .JU/...$Y..5{.E.•.....I*...g...Y...\....Z..~......P.A.ct....•y.
...
0940:"..6]g......l.............address.xsdPK.......
0980: ..."..6I..v..................ipo.xmlPK..................
09c0: ..
=> Send data, 48 bytes (0x30)
0000:
0002: --------------------------d887ed58324015c3--
<= Recv header, 22 bytes (0x16)
0000: HTTP/1.1 201 Created
<= Recv header, 13 bytes (0xd)
0000: Allow: POST
<= Recv header, 32 bytes (0x20)
0000: Content-Type: application/json
<= Recv header, 37 bytes (0x25)
0000: Date: Fri, 24 Jul 2015 16:58:08 GMT
<= Recv header, 24 bytes (0x18)
0000: Server: CherryPy/3.6.0
<= Recv header, 21 bytes (0x15)
0000: Content-Length: 111
<= Recv header, 2 bytes (0x2)
0000:
<= Recv data, 111 bytes (0x6f)
0000: {"jobid": "058F9E97-CB95-43EF-AC0A-496CD3AC43A3", "result": "/v1
0040: /results/058F9E97-CB95-43EF-AC0A-496CD3AC43A3"}
== Info: Connection #0 to host localhost left intact

Note: Notice from the above listing that 'Content-Disposition: form-data' is also valid, in addition
to 'Content-Disposition: attachment'.

272 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Call CURL with the well-formed-check command on Linux

/path/to/curl -F 'msg={"command": "wfxml", "args":[]};type=application/json' -F

"args=@ipo.xml;type=application/octet-stream" http://localhost:8087/v1/queue

/path/to/curl -F 'msg={"command": "wfxml", "args":["additional-files:///ipo.zip%

7Czip/ipo.xml"]};type=application/json' -F "additional-
files=@ipo.zip;type=application/octet-stream" http://localhost:8087/v1/queue

6.1.2.1.5 Example-6: XQuery Execution

This example uses PowerShell on Windows to execute an XQuery document on an XML document. Both
documents are located in the examples folder of your application folder (RaptorXMLServer2025).

Note: The use of quotes may be different on other shells ('bash' works with the example when one uses 'curl'
instead of 'curl.exe').

Submit the Inline-XBRL-validation POST request using CURL
Given below is an example CURL command for submitting an Inline XBRL validation request.

curl.exe -F 'msg={"command": "xquery", "args": ["additional-files:///CopyInput.xq"],
"options": {"input": "additional-files:///simple.xml", "output":
"MyQueryResult"}};type=application/json' -F "additional-
files=@CopyInput.xq;type=text/plain" -F "additional-
files=@simple.xml;type=application/xml" http://localhost:8087/v1/queue

For easier readability:

(1) -F 'msg={
(2) "command": "xquery",
(3) "args": ["additional-files:///CopyInput.xq"],
(4) "options": {"input": "additional-files:///simple.xml", "output":
"MyQueryResult"}
(5) };type=application/json'
(6) -F "additional-files=@CopyInput.xq;type=text/plain"
(7) -F "additional-files=@simple.xml;type=application/xml"
(7) http://localhost:8087/v1/queue

Input
The different parts of the CURL command are explained below, keyed to the callouts in the listing above.

(1) -F 'msg={...}' specifies a form field with name 'msg'

© 2019-2025 Altova GmbH

HTTP REST Client Interface 273Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

The -F option: (i) causes CURL to generate a multipart form post with Content-Type: multipart/form-data

and (ii) causes this form field to be automatically added to the request header. We use a JSON object to
describe the command that RaptorXML Server should execute.

Content-Type: multipart/form-data; boundary=--------------------...

CURL translates this option in the HTTP request to:

Content-Disposition: form-data; name="msg"
Content-Type: application/json
{"command": "xquery", "args": ["additional-files:///CopyInput.xq"], "options": {"input":
"additional-files:///simple.xml", "output": "MyQueryResult"}}

(2) The RaptorXML Server command to execute on the server. See the Command Line Interface (CLI)
section for information about the commands that can be accepted here. In our example, the command for
XQuery execution is XQuery .

(3) The command's arguments (as accepted by the RaptorXML Server command line) are encoded as a JSON
array. RaptorXML Server uses an explicit scheme additional-files:// to reference additional resources

inside a separate additional-files form field. In our example, we reference the XQuery document

CopyInput.xq.

Note: All resources in the args array must be available on the server or submitted with the request, similar to

(6 and 7).

(4) The command's options (as accepted by the RaptorXML Server command line) are encoded as a JSON
object. If the default values of options are as you want them (see the CLI section), then this part can be left
out. In our example, we specify (i) the XML file on which the XQuery is to be executed and (ii) the file where the
output of the XQuery execution will be stored.

(5) The Content-Type of the msg form field is specified after the definition of the form field and is separated from

it by a semicolon. In our example, the Content-Type of msg is given by: type=application/json.

(6, 7) Files that contain additional resources for the command can be specified using the additional-files

form field. In our example, we specify two additional resources: (i) @CopyInput.xq, followed by a semicolon

separator and then its Content-Type, which we give as type=text/plain; (i) simple.xml, followed by a

semicolon separator and then its Content-Type, which we give as type=application/xml.

Note: Prefix the filename with @ to instruct CURL to (i) use the file name as the value of the filename property

and (ii) the content of the file as the form's value. The additional-files form field can be supplied multiple times,
once for each additional resource required by the command. CURL translates this option into the following in
the HTTP request:

56

92

56

274 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Content-Disposition: form-data; name="additional-files"; filename="CopyInput.xq"
Content-Type: text/plain
<<content of CopyInput.xq>>

Content-Disposition: form-data; name="additional-files"; filename="simple.xml"
Content-Type: application/xml
<<content of simple.xml>>

Note: Files in other folders can be supplied by putting the relative path in front of the filename, like this: -F
"additional-files=@Examples/CopyInput.xq;type=text/plain". However, when an additional file from

another folder is specified in this way, it must be referenced using the file name only. For example:

curl.exe -F 'msg={"command": "xquery", "args": ["additional-files:///CopyInput.xq"],

"options": {"output": "MyQueryResult"}};type=application/json' -F "additional-
files=@Examples/CopyInput.xq;type=text/plain" http://localhost:8087/v1/queue

If you want to preserve a folder structure, put the files in a ZIP folder and reference the files in the usual
way for ZIP folders .

Output
The RaptorXML Server output is a JSON object:

{"jobid": "42B8A75E-0180-4E05-B28F-7B46C6A0C686", "result": "/v1/results/42B8A75E-0180-
4E05-B28F-7B46C6A0C686"}

The JSON object contains a jobid key and a result key. The value of the result key is the path to the

result. This path must be appended to the <scheme>://<host>:<port> part used to submit the request. In our

example, the full result URL would be: http://localhost:8087/v1/results/42B8A75E-0180-4E05-B28F-

7B46C6A0C686. The result URL is also used to ask for the result of the command execution. See Getting the

Result Document .

Get error/message/output of the POST request
The input command that is sent to get the error/message/output of the POST request (see Getting
Error/Message/Output Documents) would be something like this:

curl.exe http://localhost:8087/v1/results/42B8A75E-0180-4E05-B28F-7B46C6A0C686

In our example, this command returns the following JSON object:

{"jobid":"42B8A75E-0180-4E05-B28F-7B46C6A0C686","state":"OK","error":{},"jobs":
[{"file":"additional-files:///simple.xml","jobid":"768656F9-F4A1-4492-9676-
C6226E30D998","output":{"result.trace_file":["/v1/results/768656F9-F4A1-4492-9676-
C6226E30D998/output/trace.log"],"xquery.main_output_files":["/v1/results/768656F9-F4A1-
4492-9676-C6226E30D998/output/1"],"xquery.additional_output_files":
[]},"state":"OK","output-mapping":{"/v1/results/768656F9-F4A1-4492-9676-
C6226E30D998/output/1":"file:///C:/ProgramData/Altova/RaptorXMLXBRLServer2016/Output/768
656F9-F4A1-4492-9676-C6226E30D998/MyQueryResult"},"error":{}}]}

This is transcribed on separate lines below for easier readability and with callouts for easier referencing:

268

278

282

© 2019-2025 Altova GmbH

HTTP REST Client Interface 275Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

(1) {
(2) "jobid":"42B8A75E-0180-4E05-B28F-7B46C6A0C686",
(3) "state":"OK",
(4) "error":{},
(5) "jobs":[{
(6) "file":["additional-files:///simple.xml"],
(7) "jobid":"768656F9-F4A1-4492-9676-C6226E30D998",
(8) "output":{
(9) "result.trace_file":["/v1/results/768656F9-F4A1-4492-9676-
C6226E30D998/output/trace.log"],
(10) "xquery.main_output_files":["/v1/results/768656F9-F4A1-4492-9676-
C6226E30D998/output/1"],
(11) "xquery.additional_output_files":[]},
(12) "state":"OK",
(13) "output-mapping":{
(14) "/v1/results/768656F9-F4A1-4492-9676-C6226E30D998/output/1":
(15) "file:///C:/ProgramData/Altova/RaptorXMLXBRLServer2016/Output/768656F9-
F4A1-4492-9676-C6226E30D998/MyQueryResult"
(16) },
(17) "error":{}
(18) }]
(19) }

Given below is an explanation of this listing:

(1) The result is returned as a JSON object.

(2) The jobid on the first level is the main job identifier.

(3) The state for this job is OK. Possible states are: none; Dispatched; Running; Canceled; Crashed; OK;
Failed.

(4) The JSON error object in our example is empty. It may contain the JSON serialization of the error as
reported by RaptorXML Server.

(5) The main job (on the first level) generates sub-jobs (for example, one per argument).

(6) The argument for the this job is the XML instance file: additional-files:///simple.xml.

(7) Sub-jobs also have a job identifier that can be used to query the state or fetch the results. Job execution is
asynchronous. As a result short jobs submitted after longer jobs may finish earlier.

(8) to (16) The JSON output object contains keys for the server-generated output files that can be requested

via HTTP. Some keys (such as xquery.main_output_files) specify URLs to the generated files stored on the

server. These server-local paths can be mapped to names, which can be used as JSON output-mapping

objects in HTTP URLs. Such URLs are used to fetch output files via HTTP and are constituted as follows:

<scheme>://<host>:<port>/<output-mapping-value>

Our example to fetch the main XQuery output file would therefore look like this:

curl.exe http://localhost:8087/v1/results/768656F9-F4A1-4492-9676-C6226E30D998/output/1

276 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Note that in the output-mapping object (13), the first value (14), is the mapping value that we have keyed to

the XQuery output (15), file:///C:/ProgramData/Altova/RaptorXMLXBRLServer2016/Output/768656F9-

F4A1-4492-9676-C6226E30D998/MyQueryResult. This enables us to use the mapping vaue to reference the

file.

6.1.2.2 Server Response to POST Request

This section:

· Overview of possible server responses
· Response: Request failed, no response from server
· Response: Request communicated, but job rejected by server
· Response: Job executed (with positive or negative result)

When a POST request is made successfully to the server, the job is placed in the server queue. A 201 Created
message and a result document URI are returned. The job will be processed at the earliest. In the meantime, if
the result document is requested , a "status": "Running" message is returned if the job has been started
but has not been completed; the client should try again at a later time. A Dispatched state indicates that the
job is in the server queue but has not yet been started.

The result of the job (for example, a validation request) may be negative (validation failed) or positive (validation
successful). In either case a 201 Created message is returned and a result document is generated. It is also
possible that the POST request was not communicated to the server (Request failed), or the request was
communicated but the job was rejected by the server (Request communicated, but job rejected). The various
possible outcomes are shown in the diagram below.

276

277

277

278

278

© 2019-2025 Altova GmbH

HTTP REST Client Interface 277Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

Request failed, no response from server
When requests cannot be made successfully to the server, the most common errors are those listed below:

Message Explanation

404 Not Found The correct path is: http://localhost:8087/v1/queue/

405 Method Not Allowed Specified method is invalid for this resource. Use the POST method.

415 Unsupported Media Type The message header should be Content-Type:application/json.

Request communicated, but job rejected by server
When requests are made successfully to the server, the server could reject them for the following reasons:

Message Explanation

400 Bad Request (bad cmd) The RaptorXML command is incorrect.

400 Bad Request (json error) The request body has a JSON syntax error.

56

263

278 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

404 File Not Found Check file URI (or filepath) syntax of all files named in the
command.

Job executed (with positive or negative result)
When a job (for example, a validation job) is executed, its result can be positive (OK) or negative (Failed). For
example, the result of a validation job is positive (OK) when the document to be validated is valid, negative
(Failed) if the document is invalid.

In both cases, the job has been executed, but with different results. A 201 Created message is returned in
both cases as soon as the job is successfully placed in the queue. Also, in both cases a result document URI
is returned to the HTTP client that made the request. After the result document has been created, it can be
fetched with an HTTP GET request.

The result document itself might not yet have been created if processing of the job has not yet started or
completed. If the result document is requested during this time, a "status": "Running" message is returned
if the job has been started but has not been completed; a Dispatched state indicates that the job is in the
server queue but has not yet been started.

In addition to the result document, other documents may be generated also, as follows:

· Job executed with result 'Failed': An error log is created in three formats: text, long XML, and short
XML. The URIs of these three documents are sent in the result document (which is in JSON format).
The URIs can be used in an HTTP GET request to fetch the error documents .

· Job executed with result 'OK': The job is processed successfully and output documents—such as the
output produced by an XSLT transformation—are created. If output files have been generated, their
URIs are sent in the JSON-format result document. The URIs can then be used in an HTTP GET
request to fetch the output documents. Note that not all jobs will have output files; for example, a
validation job. Also a job can finish with a state of 'OK', but there might have been warnings and/or
other messages that were written to error files. In this case, error file URIs are also sent in the result
document (that is, in addition to output documents).

See Getting the Result Document and Getting Error/Output Documents for a description of these
documents and how to access them.

6.1.2.3 Getting the Result Document

This section:

· The Result Document URI
· Fetching the Result Document

· Result Document containing URIs of error documents
· Result Document containing URIs of output documents
· Result Document containing no URI

· Accessing error and output documents listed in the Result Document

The Result Document URI
A result document will be created every time a job is created, no matter whether the result of a job (for
example, a validation) is positive (document valid) or negative (document invalid). In both cases a 201 Created

263

282

278 282

278

279

279

280

281

282

© 2019-2025 Altova GmbH

HTTP REST Client Interface 279Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

message is returned. This message will be in JSON format and will contain a relative URI of the result
document. The JSON fragment will look something like this:

{
"result": "/v1/results/E6C4262D-8ADB-49CB-8693-990DF79EABEB",
"jobid": "E6C4262D-8ADB-49CB-8693-990DF79EABEB"

}

The result object contains the relative URI of the result document. The URI is relative to the server address
. For example, if the server address is http://localhost:8087/ (the initial configuration address), then the
expanded URI of the result document specified in the listing above will be:

http://localhost:8087/v1/results/E6C4262D-8ADB-49CB-8693-990DF79EABEB

Note: The correct version number /vN is the one that the server returns (and is not necessarily the one in this
documentation). The number that the server returns is the version number of the current HTTP interface.
Previous version numbers indicate older versions of the HTTP interface, which, however, are still supported for
backward compatibility.

Fetching the Result Document
To get the result document submit the document's expanded URI (see above), in an HTTP GET request. The
result document is returned and could be one of the generic types described below.

Note: When a job is successfully placed in the server queue, the server returns the URI of the result document.
If the client requests the result before the job has been started (it is still in the queue), a "status":
"Dispatched" message will be returned. If the job has been started but not completed (say, because it is a
large job), a "status": "Running" message will be returned. In these two situations, the client should wait for
some time before making a fresh request for the result document.

Note: The example documents below all assume restricted client access . So error documents, message
documents, and output documents are all assumed to be saved in the relevant job directory on the server. The
URIs for them in the result document are therefore all relative URIs. None is a file URI (which would be the kind
of URI generated in cases of unrestricted client access). For the details of these URIs, see the section
Getting Error/Message/Output Documents .

Result document containing URIs of error documents
If the requested job finished with a state of Failed, then the job returned a negative result. For example, a
validation job returned a document-invalid result. The errors encountered while executing the job are stored in
error logs, created in three file formats: (i) text, (ii) long-XML (detailed error log), and (iii) short-XML (less-
detailed error log). See the JSON listing below.

{
"jobid": "6B4EE31B-FAC9-4834-B50A-582FABF47B58",
"state": "Failed",
"error":
{
 "text": "/v1/results/6B4EE31B-FAC9-4834-B50A-582FABF47B58/error/error.txt",
 "longxml": "/v1/results/6B4EE31B-FAC9-4834-B50A-582FABF47B58/error/long.xml",
 "shortxml": "/v1/results/6B4EE31B-FAC9-4834-B50A-582FABF47B58/error/short.xml"
},

256

251

278

247

247

282

280 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

"jobs":
[
 {
 "file": "file:///c:/Test/ExpReport.xml",
 "jobid": "20008201-219F-4790-BB59-C091C276FED2",
 "output":
 {
 },
 "state": "Failed",
 "error":
 {
 "text": "/v1/results/20008201-219F-4790-BB59-C091C276FED2/error/error.txt",
 "longxml": "/v1/results/20008201-219F-4790-BB59-C091C276FED2/error/long.xml",
 "shortxml": "/v1/results/20008201-219F-4790-BB59-C091C276FED2/error/short.xml"
 }
 }
]

}

Note the following:

· Jobs have sub-jobs.
· Errors at sub-job level propagate up to the top-level job. The state of the top-level job will be OK only if

all of its sub-jobs have a state of OK.
· Each job or sub-job has its own error log.
· Error logs include warning logs. So, even though a job finishes with a state of OK, it might have URIs of

error files.
· The URIs of the error files are relative to the server address (see above).

Result document containing URIs of output documents
If the requested job finished with a state of OK, then the job returned a positive result. For example, a validation
job returned a document-valid result. If the job produced an output document—for example, the result of an
XSLT transformation—then the URI of the output document is returned. See the JSON listing below.

{
"jobid": "5E47A3E9-D229-42F9-83B4-CC11F8366466",
"state": "OK",
"error":
{
},
"jobs":
[
 {
 "file": "file:///c:/Test/SimpleExample.xml",
 "jobid": "D34B5684-C6FF-4A7A-BF35-EBB9A8A8C2C8",
 "output":
 {
 "xslt-output-file":
 [
 "/v1/results/D34B5684-C6FF-4A7A-BF35-EBB9A8A8C2C8/output/1"
]
 },
 "state": "OK",
 "output-mapping":
 {

"/v1/results/D34B5684-C6FF-4A7A-BF35-EBB9A8A8C2C8/output/1":
"file:///c:/temp/test.html"

 },
 "error":
 {

278

© 2019-2025 Altova GmbH

HTTP REST Client Interface 281Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

 }
 }
]

}

Note the following:

· The output file is created in the output folder of the job. You can use its relative URI to access the file.
· The URIs of the output files are relative to the server address (see above).
· The output-mapping item maps the output document in the job directory on the server to the file

location specified by the client in the job request. Notice that only output documents specified by the
client in the job request have a mapping; job-related files generated by the server (such as error files)
have no mapping.

· Alternatively, it is possible to retrieve all the generated result documents for a specific job as a zip
archive using the URL "/v1/results/JOBID/output/zip". This feature is not available in unrestricted

filesystem mode. Please note that the zip archive will contain mangled file names, which need to be
mapped back to the actual names using the output-mapping object.

Result document containing no URI
If the requested job finished with a state of OK, then the job returned a positive result. For example, a validation
job returned a document-valid result. Some jobs—such as a validation or well-formed-test—produce no output
document. If a job of this type finishes with a state of OK, then the result document will have neither the URI of
an output document nor the URI of an error log. See the JSON listing below.

{
"jobid": "3FC8B90E-A2E5-427B-B9E9-27CB7BB6B405",
"state": "OK",
"error":
{
},
"jobs":
[
 {
 "file": "file:///c:/Test/SimpleExample.xml",
 "jobid": "532F14A9-F9F8-4FED-BCDA-16A17A848FEA",
 "output":
 {
 },
 "state": "OK",
 "error":
 {
 }
 }
]

}

Note the following:

· Both the output and error components of the sub-job in the listing above are empty.
· A job could finish with a state of OK but still contain warnings or other messages, which are logged in

error files. In such cases, the result document will contain URIs of error files even though the job
finished with a state of OK.

278

282 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Accessing error and output documents listed in the Result Document
Error and output documents can be accessed with HTTP GET requests. These are described in the next
section, Getting Error/Output Documents .

6.1.2.4 Getting Error/Message/Output Documents

A result document can contain the file URIs or relative URIs of error documents , message documents
(such as logs), and/or output documents . (There are some situations in which a result document might
not contain any URI.) The various kinds of URIs are described below .

To access these documents via HTTP, do the following:

1. Expand the relative URI of the file in the result document to its absolute URI
2. Use the expanded URI in an HTTP GET request to access the file

URIs (in the result document) of error/message/output documents
The result document contains URIs of error, message, and/or output documents. Error and message
documents are job-related documents that are generated by the server; they are always saved in the job
directory on the server. Output documents (such as the output of XSLT transformations) can be saved to one of
the following locations:

· To any file location accessible to the server. For output files to be saved to any location, the server
must be configured to allow the client unrestricted access (the default setting).

· To the job directory on the server. The server is configured to restrict client access.

If a client specifies that an output file be created, the location to which the output file is saved will be
determined by the server.unrestricted-filesystem-access option of the server configuration file.

· If access is unrestricted, the file will be saved to the location specified by the client and the URI
returned for the document will be a file URI.

· If access is restricted, the file will be saved to the job directory and its URI will be a relative URI.
Additionally, there will be a mapping of this relative URI to the file URL specified by the client. (See the
listing of Result document containing URIs of output documents.)

In summary, therefore, the following kinds of URIs will be encountered:

File URI of error/message documents
These documents are saved in the job directory on the server. File URIs will have this form:

file:///<output-root-dir>/JOBID/message.doc

File URI of output documents
These documents are saved at any location. File URIs will have this form:

file:///<path-to-file>/output.doc

HTTP URI of error/message/output documents
These documents are saved in the job directory on the server. URIs are relative to the server address and must
be expanded to the full HTTP URI. The relative will have this form:

282

278 279

280 281

282

283

283

253

251

253

280

© 2019-2025 Altova GmbH

HTTP REST Client Interface 283Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

/vN/results/JOBID/error/error.txt for error documents
/vN/results/JOBID/output/verbose.log for message documents
/vN/results/JOBID/output/1 for output documents

In the case of output documents, output mappings are given (see example listing). These mappings map
each output document URI in the result document to the corresponding document in the client request.

Expand the relative URI
Expand the relative URI in the result document to an absolute HTTP URI by prefixing the relative URI with
the server address. For example, if the server address is:

http://localhost:8087/ (the initial configuration address)

and the relative URI of an error file in the result document is:

/v1/results/20008201-219F-4790-BB59-C091C276FED2/error/error.txt

then the expanded absolute address will be

http://localhost:8087/v1/results/20008201-219F-4790-BB59-C091C276FED2/error/error.txt

For more related information, see the sections: Configuring the Server and Getting the Result Document .

Use an HTTP GET request to access the file

Use the expanded URI in an HTTP GET request to obtain the required file. RaptorXML Server returns the
requested document.

6.1.2.5 Freeing Server Resources after Processing

RaptorXML Server keeps the result document file, temporary files, and error and output document files related
to a processed job on hard disk. These files can be deleted in one of two ways:

· By providing the URI of the result document with the HTTP DELETE method. This deletes all files
related to the job indicated by the submitted result-document URI, including error and output
documents.

· Manual deletion of individual files on the server by an administrator.

The structure of the URI to use with the HTTP DELETE method is as shown below. Notice that the full URI
consists of the server address plus the relative URI of the result document.

HTTP Method URI

DELETE http://localhost:8087/v1/result/D405A84A-AB96-482A-96E7-4399885FAB0F

To locate the output directory of a job on disk, construct the URI as follows:

[<server.output-root-dir> see server configuration file] + [jobid]

280

278

251

278

251 278

278

252 278

284 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Note: Since a large number of error and output document files can be created, it is advisable to monitor hard
disk usage and schedule deletions according to your environment and requirements.

6.1.3 C# Example for REST API

Your RaptorXML Server installation contains a C# project that accesses RaptorXML Server's REST client
interface to execute a set of jobs. The example project consists of two parts:

· RaptorXMLREST.cs: A wrapper class in C# that implements the REST mechanism to communicate

with RaptorXML Server via HTTP.
· Program.cs: The C# program code that defines the jobs to be sent to RaptorXML Server via the REST

wrapper.

These two parts are described in the subsections of this section: C# Wrapper for REST API and Program
Code for REST Requests .

Note that you can use any suitable REST wrapper for C# code. The main reason that we have created our own
wrapper is so that the C# program code can be more tightly integrated with the wrapper class, thereby making
an understanding of RaptorXML Server's REST interface easier.

Location and use of the C# example
The example project is located in the folder C:\Program Files (x86)\Altova\RaptorXML
Server2025\examples\REST_API\C#_RaptorREST_API.

The example project was created using Visual Studio 2019, so you should use this version or later to build and
run the project. Note that the C# example files are located in the Program Files folder, so you will need to open
Visual Studio with administrator rights in order to access the files. Alternatively, you can copy the example
project to another location and make relevant amendments to the project.

6.1.3.1 C# Wrapper for REST API

The wrapper class is defined in the C# file named RaptorXMLREST.cs, and it is named RaptorXMLRESTAPI.

It defines the following key classes for sending HTTP requests and receiving HTTP responses via REST:

· Command
· MultiPartCommand
· CommandResponse
· ResultDocument

It defines the following functions:

· pollCommandResult
· fetchCommandResult
· sendRequest
· cleanupResults

284

285

© 2019-2025 Altova GmbH

HTTP REST Client Interface 285Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

To see how the wrapper implements the REST API, read the Client Requests section to understand how the
REST API works. After that you can read the C# code of the wrapper class to see how the wrapper implements
C# code for the REST API.

For example, if you want to see how a command is sent to RaptorXML Server from C# code, you could do the
following:

· The REST interface enables a command to be sent to RaptorXML Server via a HTTP POST request. This

mechanism is described in the topic Initiating Jobs with POST .
· The next question is: How would the wrapper pass the command to the REST API? The mechanism for

this is defined in the wrapper's Command class. Open the file RaptorXMLREST.cs to see the code of the

Command class.

· Finally, to see how the program code instantiates the wrapper's Command class, see the code of the

three jobs in the program code .

6.1.3.2 Program Code for REST Requests

The C# program code containing the jobs for RaptorXML Server is defined in the C# file named Program.cs.

The code uses the classes defined in the C# Wrapper for REST API to create the REST requests that are
sent to RaptorXML Server.

In the program code, there are three use cases to demonstrate how to use RaptorXML Server's REST API :

· Validation of a referenced XML file with RaptorXML Server's valany command. The schema file

is referenced from within the XML file and does not need to be provided as an argument of the
command.

· Two XML files are validated using RaptorXML Server's valany command. Both XML files, as well

as the schema file used for the validation, are uploaded with the command as string attachments. The
result of the validations are returned together after both validations have completed.

· An XML file is uploaded and transformed by an XSLT file . Both files are uploaded via REST. The
command used is RaptorXML Server's xslt . The document resulting from the transformation is

retrieved by the program..

The code for these three use cases is discussed in more detail below.

Error handling
In the event that an error is returned, an error handler function (named HandleError) at the bottom of the code

retrieves the error message from the server response .

Case 1: Validate a referenced XML file (simple command)
The program code for this case uses classes and functions from the REST API wrapper to set up and execute
the HTTP communication with RaptorXML Server. The logic of the code is as follows:

RaptorXMLRESTAPI.Command Specifies the RaptorXML Server command to call, which is valany, and

the file to be submitted as the argument of the valany command.

260

262

285

285

284

285 203

286 203

286

121

276

286 Server APIs: HTTP REST, COM/.NET, Java HTTP REST Client Interface

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

RaptorXMLRESTAPI.CommandResp

onse
Puts the server's response to the validation request into the
jsonResponse variable. Note that validation jobs are reported as "OK"

or "Failed" .

RaptorXMLRESTAPI.ResultDocum

ent
Fetches the result document returned by the server and, if there are no
errors, displays the validation result.

Case 2: Validate two uploaded XML files against an uploaded XSD (multipart command)
The program code for this case uses the MultiPartCommand class of the REST API wrapper to set up and

execute the HTTP communication with RaptorXML Server. Since we want to upload files within the body of the
POST request, the message header must have its content type set to multipart/form-data . The wrapper's
MultiPartCommand class is used to set up the REST HTTP communication accordingly. The code for this use

case is organized as follows:

RaptorXMLRESTAPI.MultiPartCo

mmand
Specifies the RaptorXML Server command to call, which is valany, and

then uses the AppendAttachment function of the class to upload the

two XML files and the schema file. The files are submitted as strings.
The server response returns the validation result of both files and this
response is stored in the jsonResponse variable

RaptorXMLRESTAPI.fetchComman

dResult
Fetches the result document returned by the server and, if there are no
errors, displays the validation results.

RaptorXMLRESTAPI.cleanupResu

lts
This function of the wrapper uses the DELETE method of HTTP to delete

the result document file, temporary files, and error and output document
files related to the job.

Case 3: XSLT transformation of uploaded XML and XSLT (multipart command)
The program code for this case is similar to that of Case 2 above. It uses the MultiPartCommand class to set

up an XSLT transformation and display the result document in a message box. The XML and XSLT files for the
transformation are uploaded with the request. Additionally, the XSLT command of RaptorXML Server also takes

options, so this case shows how you could add options via the REST interface (in the example, this is done
with the RaptorXMLRESTAPI.AppendOption function. Important points about the code are given below.

RaptorXMLRESTAPI.MultiPartCo

mmand
Specifies the RaptorXML Server command to call, which is XSLT, and

then uses (i) the AppendAttachment function of the class to upload the

XML and XSLT files, and (ii) the AppendOption function to provide

options for the RaptorXML Server command line. The uploaded files are
submitted as strings. The server response returns the validation result
of both files and this response is stored in the jsonResponse variable

RaptorXMLRESTAPI.fetchComman

dResult
Fetches the result document returned by the server and, if there are no
errors, displays the validation results.

RaptorXMLRESTAPI.cleanupResu

lts
This function of the wrapper uses the DELETE method of HTTP to clean

up the result document file, temporary files, and error and output

278

262

© 2019-2025 Altova GmbH

HTTP REST Client Interface 287Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

document files related to the job.

288 Server APIs: HTTP REST, COM/.NET, Java COM/.NET API

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

6.2 COM/.NET API

RaptorXML Server is licensed on the machine on which it is installed. The .NET interface is built as a wrapper
around the COM interface. The COM and .NET interfaces of RaptorXML Server use a single API: the COM/.NET
API of RaptorXML Server (object reference here).

You can use RaptorXML Server with:

· Scripting languages, such as JavaScript, via the COM interface
· Programming languages, such as C#, via the .NET Framework interface

6.2.1 COM Interface

RaptorXML Server is automatically registered as a COM server object when RaptorXML Server is installed. So it
can be invoked from within applications and scripting languages that have programming support for COM calls.
If you wish to change the location of the RaptorXML Server installation package, it is best to de-install
RaptorXML Server and then re-install it at the required location. In this way the necessary de-registration and
registration are carried out by the installer process.

Check the success of the registration
If the registration was successful, the Registry will contain the RaptorXML.Server classes. These classes will

typically be found under HKEY_LOCAL_MACHINE\SOFTWARE\Classes.

Code examples

· A VBScript example showing how the RaptorXML API can be used via its COM interface is listed in
the following topic.

· An example file corresponding to this listing is available in the examples/API folder of the RaptorXML
application folder.

6.2.2 COM Example: VBScript

The VBScript example below is structured into the following parts:

· Set up and initialize the RaptorXML COM object
· Validate an XML file
· Perform an XSLT transformation, return the result as a string
· Process an XQuery document, save the result in a file
· Set up the execution sequence of the script and its entry point

' The RaptorXML COM object
dim objRaptor

' Initialize the RaptorXML COM object

300

288

288

289

289

289

290

© 2019-2025 Altova GmbH

COM/.NET API 289Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

sub Init

objRaptor = Null

On Error Resume Next

' Try to load the 32-bit COM object; do not throw exceptions if object is not found

Set objRaptor = WScript.GetObject("", "RaptorXML.Server")

On Error Goto 0

if (IsNull(objRaptor)) then

' Try to load the 64-bit object (exception will be thrown if not found)

Set objRaptor = WScript.GetObject("", "RaptorXML_x64.Server")

end if

' Configure the server: error reporting, HTTP server name and port (IPv6 localhost
in this example)

objRaptor.ErrorLimit = 1

objRaptor.ReportOptionalWarnings = true

objRaptor.ServerName = "::1"

objRaptor.ServerPort = 8087
end sub

' Validate one file
sub ValidateXML

' Get a validator instance from the Server object

dim objXMLValidator

Set objXMLValidator = objRaptor.GetXMLValidator()

' Configure input data

objXMLValidator.InputFileName = "MyXMLFile.xml"

' Validate; in case of invalid file report the problem returned by RaptorXML

if (objXMLValidator.IsValid()) then

MsgBox("Input string is valid")

else

MsgBox(objXMLValidator.LastErrorMessage)

end if
end sub

' Perform a transformation; return the result as a string
sub RunXSLT

' Get an XSLT engine instance from the Server object

dim objXSLT

set objXSLT = objRaptor.GetXSLT

' Configure input data

objXSLT.InputXMLFileName = "MyXMLFile.xml"

objXSLT.XSLFileName = "MyTransformation.xsl"

' Run the transformation; in case of success the result will be returned, in case of
errors the engine returns an error listing

MsgBox(objXSLT.ExecuteAndGetResultAsString())
end sub

' Execute an XQuery; save the result in a file

290 Server APIs: HTTP REST, COM/.NET, Java COM/.NET API

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

sub RunXQuery

' Get an XQuery engine instance from the Server object

dim objXQ

set objXQ = objRaptor.GetXQuery()

' Configure input data

objXQ.InputXMLFileName = "MyXMLFile.xml"

objXQ.XQueryFileName = "MyQuery.xq"

' Configure serialization (optional - for fine-tuning the result's formatting)

objXQ.OutputEncoding = "UTF8"

objXQ.OutputIndent = true

objXQ.OutputMethod = "xml"

objXQ.OutputOmitXMLDeclaration = false

' Run the query; the result will be serialized to the given path

call objXQ.Execute("MyQueryResult.xml")
end sub

' Perform all sample functions
sub main

Init

ValidateXML

RunXSLT

RunXQuery
end sub

' Script entry point; run the main function
main

6.2.3 .NET Interface

The .NET interface is built as a wrapper around the RaptorXML Server COM interface. It is provided as a primary
interop assembly signed by Altova; it uses the namespace Altova.RaptorXMLServer.

Adding the RaptorXML DLL as a reference to a Visual Studio .NET project
In order to use RaptorXML Server in your .NET project, add a reference to the RaptorXML DLL
(Altova.RaptorXMLServer.dll) in your project. Your RaptorXML Server installation contains a signed DLL file,
named Altova.RaptorXMLServer.dll. This DLL file will automatically be added to the global assembly cache
(GAC) when RaptorXML Server is installed using the RaptorXML Server installer. The GAC is typically in the
folder: C:\WINDOWS\assembly.

To add the RaptorXML DLL as a reference in a .NET project, do the following:

1. With the .NET project open, click Project | Add Reference. The Add Reference dialog (screenshot
below) pops up.

© 2019-2025 Altova GmbH

COM/.NET API 291Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

2. In the Browse tab, go to the folder: <RaptorXML application folder>/bin, select the RaptorXML

DLL Altova.RaptorXMLServer.dll, and click OK.
3. Select the command View | Object Browser to see the objects of the RaptorXML API.

Once the Altova.RaptorXMLServer.dll is available to the .NET interface and RaptorXML has been registered
as a COM server object, RaptorXML functionality will be available in your .NET project.

Note: RaptorXML will automatically be registered as a COM server object during installation. There is no need
for a manual registration.

Note: If you receive an access error, check that permissions are correctly set. Go to Component Services and
give permissions to the same account that runs the application pool containing RaptorXML.

Code examples
A C# example and a Visual Basic .NET example showing how the RaptorXML API can be used via its
.NET interface are listed in the following topics. The files corresponding to these listings are available in the
examples/serverAPI folder of the RaptorXML application folder.

6.2.4 .NET Example: C#

The C# example below does the following:

291 294

292 Server APIs: HTTP REST, COM/.NET, Java COM/.NET API

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

· Set up and initialize the RaptorXML .NET object
· Validate an XML file
· Perform an XSLT transformation, return the result as a string
· Process an XQuery document, save the result in a file
· Set up the execution sequence of the code and its entry point

using System;
using System.Text;
using Altova.RaptorXMLServer;

namespace RaptorXMLRunner
{
 class Program

 {
 // The RaptorXML Server .NET object

 static ServerClass objRaptorXMLServer;

 // Initialize the RaptorXML Server .NET object

 static void Init()

 {
 // Allocate a RaptorXML Server object

 objRaptorXMLServer = new ServerClass();

 // Configure the server: error reporting, HTTP server name and port

 // (IPv6 localhost in this example)

 objRaptorXMLServer.ErrorLimit = 1;
 objRaptorXMLServer.ReportOptionalWarnings = true;

 objRaptorXMLServer.ServerName = "::1"
 objRaptorXMLServer.ServerPort = 8087
 }

 // Validate one file

 static void ValidateXML()

 {
 // Get a validator engine instance from the Server object

 XMLValidator objXMLValidator = objRaptorXMLServer.GetXMLValidator();

 // Configure input data

 objXMLValidator.InputFileName = "MyXMLFile.xml";

 // Validate; in case of invalid file,

 report the problem returned by RaptorXML

 if (objXMLValidator.IsValid())

 Console.WriteLine("Input string is valid");
 else

 Console.WriteLine(objXMLValidator.LastErrorMessage);
 }

292

292

292

293

293

© 2019-2025 Altova GmbH

COM/.NET API 293Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

 // Perform an XSLT transformation, and

 // return the result as a string

 static void RunXSLT()

 {
 // Get an XSLT engine instance from the Server object

 XSLT objXSLT = objRaptorXMLServer.GetXSLT();

 // Configure input data

 objXSLT.InputXMLFileName = "MyXMLFile.xml";
 objXSLT.XSLFileName = "MyTransformation.xsl";

 // Run the transformation.

 // In case of success, the result is returned.

 // In case of errors, an error listing

 Console.WriteLine(objXSLT.ExecuteAndGetResultAsString());
 }

 // Execute an XQuery, save the result in a file

 static void RunXQuery()

 {
 // Get an XQuery engine instance from the Server object

 XQuery objXQuery = objRaptorXMLServer.GetXQuery();

 // Configure input data

 objXQuery.InputXMLFileName = exampleFolder + "simple.xml";
 objXQuery.XQueryFileName = exampleFolder + "CopyInput.xq";

 // Configure serialization (optional, for better formatting)

 objXQuery.OutputEncoding = "UTF8"
 objXQuery.OutputIndent = true

 objXQuery.OutputMethod = "xml"
 objXQuery.OutputOmitXMLDeclaration = false

 // Run the query; result serialized to given path

 objXQuery.Execute("MyQueryResult.xml");
 }

 static void Main(string[] args)

 {
 try

 {
 // Entry point. Perform all functions

 Init();
 ValidateXML();
 RunXSLT();
 RunXQuery();
 }
 catch (System.Exception ex)

 {

294 Server APIs: HTTP REST, COM/.NET, Java COM/.NET API

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

 Console.WriteLine(ex.Message);
 Console.WriteLine(ex.ToString());
 }
 }
 }
}

6.2.5 .NET Example: Visual Basic .NET

The Visual Basic example below does the following:

· Set up and initialize the RaptorXML .NET object
· Validate an XML file
· Perform an XSLT transformation, return the result as a string
· Process an XQuery document, save the result in a file
· Set up the execution sequence of the code and its entry point

Option Explicit On
Imports Altova.RaptorXMLServer

Module RaptorXMLRunner

 ' The RaptorXML .NET object
 Dim objRaptor As Server

 ' Initialize the RaptorXML .NET object
 Sub Init()

 ' Allocate a RaptorXML object
 objRaptor = New Server()

 ' Configure the server: error reporting, HTTP server name and port (IPv6 localhost in
this example)
 objRaptor.ErrorLimit = 1
 objRaptor.ReportOptionalWarnings = True
 objRaptor.ServerName = "::1"
 objRaptor.ServerPort = 8087
 End Sub

 ' Validate one file
 Sub ValidateXML()

 ' Get a validator instance from the RaptorXML object
 Dim objXMLValidator As XMLValidator
 objXMLValidator = objRaptor.GetXMLValidator()

 ' Configure input data
 objXMLValidator.InputFileName = "MyXMLFile.xml"

 ' Validate; in case of invalid file report the problem returned by RaptorXML

294

294

295

295

295

© 2019-2025 Altova GmbH

COM/.NET API 295Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

 If (objXMLValidator.IsValid()) Then
 Console.WriteLine("Input string is valid")
 Else
 Console.WriteLine(objXMLValidator.LastErrorMessage)
 End If
 End Sub

 ' Perform a transformation; return the result as a string
 Sub RunXSLT()

 ' Get an XSLT engine instance from the Server object
 Dim objXSLT As XSLT
 objXSLT = objRaptor.GetXSLT()

 ' Configure input data
 objXSLT.InputXMLFileName = "MyXMLFile.xml"
 objXSLT.XSLFileName = "MyTransformation.xsl"

 ' Run the transformation; in case of success the result will be returned, in case of
errors the engine returns an error listing
 Console.WriteLine(objXSLT.ExecuteAndGetResultAsString())
 End Sub

 ' Execute an XQuery; save the result in a file
 Sub RunXQuery()

 ' Get an XQuery engine instance from the Server object
 Dim objXQ As XQuery
 objXQ = objRaptor.GetXQuery()

 ' Configure input data
 objXQ.InputXMLFileName = "MyXMLFile.xml"
 objXQ.XQueryFileName = "MyQuery.xq"

 ' Configure serialization (optional - for fine-tuning the result's formatting)
 objXQ.OutputEncoding = "UTF8"
 objXQ.OutputIndent = true
 objXQ.OutputMethod = "xml"
 objXQ.OutputOmitXMLDeclaration = false

 ' Run the query; the result will be serialized to the given path
 objXQ.Execute("MyQueryResult.xml")
 End Sub

 Sub Main()
 ' Entry point; perform all sample functions
 Init()
 ValidateXML()
 RunXSLT()
 RunXQuery()
 End Sub

End Module

296 Server APIs: HTTP REST, COM/.NET, Java COM/.NET API

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

© 2019-2025 Altova GmbH

Java API 297Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

6.3 Java API

The RaptorXML Server API can be accessed from Java code. To access RaptorXML Server from Java code, the
libraries listed below must be listed in the classpath. These libraries are installed in the bin folder of the
installation folder.

· RaptorXMLServer.jar: The library that communicates with the RaptorXML server using HTTP
requests

· RaptorXMLServer_JavaDoc.zip: A Javadoc file containing help documentation for the Java API

Note: In order to use the Java API, the Jar file must be on the Java Classpath. You may copy the Jar file to any
location if this fits your project setup better than referencing it from the installed location.

6.3.1 Overview of the Interface

The Java API is packaged in the com.altova.raptorxml package. The RaptorXML class provides an entry-

point method called getFactory(), which returns RaptorXMLFactory objects. So, a RaptorXMLFactory

instance can be created with the call: RaptorXML.getFactory().

The RaptorXMLFactory interface provides methods for getting engine objects for validation and other
processing functionality (such as XSLT transformation).

RaptorXMLFactory
The public RaptorXMLFactory interface is described by the following listing:

public interface RaptorXMLFactory

{
 public XMLValidator getXMLValidator();

 public XMLDSig getXMLDSig();

 public XQuery getXQuery();

 public XSLT getXSLT();

 public void setServerName(String name) throws RaptorXMLException ;

 public void setServerPath(String path) throws RaptorXMLException ;

 public void setServerPort(int port) throws RaptorXMLException ;

 public void setGlobalCatalog(String catalog);

 public void setUserCatalog(String catalog);

 public void setGlobalResourcesFile(String file);

 public void setGlobalResourceConfig(String config);

 public void setErrorFormat(RaptorXMLException format);

 public void setErrorLimit(int limit);

 public void setReportOptionalWarnings(boolean report);

}

For more details, see the descriptions of RaptorXMLFactory and the respective Java methods. Also see the
Example Java Project .

300

300

300

317

310

329

341

309

309

309

309

300

298

298 Server APIs: HTTP REST, COM/.NET, Java Java API

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

6.3.2 Example Java Project

The Java code listing below shows how basic functionality can be accessed. It is structured into the following
parts:

· Locate the examples folder, and create a RaptorXML COM object instance
· Validate an XML file
· Perform an XSLT transformation, return the result as a string
· Process an XQuery document, return the result as a string
· Run the project

This basic functionality is included in the files in the examples/API folder of the RaptorXML Server application
folder.

public class RunRaptorXML
{

// Locate samples installed with the product
// (will be two levels higher from examples/API/Java)
// REMARK: You might need to modify this path
static final String strExamplesFolder = System.getProperty("user.dir") + "/../../" ;

static com.altova.raptorxml.RaptorXMLFactory rxml;

static void ValidateXML() throws com.altova.raptorxml.RaptorXMLException
{

com.altova.raptorxml.XMLValidator xmlValidator = rxml.getXMLValidator();
System.out.println("RaptorXML Java - XML validation");
xmlValidator.setInputFromText("<!DOCTYPE root [<!ELEMENT root (#PCDATA)>]>
<root>simple input document</root>");
 if(xmlValidator.isWellFormed())
 System.out.println("The input string is well-formed");
 else
 System.out.println("Input string is not well-formed: " +
xmlValidator.getLastErrorMessage());

 if(xmlValidator.isValid())
 System.out.println("The input string is valid");
 else
 System.out.println("Input string is not valid: " +
xmlValidator.getLastErrorMessage());

}

static void RunXSLT() throws com.altova.raptorxml.RaptorXMLException
{

System.out.println("RaptorXML Java - XSL Transformation");
com.altova.raptorxml.XSLT xsltEngine = rxml.getXSLT();
xsltEngine.setInputXMLFileName(strExamplesFolder + "simple.xml");

298

298

298

299

299

© 2019-2025 Altova GmbH

Java API 299Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

xsltEngine.setXSLFileName(strExamplesFolder + "transform.xsl");
String result = xsltEngine.executeAndGetResultAsString();
if(result == null)
 System.out.println("Transformation failed: " +
xsltEngine.getLastErrorMessage());
else
 System.out.println("Result is " + result);

}

static void RunXQuery() throws com.altova.raptorxml.RaptorXMLException
{

System.out.println("RaptorXML Java - XQuery execution");
com.altova.raptorxml.XQuery xqEngine = rxml.getXQuery();
xqEngine.setInputXMLFileName(strExamplesFolder + "simple.xml");
xqEngine.setXQueryFileName(strExamplesFolder + "CopyInput.xq");
System result = xqEngine.executeAndGetResultAsString();
if(result == null)
 System.out.println("Execution failed: " + xqEngine.getLastErrorMessage());
else
 System.out.println("Result is " + result);

}

public static void main(String[] args)
{

try
{
 rxml = com.altova.raptorxml.RaptorXML.getFactory();
 rxml.setErrorLimit(3);

 ValidateXML();
 RunXSLT();
 RunXQuery();
}

catch(com.altova.raptorxml.RaptorXMLException e)
{
 e.printStackTrace();
}

}

}

300 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

6.4 Server API Reference

This section describes the RaptorXML Server API: its object model and the details of its interfaces and
enumerations. The API description applies to both the COM/.NET and Java interfaces. While the structure of
the API is the same for both interfaces, the names of methods and properties are different. For this reason,
each method, property, and enumeration is described with a separate signature for COM/.NET and Java.

The starting point for using the functionality of RaptorXML Server is the IServer interface (COM/.NET) or
RaptorXMLFactory class (Java).

6.4.1 Interfaces/Classes

The starting point for using the functionality of RaptorXML is the IServer interface (COM/.NET) or
RaptorXMLFactory class (Java). This object contains the objects that provide the RaptorXML functionality:
XML validation, XQuery document and XML Signature processing, and XSLT transformations.

The hierarchy of the object model is shown below, and the interfaces are described in detail in the
corresponding sections. The methods and properties of each interface are described in the section for that
interface.

IServer (COM/.NET) / RaptorXMLFactory (Java)

 |-- IXMLDSig(COM/.NET) / XMLDSig (Java)

 |-- IXMLValidator (COM/.NET) / XMLValidator (Java)

 |-- IXSLT (COM/.NET) / XSLT (Java)

 |-- IXQuery (COM/.NET) / XQuery (Java)

6.4.1.1 IServer/RaptorXMLFactory

Use the IServer/RaptorXMLFactory interface to access the RaptorXML engine that you want. Note that the

name of the interface in the COM/.NET API is different than that of the interface in the Java API:

· In COM/.NET: IServer

· In Java: RaptorXMLFactory

The methods and properties of IServer/RaptorXMLFactory are described in this section.

Java API entry-point method
The Java API is packaged in the com.altova.raptorxml package. The RaptorXML class provides an entry-

point method called getFactory(), which returns RaptorXMLFactory objects. So, a RaptorXMLFactory

instance can be created with the call: RaptorXML.getFactory().

300

300

300

300

300

© 2019-2025 Altova GmbH

Server API Reference 301Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

6.4.1.1.1 Methods

The methods of the IServer (COM/.NET) and RaptorXMLFactory (Java) interfaces return an instance of the

respective RaptorXML engine or class: XMLDSig, XML Validator, XSLT, and XQuery.

COM/.NET Java

GetXMLDsig (for XML
Signatures)

getXMLDsig (for XML Signatures)

GetXMLValidator getXMLValidator

GetXQuery getXQuery

GetXSLT getXSLT

6.4.1.1.1.1 GetXMLDsig (for XML Signatures)

Returns an instance of the XML Signature interface/class (XMLDSig).

COM and .NET

Signature: IXMLDSig GetXMLDSig()

Java

Signature: public XMLDSig getXMLDSig()

6.4.1.1.1.2 GetXMLValidator

Returns an instance of the XML Validator Engine.

COM and .NET

Signature: IXMLValidator GetXMLValidator()

Java

Signature: public XMLValidator getXMLValidator()

301 301

301 301

302 302

302 302

310

310

310

317

317

302 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

6.4.1.1.1.3 GetXQuery

Returns an instance of the XQuery Engine.

COM and .NET

Signature: IXQuery GetXQuery()

Java

Signature: public XQuery getXQuery()

6.4.1.1.1.4 GetXSLT

Returns an instance of the XSLT Engine.

COM and .NET

Signature: IXSLT GetXSLT()

Java

Signature: public XSLT getXSLT()

6.4.1.1.2 Properties

The properties of the IServer (COM/.NET) and RaptorXMLFactory (Java) interfaces are described in this

section.

COM/.NET Java

APIMajorVersion getAPIMajorVersion

APIMinorVersion getAPIMinorVersion

APIServicePackVersion getAPIServicePackVersion

ErrorFormat setErrorFormat

ErrorLimit setErrorLimit

GlobalCatalog setGlobalCatalog

329

329

341

341

303 303

303 303

304 304

304 304

304 304

305 305

© 2019-2025 Altova GmbH

Server API Reference 303Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

GlobalResourceConfig setGlobalResourceConfig

GlobalResourcesFile setGlobalResourcesFile

Is64Bit ss64Bit

MajorVersion getMajorVersion

MinorVersion getMinorVersion

ProductName getProductName

ProductNameAndVersion getProductNameAndVersion

ReportOptionalWarnings setReportOptionalWarnings

ServerName setServerName

ServerPath setServerPath

ServerPort setServerPort

ServicePackVersion getServicePackVersion

UserCatalog setUserCatalog

6.4.1.1.2.1 APIMajorVersion

Returns the major version of the API as an integer. The API major version can be different from the product's
major version if the API is connected to another server.

COM and .NET

Signature: int APIMajorVersion()

Java

Signature: public int getAPIMajorVersion()

6.4.1.1.2.2 APIMinorVersion

Returns the minor version of the API as an integer. The API minor version can be different from the product's
minor version if the API is connected to another server.

COM and .NET

Signature: int APIMinorVersion()

305 305

305 305

306 306

306 306

306 306

307 307

307 307

307 307

308 308

308 308

308 308

309 309

309 309

306

306

304 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Java

Signature: public int getAPIMinorVersion()

6.4.1.1.2.3 APIServicePackVersion

Returns the service pack version of the API as an integer. The service pack version of the API can be different
from the product's service pack version if the API is connected to another server.

COM and .NET

Signature: int APIServicePackVersion()

Java

Signature: public int getAPIServicePackVersion()

6.4.1.1.2.4 ErrorFormat

Sets the RaptorXML error format to one of the ENUMErrorFormat literals (Text, ShortXML, LongXML).

COM and .NET

Signature: ErrorFormat(ENUMErrorFormat format)

Java

Signature: public void setErrorFormat(ENUMErrorFormat format)

6.4.1.1.2.5 ErrorLimit

Sets the RaptorXML validation error limit. The limit parameter is of type int (Java), uint (COM/.NET), and
specifies the number of errors to be reported before execution is halted. Use -1 to set limit to be unlimited
(that is, all errors will be reported). The default value is 100.

COM and .NET

Signature: ErrorLimit(uint limit)

309

353

353

353

© 2019-2025 Altova GmbH

Server API Reference 305Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

Java

Signature: public int setErrorLimit(int limit)

6.4.1.1.2.6 GlobalCatalog

Sets the location, as a URL, of the main (entry-point) catalog file. The supplied string must be an absolute URL
that gives the exact location of the main catalog file to use.

COM and .NET

Signature: GlobalCatalog(string catalog)

Java

Signature: public void setGlobalCatalog(string catalog)

6.4.1.1.2.7 GlobalResourceConfig

Sets the active configuration of the global resource. The config parameter is of type String, and specifies the
name of the configuration used by the active global resource.

COM and .NET

Signature: GlobalResourceConfig(string config)

Java

Signature: public void setGlobalResourceConfig(string config)

6.4.1.1.2.8 GlobalResourcesFile

Sets the location, as a URL, of the Global Resources XML File. The supplied string must be an absolute URL
that gives the exact location of the Global Resources XML File.

COM and .NET

Signature: GlobalResourcesFile(string url)

306 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Java

Signature: public void setGlobalResourcesFile(string url)

6.4.1.1.2.9 Is64Bit

Checks if the application is a 64-bit executable. Returns boolean true if the application is 64 bit, false if it is
not. Example: For Altova RaptorXML Server 2025r2sp1(x64), returns true. If an error occurs, a
RaptorXMLException is raised.

COM and .NET

Signature: boolean Is64Bit()

Java

Signature: public boolean is64Bit()

6.4.1.1.2.10 MajorVersion

Returns the major version of the product as an integer. Example: For Altova RaptorXML Server
2018r2sp1(x64), returns 20 (the difference between the major version (2018) and the initial year 1998). If an
error occurs, a RaptorXMLException is raised.

COM and .NET

Signature: int MajorVersion()

Java

Signature: public int getMajorVersion()

6.4.1.1.2.11 MinorVersion

Returns the minor version of the product as an integer. Example: For Altova RaptorXML Server
2025r2sp1(x64), returns 2 (from the minor version number r2). If an error occurs, a RaptorXMLException

is raised.

COM and .NET

309

309

309

© 2019-2025 Altova GmbH

Server API Reference 307Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

Signature: int MinorVersion()

Java

Signature: public int getMinorVersion()

6.4.1.1.2.12 ProductName

Returns the name of the product as a string. Example: For Altova RaptorXML Server 2025r2sp1(x64),
returns Altova RaptorXML Server. If an error occurs, a RaptorXMLException is raised.

COM and .NET

Signature: string ProductName()

Java

Signature: public string getProductName()

6.4.1.1.2.13 ProductNameAndVersion

Returns the product name, major version, minor version, and service pack version of the product as a string.
Example: For Altova RaptorXML Server 2025r2sp1(x64), returns Altova RaptorXML Server
2025r2sp1(x64). If an error occurs, a RaptorXMLException is raised.

COM and .NET

Signature: string ProductNameAndVersion()

Java

Signature: public string getProductNameAndVersion()

6.4.1.1.2.14 ReportOptionalWarnings

Enables/disables the reporting of warnings. A value of true enables warnings; false disables them.

COM and .NET

309

309

308 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Signature: ReportOptionalWarnings(boolean report)

Java

Signature: public void setReportOptionalWarnings(boolean report)

6.4.1.1.2.15 ServerName

Sets the name of the HTTP server through which the connection to RaptorXML Server is made. The input
parameter is a string that gives the name of the HTTP server. If an error occurs, a RaptorXMLException is

raised.

COM and .NET

Signature: ServerName(string name)

Java

Signature: public void setServerName(string name)

6.4.1.1.2.16 ServerPath

Specifies, in the form of a URL, the path to the HTTP server.

COM and .NET

Signature: ServerPath(string path)

Java

Signature: public void setServerPath(string path)

6.4.1.1.2.17 ServerPort

Sets the port on the HTTP server via which the service is accessed. The port must be fixed and known so that
HTTP requests can be correctly addressed to the service. The input parameter is an integer that specifies the
access port on the HTTP server. If an error occurs, a RaptorXMLException is raised.

COM and .NET

309

309

© 2019-2025 Altova GmbH

Server API Reference 309Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

Signature: ServerPort(int port)

Java

Signature: public void setServerPort(int port)

6.4.1.1.2.18 ServicePackVersion

Returns the service pack version of the product as an integer. Example: For RaptorXML Server
2025r2sp1(x64), returns 1 (from the service pack version number sp1). If an error occurs, a
RaptorXMLException is raised.

COM and .NET

Signature: int ServicePackVersion()

Java

Signature: public int getServicePackVersion()

6.4.1.1.2.19 UserCatalog

Sets the location, as a URL, of the custom user catalog file. The supplied string must be an absolute URL that
gives the exact location of the custom catalog file to use.

COM and .NET

Signature: UserCatalog(string userCatalog)

Java

Signature: public void setUserCatalog(string userCatalog)

6.4.1.2 RaptorXMLException

Generates an exception that contains information about an error that occurs during processing. The message
parameter provides information about the error.

COM and .NET

309

310 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Signature: RaptorXMLException(string message)

Java

Signature: public void RaptorXMLException(string message)

6.4.1.3 XMLDSig (for XML Signatures)

Methods of the IXMLDSig/XMLDSig interface/class can be used to sign XML documents, verify signed

documents, update (with a new signature) previously signed documents that have been modified, and remove
signatures.

Note that the name of the interface in the COM/.NET API is different than that of the class in the Java API:

· In COM/.NET: IXMLDSig

· In Java: XMLDSig

6.4.1.3.1 Methods

The methods of the IXMLDSig interface (COM/.NET) and XMLDSig class (Java) are described in this section.

6.4.1.3.1.1 ExecuteRemove

Removes the XML signature of the signed XML file, and saves the resulting unsigned document to an output
location defined by outputPath, which is a string that provides the URL of the file location. The result is true
on success, false on failure.

COM and .NET

Signature: boolean ExecuteRemove(string outputPath)

Java

Signature: public boolean executeRemove(string outputPath)

6.4.1.3.1.2 ExecuteSign

Signs the XML document according to the specified signing options (given in the signatureType and
canonicalizationMethod parameters; see the xmlsignature-sign CLI command for available values). The
output file is defined by outputPath, which is a string that provides the URL of the output file. The result is
true on success, false on failure.

191

© 2019-2025 Altova GmbH

Server API Reference 311Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

COM and .NET

Signature: boolean ExecuteSign(string outputPath, string signatureType,string
canonicalizationMethod)

Java

Signature: public boolean executeSign(string outputPath, string signatureType,string
canonicalizationMethod)

6.4.1.3.1.3 ExecuteUpdate

Updates the XML signature in the signed XML file. If the document has been modified, the updated XML
signature will be different; otherwise, the updated signature will be the same as the previous signature. The
output file is specified with outputPath, which is a string that provides the URL of the file with the updated
signature. The result is true on success, false on failure.

Either (i) the HMAC secret key property or (ii) the certificate-name and certificate-store properties
must be specified. If the certificate options are specified, then they must match those that were used to sign
the XML document previously. (Note that the certificate-store option is currently not supported on Linux and
macOS.)

COM and .NET

Signature: boolean ExecuteUpdate(string outputPath)

Java

Signature: public boolean executeUpdate(string outputPath)

6.4.1.3.1.4 ExecuteVerify

Returns the result of the signature verification: true if verification is successful, false otherwise.

COM and .NET

Signature: boolean ExecuteVerify()

Java

Signature: public boolean executeVerify()

315 312 313

312 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

6.4.1.3.2 Properties

The properties of the IXMLDSig interface (COM/.NET) and XMLDSig class (Java) are described in this section.

6.4.1.3.2.1 AbsoluteReferenceUri

Specifies whether the URI of the signed document is to be read as absolute (true) or relative (false). Default
is false.

COM and .NET

Signature: AbsoluteReferenceUri(boolean absoluteuri)

Java

Signature: public void setAbsoluteReferenceUri(boolean absoluteuri)

6.4.1.3.2.2 AppendKeyInfo

Specifies whether to include the KeyInfo element in the signature or not. The default is false.

COM and .NET

Signature: AppendKeyInfo(boolean include)

Java

Signature: public void setAppendKeyInfo(boolean inlude)

6.4.1.3.2.3 CertificateName

The name of the certificate used for signing.

Windows
This is the Subject name of a certificate from the selected --certificate-store.

Example to list the certificates (under PowerShell)
% ls cert://CurrentUser/My

© 2019-2025 Altova GmbH

Server API Reference 313Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

PSParentPath: Microsoft.PowerShell.Security\Certificate::CurrentUser\My
Thumbprint Subject
---------- -------
C9DF64BB0AAF5FA73474D78B7CCFFC37C95BFC6C CN=certificate1
... CN=...

Example: --certificate-name==certificate1

Linux/MacOS
--certname specifies the file name of a PEM encoded X.509v3 certificate with the private key. Such files

usually have the extension .pem.

Example: --certificate-name==/path/to/certificate1.pem

COM and .NET

Signature: CertificateName(string name)

Java

Signature: public void setCertificateName(string name)

6.4.1.3.2.4 CertificateStore

The location where the certificate specified with --certificate-name is stored.

Windows
The name of a certificate store under cert://CurrentUser. The available certificate stores can be listed (under

PowerShell) by using % ls cert://CurrentUser/. Certificates would then be listed as follows:

Name : TrustedPublisher
Name : ClientAuthIssuer
Name : Root
Name : UserDS
Name : CA
Name : ACRS
Name : REQUEST
Name : AuthRoot
Name : MSIEHistoryJournal
Name : TrustedPeople
Name : MyCertStore

Name : Local NonRemovable Certificates
Name : SmartCardRoot
Name : Trust
Name : Disallowed

Example: --certificate-store==MyCertStore

314 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Linux/MacOS
The --certstore option is currently not supported.

COM and .NET

Signature: CertificateStore(string filelocation)

Java

Signature: public void setCertificateStore(string filelocation)

6.4.1.3.2.5 DigestMethod

The algorithm that is used to compute the digest value over the input XML file. Available values are: sha1|
sha256|sha384|sha512.

COM and .NET

Signature: DigestMethod(string algo)

Java

Signature: public void setDigestMethod(string algo)

6.4.1.3.2.6 HMACOutputLength

Truncates the output of the HMAC algorithm to length bits. If specified, this value must be
· a multiple of 8
· larger than 80
· larger than half of the underlying hash algorithm's output length

COM and .NET

Signature: HMACOutputLength(int length)

Java

Signature: public void setHMACOutputLength(int length)

© 2019-2025 Altova GmbH

Server API Reference 315Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

6.4.1.3.2.7 HMACSecretKey

The HMAC shared secret key; must have a minimum length of six characters.

COM and .NET

Signature: HMACSecretKey(string key)

Java

Signature: public void setHMACSecretKey(string key)

6.4.1.3.2.8 InputXMLFileName

Sets the location, as a URL, of the XML document to process. The supplied string must be an absolute URL
that gives the exact location of the XML file.

COM and .NET

Signature: InputXMLFileName(string filepath)

Java

Signature: public void setInputXMLFileName(string filepath)

6.4.1.3.2.9 LastErrorMessage

Retrieves a string that is the last error message from the RaptorXML engine.

COM and .NET

Signature: string LastErrorMessage()

Java

Signature: public string getLastErrorMessage()

316 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

6.4.1.3.2.10 SignatureMethod

Specifies the algorithm to use for generating the signature.

When a certificate is used
If a certificate is specified, then SignatureMethod is optional and the value for this parameter is derived from
the certificate. If specified, it must match the algorithm used by the certificate. Example: rsa-sha256.

When --hmac-secret-key is used
When HMACSecretKey is used, then SignatureMethod is mandatory. The value must be one of the supported
HMAC algorithms:

· hmac-sha256
· hmac-sha386
· hmac-sha512
· hmac-sha1 (discouraged by the specification)

Example: hmac-sha256

COM and .NET

Signature: SignatureMethod(string algo)

Java

Signature: public void setSignatureMethod(string algo)

6.4.1.3.2.11 Transforms

Specifies the XML Signature transformations applied to the input document. The supported values are:

· REC-xml-c14n-20010315 for Canonical XML 1.0 (omit comments)
· xml-c14n11 for Canonical XML 1.1 (omit comments)
· xml-exc-c14n# for Exclusive XML Canonicalization 1.0 (omit comments)
· REC-xml-c14n-20010315#WithComments for Canonical XML 1.0 (with comments)
· xml-c14n11#WithComments for Canonical XML 1.1 (with comments)
· xml-exc-c14n#WithComments for Exclusive XML Canonicalization 1.0 (with comments)
· base64

· strip-whitespaces Altova extension

COM and .NET

Signature: Transforms(string value)

© 2019-2025 Altova GmbH

Server API Reference 317Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

Java

Signature: public void setTransforms(string value)

6.4.1.3.2.12 WriteDefaultAttributes

Specifies whether to include default attribute values from the DTD in the signed document.

COM and .NET

Signature: WriteDefaultAttributes(boolean write)

Java

Signature: public void setWriteDefaultAttributes(boolean write)

6.4.1.4 XMLValidator

The IXMLValidator/XMLValidator interface/class provides methods to (i) validate various types of

documents, (ii) check documents for well-formedness, and (iii) extract an Avro schema from an Avro binary.
You can also provide additional processing via a Python script.

Note that the name of the interface in the COM/.NET API is different than that of the class in the Java API:

· In COM/.NET: IXMLValidator

· In Java: XMLValidator

6.4.1.4.1 Methods

The methods of the IXMLValidator interface (COM/.NET) and XMLValidator class (Java) are described in this

section.

6.4.1.4.1.1 AddPythonScriptFile

Specifies the Python script file that provides additional processing of the file submitted for validation. The
supplied string must be an absolute URL of the Python script. The Python script will be processed with a
Python package that is bundled with RaptorXML Server. The bundled Python package is version 3.11.8.

COM and .NET

318 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Signature: AddPythonScriptFile(string filepath)

Java

Signature: public void addPythonScriptFile(string filepath)

6.4.1.4.1.2 ClearPythonScriptFile

Clears Python script files added with the AddPythonScriptFile method or PythonScriptFile property.

COM and .NET

Signature: ClearPythonScriptFile()

Java

Signature: public void clearPythonScriptFile()

6.4.1.4.1.3 ExtractAvroSchema

Extracts an Avro schema from a binary file. The outputPath parameter is an absolute URL that specifies the
output location. The result is true on success, false on failure. If an error occurs, a RaptorXMLException

is raised. Use LastErrorMessage to access additional information.

COM and .NET

Signature: ExtractAvroSchema(string outputPath)

Java

Signature: public void extractAvroSchema(string outputPath)

6.4.1.4.1.4 IsValid

Returns the result of validating the XML document, schema document, or DTD document. The type of
document to validate is specified by the type parameter, which takes an ENUMValidationType literal as its
value. The result is true on success, false on failure. If an error occurs, a RaptorXMLException is raised.

Use LastErrorMessage to access additional information.

309

356

309

© 2019-2025 Altova GmbH

Server API Reference 319Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

COM and .NET

Signature: boolean IsValid(ENUMValidationType type)

Java

Signature: public boolean isValid(ENUMValidationType type)

6.4.1.4.1.5 IsWellFormed

Returns the result of checking the XML document or DTD document for well-formedness. The type of document
to check is specified by the type parameter, which takes an ENUMWellformedCheckType literal as its value.
The result is true on success, false on failure. If an error occurs, a RaptorXMLException is raised. Use

LastErrorMessage to access additional information.

COM and .NET

Signature: boolean isWellFormed(ENUMWellformedCheckType type)

Java

Signature: public boolean isWellFormed(ENUMWellformedCheckType type)

6.4.1.4.2 Properties

The properties of the IXMLValidator interface (COM/.NET) and XMLValidator class (Java) are described in

this section.

6.4.1.4.2.1 AssessmentMode

Sets the assessment mode of the XML validation (Strict/Lax), which is given by an ENUMAssessmentMode
literal.

COM and .NET

Signature: AssessmentMode(ENUMAssessmentMode mode)

Java

356

356

358

309

356

356

352

352

320 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Signature: public void setAssessmentMode(ENUMAssessmentMode mode)

6.4.1.4.2.2 AvroSchemaFileName

Sets the location, as a URL, of the external Avro Schema to use. The supplied string must be an absolute URL
that gives the exact location of the Avro Schema file.

COM and .NET

Signature: AvroSchemaFileName(string url)

Java

Signature: public void setAvroSchemaFileName(string url)

6.4.1.4.2.3 AvroSchemaFromText

Supplies a string that is the text content of the Avro Schema document to use.

COM and .NET

Signature: AvroSchemaFromText(string avroschema)

Java

Signature: public void setAvroSchemaFromText(string avroschema)

6.4.1.4.2.4 DTDFileName

Sets the location, as a URL, of the DTD document to use for validation. The supplied string must be an
absolute URL that gives the exact location of the DTD document.

COM and .NET

Signature: DTDFileName(string url)

Java

Signature: public void setDTDFileName(string url)

352

© 2019-2025 Altova GmbH

Server API Reference 321Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

6.4.1.4.2.5 DTDFromText

Supplies a string that is the text content of the DTD document to use for validation.

COM and .NET

Signature: DTDFromText(string dtdtext)

Java

Signature: public void setDTDFromText(string dtdtext)

6.4.1.4.2.6 EnableNamespaces

Enables namespace-aware processing. This is useful for checking the XML instance for errors due to incorrect
namespaces. A value of true enables namespace-aware processing; false disables it. The default is false.

COM and .NET

Signature: EnableNamespaces(boolean enableNS)

Java

Signature: public void setEnableNamespaces(boolean enableNS)

6.4.1.4.2.7 InputFileArray

Provides an array of URLs of the files to be used as input data. The array is an object containing the strings of
the absolute URLs of each of the input files.

COM and .NET

Signature: InputFileArray(object fileArray)

Java

Signature: public void setInputFileArray(object fileArray)

322 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

6.4.1.4.2.8 InputFileName

Sets the location, as a URL, of the input data file to process. The supplied string must be an absolute URL that
gives the location of the input file.

COM and .NET

Signature: InputFileName(string filepath)

Java

Signature: public void setInputFileName(string filepath)

6.4.1.4.2.9 InputFromText

Supplies a string that is the text content of the document to process.

COM and .NET

Signature: InputFromText(string doc)

Java

Signature: public void setInputFromText(string doc)

6.4.1.4.2.10 InputTextArray

Provides an array of the URLs of the text-files to be used as input data. The property supplies an object
containing, as strings, the absolute URLs of each of the text files.

COM and .NET

Signature: InputTextArray(object textfileArray)

Java

Signature: public void setInputTextArray(object textfileArray)

© 2019-2025 Altova GmbH

Server API Reference 323Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

6.4.1.4.2.11 InputXMLFileName

Sets the location, as a URL, of the XML document to process. The supplied string must be an absolute URL
that gives the exact location of the XML file.

COM and .NET

Signature: InputXMLFileName(string url)

Java

Signature: public void setInputXMLFileName(string url)

6.4.1.4.2.12 InputXMLFromText

Supplies a string that is the text content of the XML document to process.

COM and .NET

Signature: InputXMLFromText(string xml)

Java

Signature: public void setInputXMLFromText(string xml)

6.4.1.4.2.13 Json5

If set to true, enables JSON 5 support.

COM and .NET

Signature: Json5(boolean json5)

Java

Signature: public void setJson5(boolean json5)

324 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

6.4.1.4.2.14 JSONSchemaFileName

Sets the location, as a URL, of the JSON Schema file that will be used for JSON instance-document validation.
The supplied string must be an absolute URL that gives the exact location of the JSON Schema file.

COM and .NET

Signature: JSONSchemaFileName(string url)

Java

Signature: public void setJSONSchemaFileName(string url)

6.4.1.4.2.15 JSONSchemaFromText

Supplies a string that is the text content of the JSON Schema document that will be used for validation of the
JSON instance document.

COM and .NET

Signature: JSONSchemaFromText(string jsonschema)

Java

Signature: public void setJSONSchemaFromText(string jsonschema)

6.4.1.4.2.16 LastErrorMessage

Retrieves a string that is the last error message from the RaptorXML engine.

COM and .NET

Signature: string LastErrorMessage()

Java

Signature: public string getLastErrorMessage()

© 2019-2025 Altova GmbH

Server API Reference 325Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

6.4.1.4.2.17 ParallelAssessment

Enables/disables parallel schema validity assessment .

COM and .NET

Signature: ParallelAssessment(boolean enable)

Java

Signature: public void setParallelAssessment(boolean enable)

6.4.1.4.2.18 PythonScriptFile

Specifies the Python script file that provides additional processing of the file submitted for validation. The
supplied string must be an absolute URL of the Python script. The Python script will be processed with a
Python package that is bundled with RaptorXML Server. The bundled Python package is version 3.11.8.

COM and .NET

Signature: PythonScriptFile(string filepath)

Java

Signature: public void setPythonScriptFile(string filepath)

6.4.1.4.2.19 SchemaFileArray

Supplies the collection of XML Schema files that will be used as external XML Schemas. The files are identified
by their URLs. The input is a collection of strings, each of which is the absolute URL of an XML Schema file

COM and .NET

Signature: SchemaFileArray(object urlArray)

Java

Signature: public void setSchemaFileArray(object urlArray)

232

326 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

6.4.1.4.2.20 SchemaFileName

Sets the location, as a URL, of the XML Schema document to be used for validation. The supplied string must
be an absolute URL that gives the exact location of the XML Schema file.

COM and .NET

Signature: SchemaFileName(string filepath)

Java

Signature: public void setSchemaFileName(string filepath)

6.4.1.4.2.21 SchemaFromText

Supplies a string that is the text content of the XML Schema document to use for validation of the XML
instance document.

COM and .NET

Signature: SchemaFileName(string xsdText)

Java

Signature: public void setSchemaFileName(string xsdText)

6.4.1.4.2.22 SchemaImports

Specifies how schema imports are to be handled based on the attribute values of the xs:import elements. The
kind of handling is specified by the ENUMSchemaImports literal that is submitted.

COM and .NET

Signature: SchemaImports(ENUMSchemaImports importOption)

Java

Signature: public void setSchemaImports(ENUMSchemaImports importOption)

354

354

© 2019-2025 Altova GmbH

Server API Reference 327Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

6.4.1.4.2.23 SchemalocationHints

Specifies the mechanism to use to locate the schema. The mechanism is specified by the
ENUMLoadSchemalocation literal that is selected.

COM and .NET

Signature: SchemalocationHints(ENUMLoadSchemalocation hint)

Java

Signature: public void setSchemalocationHints(ENUMLoadSchemalocation hint)

6.4.1.4.2.24 SchemaMapping

Sets what mapping to use in order to locate the schema. The mapping is specified by the ENUMSchemaMapping
literal that is selected.

COM and .NET

Signature: SchemaMapping(ENUMSchemaMapping mappingOption)

Java

Signature: public void setSchemaMapping(ENUMSchemaMapping mappingOption)

6.4.1.4.2.25 SchemaTextArray

Supplies the content of multiple XML Schema files. The input is a collection of strings, each of which is the
content of an XML Schema document.

COM and .NET

Signature: SchemaTextArray(object schemaDocs)

Java

Signature: public void setSchemaTextArray(object schemaDocs)

353

353

356

356

328 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

6.4.1.4.2.26 Streaming

Enables streaming validation. In streaming mode, data that is stored in memory is minimized and processing is
faster. A value of true enables streaming; false disables it. Default is true.

COM and .NET

Signature: Streaming(boolean enable)

Java

Signature: public void setStreaming(boolean enable)

6.4.1.4.2.27 XincludeSupport

Enables or disables the use of XInclude elements. A value of true enables XInclude support; false disables
it. The default value is false.

COM and .NET

Signature: XincludeSupport(boolean xinclude)

Java

Signature: public void setXincludeSupport(boolean xinclude)

6.4.1.4.2.28 XMLValidationMode

Sets the XML validation mode, which is an enumeration literal of ENUMXMLValidationMode that determines
whether to check validity or well-formedness.

COM and .NET

Signature: XMLValidationMode(ENUMXMLValidationMode valMode)

Java

Signature: public void setXMLValidationMode(ENUMXMLValidationMode valMode)

358

358

358

© 2019-2025 Altova GmbH

Server API Reference 329Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

6.4.1.4.2.29 XSDVersion

Sets the XML Schema version against which the XML document will be validated. Value is an enumeration
literal of ENUMXSDVersion .

COM and .NET

Signature: XSDVersion(ENUMXSDVersion version)

Java

Signature: public void setXSDVersion(ENUMXSDVersion version)

6.4.1.5 XQuery

The IXQuery/XQuery interface/class provides methods to (i) execute XQuery documents and XQuery updates,

and (ii) validate XQuery-related documents. You can also provide data for the executions via external variables.

Note that the name of the interface in the COM/.NET API is different than that of the class in the Java API:

· In COM/.NET: IXQuery

· In Java: XQuery

6.4.1.5.1 Methods

The methods of the IXQuery interface (COM/.NET) and XQuery class (Java) are described in this section.

6.4.1.5.1.1 AddExternalVariable

Adds the name and value of a new external variable. Each external variable and its value is to be specified in a
separate call to the method. Variables must be declared in the XQuery document (with an optional type
declaration). If the variable value is a string, enclose the value in single quotes. The name parameter holds the
name of the variable, which is a QName, as a string. The value parameter holds the value of the variable as a
string.

COM and .NET

Signature: AddExternalVariable(string name, string value)

361

361

361

330 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Java

Signature: public void addExternalVariable(string name, string value)

6.4.1.5.1.2 ClearExternalVariableList

Clears the external variables list created by the AddExternalVariable method.

COM and .NET

Signature: ClearExternalVariableList()

Java

Signature: public void clearExternalVariableList()

6.4.1.5.1.3 Execute

Executes the XQuery transformation according to the XQuery version named in the EngineVersion
property, and saves the result to the output file named in the outputFile parameter. The parameter is a string
that provides the location (path and filename) of the output file. The result is true on success, false on failure.
If an error occurs, a RaptorXMLException is raised. Use the LastErrorMessage property to access
additional information.

COM and .NET

Signature: boolean Execute(string outputFile)

Java

Signature: public boolean execute(string outputFile)

6.4.1.5.1.4 ExecuteAndGetResultAsString

Executes the XQuery update according to the XQuery Update specification named in the EngineVersion
property, and returns the result as a string. This method does not produce additional result files, such as charts
or secondary results. It also does not hold binary results such as .docx OOXML files. If additional output files
are needed, use the Execute method.

329

333

309

333

330

© 2019-2025 Altova GmbH

Server API Reference 331Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

COM and .NET

Signature: string ExecuteAndGetResultAsString()

Java

Signature: public string executeAndGetResultAsString()

6.4.1.5.1.5 ExecuteUpdate

Executes the XQuery update according to the XQuery Update specification named in the
XQueryUpdateVersion property, and saves the result to the output file named in the outputFile
parameter. The parameter is a string that provides the location (path and filename) of the output file. The result
is true on success, false on failure. If an error occurs, a RaptorXMLException is raised. Use the
LastErrorMessage property to access additional information.

COM and .NET

Signature: boolean ExecuteUpdate(string outputFile)

Java

Signature: public boolean executeUpdate(string outputFile)

6.4.1.5.1.6 ExecuteUpdateAndGetResultAsString

Executes the XQuery update according to the XQuery Update specification named in the
XQueryUpdateVersion property, and returns the result as a string. This method does not produce additional
result files, such as charts or secondary results. It also does not hold binary results such as .docx OOXML
files.

COM and .NET

Signature: string ExecuteUpdateAndGetResultAsString()

Java

Signature: public string executeUpdateAndGetResultAsString()

340

309

340

332 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

6.4.1.5.1.7 IsValid

Returns the result of validating the XQuery document according to the XQuery specification named in the
EngineVersion property. The result is true on success, false on failure. If an error occurs, a
RaptorXMLException is raised. Use the LastErrorMessage property to access additional information.

COM and .NET

Signature: boolean IsValid()

Java

Signature: public boolean isValid()

6.4.1.5.1.8 IsValidUpdate

Returns the result of validating the XQuery Update document according to the XQuery Update specification
named in the XQueryUpdateVersion property. The result is true on success, false on failure. If an error
occurs, a RaptorXMLException is raised. Use the LastErrorMessage property to access additional
information.

COM and .NET

Signature: boolean IsValidUpdate()

Java

Signature: public boolean isValidUpdate()

6.4.1.5.2 Properties

The properties of the IXQuery interface (COM/.NET) and XQuery class (Java) are described in this section.

6.4.1.5.2.1 AdditionalOutputs

Returns the additional outputs of the last executed job.

COM and .NET

333

309

340

309

© 2019-2025 Altova GmbH

Server API Reference 333Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

Signature: string AdditionalOutputs()

Java

Signature: public string getAdditionalOutputs()

6.4.1.5.2.2 ChartExtensionsEnabled

Enables or disables Altova's chart extension functions. A value of true enables chart extensions; false
disables them. Default value is true.

COM and .NET

Signature: ChartExtensionsEnabled(boolean enable)

Java

Signature: public void setChartExtensionsEnabled(boolean enable)

6.4.1.5.2.3 DotNetExtensionsEnabled

Enables or disables .NET extension functions. A value of true enables .NET extensions; false disables them.
Default value is true.

COM and .NET

Signature: DotNetExtensionsEnabled(boolean enable)

Java

Signature: public void setDotNetExtensionsEnabled(boolean enable)

6.4.1.5.2.4 EngineVersion

Specifies the XQuery version to use. The property value is an ENUMXQueryVersion literal.

COM and .NET

Signature: EngineVersion(ENUMXQueryVersion version)

360

360

334 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Java

Signature: public void setEngineVersion(ENUMXQueryVersion version)

6.4.1.5.2.5 IndentCharacters

Submits the character string that will be used as indentation in the output.

COM and .NET

Signature: IndentCharacters(string indentChars)

Java

Signature: public void setIndentCharacters(string indentChars)

6.4.1.5.2.6 InputXMLFileName

Sets the location, as a URL, of the XML document to process. The supplied string must be an absolute URL
that gives the exact location of the XML file.

COM and .NET

Signature: InputXMLFileName(string url)

Java

Signature: public void setInputXMLFileName(string url)

6.4.1.5.2.7 InputXMLFromText

Supplies a string that is the text content of the XML document to process.

COM and .NET

Signature: InputXMLFromText(string xml)

360

© 2019-2025 Altova GmbH

Server API Reference 335Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

Java

Signature: public void setInputXMLFromText(string xml)

6.4.1.5.2.8 JavaBarcodeExtensionLocation

Specifies the location of the barcode extension file. See the section on Altova's barcode extension functions
for more information. The supplied string must be an absolute URL that gives the base location of the file to
use.

COM and .NET

Signature: JavaBarcodeExtensionLocation(string url)

Java

Signature: public void setJavaBarcodeExtensionLocation(string url)

6.4.1.5.2.9 JavaExtensionsEnabled

Enables or disables Java extension functions. A value of true enables Java extensions; false disables them.
Default value is true.

COM and .NET

Signature: JavaExtensionsEnabled(boolean enable)

Java

Signature: public void setJavaExtensionsEnabled(boolean enable)

6.4.1.5.2.10 KeepFormatting

Specifies whether the formatting of the original document should be kept (as far as possible) or not. A value of
true keeps formatting; false does not keep formatting. Default value is true.

COM and .NET

Signature: KeepFormatting(boolean keep)

496

336 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Java

Signature: public void setKeepFormatting(boolean keep)

6.4.1.5.2.11 LastErrorMessage

Retrieves a string that is the last error message from the RaptorXML engine.

COM and .NET

Signature: string LastErrorMessage()

Java

Signature: public string getLastErrorMessage()

6.4.1.5.2.12 LoadXMLWithPSVI

Enables validation of input XML files and generates post-schema-validation info for them. A value of true
enables XML validation and generates post-schema-validation info for the XML files; false disables validation.
Default value is true.

COM and .NET

Signature: LoadXMLWithPSVI(boolean enable)

Java

Signature: public void setLoadXMLWithPSVI(boolean enable)

6.4.1.5.2.13 MainOutput

Returns the main output of the last executed job.

COM and .NET

Signature: string MainOutput()

© 2019-2025 Altova GmbH

Server API Reference 337Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

Java

Signature: public string getMainOutput()

6.4.1.5.2.14 OutputEncoding

Sets the encoding for the result document. Use an official IANA encoding name, such as UTF-8, UTF-16, US-
ASCII, ISO-8859-1, as a string.

COM and .NET

Signature: OutputEncoding(string encoding)

Java

Signature: public void setOutputEncoding(string encoding)

6.4.1.5.2.15 OutputIndent

Enables or disables indentation in the output document. A value of true enables indentation; false disables it.

COM and .NET

Signature: OutputIndent(boolean outputIndent)

Java

Signature: public void setOutputIndent(boolean outputIndent)

6.4.1.5.2.16 OutputMethod

Specifies the serialization of the output document. Valid values are: xml|xhtml|html|text. Default value is
xml.

COM and .NET

Signature: OutputMethod(string format)

338 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Java

Signature: public void setOutputMethod(string format)

6.4.1.5.2.17 OutputOmitXMLDeclaraton

Enables/disables the inclusion of the XML declaration in the result document. A value of true omits the
declaration; false includes it. Default value is false.

COM and .NET

Signature: OutputOmitXMLDeclaration(boolean omitDeclaration)

Java

Signature: public void setOutputOmitXMLDeclaration(boolean omitDeclaration)

6.4.1.5.2.18 UpdatedXMLWriteMode

Specifies how updates to the XML file are handled. The property value is an ENUMXQueryUpdatedXML literal.

COM and .NET

Signature: UpdateXMLWriteMode(ENUMXQueryUpdatedXML updateMode)

Java

Signature: public void setUpdateXMLWriteMode(ENUMXQueryUpdatedXML updateMode)

6.4.1.5.2.19 XincludeSupport

Enables or disables the use of XInclude elements. A value of true enables XInclude support; false disables
it. The default value is false.

COM and .NET

Signature: XincludeSupport(boolean xinclude)

359

359

359

© 2019-2025 Altova GmbH

Server API Reference 339Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

Java

Signature: public void setXincludeSupport(boolean xinclude)

6.4.1.5.2.20 XMLValidationErrorsAsWarnings

Enables the treating of XML validation errors as warnings. Takes boolean true or false.

COM and .NET

Signature: XMLValidationErrorsAsWarnings(boolean enable)

Java

Signature: public void setXMLValidationErrorsAsWarnings(boolean enable)

6.4.1.5.2.21 XMLValidationMode

Sets the XML validation mode, which is an enumeration literal of ENUMXMLValidationMode that determines
whether to check validity or well-formedness.

COM and .NET

Signature: XMLValidationMode(ENUMXMLValidationMode valMode)

Java

Signature: public void setXMLValidationMode(ENUMXMLValidationMode valMode)

6.4.1.5.2.22 XQueryFileName

Specifies the XQuery file to use. The supplied string must be an absolute URL that gives the location of the
XQuery file to use.

COM and .NET

Signature: XQueryFileName(string fileurl)

358

358

358

340 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Java

Signature: public void setXQueryFileName(string fileurl)

6.4.1.5.2.23 XQueryFromText

Supplies, as a text string, the contents of the XQuery document to use

COM and .NET

Signature: XQueryFromText(string xqtext)

Java

Signature: public void setXQueryFromText(string xqtext)

6.4.1.5.2.24 XQueryUpdateVersion

Specifies the XQuery Update version to use. The property value is an ENUMXQueryVersion literal.

COM and .NET

Signature: XQueryUpdateVersion(ENUMXQueryVersion version)

Java

Signature: public void setXQueryUpdateVersion(ENUMXQueryVersion version)

6.4.1.5.2.25 XSDVersion

Sets the XML Schema version against which the XML document will be validated. Value is an enumeration
literal of ENUMXSDVersion .

COM and .NET

Signature: XSDVersion(ENUMXSDVersion version)

360

360

360

361

361

© 2019-2025 Altova GmbH

Server API Reference 341Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

Java

Signature: public void setXSDVersion(ENUMXSDVersion version)

6.4.1.6 XSLT

The IXSLT/XSLT interface/class provides methods to execute XSLT transformations and validate XSLT-related

documents. You can also provide data for the transformation via external parameters.

Note that the name of the interface in the COM/.NET API is different than that of the class in the Java API:

· In COM/.NET: IXSLT

· In Java: XSLT

6.4.1.6.1 Methods

The methods of the IXSLT interface (COM/.NET) and XSLT class (Java) are described in this section.

6.4.1.6.1.1 AddExternalParameter

Adds the name and value of a new external parameter. Each external parameter and its value is to be specified
in a separate call to the method. Parameters must be declared in the XSLT document. Since parameter values
are XPath expressions, parameter values that are strings must be enclosed in single quotes. The name
parameter holds the name of the variable, which is a QName, as a string. The value parameter holds the value
of the variable as a string.

COM and .NET

Signature: AddExternalParameter(string name, string value)

Java

Signature: public void addExternalParameter(string name, string value)

361

342 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

6.4.1.6.1.2 ClearExternalParameterList

Clears the external parameters list created by the AddExternalParameter method.

COM and .NET

Signature: ClearExternalParameterList()

Java

Signature: public void clearExternalParameterList()

6.4.1.6.1.3 Execute

Executes the XSLT transformation according to the XSLT specification named in the EngineVersion
property, and saves the result to the output file named in the outputFile parameter. If an error occurs, a
RaptorXMLException is raised. Use the LastErrorMessage property to access additional information.

COM and .NET

Signature: boolean Execute(string outputFile)

Java

Signature: public boolean execute(string outputFile)

6.4.1.6.1.4 ExecuteAndGetResultAsString

Executes the XSLT transformation according to the XSLT specification named in the EngineVersion
property, and returns the result as a string. This method does not produce additional result files, such as charts
or secondary results. It also does not hold binary results such as .docx OOXML files. If additional output files
are needed, use the Execute method. If an error occurs, a RaptorXMLException is raised. Use the
LastErrorMessage property to access additional information.

COM and .NET

Signature: string ExecuteAndGetResultAsString()

Java

Signature: public string executeAndGetResultAsString()

341

345

309

345

342 309

© 2019-2025 Altova GmbH

Server API Reference 343Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

6.4.1.6.1.5 ExecuteAndGetResultAsStringWithBaseOutputURI

Executes the XSLT transformation according to the XSLT specification named in the EngineVersion
property, and returns the result as a string at the location defined by the base URI. The baseURI parameter is a
string that provides a URI. This method does not produce additional result files, such as charts or secondary
results. It also does not hold binary results such as .docx OOXML files. If additional output files are needed,
use the Execute method. If an error occurs, a RaptorXMLException is raised. Use the
LastErrorMessage property to access additional information.

COM and .NET

Signature: string ExecuteAndGetResultAsStringWithBaseOutputURI(string baseURI)

Java

Signature: public string ExecuteAndGetResultAsStringWithBaseOutputURI(string baseURI)

6.4.1.6.1.6 IsValid

Returns the result of validating the XSLT document according to the XSLT specification named in the
EngineVersion property. The result is true on success, false on failure. If an error occurs, a
RaptorXMLException is raised. Use the LastErrorMessage property to access additional information.

COM and .NET

Signature: boolean IsValid()

Java

Signature: public boolean isValid()

6.4.1.6.2 Properties

The properties of the IXSLT interface (COM/.NET) and XSLT class (Java) are described in this section.

345

342 309

345

309

344 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

6.4.1.6.2.1 AdditionalOutputs

Returns the additional outputs of the last executed job.

COM and .NET

Signature: string AdditionalOutputs()

Java

Signature: public string getAdditionalOutputs()

6.4.1.6.2.2 ChartExtensionsEnabled

Enables or disables Altova's chart extension functions. A value of true enables chart extensions; false
disables them. Default value is true.

COM and .NET

Signature: ChartExtensionsEnabled(boolean enable)

Java

Signature: public void setChartExtensionsEnabled(boolean enable)

6.4.1.6.2.3 DotNetExtensionsEnabled

Enables or disables .NET extension functions. A value of true enables .NET extensions; false disables them.
Default value is true.

COM and .NET

Signature: DotNetExtensionsEnabled(boolean enable)

Java

Signature: public void setDotNetExtensionsEnabled(boolean enable)

© 2019-2025 Altova GmbH

Server API Reference 345Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

6.4.1.6.2.4 EngineVersion

Specifies the XSLT version to use. The property value is an ENUMXSLTVersion literal.

COM and .NET

Signature: EngineVersion(ENUMXSLTVersion version)

Java

Signature: public void setEngineVersion(ENUMXSLTVersion version)

6.4.1.6.2.5 IndentCharacters

Submits the character string that will be used as indentation in the output.

COM and .NET

Signature: IndentCharacters(string indentChars)

Java

Signature: public void setIndentCharacters(string indentChars)

6.4.1.6.2.6 InitialTemplateMode

Sets the initial mode for XSLT processing. Templates with a mode value equal to the submitted string will be
processed.

COM and .NET

Signature: InitialTemplateMode(string mode)

Java

Signature: public void setInitialTemplateMode(string mode)

362

362

362

346 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

6.4.1.6.2.7 InputXMLFileName

Sets the location, as a URL, of the XML document to process. The supplied string must be an absolute URL
that gives the exact location of the XML file.

COM and .NET

Signature: InputXMLFileName(string url)

Java

Signature: public void setInputXMLFileName(string url)

6.4.1.6.2.8 InputXMLFromText

Supplies a string that is the text content of the XML document to process.

COM and .NET

Signature: InputXMLFromText(string xml)

Java

Signature: public void setInputXMLFromText(string xml)

6.4.1.6.2.9 JavaBarcodeExtensionLocation

Specifies the location of the barcode extension file. See the section on Altova's barcode extension functions
for more information. The supplied string must be an absolute URL that gives the base location of the file to
use.

COM and .NET

Signature: JavaBarcodeExtensionLocation(string url)

Java

Signature: public void setJavaBarcodeExtensionLocation(string url)

496

© 2019-2025 Altova GmbH

Server API Reference 347Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

6.4.1.6.2.10 JavaExtensionsEnabled

Enables or disables Java extension functions. A value of true enables Java extensions; false disables them.
Default value is true.

COM and .NET

Signature: JavaExtensionsEnabled(boolean enable)

Java

Signature: public void setJavaExtensionsEnabled(boolean enable)

6.4.1.6.2.11 LastErrorMessage

Retrieves a string that is the last error message from the RaptorXML engine.

COM and .NET

Signature: string LastErrorMessage()

Java

Signature: public string getLastErrorMessage()

6.4.1.6.2.12 LoadXMLWithPSVI

Enables validation of input XML files and generates post-schema-validation info for them. A value of true
enables XML validation and generates post-schema-validation info for the XML files; false disables validation.
Default value is true.

COM and .NET

Signature: LoadXMLWithPSVI(boolean enable)

Java

Signature: public void setLoadXMLWithPSVI(boolean enable)

348 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

6.4.1.6.2.13 MainOutput

Returns the main output of the last executed job.

COM and .NET

Signature: string MainOutput()

Java

Signature: public string getMainOutput()

6.4.1.6.2.14 NamedTemplateEntryPoint

Specifies the name, as a string, of the named template to use as an entry point for the transformation.

COM and .NET

Signature: NamedTemplateEntryPoint(string template)

Java

Signature: public void setNamedTemplateEntryPoint(string template)

6.4.1.6.2.15 SchemaImports

Specifies how schema imports are to be handled based on the attribute values of the xs:import elements. The
kind of handling is specified by the ENUMSchemaImports literal that is submitted.

COM and .NET

Signature: SchemaImports(ENUMSchemaImports importOption)

Java

Signature: public void setSchemaImports(ENUMSchemaImports importOption)

354

354

© 2019-2025 Altova GmbH

Server API Reference 349Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

6.4.1.6.2.16 SchemalocationHints

Specifies the mechanism to use to locate the schema. The mechanism is specified by the
ENUMLoadSchemalocation literal that is selected.

COM and .NET

Signature: SchemalocationHints(ENUMLoadSchemalocation hint)

Java

Signature: public void setSchemalocationHints(ENUMLoadSchemalocation hint)

6.4.1.6.2.17 SchemaMapping

Sets what mapping to use in order to locate the schema. The mapping is specified by the ENUMSchemaMapping
literal that is selected.

COM and .NET

Signature: SchemaMapping(ENUMSchemaMapping mappingOption)

Java

Signature: public void setSchemaMapping(ENUMSchemaMapping mappingOption)

6.4.1.6.2.18 StreamingSerialization

Enables streaming serialization. In streaming mode, data stored in memory is minimized and processing is
faster. A value of true enables streaming serialization; false disables it.

COM and .NET

Signature: StreamingSerialization(boolean enable)

Java

Signature: public void setStreamingSerialization(boolean enable)

353

353

356

356

350 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

6.4.1.6.2.19 XincludeSupport

Enables or disables the use of XInclude elements. A value of true enables XInclude support; false disables
it. The default value is false.

COM and .NET

Signature: XincludeSupport(boolean xinclude)

Java

Signature: public void setXincludeSupport(boolean xinclude)

6.4.1.6.2.20 XMLValidationErrorsAsWarnings

Enables the treating of XML validation errors as warnings. Takes boolean true or false.

COM and .NET

Signature: XMLValidationErrorsAsWarnings(boolean enable)

Java

Signature: public void setXMLValidationErrorsAsWarnings(boolean enable)

6.4.1.6.2.21 XMLValidationMode

Sets the XML validation mode, which is an enumeration literal of ENUMXMLValidationMode that determines
whether to check validity or well-formedness.

COM and .NET

Signature: XMLValidationMode(ENUMXMLValidationMode valMode)

Java

Signature: public void setXMLValidationMode(ENUMXMLValidationMode valMode)

358

358

358

© 2019-2025 Altova GmbH

Server API Reference 351Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

6.4.1.6.2.22 XSDVersion

Sets the XML Schema version against which the XML document will be validated. Value is an enumeration
literal of ENUMXSDVersion .

COM and .NET

Signature: XSDVersion(ENUMXSDVersion version)

Java

Signature: public void setXSDVersion(ENUMXSDVersion version)

6.4.1.6.2.23 XSLFileName

Specifies the XSLT file to use. The supplied string must be an absolute URL that gives the location of the XSLT
file to use.

COM and .NET

Signature: XSLFileName(string fileurl)

Java

Signature: public void setXSLFileName(string fileurl)

6.4.1.6.2.24 XSLFromText

Supplies, as a text string, the contents of the XSLT document to use

COM and .NET

Signature: XSLFromText(string xsltext)

Java

Signature: public void setXSLFromText(string xsltext)

361

361

361

352 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

6.4.2 Enumerations

Enumerations of the COM/.NET and Java Server APIs are described in this section. Each description includes
links to the methods or properties that use the enumeration.

· ENUMAssessmentMode
· ENUMErrorFormat
· ENUMLoadSchemalocation
· ENUMSchemaImports
· ENUMSchemaMapping
· ENUMValidationType
· ENUMWellformedCheckType
· ENUMXMLValidationMode
· ENUMXQueryUpdatedXML
· ENUMXQueryVersion
· ENUMXSDVersion
· ENUMXSLTVersion

6.4.2.1 ENUMAssessmentMode

Defines the assessment mode of the XML Validator to be strict or lax:

· eAssessmentModeStrict: Sets the schema-validity assessment mode to Strict. This is the default

value.
· eAssessmentModeLax: Sets the schema-validity assessment mode to Lax.

COM and .NET

eAssessmentModeStrict = 0

eAssessmentModeLax = 1

Used by

Interface Property

IXMLValidator AssessmentMode

Java
public enum ENUMAssessmentMode {

 eAssessmentModeLax

 eAssessmentModeStrict }

Used by

Class Method

352

353

353

354

356

356

358

358

359

360

361

362

317 319

© 2019-2025 Altova GmbH

Server API Reference 353Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

XMLValidator setAssessmentMode

6.4.2.2 ENUMErrorFormat

Specifies the format of the error output:

· eFormatText: Sets the error output format to Text. The default value.

· eFormatShortXML: Sets the error output format to ShortXML. This format is an abbreviated form of the

LongXML format.
· eFormatLongXML: Sets the error output format to LongXML. This format provides the most detail of all

three output formats.

COM and .NET

eFormatText = 0

eFormatShortXML = 1

eFormatLongXML = 2

Used by

Interface Property

IServer ErrorFormat

Java
public enum ENUMErrorFormat {

 eFormatText

 eFormatShortXML
 eFormatLongXML }

Used by

Class Method

RaptorXMLFactory setErrorFormat

6.4.2.3 ENUMLoadSchemalocation

Indicates how the schema's location should be determined. The selection is based on the schema location
attribute of the XML instance document. This attribute could be xsi:schemaLocation or
xsi:noNamespaceSchemaLocation.

· eSHLoadBySchemalocation uses the URL of the schema location attribute in the XML instance

document. This enumeration literal is the default value.

317 319

300 304

300 304

354 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

· eSHLoadByNamespace uses the namespace part of xsi:schemaLocation and an empty string in the

case of xsi:noNamespaceSchemaLocation to locate the schema via a catalog mapping.
· eSHLoadCombiningBoth: If either the namespace URL or schema location URL has a catalog mapping,

then the catalog mapping is used. If both have catalog mappings, then the value of
ENUMSchemaMapping decides which mapping is used. If neither the namespace nor schema
location has a catalog mapping, the schema location URL is used.

· eSHLoadIgnore: The xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes are both

ignored.

COM and .NET

eSHLoadBySchemalocation = 0

eSHLoadByNamespace = 1

eSHLoadCombiningBoth = 2

eSHLoadIgnore = 3

Used by

Interface Property

IXMLValidator SchemalocationHints

IXSLT SchemalocationHints

Java
public enum ENUMLoadSchemalocation {

 eSHLoadBySchemalocation

 eSHLoadByNamespace

 eSHLoadCombiningBoth

 eSHLoadIgnore }

Used by

Class Method

XMLValidator setSchemalocationHints

XSLT setSchemalocationHints

6.4.2.4 ENUMSchemaImports

Defines the behavior of the schema's xs:import elements, each of which has an optional namespace attribute
and an optional schemaLocation attribute.

356

317 327

341 349

317 327

341 349

© 2019-2025 Altova GmbH

Server API Reference 355Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

· eSILoadBySchemalocation uses the value of the schemaLocation attribute to locate the schema,

taking account of catalog mappings. If the namespace attribute is present, the namespace is imported
(licensed).

· eSILoadPreferringSchemalocation: If the schemaLocation attribute is present, it is used, taking

account of catalog mappings. If no schemaLocation attribute is present, then the value of the
namespace attribute is used via a catalog mapping. This enumeration literal is the default value.

· eSILoadByNamespace uses the value of the namespace attribute to locate the schema via a catalog

mapping.
· eSILoadCombiningBoth: If either the namespace URL or schemaLocation URL has a catalog mapping,

then the catalog mapping is used. If both have catalog mappings, then the value of
ENUMSchemaMapping decides which mapping is used. If neither the namespace nor
schemaLocation URL has a catalog mapping, the schemaLocation URL is used.

· eSILicenseNamespaceOnly: The namespace is imported. No schema document is imported.

COM and .NET

eSILoadBySchemalocation = 0

eSILoadPreferringSchemalocation = 1

eSILoadByNamespace = 2

eSICombiningBoth = 3

eSILicenseNamespaceOnly = 4

Used by

Interface Property

IXMLValidator SchemaImports

IXSLT SchemaImports

Java
public enum ENUMSchemaImports {

 eSILoadBySchemalocation

 eSILoadPreferringSchemalocation

 eSILoadByNamespace

 eSILoadCombiningBoth

 eSILicenseNamespaceOnly }

Used by

Class Method

XMLValidator setSchemaImports

XSLT setSchemaImports

356

317 326

341 348

317 326

341 348

356 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

6.4.2.5 ENUMSchemaMapping

Specifies which of two catalog mappings is preferred: namespaces or schema-location URLs. This enumeration
is useful for disambiguating ENUMLoadSchemalocation and ENUMSchemaImports .

· eSMPreferNamespace: Selects the namespace.

· eSMPreferSchemalocation: Selects the schema location. This is the default value.

COM and .NET

eSMPreferSchemalocation = 0

eSMPreferNamespace = 1

Used by

Interface Property

IXMLValidator SchemaMapping

IXSLT SchemaMapping

Java
public enum ENUMSchemaMapping {

 eSMPreferSchemalocation

 eSMPreferNamespace }

Used by

Class Method

IXMLValidator setSchemaMapping

IXSLT setSchemaMapping

6.4.2.6 ENUMValidationType

Specifies what validation to carry out and, in the case of XML documents, whether validation is against a DTD
or XSD.

· eValidateAny: The document type (for example, XML or XSD) is detected, and validation is set

automatically for that document type.
· eValidateXMLWithDTD: Specifies validation of an XML document against a DTD.

· eValidateXMLWithXSD: Specifies validation of an XML document against an XSD (XML Schema).

· eValidateDTD: Specifies validation of a DTD document.

353 354

317 327

341 349

317 327

341 349

© 2019-2025 Altova GmbH

Server API Reference 357Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

· eValidateXSD: Specifies validation of an XSD (W3C XMLSchema) document.

· eValidateJSON: Specifies validation of a JSON instance document.

· eValidateJSONSchema: Specifies validation of a JSON Schema document according to JSON Schema

v4.
· eValidateAvro: Specifies validation of an Avro binary file. The Avro data in the binary file is validated

against the Avro Schema contained in the binary file.
· eValidateAvroSchema: Specifies validation of an Avro schema against the Avro schema specification.

· eValidateAvroJSON: Specifies validation of a JSON-serialized Avro data file against an Avro schema.

COM and .NET

eValidateAny = 0

eValidateXMLWithDTD = 1

eValidateXMLWithXSD = 2

eValidateDTD = 3

eValidateXSD = 4

eValidateJSON = 5

eValidateJSONSchema = 6

eValidateAvro = 7

eValidateAvroSchema = 8

eValidateAvroJSON = 9

Used by

Interface Method

IXMLValidator isValid

Java
public enum ENUMValidationType {

 eValidateAny

 eValidateXMLWithDTD

 eValidateXMLWithXSD

 eValidateDTD

 eValidateXSD

 eValidateJSON
 eValidateJSONSchema

 eValidateAvro

 eValidateAvroSchema
 eValidateAvroJSON }

Used by

Class Method

XMLValidator isValid

317 318

317 318

358 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

6.4.2.7 ENUMWellformedCheckType

Specifies the type of well-formed check to make (for XML, DTD, or JSON).

· eWellformedAny: The document type is detected, and the type of check is set automatically.

· eWellformedXML: Checks an XML document for well-formedness.

· eWellformedDTD: Checks a DTD document for well-formedness.

· eWellformedJSON: Checks a JSON document for well-formedness.

COM and .NET

eWellFormedAny = 0

eWellFormedXML = 1

eWellFormedDTD = 2

eWellFormedJSON = 3

Used by

Interface Method

IXMLValidator isWellFormed

Java
public enum ENUMWellformedCheckType {

 eWellformedAny

 eWellformedXML

 eWellformedDTD

 eWellformedJSON }

Used by

Class Method

XMLValidator isWellFormed

6.4.2.8 ENUMXMLValidationMode

Specifies the type of XML validation to perform (validation or well-formedness check).

· eProcessingModeWF: Sets the XML processing mode to wellformed. This is the default value.

· eProcessingModeValid: Sets the XML processing mode to validation.

· eProcessingModeID: Internal, not for use.

317 319

317 319

© 2019-2025 Altova GmbH

Server API Reference 359Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

COM and .NET

eXMLValidationModeWF = 0

eXMLValidationModeID = 1

eXMLValidationModeValid = 2

Used by

Interface Property

IXMLValidator XMLValidationMode

IXQuery XMLValidationMode

IXSLT XMLValidationMode

Java
public enum ENUMXMLValidationMode {

 eProcessingModeValid

 eProcessingModeWF

 eProcessingModeID }

Used by

Class Method

XMLValidator setXMLValidationMode

XQuery setXMLValidationMode

XSLT setXMLValidationMode

6.4.2.9 ENUMXQueryUpdatedXML

Specifies how XQuery updates are handled.

· eUpdatedDiscard: Updates are discarded and not written to file.

· eUpdatedWriteback: Updates are written to the input XML file specified with (set)

InputXMLFileName .
· eUpdatedAsMainResult: Updates are written to the location specified by the outputFile parameter of

ExecuteUpdate .

COM and .NET

eUpdatedDiscard = 1

eUpdatedWriteback = 2

317 328

329 339

341 350

317 328

329 339

341 350

334

311

360 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

eUpdatedAsMainResult = 3

Used by

Interface Property

IXQuery UpdatedXMLWriteMode

Java
public enum ENUMXQueryUpdatedXML {

 eUpdatedDiscard

 eUpdatedWriteback
 eeUpdatedAsMainResult }

Used by

Class Method

XQuery setUpdatedXMLWriteMode

6.4.2.10 ENUMXQueryVersion

Sets the XQuery version to be used for processing (execution or validation).

· eXQVersion10: Sets the XQuery version to XQuery 1.0.

· eXQVersion30: Sets the XQuery version to XQuery 3.0. The default value.

· eXQVersion31: Sets the XQuery version to XQuery 3.1.

Note: The Java enumeration literals are differently named than the COM/.NET literals. See below.

COM and .NET

eXQVersion10 = 1

eXQVersion30 = 3

eXQVersion31 = 31

Used by

Interface Property

IXQuery EngineVersion

Java
public enum ENUMXQueryVersion {

 eVersion10

 eVersion30

329 338

329 338

329 333

© 2019-2025 Altova GmbH

Server API Reference 361Server APIs: HTTP REST, COM/.NET, Java

Altova RaptorXML Server 2025

 eVersion31 }

Used by

Class Method

XQuery setEngineVersion

6.4.2.11 ENUMXSDVersion

Specifies the XML Schema version to use for validation.

· eXSDVersionAuto: The XML Schema version is detected automatically from the XSD document's

vc:minVersion attribute. If this attribute's value is 1.1, then the document is considered to be XSD
1.1. If the attribute has any other value, or if no value exists, then the document is considered to be
XSD 1.0.

· eXSDVersion10: Sets the XML Schema version for validation to XML Schema 1.0.

· eXSDVersion11: Sets the XML Schema version for validation to XML Schema 1.1.

COM and .NET

eXSDVersionAuto = 0

eXSDVersion10 = 1

eXSDVersion11 = 2

Used by

Interface Property

IXMLValidator XSDVersion

IXQuery XSDVersion

IXSLT XSDVersion

Java
public enum ENUMXSDVersion {

 eXSDVersionAuto

 eXSDVersion10

 eXSDVersion11 }

Used by

Class Method

XMLValidator setXSDVersion

XQuery setXSDVersion

XSLT setXSDVersion

329 333

317 329

329 340

341 351

317 329

329 340

341 351

362 Server APIs: HTTP REST, COM/.NET, Java Server API Reference

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

6.4.2.12 ENUMXSLTVersion

Sets the XSLT version to be used for processing (validation or XSLT transformation).

· eVersion10: Sets the XSLT version to XSLT 1.0.

· eVersion20: Sets the XSLT version to XSLT 2.0.

· eVersion30: Sets the XSLT version to XSLT 3.0.

COM and .NET

eVersion10 = 1

eVersion20 = 2

eVersion30 = 3

Used by

Interface Property

IXSLT EngineVersion

Java
public enum ENUMXSLTVersion {

 eVersion10

 eVersion20
 eVersion30 }

Used by

Class Method

XSLT setEngineVersion

341 345

341 345

© 2019-2025 Altova GmbH

 363Engine APIs: Python and .NET

Altova RaptorXML Server 2025

7 Engine APIs: Python and .NET

RaptorXML Server provides two engine APIs:

· a Python wheel file (.whl), which is the Python Engine API: raptorxml<versiondetails>.whl

· a .NET DLL file (.dll), which is the .NET Engine API: raptorxmlapi.dll

These two engine APIs provide the RaptorXML Server functionality as separate packages that are standalone
and independent from RaptorXML Server (see figure below). Each package must be installed on the user’s
machine before it can be imported as a Python module or integrated into a custom .NET application. Because
all processing is performed locally on the user’s machine, the Python and .NET engine APIs provide detailed
access to the data models of any valid XML and XBRL instances, XSD schemas and XBRL taxonomies. The
APIs expose a rich set of methods to iterate over the content of XBRL instances or allow to retrieve specific bits
of information from XBRL taxonomies with a few lines of code.

Note the following points about the Engine APIs:

· After you install RaptorXML Server, both engine APIs will be located in the bin folder of the RaptorXML

Server installation folder.
· The engine APIs provide additional advanced processing via more versatile objects in their APIs.
· In order to use an engine API, a licensed version of RaptorXML Server must be installed on the

machine on which the Python program or .NET application is executed (see Usage below).

Usage
You can create a Python program or .NET application as follows:

Python program
A Python program can access RaptorXML functionality by using Python API objects (see here). When
the Python program is executed, it will use the RaptorXML library that has been installed in your Python

366 366

364 Engine APIs: Python and .NET

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

environment when you install the Python wheel. Note that the Python wheel is compatible with Python version
3.11.8 only.

.NET application
A .NET application can access RaptorXML functionality by using .NET API objects (see here). When the
.NET application is executed, it will use the RaptorXML that is contained in the .NET API DLL.

Licensing
In order to use an engine API, a licensed version of RaptorXML Server must be installed on the machine on
which the Python program or .NET application is executed. See the section Licensing for more detailed
information.

376 376

365

© 2019-2025 Altova GmbH

Licensing 365Engine APIs: Python and .NET

Altova RaptorXML Server 2025

7.1 Licensing

In order for an API package to run on a client machine, that machine will have to be licensed as a RaptorXML
Server client. Licensing consists of two steps:

1. Registering the machine as a RaptorXML Server client with Altova LicenseServer
2. Assigning a RaptorXML Server license from LicenseServer to that machine.

If you plan to use the API package from a given machine, then two possible situations arise:

· If the client machine is already running a licensed installation of RaptorXML Server, then the API
package can be run without you needing to take any additional steps. This is because the machine is
already licensed to run RaptorXML Server. Consequently, use of the API package on this machine is
covered by the license assigned to RaptorXML Server on that machine.

· If RaptorXML Server is not installed on the client machine and you do not want to install RaptorXML
Server on that machine for whatever reason. In this case, you can still register the machine as a
RaptorXML Server client and assign it a RaptorXML Server license. How to do this is described below.

To register a machine (on which RaptorXML Server is not installed) as a RaptorXML Server client, use the
command line application registerlicense.exe, which is located in the application's bin folder:

Windows Program Files\Altova\RaptorXMLServer2025\bin

Linux /opt/Altova/RaptorXMLServer2025/bin

Mac /usr/local/Altova/RaptorXMLServer2025/bin

On the command line run the command:

registerlicense <LicenseServer>

where <LicenseServer> is the IP address or host name of the LicenseServer machine.

This command will register the machine as a RaptorXML Server client with Altova LicenseServer. For
information about how to assign a RaptorXML Server license to the machine and for more information about
licensing, see the Altova LicenseServer documentation.

Deploying on Linux
To deploy the registerlicense application with your Python wheel package, the shared libraries that are

listed below need to be present in a sibling lib directory. The shared libraries can be copied from your Raptor

installation folder:

/opt/Altova/RaptorXMLServerRaptorXMLServer2025/lib

· libcrypto.so.1.0.0
· libssl.so.1.0.0
· libstdc++.so.6
· libtbb.so.2

366 Engine APIs: Python and .NET Python API

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

7.2 Python API

The RaptorXML Python API enables data in XML documents and XML Schema documents to be accessed
and manipulated in Python scripts. Some typical use cases of the Python API include:

· implement custom validation rules and error messages
· export content from XML documents to a database
· export content from XML documents to custom data formats
· interactively navigate and query the data model of XML documents within a Python shell or Jupyter

notebook (http://jupyter.org/)

The Python APIs
The Python APIs (for XML and XSD) provide access to the meta-information, structural information, and data
contained in XML and XSD documents. As a result, Python scripts can be created that make use of the APIs
to access and process document information. For example, a Python script can be passed to RaptorXML
Server that writes data from an XML document to a database or to a CSV file.

Example scripts for Raptor's Python APIs are available at: https://github.com/altova

The Python APIs are described in their API references:

· Python API v1 Reference
· Python API v2 Reference

Note: Raptor's Python API v1 is deprecated. Please use Python API v2.

RaptorXML Server package for Python
In your installation of RaptorXML Server, you will also find a Python package in wheel format. You can use
Python's pip command to install this package as a module of your Python installation. After the RaptorXML

module has been installed, you can use the module's functions within your code. In this way, RaptorXML's
functionality can be used easily in any Python program you write, together with other third-party Python
libraries, such as graphics libraries.

For information about how to use RaptorXML Server's Python package, see the section RaptorXML Server as a
Python Package .

Note: The Python wheel in v2024r2 and later is compatible with Python version 3.11.8 and higher.

Python scripts
A user-created Python script is submitted with the --script parameter of a number of commands, including

the following:

· valxml-withxsd (xsi)
· valxsd (xsd)

These commands invoking Python scripts can be used both on the Command Line Interface (CLI) and via
the HTTP Interface . The usage of Python scripts with the Python APIs of RaptorXML Server are described
at: https://github.com/altova.

369

62

73

56

247

http://jupyter.org/
https://github.com/altova
https://www.altova.com/manual/en/raptorapi/pyapiv1/html/index.html
https://www.altova.com/manual/en/raptorapi/pyapiv2/2.11.0/html/index.html
https://pypi.python.org/pypi/wheel
https://github.com/altova

© 2019-2025 Altova GmbH

Python API 367Engine APIs: Python and .NET

Altova RaptorXML Server 2025

Making Python scripts safe
When a Python script is specified in a command via HTTP to RaptorXML Server, the script will only work if it is
located in the trusted directory . The script is executed from the trusted directory. Specifying a Python script
from any other directory will result in an error. The trusted directory is specified in the server.script-root-
dir setting of the server configuration file , and a trusted directory must be specified if you wish to use
Python scripts. Make sure that all Python scripts to be used are saved in this directory.

Though all output generated by the server for HTTP job requests is written to the job output directory (which
is a sub-directory of the output-root-directory), this limitation does not apply to Python scripts, which
can write to any location. The server administrator must review the Python scripts in the trusted directory for
potential vulnerability issues.

7.2.1 Python API Versions

RaptorXML Server supports multiple Python API versions. Any previous Python API version is also supported
by the current version of RaptorXML Server. The Python API version is selected by the --script-api-

version=MAJOR_VERSION command line flag. The default of the MAJOR_VERSION argument is always the current

version. A new RaptorXML Server Python API MAJOR_VERSION is introduced when incompatible changes or
major enhancements are introduced. Users of the API do not need to upgrade their existing scripts when a new
major version is released.

It is recommended that:

· You use the --script-api-version=MAJOR_VERSION flag to invoke utility scripts from the RaptorXML
Server command-line (or Web-API). This ensures that scripts still work as expected after RaptorXML
Server updates—even if a new API MAJOR_VERSION has been released.

· You use the latest version of the API for new projects, even though previous versions will be supported
by future RaptorXML Server releases.

The Python API versions listed below are currently available. The documentation of the different APIs are
available online at the locations given below.

Example files
For examples of scripts that use Raptor's Python APIs, go to https://github.com/altova.

Python API version 1
Introduced with RaptorXML Server v2014

Command line flag: --script-api-version=1

Documentation: Python API Version 1 Reference

This is the original RaptorXML Server Python API. It covers support to access the internal model of RaptorXML
Server for:

253

252 251

253

253

253

https://github.com/altova
https://www.altova.com/manual/en/raptorapi/pyapiv1/html/index.html

368 Engine APIs: Python and .NET Python API

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

· XML 1.0 and XML 1.1 (API module xml)

· XMLSchema 1.0 and XMLSchema 1.1 (API module xsd)

· XBRL 2.1 (API module xbrl)

The API can be used through callback functions which are implemented in a Python script file.

· on_xsi_valid
· on_xsd_valid

· on_dts_valid

· on_xbrl_valid

A script is specified with the --script option on the command line. The callback functions are invoked only if
the validation succeeds. Details about the callback functions and the API are described in the RaptorXML
Server Python API version 1 reference.

Note: Raptor's Python API v1 is deprecated. Please use Python API v2.

Python API version 2
Introduced with RaptorXML Server v2015r3. The latest API version is 2.11.0.

Command line flag Release

--script-api-version=2 v 2015r3

--script-api-version=2.1 v 2015r4

--script-api-version=2.2 v 2016

--script-api-version=2.3 v 2016r2

--script-api-version=2.4 v 2017

--script-api-version=2.4.1 v 2018

--script-api-version=2.5.0 v 2018r2

--script-api-version=2.6.0 v 2019

--script-api-version=2.7.0 v2019r3

--script-api-version=2.8.0 v2020

--script-api-version=2.8.1 v2020r2

--script-api-version=2.8.2 v2021

--script-api-version=2.8.3 v2021r2

--script-api-version=2.8.4 v2022r2

--script-api-version=2.8.5 v2023r2sp1

--script-api-version=2.8.6 v2024

--script-api-version=2.9.0 v2024r2

© 2019-2025 Altova GmbH

Python API 369Engine APIs: Python and .NET

Altova RaptorXML Server 2025

--script-api-version=2.10.0 v2025

--script-api-version=2.11.0 v2025r2

Documentation: Python API Version 2 Reference

This API version introduces over 300 new classes and reorganizes the modules from the RaptorXML Server
Python API version 1 in such a way that frequently used information (for example, PSVI data) can be accessed
more simply and related APIs are grouped logically together (fr example, xbrl.taxonomy, xbrl.formula,
xbrl.table). In this version, the callback functions are invoked not only if validation succeeds, but also if
validation fails. To reflect this behavior, the name of the callback functions are changed to:

· on_xsi_finished
· on_xsd_finished
· on_dts_finished
· on_xbrl_finished

To enable modularization, RaptorXML Server now supports multiple --script options. The callbacks
implemented in these Python script files are executed in the order specified on the command line.

7.2.2 RaptorXML Server as a Python Package

Starting with RaptorXML Server 2024, the Python API is available as a native Python wheel package for Python
3.11.8. The Python wheel package can be installed as an extension module in your favored Python 3.11.8
distribution (for example, from python.org). Some Python 3 distributions (for example, from jupyter.org,
anaconda.org and SciPy.org) include a wide range of extension modules for big data, mathematics, science,
engineering and graphics. These modules now become available to RaptorXML Server without the need to build
these modules specifically for RaptorXML Server. Otherwise, the wheel package works the same way as the

RaptorXMLXBRL-python.exe application that is included with RaptorXML Server.

Note: The Python wheel package is a native Python 3.11.8 extension module and is compatible with Python
version 3.11.8.

Note: The Python wheel package does not include the Python API v1.

Note: If you update your version of RaptorXML Server, make sure to update the Python wheel package in your
Python environment.

The information required to correctly install the RaptorXML Server package is given in the sections below:

· Name of wheel file
· Location of wheel file
· Installing a wheel with pip
· Troubleshooting the installation
· The root catalog file
· The JSON config file

For information about how to use RaptorXML Server's Python API, see the Python API Reference and
examples . Also see example scripts that use Raptor's Python API at https://github.com/altova.

370

370

370

370

371

371

367

https://www.altova.com/manual/en/raptorapi/pyapiv2/2.11.0/html/index.html
http://www.python.org
http://www.jupyter.org
http://www.anaconda.org
http://www.scipy.org
https://github.com/altova

370 Engine APIs: Python and .NET Python API

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Name of wheel file
Wheel files are named according to the following pattern:

raptorxmlserver-{version}(-{build tag})?-{python tag}-{abi tag}-{platform tag}.whl

Example:
raptorxmlserver-2.10.0-cp35-cp35m-win_amd64.whl

Location of wheel file
A wheel file is packaged with your installation of RaptorXML Server. It is located in the application's bin folder:

Windows Program Files\Altova\RaptorXMLServer2025\bin

Linux /opt/Altova/RaptorXMLServer2025/bin

Mac /usr/local/Altova/RaptorXMLServer2025/bin

Installing a wheel with pip
To install the RaptorXML Server package as a Python module, use the pip command:

pip install <wheel-file>.whl

python -m pip install <wheel-file>.whl

If you have installed Python 3.11.8 or later from python.org, then pip will already be installed. Otherwise, you
will need to install pip first. For more information, see https://docs.python.org/3/installing/.

Troubleshooting the installation
In case you are using older versions of the Python interpreter, you might have to adjust your installation to use
the latest vcruntime libraries on windows or standard C++ libraries on Unix. These libraries are distributed with

RaptorXML Server and can be used as described below.

Windows
If the vcruntime140_1.dll is missing, copy it from the Program Files\Altova\RaptorXMLServer2025\bin

folder to the Python installation folder (the folder containing python.exe). (More generally, the Python

interpreter needs to know where to find DLLs or shared libraries.)

Linux
If your system's C++ library is outdated, then your Python interpreter will not know how to find the newer C++
library that is used by the RaptorXML Server Python package and distributed with RaptorXML Server. This can
be fixed by using $LD_LIBRARY_PATH to point to the newer library in the RaptorXML Server folder, like this: $

export LD_LIBRARY_PATH=/opt/Altova/RaptorXMLServer2025/lib.

macOS
If your system's C++ library is outdated, then your Python interpreter will not know how to find the newer C++
library that is used by the RaptorXML Server Python package and distributed with RaptorXML Server. This can
be fixed by using $DYLD_LIBRARY_PATH to point to the newer library in the RaptorXML Server folder, like this: $

export DYLD_LIBRARY_PATH=/usr/local/Altova/RaptorXMLServer2025/lib.

https://docs.python.org/3/installing/

© 2019-2025 Altova GmbH

Python API 371Engine APIs: Python and .NET

Altova RaptorXML Server 2025

The root catalog file
The RaptorXML module for Python must be able to locate RootCatalog.xml, the root catalog file that is stored

in your RaptorXML Server installation folder. This is so that the RaptorXML module can use the catalog to
correctly locate the various resources, such as schemas and other specifications, that the module references
in order to carry out functions such as validations and transformations. The RaptorXML module will
automatically locate RootCatalog.xml if the catalog's location has not been changed subsequent to the

installation of RaptorXML Server.

In case you move or modify your RaptorXML Server environment, or if you move RootCatalog.xml from its

original installed location, then you can specify the catalog's location by means of environment variables and
the RaptorXML module's JSON Config File . See the list below for the various ways in which you can do this.
The RaptorXML module determines the location of RootCatalog.xml by looking up the following resources in

the order given.

1 Environment variable
ALTOVA_RAPTORXML_PYTHON_CATALOGPATH

Create with a value that is the path to
RootCatalog.xml

2 HKLM Registry:
SOFTWARE\Altova\RaptorXMLServer\Installation_

v2025_x64\Setup\CatalogPath

Registry key is added by RaptorXML Server
installer. Value is the path to
RootCatalog.xml. Windows only

3 Location: /opt/Altova/RaptorXMLServer2025/etc/R
ootCatalog.xml

Linux only

4 Location: /usr/local/Altova/RaptorXMLServer2025
/etc/RootCatalog.xml

Mac only

5 Environment variable
ALTOVA_RAPTORXML_PYTHON_CONFIG

Create with a value that is the path to the
JSON config file .

6 Location: .altova/raptorxml-python.config The JSON config file in the current working
directory

7 Location: ~/.config/altova/raptorxml-
python.config

The JSON config file in the user's home
directory

8 Location: /etc/altova/altova/raptorxml-
python.config

The JSON config file . Linux and Mac only

The JSON config file
You can create a JSON config file for the RaptorXMLServer module. This file will be used by options 5 to 8 in
the table above to locate the root catalog file . The JSON config file must contain a map with a
"CatalogPath" key that has a value which is the path to the root catalog file .

Listing of JSON config file

{

 "CatalogPath": "/path/to/RootCatalog.xml"

}

371

371

371

371

371

371

371

372 Engine APIs: Python and .NET Python API

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

7.2.3 Debugging Server-Side Python Scripts

Most of the debugging functionality—apart the server-specific callbacks—can be used in a standard Python
interpreter or (virtual) environment after the RaptorXML Server module has been installed by using pip:

pip install –upgrade "/path/to/RaptorXML/application-folder/bin/raptorxml-version-cp37-

cp37m-winversion.whl"

After installing the wheel, you should be able to use any Python IDE to debug a script. You could try to extract
the main functionality into a separate function which takes an instance object. This can then be called (i) by the
RaptorXML Server callbacks, or (ii) by directly executing the script with a Python interpreter.

from altova_api.v2 import xml, xsd, xbrl

def main(instance):

 # Here goes the application specific logic

Main entry point, will be called by RaptorXML after the XML instance validation job has

finished

def on_xsi_finished(job, instance):

 # instance object will be None if XML Schema validation was not successful

 if instance:

 main(instance)

Main entry point, will be called by RaptorXML after the XBRL instance validation job has

finished

def on_xbrl_finished(job, instance):

 # instance object will be None if XBRL 2.1 validation was not successful

 if instance:

 main(instance)

if __name__ == ‘__main__’:

 # parse arguments and create an instance

 instance = …

 main(instance)

7.2.4 Debugging Python Scripts in Visual Studio Code

We assume an up-to-date Visual Studio Code (VS Code) intallation with the ms-python.python extension

installed. Please read the official Python debug configurations in Visual Studio Code guide for a general
overview.

Note the following points:

· This guide uses raptorxml-python as the command to execute RaptorXML Server as a Python

interpreter.

https://code.visualstudio.com/
https://code.visualstudio.com/docs/python/debugging

© 2019-2025 Altova GmbH

Python API 373Engine APIs: Python and .NET

Altova RaptorXML Server 2025

· The raptorxml-python executable is available in the bin folder of your RaptorXML Server application

folder.

Overview
We introduce two methods to use VS Code to debug Python scripts in RaptorXML Server.

· Method 1 also works for servers and RaptorXML Python callbacks (--script option).

· Method 2 doesn't require any source code modifications. It is a modified invocation of RaptorXML.
Method 2 doesn't work for servers and RaptorXML Python callbacks (--script option).

· Both methods work with a standard Python interpreter and the imported RaptorXML Python module
('import altova_api.v2 as altova').

Method 1: Change your source code
Carry out the following steps:

1. Run: raptorxml-python -m pip install --upgrade debugpy

2. Add the following lines to your Python source code:
 python
 import debugpy

 debugpy.listen(5678)

 debugpy.wait_for_client()

 debugpy.breakpoint()

3. Copy this launch configuration to VS Code launch.json (defaults will do for the above values) and

select it for Run.

 json5
 {

 "name": "Python: Remote Attach",

 "type": "python",

 "request": "attach",

 "connect": {

 "host": "localhost",

 "port": 5678

 },

 "pathMappings": [

 {

 "localRoot": "${workspaceFolder}",

 "remoteRoot": "."

 }

]

 }

You can also run by using the menu command Run->Add Configuration...->Python->Remote
Attach with the defaults accepted.

4. Run your Python script (or RaptorXML with --script callbacks) as usual.

5. Start debugging (usually with the shortcut F5).

Method 2: Use a modified command line
Carry out the following steps:

374 Engine APIs: Python and .NET Python API

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

1. Add a launch configuration (as in Method 1 above), and select it for Run.

2. Set a breakpoint in your Python script.
3. Run the command: raptorxml-python -m debugpy --listen 0.0.0.0:5678 --wait-for-client

your-script-.py

4. Start debugging (usually with the shortcut F5).

Note: Debugging also works with containers and remote servers. You have to change the host key of the

connect entry in the launch configuration. You may also use other ports as long as code or command line and

launch.json have consistent values.

Setting raptorxml-python.exe as VS Code's default interpreter
It is possible to configure raptorxml-python.exe as the default Python interpreter of VS Code. Do this by

adding the following to your VS Code settigs.json file:

json

 "python.defaultInterpreterPath": "/path/to/raptorxml-python.exe"
 ...

In this case, it is also possible to use a "Current File" launch configuration that starts the script for debugging.
Consult the official VS Code documentation for details.

7.2.5 FAQs

Q: I want to write a Python script that creates a new XML instance one element at a time while running inside
the raptor server. These need to be serialized to the output with different encodings and formatting depending
on parameters. Is this possible in RaptorXML Server.

A: No, this is currently not possible because we do not have an API for creating arbitrary XML instances.
However, when it comes to generating XBRL instances, we do have a high-level API which manages a lot of the
technical details (such as avoiding writing duplicate contexts/units, and lots more). See
https://www.altova.com/manual/en/raptorapi/pyapiv2/2.11.0/html/xbrl.InstanceDocumentBuilder.html for more
information.

Q: I would like to use lxml. Can I install lxml libraries into the Python folder at
"RaptorXMLXBRLServer2024/lib/"?

A: You can install most Python modules directly by running the following command in a terminal that has
administrator rights:

"/path/to/RaptorXML/application-folder/bin/RaptorXMLXBRL-python.exe" -m pip install lxml

Q: Would it be all right to create a big string that contains the XML instance, then parse the whole thing and re-
serialize it.

A: That is one possibility. You can parse and validate XML and XBRL instances from a string buffer using the
Python API like this:

https://www.altova.com/manual/en/raptorapi/pyapiv2/2.11.0/html/xbrl.InstanceDocumentBuilder.html

© 2019-2025 Altova GmbH

Python API 375Engine APIs: Python and .NET

Altova RaptorXML Server 2025

from altova_api.v2 import xml

txt = '''<?xml version="1.0" encoding="utf-8"?>

<doc>

 <elem attr="foo">bar</elem>

</doc>'''

inst = xml.Instance.create_from_buffer(txt.encode('utf-8')).result

print(inst.serialize())

376 Engine APIs: Python and .NET .NET Framework API

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

7.3 .NET Framework API

The .NET Framework API of RaptorXML Server enables you to integrate the RaptorXML engine in
applications written in C# and other .NET languages.

It is implemented as a .NET assembly and puts the RaptorXML engine directly inside an application or a
.NET-framework-based extension mechanism like VSTO (Visual Studio Tools for Office). The API provides fine-
grained access to validate documents and to query their internal data model from RaptorXML Server.

Reference and resources

· API documentation: The latest RaptorXML Server .NET Framework API documentation is located
at https://www.altova.com/manual/en/raptorapi/dotnetapiv2/2.11.0/html/index.html.

· Example code: The example code is hosted at https://github.com/altova/RaptorXML-Examples.

https://en.wikipedia.org/wiki/Visual_Studio_Tools_for_Office
https://www.altova.com/manual/en/raptorapi/dotnetapiv2/2.11.0/html/index.html
https://github.com/altova/RaptorXML-Examples

© 2019-2025 Altova GmbH

 377Schema Manager

Altova RaptorXML Server 2025

8 Schema Manager

XML Schema Manager is an Altova tool that provides a centralized way to install and manage XML schemas
(DTDs for XML and XML Schemas) for use across all Altova's XML-Schema-aware applications, including
RaptorXML Server.

· On Windows, Schema Manager has a graphical user interface (screenshot below) and is also available
at the command line. (Altova's desktop applications are available on Windows only; see list below.)

· On Linux and macOS, Schema Manager is available at the command line only. (Altova's server
applications are available on Windows, Linux, and macOS; see list below.)

378 Schema Manager

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Altova applications that operate with Schema Manager

Desktop applications (Windows only) Server applications (Windows, Linux, macOS)

XMLSpy (all editions) RaptorXML Server, RaptorXML+XBRL Server

© 2019-2025 Altova GmbH

 379Schema Manager

Altova RaptorXML Server 2025

MapForce (all editions) StyleVision Server

StyleVision (all editions)

Authentic Desktop Enterprise Edition

Installation and de-installation of Schema Manager
Schema Manager is installed automatically when you first install a new version of Altova Mission Kit or of any
of Altova's XML-schema-aware applications (see table above).

Likewise, it is removed automatically when you uninstall the last Altova XML-schema-aware application from
your computer.

Schema Manager features
Schema Manager provides the following features:

· Shows XML schemas installed on your computer and checks whether new versions are available for
download.

· Downloads newer versions of XML schemas independently of the Altova product release cycle. (Altova
stores schemas online, and you can download them via Schema Manager.)

· Install or uninstall any of the multiple versions of a given schema (or all versions if necessary).
· An XML schema may have dependencies on other schemas. When you install or uninstall a particular

schema, Schema Manager informs you about dependent schemas and will automatically install or
remove them as well.

· Schema Manager uses the XML catalog mechanism to map schema references to local files. In the
case of large XML schemas, processing will therefore be faster than if the schemas were at a remote
location.

· All major schemas are available via Schema Manager and are regularly updated for the latest versions.
This provides you with a convenient single resource for managing all your schemas and making them
readily available to all of Altova's XML-schema-aware applications.

· Changes made in Schema Manager take effect for all Altova products installed on that machine.
· In an Altova product, if you attempt to validate on a schema that is not installed but which is available

via Schema Manager, then installation is triggered automatically. However, if the schema package
contains namespace mappings, then there will be no automatic installation; in this case, you must
start Schema Manager, select the package/s you want to install, and run the installation. If, after
installation, your open Altova application does not restart automatically, then you must restart it
manually.

How it works
Altova stores all XML schemas used in Altova products online. This repository is updated when new versions of
the schemas are released. Schema Manager displays information about the latest available schemas when
invoked in both its GUI form as well as on the CLI. You can then install, upgrade or uninstall schemas via
Schema Manager.

Schema Manager also installs schemas in one other way. At the Altova website
(https://www.altova.com/schema-manager) you can select a schema and its dependent schemas that you want
to install. The website will prepare a file of type .altova_xmlschemas for download that contains information

about your schema selection. When you double-click this file or pass it to Schema Manager via the CLI as an
argument of the install command, Schema Manager will install the schemas you selected.391

https://www.oasis-open.org/committees/entity/spec-2001-08-06.html
https://www.altova.com/schema-manager

380 Schema Manager

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Local cache: track ing your schemas
All information about installed schemas is tracked in a centralized cache directory on your computer, located
here:

Windows C:\ProgramData\Altova\pkgs\.cache

Linux /var/opt/Altova/pkgs\.cache

macOS /var/Altova/pkgs

This cache directory is updated regularly with the latest status of schemas at Altova's online storage. These
updates are carried out at the following times:

· Every time you start Schema Manager.
· When you start RaptorXML Server for the first time on a given calendar day.
· If RaptorXML Server is open for more than 24 hours, the cache is updated every 24 hours.
· You can also update the cache by running the update command at the command line interface.

The cache therefore enables Schema Manager to continuously track your installed schemas against the
schemas available online at the Altova website.

Do not modify the cache manually!
The local cache directory is maintained automatically based on the schemas you install and uninstall. It
should not be altered or deleted manually. If you ever need to reset Schema Manager to its original
"pristine" state, then, on the command line interface (CLI): (i) run the reset command, and (ii) run the
initialize command. (Alternatively, run the reset command with the --i option.)

394

392

390

© 2019-2025 Altova GmbH

Run Schema Manager 381Schema Manager

Altova RaptorXML Server 2025

8.1 Run Schema Manager

Graphical User Interface
You can access the GUI of Schema Manager in any of the following ways:

· During the installation of RaptorXML Server: Towards the end of the installation procedure, select the
check box Invoke Altova XML-Schema Manager to access the Schema Manager GUI straight away.
This will enable you to install schemas during the installation process of your Altova application.

· Via the .altova_xmlschemas file downloaded from the Altova website: Double-click the downloaded file

to run the Schema Manager GUI, which will be set up to install the schemas you selected (at the
website) for installation.

After the Schema Manager GUI (screenshot below) has been opened, already installed schemas will be shown
selected. If you want to install an additional schema, select it. If you want to uninstall an already installed
schema, deselect it. After you have made your selections and/or deselections, you are ready to apply your
changes. The schemas that will be installed or uninstalled will be highlighted and a message about the
upcoming changes will be posted to the Messages pane at the bottom of the Schema Manager window (see
screenshot).

https://www.altova.com/schema-manager

382 Schema Manager Run Schema Manager

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

When you click Apply, the progress of the installation is displayed. If there is an error (for example, a
connection error), then an error message is displayed. In this case, click the Advanced button that appears in
the dialog, check the schema selection and retry with Apply.

© 2019-2025 Altova GmbH

Run Schema Manager 383Schema Manager

Altova RaptorXML Server 2025

Command line interface
You can run Schema Manager from a command line interface by sending commands to its executable file,
xmlschemamanager.exe.

The xmlschemamanager.exe file is located in the following folder:

· On Windows: C:\ProgramData\Altova\SharedBetweenVersions
· On Linux or macOS (server applications only): %INSTALLDIR%/bin, where %INSTALLDIR% is the

program's installation directory.

You can then use any of the commands listed in the CLI command reference section .

To display help for the commands, run the following:

· On Windows: xmlschemamanager.exe --help
· On Linux or macOS (server applications only): sudo ./xmlschemamanager --help

389

384 Schema Manager Status Categories

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

8.2 Status Categories

Schema Manager categorizes the schemas under its management as follows:

· Installed schemas. These are shown in the GUI with their check boxes selected (in the screenshot
below the checked and blue versions of the EPUB and HL7v3 NE schemas are installed schemas). If
all the versions of a schema are selected, then the selection mark is a tick. If at least one version is
unselected, then the selection mark is a solid colored square. You can deselect an installed schema
to uninstall it; (in the screenshot below, the DocBook DTD is installed and has been deselected,
thereby preparing it for de-installation).

· Uninstalled available schemas. These are shown in the GUI with their check boxes unselected. You
can select the schemas you want to install.

· Upgradeable schemas are those which have been revised by their issuers since they were installed.

They are indicated in the GUI by a icon. You can patch an installed schema with an available
revision.

Points to note

· In the screenshot above, both CBCR schemas are checked. The one with the blue background is
already installed. The one with the yellow background is uninstalled and has been selected for
installation. Note that the HL7v3 NE 2010 schema is not installed and has not been selected for
installation.

· A yellow background means that the schema will be modified in some way when the Apply button is
clicked. If a schema is unchecked and has a yellow background, it means that it will be uninstalled
when the Apply button is clicked. In the screenshot above the DocBook DTD has such a status.

© 2019-2025 Altova GmbH

Status Categories 385Schema Manager

Altova RaptorXML Server 2025

· When running Schema Manager from the command line, the list command is used with different
options to list different categories of schemas:

xmlschemamanager.exe list Lists all installed and available schemas; upgradeables are also
indicated

xmlschemamanager.exe list

-i
Lists installed schemas only; upgradeables are also indicated

xmlschemamanager.exe list

-u
Lists upgradeable schemas

Note: On Linux and macOS, use sudo ./xmlschemamanager list

391

386 Schema Manager Patch or Install a Schema

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

8.3 Patch or Install a Schema

Patch an installed schema
Occasionally, XML schemas may receive patches (upgrades or revisions) from their issuers. When Schema
Manager detects that patches are available, these are indicated in the schema listings of Schema Manager and
you can install the patches quickly.

In the GUI

Patches are indicated by the icon. (Also see the previous topic about status categories .) If patches are
available, the Patch Selection button will be enabled. Click it to select and prepare all patches for installation.

In the GUI, the icon of each schema that will be patched changes from to , and the Messages pane at
the bottom of the dialog lists the patches that will be applied. When you are ready to install the selected
patches, click Apply. All patches will be applied together. Note that if you deselect a schema marked for
patching, you will actually be uninstalling that schema.

On the CLI
To apply a patch at the command line interface:

1. Run the list -u command. This lists any schemas for which upgrades are available.
2. Run the upgrade command to install all the patches.

Install an available schema
You can install schemas using either the Schema Manager GUI or by sending Schema Manager the install
instructions via the command line.

Note: If the current schema references other schemas, the referenced schemas are also installed.

In the GUI
To install schemas using the Schema Manager GUI, select the schemas you want to install and click Apply.

You can also select the schemas you want to install at the Altova website and generate a downloadable
.altova_xmlschemas file. When you double-click this file, it will open Schema Manager with the schemas you

wanted pre-selected. All you will now have to do is click Apply.

On the CLI
To install schemas via the command line, run the install command:

xmlschemamanager.exe install [options] Schema+

where Schema is the schema (or schemas) you want to install or a .altova_xmlschemas file. A schema is

referenced by an identifier of format <name>-<version>. (The identifiers of schemas are displayed when

you run the list command.) You can enter as many schemas as you like. For details, see the
description of the install command.

Note: On Linux or macOS, use the sudo ./xmlschemamanager command.

384

391

394

391

391

391

https://www.altova.com/schema-manager

© 2019-2025 Altova GmbH

Patch or Install a Schema 387Schema Manager

Altova RaptorXML Server 2025

Installing a required schema
When you run an XML-schema-related command in RaptorXML Server and RaptorXML Server discovers that a
schema it needs for executing the command is not present or is incomplete, Schema Manager will display
information about the missing schema/s. You can then directly install any missing schema via Schema
Manager.

In the Schema Manager GUI, you can view all previously installed schemas at any time by running Schema
Manager from Tools | Schema Manager.

388 Schema Manager Uninstall a Schema, Reset

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

8.4 Uninstall a Schema, Reset

Uninstall a schema
You can uninstall schemas using either the Schema Manager GUI or by sending Schema Manager the
uninstall instructions via the command line.

Note: If the schema you want to uninstall references other schemas, then the referenced schemas are also
uninstalled.

In the GUI
To uninstall schemas in the Schema Manager GUI, clear their check boxes and click Apply. The selected
schemas and their referenced schemas will be uninstalled.

To uninstall all schemas, click Deselect All and click Apply.

On the CLI
To uninstall schemas via the command line, run the uninstall command:

xmlschemamanager.exe uninstall [options] Schema+

where each Schema argument is a schema you want to uninstall or a .altova_xmlschemas file. A schema

is specified by an identifier that has a format of <name>-<version>. (The identifiers of schemas are

displayed when you run the list command.) You can enter as many schemas as you like. For details,
see the description of the uninstall command.

Note: On Linux or macOS, use the sudo ./xmlschemamanager command.

Reset Schema Manager
You can reset Schema Manager. This removes all installed schemas and the cache directory.

· In the GUI, click Reset Selection.
· On the CLI, run the reset command.

After running this command, make sure to run the initialize command in order to recreate the cache
directory. Alternatively, run the reset command with the -i option.

Note that reset -i restores the original installation of the product, so it is recommended to run the
update command after performing a reset. Alternatively, run the reset command with the -i and -u
options.

393

391

393

392

390

392

392

394 392

© 2019-2025 Altova GmbH

Command Line Interface (CLI) 389Schema Manager

Altova RaptorXML Server 2025

8.5 Command Line Interface (CLI)

To call Schema Manager at the command line, you need to know the path of the executable. By default, the
Schema Manager executable is installed here:

Windows C:\ProgramData\Altova\SharedBetweenVersions\XMLSchemaManager.exe

Linux /opt/Altova/RaptorXMLServer2025/bin/xmlschemamanager

macOS /usr/local/Altova/RaptorXMLServer2025/bin/xmlschemamanager

Note: On Linux and macOS systems, once you have changed the directory to that containing the executable,
you can call the executable with sudo ./xmlschemamanager. The prefix ./ indicates that the executable is in

the current directory. The prefix sudo indicates that the command must be run with root privileges.

Command line syntax
The general syntax for using the command line is as follows:

<exec> -h | --help | --version | <command> [options] [arguments]

In the listing above, the vertical bar | separates a set of mutually exclusive items. The square brackets []

indicate optional items. Essentially, you can type the executable path followed by either --h, --help, or --
version options, or by a command. Each command may have options and arguments. The list of commands
is described in the following sections.

8.5.1 help

This command provides contextual help about commands pertaining to Schema Manager executable.

Syntax
<exec> help [command]

Where [command] is an optional argument which specifies any valid command name.

Note the following:

· You can invoke help for a command by typing the command followed by -h or --help, for example:

<exec> list -h

· If you type -h or --help directly after the executable and before a command, you will get general help

(not help for the command), for example: <exec> -h list

Example
The following command displays help about the list command:

xmlschemamanager help list

390 Schema Manager Command Line Interface (CLI)

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

8.5.2 info

This command displays detailed information for each of the schemas supplied as a Schema argument. This
information for each submitted schema includes the title, version, description, publisher, and any referenced
schemas, as well as whether the schema has been installed or not.

Syntax
<exec> info [options] Schema+

· The Schema argument is the name of a schema or a part of a schema's name. (To display a schema's

package ID and detailed information about its installation status, you should use the list
command.)

· Use <exec> info -h to display help for the command.

Example
The following command displays information about the latest DocBook-DTD and NITF schemas:

xmlschemamanager info doc nitf

8.5.3 initialize

This command initializes the Schema Manager environment. It creates a cache directory where information
about all schemas is stored. Initialization is performed automatically the first time a schema-cognizant Altova
application is installed. You would not need to run this command under normal circumstances, but you would
typically need to run it after executing the reset command.

Syntax
<exec> initialize | init [options]

Options
The initialize command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Example
The following command initializes Schema Manager:

xmlschemamanager initialize

391

© 2019-2025 Altova GmbH

Command Line Interface (CLI) 391Schema Manager

Altova RaptorXML Server 2025

8.5.4 install

This command installs one or more schemas.

Syntax
<exec> install [options] Schema+

To install multiple schemas, add the Schema argument multiple times.

The Schema argument is one of the following:

· A schema identifier (having a format of <name>-<version>, for example: cbcr-2.0). To find out the

schema identifiers of the schemas you want, run the list command. You can also use an
abbreviated identifier if it is unique, for example docbook. If you use an abbreviated identifier, then the

latest version of that schema will be installed.
· The path to a .altova_xmlschemas file downloaded from the Altova website. For information about

these files, see Introduction to SchemaManager: How It Works .

Options
The install command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Example
The following command installs the CBCR 2.0 (Country-By-Country Reporting) schema and the latest DocBook
DTD:

xmlschemamanager install cbcr-2.0 docbook

8.5.5 list

This command lists schemas under the management of Schema Manager. The list displays one of the
following

· All available schemas
· Schemas containing in their name the string submitted as a Schema argument

· Only installed schemas
· Only schemas that can be upgraded

391

377

392 Schema Manager Command Line Interface (CLI)

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Syntax
<exec> list | ls [options] Schema?

If no Schema argument is submitted, then all available schemas are listed. Otherwise, schemas are listed as

specified by the submitted options (see example below). Note that you can submit the Schema argument

multiple times.

Options
The list command takes the following options:

--installed, --i List only installed schemas. The default is false.

--upgradeable, --u List only schemas where upgrades (patches) are available. The default is
false.

--help, --h Display help for the command.

Examples

· To list all available schemas, run: xmlschemamanager list

· To list installed schemas only, run: xmlschemamanager list -i

· To list schemas that contain either "doc" or "nitf" in their name, run: xmlschemamanager list doc

nitf

8.5.6 reset

This command removes all installed schemas and the cache directory. You will be completely resetting your
schema environment. After running this command, be sure to run the initialize command to recreate the
cache directory. Alternatively, run the reset command with the -i option. Since reset -i restores the original

installation of the product, we recommend that you run the update command after performing a reset and
initialization. Alternatively, run the reset command with both the -i and -u options.

Syntax
<exec> reset [options]

Options
The reset command takes the following options:

--init, --i Initialize Schema Manager after reset. The default is false.

--update, --u Updates the list of available schemas in the cache. The default is false.

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

390

394

© 2019-2025 Altova GmbH

Command Line Interface (CLI) 393Schema Manager

Altova RaptorXML Server 2025

--help, --h Display help for the command.

Examples

· To reset Schema Manager, run: xmlschemamanager reset

· To reset Schema Manager and initialize it, run: xmlschemamanager reset -i

· To reset Schema Manager, initialize it,and update its schema list, run: xmlschemamanager reset -i

-u

8.5.7 uninstall

This command uninstalls one or more schemas. By default, any schemas referenced by the current one are
uninstalled as well. To uninstall just the current schema and keep the referenced schemas, set the option --k.

Syntax
<exec> uninstall [options] Schema+

To uninstall multiple schemas, add the Schema argument multiple times.

The Schema argument is one of the following:

· A schema identifier (having a format of <name>-<version>, for example: cbcr-2.0). To find out the

schema identifiers of the schemas that are installed, run the list -i command. You can also use

an abbreviated schema name if it is unique, for example docbook. If you use an abbreviated name, then

all schemas that contain the abbreviation in its name will be uninstalled.
· The path to a .altova_xmlschemas file downloaded from the Altova website. For information about

these files, see Introduction to SchemaManager: How It Works .

Options
The uninstall command takes the following options:

--keep-references, --k Set this option to keep referenced schemas. The default is false.

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Example
The following command uninstalls the CBCR 2.0 and EPUB 2.0 schemas and their dependencies:

xmlschemamanager uninstall cbcr-2.0 epub-2.0

The following command uninstalls the eba-2.10 schema but not the schemas it references:
xmlschemamanager uninstall --k cbcr-2.0

391

377

394 Schema Manager Command Line Interface (CLI)

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

8.5.8 update

This command queries the list of schemas available from the online storage and updates the local cache
directory. You should not need to run this command unless you have performed a reset and
initialize .

Syntax
<exec> update [options]

Options
The update command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Example
The following command updates the local cache with the list of latest schemas:

xmlschemamanager update

8.5.9 upgrade

This command upgrades all installed schemas that can be upgraded to the latest available patched version.
You can identify upgradeable schemas by running the list -u command.

Note: The upgrade command removes a deprecated schema if no newer version is available.

Syntax
<exec> upgrade [options]

Options
The upgrade command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

392

390

391

© 2019-2025 Altova GmbH

 395Additional Information

Altova RaptorXML Server 2025

9 Additional Information

This section contains the following additional information:

· Exit Codes
· Schema Location Hints

396

397

396 Additional Information Exit Codes

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

9.1 Exit Codes

The following exit codes are available:

0 Validation successful

1 Validation failed with error / Process interrupted by Ctrl+C/Break/terminal
closed / License expired during execution

11 RaptorXML could not start; the reason is given in the log file

22 Could not load root catalog / Could not load list file

64 Invalid command/options

77 Failed to acquire license during startup

128+n RaptorXML terminated because of signal number n. All exit codes above 128

indicate termination as a result of a received external signal or an internally
triggered signal. For example, if the exit code is 134, then the signal number is

134-128=6 (the number of SIGABRT).

© 2019-2025 Altova GmbH

Schema Location Hints 397Additional Information

Altova RaptorXML Server 2025

9.2 Schema Location Hints

Instance documents can use hints to indicate the schema location. Two attributes are used for hints:

· xsi:schemaLocation for schema documents with target namespaces. The attribute's value is a pair of
items, the first of which is a namespace, the second is a URL that locates a schema document. The
namespace name must match the target namespace of the schema document.
<document xmlns="http://www.altova.com/schemas/test03"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.altova.com/schemas/test03 Test.xsd">

· xsi:noNamespaceSchemaLocation for schema documents without target namespaces. The attribute's
value is the schema document's URL. The referenced schema document must have no target
namespace.
<document xmlns="http://www.altova.com/schemas/test03"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="Test.xsd">

The --schemalocation-hints option specifies how these two attributes are to be used as hints, especially
how the schemaLocation attribute information is to be handled (see the option's description above). Note that
RaptorXML Server considers the namespace part of the xsi:noNamespaceSchemaLocation value to be the
empty string.

Schema location hints can also be given in an import statement of an XML Schema document.

<import namespace="someNS" schemaLocation="someURL">

In the import statement, too, hints can be given via a namespace that can be mapped to a schema in a
catalog file, or directly as a URL in the schemaLocation attribute. The --schema-imports option (for XBRL
and XSD/XML) specifies how the schema location is to be selected.

234

398 Engine Information

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

10 Engine Information

This section contains information about the XSLT and XQuery engines contained in RaptorXML Server. This
information mostly concerns engine behavior in situations where the specifications leave the decision regarding
behavior up to the implementation. This section also contains information about Altova extension functions for
XPath/XQuery.

© 2019-2025 Altova GmbH

XSLT and XQuery Engine Information 399Engine Information

Altova RaptorXML Server 2025

10.1 XSLT and XQuery Engine Information

The XSLT and XQuery engines of RaptorXML Server follow the W3C specifications closely and are therefore
stricter than previous Altova engines—such as those in previous versions of XMLSpy and those of AltovaXML,
the predecessor of RaptorXML. As a result, minor errors that were ignored by previous engines are now flagged
as errors by RaptorXML Server.

For example:

· It is a type error (err:XPTY0018) if the result of a path operator contains both nodes and non-nodes.
· It is a type error (err:XPTY0019) if E1 in a path expression E1/E2 does not evaluate to a sequence of

nodes.

If you encounter this kind of error, modify either the XSLT/XQuery document or the instance document as
appropriate.

This section describes implementation-specific features of the engines, organized by specification:

· XSLT 1.0
· XSLT 2.0
· XSLT 3.0
· XQuery 1.0
· XQuery 3.1

10.1.1 XSLT 1.0

The XSLT 1.0 Engine of RaptorXML Server conforms to the World Wide Web Consortium's (W3C's) XSLT 1.0
Recommendation of 16 November 1999 and XPath 1.0 Recommendation of 16 November 1999. Note the
following information about the implementation.

Notes about the implementation
When the method attribute of xsl:output is set to HTML, or if HTML output is selected by default, then special
characters in the XML or XSLT file are inserted in the HTML document as HTML character references in the
output. For instance, the character U+00A0 (the hexadecimal character reference for a non-breaking space) is
inserted in the HTML code either as a character reference (or) or as an entity reference,
 .

10.1.2 XSLT 2.0

This section:

· Engine conformance
· Backward compatibility
· Namespaces
· Schema awareness

399

399

401

402

405

400

400

400

400

https://www.w3.org/TR/1999/REC-xslt-19991116
https://www.w3.org/TR/1999/REC-xslt-19991116
https://www.w3.org/TR/1999/REC-xpath-19991116/

400 Engine Information XSLT and XQuery Engine Information

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

· Implementation-specific behavior

Conformance
The XSLT 2.0 engine of RaptorXML Server conforms to the World Wide Web Consortium's (W3C's) XSLT 2.0
Recommendation of 23 January 2007 and XPath 2.0 Recommendation of 14 December 2010.

Backwards Compatibility
The XSLT 2.0 engine is backwards compatible. Typically, the backwards compatibility of the XSLT 2.0 engine
comes into play when using the XSLT 2.0 engine (CLI parameter --xslt=2) to process an XSLT 1.0
stylesheet or instruction. Note that there could be differences in the outputs produced by the XSLT 1.0 Engine
and the backwards-compatible XSLT 2.0 engine.

Namespaces
Your XSLT 2.0 stylesheet should declare the following namespaces in order for you to be able to use the type
constructors and functions available in XSLT 2.0. The prefixes given below are conventionally used; you could
use alternative prefixes if you wish.

Namespace Name Prefix Namespace URI

XML Schema types xs: http://www.w3.org/2001/XMLSchema

XPath 2.0 functions fn: http://www.w3.org/2005/xpath-functions

Typically, these namespaces will be declared on the xsl:stylesheet or xsl:transform element, as shown in
the following listing:

<xsl:stylesheet version="2.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:fn="http://www.w3.org/2005/xpath-functions"

 ...
</xsl:stylesheet>

The following points should be noted:

· The XSLT 2.0 engine uses the XPath 2.0 and XQuery 1.0 Functions namespace (listed in the table
above) as its default functions namespace. So you can use XPath 2.0 and XSLT 2.0 functions in
your stylesheet without any prefix. If you declare the XPath 2.0 Functions namespace in your
stylesheet with a prefix, then you can additionally use the prefix assigned in the declaration.

· When using type constructors and types from the XML Schema namespace, the prefix used in the
namespace declaration must be used when calling the type constructor (for example, xs:date).

· Some XPath 2.0 functions have the same name as XML Schema datatypes. For example, for the
XPath functions fn:string and fn:boolean there exist XML Schema datatypes with the same local
names: xs:string and xs:boolean. So if you were to use the XPath expression string('Hello'),
the expression evaluates as fn:string('Hello')—not as xs:string('Hello').

Schema-awareness
The XSLT 2.0 engine is schema-aware. So you can use user-defined schema types and the xsl:validate
instruction.

401

238

http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/xpath20/

© 2019-2025 Altova GmbH

XSLT and XQuery Engine Information 401Engine Information

Altova RaptorXML Server 2025

Implementation-specific behavior
Given below is a description of how the XSLT 2.0 engine handles implementation-specific aspects of certain
XSLT 2.0 functions.

xsl:result-document

Additionally supported encodings are (the Altova-specific): x-base16tobinary and x-base64tobinary.

function-available

The function tests for the availability of in-scope functions (XSLT, XPath, and extension functions).

unparsed-text

The href argument accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or
without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobase16
and x-binarytobase64. Example: xs:base64Binary(unparsed-text('chart.png', 'x-
binarytobase64')).

unparsed-text-available

The href argument accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or
without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobase16
and x-binarytobase64.

Note: The following encoding values, which were implemented in earlier versions of RaptorXML's predecessor
product, AltovaXML, are now deprecated: base16tobinary, base64tobinary, binarytobase16 and
binarytobase64.

10.1.3 XSLT 3.0

The XSLT 3.0 Engine of RaptorXML Server conforms to the World Wide Web Consortium's (W3C's) XSLT 3.0
Recommendation of 8 June 2017 and XPath 3.1 Recommendation of 21 March 2017.

The XSLT 3.0 engine has the same implementation-specific characteristics as the XSLT 2.0 engine .
Additionally, it includes support for a number of new XSLT 3.0 features: XPath/XQuery 3.1 functions and
operators, and the XPath 3.1 specification.

Note: The optional streaming feature is not supported currently. The entire document will be loaded into
memory regardless of the value of the streamable attribute. If enough memory is available, then: (i) the entire
document will be processed—without streaming, (ii) guaranteed-streamable constructs will be processed
correctly, as if the execution used streaming, and (iii) streaming errors will not be detected. In 64-bit apps, non-
streaming execution should not be a problem. If memory does turn out to be an issue, a solution would be to
add more memory to the system.

Namespaces
Your XSLT 3.0 stylesheet should declare the following namespaces in order for you to be able to use all the
type constructors and functions available in XSLT 3.0. The prefixes given below are conventionally used; you
could use alternative prefixes if you wish.

Namespace Name Prefix Namespace URI

399

https://www.w3.org/TR/xslt-30/
https://www.w3.org/TR/xslt-30/
https://www.w3.org/TR/xpath-31/
http://www.w3.org/TR/xpath-31/
https://www.w3.org/TR/xslt-30/#streaming-feature
https://www.w3.org/TR/xslt-30/#dt-guaranteed-streamable

402 Engine Information XSLT and XQuery Engine Information

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

XML Schema types xs: http://www.w3.org/2001/XMLSchema

XPath/XQuery 3.1
functions

fn: http://www.w3.org/2005/xpath-functions

Math functions math: http://www.w3.org/2005/xpath-functions/math

Map functions map: http://www.w3.org/2005/xpath-functions/map

Array functions array: http://www.w3.org/2005/xpath-functions/array

XQuery, XSLT, and XPath
Error Codes

err: http://www.w3.org/2005/xpath-functions/xqt-errors

Serialization functions output http://www.w3.org/2010/xslt-xquery-serialization

Typically, these namespaces will be declared on the xsl:stylesheet or xsl:transform element, as shown in
the following listing:

<xsl:stylesheet version="3.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:fn="http://www.w3.org/2005/xpath-functions"

 ...
</xsl:stylesheet>

The following points should be noted:

· The XSLT 3.0 engine uses the XPath and XQuery Functions and Operators 3.1 namespace (listed in
the table above) as its default functions namespace. So you can use the functions of this
namespace in your stylesheet without any prefix. If you declare the Functions namespace in your
stylesheet with a prefix, then you can additionally use the prefix assigned in the declaration.

· When using type constructors and types from the XML Schema namespace, the prefix used in the
namespace declaration must be used when calling the type constructor (for example, xs:date).

· Some XPath/XQuery functions have the same name as XML Schema datatypes. For example, for the
XPath functions fn:string and fn:boolean there exist XML Schema datatypes with the same local
names: xs:string and xs:boolean. So if you were to use the XPath expression string('Hello'),
the expression evaluates as fn:string('Hello')—not as xs:string('Hello').

10.1.4 XQuery 1.0

This section:

· Engine conformance
· Schema awareness
· Encoding
· Namespaces
· XML source and validation
· Static and dynamic type checking
· Library modules
· External functions

403

403

403

400

404

404

404

404

© 2019-2025 Altova GmbH

XSLT and XQuery Engine Information 403Engine Information

Altova RaptorXML Server 2025

· Collations
· Precision of numeric data
· XQuery instructions support
· Implementation-specific behavior

Conformance
The XQuery 1.0 Engine of RaptorXML Server conforms to the World Wide Web Consortium's (W3C's) XQuery
1.0 Recommendation of 14 December 2010. The XQuery standard gives implementations discretion about how
to implement many features. Given below is a list explaining how the XQuery 1.0 Engine implements these
features.

Schema awareness
The XQuery 1.0 Engine is schema-aware.

Encoding
The UTF-8 and UTF-16 character encodings are supported.

Namespaces
The following namespace URIs and their associated bindings are pre-defined.

Namespace Name Prefix Namespace URI

XML Schema types xs: http://www.w3.org/2001/XMLSchema

Schema instance xsi: http://www.w3.org/2001/XMLSchema-instance

Built-in functions fn: http://www.w3.org/2005/xpath-functions

Local functions local: http://www.w3.org/2005/xquery-local-functions

The following points should be noted:

· The XQuery 1.0 Engine recognizes the prefixes listed above as being bound to the corresponding
namespaces.

· Since the built-in functions namespace listed above (see fn:) is the default functions namespace in
XQuery, the fn: prefix does not need to be used when built-in functions are invoked (for example,

string("Hello") will call the fn:string function). However, the prefix fn: can be used to call a built-
in function without having to declare the namespace in the query prolog (for example:
fn:string("Hello")).

· You can change the default functions namespace by declaring the default function namespace
expression in the query prolog.

· When using types from the XML Schema namespace, the prefix xs: may be used without having to
explicitly declare the namespaces and bind these prefixes to them in the query prolog. (Example:
xs:date and xs:yearMonthDuration.) If you wish to use some other prefix for the XML Schema
namespace, this must be explicitly declared in the query prolog. (Example: declare namespace alt
= "http://www.w3.org/2001/XMLSchema"; alt:date("2004-10-04").)

· Note that the untypedAtomic, dayTimeDuration, and yearMonthDuration datatypes have been
moved, with the CRs of 23 January 2007, from the XPath Datatypes namespace to the XML Schema
namespace, so: xs:yearMonthDuration.

404

405

405

405

https://www.w3.org/TR/2010/REC-xquery-20101214/
https://www.w3.org/TR/2010/REC-xquery-20101214/

404 Engine Information XSLT and XQuery Engine Information

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

If namespaces for functions, type constructors, node tests, etc are wrongly assigned, an error is reported.
Note, however, that some functions have the same name as schema datatypes, e.g. fn:string and
fn:boolean. (Both xs:string and xs:boolean are defined.) The namespace prefix determines whether the
function or type constructor is used.

XML source document and validation
XML documents used in executing an XQuery document with the XQuery 1.0 Engine must be well-formed.
However, they do not need to be valid according to an XML Schema. If the file is not valid, the invalid file is
loaded without schema information. If the XML file is associated with an external schema and is valid according
to it, then post-schema validation information is generated for the XML data and will be used for query
evaluation.

Static and dynamic type checking
The static analysis phase checks aspects of the query such as syntax, whether external references (e.g. for
modules) exist, whether invoked functions and variables are defined, and so on. If an error is detected in the
static analysis phase, it is reported and the execution is stopped.

Dynamic type checking is carried out at run-time, when the query is actually executed. If a type is incompatible
with the requirement of an operation, an error is reported. For example, the expression xs:string("1") + 1
returns an error because the addition operation cannot be carried out on an operand of type xs:string.

Library Modules
Library modules store functions and variables so they can be reused. The XQuery 1.0 Engine supports modules
that are stored in a single external XQuery file. Such a module file must contain a module declaration in its
prolog, which associates a target namespace. Here is an example module:

module namespace libns="urn:module-library";
declare variable $libns:company := "Altova";
declare function libns:webaddress() { "http://www.altova.com" };

All functions and variables declared in the module belong to the namespace associated with the module. The
module is used by importing it into an XQuery file with the import module statement in the query prolog. The
import module statement only imports functions and variables declared directly in the library module file. As
follows:

import module namespace modlib = "urn:module-library" at "modulefilename.xq";
if ($modlib:company = "Altova")
then modlib:webaddress()
else error("No match found.")

External functions
External functions are not supported, i.e. in those expressions using the external keyword, as in:

declare function hoo($param as xs:integer) as xs:string external;

Collations
The default collation is the Unicode-codepoint collation, which compares strings on the basis of their Unicode
codepoint. Other supported collations are the ICU collations listed here . To use a specific collation, supply407

http://site.icu-project.org/

© 2019-2025 Altova GmbH

XSLT and XQuery Engine Information 405Engine Information

Altova RaptorXML Server 2025

its URI as given in the list of supported collations . Any string comparisons, including for the fn:max and
fn:min functions, will be made according to the specified collation. If the collation option is not specified, the
default Unicode-codepoint collation is used.

Precision of numeric types

· The xs:integer datatype is arbitrary-precision, i.e. it can represent any number of digits.
· The xs:decimal datatype has a limit of 20 digits after the decimal point.
· The xs:float and xs:double datatypes have limited-precision of 15 digits.

XQuery Instructions Support
The Pragma instruction is not supported. If encountered, it is ignored and the fallback expression is evaluated.

Implementation-specific behavior
Given below is a description of how the XQuery and XQuery Update 1.0 engines handle implementation-specific
aspects of certain functions.

unparsed-text

The href argument accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or
without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobase16
and x-binarytobase64. Example: xs:base64Binary(unparsed-text('chart.png', 'x-
binarytobase64')).

unparsed-text-available

The href argument accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or
without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobase16
and x-binarytobase64.

Note: The following encoding values, which were implemented in earlier versions of RaptorXML's predecessor
product, AltovaXML, are now deprecated: base16tobinary, base64tobinary, binarytobase16 and
binarytobase64.

10.1.5 XQuery 3.1

The XQuery 3.1 Engine of RaptorXML Server conforms to the World Wide Web Consortium's (W3C's) XQuery
3.1 Recommendation of 21 March 2017 and includes support for XPath and XQuery Functions 3.1. The XQuery
3.1 specification is a superset of the 3.0 specification. The XQuery 3.1 engine therefore supports XQuery 3.0
features.

Namespaces
Your XQuery 3.1 document should declare the following namespaces in order for you to be able to use all the
type constructors and functions available in XQuery 3.1. The prefixes given below are conventionally used; you
could use alternative prefixes if you wish.

Namespace Name Prefix Namespace URI

407

http://www.w3.org/TR/xquery-31/
http://www.w3.org/TR/xquery-31/

406 Engine Information XSLT and XQuery Engine Information

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

XML Schema types xs: http://www.w3.org/2001/XMLSchema

XPath/XQuery 3.1
functions

fn: http://www.w3.org/2005/xpath-functions

Math functions math: http://www.w3.org/2005/xpath-functions/math

Map functions map: http://www.w3.org/2005/xpath-functions/map

Array functions array: http://www.w3.org/2005/xpath-functions/array

XQuery, XSLT, and XPath
Error Codes

err: http://www.w3.org/2005/xpath-functions/xqt-errors

Serialization functions output http://www.w3.org/2010/xslt-xquery-serialization

The following points should be noted:

· The XQuery 3.1 Engine recognizes the prefixes listed above as being bound to the corresponding
namespaces.

· Since the built-in functions namespace listed above (see fn:) is the default functions namespace in
XQuery, the fn: prefix does not need to be used when built-in functions are invoked (for example,

string("Hello") will call the fn:string function). However, the prefix fn: can be used to call a built-
in function without having to declare the namespace in the query prolog (for example:
fn:string("Hello")).

· You can change the default functions namespace by declaring the default function namespace
expression in the query prolog.

· When using types from the XML Schema namespace, the prefix xs: may be used without having to
explicitly declare the namespaces and bind these prefixes to them in the query prolog. (Example:
xs:date and xs:yearMonthDuration.) If you wish to use some other prefix for the XML Schema
namespace, this must be explicitly declared in the query prolog. (Example: declare namespace alt
= "http://www.w3.org/2001/XMLSchema"; alt:date("2004-10-04").)

If namespaces for functions, type constructors, node tests, etc are wrongly assigned, an error is reported.
Note, however, that some functions have the same name as schema datatypes, e.g. fn:string and
fn:boolean. (Both xs:string and xs:boolean are defined.) The namespace prefix determines whether the
function or type constructor is used.

Implementation-specific behavior
Implementation-specific characteristics are the same as for XQuery 1.0 .

Additionally, the Altova-specific encoding x-base64tobinary can be used to create a binary result document,
such as an image.

402

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 407Engine Information

Altova RaptorXML Server 2025

10.2 XSLT and XPath/XQuery Functions

This section lists Altova extension functions and other extension functions that can be used in XPath and/or
XQuery expressions. Altova extension functions can be used with Altova's XSLT and XQuery engines, and
provide functionality additional to that available in the function libraries defined in the W3C standards.

This section describes XPath/XQuery extension functions that have been created by Altova to provide additional
operations, as well as other extension functions . These extension functions can be computed by
Altova's XSLT and XQuery engines according to the rules described in this section. For information about the
regular XPath/XQuery functions, see Altova's XPath/XQuery Function Reference.

General points
The following general points should be noted:

· Functions from the core function libraries defined in the W3C specifications can be called without a
prefix. That's because the Altova XSLT and XQuery engines read non-prefixed functions as belonging to
the namespace http://www.w3.org/2005/xpath-functions, which is the default functions
namespace specified in the XPath/XQuery functions specifications. If this namespace is explicitly
declared in an XSLT or XQuery document, the prefix used in the namespace declaration can also
optionally be used on function names.

· In general, if a function expects a sequence of one item as an argument, and a sequence of more than
one item is submitted, then an error is returned.

· All string comparisons are done using the Unicode codepoint collation.
· Results that are QNames are serialized in the form [prefix:]localname.

Precision of xs:decimal
The precision refers to the number of digits in the number, and a minimum of 18 digits is required by the
specification. For division operations that produce a result of type xs:decimal, the precision is 19 digits after
the decimal point with no rounding.

Implicit timezone
When two date, time, or dateTime values need to be compared, the timezones of the values being compared
need to be known. When the timezone is not explicitly given in such a value, the implicit timezone is used. The
implicit timezone is taken from the system clock, and its value can be checked with the implicit-
timezone() function.

Collations
The default collation is the Unicode codepoint collation, which compares strings on the basis of their Unicode
codepoint. The engine uses the Unicode Collation Algorithm. Other supported collations are the ICU collations
listed below; to use one of these, supply its URI as given in the table below. Any string comparisons, including
for the max and min functions, will be made according to the specified collation. If the collation option is not
specified, the default Unicode-codepoint collation is used.

Language URIs

da: Danish da_DK

499 408

https://www.altova.com/xpath-xquery-reference
http://site.icu-project.org/

408 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

de: German de_AT, de_BE, de_CH, de_DE, de_LI, de_LU

en: English en_AS, en_AU, en_BB, en_BE, en_BM, en_BW, en_BZ, en_CA, en_GB,
en_GU, en_HK, en_IE, en_IN, en_JM, en_MH, en_MP, en_MT, en_MU,
en_NA, en_NZ, en_PH, en_PK, en_SG, en_TT, en_UM, en_US, en_VI,
en_ZA, en_ZW

es: Spanish es_419, es_AR, es_BO, es_CL, es_CO, es_CR, es_DO, es_EC,
es_ES, es_GQ, es_GT, es_HN, es_MX, es_NI, es_PA, es_PE, es_PR,
es_PY, es_SV, es_US, es_UY, es_VE

fr: French fr_BE, fr_BF, fr_BI, fr_BJ, fr_BL, fr_CA, fr_CD, fr_CF, fr_CG,
fr_CH, fr_CI, fr_CM, fr_DJ, fr_FR, fr_GA, fr_GN, fr_GP, fr_GQ,
fr_KM, fr_LU, fr_MC, fr_MF, fr_MG, fr_ML, fr_MQ, fr_NE, fr_RE,
fr_RW, fr_SN, fr_TD, fr_TG

it: Italian it_CH, it_IT

ja: Japanese ja_JP

nb: Norwegian Bokmal nb_NO

nl: Dutch nl_AW, nl_BE, nl_NL

nn: Nynorsk nn_NO

pt: Portuguese pt_AO, pt_BR, pt_GW, pt_MZ, pt_PT, pt_ST

ru: Russian ru_MD, ru_RU, ru_UA

sv: Swedish sv_FI, sv_SE

Namespace axis
The namespace axis is deprecated in XPath 2.0. Use of the namespace axis is, however, supported. To
access namespace information with XPath 2.0 mechanisms, use the in-scope-prefixes(), namespace-
uri() and namespace-uri-for-prefix() functions.

10.2.1 Altova Extension Functions

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova extension
functions are in the Altova extension functions namespace, http://www.altova.com/xslt-extensions,

and are indicated in this section with the prefix altova:, which is assumed to be bound to this namespace.

Note that, in future versions of your product, support for a function might be discontinued or the behavior of
individual functions might change. Consult the documentation of future releases for information about support for
Altova extension functions in that release.

Functions defined in the W3C's XPath/XQuery Functions specifications can be used in: (i) XPath expressions in
an XSLT context, and (ii) in XQuery expressions in an XQuery document. In this documentation we indicate the
functions that can be used in the former context (XPath in XSLT) with an XP symbol and call them XPath
functions; those functions that can be used in the latter (XQuery) context are indicated with an XQ symbol; they
work as XQuery functions. The W3C's XSLT specifications—not XPath/XQuery Functions specifications—also

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 409Engine Information

Altova RaptorXML Server 2025

define functions that can be used in XPath expressions in XSLT documents. These functions are marked with
an XSLT symbol and are called XSLT functions. The XPath/XQuery and XSLT versions in which a function can be
used are indicated in the description of the function (see symbols below). Functions from the XPath/XQuery and
XSLT function libraries are listed without a prefix. Extension functions from other libraries, such as Altova
extension functions, are listed with a prefix.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Usage of Altova extension functions
In order to use Altova extension functions, you must declare the Altova extension functions namespace (first
highlight in code listing below) and then use the extension functions so that they are resolved as belonging to
this namespace (see second highlight). The example below uses the Altova extension function named age.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fn="http://www.w3.org/2005/xpath-functions"
xmlns:altova="http://www.altova.com/xslt-extensions">

<xsl:output method="text" encoding="ISO-8859-1"/>

<xsl:template match="Persons">

<xsl:for-each select="Person">

 <xsl:value-of select="concat(Name, ': ')"/>

 <xsl:value-of select="altova:age(xs:date(BirthDate))"/>

 <xsl:value-of select="' years
'"/>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

 XSLT functions
XSLT functions can only be used in XPath expressions in an XSLT context (similarly to XSLT 2.0's current-
group() or key() functions). These functions are not intended for, and will not work in, a non-XSLT context (for
instance, in an XQuery context). Note that XSLT functions for XBRL can be used only with editions of Altova
products that have XBRL support.

XPath/XQuery functions
XPath/XQuery functions can be used both in XPath expressions in XSLT contexts as well as in XQuery
expressions:

· Date/Time
· Geolocation
· Image-related
· Numeric
· Schema
· Sequence

410

413

430

441

446

448

467

410 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

· String
· Miscellaneous

Chart functions (Enterprise and Server Editions only)
Altova extension functions for charts are supported only in the Enterprise and Server Editions of Altova
products and enable charts to be generated from XML data.

Barcode functions
Altova's barcode extension functions enable barcodes to be generated and placed in output generated via
XSLT stylesheets.

10.2.1.1 XSLT Functions

XSLT extension functions can be used in XPath expressions in an XSLT context. They will not work in a non-
XSLT context (for instance, in an XQuery context).

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

General functions
distinct-nodes [altova:]

altova:distinct-nodes(node()*) as node()* XSLT1 XSLT2 XSLT3

Takes a set of one or more nodes as its input and returns the same set minus nodes with duplicate
values. The comparison is done using the XPath/XQuery function fn:deep-equal.

Examples

· altova:distinct-nodes(country) returns all child country nodes less those having duplicate

values.

evaluate [altova:]

altova:evaluate(XPathExpression as xs:string[, ValueOf$p1, ... ValueOf$pN]) XSLT1 XSLT2
XSLT3

475

482

484

496

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 411Engine Information

Altova RaptorXML Server 2025

Takes an XPath expression, passed as a string, as its mandatory argument. It returns the output of the
evaluated expression. For example: altova:evaluate('//Name[1]') returns the contents of the first

Name element in the document. Note that the expression //Name[1] is passed as a string by enclosing it
in single quotes.

The altova:evaluate function can optionally take additional arguments. These arguments are the values
of in-scope variables that have the names p1, p2, p3... pN. Note the following points about usage: (i) The
variables must be defined with names of the form pX, where X is an integer; (ii) the altova:evaluate
function's arguments (see signature above), from the second argument onwards, provide the values of the
variables, with the sequence of the arguments corresponding to the numerically ordered sequence of
variables: p1 to pN: The second argument will be the value of the variable p1, the third argument that of the
variable p2, and so on; (iii) The variable values must be of type item*.

Example

<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />

<xsl:value-of select="altova:evaluate($xpath, 10, 20, 'hi')" />
outputs "hi 20 10"

In the listing above, notice the following:

· The second argument of the altova:evaluate expression is the value assigned to the
variable $p1, the third argument that assigned to the variable $p2, and so on.

· Notice that the fourth argument of the function is a string value, indicated by its being
enclosed in quotes.

· The select attribute of the xs:variable element supplies the XPath expression. Since this
expression must be of type xs:string, it is enclosed in single quotes.

Examples to further illustrate the use of variables

· <xsl:variable name="xpath" select="'$p1'" />
<xsl:value-of select="altova:evaluate($xpath, //Name[1])" />
Outputs value of the first Name element.

· <xsl:variable name="xpath" select="'$p1'" />
<xsl:value-of select="altova:evaluate($xpath, '//Name[1]')" />

Outputs "//Name[1]"

The altova:evaluate() extension function is useful in situations where an XPath expression in the XSLT
stylesheet contains one or more parts that must be evaluated dynamically. For example, consider a
situation in which a user enters his request for the sorting criterion and this criterion is stored in the
attribute UserReq/@sortkey. In the stylesheet, you could then have the expression: <xsl:sort
select="altova:evaluate(../UserReq/@sortkey)" order="ascending"/>. The altova:evaluate()

function reads the sortkey attribute of the UserReq child element of the parent of the context node. Say
the value of the sortkey attribute is Price, then Price is returned by the altova:evaluate() function
and becomes the value of the select attribute: <xsl:sort select="Price" order="ascending"/>. If

this sort instruction occurs within the context of an element called Order, then the Order elements will
be sorted according to the values of their Price children. Alternatively, if the value of @sortkey were, say,
Date, then the Order elements would be sorted according to the values of their Date children. So the sort
criterion for Order is selected from the sortkey attribute at runtime. This could not have been achieved
with an expression like: <xsl:sort select="../UserReq/@sortkey" order="ascending"/>. In the

case shown above, the sort criterion would be the sortkey attribute itself, not Price or Date (or any other

mailto:.

412 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

current content of sortkey).

Note: The static context includes namespaces, types, and functions—but not variables—from the calling
environment. The base URI and default namespace are inherited.

More examples

· Static variables: <xsl:value-of select="$i3, $i2, $i1" />
Outputs the values of three variables.

· Dynamic XPath expression with dynamic variables:
<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />
<xsl:value-of select="altova:evaluate($xpath, 10, 20, 30)" />
Outputs "30 20 10"

· Dynamic XPath expression with no dynamic variable:
<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />
<xsl:value-of select="altova:evaluate($xpath)" />
Outputs error: No variable defined for $p3.

encode-for-rtf [altova:]

altova:encode-for-rtf(input as xs:string, preserveallwhitespace as xs:boolean,

preservenewlines as xs:boolean) as xs:string XSLT2 XSLT3

Converts the input string into code for RTF. Whitespace and new lines will be preserved according to the
boolean value specified for their respective arguments.

[Top]

XBRL functions
Altova XBRL functions can be used only with editions of Altova products that have XBRL support.

xbrl-footnotes [altova:]

altova:xbrl-footnotes(node()) as node()* XSLT2 XSLT3

Takes a node as its input argument and returns the set of XBRL footnote nodes referenced by the input
node.

xbrl-labels [altova:]

altova:xbrl-labels(xs:QName, xs:string) as node()* XSLT2 XSLT3

Takes two input arguments: a node name and the taxonomy file location containing the node. The function
returns the XBRL label nodes associated with the input node.

[Top]

410

410

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 413Engine Information

Altova RaptorXML Server 2025

10.2.1.2 XPath/XQuery Functions: Date and Time

Altova's date/time extension functions can be used in XPath and XQuery expressions and provide additional
functionality for the processing of data held as XML Schema's various date and time datatypes. The functions in
this section can be used with Altova's XPath 3.0 and XQuery 3.0 engines. They are available in XPath/XQuery
contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Grouped by functionality

· Add a duration to xs:dateTime and return xs:dateTime
· Add a duration to xs:date and return xs:date
· Add a duration to xs:time and return xs:time
· Format and retrieve durations
· Remove timezone from functions that generate current date/time
· Return days, hours, minutes, and seconds from durations
· Return weekday as integer from date
· Return week number as integer from date
· Build date, time, or duration type from lexical components of each type
· Construct date, dateTime, or time type from string input
· Age-related functions
· Epoch time (Unix time) functions

Listed alphabetically

altova:add-days-to-date
altova:add-days-to-dateTime
altova:add-hours-to-dateTime
altova:add-hours-to-time
altova:add-minutes-to-dateTime
altova:add-minutes-to-time
altova:add-months-to-date
altova:add-months-to-dateTime
altova:add-seconds-to-dateTime
altova:add-seconds-to-time
altova:add-years-to-date
altova:add-years-to-dateTime
altova:age

414

416

417

417

418

420

421

421

424

425

427

428

416

414

414

417

414

417

416

414

414

417

416

414

427

414 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

altova:age-details
altova:build-date
altova:build-duration
altova:build-time
altova:current-dateTime-no-TZ
altova:current-date-no-TZ
altova:current-time-no-TZ
altova:date-no-TZ
altova:dateTime-from-epoch
altova:dateTime-from-epoch-no-TZ
altova:dateTime-no-TZ
altova:days-in-month
altova:epoch-from-dateTime
altova:hours-from-dateTimeDuration-accumulated
altova:minutes-from-dateTimeDuration-accumulated
altova:seconds-from-dateTimeDuration-accumulated
altova:format-duration
altova:parse-date
altova:parse-dateTime
altova:parse-duration
altova:parse-time
altova:time-no-TZ
altova:weekday-from-date
altova:weekday-from-dateTime
altova:weeknumber-from-date
altova:weeknumber-from-dateTime

[Top]

Add a duration to xs:dateTime XP3.1 XQ3.1

These functions add a duration to xs:dateTime and return xs:dateTime. The xs:dateTime type has a format

of CCYY-MM-DDThh:mm:ss.sss. This is a concatenation of the xs:date and xs:time formats separated by the
letter T. A timezone suffix (+01:00, for example) is optional.

add-years-to-dateTime [altova:]

altova:add-years-to-dateTime(DateTime as xs:dateTime, Years as xs:integer) as

xs:dateTime XP3.1 XQ3.1

Adds a duration in years to an xs:dateTime (see examples below). The second argument is the number of
years to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.

Examples

· altova:add-years-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10) returns 2024-

01-15T14:00:00
· altova:add-years-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -4) returns 2010-
01-15T14:00:00

add-months-to-dateTime [altova:]

altova:add-months-to-dateTime(DateTime as xs:dateTime, Months as xs:integer) as

xs:dateTime XP3.1 XQ3.1

427

424

424

424

418

418

418

418

428

428

418

420

428

420

420

420

417

425

425

417

425

418

421

421

422

422

413

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 415Engine Information

Altova RaptorXML Server 2025

Adds a duration in months to an xs:dateTime (see examples below). The second argument is the number
of months to be added to the xs:dateTime supplied as the first argument. The result is of type
xs:dateTime.

Examples

· altova:add-months-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10) returns 2014-

11-15T14:00:00
· altova:add-months-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -2) returns 2013-

11-15T14:00:00

add-days-to-dateTime [altova:]

altova:add-days-to-dateTime(DateTime as xs:dateTime, Days as xs:integer) as xs:dateTime

XP3.1 XQ3.1

Adds a duration in days to an xs:dateTime (see examples below). The second argument is the number of
days to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.

Examples

· altova:add-days-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10) returns 2014-

01-25T14:00:00
· altova:add-days-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -8) returns 2014-

01-07T14:00:00

add-hours-to-dateTime [altova:]

altova:add-hours-to-dateTime(DateTime as xs:dateTime, Hours as xs:integer) as

xs:dateTime XP3.1 XQ3.1

Adds a duration in hours to an xs:dateTime (see examples below). The second argument is the number of
hours to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.

Examples

· altova:add-hours-to-dateTime(xs:dateTime("2014-01-15T13:00:00"), 10) returns 2014-

01-15T23:00:00
· altova:add-hours-to-dateTime(xs:dateTime("2014-01-15T13:00:00"), -8) returns 2014-

01-15T05:00:00

add-minutes-to-dateTime [altova:]

altova:add-minutes-to-dateTime(DateTime as xs:dateTime, Minutes as xs:integer) as

xs:dateTime XP3.1 XQ3.1

Adds a duration in minutes to an xs:dateTime (see examples below). The second argument is the number
of minutes to be added to the xs:dateTime supplied as the first argument. The result is of type
xs:dateTime.

Examples

· altova:add-minutes-to-dateTime(xs:dateTime("2014-01-15T14:10:00"), 45) returns

2014-01-15T14:55:00
· altova:add-minutes-to-dateTime(xs:dateTime("2014-01-15T14:10:00"), -5) returns

2014-01-15T14:05:00

416 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

add-seconds-to-dateTime [altova:]

altova:add-seconds-to-dateTime(DateTime as xs:dateTime, Seconds as xs:integer) as

xs:dateTime XP3.1 XQ3.1

Adds a duration in seconds to an xs:dateTime (see examples below). The second argument is the
number of seconds to be added to the xs:dateTime supplied as the first argument. The result is of type
xs:dateTime.

Examples

· altova:add-seconds-to-dateTime(xs:dateTime("2014-01-15T14:00:10"), 20) returns

2014-01-15T14:00:30
· altova:add-seconds-to-dateTime(xs:dateTime("2014-01-15T14:00:10"), -5) returns

2014-01-15T14:00:05

[Top]

Add a duration to xs:date XP3.1 XQ3.1

These functions add a duration to xs:date and return xs:date. The xs:date type has a format of CCYY-MM-DD.

add-years-to-date [altova:]

altova:add-years-to-date(Date as xs:date, Years as xs:integer) as xs:date XP3.1 XQ3.1

 Adds a duration in years to a date. The second argument is the number of years to be added to the
xs:date supplied as the first argument. The result is of type xs:date.

Examples

· altova:add-years-to-date(xs:date("2014-01-15"), 10) returns 2024-01-15

· altova:add-years-to-date(xs:date("2014-01-15"), -4) returns 2010-01-15

add-months-to-date [altova:]

altova:add-months-to-date(Date as xs:date, Months as xs:integer) as xs:date XP3.1 XQ3.1

Adds a duration in months to a date. The second argument is the number of months to be added to the
xs:date supplied as the first argument. The result is of type xs:date.

Examples

· altova:add-months-to-date(xs:date("2014-01-15"), 10) returns 2014-11-15

· altova:add-months-to-date(xs:date("2014-01-15"), -2) returns 2013-11-15

add-days-to-date [altova:]

altova:add-days-to-date(Date as xs:date, Days as xs:integer) as xs:date XP3.1 XQ3.1

Adds a duration in days to a date. The second argument is the number of days to be added to the
xs:date supplied as the first argument. The result is of type xs:date.

Examples

· altova:add-days-to-date(xs:date("2014-01-15"), 10) returns 2014-01-25

· altova:add-days-to-date(xs:date("2014-01-15"), -8) returns 2014-01-07

413

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 417Engine Information

Altova RaptorXML Server 2025

[Top]

Format and retrieve durations XP3.1 XQ3.1

These functions parse an input xs:duration or xs:string and return, respectively, an xs:string or

xs:duration.

format-duration [altova:]

altova:format-duration(Duration as xs:duration, Picture as xs:string) as xs:string XP3.1

 XQ3.1

Formats a duration, which is submitted as the first argument, according to a picture string submitted as
the second argument. The output is a text string formatted according to the picture string.

Examples

· altova:format-duration(xs:duration("P2DT2H53M11.7S"), "Days:[D01] Hours:[H01]

Minutes:[m01] Seconds:[s01] Fractions:[f0]") returns "Days:02 Hours:02 Minutes:53
Seconds:11 Fractions:7"

· altova:format-duration(xs:duration("P3M2DT2H53M11.7S"), "Months:[M01] Days:[D01]

Hours:[H01] Minutes:[m01]") returns "Months:03 Days:02 Hours:02 Minutes:53"

parse-duration [altova:]

altova:parse-duration(InputString as xs:string, Picture as xs:string) as xs:duration

XP3.1 XQ3.1

Takes a patterned string as the first argument, and a picture string as the second argument. The input
string is parsed on the basis of the picture string, and an xs:duration is returned.

Examples

· altova:parse-duration("Days:02 Hours:02 Minutes:53 Seconds:11 Fractions:7"),

"Days:[D01] Hours:[H01] Minutes:[m01] Seconds:[s01] Fractions:[f0]") returns
"P2DT2H53M11.7S"

· altova:parse-duration("Months:03 Days:02 Hours:02 Minutes:53 Seconds:11

Fractions:7", "Months:[M01] Days:[D01] Hours:[H01] Minutes:[m01]") returns
"P3M2DT2H53M"

[Top]

Add a duration to xs:time XP3.1 XQ3.1

These functions add a duration to xs:time and return xs:time. The xs:time type has a lexical form of

hh:mm:ss.sss. An optional time zone may be suffixed. The letter Z indicates Coordinated Universal Time
(UTC). All other time zones are represented by their difference from UTC in the format +hh:mm, or -hh:mm. If no
time zone value is present, it is considered unknown; it is not assumed to be UTC.

add-hours-to-time [altova:]

altova:add-hours-to-time(Time as xs:time, Hours as xs:integer) as xs:time XP3.1 XQ3.1

413

413

418 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Adds a duration in hours to a time. The second argument is the number of hours to be added to the
xs:time supplied as the first argument. The result is of type xs:time.

Examples

· altova:add-hours-to-time(xs:time("11:00:00"), 10) returns 21:00:00

· altova:add-hours-to-time(xs:time("11:00:00"), -7) returns 04:00:00

add-minutes-to-time [altova:]

altova:add-minutes-to-time(Time as xs:time, Minutes as xs:integer) as xs:time XP3.1 XQ3.1

Adds a duration in minutes to a time. The second argument is the number of minutes to be added to the
xs:time supplied as the first argument. The result is of type xs:time.

Examples

· altova:add-minutes-to-time(xs:time("14:10:00"), 45) returns 14:55:00

· altova:add-minutes-to-time(xs:time("14:10:00"), -5) returns 14:05:00

add-seconds-to-time [altova:]

altova:add-seconds-to-time(Time as xs:time, Minutes as xs:integer) as xs:time XP3.1 XQ3.1

Adds a duration in seconds to a time. The second argument is the number of seconds to be added to the
xs:time supplied as the first argument. The result is of type xs:time. The Seconds component can be in
the range of 0 to 59.999.

Examples

· altova:add-seconds-to-time(xs:time("14:00:00"), 20) returns 14:00:20

· altova:add-seconds-to-time(xs:time("14:00:00"), 20.895) returns 14:00:20.895

[Top]

Remove the timezone part from date/time datatypes XP3.1 XQ3.1

These functions remove the timezone from the current xs:dateTime, xs:date, or xs:time values, respectively.

Note that the difference between xs:dateTime and xs:dateTimeStamp is that in the case of the latter the
timezone part is required (while it is optional in the case of the former). So the format of an xs:dateTimeStamp
value is: CCYY-MM-DDThh:mm:ss.sss±hh:mm. or CCYY-MM-DDThh:mm:ss.sssZ. If the date and time is read from
the system clock as xs:dateTimeStamp, the current-dateTime-no-TZ() function can be used to remove the
timezone if so required.

current-date-no-TZ [altova:]

altova:current-date-no-TZ() as xs:date XP3.1 XQ3.1

This function takes no argument. It removes the timezone part of current-date() (which is the current
date according to the system clock) and returns an xs:date value.

Examples

If the current date is 2014-01-15+01:00:

· altova:current-date-no-TZ() returns 2014-01-15

413

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 419Engine Information

Altova RaptorXML Server 2025

current-dateTime-no-TZ [altova:]

altova:current-dateTime-no-TZ() as xs:dateTime XP3.1 XQ3.1

This function takes no argument. It removes the timezone part of current-dateTime() (which is the
current date-and-time according to the system clock) and returns an xs:dateTime value.

Examples

If the current dateTime is 2014-01-15T14:00:00+01:00:

· altova:current-dateTime-no-TZ() returns 2014-01-15T14:00:00

current-time-no-TZ [altova:]

altova:current-time-no-TZ() as xs:time XP3.1 XQ3.1

This function takes no argument. It removes the timezone part of current-time() (which is the current
time according to the system clock) and returns an xs:time value.

Examples

If the current time is 14:00:00+01:00:

· altova:current-time-no-TZ() returns 14:00:00

date-no-TZ [altova:]

altova:date-no-TZ(InputDate as xs:date) as xs:date XP3.1 XQ3.1

This function takes an xs:date argument, removes the timezone part from it, and returns an xs:date
value. Note that the date is not modified.

Examples

· altova:date-no-TZ(xs:date("2014-01-15+01:00")) returns 2014-01-15

dateTime-no-TZ [altova:]

altova:dateTime-no-TZ(InputDateTime as xs:dateTime) as xs:dateTime XP3.1 XQ3.1

This function takes an xs:dateTime argument, removes the timezone part from it, and returns an
xs:dateTime value. Note that neither the date nor the time is modified.

Examples

· altova:dateTime-no-TZ(xs:date("2014-01-15T14:00:00+01:00")) returns 2014-01-

15T14:00:00

time-no-TZ [altova:]

altova:time-no-TZ(InputTime as xs:time) as xs:time XP3.1 XQ3.1

This function takes an xs:time argument, removes the timezone part from it, and returns an xs:time
value. Note that the time is not modified.

Examples

420 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

· altova:time-no-TZ(xs:time("14:00:00+01:00")) returns 14:00:00

[Top]

Return the number of days, hours, minutes, seconds from durations XP3.1 XQ3.1

These functions return the number of days in a month, and the number of hours, minutes, and seconds,
respectively, from durations.

days-in-month [altova:]

altova:days-in-month(Year as xs:integer, Month as xs:integer) as xs:integer XP3.1 XQ3.1

Returns the number of days in the specified month. The month is specified by means of the Year and
Month arguments.

Examples

· altova:days-in-month(2018, 10) returns 31

· altova:days-in-month(2018, 2) returns 28

· altova:days-in-month(2020, 2) returns 29

hours-from-dayTimeDuration-accumulated

altova:hours-from-dayTimeDuration-accumulated(DayAndTime as xs:duration) as xs:integer

XP3.1 XQ3.1

Returns the total number of hours in the duration submitted by the DayAndTime argument (which is of type
xs:duration). The hours in the Day and Time components are added together to give a result that is an
integer. A new hour is counted only for a full 60 minutes. Negative durations result in a negative hour value.

Examples

· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5D")) returns 120, which

is the total number of hours in 5 days.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5DT2H")) returns 122,

which is the total number of hours in 5 days plus 2 hours.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5DT2H60M")) returns 123,

which is the total number of hours in 5 days plus 2 hours and 60 mins.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5DT2H119M")) returns

123, which is the total number of hours in 5 days plus 2 hours and 119 mins.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5DT2H120M")) returns

124, which is the total number of hours in 5 days plus 2 hours and 120 mins.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("-P5DT2H")) returns -122

minutes-from-dayTimeDuration-accumulated

altova:minutes-from-dayTimeDuration-accumulated(DayAndTime as xs:duration) as

xs:integer XP3.1 XQ3.1

Returns the total number of minutes in the duration submitted by the DayAndTime argument (which is of
type xs:duration). The minutes in the Day and Time components are added together to give a result that
is an integer. Negative durations result in a negative minute value.

Examples

413

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 421Engine Information

Altova RaptorXML Server 2025

· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("PT60M")) returns 60

· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("PT1H")) returns 60,

which is the total number of minutes in 1 hour.
· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("PT1H40M")) returns 100

· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("P1D")) returns 1440,

which is the total number of minutes in 1 day.
· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("-P1DT60M")) returns -
1500

seconds-from-dayTimeDuration-accumulated

altova:seconds-from-dayTimeDuration-accumulated(DayAndTime as xs:duration) as

xs:integer XP3.1 XQ3.1

Returns the total number of seconds in the duration submitted by the DayAndTime argument (which is of
type xs:duration). The seconds in the Day and Time components are added together to give a result that
is an integer. Negative durations result in a negative seconds value.

Examples

· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("PT1M")) returns 60,

which is the total number of seconds in 1 minute.
· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("PT1H")) returns 3600,

which is the total number of seconds in 1 hour.
· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("PT1H2M")) returns 3720

· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("P1D")) returns 86400,

which is the total number of seconds in 1 day.
· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("-P1DT1M")) returns -
86460

Return the weekday from xs:dateTime or xs:date XP3.1 XQ3.1

These functions return the weekday (as an integer) from xs:dateTime or xs:date. The days of the week are
numbered (using the American format) from 1 to 7, with Sunday=1. In the European format, the week starts with
Monday (=1). The American format, where Sunday=1, can be set by using the integer 0 where an integer is
accepted to indicate the format.

weekday-from-dateTime [altova:]

altova:weekday-from-dateTime(DateTime as xs:dateTime) as xs:integer XP3.1 XQ3.1

Takes a date-with-time as its single argument and returns the day of the week of this date as an integer.
The weekdays are numbered starting with Sunday=1. If the European format is required (where Monday=1),
use the other signature of this function (see next signature below).

Examples

· altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00")) returns 2, which

would indicate a Monday.

altova:weekday-from-dateTime(DateTime as xs:dateTime, Format as xs:integer) as

xs:integer XP3.1 XQ3.1

Takes a date-with-time as its first argument and returns the day of the week of this date as an integer. If

422 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

the second (integer) argument is 0, then the weekdays are numbered 1 to 7 starting with Sunday=1. If the
second argument is an integer other than 0, then Monday=1. If there is no second argument, the function is
read as having the other signature of this function (see previous signature).

Examples

· altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 1) returns 1, which

would indicate a Monday
· altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 4) returns 1, which

would indicate a Monday
· altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 0) returns 2, which

would indicate a Monday.

weekday-from-date [altova:]

altova:weekday-from-date(Date as xs:date) as xs:integer XP3.1 XQ3.1

Takes a date as its single argument and returns the day of the week of this date as an integer. The
weekdays are numbered starting with Sunday=1. If the European format is required (where Monday=1), use
the other signature of this function (see next signature below).

Examples

· altova:weekday-from-date(xs:date("2014-02-03+01:00")) returns 2, which would indicate a

Monday.

altova:weekday-from-date(Date as xs:date, Format as xs:integer) as xs:integer XP3.1 XQ3.1

Takes a date as its first argument and returns the day of the week of this date as an integer. If the second
(Format) argument is 0, then the weekdays are numbered 1 to 7 starting with Sunday=1. If the second
argument is an integer other than 0, then Monday=1. If there is no second argument, the function is read as
having the other signature of this function (see previous signature).

Examples

· altova:weekday-from-date(xs:date("2014-02-03"), 1) returns 1, which would indicate a

Monday
· altova:weekday-from-date(xs:date("2014-02-03"), 4) returns 1, which would indicate a

Monday
· altova:weekday-from-date(xs:date("2014-02-03"), 0) returns 2, which would indicate a

Monday.

[Top]

Return the week number from xs:dateTime or xs:date XP2 XQ1 XP3.1 XQ3.1

These functions return the week number (as an integer) from xs:dateTime or xs:date. Week-numbering is
available in the US, ISO/European, and Islamic calendar formats. Week-numbering is different in these calendar
formats because the week is considered to start on different days (on Sunday in the US format, Monday in the
ISO/European format, and Saturday in the Islamic format).

weeknumber-from-date [altova:]

altova:weeknumber-from-date(Date as xs:date, Calendar as xs:integer) as xs:integer XP2

XQ1 XP3.1 XQ3.1

413

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 423Engine Information

Altova RaptorXML Server 2025

Returns the week number of the submitted Date argument as an integer. The second argument

(Calendar) specifies the calendar system to follow.

Supported Calendar values are:

· 0 = US calendar (week starts Sunday)

· 1 = ISO standard, European calendar (week starts Monday)

· 2 = Islamic calendar (week starts Saturday)

Default is 0.

Examples

· altova:weeknumber-from-date(xs:date("2014-03-23"), 0) returns 13

· altova:weeknumber-from-date(xs:date("2014-03-23"), 1) returns 12

· altova:weeknumber-from-date(xs:date("2014-03-23"), 2) returns 13

· altova:weeknumber-from-date(xs:date("2014-03-23")) returns 13

The day of the date in the examples above (2014-03-23) is Sunday. So the US and Islamic
calendars are one week ahead of the European calendar on this day.

weeknumber-from-dateTime [altova:]

altova:weeknumber-from-dateTime(DateTime as xs:dateTime, Calendar as xs:integer) as

xs:integer XP2 XQ1 XP3.1 XQ3.1

Returns the week number of the submitted DateTime argument as an integer. The second argument

(Calendar) specifies the calendar system to follow.

Supported Calendar values are:

· 0 = US calendar (week starts Sunday)

· 1 = ISO standard, European calendar (week starts Monday)

· 2 = Islamic calendar (week starts Saturday)

Default is 0.

Examples

· altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 0) returns 13

· altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 1) returns 12

· altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 2) returns 13

· altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00")) returns 13

The day of the dateTime in the examples above (2014-03-23T00:00:00) is Sunday. So the US and
Islamic calendars are one week ahead of the European calendar on this day.

[Top]
413

424 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Build date, time, and duration datatypes from their lexical components XP3.1 XQ3.1

The functions take the lexical components of the xs:date, xs:time, or xs:duration datatype as input
arguments and combine them to build the respective datatype.

build-date [altova:]

altova:build-date(Year as xs:integer, Month as xs:integer, Date as xs:integer) as

xs:date XP3.1 XQ3.1

The first, second, and third arguments are, respectively, the year, month, and date. They are combined to
build a value of xs:date type. The values of the integers must be within the correct range of that particular
date part. For example, the second argument (for the month part) should not be greater than 12.

Examples

· altova:build-date(2014, 2, 03) returns 2014-02-03

build-time [altova:]

altova:build-time(Hours as xs:integer, Minutes as xs:integer, Seconds as xs:integer) as

xs:time XP3.1 XQ3.1

The first, second, and third arguments are, respectively, the hour (0 to 23), minutes (0 to 59), and seconds
(0 to 59) values. They are combined to build a value of xs:time type. The values of the integers must be
within the correct range of that particular time part. For example, the second (Minutes) argument should
not be greater than 59. To add a timezone part to the value, use the other signature of this function (see
next signature).

Examples

· altova:build-time(23, 4, 57) returns 23:04:57

altova:build-time(Hours as xs:integer, Minutes as xs:integer, Seconds as xs:integer,

TimeZone as xs:string) as xs:time XP3.1 XQ3.1

The first, second, and third arguments are, respectively, the hour (0 to 23), minutes (0 to 59), and seconds
(0 to 59) values. The fourth argument is a string that provides the timezone part of the value. The four
arguments are combined to build a value of xs:time type. The values of the integers must be within the
correct range of that particular time part. For example, the second (Minutes) argument should not be
greater than 59.

Examples

· altova:build-time(23, 4, 57, '+1') returns 23:04:57+01:00

build-duration [altova:]

altova:build-duration(Years as xs:integer, Months as xs:integer) as

xs:yearMonthDuration XP3.1 XQ3.1

Takes two arguments to build a value of type xs:yearMonthDuration. The first argument provides the
Years part of the duration value, while the second argument provides the Months part. If the second
(Months) argument is greater than or equal to 12, then the integer is divided by 12; the quotient is added to
the first argument to provide the Years part of the duration value while the remainder (of the division)
provides the Months part. To build a duration of type xs:dayTimeDuration., see the next signature.

Examples

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 425Engine Information

Altova RaptorXML Server 2025

· altova:build-duration(2, 10) returns P2Y10M

· altova:build-duration(14, 27) returns P16Y3M

· altova:build-duration(2, 24) returns P4Y

altova:build-duration(Days as xs:integer, Hours as xs:integer, Minutes as xs:integer,

Seconds as xs:integer) as xs:dayTimeDuration XP3.1 XQ3.1

Takes four arguments and combines them to build a value of type xs:dayTimeDuration. The first
argument provides the Days part of the duration value, the second, third, and fourth arguments provide,
respectively, the Hours, Minutes, and Seconds parts of the duration value. Each of the three Time
arguments is converted to an equivalent value in terms of the next higher unit and the result is used for
calculation of the total duration value. For example, 72 seconds is converted to 1M+12S (1 minute and 12
seconds), and this value is used for calculation of the total duration value. To build a duration of type
xs:yearMonthDuration., see the previous signature.

Examples

· altova:build-duration(2, 10, 3, 56) returns P2DT10H3M56S

· altova:build-duration(1, 0, 100, 0) returns P1DT1H40M

· altova:build-duration(1, 0, 0, 3600) returns P1DT1H

[Top]

Construct date, dateTime, and time datatypes from string input XP2 XQ1 XP3.1 XQ3.1

These functions take strings as arguments and construct xs:date, xs:dateTime, or xs:time datatypes. The
string is analyzed for components of the datatype based on a submitted pattern argument.

parse-date [altova:]

altova:parse-date(Date as xs:string, DatePattern as xs:string) as xs:date XP2 XQ1 XP3.1
XQ3.1

Returns the input string Date as an xs:date value. The second argument DatePattern specifies the

pattern (sequence of components) of the input string. DatePattern is described with the component

specifiers listed below and with component separators that can be any character. See the examples
below.

D Date

M Month

Y Year

The pattern in DatePattern must match the pattern in Date. Since the output is of type xs:date, the

output will always have the lexical format YYYY-MM-DD.

Examples

· altova:parse-date(xs:string("09-12-2014"), "[D]-[M]-[Y]") returns 2014-12-09

· altova:parse-date(xs:string("09-12-2014"), "[M]-[D]-[Y]") returns 2014-09-12

· altova:parse-date("06/03/2014", "[M]/[D]/[Y]") returns 2014-06-03

· altova:parse-date("06 03 2014", "[M] [D] [Y]") returns 2014-06-03

· altova:parse-date("6 3 2014", "[M] [D] [Y]") returns 2014-06-03

413

426 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

parse-dateTime [altova:]

altova:parse-dateTime(DateTime as xs:string, DateTimePattern as xs:string) as

xs:dateTime XP2 XQ1 XP3.1 XQ3.1

Returns the input string DateTime as an xs:dateTime value.The second argument DateTimePattern

specifies the pattern (sequence of components) of the input string. DateTimePattern is described with the

component specifiers listed below and with component separators that can be any character. See the
examples below.

D Date

M Month

Y Year

H Hour

m minutes

s seconds

The pattern in DateTimePattern must match the pattern in DateTime. Since the output is of type

xs:dateTime, the output will always have the lexical format YYYY-MM-DDTHH:mm:ss.

Examples

· altova:parse-dateTime(xs:string("09-12-2014 13:56:24"), "[M]-[D]-[Y] [H]:[m]:

[s]") returns 2014-09-12T13:56:24
· altova:parse-dateTime("time=13:56:24; date=09-12-2014", "time=[H]:[m]:[s];

date=[D]-[M]-[Y]") returns 2014-12-09T13:56:24

parse-time [altova:]

altova:parse-time(Time as xs:string, TimePattern as xs:string) as xs:time XP2 XQ1 XP3.1
XQ3.1

Returns the input string Time as an xs:time value.The second argument TimePattern specifies the

pattern (sequence of components) of the input string. TimePattern is described with the component

specifiers listed below and with component separators that can be any character. See the examples
below.

H Hour

m minutes

s seconds

The pattern in TimePattern must match the pattern in Time. Since the output is of type xs:time, the

output will always have the lexical format HH:mm:ss.

Examples

· altova:parse-time(xs:string("13:56:24"), "[H]:[m]:[s]") returns 13:56:24

· altova:parse-time("13-56-24", "[H]-[m]") returns 13:56:00

· altova:parse-time("time=13h56m24s", "time=[H]h[m]m[s]s") returns 13:56:24

· altova:parse-time("time=24s56m13h", "time=[s]s[m]m[H]h") returns 13:56:24

[Top]413

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 427Engine Information

Altova RaptorXML Server 2025

Age-related functions XP3.1 XQ3.1

These functions return the age as calculated (i) between one input argument date and the current date, or (ii)
between two input argument dates. The altova:age function returns the age in terms of years, the

altova:age-details function returns the age as a sequence of three integers giving the years, months, and

days of the age.

age [altova:]

altova:age(StartDate as xs:date) as xs:integer XP3.1 XQ3.1

Returns an integer that is the age in years of some object, counting from a start-date submitted as the
argument and ending with the current date (taken from the system clock). If the input argument is a date
anything greater than or equal to one year in the future, the return value will be negative.

Examples

If the current date is 2014-01-15:

· altova:age(xs:date("2013-01-15")) returns 1

· altova:age(xs:date("2013-01-16")) returns 0

· altova:age(xs:date("2015-01-15")) returns -1

· altova:age(xs:date("2015-01-14")) returns 0

altova:age(StartDate as xs:date, EndDate as xs:date) as xs:integer XP3.1 XQ3.1

Returns an integer that is the age in years of some object, counting from a start-date that is submitted as
the first argument up to an end-date that is the second argument. The return value will be negative if the
first argument is one year or more later than the second argument.

Examples

If the current date is 2014-01-15:

· altova:age(xs:date("2000-01-15"), xs:date("2010-01-15")) returns 10

· altova:age(xs:date("2000-01-15"), current-date()) returns 14 if the current date is 2014-

01-15
· altova:age(xs:date("2014-01-15"), xs:date("2010-01-15")) returns -4

age-details [altova:]

altova:age-details(InputDate as xs:date) as (xs:integer)* XP3.1 XQ3.1

Returns three integers that are, respectively, the years, months, and days between the date that is
submitted as the argument and the current date (taken from the system clock). The sum of the returned
years+months+days together gives the total time difference between the two dates (the input date and the
current date). The input date may have a value earlier or later than the current date, but whether the input
date is earlier or later is not indicated by the sign of the return values; the return values are always
positive.

Examples

If the current date is 2014-01-15:

· altova:age-details(xs:date("2014-01-16")) returns (0 0 1)

· altova:age-details(xs:date("2014-01-14")) returns (0 0 1)

· altova:age-details(xs:date("2013-01-16")) returns (1 0 1)

428 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

· altova:age-details(current-date()) returns (0 0 0)

altova:age-details(Date-1 as xs:date, Date-2 as xs:date) as (xs:integer)* XP3.1 XQ3.1

Returns three integers that are, respectively, the years, months, and days between the two argument
dates. The sum of the returned years+months+days together gives the total time difference between the
two input dates; it does not matter whether the earlier or later of the two dates is submitted as the first
argument. The return values do not indicate whether the input date occurs earlier or later than the current
date. Return values are always positive.

Examples

· altova:age-details(xs:date("2014-01-16"), xs:date("2014-01-15")) returns (0 0 1)

· altova:age-details(xs:date("2014-01-15"), xs:date("2014-01-16")) returns (0 0 1)

[Top]

Epoch time (Unix time) functions XP3.1 XQ3.1

Epoch time is a time system used on Unix systems. It defines any given point in time as being the number of
seconds that have elapsed since 00:00:00 UTC on 1 January 1970. Altova's Epoch time extension functions
convert xs:dateTime values to Epoch time values and vice versa.

dateTime-from-epoch [altova:]

altova:dateTime-from-epoch(Epoch as xs:decimal as xs:dateTime XP3.1 XQ3.1

Epoch time is a time system used on Unix systems. It defines any given point in time as being the
number of seconds that have elapsed since 00:00:00 UTC on 1 January 1970. The dateTime-from-epoch

function returns the xs:dateTime equivalent of an Epoch time, adjusts it for the local timezone, and

includes the timezone information in the result.

The function takes an xs:decimal argument and returns an xs:dateTime value that includes a TZ

(timezone) part. The result is obtained by calculating the UTC dateTime equivalet of the Epoch time, and

adding to it the local timezone (taken from the system clock). For example, if the function is executed on
a machine that has been set to be in a timezone of +01:00 (relative to UTC), then after the UTC dateTime

equivalent has been calculated, one hour will be added to the result. The timezone information, which is an
optional lexical part of the xs:dateTime result, is also reported in the dateTime result. Compare this

result with that of dateTime-from-epoch-no-TZ, and also see the function epoch-from-dateTime.

Examples

The examples below assume a local timezone of UTC +01:00. Consequently, the UTC dateTime

equivalent of the submitted Epoch time will be incremented by one hour. The timezone is reported in
the result.

· altova:dateTime-from-epoch(34) returns 1970-01-01T01:00:34+01:00

· altova:dateTime-from-epoch(62) returns 1970-01-01T01:01:02+01:00

dateTime-from-epoch-no-TZ [altova:]

altova:dateTime-from-epoch-no-TZ(Epoch as xs:decimal as xs:dateTime XP3.1 XQ3.1

413

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 429Engine Information

Altova RaptorXML Server 2025

Epoch time is a time system used on Unix systems. It defines any given point in time as being the
number of seconds that have elapsed since 00:00:00 UTC on 1 January 1970. The dateTime-from-

epoch-no-TZ function returns the xs:dateTime equivalent of an Epoch time, adjusts it for the local

timezone, but does not include the timezone information in the result.

The function takes an xs:decimal argument and returns an xs:dateTime value that does not includes a
TZ (timezone) part. The result is obtained by calculating the UTC dateTime equivalet of the Epoch time,

and adding to it the local timezone (taken from the system clock). For example, if the function is executed
on a machine that has been set to be in a timezone of +01:00 (relative to UTC), then after the UTC
dateTime equivalent has been calculated, one hour will be added to the result. The timezone information,

which is an optional lexical part of the xs:dateTime result, is not reported in the dateTime result.

Compare this result with that of dateTime-from-epoch, and also see the function epoch-from-dateTime.

Examples

The examples below assume a local timezone of UTC +01:00. Consequently, the UTC dateTime

equivalent of the submitted Epoch time will be incremented by one hour. The timezone is not reported
in the result.

· altova:dateTime-from-epoch(34) returns 1970-01-01T01:00:34

· altova:dateTime-from-epoch(62) returns 1970-01-01T01:01:02

epoch-from-dateTime [altova:]

altova:epoch-from-dateTime(dateTimeValue as xs:dateTime) as xs:decimal XP3.1 XQ3.1

Epoch time is a time system used on Unix systems. It defines any given point in time as being the
number of seconds that have elapsed since 00:00:00 UTC on 1 January 1970. The epoch-from-dateTime

function returns the Epoch time equivalent of the xs:dateTime that is submitted as the argument of the

function. Note that you might have to explicitly construct the xs:dateTime value. The submitted

xs:dateTime value may or may not contain the optional TZ (timezone) part.

Whether the timezone part is submitted as part of the argument or not, the local timezone offset (taken
from the system clock) is subtracted from the submitted dateTimeValue argument. This produces the

equivalent UTC time, from which the equivalent Epoch time is calculated. For example, if the function is
executed on a machine that has been set to be in a timezone of +01:00 (relative to UTC), then one hour is
subtracted from the submitted dateTimeValue before the Epoch value is calculated. Also see the function

dateTime-from-epoch.

Examples

The examples below assume a local timezone of UTC +01:00. Consequently, one hour will be
subtracted from the submitted dateTime before the Epoch time is calculated.

· altova:epoch-from-dateTime(xs:dateTime("1970-01-01T01:00:34+01:00")) returns 34

· altova:epoch-from-dateTime(xs:dateTime("1970-01-01T01:00:34")) returns 34

· altova:epoch-from-dateTime(xs:dateTime("2021-04-01T11:22:33")) returns 1617272553

[Top]413

430 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

10.2.1.3 XPath/XQuery Functions: Geolocation

The following geolocation XPath/XQuery extension functions are supported in the current version of RaptorXML
Server and can be used in (i) XPath expressions in an XSLT context, or (ii) XQuery expressions in an XQuery
document.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

format-geolocation [altova:]

altova:format-geolocation(Latitude as xs:decimal, Longitude as xs:decimal,

GeolocationOutputStringFormat as xs:integer) as xs:string XP3.1 XQ3.1

Takes the latitude and longitude as the first two arguments, and outputs the geolocation as a string. The
third argument, GeolocationOutputStringFormat, is the format of the geolocation output string; it uses

integer values from 1 to 4 to identify the output string format (see 'Geolocation output string formats'
below). Latitude values range from +90 to -90 (N to S). Longitude values range from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's attributes can be used to supply the
input strings.

Examples

· altova:format-geolocation(33.33, -22.22, 4) returns the xs:string "33.33 -22.22"

· altova:format-geolocation(33.33, -22.22, 2) returns the xs:string "33.33N 22.22W"

· altova:format-geolocation(-33.33, 22.22, 2) returns the xs:string "33.33S 22.22E"

· altova:format-geolocation(33.33, -22.22, 1) returns the xs:string "33°19'48.00"S 22°

13'12.00"E"

Geolocation output string formats:

The supplied latitude and longitude is formatted in one of the output formats given below. The desired
format is identified by its integer ID (1 to 4). Latitude values range from +90 to -90 (N to S). Longitude
values range from +180 to -180 (E to W).

1

Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)

441

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 431Engine Information

Altova RaptorXML Server 2025

D°M'S.SS"N/S D°M'S.SS"E/W

Example: 33°55'11.11"N 22°44'66.66"W

2

Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDE/W

Example: 33.33N 22.22W

3

Degrees, minutes, decimal seconds, with prefixed sign (+/-); plus sign for (N/E) is optional

+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'66.66"

4

Decimal degrees, with prefixed sign (+/-); plus sign for (N/E) is optional

+/-D.DD +/-D.DD

Example: 33.33 -22.22

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif
metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°
13'11.73"E

parse-geolocation [altova:]

altova:parse-geolocation(GeolocationInputString as xs:string) as xs:decimal+ XP3.1 XQ3.1

Parses the supplied GeolocationInputString argument and returns the geolocation's latitude and
longitude (in that order) as a sequence two xs:decimal items. The formats in which the geolocation input
string can be supplied are listed below.

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply the geolocation input string (see example below).

Examples

· altova:parse-geolocation("33.33 -22.22") returns the sequence of two xs:decimals

(33.33, 22.22)

441 441

432 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

· altova:parse-geolocation("48°51'29.6""N 24°17'40.2""") returns the sequence of two

xs:decimals (48.8582222222222, 24.2945)
· altova:parse-geolocation('48°51''29.6"N 24°17''40.2"') returns the sequence of two

xs:decimals (48.8582222222222, 24.2945)
· altova:parse-geolocation(image-exif-

data(//MyImages/Image20141130.01)/@Geolocation) returns a sequence of two xs:decimals

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 433Engine Information

Altova RaptorXML Server 2025

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif
metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°
13'11.73"E

geolocation-distance-km [altova:]

altova:geolocation-distance-km(GeolocationInputString-1 as xs:string,

GeolocationInputString-2 as xs:string) as xs:decimal XP3.1 XQ3.1

Calculates the distance between two geolocations in kilometers. The formats in which the geolocation
input string can be supplied are listed below. Latitude values range from +90 to -90 (N to S). Longitude
values range from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply geolocation input strings.

Examples

· altova:geolocation-distance-km("33.33 -22.22", "48°51'29.6""N 24°17'40.2""")

returns the xs:decimal 4183.08132372392

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

441 441

434 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif
metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°
13'11.73"E

geolocation-distance-mi [altova:]

altova:geolocation-distance-mi(GeolocationInputString-1 as xs:string,

GeolocationInputString-2 as xs:string) as xs:decimal XP3.1 XQ3.1

Calculates the distance between two geolocations in miles. The formats in which a geolocation input string
can be supplied are listed below. Latitude values range from +90 to -90 (N to S). Longitude values range
from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply geolocation input strings.

Examples

· altova:geolocation-distance-mi("33.33 -22.22", "48°51'29.6""N 24°17'40.2""")

returns the xs:decimal 2599.40652340653

441 441

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 435Engine Information

Altova RaptorXML Server 2025

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif
metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe GPSLongitude GPSLongitudeRe Geolocation

436 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

f f

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°
13'11.73"E

geolocations-bounding-rectangle [altova:]

altova:geolocations-bounding-rectangle(Geolocations as xs:sequence,

GeolocationOutputStringFormat as xs:integer) as xs:string XP3.1 XQ3.1

Takes a sequence of strings as its first argument; each string in the sequence is a geolocation. The
function returns a sequence of two strings which are, respectively, the top-left and bottom-right geolocation
coordinates of a bounding rectangle that is optimally sized to enclose all the geolocations submitted in the
first argument. The formats in which a geolocation input string can be supplied are listed below (see
'Geolocation input string formats'). Latitude values range from +90 to -90 (N to S). Longitude values range
from +180 to -180 (E to W).

The function's second argument specifies the format of the two geolocation strings in the output sequence.
The argument takes an integer value from 1 to 4, where each value identifies a different geolocation string
format (see 'Geolocation output string formats' below).

Note: The image-exif-data function and the Exif metadata's attributes can be used to supply the
input strings.

Examples

· altova:geolocations-bounding-rectangle(("48.2143531 16.3707266", "51.50939 -

0.11832"), 1) returns the sequence ("51°30'33.804"N 0°7'5.952"W", "48°12'51.67116"N
16°22'14.61576"E")

· altova:geolocations-bounding-rectangle(("48.2143531 16.3707266", "51.50939 -

0.11832", "42.5584577 -70.8893334"), 4) returns the sequence ("51.50939 -70.8893334",
"42.5584577 16.3707266")

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

441

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 437Engine Information

Altova RaptorXML Server 2025

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Geolocation output string formats:

The supplied latitude and longitude is formatted in one of the output formats given below. The desired
format is identified by its integer ID (1 to 4). Latitude values range from +90 to -90 (N to S). Longitude
values range from +180 to -180 (E to W).

1

Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"E/W

Example: 33°55'11.11"N 22°44'66.66"W

2

Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDE/W

Example: 33.33N 22.22W

3

Degrees, minutes, decimal seconds, with prefixed sign (+/-); plus sign for (N/E) is optional

+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'66.66"

438 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

4

Decimal degrees, with prefixed sign (+/-); plus sign for (N/E) is optional

+/-D.DD +/-D.DD

Example: 33.33 -22.22

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif
metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°
13'11.73"E

geolocation-within-polygon [altova:]

altova:geolocation-within-polygon(Geolocation as xs:string, ((PolygonPoint as

xs:string)+)) as xs:boolean XP3.1 XQ3.1

Determines whether Geolocation (the first argument) is within the polygonal area described by the

PolygonPoint arguments. If the PolygonPoint arguments do not form a closed figure (formed when the

first point and the last point are the same), then the first point is implicitly added as the last point in order
to close the figure. All the arguments (Geolocation and PolygonPoint+) are given by geolocation input
strings (formats listed below). If the Geolocation argument is within the polygonal area, then the function
returns true(); otherwise it returns false(). Latitude values range from +90 to -90 (N to S). Longitude
values range from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply geolocation input strings.

Examples

· altova:geolocation-within-polygon("33 -22", ("58 -32", "-78 -55", "48 24", "58 -

32")) returns true()

· altova:geolocation-within-polygon("33 -22", ("58 -32", "-78 -55", "48 24")) returns

true()
· altova:geolocation-within-polygon("33 -22", ("58 -32", "-78 -55", "48°51'29.6""N

 24°17'40.2""")) returns true()

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

441 441

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 439Engine Information

Altova RaptorXML Server 2025

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif
metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°
13'11.73"E

440 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

geolocation-within-rectangle [altova:]

altova:geolocation-within-rectangle(Geolocation as xs:string, RectCorner-1 as

xs:string, RectCorner-2 as xs:string) as xs:boolean XP3.1 XQ3.1

Determines whether Geolocation (the first argument) is within the rectangle defined by the second and

third arguments, RectCorner-1 and RectCorner-2, which specify opposite corners of the rectangle. All

the arguments (Geolocation, RectCorner-1 and RectCorner-2) are given by geolocation input strings

(formats listed below). If the Geolocation argument is within the rectangle, then the function returns
true(); otherwise it returns false(). Latitude values range from +90 to -90 (N to S). Longitude values
range from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply geolocation input strings.

Examples

· altova:geolocation-within-rectangle("33 -22", "58 -32", "-48 24") returns true()

· altova:geolocation-within-rectangle("33 -22", "58 -32", "48 24") returns false()

· altova:geolocation-within-rectangle("33 -22", "58 -32", "48°51'29.6""S 24°

17'40.2""") returns true()

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

441 441

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 441Engine Information

Altova RaptorXML Server 2025

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif
metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°
13'11.73"E

[Top]

10.2.1.4 XPath/XQuery Functions: Image-Related

The following image-related XPath/XQuery extension functions are supported in the current version of
RaptorXML Server and can be used in (i) XPath expressions in an XSLT context, or (ii) XQuery expressions in
an XQuery document.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

430

442 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

suggested-image-file-extension [altova:]

altova:suggested-image-file-extension(Base64String as string) as string? XP3.1 XQ3.1

Takes the Base64 encoding of an image file as its argument and returns the file extension of the image as
recorded in the Base64-encoding of the image. The returned value is a suggestion based on the image
type information available in the encoding. If this information is not available, then an empty string is
returned. This function is useful if you wish to save a Base64 image as a file and wish to dynamically
retrieve an appropriate file extension.

Examples

· altova:suggested-image-file-extension(/MyImages/MobilePhone/Image20141130.01)

returns 'jpg'
· altova:suggested-image-file-extension($XML1/Staff/Person/@photo) returns ''

In the examples above, the nodes supplied as the argument of the function are assumed to contain a
Base64-encoded image. The first example retrieves jpg as the file's type and extension. In the second
example, the submitted Base64 encoding does not provide usable file extension information.

image-exif-data [altova:]

altova:image-exif-data(Base64BinaryString as string) as element? XP3.1 XQ3.1

Takes a Base64-encoded JPEG image as its argument and returns an element called Exif that contains

the Exif metadata of the image. The Exif metadata is created as attribute-value pairs of the Exif element.
The attribute names are the Exif data tags found in the Base64 encoding. The list of Exif-specification tags
is given below. If a vendor-specific tag is present in the Exif data, this tag and its value will also be returned
as an attribute-value pair. Additional to the standard Exif metadata tags (see list below), Altova-specific
attribute-value pairs are also generated. These Altova Exif attributes are listed below.

Examples

· To access any one attribute, use the function like this:
image-exif-data(//MyImages/Image20141130.01)/@GPSLatitude

image-exif-data(//MyImages/Image20141130.01)/@Geolocation

· To access all the attributes, use the function like this:
image-exif-data(//MyImages/Image20141130.01)/@*

· To access the names of all the attributes, use the following expression:
for $i in image-exif-data(//MyImages/Image20141130.01)/@* return name($i)

This is useful to find out the names of the attributes returned by the function.

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif
metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe GPSLongitude GPSLongitudeRe Geolocation

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 443Engine Information

Altova RaptorXML Server 2025

f f

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°
13'11.73"E

Altova Exif Attribute: OrientationDegree

The Altova XPath/XQuery Engine generates the custom attribute OrientationDegree from the Exif

metadata tag Orientation.

OrientationDegree translates the standard Exif tag Orientation from an integer value (1, 8, 3, or

6) to the respective degree values of each (0, 90, 180, 270), as shown in the figure below. Note that

there are no translations of the Orientation values of 2, 4, 5, 7. (These orientations are obtained by

flipping image 1 across its vertical center axis to get the image with a value of 2, and then rotating
this image in 90-degree jumps clockwise to get the values of 7, 4, and 5, respectively).

Listing of standard Exif meta tags

· ImageWidth
· ImageLength
· BitsPerSample
· Compression
· PhotometricInterpretation
· Orientation
· SamplesPerPixel
· PlanarConfiguration
· YCbCrSubSampling

444 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

· YCbCrPositioning
· XResolution
· YResolution
· ResolutionUnit
· StripOffsets
· RowsPerStrip
· StripByteCounts
· JPEGInterchangeFormat
· JPEGInterchangeFormatLength
· TransferFunction
· WhitePoint
· PrimaryChromaticities
· YCbCrCoefficients
· ReferenceBlackWhite
· DateTime
· ImageDescription
· Make
· Model
· Software
· Artist
· Copyright

· ExifVersion
· FlashpixVersion
· ColorSpace
· ComponentsConfiguration
· CompressedBitsPerPixel
· PixelXDimension
· PixelYDimension
· MakerNote
· UserComment
· RelatedSoundFile
· DateTimeOriginal
· DateTimeDigitized
· SubSecTime
· SubSecTimeOriginal
· SubSecTimeDigitized
· ExposureTime
· FNumber
· ExposureProgram
· SpectralSensitivity
· ISOSpeedRatings
· OECF
· ShutterSpeedValue
· ApertureValue
· BrightnessValue
· ExposureBiasValue
· MaxApertureValue
· SubjectDistance
· MeteringMode
· LightSource
· Flash
· FocalLength
· SubjectArea

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 445Engine Information

Altova RaptorXML Server 2025

· FlashEnergy
· SpatialFrequencyResponse
· FocalPlaneXResolution
· FocalPlaneYResolution
· FocalPlaneResolutionUnit
· SubjectLocation
· ExposureIndex
· SensingMethod
· FileSource
· SceneType
· CFAPattern
· CustomRendered
· ExposureMode
· WhiteBalance
· DigitalZoomRatio
· FocalLengthIn35mmFilm
· SceneCaptureType
· GainControl
· Contrast
· Saturation
· Sharpness
· DeviceSettingDescription
· SubjectDistanceRange
· ImageUniqueID

· GPSVersionID
· GPSLatitudeRef
· GPSLatitude
· GPSLongitudeRef
· GPSLongitude
· GPSAltitudeRef
· GPSAltitude
· GPSTimeStamp
· GPSSatellites
· GPSStatus
· GPSMeasureMode
· GPSDOP
· GPSSpeedRef
· GPSSpeed
· GPSTrackRef
· GPSTrack
· GPSImgDirectionRef
· GPSImgDirection
· GPSMapDatum
· GPSDestLatitudeRef
· GPSDestLatitude
· GPSDestLongitudeRef
· GPSDestLongitude
· GPSDestBearingRef
· GPSDestBearing
· GPSDestDistanceRef
· GPSDestDistance
· GPSProcessingMethod
· GPSAreaInformation

446 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

· GPSDateStamp
· GPSDifferential

[Top]

10.2.1.5 XPath/XQuery Functions: Numeric

Altova's numeric extension functions can be used in XPath and XQuery expressions and provide additional
functionality for the processing of data. The functions in this section can be used with Altova's XPath 3.0 and
XQuery 3.0 engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Auto-numbering functions
generate-auto-number [altova:]

altova:generate-auto-number(ID as xs:string, StartsWith as xs:double, Increment as

xs:double, ResetOnChange as xs:string) as xs:integer XP1 XP2 XQ1 XP3.1 XQ3.1

Generates a number each time the function is called. The first number, which is generated the first time
the function is called, is specified by the StartsWith argument. Each subsequent call to the function
generates a new number, this number being incremented over the previously generated number by the
value specified in the Increment argument. In effect, the altova:generate-auto-number function creates
a counter having a name specified by the ID argument, with this counter being incremented each time the
function is called. If the value of the ResetOnChange argument changes from that of the previous function
call, then the value of the number to be generated is reset to the StartsWith value. Auto-numbering can
also be reset by using the altova:reset-auto-number function.

Examples

· altova:generate-auto-number("ChapterNumber", 1, 1, "SomeString") will return one

number each time the function is called, starting with 1, and incrementing by 1 with each call to
the function. As long as the fourth argument remains "SomeString" in each subsequent call, the
incrementing will continue. When the value of the fourth argument changes, the counter (called
ChapterNumber) will reset to 1. The value of ChapterNumber can also be reset by a call to the

441

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 447Engine Information

Altova RaptorXML Server 2025

altova:reset-auto-number function, like this: altova:reset-auto-number("ChapterNumber").

reset-auto-number [altova:]

altova:reset-auto-number(ID as xs:string) XP1 XP2 XQ1 XP3.1 XQ3.1

This function resets the number of the auto-numbering counter named in the ID argument. The number is
reset to the number specified by the StartsWith argument of the altova:generate-auto-number
function that created the counter named in the ID argument.

Examples

· altova:reset-auto-number("ChapterNumber") resets the number of the auto-numbering

counter named ChapterNumber that was created by the altova:generate-auto-number function.
The number is reset to the value of the StartsWith argument of the altova:generate-auto-
number function that created ChapterNumber.

[Top]

Numeric functions
hex-string-to-integer [altova:]

altova:hex-string-to-integer(HexString as xs:string) as xs:integer XP3.1 XQ3.1

Takes a string argument that is the Base-16 equivalent of an integer in the decimal system (Base-10), and
returns the decimal integer.

Examples

· altova:hex-string-to-integer('1') returns 1

· altova:hex-string-to-integer('9') returns 9

· altova:hex-string-to-integer('A') returns 10

· altova:hex-string-to-integer('B') returns 11

· altova:hex-string-to-integer('F') returns 15

· altova:hex-string-to-integer('G') returns an error

· altova:hex-string-to-integer('10') returns 16

· altova:hex-string-to-integer('01') returns 1

· altova:hex-string-to-integer('20') returns 32

· altova:hex-string-to-integer('21') returns 33

· altova:hex-string-to-integer('5A') returns 90

· altova:hex-string-to-integer('USA') returns an error

integer-to-hex-string [altova:]

altova:integer-to-hex-string(Integer as xs:integer) as xs:string XP3.1 XQ3.1

Takes an integer argument and returns its Base-16 equivalent as a string.
Examples

· altova:integer-to-hex-string(1) returns '1'

· altova:integer-to-hex-string(9) returns '9'

· altova:integer-to-hex-string(10) returns 'A'

· altova:integer-to-hex-string(11) returns 'B'

446

448 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

· altova:integer-to-hex-string(15) returns 'F'

· altova:integer-to-hex-string(16) returns '10'

· altova:integer-to-hex-string(32) returns '20'

· altova:integer-to-hex-string(33) returns '21'

· altova:integer-to-hex-string(90) returns '5A'

[Top]

[Top]

10.2.1.6 XPath/XQuery Functions: Schema

The Altova extension functions listed below return schema information. Given below are descriptions of the
functions, together with (i) examples and (ii) a listing of schema components and their respective properties.
They can be used with Altova's XPath 3.0 and XQuery 3.0 engines and are available in XPath/XQuery
contexts.

Schema information from schema documents
The function altova:schema has two arguments: one with zero arguments and the other with two arguments.

The zero-argument function returns the whole schema. You can then, from this starting point, navigate into the
schema to locate the schema components you want. The two-argument function returns a specific component
kind that is identified by its QName. In both cases, the return value is a function. To navigate into the returned
component, you must select a property of that specific component. If the property is a non-atomic item (that is,
if it is a component), then you can navigate further by selecting a property of this component. If the selected
property is an atomic item, then the value of the item is returned and you cannot navigate any further.

Note: In XPath expressions, the schema must be imported into the processing environment (for example, into
XSLT) with the xslt:import-schema instruction. In XQuery expressions, the schema must be explicitly

imported using a schema import.

Schema information from XML nodes
The function altova:type submits the node of an XML document and returns the node's type information from

the PSVI.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

446

446

https://www.w3.org/TR/xslt-30/#element-import-schema
https://www.w3.org/TR/xquery-31/#prod-xquery31-SchemaImport

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 449Engine Information

Altova RaptorXML Server 2025

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Schema (zero arguments)

altova:schema() as (function(xs:string) as item()*)? XP3.1 XQ3.1

Returns the schema component as a whole. You can navigate further into the schema component by

selecting one of the schema component's properties.

· If this property is a component, you can navigate another step deeper by selecting one of this
component's properties. This step can be repeated to navigate further into the schema.

· If the component is an atomic value, the atomic value is returned and you cannot navigate any
deeper.

The properties of the schema component are:

"type definitions"
"attribute declarations"
"element declarations"
"attribute group definitions"
"model group definitions"
"notation declarations"
"identity-constraint definitions"

The properties of all other component kinds (besides schema) are listed below.

Note: In XQuery expressions, the schema must be explicitly imported. In XPath expressions, the schema
must have been imported into the processing environment, for example, into XSLT with the xslt:import

instruction.

Examples

· import schema "" at "C:\Test\ExpReport.xsd"; for $typedef in altova:schema()

("type definitions")

return $typedef ("name") returns the names of all simple types or complex types in the
schema

· import schema "" at "C:\Test\ExpReport.xsd";

altova:schema() ("type definitions")[1]("name") returns the name of the first of all simple

types or complex types in the schema

Components and their properties

Assertion

Property name Property type Property value

kind string "Assertion"

test XPath Property Record

Attribute Declaration

450 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Property name Property type Property value

kind string "Attribute Declaration"

name string Local name of the attribute

target namespace string Namespace URI of the attribute

type definition Simple Type or Complex Type

scope A function with properties
("class":"Scope", "variety": "global" or
"local", "parent": the containing
Complex Type or Attribute Group)

value constraint If present, a function with properties
("class": "Value Constraint", "variety":
"fixed" or "default", "value": atomic
value, "lexical form": string. Note that
the "value" property is not available for
namespace-sensitive types

inheritable boolean

Attribute Group Declaration

Property name Property type Property value

kind string "Attribute Group Definition"

name string Local name of the attribute group

target namespace string Namespace URI of the attribute
group

attribute uses Sequence of (Attribute Use)

attribute wildcard Optional Attribute Wildcard

Attribute Use

Property name Property type Property value

kind string "Attribute Use"

required boolean true if the attribute is required,
false if optional

value constraint See Attribute Declaration

inheritable boolean

Attribute Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 451Engine Information

Altova RaptorXML Server 2025

"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Complex Type

Property name Property type Property value

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

base type definition Complex Type Definition

final Sequence of strings
("restriction"|"extension")

context Empty sequence (not implemented)

derivation method string ("restriction"|"extension")

abstract boolean

attribute uses Sequence of Attribute Use

attribute wildcard Optional Attribute Wildcard

content type function with properties:
("class":"Content Type", "variety":string
("element-
only"|"empty"|"mixed"|"simple"), particle:
optional Particle, "open content":
function with properties ("class":"Open
Content", "mode": string
("interleave"|"suffix"), "wildcard":
Wildcard), "simple type definition":
Simple Type)

prohibited
substitutions

Sequence of strings
("restriction"|"extension")

assertions Sequence of Assertion

Element Declaration

Property name Property type Property value

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

452 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

target namespace string Namespace URI of the type
(empty if anonymous)

type definition Simple Type or Complex Type

type table function with properties ("class":"Type
Table", "alternatives": sequence of Type
Alternative, "default type definition":
Simple Type or Complex Type)

scope function with properties ("class":"Scope",
"variety": ("global"|"local"), "parent":
optional Complex Type)

value constraint see Attribute Declaration

nillable boolean

identity-constraint
definitions

Sequence of Identity Constraint

substitution group
affiliations

Sequence of Element Declaration

substitution group
exclusions

Sequence of strings
("restriction"|"extension")

disallowed
substitutions

Sequence of strings
("restriction"|"extension"|"substitution")

abstract boolean

Element Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Facet

Property name Property type Property value

kind string The name of the facet, for
example "minLength" or
"enumeration"

value depends on facet The value of the facet

fixed boolean

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 453Engine Information

Altova RaptorXML Server 2025

typed-value For the enumeration facet only,
array(xs:anyAtomicType*)

An array containing the
enumeration values, each of which
may in general be a sequence of
atomic values. (Note: for the
enumeration facet, the "value"
property is a sequence of strings,
regardless of the actual type)

Identity Constraint

Property name Property type Property value

kind string "Identity-Constraint Definition"

name string Local name of the constraint

target namespace string Namespace URI of the constraint

identity-constraint
category

string ("key"|"unique"|"keyRef")

selector XPath Property Record

fields Sequence of XPath Property Record

referenced key (For keyRef only): Identity Constraint The corresponding key constraint

Model Group

Property name Property type Property value

kind string "Model Group"

compositor string ("sequence"|"choice"|"all")

particles Sequence of Particle

Model Group Definition

Property name Property type Property value

kind string "Model Group Definition"

name string Local name of the model group

target namespace string
Namespace URI of the model
group

model group Model Group

Notation

Property name Property type Property value

kind string "Notation Declaration"

name string Local name of the notation

target namespace string Namespace URI of the notation

454 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

system identifier anyURI

public identifier string

Particle

Property name Property type Property value

kind string "Particle"

min occurs integer

max occurs integer, or string("unbounded")

term Element Declaration, Element Wildcard,
or ModelGroup

Simple Type

Property name Property type Property value

kind string "Simple Type Definition"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

final Sequence of
string("restriction"|"extension"|"list"|"unio
n")

context containing component

base type definition Simple Type

facets Sequence of Facet

fundamental facets Empty sequence (not implemented)

variety string ("atomic"|"list"|"union")

primitive type
definition

Simple Type

item type definition (for list types only) Simple Type

member type
definitions

(for union types only) Sequence of
Simple Type

Type Alternative

Property name Property type Property value

kind string "Type Alternative"

test XPath Property Record

type definition Simple Type or Complex Type

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 455Engine Information

Altova RaptorXML Server 2025

XPath Property Record

Property name Property type Property value

namespace bindings Sequence of functions with properties
("prefix": string, "namespace": anyURI)

default namespace anyURI

base URI anyURI The static base URI of the XPath
expression

expression string The XPath expression as a string

Schema (two arguments)

altova:schema(ComponentKind as xs:string, Name as xs:QName) as (function(xs:string) as

item()*)? XP3.1 XQ3.1

Returns the component kind that is specified in the first argument which has a name that is the same as
the name supplied in the second argument. You can navigate further by selecting one of the component's
properties.

· If this property is a component, you can navigate another step deeper by selecting one of this
component's properties. This step can be repeated to navigate further into the schema.

· If the component is an atomic value, the atomic value is returned and you cannot navigate any
deeper.

Note: In XQuery expressions, the schema must be explicitly imported. In XPath expressions, the schema
must have been imported into the processing environment, for example, into XSLT with the xslt:import

instruction.

Examples

· import schema "" at "C:\Test\ExpReport.xsd";

altova:schema("element declaration", xs:QName("OrgChart"))("type definition")

("content type")("particles")[3]!.("term")("kind")
returns the kind property of the term of the third particles component. This particles component
is a descendant of the element declaration having a QName of OrgChart

· import schema "" at "C:\Test\ExpReport.xsd";

let $typedef := altova:schema("type definition", xs:QName("emailType"))

for $facet in $typedef ("facets")

return [$facet ("kind"), $facet("value")]

returns, for each facet of each emailType component, an array containing that facet's kind and

value

Components and their properties

Assertion

Property name Property type Property value

kind string "Assertion"

456 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

test XPath Property Record

Attribute Declaration

Property name Property type Property value

kind string "Attribute Declaration"

name string Local name of the attribute

target namespace string Namespace URI of the attribute

type definition Simple Type or Complex Type

scope A function with properties
("class":"Scope", "variety": "global" or
"local", "parent": the containing
Complex Type or Attribute Group)

value constraint If present, a function with properties
("class": "Value Constraint", "variety":
"fixed" or "default", "value": atomic
value, "lexical form": string. Note that
the "value" property is not available for
namespace-sensitive types

inheritable boolean

Attribute Group Declaration

Property name Property type Property value

kind string "Attribute Group Definition"

name string Local name of the attribute group

target namespace string Namespace URI of the attribute
group

attribute uses Sequence of (Attribute Use)

attribute wildcard Optional Attribute Wildcard

Attribute Use

Property name Property type Property value

kind string "Attribute Use"

required boolean true if the attribute is required,
false if optional

value constraint See Attribute Declaration

inheritable boolean

Attribute Wildcard

Property name Property type Property value

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 457Engine Information

Altova RaptorXML Server 2025

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Complex Type

Property name Property type Property value

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

base type definition Complex Type Definition

final Sequence of strings
("restriction"|"extension")

context Empty sequence (not implemented)

derivation method string ("restriction"|"extension")

abstract boolean

attribute uses Sequence of Attribute Use

attribute wildcard Optional Attribute Wildcard

content type function with properties:
("class":"Content Type", "variety":string
("element-
only"|"empty"|"mixed"|"simple"), particle:
optional Particle, "open content":
function with properties ("class":"Open
Content", "mode": string
("interleave"|"suffix"), "wildcard":
Wildcard), "simple type definition":
Simple Type)

prohibited
substitutions

Sequence of strings
("restriction"|"extension")

assertions Sequence of Assertion

Element Declaration

Property name Property type Property value

458 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

type definition Simple Type or Complex Type

type table function with properties ("class":"Type
Table", "alternatives": sequence of Type
Alternative, "default type definition":
Simple Type or Complex Type)

scope function with properties ("class":"Scope",
"variety": ("global"|"local"), "parent":
optional Complex Type)

value constraint see Attribute Declaration

nillable boolean

identity-constraint
definitions

Sequence of Identity Constraint

substitution group
affiliations

Sequence of Element Declaration

substitution group
exclusions

Sequence of strings
("restriction"|"extension")

disallowed
substitutions

Sequence of strings
("restriction"|"extension"|"substitution")

abstract boolean

Element Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Facet

Property name Property type Property value

kind string The name of the facet, for
example "minLength" or

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 459Engine Information

Altova RaptorXML Server 2025

"enumeration"

value depends on facet The value of the facet

fixed boolean

typed-value For the enumeration facet only,
array(xs:anyAtomicType*)

An array containing the
enumeration values, each of which
may in general be a sequence of
atomic values. (Note: for the
enumeration facet, the "value"
property is a sequence of strings,
regardless of the actual type)

Identity Constraint

Property name Property type Property value

kind string "Identity-Constraint Definition"

name string Local name of the constraint

target namespace string Namespace URI of the constraint

identity-constraint
category

string ("key"|"unique"|"keyRef")

selector XPath Property Record

fields Sequence of XPath Property Record

referenced key (For keyRef only): Identity Constraint The corresponding key constraint

Model Group

Property name Property type Property value

kind string "Model Group"

compositor string ("sequence"|"choice"|"all")

particles Sequence of Particle

Model Group Definition

Property name Property type Property value

kind string "Model Group Definition"

name string Local name of the model group

target namespace string
Namespace URI of the model
group

model group Model Group

Notation

Property name Property type Property value

460 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

kind string "Notation Declaration"

name string Local name of the notation

target namespace string Namespace URI of the notation

system identifier anyURI

public identifier string

Particle

Property name Property type Property value

kind string "Particle"

min occurs integer

max occurs integer, or string("unbounded")

term Element Declaration, Element Wildcard,
or ModelGroup

Simple Type

Property name Property type Property value

kind string "Simple Type Definition"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

final Sequence of
string("restriction"|"extension"|"list"|"unio
n")

context containing component

base type definition Simple Type

facets Sequence of Facet

fundamental facets Empty sequence (not implemented)

variety string ("atomic"|"list"|"union")

primitive type
definition

Simple Type

item type definition (for list types only) Simple Type

member type
definitions

(for union types only) Sequence of
Simple Type

Type Alternative

Property name Property type Property value

kind string "Type Alternative"

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 461Engine Information

Altova RaptorXML Server 2025

test XPath Property Record

type definition Simple Type or Complex Type

XPath Property Record

Property name Property type Property value

namespace bindings Sequence of functions with properties
("prefix": string, "namespace": anyURI)

default namespace anyURI

base URI anyURI The static base URI of the XPath
expression

expression string The XPath expression as a string

Type

altova:type(Node as item?) as (function(xs:string) as item()*)? XP3.1 XQ3.1

The function altova:type submits an element or attribute node of an XML document and returns the

node's type information from the PSVI.

Note: The XML document must have a schema declaration so that the schema can be referenced.

Examples

· for $element in //Email

let $type := altova:type($element)

return $type

returns a function that contains the Email node's type information

· for $element in //Email

let $type := altova:type($element)

return $type ("kind")

takes the Email node's type component (Simple Type or Complex Type) and returns the value of
the component's kind property

The "_props" parameter returns the properties of the selected component. For example:
· for $element in //Email

let $type := altova:type($element)

return ($type ("kind"), $type ("_props"))

takes the Email node's type component (Simple Type or Complex Type) and returns (i) the value of
the component's kind property, and then (ii) the properties of that component.

Components and their properties

Assertion

Property name Property type Property value

462 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

kind string "Assertion"

test XPath Property Record

Attribute Declaration

Property name Property type Property value

kind string "Attribute Declaration"

name string Local name of the attribute

target namespace string Namespace URI of the attribute

type definition Simple Type or Complex Type

scope A function with properties
("class":"Scope", "variety": "global" or
"local", "parent": the containing
Complex Type or Attribute Group)

value constraint If present, a function with properties
("class": "Value Constraint", "variety":
"fixed" or "default", "value": atomic
value, "lexical form": string. Note that
the "value" property is not available for
namespace-sensitive types

inheritable boolean

Attribute Group Declaration

Property name Property type Property value

kind string "Attribute Group Definition"

name string Local name of the attribute group

target namespace string Namespace URI of the attribute
group

attribute uses Sequence of (Attribute Use)

attribute wildcard Optional Attribute Wildcard

Attribute Use

Property name Property type Property value

kind string "Attribute Use"

required boolean true if the attribute is required,
false if optional

value constraint See Attribute Declaration

inheritable boolean

Attribute Wildcard

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 463Engine Information

Altova RaptorXML Server 2025

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Complex Type

Property name Property type Property value

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

base type definition Complex Type Definition

final Sequence of strings
("restriction"|"extension")

context Empty sequence (not implemented)

derivation method string ("restriction"|"extension")

abstract boolean

attribute uses Sequence of Attribute Use

attribute wildcard Optional Attribute Wildcard

content type function with properties:
("class":"Content Type", "variety":string
("element-
only"|"empty"|"mixed"|"simple"), particle:
optional Particle, "open content":
function with properties ("class":"Open
Content", "mode": string
("interleave"|"suffix"), "wildcard":
Wildcard), "simple type definition":
Simple Type)

prohibited
substitutions

Sequence of strings
("restriction"|"extension")

assertions Sequence of Assertion

Element Declaration

Property name Property type Property value

464 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

type definition Simple Type or Complex Type

type table function with properties ("class":"Type
Table", "alternatives": sequence of Type
Alternative, "default type definition":
Simple Type or Complex Type)

scope function with properties ("class":"Scope",
"variety": ("global"|"local"), "parent":
optional Complex Type)

value constraint see Attribute Declaration

nillable boolean

identity-constraint
definitions

Sequence of Identity Constraint

substitution group
affiliations

Sequence of Element Declaration

substitution group
exclusions

Sequence of strings
("restriction"|"extension")

disallowed
substitutions

Sequence of strings
("restriction"|"extension"|"substitution")

abstract boolean

Element Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Facet

Property name Property type Property value

kind string The name of the facet, for
example "minLength" or

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 465Engine Information

Altova RaptorXML Server 2025

"enumeration"

value depends on facet The value of the facet

fixed boolean

typed-value For the enumeration facet only,
array(xs:anyAtomicType*)

An array containing the
enumeration values, each of which
may in general be a sequence of
atomic values. (Note: for the
enumeration facet, the "value"
property is a sequence of strings,
regardless of the actual type)

Identity Constraint

Property name Property type Property value

kind string "Identity-Constraint Definition"

name string Local name of the constraint

target namespace string Namespace URI of the constraint

identity-constraint
category

string ("key"|"unique"|"keyRef")

selector XPath Property Record

fields Sequence of XPath Property Record

referenced key (For keyRef only): Identity Constraint The corresponding key constraint

Model Group

Property name Property type Property value

kind string "Model Group"

compositor string ("sequence"|"choice"|"all")

particles Sequence of Particle

Model Group Definition

Property name Property type Property value

kind string "Model Group Definition"

name string Local name of the model group

target namespace string
Namespace URI of the model
group

model group Model Group

Notation

Property name Property type Property value

466 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

kind string "Notation Declaration"

name string Local name of the notation

target namespace string Namespace URI of the notation

system identifier anyURI

public identifier string

Particle

Property name Property type Property value

kind string "Particle"

min occurs integer

max occurs integer, or string("unbounded")

term Element Declaration, Element Wildcard,
or ModelGroup

Simple Type

Property name Property type Property value

kind string "Simple Type Definition"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

final Sequence of
string("restriction"|"extension"|"list"|"unio
n")

context containing component

base type definition Simple Type

facets Sequence of Facet

fundamental facets Empty sequence (not implemented)

variety string ("atomic"|"list"|"union")

primitive type
definition

Simple Type

item type definition (for list types only) Simple Type

member type
definitions

(for union types only) Sequence of
Simple Type

Type Alternative

Property name Property type Property value

kind string "Type Alternative"

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 467Engine Information

Altova RaptorXML Server 2025

test XPath Property Record

type definition Simple Type or Complex Type

XPath Property Record

Property name Property type Property value

namespace bindings Sequence of functions with properties
("prefix": string, "namespace": anyURI)

default namespace anyURI

base URI anyURI The static base URI of the XPath
expression

expression string The XPath expression as a string

10.2.1.7 XPath/XQuery Functions: Sequence

Altova's sequence extension functions can be used in XPath and XQuery expressions and provide additional
functionality for the processing of data. The functions in this section can be used with Altova's XPath 3.0 and
XQuery 3.0 engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

attributes [altova:]

altova:attributes(AttributeName as xs:string) as attribute()* XP3.1 XQ3.1

Returns all attributes that have a local name which is the same as the name supplied in the input
argument, AttributeName. The search is case-sensitive and conducted along the attribute:: axis. This
means that the context node must be the parent element node.

Examples

· altova:attributes("MyAttribute") returns MyAttribute()*

468 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

altova:attributes(AttributeName as xs:string, SearchOptions as xs:string) as

attribute()* XP3.1 XQ3.1

Returns all attributes that have a local name which is the same as the name supplied in the input
argument, AttributeName. The search is case-sensitive and conducted along the attribute:: axis. The
context node must be the parent element node. The second argument is a string containing option flags.
Available flags are:
r = switches to a regular-expression search; AttributeName must then be a regular-expression search

string;
f = If this option is specified, then AttributeName provides a full match; otherwise AttributeName need

only partially match an attribute name to return that attribute. For example: if f is not specified, then

MyAtt will return MyAttribute;
i = switches to a case-insensitive search;

p = includes the namespace prefix in the search; AttributeName should then contain the namespace

prefix, for example: altova:MyAttribute.
The flags can be written in any order. Invalid flags will generate errors. One or more flags can be omitted.
The empty string is allowed, and will produce the same effect as the function having only one argument
(previous signature). However, an empty sequence is not allowed as the second argument.

Examples

· altova:attributes("MyAttribute", "rfip") returns MyAttribute()*

· altova:attributes("MyAttribute", "pri") returns MyAttribute()*

· altova:attributes("MyAtt", "rip") returns MyAttribute()*

· altova:attributes("MyAttributes", "rfip") returns no match

· altova:attributes("MyAttribute", "") returns MyAttribute()*

· altova:attributes("MyAttribute", "Rip") returns an unrecognized-flag error.

· altova:attributes("MyAttribute",) returns a missing-second-argument error.

elements [altova:]

altova:elements(ElementName as xs:string) as element()* XP3.1 XQ3.1

Returns all elements that have a local name which is the same as the name supplied in the input
argument, ElementName. The search is case-sensitive and conducted along the child:: axis. The context
node must be the parent node of the element/s being searched for.

Examples

· altova:elements("MyElement") returns MyElement()*

altova:elements(ElementName as xs:string, SearchOptions as xs:string) as element()*

XP3.1 XQ3.1

Returns all elements that have a local name which is the same as the name supplied in the input
argument, ElementName. The search is case-sensitive and conducted along the child:: axis. The
context node must be the parent node of the element/s being searched for. The second argument is a
string containing option flags. Available flags are:
r = switches to a regular-expression search; ElementName must then be a regular-expression search

string;
f = If this option is specified, then ElementName provides a full match; otherwise ElementName need only

partially match an element name to return that element. For example: if f is not specified, then MyElem will

return MyElement;
i = switches to a case-insensitive search;

p = includes the namespace prefix in the search; ElementName should then contain the namespace prefix,

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 469Engine Information

Altova RaptorXML Server 2025

for example: altova:MyElement.
The flags can be written in any order. Invalid flags will generate errors. One or more flags can be omitted.
The empty string is allowed, and will produce the same effect as the function having only one argument
(previous signature). However, an empty sequence is not allowed.

Examples

· altova:elements("MyElement", "rip") returns MyElement()*

· altova:elements("MyElement", "pri") returns MyElement()*

· altova:elements("MyElement", "") returns MyElement()*

· altova:elements("MyElem", "rip") returns MyElement()*

· altova:elements("MyElements", "rfip") returns no match

· altova:elements("MyElement", "Rip") returns an unrecognized-flag error.

· altova:elements("MyElement",) returns a missing-second-argument error.

find-first [altova:]

altova:find-first((Sequence as item()*), (Condition(Sequence-Item as xs:boolean)) as

item()? XP3.1 XQ3.1

This function takes two arguments. The first argument is a sequence of one or more items of any
datatype. The second argument, Condition, is a reference to an XPath function that takes one argument
(has an arity of 1) and returns a boolean. Each item of Sequence is submitted, in turn, to the function

referenced in Condition. (Remember: This function takes a single argument.) The first Sequence item that

causes the function in Condition to evaluate to true() is returned as the result of altova:find-first,

and the iteration stops.

Examples

· altova:find-first(5 to 10, function($a) {$a mod 2 = 0}) returns xs:integer 6

The Condition argument references the XPath 3.0 inline function, function(), which declares an

inline function named $a and then defines it. Each item in the Sequence argument of altova:find-

first is passed, in turn, to $a as its input value. The input value is tested on the condition in the

function definition ($a mod 2 = 0). The first input value to satisfy this condition is returned as the
result of altova:find-first (in this case 6).

· altova:find-first((1 to 10), (function($a) {$a+3=7})) returns xs:integer 4

Further examples
If the file C:\Temp\Customers.xml exists:

· altova:find-first(("C:\Temp\Customers.xml", "http://www.altova.com/index.html"),

(doc-available#1)) returns xs:string C:\Temp\Customers.xml

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/index.html

exists:

· altova:find-first(("C:\Temp\Customers.xml", "http://www.altova.com/index.html"),

(doc-available#1)) returns xs:string http://www.altova.com/index.html

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/index.html also

470 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

does not exist:

· altova:find-first(("C:\Temp\Customers.xml", "http://www.altova.com/index.html"),

(doc-available#1)) returns no result

Notes about the examples given above

· The XPath 3.0 function, doc-available, takes a single string argument, which is used as a URI,
and returns true if a document node is found at the submitted URI. (The document at the
submitted URI must therefore be an XML document.)

· The doc-available function can be used for Condition, the second argument of altova:find-

first, because it takes only one argument (arity=1), because it takes an item() as input (a
string which is used as a URI), and returns a boolean value.

· Notice that the doc-available function is only referenced, not called. The #1 suffix that is
attached to it indicates a function with an arity of 1. In its entirety doc-available#1 simply
means: Use the doc-availabe() function that has arity=1, passing to it as its single argument, in
turn, each of the items in the first sequence. As a result, each of the two strings will be passed
to doc-available(), which uses the string as a URI and tests whether a document node exists

at the URI. If one does, the doc-available() evaluates to true() and that string is returned as

the result of the altova:find-first function. Note about the doc-available() function: Relative

paths are resolved relative to the the current base URI, which is by default the URI of the XML
document from which the function is loaded.

find-first-combination [altova:]

altova:find-first-combination((Seq-01 as item()*), (Seq-02 as item()*),

(Condition(Seq-01-Item, Seq-02-Item as xs:boolean)) as item()* XP3.1 XQ3.1

This function takes three arguments:

· The first two arguments, Seq-01 and Seq-02, are sequences of one or more items of any

datatype.
· The third argument, Condition, is a reference to an XPath function that takes two arguments (has

an arity of 2) and returns a boolean.

The items of Seq-01 and Seq-02 are passed in ordered pairs (one item from each sequence making up a

pair) as the arguments of the function in Condition. The pairs are ordered as follows.
If Seq-01 = X1, X2, X3 ... Xn

And Seq-02 = Y1, Y2, Y3 ... Yn

Then (X1 Y1), (X1 Y2), (X1 Y3) ... (X1 Yn), (X2 Y1), (X2 Y2) ... (Xn Yn)

The first ordered pair that causes the Condition function to evaluate to true() is returned as the result of

altova:find-first-combination. Note that: (i) If the Condition function iterates through the submitted

argument pairs and does not once evaluate to true(), then altova:find-first-combination returns No

results; (ii) The result of altova:find-first-combination will always be a pair of items (of any datatype)

or no item at all.

Examples

· altova:find-first-combination(11 to 20, 21 to 30, function($a, $b) {$a+$b = 32})

returns the sequence of xs:integers (11, 21)

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 471Engine Information

Altova RaptorXML Server 2025

· altova:find-first-combination(11 to 20, 21 to 30, function($a, $b) {$a+$b = 33})

returns the sequence of xs:integers (11, 22)
· altova:find-first-combination(11 to 20, 21 to 30, function($a, $b) {$a+$b = 34})

returns the sequence of xs:integers (11, 23)

find-first-pair [altova:]

altova:find-first-pair((Seq-01 as item()*), (Seq-02 as item()*), (Condition(Seq-01-

Item, Seq-02-Item as xs:boolean)) as item()* XP3.1 XQ3.1

This function takes three arguments:

· The first two arguments, Seq-01 and Seq-02, are sequences of one or more items of any

datatype.
· The third argument, Condition, is a reference to an XPath function that takes two arguments (has

an arity of 2) and returns a boolean.

The items of Seq-01 and Seq-02 are passed in ordered pairs as the arguments of the function in

Condition. The pairs are ordered as follows.
If Seq-01 = X1, X2, X3 ... Xn

And Seq-02 = Y1, Y2, Y3 ... Yn

Then (X1 Y1), (X2 Y2), (X3 Y3) ... (Xn Yn)

The first ordered pair that causes the Condition function to evaluate to true() is returned as the result of

altova:find-first-pair. Note that: (i) If the Condition function iterates through the submitted

argument pairs and does not once evaluate to true(), then altova:find-first-pair returns No results;

(ii) The result of altova:find-first-pair will always be a pair of items (of any datatype) or no item at

all.

Examples

· altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b = 32}) returns

the sequence of xs:integers (11, 21)
· altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b = 33}) returns

No results

Notice from the two examples above that the ordering of the pairs is: (11, 21) (12, 22) (13,
23)...(20, 30). This is why the second example returns No results (because no ordered pair gives
a sum of 33).

find-first-pair-pos [altova:]

altova:find-first-pair-pos((Seq-01 as item()*), (Seq-02 as item()*), (Condition(Seq-

01-Item, Seq-02-Item as xs:boolean)) as xs:integer XP3.1 XQ3.1

This function takes three arguments:

· The first two arguments, Seq-01 and Seq-02, are sequences of one or more items of any

datatype.
· The third argument, Condition, is a reference to an XPath function that takes two arguments (has

an arity of 2) and returns a boolean.

472 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

The items of Seq-01 and Seq-02 are passed in ordered pairs as the arguments of the function in

Condition. The pairs are ordered as follows.
If Seq-01 = X1, X2, X3 ... Xn

And Seq-02 = Y1, Y2, Y3 ... Yn

Then (X1 Y1), (X2 Y2), (X3 Y3) ... (Xn Yn)

The index position of the first ordered pair that causes the Condition function to evaluate to true() is

returned as the result of altova:find-first-pair-pos. Note that if the Condition function iterates

through the submitted argument pairs and does not once evaluate to true(), then altova:find-first-

pair-pos returns No results.

Examples

· altova:find-first-pair-pos(11 to 20, 21 to 30, function($a, $b) {$a+$b = 32})

returns 1
· altova:find-first-pair-pos(11 to 20, 21 to 30, function($a, $b) {$a+$b = 33})

returns No results

Notice from the two examples above that the ordering of the pairs is: (11, 21) (12, 22) (13,
23)...(20, 30). In the first example, the first pair causes the Condition function to evaluate to

true(), and so its index position in the sequence, 1, is returned. The second example returns No

results because no pair gives a sum of 33.

find-first-pos [altova:]

altova:find-first-pos((Sequence as item()*), (Condition(Sequence-Item as xs:boolean))

as xs:integer XP3.1 XQ3.1

This function takes two arguments. The first argument is a sequence of one or more items of any
datatype. The second argument, Condition, is a reference to an XPath function that takes one argument
(has an arity of 1) and returns a boolean. Each item of Sequence is submitted, in turn, to the function

referenced in Condition. (Remember: This function takes a single argument.) The first Sequence item that

causes the function in Condition to evaluate to true() has its index position in Sequence returned as the

result of altova:find-first-pos, and the iteration stops.

Examples

· altova:find-first-pos(5 to 10, function($a) {$a mod 2 = 0}) returns xs:integer 2

The Condition argument references the XPath 3.0 inline function, function(), which declares an

inline function named $a and then defines it. Each item in the Sequence argument of altova:find-

first-pos is passed, in turn, to $a as its input value. The input value is tested on the condition in

the function definition ($a mod 2 = 0). The index position in the sequence of the first input value to
satisfy this condition is returned as the result of altova:find-first-pos (in this case 2, since 6,

the first value (in the sequence) to satisfy the condition, is at index position 2 in the sequence).

· altova:find-first-pos((2 to 10), (function($a) {$a+3=7})) returns xs:integer 3

Further examples
If the file C:\Temp\Customers.xml exists:

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 473Engine Information

Altova RaptorXML Server 2025

· altova:find-first-pos(("C:\Temp\Customers.xml",

"http://www.altova.com/index.html"), (doc-available#1)) returns 1

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/index.html

exists:

· altova:find-first-pos(("C:\Temp\Customers.xml",

"http://www.altova.com/index.html"), (doc-available#1)) returns 2

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/index.html also

does not exist:

· altova:find-first-pos(("C:\Temp\Customers.xml",

"http://www.altova.com/index.html"), (doc-available#1)) returns no result

Notes about the examples given above

· The XPath 3.0 function, doc-available, takes a single string argument, which is used as a URI,
and returns true if a document node is found at the submitted URI. (The document at the
submitted URI must therefore be an XML document.)

· The doc-available function can be used for Condition, the second argument of altova:find-

first-pos, because it takes only one argument (arity=1), because it takes an item() as input
(a string which is used as a URI), and returns a boolean value.

· Notice that the doc-available function is only referenced, not called. The #1 suffix that is
attached to it indicates a function with an arity of 1. In its entirety doc-available#1 simply
means: Use the doc-availabe() function that has arity=1, passing to it as its single argument, in
turn, each of the items in the first sequence. As a result, each of the two strings will be passed
to doc-available(), which uses the string as a URI and tests whether a document node exists

at the URI. If one does, the doc-available() function evaluates to true() and the index

position of that string in the sequence is returned as the result of the altova:find-first-pos

function. Note about the doc-available() function: Relative paths are resolved relative to the the
current base URI, which is by default the URI of the XML document from which the function is
loaded.

for-each-attribute-pair [altova:]

altova:for-each-attribute-pair(Seq1 as element()?, Seq2 as element()?, Function as

function()) as item()* XP3.1 XQ3.1

The first two arguments identify two elements, the attributes of which are used to build attribute pairs,
where one attribute of a pair is obtained from the first element and the other attribute is obtained from the
second element. Attribute pairs are selected on the basis of having the same name, and the pairs are
ordered alphabetically (on their names) into a set. If, for one attribute no corresponding attribute on the
other element exists, then the pair is "disjoint", meaning that it consists of one member only. The function
item (third argument Function) is applied separately to each pair in the sequence of pairs (joint and
disjoint), resulting in an output that is a sequence of items.

Examples

· altova:for-each-attribute-pair(/Example/Test-A, /Example/Test-B, function($a, $b)

{$a+b}) returns ...

474 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

 (2, 4, 6) if
 <Test-A att1="1" att2="2" att3="3" />
 <Test-B att1="1" att2="2" att3="3" />

 (2, 4, 6) if
 <Test-A att2="2" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

 (2, 6) if
 <Test-A att4="4" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

 Note: The result (2, 6) is obtained by way of the following action: (1+1, ()+2, 3+3, 4+()). If

one of the operands is the empty sequence, as in the case of items 2 and 4, then the result of the
addition is an empty sequence.

· altova:for-each-attribute-pair(/Example/Test-A, /Example/Test-B, concat#2) returns

...

 (11, 22, 33) if
 <Test-A att1="1" att2="2" att3="3" />
 <Test-B att1="1" att2="2" att3="3" />

 (11, 2, 33, 4) if
 <Test-A att4="4" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

for-each-combination [altova:]

altova:for-each-combination(FirstSequence as item()*, SecondSequence as item()*,

Function($i,$j){$i || $j}) as item()* XP3.1 XQ3.1

The items of the two sequences in the first two arguments are combined so that each item of the first
sequence is combined, in order, once with each item of the second sequence. The function given as the
third argument is applied to each combination in the resulting sequence, resulting in an output that is a
sequence of items (see example).

Examples

· altova:for-each-combination(('a', 'b', 'c'), ('1', '2', '3'), function($i, $j)

{$i || $j}) returns ('a1', 'a2', 'a3', 'b1', 'b2', 'b3', 'c1', 'c2', 'c3')

for-each-matching-attribute-pair [altova:]

altova:for-each-matching-attribute-pair(Seq1 as element()?, Seq2 as element()?,

Function as function()) as item()* XP3.1 XQ3.1

The first two arguments identify two elements, the attributes of which are used to build attribute pairs,
where one attribute of a pair is obtained from the first element and the other attribute is obtained from the
second element. Attribute pairs are selected on the basis of having the same name, and the pairs are
ordered alphabetically (on their names) into a set. If, for one attribute no corresponding attribute on the
other element exists, then no pair is built. The function item (third argument Function) is applied

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 475Engine Information

Altova RaptorXML Server 2025

separately to each pair in the sequence of pairs, resulting in an output that is a sequence of items.
Examples

· altova:for-each-matching-attribute-pair(/Example/Test-A, /Example/Test-B,

function($a, $b){$a+b}) returns ...

 (2, 4, 6) if
 <Test-A att1="1" att2="2" att3="3" />
 <Test-B att1="1" att2="2" att3="3" />

 (2, 4, 6) if
 <Test-A att2="2" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

 (2, 6) if
 <Test-A att4="4" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att3="1" />

· altova:for-each-matching-attribute-pair(/Example/Test-A, /Example/Test-B,

concat#2) returns ...

 (11, 22, 33) if
 <Test-A att1="1" att2="2" att3="3" />
 <Test-B att1="1" att2="2" att3="3" />

 (11, 33) if
 <Test-A att4="4" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

substitute-empty [altova:]

altova:substitute-empty(FirstSequence as item()*, SecondSequence as item()) as item()*

XP3.1 XQ3.1

If FirstSequence is empty, returns SecondSequence. If FirstSequence is not empty, returns
FirstSequence.

Examples

· altova:substitute-empty((1,2,3), (4,5,6)) returns (1,2,3)

· altova:substitute-empty((), (4,5,6)) returns (4,5,6)

10.2.1.8 XPath/XQuery Functions: String

Altova's string extension functions can be used in XPath and XQuery expressions and provide additional
functionality for the processing of data. The functions in this section can be used with Altova's XPath 3.0 and
XQuery 3.0 engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

476 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

camel-case [altova:]

altova:camel-case(InputString as xs:string) as xs:string XP3.1 XQ3.1

Returns the input string InputString in CamelCase. The string is analyzed using the regular expression

'\s' (which is a shortcut for the whitespace character). The first non-whitespace character after a

whitespace or sequence of consecutive whitespaces is capitalized. The first character in the output string
is capitalized.

Examples

· altova:camel-case("max") returns Max

· altova:camel-case("max max") returns Max Max

· altova:camel-case("file01.xml") returns File01.xml

· altova:camel-case("file01.xml file02.xml") returns File01.xml File02.xml

· altova:camel-case("file01.xml file02.xml") returns File01.xml File02.xml

· altova:camel-case("file01.xml -file02.xml") returns File01.xml -file02.xml

altova:camel-case(InputString as xs:string, SplitChars as xs:string, IsRegex as

xs:boolean) as xs:string XP3.1 XQ3.1

Converts the input string InputString to camel case by using SplitChars to determine the character/s

that trigger the next capitalization. SplitChars is used as a regular expression when IsRegex = true(),

or as plain characters when IsRegex = false(). The first character in the output string is capitalized.

Examples

· altova:camel-case("setname getname", "set|get", true()) returns setName getName

· altova:camel-case("altova\documents\testcases", "\", false()) returns
Altova\Documents\Testcases

char [altova:]

altova:char(Position as xs:integer) as xs:string XP3.1 XQ3.1

Returns a string containing the character at the position specified by the Position argument, in the string
obtained by converting the value of the context item to xs:string. The result string will be empty if no
character exists at the index submitted by the Position argument.

Examples

If the context item is 1234ABCD:

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 477Engine Information

Altova RaptorXML Server 2025

· altova:char(2) returns 2

· altova:char(5) returns A

· altova:char(9) returns the empty string.

· altova:char(-2) returns the empty string.

altova:char(InputString as xs:string, Position as xs:integer) as xs:string XP3.1 XQ3.1

Returns a string containing the character at the position specified by the Position argument, in the string
submitted as the InputString argument. The result string will be empty if no character exists at the index
submitted by the Position argument.

Examples

· altova:char("2014-01-15", 5) returns -

· altova:char("USA", 1) returns U

· altova:char("USA", 10) returns the empty string.

· altova:char("USA", -2) returns the empty string.

create-hash-from-string[altova:]

altova:create-hash-from-string(InputString as xs:string) as xs:string XP2 XQ1 XP3.1
XQ3.1

altova:create-hash-from-string(InputString as xs:string, HashAlgo as xs:string) as

xs:string XP2 XQ1 XP3.1 XQ3.1

Generates a hash string from InputString by using the hashing algorithm specified by the HashAlgo
argument. The following hashing algorithms may be specified (in upper or lower case): MD5, SHA-1, SHA-

224, SHA-256, SHA-384, SHA-512. If the second argument is not specified (see the first signature above),

then the SHA-256 hashing algorithm is used.

Examples

· altova:create-hash-from-string('abc') returns a hash string generated by using the SHA-256

hashing algorithm.
· altova:create-hash-from-string('abc', 'md5') returns a hash string generated by using the

MD5 hashing algorithm.

· altova:create-hash-from-string('abc', 'MD5') returns a hash string generated by using the

MD5 hashing algorithm.

first-chars [altova:]

altova:first-chars(X-Number as xs:integer) as xs:string XP3.1 XQ3.1

Returns a string containing the first X-Number of characters of the string obtained by converting the value
of the context item to xs:string.

Examples

If the context item is 1234ABCD:

· altova:first-chars(2) returns 12

· altova:first-chars(5) returns 1234A

· altova:first-chars(9) returns 1234ABCD

altova:first-chars(InputString as xs:string, X-Number as xs:integer) as xs:string XP3.1
XQ3.1

478 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Returns a string containing the first X-Number of characters of the string submitted as the InputString
argument.

Examples

· altova:first-chars("2014-01-15", 5) returns 2014-

· altova:first-chars("USA", 1) returns U

format-string [altova:]

altova:format-string(InputString as xs:string, FormatSequence as item()*) as xs:string

XP3.1 XQ3.1

The input string (first argument) contains positional parameters (%1, %2, etc). Each parameter is replaced
by the string item that is located at the corresponding position in the format sequence (submitted as the
second argument). So the first item in the format sequence replaces the positional parameter %1, the
second item replaces %2, and so on. The function returns this formatted string that contains the
replacements. If no string exists for a positional parameter, then the positional parameter itself is returned.
This happens when the index of a positional parameter is greater than the number of items in the format
sequence.

Examples

· altova:format-string('Hello %1, %2, %3', ('Jane','John','Joe')) returns "Hello

Jane, John, Joe"
· altova:format-string('Hello %1, %2, %3', ('Jane','John','Joe', 'Tom')) returns
"Hello Jane, John, Joe"

· altova:format-string('Hello %1, %2, %4', ('Jane','John','Joe', 'Tom')) returns
"Hello Jane, John, Tom"

· altova:format-string('Hello %1, %2, %4', ('Jane','John','Joe')) returns "Hello
Jane, John, %4"

last-chars [altova:]

altova:last-chars(X-Number as xs:integer) as xs:string XP3.1 XQ3.1

Returns a string containing the last X-Number of characters of the string obtained by converting the value
of the context item to xs:string.

Examples

If the context item is 1234ABCD:

· altova:last-chars(2) returns CD

· altova:last-chars(5) returns 4ABCD

· altova:last-chars(9) returns 1234ABCD

altova:last-chars(InputString as xs:string, X-Number as xs:integer) as xs:string XP3.1
XQ3.1

Returns a string containing the last X-Number of characters of the string submitted as the InputString
argument.

Examples

· altova:last-chars("2014-01-15", 5) returns 01-15

· altova:last-chars("USA", 10) returns USA

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 479Engine Information

Altova RaptorXML Server 2025

pad-string-left [altova:]

altova:pad-string-left(StringToPad as xs:string, StringLength as xs:integer,

PadCharacter as xs:string) as xs:string XP3.1 XQ3.1

The PadCharacter argument is a single character. It is padded to the left of the string to increase the
number of characters in StringToPad so that this number equals the integer value of the StringLength
argument. The StringLength argument can have any integer value (positive or negative), but padding will
occur only if the value of StringLength is greater than the number of characters in StringToPad. If
StringToPad. has more characters than the value of StringLength, then StringToPad is left unchanged.

Examples

· altova:pad-string-left('AP', 1, 'Z') returns 'AP'

· altova:pad-string-left('AP', 2, 'Z') returns 'AP'

· altova:pad-string-left('AP', 3, 'Z') returns 'ZAP'

· altova:pad-string-left('AP', 4, 'Z') returns 'ZZAP'

· altova:pad-string-left('AP', -3, 'Z') returns 'AP'

· altova:pad-string-left('AP', 3, 'YZ') returns a pad-character-too-long error

pad-string-right [altova:]

altova:pad-string-right(StringToPad as xs:string, StringLength as xs:integer,

PadCharacter as xs:string) as xs:string XP3.1 XQ3.1

The PadCharacter argument is a single character. It is padded to the right of the string to increase the
number of characters in StringToPad so that this number equals the integer value of the StringLength
argument. The StringLength argument can have any integer value (positive or negative), but padding will
occur only if the value of StringLength is greater than the number of characters in StringToPad. If
StringToPad has more characters than the value of StringLength, then StringToPad is left unchanged.

Examples

· altova:pad-string-right('AP', 1, 'Z') returns 'AP'

· altova:pad-string-right('AP', 2, 'Z') returns 'AP'

· altova:pad-string-right('AP', 3, 'Z') returns 'APZ'

· altova:pad-string-right('AP', 4, 'Z') returns 'APZZ'

· altova:pad-string-right('AP', -3, 'Z') returns 'AP'

· altova:pad-string-right('AP', 3, 'YZ') returns a pad-character-too-long error

repeat-string [altova:]

altova:repeat-string(InputString as xs:string, Repeats as xs:integer) as xs:string XP2

XQ1 XP3.1 XQ3.1

Generates a string that is composed of the first InputString argument repeated Repeats number of
times.

Examples

· altova:repeat-string("Altova #", 3) returns "Altova #Altova #Altova #"

substring-after-last [altova:]

altova:substring-after-last(MainString as xs:string, CheckString as xs:string) as

480 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

xs:string XP3.1 XQ3.1

If CheckString is found in MainString, then the substring that occurs after CheckString in MainString
is returned. If CheckString is not found in MainString, then the empty string is returned. If CheckString
is an empty string, then MainString is returned in its entirety. If there is more than one occurrence of
CheckString in MainString, then the substring after the last occurrence of CheckString is returned.

Examples

· altova:substring-after-last('ABCDEFGH', 'B') returns 'CDEFGH'

· altova:substring-after-last('ABCDEFGH', 'BC') returns 'DEFGH'

· altova:substring-after-last('ABCDEFGH', 'BD') returns ''

· altova:substring-after-last('ABCDEFGH', 'Z') returns ''

· altova:substring-after-last('ABCDEFGH', '') returns 'ABCDEFGH'

· altova:substring-after-last('ABCD-ABCD', 'B') returns 'CD'

· altova:substring-after-last('ABCD-ABCD-ABCD', 'BCD') returns ''

substring-before-last [altova:]

altova:substring-before-last(MainString as xs:string, CheckString as xs:string) as

xs:string XP3.1 XQ3.1

If CheckString is found in MainString, then the substring that occurs before CheckString in MainString
is returned. If CheckString is not found in MainString, or if CheckString is an empty string, then the
empty string is returned. If there is more than one occurrence of CheckString in MainString, then the
substring before the last occurrence of CheckString is returned.

Examples

· altova:substring-before-last('ABCDEFGH', 'B') returns 'A'

· altova:substring-before-last('ABCDEFGH', 'BC') returns 'A'

· altova:substring-before-last('ABCDEFGH', 'BD') returns ''

· altova:substring-before-last('ABCDEFGH', 'Z') returns ''

· altova:substring-before-last('ABCDEFGH', '') returns ''

· altova:substring-before-last('ABCD-ABCD', 'B') returns 'ABCD-A'

· altova:substring-before-last('ABCD-ABCD-ABCD', 'ABCD') returns 'ABCD-ABCD-'

substring-pos [altova:]

altova:substring-pos(StringToCheck as xs:string, StringToFind as xs:string) as

xs:integer XP3.1 XQ3.1

Returns the character position of the first occurrence of StringToFind in the string StringToCheck. The
character position is returned as an integer. The first character of StringToCheck has the position 1. If
StringToFind does not occur within StringToCheck, the integer 0 is returned. To check for the second or
a later occurrence of StringToCheck, use the next signature of this function.

Examples

· altova:substring-pos('Altova', 'to') returns 3

· altova:substring-pos('Altova', 'tov') returns 3

· altova:substring-pos('Altova', 'tv') returns 0

· altova:substring-pos('AltovaAltova', 'to') returns 3

altova:substring-pos(StringToCheck as xs:string, StringToFind as xs:string, Integer as

xs:integer) as xs:integer XP3.1 XQ3.1

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 481Engine Information

Altova RaptorXML Server 2025

Returns the character position of StringToFind in the string, StringToCheck. The search for
StringToFind starts from the character position given by the Integer argument; the character substring
before this position is not searched. The returned integer, however, is the position of the found string within
the entire string, StringToCheck. This signature is useful for finding the second or a later position of a
string that occurs multiple times with the StringToCheck. If StringToFind does not occur within
StringToCheck, the integer 0 is returned.

Examples

· altova:substring-pos('Altova', 'to', 1) returns 3

· altova:substring-pos('Altova', 'to', 3) returns 3

· altova:substring-pos('Altova', 'to', 4) returns 0

· altova:substring-pos('Altova-Altova', 'to', 0) returns 3

· altova:substring-pos('Altova-Altova', 'to', 4) returns 10

trim-string [altova:]

altova:trim-string(InputString as xs:string) as xs:string XP3.1 XQ3.1

This function takes an xs:string argument, removes any leading and trailing whitespace, and returns a
"trimmed" xs:string.

Examples

· altova:trim-string(" Hello World ") returns "Hello World"

· altova:trim-string("Hello World ") returns "Hello World"

· altova:trim-string(" Hello World") returns "Hello World"

· altova:trim-string("Hello World") returns "Hello World"

· altova:trim-string("Hello World") returns "Hello World"

trim-string-left [altova:]

altova:trim-string-left(InputString as xs:string) as xs:string XP3.1 XQ3.1

This function takes an xs:string argument, removes any leading whitespace, and returns a left-trimmed
xs:string.

Examples

· altova:trim-string-left(" Hello World ") returns "Hello World "

· altova:trim-string-left("Hello World ") returns "Hello World "

· altova:trim-string-left(" Hello World") returns "Hello World"

· altova:trim-string-left("Hello World") returns "Hello World"

· altova:trim-string-left("Hello World") returns "Hello World"

trim-string-right [altova:]

altova:trim-string-right(InputString as xs:string) as xs:string XP3.1 XQ3.1

This function takes an xs:string argument, removes any trailing whitespace, and returns a right-trimmed
xs:string.

Examples

· altova:trim-string-right(" Hello World ")) returns " Hello World"

· altova:trim-string-right("Hello World ")) returns "Hello World"

· altova:trim-string-right(" Hello World")) returns " Hello World"

482 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

· altova:trim-string-right("Hello World")) returns "Hello World"

· altova:trim-string-right("Hello World")) returns "Hello World"

10.2.1.9 XPath/XQuery Functions: Miscellaneous

The following general purpose XPath/XQuery extension functions are supported in the current version of
RaptorXML Server and can be used in (i) XPath expressions in an XSLT context, or (ii) XQuery expressions in
an XQuery document.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

decode-string [altova:]

altova:decode-string(Input as xs:base64Binary) as xs:string XP3.1 XQ3.1

altova:decode-string(Input as xs:base64Binary, Encoding as xs:string) as xs:string XP3.1

 XQ3.1

Decodes the submitted base64Binary input to a string using the specified encoding. If no encoding is
specified, then the UTF-8 encoding is used. The following encodings are supported: US-ASCII, ISO-
8859-1, UTF-16, UTF-16LE, UTF-16BE, ISO-10646-UCS2, UTF-32, UTF-32LE, UTF-32BE, ISO-
10646-UCS4

Examples

· altova:decode-string($XML1/MailData/Meta/b64B) returns the base64Binary input as a UTF-8

encoded string
· altova:decode-string($XML1/MailData/Meta/b64B, "UTF-8") returns the base64Binary

input as a UTF-8-encoded string
· altova:decode-string($XML1/MailData/Meta/b64B, "ISO-8859-1") returns the

base64Binary input as an ISO-8859-1-encoded string

encode-string [altova:]

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 483Engine Information

Altova RaptorXML Server 2025

altova:encode-string(InputString as xs:string) as xs:base64Binaryinteger XP3.1 XQ3.1

altova:encode-string(InputString as xs:string, Encoding as xs:string) as

xs:base64Binaryinteger XP3.1 XQ3.1

Encodes the submitted string using, if one is given, the specified encoding. If no encoding is given, then
the UTF-8 encoding is used. The encoded string is converted to base64Binary characters, and the
converted base64Binary value is returned. Initially, UTF-8 encoding is supported, and support will be
extended to the following encodings: US-ASCII, ISO-8859-1, UTF-16, UTF-16LE, UTF-16BE, ISO-
10646-UCS2, UTF-32, UTF-32LE, UTF-32BE, ISO-10646-UCS4

Examples

· altova:encode-string("Altova") returns the base64Binary equivalent of the UTF-8 encoded

string "Altova"
· altova:encode-string("Altova", "UTF-8") returns the base64Binary equivalent of the UTF-8

encoded string "Altova"

get-temp-folder [altova:]

altova:get-temp-folder() as xs:string XP2 XQ1 XP3.1 XQ3.1

This function takes no argument. It returns the path to the temporary folder of the current user.
Examples

· altova:get-temp-folder() would return, on a Windows machine, something like C:

\Users\<UserName>\AppData\Local\Temp\ as an xs:string.

generate-guid [altova:]

altova:generate-guid() as xs:string XP2 XQ1 XP3.1 XQ3.1

Generates a unique string GUID string.
Examples

· altova:generate-guid() returns (for example) 85F971DA-17F3-4E4E-994E-99137873ACCD

high-res-timer [altova:]

altova:high-res-timer() as xs:double XP3.1 XQ3.1

Returns a system high-resolution timer value in seconds. A high-resolution timer, when present on a
system, enables high precision time measurements when these are required (for example, in animations
and for determining precise code-execution time). This function provides the resolution of the system's
high-res timer.

Examples

· altova:high-res-timer() returns something like '1.16766146154566E6'

parse-html [altova:]

altova:parse-html(HTMLText as xs:string) as node() XP3.1 XQ3.1

The HTMLText argument is a string that contains the text of an HTML document. The function creates an
HTML tree from the string. The submitted string may or may not contain the HTML element. In either case,
the root element of the tree is an element named HTML. It is best to make sure that the HTML code in the

484 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

submitted string is valid HTML.
Examples

· altova:parse-html("<html><head/><body><h1>Header</h1></body></html>") creates an

HTML tree from the submitted string

sleep[altova:]

altova:sleep(Millisecs as xs:integer) as empty-sequence() XP2 XQ1 XP3.1 XQ3.1

Suspends execution of the current operation for the number of milliseconds given by the Millisecs
argument.

Examples

· altova:sleep(1000) suspends execution of the current operation for 1000 milliseconds.

[Top]

10.2.1.10 Chart Functions

The chart functions listed below enable you to create, generate, and save charts as images. They are
supported in the current version of your Altova product in the manner described below. However, note that in
future versions of your product, support for one or more of these functions might be discontinued or the behavior
of individual functions might change. Consult the documentation of future releases for information about support
for Altova extension functions in that release.

Note: Chart functions are supported only in Altova's Server products and the Enterprise Editions of Altova
products.

Note: Supported image formats for charts in server editions are jpg, png, and bmp. The best option is png
because it is lossless and compressed. In Enterprise editions, the supported formats are jpg. png, bmp, and
gif.

Functions for generating and saving charts
These functions take the chart object (obtained with the chart creation functions) and either generate an image
or save an image to file

altova:generate-chart-image ($chart, $width, $height, $encoding) as atomic

where

· $chart is the chart extension item obtained with the altova:create-chart function
· $width and $height must be specified with a length unit
· $encoding may be x-binarytobase64 or x-binarytobase16

The function returns the chart image in the specified encoding.

altova:generate-chart-image ($chart, $width, $height, $encoding, $imagetype) as atomic

482

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 485Engine Information

Altova RaptorXML Server 2025

where

· $chart is the chart extension item obtained with the altova:create-chart function
· $width and $height must be specified with a length unit
· $encoding may be x-binarytobase64 or x-binarytobase16
· $imagetype may be one of the following image formats: png, gif, bmp, jpg, jpeg. Note that gif is

not supported on server products. Also see note at top of page.

The function returns the chart image in the specified encoding and image format.

altova:save-chart-image ($chart, $filename, $width, $height) as empty() (Windows only)

where

· $chart is the chart extension item obtained with the altova:create-chart function
· $filename is the path to and name of the file to which the chart image is to be saved
· $width and $height must be specified with a length unit

The function saves the chart image to the file specified in $filename. Alternatively to this function, you
could also use the xsl:result-document function with encoding="x-base64tobinary", where the
image-data content is obtained via either the generate-chart-image() function or chart() function.

altova:save-chart-image ($chart, $filename, $width, $height, $imagetype) as empty()

(Windows only)

where

· $chart is the chart extension item obtained with the altova:create-chart function
· $filename is the path to and name of the file to which the chart image is to be saved
· $width and $height must be specified with a length unit
· $imagetype may be one of the following image formats: png, gif, bmp, jpg, jpeg. Note that gif is

not supported on server products. Also see note at top of page.

The function saves the chart image to the file specified in $filename in the image format specified.
Alternatively to this function, you could also use the xsl:result-document function with encoding="x-
base64tobinary", where the image-data content is obtained via either the generate-chart-image()
function or chart() function.

Functions for creating charts
The following functions are used to create charts.

altova:create-chart($chart-config, $chart-data-series*) as chart extension item

where

· $chart-config is the chart-config extension item obtained with the altova:create-chart-config
function or via the altova:create-chart-config-from-xml function

486 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

· $chart-data-series is the chart-data-series extension item obtained with the altova:create-
chart-data-series function or altova:create-chart-data-series-from-rows function

The function returns a chart extension item, which is created from the data supplied via the arguments.

altova:chart($chart-config, $chart-data-series*) as chart extension item

where

· $chart-config is the chart-config extension item. It is an unordered series of four key: value pairs,
where the four keys are "width", "height", "title", and "kind". The values of width and height
are integers and specify the width and height of the chart in pixels. The value of kind is one of: Pie,
Pie3d, BarChart, BarChart3d, BarChart3dGrouped, LineChart, ValueLineChart,

RoundGauge, BarGauge.
· $chart-data-series is each an array of size 3, where each array defines a chart-data-series. Each

array is composed of: (i) the name of the data series, (ii) the X-Axis values, (iii) the Y-Axis values.
Multiple data series may be submitted; in the example below, for example, the two arrays
respectively give data for monthly minimum and maximum temperatures.

The function returns an xs:base64Binary type item that contains the chart image. This image is created
from the data supplied via the arguments of the function. Note that, since this function uses arrays and
maps, it can be used only in XPath 3.1, XQuery 3.1, or XSLT 3.0.

Example: altova:chart(map{'width':800, 'height':600, "kind":"LineChart", "title":"Monthly
Temperatures"}, (['Min', $temps/Month, $temps/Month/@min], ['Max', $temps/Month,
$temps/Month/@max]))

altova:create-chart-config($type-name, $title) as chart-config extension item

where

· $type-name specifies the type of chart to be created: Pie, Pie3d, BarChart, BarChart3d,
BarChart3dGrouped, LineChart, ValueLineChart, RoundGauge, BarGauge

· $title is the name of the chart

The function returns a chart-config extension item containing the configuration information of the chart.

altova:create-chart-config-from-xml($xml-struct) as chart-config extension item

where

· $xml-struct is the XML structure containing the configuration information of the chart

The function returns a chart-config extension item containing the configuration information of the chart. This
information is supplied in an XML data fragment .

altova:create-chart-data-series($series-name?, $x-values*, $y-values*) as chart-data-series

extension item

where

488

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 487Engine Information

Altova RaptorXML Server 2025

· $series-name specifies the name of the series
· $x-values gives the list of X-Axis values
· $y-values gives the list of Y-Axis values

The function returns a chart-data-series extension item containing the data for building the chart: that is,
the names of the series and the Axes data.

altova:create-chart-data-row(x, y1, y2, y3, ...) as chart-data-x-Ny-row extension item

where

· x is the value of the X-Axis column of the chart data row
· yN are the values of the Y-Axis columns

The function returns a chart-data-x-Ny-row extension item, which contains the data for the X-Axis column
and Y-Axis columns of a single series.

altova:create-chart-data-series-from-rows($series-names as xs:string*, $row*) as chart-

data-series extension item

where

· $series-name is the name of the series to be created
· $row is the chart-data-x-Ny-row extension item that is to be created as a series

The function returns a chart-data-series extension item, which contains the data for the X-Axis and Y-Axes
of the series.

altova:create-chart-layer($chart-config, $chart-data-series*) as chart-layer extension item

where

· $chart-config is the chart-config extension item obtained with the altova:create-chart-config
function or via the altova:create-chart-config-from-xml function

· $chart-data-series is the chart-data-series extension item obtained with the altova:create-
chart-data-series function or altova:create-chart-data-series-from-rows function

The function returns a chart-layer extension item, which contains chart-layer data.

altova:create-multi-layer-chart($chart-config, $chart-data-series*, $chart-layer*)

where

· $chart-config is the chart-config extension item obtained with the altova:create-chart-config
function or or via the altova:create-chart-config-from-xml function

· $chart-data-series is the chart-data-series extension item obtained with the altova:create-
chart-data-series function or altova:create-chart-data-series-from-rows function

· $chart-layer is the chart-layer extension item obtained with the altova:create-chart-layer
function

488 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

The function returns a multi-layer-chart item.

altova:create-multi-layer-chart($chart-config, $chart-data-series*, $chart-layer*,

xs:boolean $mergecategoryvalues)

where

· $chart-config is the chart-config extension item obtained with the altova:create-chart-config
function or or via the altova:create-chart-config-from-xml function

· $chart-data-series is the chart-data-series extension item obtained with the altova:create-
chart-data-series function or altova:create-chart-data-series-from-rows function

· $chart-layer is the chart-layer extension item obtained with the altova:create-chart-layer
function

· $mergecategoryvalues merges the values of multiple data series if true, does not merge if false

The function returns a multi-layer-chart item.

10.2.1.10.1 Chart Data XML Structure

Given below is the XML structure of chart data, how it might appear for the Altova extension functions for
charts . This affects the appearance of the specific chart. Not all elements are used for all chart kinds, e.g.
the <Pie> element is ignored for bar charts.

Note: Chart functions are supported only in the Enterprise and Server Editions of Altova products.

<chart-config>

<General

SettingsVersion="1" must be provided
ChartKind="BarChart" Pie, Pie3d, BarChart, StackedBarChart, BarChart3d, BarChart3dGrouped,

LineChart, ValueLineChart, AreaChart, StackedAreaChart, RoundGauge, BarGauge, CandleStick
BKColor="#ffffff" Color
BKColorGradientEnd="#ffffff" Color. In case of a gradient, BKColor and BKColorGradientEnd

define the gradient's colors
BKMode="#ffffff" Solid, HorzGradient, VertGradient
BKFile="Path+Filename" String. If file exists, its content is drawn over the background.
BKFileMode="Stretch" Stretch, ZoomToFit, Center, Tile
ShowBorder="1" Bool
PlotBorderColor="#000000" Color
PlotBKColor="#ffffff" Color
Title="" String
ShowLegend="1" Bool
OutsideMargin="3.%" PercentOrPixel
TitleToPlotMargin="3.%" PercentOrPixel
LegendToPlotMargin="3.%" PercentOrPixel
Orientation="vert" Enumeration: possible values are: vert, horz
>

<TitleFont

Color="#000000" Color

484

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 489Engine Information

Altova RaptorXML Server 2025

Name="Tahoma" String
Bold="1" Bool
Italic="0" Bool
Underline="0" Bool
MinFontHeight="10.pt" FontSize (only pt values)
Size="8.%" FontSize />

<LegendFont
Color="#000000"
Name="Tahoma"
Bold="0"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="3.5%" />

<AxisLabelFont
Color="#000000"
Name="Tahoma"
Bold="1"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="5.%" />

</General>

<Line

ConnectionShapeSize="1.%" PercentOrPixel
DrawFilledConnectionShapes="1" Bool
DrawOutlineConnectionShapes="0" Bool
DrawSlashConnectionShapes="0" Bool
DrawBackslashConnectionShapes="0" Bool
/>

<Bar

ShowShadow="1" Bool
ShadowColor="#a0a0a0" Color
OutlineColor="#000000" Color
ShowOutline="1" Bool
/>

<Area

Transparency="0" UINT (0-255) 255 is fully transparent, 0 is opaque
OutlineColor="#000000" Color
ShowOutline="1" Bool
/>

<CandleStick

FillHighClose="0" Bool. If 0, the body is left empty. If 1, FillColorHighClose is used for the candle
body

FillColorHighClose="#ffffff" Color. For the candle body when close > open
FillHighOpenWithSeriesColor="1" Bool. If true, the series color is used to fill the candlebody when

open > close
FillColorHighOpen="#000000" Color. For the candle body when open > close and

FillHighOpenWithSeriesColor is false
/>

490 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

<Colors User-defined color scheme: By default this element is empty except for the style and has no

Color attributes
UseSubsequentColors ="1" Boolean. If 0, then color in overlay is used. If 1, then subsequent colors

from previous chart layer is used
Style="User" Possible values are: "Default", "Grayscale", "Colorful", "Pastel", "User"
Colors="#52aca0" Color: only added for user defined color set
Colors1="#d3c15d" Color: only added for user defined color set
Colors2="#8971d8" Color: only added for user defined color set
...

ColorsN="" Up to ten colors are allowed in a set: from Colors to Colors9
</Colors>

<Pie

ShowLabels="1" Bool
OutlineColor="#404040" Color
ShowOutline="1" Bool
StartAngle="0." Double
Clockwise="1" Bool
Draw2dHighlights="1" Bool
Transparency="0" Int (0 to 255: 0 is opaque, 255 is fully transparent)
DropShadowColor="#c0c0c0" Color
DropShadowSize="5.%" PercentOrPixel
PieHeight="10.%" PercentOrPixel. Pixel values might be different in the result because of 3d tilting
Tilt="40.0" Double (10 to 90: The 3d tilt in degrees of a 3d pie)
ShowDropShadow="1" Bool
ChartToLabelMargin="10.%" PercentOrPixel
AddValueToLabel="0" Bool
AddPercentToLabel="0" Bool
AddPercentToLabels_DecimalDigits="0" UINT (0 – 2)
>

<LabelFont
Color="#000000"
Name="Arial"
Bold="0"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="4.%" />

</Pie>

<XY>

<XAxis Axis
AutoRange="1" Bool
AutoRangeIncludesZero="1" Bool
RangeFrom="0." Double: manual range
RangeTill="1." Double : manual range
LabelToAxisMargin="3.%" PercentOrPixel
AxisLabel="" String
AxisColor="#000000" Color
AxisGridColor="#e6e6e6" Color
ShowGrid="1" Bool
UseAutoTick="1" Bool

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 491Engine Information

Altova RaptorXML Server 2025

ManualTickInterval="1." Double
AxisToChartMargin="0.px" PercentOrPixel
TickSize="3.px" PercentOrPixel
ShowTicks="1" Bool
ShowValues="1" Bool
AxisPosition="LeftOrBottom" Enums: "LeftOrBottom", "RightOrTop", "AtValue"
AxisPositionAtValue = "0" Double
>

<ValueFont
Color="#000000"
Name="Tahoma"
Bold="0"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="3.%" />

</XAxis>

<YAxis Axis (same as for XAxis)
AutoRange="1"
AutoRangeIncludesZero="1"
RangeFrom="0."
RangeTill="1."
LabelToAxisMargin="3.%"
AxisLabel=""
AxisColor="#000000"
AxisGridColor="#e6e6e6"
ShowGrid="1"
UseAutoTick="1"
ManualTickInterval="1."
AxisToChartMargin="0.px"
TickSize="3.px"

ShowTicks="1" Bool
ShowValues="1" Bool
AxisPosition="LeftOrBottom" Enums: "LeftOrBottom", "RightOrTop", "AtValue"
AxisPositionAtValue = "0" Double
>
<ValueFont

Color="#000000"
Name="Tahoma"
Bold="0"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="3.%"/>

</YAxis>
</XY>

<XY3d

AxisAutoSize="1" Bool: If false, XSize and YSize define the aspect ration of x and y axis. If true,
aspect ratio is equal to chart window

XSize="100.%" PercentOrPixel. Pixel values might be different in the result because of 3d tilting and
zooming to fit chart

YSize="100.%" PercentOrPixel. Pixel values might be different in the result because of 3d tilting and
zooming to fit chart

492 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

SeriesMargin="30.%" PercentOrPixel. Pixel values might be different in the result because of 3d
tilting and zooming to fit chart

Tilt="20." Double. -90 to +90 degrees
Rot="20." Double. -359 to +359 degrees
FoV="50."> Double. Field of view: 1-120 degree
>
<ZAxis

AutoRange="1"
AutoRangeIncludesZero="1"
RangeFrom="0."
RangeTill="1."
LabelToAxisMargin="3.%"
AxisLabel=""
AxisColor="#000000"
AxisGridColor="#e6e6e6"
ShowGrid="1"
UseAutoTick="1"
ManualTickInterval="1."
AxisToChartMargin="0.px"
TickSize="3.px" >
<ValueFont

Color="#000000"
Name="Tahoma"
Bold="0"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="3.%"/>

</ZAxis>
</XY3d>

<Gauge

MinVal="0." Double
MaxVal="100." Double
MinAngle="225" UINT: -359-359
SweepAngle="270" UINT: 1-359
BorderToTick="1.%" PercentOrPixel
MajorTickWidth="3.px" PercentOrPixel
MajorTickLength="4.%" PercentOrPixel
MinorTickWidth="1.px" PercentOrPixel
MinorTickLength="3.%" PercentOrPixel
BorderColor="#a0a0a0" Color
FillColor="#303535" Color
MajorTickColor="#a0c0b0" Color
MinorTickColor="#a0c0b0" Color
BorderWidth="2.%" PercentOrPixel
NeedleBaseWidth="1.5%" PercentOrPixel
NeedleBaseRadius="5.%" PercentOrPixel
NeedleColor="#f00000" Color
NeedleBaseColor="#141414" Color
TickToTickValueMargin="5.%" PercentOrPixel
MajorTickStep="10." Double
MinorTickStep="5." Double
RoundGaugeBorderToColorRange="0.%" PercentOrPixel

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 493Engine Information

Altova RaptorXML Server 2025

RoundGaugeColorRangeWidth ="6.%" PercentOrPixel
BarGaugeRadius="5.%" PercentOrPixel
BarGaugeMaxHeight="20.%" PercentOrPixel
RoundGaugeNeedleLength="45.%" PercentOrPixel
BarGaugeNeedleLength="3.%" PercentOrPixel
>

<TicksFont
Color="#a0c0b0"
Name="Tahoma"
Bold="0"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="4.%"

/>

<ColorRanges> User-defined color ranges. By default empty with no child element entries
<Entry

From="50. " Double
FillWithColor="1" Bool
Color="#00ff00" Color

/>
<Entry

From="50.0"
FillWithColor="1"
Color="#ff0000"

/>
...

</ColorRanges>
</Gauge>

</chart-config>

10.2.1.10.2 Example: Chart Functions

The example XSLT document below shows how Altova extension functions for charts can be used. Given
further below are an XML document and a screenshot of the output image generated when the XML document
is processed with the XSLT document using the XSLT 2.0 or 3.0 Engine.

Note: Chart functions are supported only in the Enterprise and Server Editions of Altova products.

Note: For more information about how chart data tables are created, see the documentation of Altova's
XMLSpy and StyleVision products.

XSLT document
This XSLT document (listing below) uses Altova chart extension functions to generate a pie chart. It can be
used to process the XML document listed further below.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

484

http://www.altova.com
http://www.altova.com

494 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

xmlns:altovaext="http://www.altova.com/xslt-extensions"

exclude-result-prefixes="#all">

<xsl:output version="4.0" method="html" indent="yes" encoding="UTF-8"/>

<xsl:template match="/">

<html>

<head>

<title>

<xsl:text>HTML Page with Embedded Chart</xsl:text>

</title>

</head>

<body>

<xsl:for-each select="/Data/Region[1]">

<xsl:variable name="extChartConfig" as="item()*">

<xsl:variable name="ext-chart-settings" as="item()*">

<chart-config>

<General

SettingsVersion="1"

ChartKind="Pie3d"

BKColor="#ffffff"

ShowBorder="1"

PlotBorderColor="#000000"

PlotBKColor="#ffffff"

Title="{@id}"

ShowLegend="1"

OutsideMargin="3.2%"

TitleToPlotMargin="3.%"

LegendToPlotMargin="6.%"

>

<TitleFont

Color="#023d7d"

Name="Tahoma"

Bold="1"

Italic="0"

Underline="0"

MinFontHeight="10.pt"

Size="8.%" />

</General>

</chart-config>

</xsl:variable>

<xsl:sequence select="altovaext:create-chart-config-from-xml($ext-
chart-settings)"/>

</xsl:variable>

<xsl:variable name="chartDataSeries" as="item()*">

<xsl:variable name="chartDataRows" as="item()*">

<xsl:for-each select="(Year)">

<xsl:sequence select="altovaext:create-chart-data-row((@id),
(.))"/>

</xsl:for-each>

</xsl:variable>

<xsl:variable name="chartDataSeriesNames" as="xs:string*"
select=" (("Series 1"), '')[1]"/>

<xsl:sequence

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 495Engine Information

Altova RaptorXML Server 2025

select="altovaext:create-chart-data-series-from-
rows($chartDataSeriesNames, $chartDataRows)"/>

</xsl:variable>

<xsl:variable name="ChartObj" select="altovaext:create-
chart($extChartConfig, ($chartDataSeries), false())"/>

<xsl:variable name="sChartFileName" select="'mychart1.png'"/>

<img src="{$sChartFileName, altovaext:save-chart-image($ChartObj,
$sChartFileName, 400, 400) }"/>

</xsl:for-each>

</body>

</html>

</xsl:template>
</xsl:stylesheet>

XML document
This XML document can be processed with the XSLT document above. Data in the XML document is used to
generate the pie chart shown in the screenshot below.

<?xml version="1.0" encoding="UTF-8"?>
<Data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="YearlySales.xsd">

<ChartType>Pie Chart 2D</ChartType>

<Region id="Americas">

<Year id="2005">30000</Year>

<Year id="2006">90000</Year>

<Year id="2007">120000</Year>

<Year id="2008">180000</Year>

<Year id="2009">140000</Year>

<Year id="2010">100000</Year>

</Region>

<Region id="Europe">

<Year id="2005">50000</Year>

<Year id="2006">60000</Year>

<Year id="2007">80000</Year>

<Year id="2008">100000</Year>

<Year id="2009">95000</Year>

<Year id="2010">80000</Year>

</Region>

<Region id="Asia">

<Year id="2005">10000</Year>

<Year id="2006">25000</Year>

<Year id="2007">70000</Year>

<Year id="2008">110000</Year>

<Year id="2009">125000</Year>

<Year id="2010">150000</Year>

</Region>
</Data>

496 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Output image
The pie chart show below is generated when the XML document listed above is processed with the XSLT
document.

10.2.1.11 Barcode Functions

The XSLT Engine uses third-party Java libraries to create barcodes. Given below are the classes and the public
methods used. The classes are packaged in AltovaBarcodeExtension.jar, which is located in the folder
<ProgramFilesFolder>\Altova\Common2025\jar.

The Java libraries used are in sub-folders of the folder <ProgramFilesFolder>\Altova\Common2025\jar:

· barcode4j\barcode4j.jar (Website: http://barcode4j.sourceforge.net/)
· zxing\core.jar (Website: http://code.google.com/p/zxing/)

The license files are also located in the respective folders.

http://barcode4j.sourceforge.net/
http://code.google.com/p/zxing/

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 497Engine Information

Altova RaptorXML Server 2025

Java virtual machine
In order to be able to use the barcode functions, a Java virtual machine must be available on your machine and
it must match the bit version of the Altova application (32-bit or 64-bit). The path to the machine is found as
noted below.

· If you are using an Altova desktop product, the Altova application attempts to detect the path to the
Java virtual machine automatically, by reading (in this order): (i) the Windows registry, and (ii) the
JAVA_HOME environment variable. You can also add a custom path in the Options dialog of the

application; this entry will take priority over any other Java VM path detected automatically.
· If you are running an Altova server product on a Windows machine, the path to the Java virtual machine

will be read first from the Windows registry; if this is not successful the JAVA_HOME environment

variable will be used.
· If you are running an Altova server product on a Linux or macOS machine, then make sure that the

JAVA_HOME environment variable is properly set and that the Java Virtual Machines library (on Windows,

the jvm.dll file) can be located in either the \bin\server or \bin\client directory.

XSLT example to generate barcode
Given below is an XSLT example showing how barcode functions are used in an XSLT stylesheet.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions"
 xmlns:altova="http://www.altova.com"
 xmlns:altovaext=”http://www.altova.com/xslt-extensions”
 xmlns:altovaext-barcode="java:com.altova.extensions.barcode.BarcodeWrapper"
 xmlns:altovaext-barcode-
property="java:com.altova.extensions.barcode.BarcodePropertyWrapper">
 <xsl:output method="html" encoding="UTF-8" indent="yes"/>
 <xsl:template match="/">
 <html>
 <head><title/></head>
 <body>

 </body>
 </html>
 <xsl:result-document
 href="barcode.png"
 method="text" encoding="base64tobinary" >
 <xsl:variable name="barcodeObject"
 select="altovaext-barcode:newInstance('Code39',string('some value'),
 96,0, (altovaext-barcode-property:new('setModuleWidth', 25.4 div 96 *
2)))"/>
 <xsl:value-of select="xs:base64Binary(xs:hexBinary(string(altovaext-
barcode:generateBarcodePngAsHexString($barcodeObject))))"/>
 </xsl:result-document>
 </xsl:template>
</xsl:stylesheet>

498 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

XQuery example to generate QR code
Given below is an XQuery example showing how barcode functions can be used to generate a QR code image.

declare variable $lines := unparsed-text-

lines('https://info.healthministry.gv.at/data/timeline-cases-provinces.csv', 'utf-8');

declare variable $main := map:merge(tokenize(head($lines), ';')!map{.:position()});

declare variable $data := map:merge(tail($lines)!array{tokenize(., ';')}!map{?($main?Name):

[?($main?Date), xs:integer(?($main?ConfirmedCasesProvinces)) - xs:integer(?($main?

Recovered))]}, map{'duplicates':'combine'});

declare variable $chart_img := altovaext:chart(map{'width': 1900, 'height': 600}, map:for-

each($data, function($k, $v){[$k, $v?1!substring-before(., 'T'), $v?2][$k != 'Austria']}));

(:$main, $data,:)

The com.altova.extensions.barcode package

The package, com.altova.extensions.barcode, is used to generate most of the barcode types.

The following classes are used:

public class BarcodeWrapper

static BarcodeWrapper newInstance(String name, String msg, int dpi, int orientation,
BarcodePropertyWrapper[] arrProperties)

double getHeightPlusQuiet()
double getWidthPlusQuiet()
org.w3c.dom.Document generateBarcodeSVG()
byte[] generateBarcodePNG()
String generateBarcodePngAsHexString()

public class BarcodePropertyWrapper Used to store the barcode properties that will be dynamically set

later
BarcodePropertyWrapper(String methodName, String propertyValue)
BarcodePropertyWrapper(String methodName, Integer propertyValue)
BarcodePropertyWrapper(String methodName, Double propertyValue)
BarcodePropertyWrapper(String methodName, Boolean propertyValue)
BarcodePropertyWrapper(String methodName, Character propertyValue)
String getMethodName()
Object getPropertyValue()

public class AltovaBarcodeClassResolver Registers the class

com.altova.extensions.barcode.proxy.zxing.QRCodeBean for the qrcode bean, additionally to the classes
registered by the org.krysalis.barcode4j.DefaultBarcodeClassResolver.

The com.altova.extensions.barcode.proxy.zxing package

The package, com.altova.extensions.barcode.proxy.zxing, is used to generate the QRCode barcode
type.

The following classes are used:

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 499Engine Information

Altova RaptorXML Server 2025

class QRCodeBean

· Extends org.krysalis.barcode4j.impl.AbstractBarcodeBean
· Creates an AbstractBarcodeBean interface for com.google.zxing.qrcode.encoder

void generateBarcode(CanvasProvider canvasImp, String msg)
void setQRErrorCorrectionLevel(QRCodeErrorCorrectionLevel level)
BarcodeDimension calcDimensions(String msg)
double getVerticalQuietZone()
double getBarWidth()

class QRCodeErrorCorrectionLevel Error correction level for the QRCode
static QRCodeErrorCorrectionLevel byName(String name)
“L” = ~7% correction
“M” = ~15% correction
“H” = ~25% correction
“Q” = ~30% correction

10.2.2 Miscellaneous Extension Functions

There are several ready-made functions in programming languages such as Java and C# that are not available
as XQuery/XPath functions or as XSLT functions. A good example would be the math functions available in
Java, such as sin() and cos(). If these functions were available to the designers of XSLT stylesheets and
XQuery queries, it would increase the application area of stylesheets and queries and greatly simplify the tasks
of stylesheet creators. The XSLT and XQuery engines used in a number of Altova products support the use of
extension functions in Java and .NET , as well as MSXSL scripts for XSLT . This section describes
how to use extension functions and MSXSL scripts in your XSLT stylesheets and XQuery documents. The
available extension functions are organized into the following sections:

· Java Extension Functions
· .NET Extension Functions
· MSXSL Scripts for XSLT

The two main issues considered in the descriptions are: (i) how functions in the respective libraries are called;
and (ii) what rules are followed for converting arguments in a function call to the required input format of the
function, and what rules are followed for the return conversion (function result to XSLT/XQuery data object).

Requirements
For extension functions support, a Java Runtime Environment (for access to Java functions) and .NET
Framework 2.0 (minimum, for access to .NET functions) must be installed on the machine running the XSLT
transformation or XQuery execution, or must be accessible for the transformations.

10.2.2.1 Java Extension Functions

A Java extension function can be used within an XPath or XQuery expression to invoke a Java constructor or
call a Java method (static or instance).

499 508 514

499

508

514

500 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

A field in a Java class is considered to be a method without any argument. A field can be static or instance.
How to access fields is described in the respective sub-sections, static and instance.

This section is organized into the following sub-sections:

· Java: Constructors
· Java: Static Methods and Static Fields
· Java: Instance Methods and Instance Fields
· Datatypes: XPath/XQuery to Java
· Datatypes: Java to XPath/XQuery

Note the following
· If you are using an Altova desktop product, the Altova application attempts to detect the path to the

Java virtual machine automatically, by reading (in this order): (i) the Windows registry, and (ii) the
JAVA_HOME environment variable. You can also add a custom path in the Options dialog of the

application; this entry will take priority over any other Java VM path detected automatically.
· If you are running an Altova server product on a Windows machine, the path to the Java virtual machine

will be read first from the Windows registry; if this is not successful the JAVA_HOME environment

variable will be used.
· If you are running an Altova server product on a Linux or macOS machine, then make sure that the

JAVA_HOME environment variable is properly set and that the Java Virtual Machines library (on Windows,

the jvm.dll file) can be located in either the \bin\server or \bin\client directory.

Form of the extension function
The extension function in the XPath/XQuery expression must have the form prefix:fname().

· The prefix: part identifies the extension function as a Java function. It does so by associating the
extension function with an in-scope namespace declaration, the URI of which must begin with java:
(see below for examples). The namespace declaration should identify a Java class, for example:
xmlns:myns="java:java.lang.Math". However, it could also simply be:
xmlns:myns="java" (without a colon), with the identification of the Java class being left to the fname()
part of the extension function.

· The fname() part identifies the Java method being called, and supplies the arguments for the method
(see below for examples). However, if the namespace URI identified by the prefix: part does not
identify a Java class (see preceding point), then the Java class should be identified in the fname() part,
before the class and separated from the class by a period (see the second XSLT example below).

Note: The class being called must be on the classpath of the machine.

XSLT example
Here are two examples of how a static method can be called. In the first example, the class name
(java.lang.Math) is included in the namespace URI and, therefore, must not be in the fname() part. In the
second example, the prefix: part supplies the prefix java: while the fname() part identifies the class as well
as the method.

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(3.14)" />

<xsl:value-of xmlns:jmath="java"
select="jmath:java.lang.Math.cos(3.14)" />

505

505

506

507

508

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 501Engine Information

Altova RaptorXML Server 2025

The method named in the extension function (cos() in the example above) must match the name of a public
static method in the named Java class (java.lang.Math in the example above).

XQuery example
Here is an XQuery example similar to the XSLT example above:

<cosine xmlns:jMath="java:java.lang.Math">

 {jMath:cos(3.14)}

</cosine>

User-defined Java classes
If you have created your own Java classes, methods in these classes are called differently according to: (i)
whether the classes are accessed via a JAR file or a class file, and (ii) whether these files (JAR or class) are
located in the current directory (the same directory as the XSLT or XQuery document) or not. How to locate
these files is described in the sections User-Defined Class Files and User-Defined Jar Files . Note that
paths to class files not in the current directory and to all JAR files must be specified.

10.2.2.1.1 User-Defined Class Files

If access is via a class file, then there are four possibilities:

· The class file is in a package. The XSLT or XQuery file is in the same folder as the Java package. (See
example below .)

· The class file is not packaged. The XSLT or XQuery file is in the same folder as the class file. (See
example below .)

· The class file is in a package. The XSLT or XQuery file is at some random location. (See example
below .)

· The class file is not packaged. The XSLT or XQuery file is at some random location. (See example
below .)

Consider the case where the class file is not packaged and is in the same folder as the XSLT or XQuery
document. In this case, since all classes in the folder are found, the file location does not need to be specified.
The syntax to identify a class is:

java:classname

where

java: indicates that a user-defined Java function is being called; (Java classes in the current directory
will be loaded by default)

classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a method call.

501 504

502

502

502

503

502 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Class file packaged, XSLT/XQuery file in same folder as Java package
The example below calls the getVehicleType()method of the Car class of the com.altova.extfunc package.
The com.altova.extfunc package is in the folder JavaProject. The XSLT file is also in the folder
JavaProject.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:com.altova.extfunc.Car" >

<xsl:output exclude-result-prefixes="fn car xsl fo xs"/>

<xsl:template match="/">
 <a>

 <xsl:value-of select="car:getVehicleType()"/>

</xsl:template>

</xsl:stylesheet>

Class file referenced, XSLT/XQuery file in same folder as class file
The example below calls the getVehicleType()method of the Car class. Let us say that: (i) the Car class file
is in the following folder: JavaProject/com/altova/extfunc, and (ii) that this folder is the current folder in the
example below. The XSLT file is also in the folder JavaProject/com/altova/extfunc.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:Car" >

<xsl:output exclude-result-prefixes="fn car xsl fo xs"/>

<xsl:template match="/">
 <a>

 <xsl:value-of select="car:getVehicleType()"/>

</xsl:template>

</xsl:stylesheet>

Class file packaged, XSLT/XQuery file at any location
The example below calls the getCarColor()method of the Car class of the com.altova.extfunc package.
The com.altova.extfunc package is in the folder JavaProject. The XSLT file is at any location. In this case,
the location of the package must be specified within the URI as a query string. The syntax is:

java:classname[?path=uri-of-package]

where

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 503Engine Information

Altova RaptorXML Server 2025

java: indicates that a user-defined Java function is being called
uri-of-package is the URI of the Java package
classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a method call. The
example below shows how to access a class file that is located in another directory than the current
directory.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:com.altova.extfunc.Car?path=file:///C:/JavaProject/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:new('red')" />

 <a><xsl:value-of select="car:getCarColor($myCar)"/>

</xsl:template>

</xsl:stylesheet>

Class file referenced, XSLT/XQuery file at any location
The example below calls the getCarColor()method of the Car class. Let us say that the Car class file is in
the folder C:/JavaProject/com/altova/extfunc, and the XSLT file is at any location. The location of the
class file must then be specified within the namespace URI as a query string. The syntax is:

java:classname[?path=<uri-of-classfile>]

where

java: indicates that a user-defined Java function is being called
uri-of-classfile is the URI of the folder containing the class file
classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a method call. The
example below shows how to access a class file that is located in another directory than the current
directory.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:Car?path=file:///C:/JavaProject/com/altova/extfunc/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:new('red')" />

 <a><xsl:value-of select="car:getCarColor($myCar)"/>

504 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

</xsl:template>

</xsl:stylesheet>

Note: When a path is supplied via the extension function, the path is added to the ClassLoader.

10.2.2.1.2 User-Defined Jar Files

If access is via a JAR file, the URI of the JAR file must be specified using the following syntax:

xmlns:classNS="java:classname?path=jar:uri-of-jarfile!/"

The method is then called by using the prefix of the namespace URI that identifies the class:
classNS:method()

In the above:

java: indicates that a Java function is being called
classname is the name of the user-defined class
? is the separator between the classname and the path
path=jar: indicates that a path to a JAR file is being given
uri-of-jarfile is the URI of the jar file
!/ is the end delimiter of the path
classNS:method() is the call to the method

Alternatively, the classname can be given with the method call. Here are two examples of the syntax:

xmlns:ns1="java:docx.layout.pages?path=jar:file:///c:/projects/docs/docx.jar!/"
ns1:main()

xmlns:ns2="java?path=jar:file:///c:/projects/docs/docx.jar!/"
ns2:docx.layout.pages.main()

Here is a complete XSLT example that uses a JAR file to call a Java extension function:

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java?path=jar:file:///C:/test/Car1.jar!/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:Car1.new('red')" />

 <a><xsl:value-of select="car:Car1.getCarColor($myCar)"/>

</xsl:template>

<xsl:template match="car"/>

</xsl:stylesheet>

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 505Engine Information

Altova RaptorXML Server 2025

Note: When a path is supplied via the extension function, the path is added to the ClassLoader.

10.2.2.1.3 Java: Constructors

An extension function can be used to call a Java constructor. All constructors are called with the pseudo-
function new().

If the result of a Java constructor call can be implicitly converted to XPath/XQuery datatypes , then the Java
extension function will return a sequence that is an XPath/XQuery datatype. If the result of a Java constructor
call cannot be converted to a suitable XPath/XQuery datatype, then the constructor creates a wrapped Java
object with a type that is the name of the class returning that Java object. For example, if a constructor for the
class java.util.Date is called (java.util.Date.new()), then an object having a type java.util.Date is
returned. The lexical format of the returned object may not match the lexical format of an XPath datatype and
the value would therefore need to be converted to the lexical format of the required XPath datatype and then to
the required XPath datatype.

There are two things that can be done with a Java object created by a constructor:

· It can be assigned to a variable:
<xsl:variable name="currentdate" select="date:new()"
xmlns:date="java:java.util.Date" />

· It can be passed to an extension function (see Instance Method and Instance Fields):
<xsl:value-of select="date:toString(date:new())" xmlns:date="java:java.util.Date" />

10.2.2.1.4 Java: Static Methods and Static Fields

A static method is called directly by its Java name and by supplying the arguments for the method. Static
fields (methods that take no arguments), such as the constant-value fields E and PI, are accessed without
specifying any argument.

XSLT examples
Here are some examples of how static methods and fields can be called:

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(3.14)" />

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(jMath:PI())" />

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:E() * jMath:cos(3.14)" />

Notice that the extension functions above have the form prefix:fname(). The prefix in all three cases is
jMath:, which is associated with the namespace URI java:java.lang.Math. (The namespace URI must
begin with java:. In the examples above it is extended to contain the class name (java.lang.Math).) The

508

506

506 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

fname() part of the extension functions must match the name of a public class (e.g. java.lang.Math) followed
by the name of a public static method with its argument/s (such as cos(3.14)) or a public static field (such as
PI()).

In the examples above, the class name has been included in the namespace URI. If it were not contained in the
namespace URI, then it would have to be included in the fname() part of the extension function. For example:

<xsl:value-of xmlns:java="java:"
select="java:java.lang.Math.cos(3.14)" />

XQuery example
A similar example in XQuery would be:

<cosine xmlns:jMath="java:java.lang.Math">

 {jMath:cos(3.14)}

</cosine>

10.2.2.1.5 Java: Instance Methods and Instance Fields

An instance method has a Java object passed to it as the first argument of the method call. Such a Java object
typically would be created by using an extension function (for example a constructor call) or a stylesheet
parameter/variable. An XSLT example of this kind would be:

<xsl:stylesheet version="1.0" exclude-result-prefixes="date"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:date="java:java.util.Date"
 xmlns:jlang="java:java.lang">
 <xsl:param name="CurrentDate" select="date:new()"/>

 <xsl:template match="/">
 <enrollment institution-id="Altova School"
 date="{date:toString($CurrentDate)}"

 type="{jlang:Object.toString(jlang:Object.getClass(date:new()))}">

 </enrollment>
 </xsl:template>
</xsl:stylesheet>

In the example above, the value of the node enrollment/@type is created as follows:

1. An object is created with a constructor for the class java.util.Date (with the date:new()
constructor).

2. This Java object is passed as the argument of the jlang.Object.getClass method.
3. The object obtained by the getClass method is passed as the argument to the

jlang.Object.toString method.

The result (the value of @type) will be a string having the value: java.util.Date.

An instance field is theoretically different from an instance method in that it is not a Java object per se that is
passed as an argument to the instance field. Instead, a parameter or variable is passed as the argument.
However, the parameter/variable may itself contain the value returned by a Java object. For example, the
parameter CurrentDate takes the value returned by a constructor for the class java.util.Date. This value is

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 507Engine Information

Altova RaptorXML Server 2025

then passed as an argument to the instance method date:toString in order to supply the value
of /enrollment/@date.

10.2.2.1.6 Datatypes: XPath/XQuery to Java

When a Java function is called from within an XPath/XQuery expression, the datatype of the function's
arguments is important in determining which of multiple Java classes having the same name is called.

In Java, the following rules are followed:

· If there is more than one Java method with the same name, but each has a different number of
arguments than the other/s, then the Java method that best matches the number of arguments in the
function call is selected.

· The XPath/XQuery string, number, and boolean datatypes (see list below) are implicitly converted to a
corresponding Java datatype. If the supplied XPath/XQuery type can be converted to more than one
Java type (for example, xs:integer), then that Java type is selected which is declared for the selected
method. For example, if the Java method being called is fx(decimal) and the supplied XPath/XQuery
datatype is xs:integer, then xs:integer will be converted to Java's decimal datatype.

The table below lists the implicit conversions of XPath/XQuery string, number, and boolean types to Java
datatypes.

xs:string java.lang.String

xs:boolean boolean (primitive), java.lang.Boolean

xs:integer int, long, short, byte, float, double, and the
wrapper classes of these, such as
java.lang.Integer

xs:float float (primitive), java.lang.Float, double
(primitive)

xs:double double (primitive), java.lang.Double

xs:decimal float (primitive), java.lang.Float,
double(primitive), java.lang.Double

Subtypes of the XML Schema datatypes listed above (and which are used in XPath and XQuery) will also be
converted to the Java type/s corresponding to that subtype's ancestor type.

In some cases, it might not be possible to select the correct Java method based on the supplied information.
For example, consider the following case.

· The supplied argument is an xs:untypedAtomic value of 10 and it is intended for the method
mymethod(float).

· However, there is another method in the class which takes an argument of another datatype:
mymethod(double).

· Since the method names are the same and the supplied type (xs:untypedAtomic) could be converted
correctly to either float or double, it is possible that xs:untypedAtomic is converted to double
instead of float.

508 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

· Consequently the method selected will not be the required method and might not produce the expected
result. To work around this, you can create a user-defined method with a different name and use this
method.

Types that are not covered in the list above (for example xs:date) will not be converted and will generate an
error. However, note that in some cases, it might be possible to create the required Java type by using a Java
constructor.

10.2.2.1.7 Datatypes: Java to XPath/XQuery

When a Java method returns a value, the datatype of the value is a string, numeric or boolean type, then it is
converted to the corresponding XPath/XQuery type. For example, Java's java.lang.Boolean and boolean
datatypes are converted to xsd:boolean.

One-dimensional arrays returned by functions are expanded to a sequence. Multi-dimensional arrays will not be
converted, and should therefore be wrapped.

When a wrapped Java object or a datatype other than string, numeric or boolean is returned, you can ensure
conversion to the required XPath/XQuery type by first using a Java method (e.g toString) to convert the Java
object to a string. In XPath/XQuery, the string can be modified to fit the lexical representation of the required
type and then converted to the required type (for example, by using the cast as expression).

10.2.2.2 .NET Extension Functions

If you are working on the .NET platform on a Windows machine, you can use extension functions written in any
of the .NET languages (for example, C#). A .NET extension function can be used within an XPath or XQuery
expression to invoke a constructor, property, or method (static or instance) within a .NET class.

A property of a .NET class is called using the syntax get_PropertyName().

This section is organized into the following sub-sections:

· .NET: Constructors
· .NET: Static Methods and Static Fields
· .NET: Instance Methods and Instance Fields
· Datatypes: XPath/XQuery to .NET
· Datatypes: .NET to XPath/XQuery

Form of the extension function
The extension function in the XPath/XQuery expression must have the form prefix:fname().

· The prefix: part is associated with a URI that identifies the .NET class being addressed.
· The fname() part identifies the constructor, property, or method (static or instance) within the .NET

class, and supplies any argument/s, if required.
· The URI must begin with clitype: (which identifies the function as being a .NET extension function).

510

511

512

513

514

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 509Engine Information

Altova RaptorXML Server 2025

· The prefix:fname() form of the extension function can be used with system classes and with
classes in a loaded assembly. However, if a class needs to be loaded, additional parameters
containing the required information will have to be supplied.

Parameters
To load an assembly, the following parameters are used:

asm The name of the assembly to be loaded.

ver The version number (maximum of four integers separated by periods).

sn The key token of the assembly's strong name (16 hex digits).

from A URI that gives the location of the assembly (DLL) to be loaded. If the
URI is relative, it is relative to the XSLT or XQuery document. If this
parameter is present, any other parameter is ignored.

partialname The partial name of the assembly. It is supplied to
Assembly.LoadWith.PartialName(), which will attempt to load the
assembly. If partialname is present, any other parameter is ignored.

loc The locale, for example, en-US. The default is neutral.

If the assembly is to be loaded from a DLL, use the from parameter and omit the sn parameter. If the
assembly is to be loaded from the Global Assembly Cache (GAC), use the sn parameter and omit the from
parameter.

A question mark must be inserted before the first parameter, and parameters must be separated by a semi-
colon. The parameter name gives its value with an equals sign (see example below).

Examples of namespace declarations
An example of a namespace declaration in XSLT that identifies the system class System.Environment:

xmlns:myns="clitype:System.Environment"

An example of a namespace declaration in XSLT that identifies the class to be loaded as
Trade.Forward.Scrip:

xmlns:myns="clitype:Trade.Forward.Scrip?asm=forward;version=10.6.2.1"

An example of a namespace declaration in XQuery that identifies the system class
MyManagedDLL.testClass:. Two cases are distinguished:

1. When the assembly is loaded from the GAC:
declare namespace cs="clitype:MyManagedDLL.testClass?asm=MyManagedDLL;

ver=1.2.3.4;loc=neutral;sn=b9f091b72dccfba8";

2. When the assembly is loaded from the DLL (complete and partial references below):
declare namespace cs="clitype:MyManagedDLL.testClass?from=file:///C:/Altova
Projects/extFunctions/MyManagedDLL.dll;

 declare namespace cs="clitype:MyManagedDLL.testClass?from=MyManagedDLL.dll;

510 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

XSLT example
Here is a complete XSLT example that calls functions in system class System.Math:

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions">
 <xsl:output method="xml" omit-xml-declaration="yes" />
 <xsl:template match="/">
 <math xmlns:math="clitype:System.Math">
 <sqrt><xsl:value-of select="math:Sqrt(9)"/></sqrt>
 <pi><xsl:value-of select="math:PI()"/></pi>
 <e><xsl:value-of select="math:E()"/></e>
 <pow><xsl:value-of select="math:Pow(math:PI(), math:E())"/></pow>
 </math>
 </xsl:template>
</xsl:stylesheet>

The namespace declaration on the element math associates the prefix math: with the URI
clitype:System.Math. The clitype: beginning of the URI indicates that what follows identifies either a
system class or a loaded class. The math: prefix in the XPath expressions associates the extension functions
with the URI (and, by extension, the class) System.Math. The extension functions identify methods in the class
System.Math and supply arguments where required.

XQuery example
Here is an XQuery example fragment similar to the XSLT example above:

<math xmlns:math="clitype:System.Math">

 {math:Sqrt(9)}

</math>

As with the XSLT example above, the namespace declaration identifies the .NET class, in this case a system
class. The XQuery expression identifies the method to be called and supplies the argument.

10.2.2.2.1 .NET: Constructors

An extension function can be used to call a .NET constructor. All constructors are called with the pseudo-
function new(). If there is more than one constructor for a class, then the constructor that most closely
matches the number of arguments supplied is selected. If no constructor is deemed to match the supplied
argument/s, then a 'No constructor found' error is returned.

Constructors that return XPath/XQuery datatypes
If the result of a .NET constructor call can be implicitly converted to XPath/XQuery datatypes , then the .NET
extension function will return a sequence that is an XPath/XQuery datatype.

508

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 511Engine Information

Altova RaptorXML Server 2025

Constructors that return .NET objects
If the result of a .NET constructor call cannot be converted to a suitable XPath/XQuery datatype, then the
constructor creates a wrapped .NET object with a type that is the name of the class returning that object. For
example, if a constructor for the class System.DateTime is called (with System.DateTime.new()), then an
object having a type System.DateTime is returned.

The lexical format of the returned object may not match the lexical format of a required XPath datatype. In such
cases, the returned value would need to be: (i) converted to the lexical format of the required XPath datatype;
and (ii) cast to the required XPath datatype.

There are three things that can be done with a .NET object created by a constructor:

· It can be used within a variable:
<xsl:variable name="currentdate" select="date:new(2008, 4, 29)"

xmlns:date="clitype:System.DateTime" />

· It can be passed to an extension function (see Instance Method and Instance Fields):
<xsl:value-of select="date:ToString(date:new(2008, 4, 29))"

xmlns:date="clitype:System.DateTime" />
· It can be converted to a string, number, or boolean:
· <xsl:value-of select="xs:integer(date:get_Month(date:new(2008, 4, 29)))"

xmlns:date="clitype:System.DateTime" />

10.2.2.2.2 .NET: Static Methods and Static Fields

A static method is called directly by its name and by supplying the arguments for the method. The name used
in the call must exactly match a public static method in the class specified. If the method name and the
number of arguments that were given in the function call matches more than one method in a class, then the
types of the supplied arguments are evaluated for the best match. If a match cannot be found unambiguously,
an error is reported.

Note: A field in a .NET class is considered to be a method without any argument. A property is called using
the syntax get_PropertyName().

Examples
An XSLT example showing a call to a method with one argument (System.Math.Sin(arg)):
<xsl:value-of select="math:Sin(30)" xmlns:math="clitype:System.Math"/>

An XSLT example showing a call to a field (considered a method with no argument)
(System.Double.MaxValue()):
<xsl:value-of select="double:MaxValue()" xmlns:double="clitype:System.Double"/>

An XSLT example showing a call to a property (syntax is get_PropertyName()) (System.String()):
<xsl:value-of select="string:get_Length('my string')"
xmlns:string="clitype:System.String"/>

506

512 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

An XQuery example showing a call to a method with one argument (System.Math.Sin(arg)):
<sin xmlns:math="clitype:System.Math">
 { math:Sin(30) }
</sin>

10.2.2.2.3 .NET: Instance Methods and Instance Fields

An instance method has a .NET object passed to it as the first argument of the method call. This .NET object
typically would be created by using an extension function (for example a constructor call) or a stylesheet
parameter/variable. An XSLT example of this kind would be:

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions">
 <xsl:output method="xml" omit-xml-declaration="yes"/>
 <xsl:template match="/">
 <xsl:variable name="releasedate"

 select="date:new(2008, 4, 29)"

 xmlns:date="clitype:System.DateTime"/>

 <doc>
 <date>
 <xsl:value-of select="date:ToString(date:new(2008, 4, 29))"

 xmlns:date="clitype:System.DateTime"/>

 </date>
 <date>
 <xsl:value-of select="date:ToString($releasedate)"

 xmlns:date="clitype:System.DateTime"/>

 </date>
 </doc>
 </xsl:template>
</xsl:stylesheet>

In the example above, a System.DateTime constructor (new(2008, 4, 29)) is used to create a .NET object of
type System.DateTime. This object is created twice, once as the value of the variable releasedate, a second
time as the first and only argument of the System.DateTime.ToString() method. The instance method
System.DateTime.ToString() is called twice, both times with the System.DateTime constructor (new(2008,
4, 29)) as its first and only argument. In one of these instances, the variable releasedate is used to get the
.NET object.

Instance methods and instance fields
The difference between an instance method and an instance field is theoretical. In an instance method, a .NET
object is directly passed as an argument; in an instance field, a parameter or variable is passed instead—
though the parameter or variable may itself contain a .NET object. For example, in the example above, the
variable releasedate contains a .NET object, and it is this variable that is passed as the argument of
ToString() in the second date element constructor. Therefore, the ToString() instance in the first date
element is an instance method while the second is considered to be an instance field. The result produced in
both instances, however, is the same.

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 513Engine Information

Altova RaptorXML Server 2025

10.2.2.2.4 Datatypes: XPath/XQuery to .NET

When a .NET extension function is used within an XPath/XQuery expression, the datatypes of the function's
arguments are important for determining which one of multiple .NET methods having the same name is called.

In .NET, the following rules are followed:

· If there is more than one method with the same name in a class, then the methods available for
selection are reduced to those that have the same number of arguments as the function call.

· The XPath/XQuery string, number, and boolean datatypes (see list below) are implicitly converted to a
corresponding .NET datatype. If the supplied XPath/XQuery type can be converted to more than one
.NET type (for example, xs:integer), then that .NET type is selected which is declared for the
selected method. For example, if the .NET method being called is fx(double) and the supplied
XPath/XQuery datatype is xs:integer, then xs:integer will be converted to .NET's double datatype.

The table below lists the implicit conversions of XPath/XQuery string, number, and boolean types to .NET
datatypes.

xs:string StringValue, string

xs:boolean BooleanValue, bool

xs:integer IntegerValue, decimal, long, integer,
short, byte, double, float

xs:float FloatValue, float, double

xs:double DoubleValue, double

xs:decimal DecimalValue, decimal, double, float

Subtypes of the XML Schema datatypes listed above (and which are used in XPath and XQuery) will also be
converted to the .NET type/s corresponding to that subtype's ancestor type.

In some cases, it might not be possible to select the correct .NET method based on the supplied information.
For example, consider the following case.

· The supplied argument is an xs:untypedAtomic value of 10 and it is intended for the method
mymethod(float).

· However, there is another method in the class which takes an argument of another datatype:
mymethod(double).

· Since the method names are the same and the supplied type (xs:untypedAtomic) could be converted
correctly to either float or double, it is possible that xs:untypedAtomic is converted to double
instead of float.

· Consequently the method selected will not be the required method and might not produce the expected
result. To work around this, you can create a user-defined method with a different name and use this
method.

514 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Types that are not covered in the list above (for example xs:date) will not be converted and will generate an
error.

10.2.2.2.5 Datatypes: .NET to XPath/XQuery

When a .NET method returns a value and the datatype of the value is a string, numeric or boolean type, then it
is converted to the corresponding XPath/XQuery type. For example, .NET's decimal datatype is converted to
xsd:decimal.

When a .NET object or a datatype other than string, numeric or boolean is returned, you can ensure conversion
to the required XPath/XQuery type by first using a .NET method (for example System.DateTime.ToString())
to convert the .NET object to a string. In XPath/XQuery, the string can be modified to fit the lexical
representation of the required type and then converted to the required type (for example, by using the cast as
expression).

10.2.2.3 MSXSL Scripts for XSLT

The <msxsl:script> element contains user-defined functions and variables that can be called from within
XPath expressions in the XSLT stylesheet. The <msxsl:script> is a top-level element, that is, it must be a
child element of <xsl:stylesheet> or <xsl:transform>.

The <msxsl:script> element must be in the namespace urn:schemas-microsoft-com:xslt (see example
below).

Scripting language and namespace
The scripting language used within the block is specified in the <msxsl:script> element's language attribute
and the namespace to be used for function calls from XPath expressions is identified with the implements-
prefix attribute (see below).

<msxsl:script language="scripting-language" implements-prefix="user-namespace-prefix">

 function-1 or variable-1
 ...
 function-n or variable-n

</msxsl:script>

The <msxsl:script> element interacts with the Windows Scripting Runtime, so only languages that are
installed on your machine may be used within the <msxsl:script> element. The .NET Framework 2.0
platform or higher must be installed for MSXSL scripts to be used. Consequently, the .NET scripting
languages can be used within the <msxsl:script> element.

The language attribute accepts the same values as the language attribute on the HTML <script> element. If
the language attribute is not specified, then Microsoft JScript is assumed as the default.

The implements-prefix attribute takes a value that is a prefix of a declared in-scope namespace. This
namespace typically will be a user namespace that has been reserved for a function library. All functions and

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 515Engine Information

Altova RaptorXML Server 2025

variables defined within the <msxsl:script> element will be in the namespace identified by the prefix specified
in the implements-prefix attribute. When a function is called from within an XPath expression, the fully
qualified function name must be in the same namespace as the function definition.

Example
Here is an example of a complete XSLT stylesheet that uses a function defined within a <msxsl:script>
element.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt"
 xmlns:user="http://mycompany.com/mynamespace">

 <msxsl:script language="VBScript" implements-prefix="user">

 <![CDATA[

 ' Input: A currency value: the wholesale price

 ' Returns: The retail price: the input value plus 20% margin,

 ' rounded to the nearest cent

 dim a as integer = 13

 Function AddMargin(WholesalePrice) as integer

 AddMargin = WholesalePrice * 1.2 + a

 End Function

]]>

 </msxsl:script>

 <xsl:template match="/">

 <html>

 <body>

 <p>

 Total Retail Price =

 $<xsl:value-of select="user:AddMargin(50)"/>

 Total Wholesale Price =

 $<xsl:value-of select="50"/>

 </p>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

Datatypes
The values of parameters passed into and out of the script block are limited to XPath datatypes. This restriction
does not apply to data passed among functions and variables within the script block.

516 Engine Information XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova RaptorXML Server 2025

Assemblies
An assembly can be imported into the script by using the msxsl:assembly element. The assembly is identified

via a name or a URI. The assembly is imported when the stylesheet is compiled. Here is a simple
representation of how the msxsl:assembly element is to be used.

<msxsl:script>
<msxsl:assembly name="myAssembly.assemblyName" />
<msxsl:assembly href="pathToAssembly" />

...

</msxsl:script>

The assembly name can be a full name, such as:

"system.Math, Version=3.1.4500.1 Culture=neutral PublicKeyToken=a46b3f648229c514"

or a short name, such as "myAssembly.Draw".

Namespaces
Namespaces can be declared with the msxsl:using element. This enables assembly classes to be written in

the script without their namespaces, thus saving you some tedious typing. Here is how the msxsl:using
element is used so as to declare namespaces.

<msxsl:script>
<msxsl:using namespace="myAssemblyNS.NamespaceName" />

...

</msxsl:script>

The value of the namespace attribute is the name of the namespace.

© 2019-2025 Altova GmbH

Index 517

Index

.

.NET extension functions,

constructors, 510

datatype conversions (.NET to XPath/XQuery), 514

datatype conversions (XPath/XQuery to .NET), 513

for XSLT and XQuery, 508

instance methods, instance fields, 512

static methods, static fields, 511

.NET Framework API, 376

.NET interface, 11

A
Altova extensions,

chart functions (see chart functions), 408

Altova ServiceController, 28

Assgning a license to RaptorXML Server on Linux, 36

Assgning a license to RaptorXML Server on macOS, 41

Assgning a license to RaptorXML Server on Windows,
31

C
C# example for REST API, 285

Catalog customization, 50

Catalog mechanism overview, 47

Catalogs, 47

Catalogs and envirnment variables, 52

Catalogs in RaptorXML, 48

Chart functions,

chart data structure for, 488

example, 493

listing, 484

Chrome,

limitations of Altova Help in, 9

Same-Origin Policy (SOP), 9

COM interface, 11

Comman line,

options, 230

Command line,

and XQuery, 92

usage summary, 56

CoreCatalog.xml, 48

CustomCatalog.xml, 48

D
Debugging Python scripts in Visual Studio code, 372

Debugging server-side Python scripts, 372

Deinstallation, 22

DTDs and catalogs, 47

E
Environment variables used in catalogs, 48

Environnment variables, 52

Extension functions for XSLT and XQuery,

Altova extensions, 408

Java extension functions, 499, 508

see under .NET extension functions, 508

see under Java extension functions, 499

Extension Functions in MSXSL scripts, 514

G
Global resources, 53

Google Chrome,

see Chrome, 9

H
Help command on CLI, 205

HTTP interface, 11, 247

client requests, 260

example project, 284

security issues, 55

server configuration, 251

server setup, 248

Index

© 2019-2025 Altova GmbH

518

I
Installation of RaptorXML Server, 21

Installation on Linux, 32

Installation on macOS, 38

Installing LicenseServer on Linux, 34

Installing LicenseServer on macOS, 40

Installing LicenseServer on Windows, 26

Installing on Windows, 22

Installing on Windows Server Core, 23

service properties, 26

SSL webserver properties, 25

webserver properties, 25

installing RaptorXMLServer Python module, 369

Interfaces,

overview of, 11

J
Java extension functions,

constructors, 505

datatype conversions, Java to Xpath/XQuery, 508

datatype conversions, XPath/XQuery to Java, 507

for XSLT and XQuery, 499

instance methods, instance fields, 506

static methods, static fields, 505

user-defined class files, 501

user-defined JAR files, 504

Java interface, 11

JSON config file,

for RaptorXMLServer Python module, 369

L
License commands on CLI, 210

License for RaptorXML Server,

assigning on Linux, 36

assigning on macOS, 41

assigning on Windows, 31

LicenseServer versions, 26, 34, 40

Licensing of RaptorXML Server, 21

Linux,

installation on, 32

Localization, 207

M
macOS,

installation on, 38

Migrating RaptorXML Server to a new machine, 44

msxsl:script, 514

N
Network connections, 27

P
pip command, 369

Python,

security issues, 55

Python API, 366

Python API FAQs, 374

Python interface, 11

Python library,

of RaptorXML Server, 369

Python module,

of RaptorXML Server, 369

Python scripts on RaptorXML Server, 372

R
RaptorXML,

command line interface, 11

editions and interfaces, 11

features, 16

HTTP interface, 11

interfaces with COM, Java, .NET, 11

introduction, 10

Python interface, 11

supported specifications, 18

system requirements, 15

RaptorXML Server,

© 2019-2025 Altova GmbH

Index 519

RaptorXML Server,

migrating to a new machine, 44

RaptorXML Server APIs, 365

Register RaptorXML Server with LicenseServer on
Linux, 35

Register RaptorXML Server with LicenseServer on
macOS, 41

Register RaptorXML Server with LicenseServer on
Windows, 30

REST API,

example project, 284

REST interface,

wrapper class, 284

RootCatalog.xml, 48, 369

S
Schema Manager,

CLI Help command, 389

CLI Info command, 390

CLI Initialize command, 390

CLI Install command, 391

CLI List command, 391

CLI overview, 389

CLI Reset command, 392

CLI Uninstall command, 393

CLI Update command, 394

CLI Upgrade command, 394

how to run, 381

installing a schema, 386

listing schemas by status in, 384

overview of, 377

patching a schema, 386

resetting, 388

status of schemas in, 384

uninstalling a achema, 388

upgrading a schema, 386

Schemas,

looking up via catalogs, 50

Schemas and catalogs, 47

screenshot viewing limitations in Altova Help,

see note about Chrome's SOP, 9

Security considerations, 45

Security issues, 55

Server configuration, 251

Service configuration, 27

Setup,

on Linux, 32

on macOS, 38

on Windows, 22

Setup of RaptorXML Server, 21

Start LicenseServer on Linux, 35

Start LicenseServer on macOS, 40

Start LicenseServer on Windows, 28

Start RaptorXML Server on Linux, 35

Start RaptorXML Server on macOS, 40

Start RaptorXML Server on Windows, 28

T
TOC expand/collapse,

see note about Chrome's SOP, 9

U
Uninstalling, 22

Upgrading RaptorXML Server on Windows, 43

V
Validation,

of DTD, 69

of XML instance with DTD, 58

of XML instance with XSD, 62

of XQuery document, 108

of XSD, 73

of XSLT document, 129

Visua Studio and Python scripts, 372

W
Well-formedness check, 80

Windows,

installation on, 22

upgrading RaptorXML Server on, 43

Wrapper class for REST interface, 284

Index

© 2019-2025 Altova GmbH

520

X
XML catalogs, 47

XQuery commands, 92

XQuery document validation, 108

XQuery execution, 92

XSLT commands, 121

XSLT document validation, 129

XSLT transformation, 121

	Altova RaptorXML Server 2025 User Manual
	Table of Contents
	Introduction
	About RaptorXML Server
	Editions and Interfaces
	System Requirements
	Features
	Supported Specifications
	Notable Changes

	Installation and Licensing
	Setup on Windows
	Install on Windows
	Install on Windows Server Core
	Webserver Properties
	SSL-Webserver Properties
	Service Properties

	Install LicenseServer (Windows)
	Network and Service Configuration (Windows)
	Start LicenseServer, RaptorXML Server (Windows)
	Register RaptorXML Server (Windows)
	Assign License (Windows)

	Setup on Linux
	Install on Linux
	Install LicenseServer (Linux)
	Start LicenseServer, RaptorXML Server (Linux)
	Register RaptorXML Server (Linux)
	Assign License (Linux)

	Setup on macOS
	Install on macOS
	Install LicenseServer (macOS)
	Start LicenseServer, RaptorXML Server (macOS)
	Register RaptorXML Server (macOS)
	Assign License (macOS)

	Upgrade RaptorXML Server
	Migrate RaptorXML Server to a New Machine
	Security Considerations

	General Procedures
	XML Catalogs
	How Catalogs Work
	Catalog Structure in RaptorXML Server
	Customizing your Catalogs
	Variables for Windows System Locations

	Global Resources
	Security Issues

	Command Line Interface (CLI)
	XML, DTD, XSD Validation Commands
	valxml-withdtd (xml)
	valxml-withxsd (xsi)
	valdtd (dtd)
	valxsd (xsd)

	Well-formedness Check Commands
	wfxml
	wfdtd
	wfany

	XQuery Commands
	xquery
	xqueryupdate
	valxquery
	valxqueryupdate

	XSLT Commands
	xslt
	valxslt

	JSON/Avro/YAML Commands
	avroextractschema
	json2xml
	jsonschema2xsd
	valavro (avro)
	valavrojson (avrojson)
	valavroschema (avroschema)
	valjsonschema (jsonschema)
	valjson (json)
	valyaml (yaml)
	wfjson
	wfyaml
	xml2json
	xsd2jsonschema

	XML Signature Commands
	xmlsignature-sign
	xmlsignature-verify
	xmlsignature-update
	xmlsignature-remove

	General Commands
	valany
	script
	help

	Localization Commands
	exportresourcestrings
	setdeflang

	License Commands
	licenseserver
	assignlicense (Windows only)
	verifylicense (Windows only)

	Administration Commands
	install
	uninstall
	start
	setdeflang
	licenseserver
	accepteula (Linux only)
	assignlicense
	verifylicense
	createconfig
	exportresourcestrings
	debug
	help
	version

	Options
	Catalogs, Global Resources, ZIP Files
	Messages, Errors, Help, Timeout, Version
	Processing
	XML
	XSD
	XQuery
	XSLT
	JSON/Avro
	XML Signatures

	Server APIs: HTTP REST, COM/.NET, Java
	HTTP REST Client Interface
	Server Setup
	Starting the Server
	Testing the Connection
	Configuring the Server
	HTTPS Settings
	Setting Up SSL Encryption

	Client Requests
	Initiating Jobs with POST
	Example-1 (with Callouts): Validate XML
	Example-2: Use a Catalog to Find the Schema
	Example-3: Use ZIP Archives
	Test with CURL
	Example-6: XQuery Execution

	Server Response to POST Request
	Getting the Result Document
	Getting Error/Message/Output Documents
	Freeing Server Resources after Processing

	C# Example for REST API
	C# Wrapper for REST API
	Program Code for REST Requests

	COM/.NET API
	COM Interface
	COM Example: VBScript
	.NET Interface
	.NET Example: C#
	.NET Example: Visual Basic .NET

	Java API
	Overview of the Interface
	Example Java Project

	Server API Reference
	Interfaces/Classes
	IServer/RaptorXMLFactory
	Methods
	GetXMLDsig (for XML Signatures)
	GetXMLValidator
	GetXQuery
	GetXSLT

	Properties
	APIMajorVersion
	APIMinorVersion
	APIServicePackVersion
	ErrorFormat
	ErrorLimit
	GlobalCatalog
	GlobalResourceConfig
	GlobalResourcesFile
	Is64Bit
	MajorVersion
	MinorVersion
	ProductName
	ProductNameAndVersion
	ReportOptionalWarnings
	ServerName
	ServerPath
	ServerPort
	ServicePackVersion
	UserCatalog

	RaptorXMLException
	XMLDSig (for XML Signatures)
	Methods
	ExecuteRemove
	ExecuteSign
	ExecuteUpdate
	ExecuteVerify

	Properties
	AbsoluteReferenceUri
	AppendKeyInfo
	CertificateName
	CertificateStore
	DigestMethod
	HMACOutputLength
	HMACSecretKey
	InputXMLFileName
	LastErrorMessage
	SignatureMethod
	Transforms
	WriteDefaultAttributes

	XMLValidator
	Methods
	AddPythonScriptFile
	ClearPythonScriptFile
	ExtractAvroSchema
	IsValid
	IsWellFormed

	Properties
	AssessmentMode
	AvroSchemaFileName
	AvroSchemaFromText
	DTDFileName
	DTDFromText
	EnableNamespaces
	InputFileArray
	InputFileName
	InputFromText
	InputTextArray
	InputXMLFileName
	InputXMLFromText
	Json5
	JSONSchemaFileName
	JSONSchemaFromText
	LastErrorMessage
	ParallelAssessment
	PythonScriptFile
	SchemaFileArray
	SchemaFileName
	SchemaFromText
	SchemaImports
	SchemalocationHints
	SchemaMapping
	SchemaTextArray
	Streaming
	XincludeSupport
	XMLValidationMode
	XSDVersion

	XQuery
	Methods
	AddExternalVariable
	ClearExternalVariableList
	Execute
	ExecuteAndGetResultAsString
	ExecuteUpdate
	ExecuteUpdateAndGetResultAsString
	IsValid
	IsValidUpdate

	Properties
	AdditionalOutputs
	ChartExtensionsEnabled
	DotNetExtensionsEnabled
	EngineVersion
	IndentCharacters
	InputXMLFileName
	InputXMLFromText
	JavaBarcodeExtensionLocation
	JavaExtensionsEnabled
	KeepFormatting
	LastErrorMessage
	LoadXMLWithPSVI
	MainOutput
	OutputEncoding
	OutputIndent
	OutputMethod
	OutputOmitXMLDeclaraton
	UpdatedXMLWriteMode
	XincludeSupport
	XMLValidationErrorsAsWarnings
	XMLValidationMode
	XQueryFileName
	XQueryFromText
	XQueryUpdateVersion
	XSDVersion

	XSLT
	Methods
	AddExternalParameter
	ClearExternalParameterList
	Execute
	ExecuteAndGetResultAsString
	ExecuteAndGetResultAsStringWithBaseOutputURI
	IsValid

	Properties
	AdditionalOutputs
	ChartExtensionsEnabled
	DotNetExtensionsEnabled
	EngineVersion
	IndentCharacters
	InitialTemplateMode
	InputXMLFileName
	InputXMLFromText
	JavaBarcodeExtensionLocation
	JavaExtensionsEnabled
	LastErrorMessage
	LoadXMLWithPSVI
	MainOutput
	NamedTemplateEntryPoint
	SchemaImports
	SchemalocationHints
	SchemaMapping
	StreamingSerialization
	XincludeSupport
	XMLValidationErrorsAsWarnings
	XMLValidationMode
	XSDVersion
	XSLFileName
	XSLFromText

	Enumerations
	ENUMAssessmentMode
	ENUMErrorFormat
	ENUMLoadSchemalocation
	ENUMSchemaImports
	ENUMSchemaMapping
	ENUMValidationType
	ENUMWellformedCheckType
	ENUMXMLValidationMode
	ENUMXQueryUpdatedXML
	ENUMXQueryVersion
	ENUMXSDVersion
	ENUMXSLTVersion

	Engine APIs: Python and .NET
	Licensing
	Python API
	Python API Versions
	RaptorXML Server as a Python Package
	Debugging Server-Side Python Scripts
	Debugging Python Scripts in Visual Studio Code
	FAQs

	.NET Framework API

	Schema Manager
	Run Schema Manager
	Status Categories
	Patch or Install a Schema
	Uninstall a Schema, Reset
	Command Line Interface (CLI)
	help
	info
	initialize
	install
	list
	reset
	uninstall
	update
	upgrade

	Additional Information
	Exit Codes
	Schema Location Hints

	Engine Information
	XSLT and XQuery Engine Information
	XSLT 1.0
	XSLT 2.0
	XSLT 3.0
	XQuery 1.0
	XQuery 3.1

	XSLT and XPath/XQuery Functions
	Altova Extension Functions
	XSLT Functions
	XPath/XQuery Functions: Date and Time
	XPath/XQuery Functions: Geolocation
	XPath/XQuery Functions: Image-Related
	XPath/XQuery Functions: Numeric
	XPath/XQuery Functions: Schema
	XPath/XQuery Functions: Sequence
	XPath/XQuery Functions: String
	XPath/XQuery Functions: Miscellaneous
	Chart Functions
	Chart Data XML Structure
	Example: Chart Functions

	Barcode Functions

	Miscellaneous Extension Functions
	Java Extension Functions
	User-Defined Class Files
	User-Defined Jar Files
	Java: Constructors
	Java: Static Methods and Static Fields
	Java: Instance Methods and Instance Fields
	Datatypes: XPath/XQuery to Java
	Datatypes: Java to XPath/XQuery

	.NET Extension Functions
	.NET: Constructors
	.NET: Static Methods and Static Fields
	.NET: Instance Methods and Instance Fields
	Datatypes: XPath/XQuery to .NET
	Datatypes: .NET to XPath/XQuery

	MSXSL Scripts for XSLT

	Index

