
User and Reference Manual

All rights reserved. No parts of this work may be reproduced in any form or by any means
- graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems - without the written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered
trademarks of the respective owners. The publisher and the author make no claim to
these trademarks.

While every precaution has been taken in the preparation of this document, the publisher
and the author assume no responsibility for errors or omissions, or for damages resulting
from the use of information contained in this document or from the use of programs and
source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have
been caused directly or indirectly by this document.

Published: 2008

© 2008 Altova GmbH

UML®, OMG™, Object Management Group™, and Unified Modeling Language™ are
either registered trademarks or trademarks of Object Management Group, Inc. in the
United States and/or other countries.

Altova UModel 2008 User & Reference Manual

1Altova UModel 2008

Table of Contents

1 UModel 3

2 Introducing UModel 6

3 What's new in UModel 2008 Release 2 8

... 93.1 What's new in UModel 2008

4 UModel tutorial 12

... 144.1 Starting UModel

... 174.2 Use cases

... 244.3 Class Diagrams

... 304.3.1 Creating derived classes

... 354.4 Object Diagrams

... 404.5 Component Diagrams

... 454.6 Deployment Diagrams

... 494.7 Round-trip engineering (model - code - model)

... 554.8 Round-trip engineering (code - model - code)

5 UModel User Interface 62

... 635.1 Model Tree

... 675.2 Diagram Tree

... 695.3 Favorites

... 705.4 Properties

... 725.5 Styles

... 755.6 Hierarchy

... 785.7 Overview - Documentation

... 795.8 Layer

... 835.8.1 Layer Context menu

... 855.9 Messages

... 865.10 Diagram pane

Altova UModel 20082

... 905.10.1 Diagram properties

... 925.10.2 Cut, copy and paste in UModel Diagrams

... 955.11 Adding/Inserting model elements

... 975.12 Hyperlinking modeling elements

... 1015.13 Bank samples

6 UModel Command line interface 104

... 1076.1 File: New / Load / Save options

7 Projects and code engineering 110

... 1127.1 Minimalist UModel project - starting from scratch

... 1167.2 Importing source code into projects

... 1207.3 Importing Java, C# and VB binaries

... 1257.4 Synchronizing Model and source code

... 1277.4.1 Synchronization tips

... 1297.5 Forward engineering prerequisites

... 1317.6 Java code to/from UModel elements

... 1327.7 C# code to/from UModel elements

... 1337.8 XML Schema to/from UModel elements

... 1347.9 VB.NET code to/from UModel elements

... 1357.10 Including other UModel projects

... 1377.11 Merging UModel projects

... 1387.12 Sharing Packages and Diagrams

... 1417.13 UML templates

... 1437.13.1 Template signatures

... 1447.13.2 Template binding

... 1457.13.3 Template usage in operations and properties

... 1467.14 Project Settings

... 1477.15 Enhancing performance

8 Creating model relationships 150

... 1528.1 Associations, realizations and dependencies

... 1558.2 Showing model relationships

9 Stereotypes and Profiles 158

3Altova UModel 2008

... 1609.1 Adding Stereotypes and defining tagged values

... 1649.2 Stereotypes and enumerations

... 1669.3 User-defined stereotype styles

10 Generating UML documentation 170

11 UML Diagrams 176

... 17711.1 Behavioral Diagrams

... 17811.1.1 Activity Diagram

... 179Inserting Activity Diagram elements

... 181Creating branches and merges

... 183Activity Diagram elements

... 19211.1.2 State Machine Diagram

... 192Inserting state machine diagram elements

... 193Creating states, activities and transitions

... 197Composite states

... 200Diagram elements

... 20311.1.3 Use Case Diagram

... 20411.1.4 Communication Diagram

... 204Inserting Communication Diagam elements

... 20711.1.5 Interaction Overview Diagram

... 207Inserting Interaction Overview elements

... 21211.1.6 Sequence Diagram

... 212Inserting sequence diagram elements
... 213Lifeline
... 215Combined Fragment
... 217Interaction Use
... 218Gate
... 219State Invariant
... 219Messages

... 22411.1.7 Timing Diagram

... 224Inserting Timing Diagram elements

... 225Lifeline

... 227Tick Mark

... 228Event/Stimulus

... 228DurationConstraint

... 229TimeConstraint

... 229Message

... 23111.2 Structural Diagrams

... 23211.2.1 Class Diagram

Altova UModel 20084

... 24311.2.2 Composite Structure Diagram

... 243Inserting Composite Structure Diagram elements

... 24511.2.3 Component Diagram

... 24611.2.4 Deployment Diagram

... 24711.2.5 Object Diagram

... 24811.2.6 Package Diagram

... 249Inserting Package Diagram elements

... 25111.3 Additional Diagrams

... 25211.3.1 XML Schema Diagrams

... 253Importing XML Schema(s)

... 257Inserting XML Schema elements

... 262Creating and generating an XML Schema

... 26411.3.2 Business Process Modeling Notation

... 265Flow objects
... 268Expanded Sub Processes
... 269Collapsed Sub Processes

... 270Connecting objects

... 272Pools / Swimlanes

... 273Artifacts

12 XMI - XML Metadata Interchange 276

13 UModel plug-in for MS Visual Studio .NET 280

... 28113.1 Opening UModel files in MS Visual Studio .NET

... 28313.2 Differences between VS .NET and standalone versions

... 28613.3 Minimalist project in Visual Studio .NET

14 UModel plug-in for Eclipse 292

... 29314.1 Starting Eclipse and using UModel plugin

... 29514.2 UModel / Editor, View and Perspectives

... 29614.3 Creating a UModel project / file

... 29814.4 Importing / opening examples from Navigator

... 30114.5 Differences between Eclipse and standalone versions

... 30314.6 UModel code generation

15 UModel Diagram icons 306

... 30715.1 Activity Diagram

5Altova UModel 2008

... 30815.2 Class Diagram

... 30915.3 Communication diagram

... 31015.4 Composite Structure Diagram

... 31115.5 Component Diagram

... 31215.6 Deployment Diagram

... 31315.7 Interaction Overview diagram

... 31415.8 Object Diagram

... 31515.9 Package diagram

... 31615.10 Sequence Diagram

... 31715.11 State Machine Diagram

... 31815.12 Timing Diagram

... 31915.13 Use Case diagram

... 32015.14 XML Schema diagram

... 32115.15 Business Process Modeling Notation

16 UModel Reference 324

... 32516.1 File

... 32716.2 Edit

... 33016.3 Project

... 33816.4 Layout

... 33916.5 View

... 34016.6 Tools

... 34116.6.1 Customize...

... 341Commands

... 341Toolbars

... 342Tools

... 342Keyboard

... 343Menu

... 344Options

... 34516.6.2 Options

... 35016.7 Window

... 35116.8 Help

17 Code Generator 354

... 35517.1 The way to SPL (Spy Programming Language)

... 35617.1.1 Basic SPL structure

... 35717.1.2 Variables

Altova UModel 20086

... 36317.1.3 Operators

... 36417.1.4 Conditions

... 36517.1.5 foreach

... 36617.1.6 Subroutines

... 366Subroutine declaration

... 367Subroutine invocation

... 36817.2 Error Codes

18 Appendices 370

... 37118.1 License Information

... 37218.1.1 Electronic Software Distribution

... 37318.1.2 Software Activation and License Metering

... 37418.1.3 Intellectual Property Rights

... 37518.1.4 Altova End User License Agreement

Index

Chapter 1

UModel

© 2008 Altova GmbH

 3UModel

Altova UModel 2008

1 UModel

UModel® 2008 Enterprise Edition is an affordable UML modeling application with a rich visual
interface and superior usability features to help level the UML learning curve, and includes
many high-end functions to empower users with the most practical aspects of the UML 2.1.2
specification. UModel is a 32-bit Windows application that runs on Windows 2000 / 2003,
Windows XP and Windows Vista.

UModel® 2008 supports:

 all 13 UML 2.1.2 modeling diagrams
 Visual Studio .NET integration (Enterprise Edition only)
 Eclipse integration (Enterprise Edition only)
 XML Schema diagrams
 Business Process Modeling Notation (Enterprise Edition only)
 Multiple layers per UML diagram (Enterprise Edition only)
 import of Java, C# and Visual Basic binaries
 hyperlinking of diagrams and modeling elements
 syntax coloring in diagrams
 cascading styles
 unlimited Undo and Redo
 sophisticated Java, C# and Visual Basic code generation from models
 reverse engineering of existing Java, C#, and Visual Basic source code
 complete round-trip processing allowing code and model merging
 XMI version 2.1.1 for UML 2.0, 2.1, & 2.1.2 - model import and export
 generation of UModel project documentation

These capabilities allow developers, including those new to software modeling, to quickly
leverage UML to enhance productivity and maximize their results.

UML®, OMG™, Object Management Group™, and Unified Modeling Language™ are either

4 UModel

© 2008 Altova GmbHAltova UModel 2008

registered trademarks or trademarks of Object Management Group, Inc. in the United States
and/or other countries.

Chapter 2

Introducing UModel

6 Introducing UModel

© 2008 Altova GmbHAltova UModel 2008

2 Introducing UModel

The UML is a complete modeling language but does not discuss, or prescribe, the methodology
for the development, code generation and round-trip engineering processes. UModel has
therefore been designed to allow complete flexibility during the modeling process:

 UModel diagrams can be created in any order, and at any time; there is no need to
follow a prescribed sequence during modeling.

 Code, or model merging can be achieved at the project, package, or even class level.
UModel does not require that pseudo-code, or comments in the generated code be
present, in order to accomplish round-trip engineering.

 Code generation is customizable: the code-generation in UModel is based on SPL
templates and is, therefore, completely customizable. Customizations are automatically
recognized during code generation.

 Code generation and reverse-engineering currently support Java versions 1.4.x, 5.0
and 1.6, C# versions 1.2, 2.0 and 3.0, and Visual Basic versions 7.1, 8.0 and 9.0. A
single project can support Java, C#, or VB code simultaneously.

 Support for UML templates and generics.

 XML Metadata Interchange (XMI version 2.1.1) for UML 2.0 / 2.1.1 / 2.1.2

 When adding properties, or operations UModel provides in-place entry helpers to
choose types, protection levels, and all other manner of properties that are also
available in industrial-strength IDEs such as XMLSpy, Visual Studio .Net or Eclipse.

 Syntax-coloring in diagrams makes UML diagrams more attractive and intuitive.

 Modeling elements and their properties (font, colors, borders etc.) are completely
customizable in an hierarchical fashion at the project, node/line, element family and
element level.

 Customizable actors can be defined in use-case diagrams to depict terminals, or any
other symbols.

 Modeling elements can be searched for by name in the Diagram tab, Model Tree pane,
Messages and Documentation windows.

 Class, or object associations, dependencies, generalizations etc. can be
found/highlighted in model diagrams through the context menu.

 The unlimited levels of Undo/Redo track not only content changes, but also all style
changes made to any model element.

Please note:
This document does not attempt to describe, or explain, the Unified Modeling Language
(UML); it describes how to use the UModel modeling application, to model code and
achieve round-trip engineering results.

Chapter 3

What's new in UModel 2008 Release 2

8 What's new in UModel 2008 Release 2

© 2008 Altova GmbHAltova UModel 2008

3 What's new in UModel 2008 Release 2

The 2008 Release 2 version of UModel includes the following major and minor enhancements:

 Support for OMG Business Process Modeling Notation.

 Support for Visual Basic .NET 9.0 and C# 3.0 as well as Visual Studio .NET 2008, Java
1.6

 Multiple Layers per UModel diagram

 Merging of projects is now supported

 User-defined Stereotype styles and how to define them

 Enhanced Autocompletion capabilities

 Automatic generation of ComponentRealizations

 Importing multiple XML Schemas from a directory

 Automatic generation of namespace directories for generated code

 Support for ObjectNodes on Activity diagrams

 Ability to generate relative links for UML documentation

 UML conformant visibility icons in class diagrams

 Support for Collection Associations

© 2008 Altova GmbH

What's new in UModel 2008 9What's new in UModel 2008 Release 2

Altova UModel 2008

3.1 What's new in UModel 2008

The 2008 version of UModel includes the following major and minor enhancements:

 Visual Basic code generation from models, and reverse engineering of Visual Basic
code.

 Visual Studio .NET integration (Enterprise Edition only).

 Eclipse integration (Enterprise Edition only).

 Abilty to save all project diagrams as images in one go.

 Multiline lifeline titles in sequence, communication and timing diagrams.

 Support for event subelements in State Machine Diagrams: ReceiveSignalEvent,
SignalEvent, SendSignalEvent, ReceiveOperationEvent, SendOperationEvent and
ChangeEvent.

 New 'go to operation' option for call messages on Sequence and Communication
Diagrams.

 Signals can now have generalizations and own attributes.

 Enhanced tagged value support

 Ability to Find & Replace modeling elements.

Sequence diagrams:
 Automatic generation of (syntactically correct) replies when adding messages to

sequence diagrams.

 Static operation names are underlined in Sequence diagrams.

Ehanced "Override/Implement Operations" dialog.
 Operations from bound templates can be made visible and also be overridden

 Show which operations are abstract or undefined

Chapter 4

UModel tutorial

12 UModel tutorial

© 2008 Altova GmbHAltova UModel 2008

4 UModel tutorial

This tutorial describes, and follows, the general sequence used when creating a modeling
project in UModel.

The major portion of the tutorial deals with the forward-engineering process, i.e. using UModel
to create UML diagrams and generate code as the precursor to the round-trip engineering
sections that follow. The round-trip engineering sections, describe the process from both code
and model vantage points.

The tutorial describes the following UML diagrams, and how to manipulate the various modeling
elements within them. The following diagrams and follow-on tasks are discussed:

Forward engineering process:
 Use cases
 Class diagrams
 Object diagrams
 Component diagrams
 Deployment diagrams

Round-trip process (model - code - model)
 Code generation from UModel
 Add a new operation to the external code
 Merge the external code back into UModel.

Round-trip process (code - model - code)
 Import code produced by XMLSpy from a directory (or from a project file)
 Add a new class to the generated model in UModel
 Merge the updated project with the external code.

The examples used in the tutorial are available in the default installation path/folder
C:\Documents and Settings\User folder\My
Documents\Altova\UModel2008\UModelExamples\Tutorial..

If multiple users use the same PC, and a different user logs on, a message box opens and
prompts the new user if the installer should add the necessary files for that user. If yes, then the
example files for that user are placed in the ...\User folder\My Documents\Altova\
UModel2008\UModelExamples\Tutorial.

BankView-start.ump
is the UModel project file that constitutes the initial state of the tutorial sample. Several
model diagrams as well as classes, objects, and other model elements exist at this
stage. Working through the tutorial adds new packages, model diagrams and many
other elements that will acquaint you with the ease with which you can model
applications using UModel. Please note that the syntax check function reports errors
and warnings on this file, the tutorial shows you how to resolve these issues.

BankView-finish.ump
is the UModel project file that constitutes final state of the tutorial sample, if you have
worked through it step by step. This project file is the one used when generating code
and synchronizing it with UModel.

 The OrgChart.zip file supplied in the folder is used for the round-trip engineering
process. Please unzip it in the ...\UModelExamples folder before starting the section.

Additional example files for both Java and C# programming languages are also available in the

© 2008 Altova GmbH

 13UModel tutorial

Altova UModel 2008

same directory, i.e. Bank_Java.ump, Bank_CSharp.ump and Bank_MultiLanguage.ump.
These project files also contain Sequence diagrams which are described later in this
documentation.

A section describing how to start a project from scratch and generate code, is included in the
Projects and code engineering section.

14 UModel tutorial Starting UModel

© 2008 Altova GmbHAltova UModel 2008

4.1 Starting UModel

Having installed UModel on your computer:

1. Start UModel by double-clicking the UModel icon on your desktop, or use the Start | All
Programs menu to access the UModel program.
UModel is started with a default project "NewProject1" visible in the interface.

Note the major parts of the user interface: the three panes on the left hand side and the
empty diagram pane at right.

Two default packages are visible in the Model Tree tab, "Root" and "Component View".
These two packages cannot be deleted or renamed in a project.

To open the BankView-start project:
1. Select the menu option File | Open and navigate to the ...\UModelExamples folder of

UModel.
2. Open the BankView-start.ump project file.

The project file is now loaded into UModel. Several predefined packages are now
visible under the Root package.

© 2008 Altova GmbH

Starting UModel 15UModel tutorial

Altova UModel 2008

The Model Tree pane supplies you with various views of your modeling project:

 The Model Tree tab contains and displays all modeling elements of your UModel
project. Elements can be directly manipulated in this tab using the standard editing keys
as well as drag and drop.

 The Diagram Tree tab allows you quick access to the modeling diagrams of you project
wherever they may be in the project structure. Diagrams are grouped according to their
diagram type.

 The Favorites tab is a user-definable repository of modeling elements. Any type of
modeling element can be placed in this tab using the "Add to Favorites" command of
the context menu.

The Properties pane supplies you with two views of specific model properties:

 The Properties tab displays the properties of the currently selected element in the
Model Tree pane or in the Diagram tab. Element properties can defined or updated in
this tab.

 The Styles tab displays attributes of diagrams, or elements that are displayed in the
Diagram view. These style attributes fall into two general groups: Formatting and
display settings.

The Overview pane displays two tabs:

16 UModel tutorial Starting UModel

© 2008 Altova GmbHAltova UModel 2008

 The Overview tab, which displays an outline view of the currently active diagram

 The Documentation tab which allows you to document your classes on a per-class
basis.

Modeling element icon representation in the Model Tree

Package types:

 UML Package

 Java namespace root package

 C# namespace root package

 Visual Basic root package

 XML Schema root package

 Java, C#, VB code package (package declarations are created when code is generated)

Diagram types:

Activity diagram Object diagram

Class diagram Package diagram

Communication diagram Sequence diagram

Component diagram State Machine diagram

Composite Structure diagram Timing diagram

Deployment diagram Use Case diagram

Interaction Overview diagram XML Schema diagram

Business Process Modeling
Notation

Element types:

An element that is currently visible in the active diagram is displayed with a blue dot at its base.
In this case a class element.

 Class Instance/Object
 Class instance slot

 Class

 Property

 Operation

 Parameter

 Actor (visible in active use case diagram)

 Use Case

 Component

 Node

 Artifact

 Interface

 Relations (/package)
Constraints

© 2008 Altova GmbH

Use cases 17UModel tutorial

Altova UModel 2008

4.2 Use cases

The aim of this tutorial section is to:

 Add a new package to the project
 Add a new Use Case diagram to the project
 Add use case elements to the diagram, and define the dependencies amongst them
 Align and size elements in the diagram tab.

To add a new package to a project:
1. Right click the Root package in the Model Tree tab, and select New Element |

Package.
2. Enter the name of the new package e.g. Use Case View, and press Enter.

Please see Packages for more information on packages and their properties.

Adding a diagram to a package:
1. Right click the previously created Use Case View package.
2. Select New Diagram | UseCase Diagram.

A Use Case diagram has now been added to the package in the Model Tree view, and

18 UModel tutorial Use cases

© 2008 Altova GmbHAltova UModel 2008

a diagram tab has been created in the diagram pane. A default name has been
provided automatically.

3. Double click the supplied name, in the Model Tree tab, change it to "Overview Account
Balance", and press Enter to confirm.

Please see Diagrams for more information on diagrams and their properties.

Adding Use case elements to the Use Case diagram:
1. Right click in the newly created diagram and select New | Actor.

The actor element is inserted at the click position.

2. Click the Use Case icon in the icon bar and click in the diagram tab to insert the
element.
A UseCase1 element is inserted. Note that the element, and its name, are currently
selected, and that its properties are visible in the Properties tab.

3. Change the title to "get account balance", press Enter to confirm. Double click the title if
it is deselected.

Note that the use case is automatically resized to adjust to the text length.

© 2008 Altova GmbH

Use cases 19UModel tutorial

Altova UModel 2008

Model elements have various connection handles and other items used to manipulate
it.

Manipulating UModel elements: handles and compartments
1. Double click the Actor1 text, of the Actor element, change the name to "Standard User"

and press Enter to confirm.
2. Place the mouse cursor over the "handle" to the right of the actor.

A tooltip containing "Association" appears.

3. Click the handle, drag the Association line to the right, and drop it on the "get account
balance" use case.

An association has now been created between the actor and the use case. The
association properties are also visible in the Properties tab. The new association has
been added to Model Tree under the Relations item of the Use Case View package.

4. Click the use case and drag it to the right to reposition it.
The association properties are visible on the association object.

5. Click the use case to select it, then click the collapse icon on the left hand edge of the

20 UModel tutorial Use cases

© 2008 Altova GmbHAltova UModel 2008

use case ellipse.

The extension points compartment is now hidden.

Please note:

A blue dot next to an element icon , in the Model Tree tab, signifies
that the element is visible in the current diagram tab. Resizing the actor adjusts the text
field which can be multi line. A line break can be inserted into the text using
CTRL+Enter.

Finishing up the use case diagram:
Using the methods discussed above:

1. Click the Use Case icon in the icon bar and simultaneously hold down the CTRL
keyboard key.

2. Click at two different vertical positions in the diagram tab to add two more use cases,
then release the CTRL key.

3. Name the first use case "get account balance sum" and the second, "generate monthly
revenue report".

4. Click on the collapse icon of each use case to hide the extensions compartment.

5. Click the actor and use the association handle to create an association between

© 2008 Altova GmbH

Use cases 21UModel tutorial

Altova UModel 2008

Standard user and "get account balance sum".

To create an "Include" dependency between use cases (creating a subcase):
1. Click the Include handle of the "get account balance sum" use case, at the bottom of

the ellipse, and drop the dependency on "get account balance".

An "include" dependency is created, and the include stereotype is displayed on the
dotted arrow.

Inserting user-defined actors:
The actor in the "generate monthly revenue report" use case is not a person, but an automated
batch job run by a Bank computer.

1. Insert an actor into the diagram using the Actor icon in the icon bar.
2. Rename the actor to Bank.

3. Move the cursor over to the Properties tab, and click the browse icon next to the
"icon file name" entry.

4. Click the Browse icon to select the user-defined bitmap, Bank-PC.bmp.
5. Deselect the "Absolute Path" check box to make the path relative. Preview displays a

preview of the selected file in the dialog box.

22 UModel tutorial Use cases

© 2008 Altova GmbHAltova UModel 2008

6. Click OK to confirm the settings and insert the new actor.
7. Move the new Bank actor to the right of the lowest use case.

8. Click the Association icon in the icon bar and drag from the Bank actor to the
"generate monthly revenue report" use case.
This is an alternative method of creating an association.

Please note:
The background color used to make the bitmap transparent has the RGB values
82.82.82.

Aligning and adjusting the size of elements:
1. Create a selection marquee by dragging on the diagram background, making sure that

you encompass all three use cases starting from the top.
Note that the last use case to be marked, is shown in a dashed outline in the diagram,
as well as in the Overview window.

© 2008 Altova GmbH

Use cases 23UModel tutorial

Altova UModel 2008

All use cases are selected, with the lowest being the basis for the following
adjustments.

2. Click the Make same size icon in the title bar.

3. Click the Center Horizontally icon to line up all the ovals.
The use case elements are all centered and of the same size.

Please note:
You can also use the CTRL key to select multiple elements.

24 UModel tutorial Class Diagrams

© 2008 Altova GmbHAltova UModel 2008

4.3 Class Diagrams

The aim of this tutorial section is to:

 Add a new abstract class called Account, as well as attributes and operations
 Create a composite association from Bank to Account

To open a different diagram in UModel:
1. Click the Diagram Tree tab.
2. Expand the Class Diagrams package to see its contents.

All class diagrams contained in the project are displayed.

3. Double click the BankView Main diagram icon.
The Class diagram appears as a tab in the working area.

Please note:
You could of course, double click the Class diagram icon in the Model Tree tab below
the BankView package to achieve the same thing.

Two concrete classes with a composite association between them, are visible in the class
diagram.

© 2008 Altova GmbH

Class Diagrams 25UModel tutorial

Altova UModel 2008

To add a new class and define it as abstract:

1. Click the class icon in the icon bar, then click to the right of the Bank class to
insert it.

2. Change the Class1 name to e.g. "Account", press Enter to confirm, (double click the
name if it becomes deselected).

Note that the Properties tab displays the current class properties.
3. Click the "abstract" check box in the Properties pane to make the class abstract.
4. Click in the "code file name" text box, and enter Account.java to define the Java class.

The class title is now displayed in italic, which is the identifying characteristic of abstract
classes.

To add properties to a class:
1. Right click the Account class and select New | Property, or press the F7 key.

A default property "Property1" is inserted with stereotype identifiers << >>.

26 UModel tutorial Class Diagrams

© 2008 Altova GmbHAltova UModel 2008

2. Enter the Property name "balance", and then add a colon character ":".
A drop-down list containing all valid types is displayed.

3. Enter the "f" character through the keyboard, and press Enter to insert the return value
datatype "float".
Please note that drop-down lists are case sensitive!

4. Continue on the same line by appending "=0" to define the default value.
5. Press the F7 keyboard key to add a second property to the class.
6. Enter Id: and select String from the drop-down list.

To add operations to a class:
1. Right click the Account class and select New | Operation, or press the F8 key.
2. Enter Account() as the constructor.

Using the method described above:
3. Add two more operations namely getBalance:float and getId:String.

Using the autocomplete function while defining operations:
4. Create another operation, using F8, collectAccountInfo and enter the open

parenthesis character "(".
Entering the "i" character opens the drop-down list allowing you to select one of the
operation direction parameters: in, inout, or out.

5. Select "in" from the drop-down list, enter a "space" character, and continue editing on

© 2008 Altova GmbH

Class Diagrams 27UModel tutorial

Altova UModel 2008

the same line.
6 Enter "bankAPI" and then a colon.
7. Select IBankAPI from the drop-down list, add the close parenthesis character ")", and

enter a colon ":".

8. Press the "b" key to select the boolean datatype, then Enter to insert it.
9. Press Enter to end the definition.

Please note:

Clicking the visibility icon to the left of an operation , or property , opens a
drop-down list enabling you to change the visibility status. Note that these visibilty icons
can be changed to the UML conformant symbols.

Deleting class properties and operations from a Class Diagram:
1. Press F8 then Enter, to add a default operation "Operation1" in the Account class.
2. Click Operation1 and press the Del. key to delete it.

A delete prompt appears asking if you want to delete the element from the project. Click
Yes to delete Operation1 from the class as well as from the project.

Please note:
If you only want to delete the operation from the class in the diagram, but not from the
project, press the CTRL + Del. key.

Finding (deleting) class properties and options from the Model Tree:
Properties and options can also be deleted directly from the Model Tree. To do this safely, it is
important to first find the correct property. Assuming you have inserted "Operation1" in the

28 UModel tutorial Class Diagrams

© 2008 Altova GmbHAltova UModel 2008

Account class (press F8, then Enter to insert):

1. Right click Operation1 in the Account class.
2. Select the option "Select in Model Tree" or press F4.

The Operation1 item is now highlighted under Account in the Model Tree tab.

3. Press the Del key to delete the operation from the class and project!
Note that almost any modeling element can be found in the Model Tree when pressing
F4.

Please note:
It is also possible to navigate from the Properties pane to the Model Tree when viewing
an attributes properties, please see: the Properties in the User Interface section.

Creating an composition association between the Bank and Account classes:

1. Click the Composition icon in the title bar, then drag from the Bank class to the
Account class. The class is highlighted when the association can be made.
A new property (Property1:Account) is created in the Bank class, and an composite
association arrow joins the two classes.

2. Double click the new Property1 entry in the Bank class and change it to "accounts",
being sure not to delete the Account type definition (displayed in teal/green).

3. Press the End keyboard key to place the text cursor at the end of the line, and
4. Enter the open square bracket character "[" and select "*" from the dropdown list, to

define the multiplicity, and press Enter to confirm.

© 2008 Altova GmbH

Class Diagrams 29UModel tutorial

Altova UModel 2008

30 UModel tutorial Class Diagrams

© 2008 Altova GmbHAltova UModel 2008

4.3.1 Creating derived classes

The aim of this tutorial section is to:

 Add a new Class diagram called Account Hierarchy to the project
 Insert existing classes, and create a new Savings account class
 Create three derived classes of the abstract base class Account, using Generalizations

To create a new Class Diagram:
1. Right click the bankview package (under Design-phase | BankView | com | altova) in

the Model Tree tab, and select New Diagram | Class Diagram.
2. Double click the new ClassDiagram1 entry and rename it to "Account Hierarchy", and

press Enter to confirm.

The Account Hierarchy tab is now visible in the working area.

Inserting existing classes into a diagram:
1. Click the Account class in the bankview package (under com | altova | bankview),

and

2. Drag it into the Account Hierarchy tab.
3. Click the CheckingAccount class (of the same package) and drag it into the tab.
4. Place the class below and to the left of the Account class.
5. Use the same method to insert the CreditCardAccount class. Place it to the right of

the CheckingAccount class.

© 2008 Altova GmbH

Class Diagrams 31UModel tutorial

Altova UModel 2008

Adding a new class:
1. Right click the diagram background (to the right of CreditAccountClass) and select New

| Class.
A new class is automatically added to the correct package, i.e. bankview which contains
the current class diagram Account Hierarchy.

2. Double click the class name and change it to SavingsAccount.

3. Press the F7 key to add a new property.
4. Enter "interestRate", then a colon, and press "f" to select the float datatype from the

32 UModel tutorial Class Diagrams

© 2008 Altova GmbHAltova UModel 2008

dropdown list and press Enter twice to select and confirm the entry.
5. Press F8 and add the operation/constructor SavingsAccount().
6. Use the same method, F8, to add the operation getMinimumBalance:float.

7. Click in the "code file name" text box, in the Properties tab, and enter
SavingsAccount.java to define the Java code class.

Reusing/copying existing Properties/Operations:
Properties and operations can be directly copied, or moved, from one class to another. This can
be achieved using drag and drop, as well as the standard keyboard shortcuts:

 within a class in the diagram tab
 between different classes in the diagram tab
 in the Model Tree view
 between different UML diagrams, by dropping the copied data onto a different diagram

tab.
Please see "Cut, copy and paste in UModel Diagrams" for more information.

1. Expand the Account class in the Model Tree.
2. Right click the collectAccountInfo operation and select Copy.

© 2008 Altova GmbH

Class Diagrams 33UModel tutorial

Altova UModel 2008

3. Right click the SavingsAccount class in the Model Tree and select Paste.
The operation is copied into the SavingsAccount class, which is automatically expanded
to display the new operation.

The new operation is now also visible in the SavingsAccount class in the Class
Diagram.

Please note:
You can use the Copy/Paste keyboard shortcuts (CTRL C, or V), as well as drag and
drop in the Model Tree to achieve the same effect. You might have to disable the sort
options to drop the operation between specific items.

Creating derived classes - Generalization/Specialization:
At this point the class diagram contains the abstract class, Account, as well as three specific
Account classes. We now want to define, or create a generalization/specialization relationship
between Account and the specific classes i.e. to create three derived concrete classes.

1. Click the Generalization icon in the icon bar and hold down the CTRL key.
2. Drag from CreditCardAccount (the class in the middle) and drop on the Account class.
3. Drag from the CheckingAccount class and drop the arrowhead of the previously

created generalization.
4. Drag from the SavingsAccount class and drop the arrowhead of the previously created

34 UModel tutorial Class Diagrams

© 2008 Altova GmbHAltova UModel 2008

generalization: release the CTRL key at this point.
5. Generalization arrows are created between the three subclasses, and the Account

superclass.

© 2008 Altova GmbH

Object Diagrams 35UModel tutorial

Altova UModel 2008

4.4 Object Diagrams

The aim of this tutorial section is to:

 Show how class and object diagrams can be combined in one diagram, to give you a
snapshot of the objects at a given point of time

 Create Objects/Instances and define the relationships between them
 Format association/links
 Enter real-life data into objects/instances

To open the Object diagram:
1. Double click the Sample Accounts diagram icon under the bankview package (or

under Object Diagrams in the Diagram Tree tab).

The Bank class and two related objects/instances are displayed in the object diagram.

AltovaBank:Bank is the object/instance of the Bank class, while John's checking:
CheckingAccount is an instance of the class CheckingAccount.

Inserting a class into an Object diagram:

 Click the Account class icon in the Model Tree, and drag it into the "Sample
Accounts" tab.
The composite association defined previously, in BankView Main diagram, is
automatically created.

36 UModel tutorial Object Diagrams

© 2008 Altova GmbHAltova UModel 2008

To add a new object/instance by selecting its type:

1. Click the InstanceSpecification icon in the icon bar, then click under the John's
Checking object in the diagram tab.

2. Change the name of the instance to John's Credit, and press Enter.

While the instance is active, all its properties are visible in the Properties tab.
3. Click the classifier combo box and select the entry CreditCardAccount from the

drop-down list.

Note that right clicking an instance specification and selecting Show/Hide Node

© 2008 Altova GmbH

Object Diagrams 37UModel tutorial

Altova UModel 2008

content allows you show/hide object content.

To add a new object in the Model Tree view (then insert it into a diagram):
1. Right click the bankview package in the Model Tree tab, and select New element |

InstanceSpecification.
2. Change the default object name to John's Saving, and press Enter to confirm.

The new object is added to the package and sorted accordingly.

While the object is still selected in the Model Tree tab,
3. Click the classifier combo box, in the Properties tab, and select SavingsAccount.

4. Drag the John's Saving object/instance from the Model Tree tab, into the Sample
Accounts tab, placing it below John's credit.

Creating "links" between objects:
Links are the instances of class associations, and describe the relationships between
objects/instances at a fixed moment in time.

38 UModel tutorial Object Diagrams

© 2008 Altova GmbHAltova UModel 2008

1. Click the existing link (association) between the AltovaBank and John's Checking.
2. In the Properties tab, click the classifier combo box and select the entry Account -

Bank.
The link now changes to a composite association, in accordance with the class
definitions.

3. Click the InstanceSpecification icon in the icon bar, and position the cursor over
the John's Credit class.
The cursor now appears as a + sign.

4. Drag from John's Credit object to AltovaBank to create a link between the two.
5. Use the classifier combo box in the Properties tab to change the link type to Account -

Bank.
6. Use the method outlined above to create a link between John's Saving and

AltovaBank.

Please note:
Changes made to the association type in any class diagram, are now automatically

© 2008 Altova GmbH

Object Diagrams 39UModel tutorial

Altova UModel 2008

updated in the object diagram.

Formatting association/link lines in a diagram:
1. Click the lowest link in the diagram, if not active, and drag the corner connector to the

left.
This allows you to reposition the line both horizontally and vertically.

Use this method to reposition links in the diagram tab.

Entering sample data into objects:
The instance value of an Attribute/Property in an object is called a slot.

1. Click in the respective slots of each object and enter sample data.
2. E.g. in John's Checking object, double click in the balance slot and enter 11,975.00

as the balance.
3. Fill in the rest of the data to give yourself an idea of the current instance state.

40 UModel tutorial Component Diagrams

© 2008 Altova GmbHAltova UModel 2008

4.5 Component Diagrams

The aim of this tutorial section is to:

 Show how to insert classes into a component diagram
 Create realization dependencies between the classes and the BankView component
 Show how to change line properties
 Insert components into a component diagram, and create usage dependencies to an

interface

To open the component diagram:
1. Click the Diagram Tree tab, expand the Component Diagrams component and double

click the "BankView realization" diagram icon.
The "BankView realization" component diagram is displayed.

2. Switch back to the Model Tree tab by clicking that tab.

To insert (existing) classes into a component diagram:

1. Locate the SavingsAccount class under the bankview package.
2. Drag it into the component diagram.

The class is displayed with all its compartments.

© 2008 Altova GmbH

Component Diagrams 41UModel tutorial

Altova UModel 2008

3. Click both collapse icons to end up with the only the class name compartment.
4. Use the same method to insert the abstract class Account.

Please note:
The package containing the inserted class, is displayed in the name compartment in the
form "from bankview".

To create Realization dependencies between a class and component:

1. Click the Realization icon in the icon bar.
2. Drag from SavingsAccount, and drop the arrow on the BankView component.

42 UModel tutorial Component Diagrams

© 2008 Altova GmbHAltova UModel 2008

3. Click the ComponentRealization handle of the Account class (at the base), and drop it
on the BankView component.

Both of these methods can be used to create realization dependencies. There is
another method that allows you to create realization dependencies solely in the Model
Tree, please see Round-trip engineering (code - model - code) for more information.

Changing (Realization) line characteristics:
Clicking a dependency or any other type of line in a UModel diagram, activates the line drawing
icons in the Layout icon bar.

1. Click the realization line between SavingsAccount and BankView.

2. Click the line type icon Direct line in the Layout toolbar.

The line properties are immediately altered. Lines have small icons along them called
waypoints. Waypoints can be clicked and moved to alter line characteristics. Change
the line properties to suit your needs.

© 2008 Altova GmbH

Component Diagrams 43UModel tutorial

Altova UModel 2008

Inserting components and creating usage dependencies:
1. Double click the Overview diagram icon directly under the Design-phase package in

the Model Tree.
The Overview component diagram is opened and displays the currently defined system
dependencies between components and interfaces.

2. Click the BankView GUI component under the Component View | BankView package
in the Model Tree, and drag it into the Overview diagram tab.
The package containing the inserted component is displayed in the name compartment,
"from BankView".

3. Use the same method to insert the BankView component under the same package.

The BankView component is the component produced by the "forward-engineering"
process described in this tutorial.

To create a usage dependency between interfaces and components:

1. Click the Usage icon in the icon bar.
2. Drag from the BankView GUI component to the BankView component.
3. Click the Usage icon again, and drag from the BankView component to the IBankAPI

interface.

44 UModel tutorial Component Diagrams

© 2008 Altova GmbHAltova UModel 2008

The usage dependency (<<use>>) connects a client element to a supplier element. In
this case the IBankInterfaceAPI interface uses the services of components BankView
and BankView GUI.

© 2008 Altova GmbH

Deployment Diagrams 45UModel tutorial

Altova UModel 2008

4.6 Deployment Diagrams

The aim of this tutorial section is to:

 Show the artifact manifestation of components
 Add a new node and dependency to a Deployment diagram
 Add artifacts to a node and create relationships between them

To open the Deployment (Artifacts) diagram:
1. Click the Model Tree tab, expand the Deployment View diagram package, then double

click the Artifacts icon.

This diagram shows the manifestation of the Bank API client and the BankView
components, to their respective compiled Java .jar files.

To open the Deployment diagram:
1. Double click the Deployment icon under the Deployment View package.

The Deployment diagram is opened and displays the physical architecture of the
system, which currently only comprises of the Home PC node.

46 UModel tutorial Deployment Diagrams

© 2008 Altova GmbHAltova UModel 2008

To add a Node to a Deployment diagram:

1. Click the Node icon in the icon bar, and click right of the Home PC node to insert
it.

2. Rename the node to Bank, and drag on one of its edges to enlarge it.

To create a dependency between two nodes:

1. Click the dependency icon , then drag from the Home PC node to the Bank node.
This creates a dependency between the two nodes.

2. Click into the name field of the Properties tab, change it to TCP/IP, and press Enter to
confirm.
The dependency name appears above the dependency line.

© 2008 Altova GmbH

Deployment Diagrams 47UModel tutorial

Altova UModel 2008

Adding artifacts to a node and creating dependencies between them:
Expand the Deployment View package, in the Model Tree, to see its contents:

1. Click each of the BankAddresses.ini, BankAPI.jar and BankView.jar artifacts
individually, and place them on the diagram background (Deployment dependencies
are displayed for each artifact).

2. Click the BankView.jar artifact and drag it onto the Home PC node.
The node is highlighted when the drop action will be successful.

3. Use the same method to drag the other artifacts onto the Home PC node.
The artifacts are now part of the node and move with it when it is repositioned.

48 UModel tutorial Deployment Diagrams

© 2008 Altova GmbHAltova UModel 2008

4. Click the Dependency icon in the icon bar, and hold down the CTRL key.
5. Drag from the BankView.jar artifact to the BankAddresses.ini artifact; still holding

down the CTRL key.
6. Drag from the BankView.jar artifact to the BankAPI.jar artifact.

Please note:
Dragging an artifact out of a node onto the diagram background, automatically creates
a Deployment dependency.

To delete an artifact from a node and the project:

 Click the artifact you want to delete and press the Del keyboard key.

The artifact and any dependencies are deleted from the node as well as the project.

To remove an artifact from a node and its diagram:
1. Use drag and drop to place the artifact onto the diagram background.
2. Hold down the CTRL key and press Del.

The artifact and any dependencies are deleted from the current diagram and not from
the project.

© 2008 Altova GmbH

Round-trip engineering (model - code - model) 49UModel tutorial

Altova UModel 2008

4.7 Round-trip engineering (model - code - model)

The aim of this tutorial section is to:

 Perform a project syntax check
 Generate project code
 Add a new method external code i.e. to the SavingsAccount class
 Synchronize the UModel model new code with the model

Packages and Code / model synchronization:
Code can be merged/synchronized at different levels:

 Project, Root package level (menu item)
 Package level (multiple package selection / generation is possible)
 Class level (multiple class selection / generation is possible)
 Component level

The BankView realization diagram, depicts how the BankView component is realized by its six
constituent classes. This is the component that is produced when the forward-engineering
section of the tutorial is complete.

To be able to produce code:

 The component must be realized by one or more classes.
 The component must have a physical location, i.e. directory, assigned to it. The

generated code is then placed in this directory.
 Components must be individually set to be included in the code engineering process.
 A Java, C#, or VB namespace root package must be defined.

Please note:
The Java namespace root has been set on the Design-phase | BankView | com
package in the Model Tree.

Java, C# or VB code can be combined in one project and are automatically handled
during the round-trip engineering process. The Bank_MultiLanguage.ump file in the ...\
UModelExamples folder is an example of a project for Java and C# types of code.

To define a code generation target directory:

1. Double click the Overview icon under the Design-phase package to switch into the
component overview.

2. Click the BankView component, in the diagram, and note the current settings in the
Properties tab.

3. Click the browse button , to the right of the directory field.
4. Enter/select the target directory in the dialog box (the supplied example is defined as

InstallationDir\UModelExamples\Tutorial\umlcode\bankview), or click the "Make
New Folder" button to create a new folder.
The path now appears in the directory field.

50 UModel tutorial Round-trip engineering (model - code - model)

© 2008 Altova GmbHAltova UModel 2008

Please note:
UModel Java usually follows the convention of creating code in directories according to
their namespace e.g. ...\code\namespace1\C1.java.

If you want to use this directory naming convention for C# and VB .NET, select the
menu option Tools | Options | Code Engineering and select the relevant option in the
"Use namespace for code file path" group.

To include/exclude components from code generation:
1. Click the BankView GUI component.
2. Uncheck the "use for code engineering" check box (if not already unchecked).

© 2008 Altova GmbH

Round-trip engineering (model - code - model) 51UModel tutorial

Altova UModel 2008

Checking project syntax prior to code generation:
1. Select the menu option Project | Check project syntax.
2. A syntax check is performed, and messages appear in the Messages window, "Bank

API-client: code project file or directory not set" - "IBankAPI: code file name not set".

3. Click the first message in the messages window.
4. The Bank API client package is highlighted in the Model Tree view, with its properties

visible in the Properties tab.
5. Uncheck the "use for code engineering" check box for the Bank API client component.

6. Check the project syntax again using Project | Check project syntax.

52 UModel tutorial Round-trip engineering (model - code - model)

© 2008 Altova GmbHAltova UModel 2008

No errors are reported this time around. We can now generate program code for this
project. Please see Check Project syntax for more information.

To generate project code:
1. Click the BankView package to select it.
2. Select the menu option Project | Merge Program Code from UModel project.
3. Select your synchronization options from the dialog box, and press OK to proceed (no

changes needed for the tutorial; see "Merge Program Code from UModel project" for
more information).

The message pane displays the outcome of the code generation process.

4. Navigate to the target directory.
Six .Java files have been created for the project.

Synchronizing the UModel model having updated Java code externally:
1. Open the SavingsAccount.java file in the text editor of your choice, XMLSpy for

example.
2. Add the new method to the generated code "public float getInterestRate() {}", and

save the file.

© 2008 Altova GmbH

Round-trip engineering (model - code - model) 53UModel tutorial

Altova UModel 2008

3. Switch to UModel and right click the SavingsAccount class under the BankView
package.

4. Select the option Code Engineering | Merge UModel Class from Program Code.

This opens the Synchronization Settings dialog box with the "Model from Code" tab
being active. No changes are needed for the tutorial; see "Merge UModel project from
code" for more information)

5. Click OK to merge the model from the code.

54 UModel tutorial Round-trip engineering (model - code - model)

© 2008 Altova GmbHAltova UModel 2008

6. Click the Account Hierarchy tab to see the outcome of the merge process.

The new method added to the code, (getInterestRate...) generates a new operation in
the SavingsAccount class of UModel.

© 2008 Altova GmbH

Round-trip engineering (code - model - code) 55UModel tutorial

Altova UModel 2008

4.8 Round-trip engineering (code - model - code)

The aim of this tutorial section is to:

 Import a directory containing Java code generated by XMLSpy
 Add a new class to the project in UModel
 Merge to the program code from a UModel package

The files used in this example are available as the OrgChart.zip file under
...\UModelExamples folder of your installation. Please unzip the OrgChart.zip file into the
...\UModelExamples folder before you start this section.

This creates the OrgChart directory which will then be used to import the existing code.

To Reverse engineer/import existing code from a directory:
1. Select File | New to create a new project.
2. Select Project | Import source directory.
3. Select the C# (1.2, 2.0 or 3.0), Java version (1.4, or 5.0), or VB version (7.1, 8.0, or 9.0)

that the source code conforms to.

4. Click the Browse button and select the OrgChart directory supplied in the
...\UModelExamples folder.

5. Making sure that the "Enable diagram generation" check box is active, select any
specific import settings you need, and click Next.

56 UModel tutorial Round-trip engineering (code - model - code)

© 2008 Altova GmbHAltova UModel 2008

Note that UModel can generate a single overview diagram and/or a diagram for each
package. The settings show above are the default settings.

6. Click Next to continue.

This dialog box allows you to define the package dependency generation settings.
7. Click Finish to use the default settings.

The data is parsed while being input, and a new package called "OrgChart" is created.

© 2008 Altova GmbH

Round-trip engineering (code - model - code) 57UModel tutorial

Altova UModel 2008

8. Expand the new package and keep expanding the sub packages until you get to the
OrgChart package (com | OrgChart).

9. Double click the "Content of OrgChart" diagram icon .
The collapsed classes that make up OrgChart are displayed in the main tab.
The current window/view is shown by the red box in the Overview window, which
occupies an empty area of the diagram.

10. Click the red box and drag it down to the centre of the window.

58 UModel tutorial Round-trip engineering (code - model - code)

© 2008 Altova GmbHAltova UModel 2008

Please note:
You could also select the Project | Import source project option and select the
Borland JBuilder OrgChart.jpx project file to import the project created by XMLSpy.

Round-trip engineering and relationships between modeling elements:
When updating model from code, associations between modeling elements are automatically
displayed, if the option Editing | Automatically create Associations has been activated in the
Tools | Options dialog box. Associations are displayed for those elements where the attributes
type is set, and the referenced "type" modeling element is in the same diagram.

InterfaceRealizations as well as Generalizations are all automatically shown in the diagram
when updating model from code.

Adding a new class to the OrgChart diagram:

1. Click the Class icon in the icon bar and click to insert a new class.
2. Add a new Class called CompanyType.
3. Add new operations to the class using the F8 shortcut key:

e.g. CompanyType(), getCompanyType():String, setCompanyType():String.

Making the new class available for code generation:
While the CompanyType class is active,

1. Click into the "code file name" field and enter the Java file name of the new class

© 2008 Altova GmbH

Round-trip engineering (code - model - code) 59UModel tutorial

Altova UModel 2008

CompanyType.java.

2. Click the new CompanyType class in the Model Tree, drag upwards and drop onto the
OrgChart component below the Component View package. A popup appears when the
mouse pointer is over a component.

Please note:
This method creates a Realization between a class and a component, without having to
use component or deployment diagrams.

 3. Expand the Relations item below the Orgchart component, to see the newly created
realization.

60 UModel tutorial Round-trip engineering (code - model - code)

© 2008 Altova GmbHAltova UModel 2008

Merging program code from a package:
1. Right click the OrgChart package, select Code Engineering | Merge Program code

from UModel Package, and press Enter to confirm.

The messages window displays the syntax checks being performed and status of the
synchronization process.

When complete, the new CompanyType.java class has been added to the folder
...\OrgChart\com\OrgChart\.

Please note:
All method bodies and changes to the code will either be commented out or deleted,
depending on the setting in the "When deleting code" group, in the Synchronization
settings dialog box.

That's it!
You have learned how to create a modeling project using the forward engineering process, and
also completed a full round-trip code engineering cycle with UModel. The rest of this document
describes how best to achieve modeling results with UModel.

Chapter 5

UModel User Interface

62 UModel User Interface

© 2008 Altova GmbHAltova UModel 2008

5 UModel User Interface

UModel consists of series of panes on the left and a larger diagram tab at right. The panes at
left allow you to view and navigate your UModel project from differing viewpoints, and edit data
directly.

The panes are Model Tree, Properties, and Overview. The working/viewing area at right is the
UModel Diagram tab which currently shows the Class Diagram of the BankView Main package.

Please note:
All panes, as well as diagram tabs, can be searched using the Find combo box in the
Main toolbar, which contains the text "account" in the screenshot below, or by pressing
CTRL+F.

© 2008 Altova GmbH

Model Tree 63UModel User Interface

Altova UModel 2008

5.1 Model Tree

Model Tree tab
The Model Tree tab allows you to manipulate model items directly in the Model Tree, as well as
navigate/view specific items in the Design tab. Right clicking an item opens the context menu,
from which specific commands can be selected. The contents of the context menu depend on
the item that you select.

Model elements in the Model Tree pane can be directly manipulated:

 Added / inserted
 Copied or moved
 Deleted
 Renamed
 Sorted according to several criteria
 Constrained

In the Model Tree tab, each folder symbol is a UML package!

Adding a new package (or any other modeling element):
1. Right click the folder that you want the new package/element to appear under.
2. Select New | Package (or respective model Element).

Copying or moving model elements:
1. Use the standard windows Cut, Copy or Paste commands or,
2. Drag model elements to different packages. Dragging an elements moves it. Holding

down CTRL a and dragging an element creates a copy.

When dragging elements a message might appear stating that select "No sort" needs
to be activated to allow you to complete the action. Please see "Cut, copy and paste in
UModel Diagrams" for more information.

Sorting elements in the Model Tree (activating no sort):
1. Right click the empty background of the Model Tree tab.
2. Select Sort | No sort.

Elements can now be positioned anywhere in the Model Tree.

Please note:
The Sort popup menu also allows you to individually define the sort properties of

64 UModel User Interface Model Tree

© 2008 Altova GmbHAltova UModel 2008

Properties and Operations.

Renaming an element:
1. Double click the element name and edit it.

The Root and Component View packages are the only two elements that cannot be
renamed.

Deleting an element:
1. Click the element you want to delete (use CTRL+click to mark multiple elements).
2. Press the Del. keyboard key.

The modeling element is deleted from the Model Tree. This means that it is also
deleted from the Diagram tab, if present there, as well as from the project. Elements
can be deleted from a diagram without deleting them from the project, using CTRL+
Del. Please see deleting elements.

To open a diagram in the Diagram tab:

1. Double click the diagram icon of the diagram you want to view in the diagram tab.

Modeling element icon representation in the Model Tree

Package types:

 UML Package

 Java namespace root package

 C# namespace root package

 Visual Basic root package

 XML Schema root package

 Java, C#, or VB code package (package declarations are created when code is generated)

Diagram types:

Activity diagram Object diagram

Class diagram Package diagram

Communication diagram Sequence diagram

Component diagram State Machine diagram

Composite Structure diagram Timing diagram

Deployment diagram Use Case diagram

Interaction Overview diagram XML Schema diagram

Business Process Modeling
Notation

Element types:

An element that is currently visible in the active diagram is displayed with a blue dot at its base.
In this case a class element.

 Class Instance/Object
 Class instance slot

 Class

 Property

 Operation

 Parameter

© 2008 Altova GmbH

Model Tree 65UModel User Interface

Altova UModel 2008

 Actor (visible in active use case diagram)

 Use Case

 Component

 Node

 Artifact

 Interface

 Relations (/package)
Constraints

Opening / expanding packages in the Model Tree view:
There are two methods available to open packages in the tree view; one opens all packages
and sub packages, the other opens the current package.

Click the package you want to open and:

 Press the * key to open the current package and all sub packages

 Press the + key to open the current package.

To collapse the packages, press the - keyboard key.
Note that you can use the standard keyboard keys, or the numeric keypad keys to
achieve this.

To find modeling elements in Diagram tab(s):
While navigating the elements in the Model Tree, you might want to see where, or if, the
element is actually present in a model diagram. There are two methods to find elements:

1. Right click the element you want to see in the Model Tree tab, and select:
 Show element in active diagram - to find it in the same type of diagram tab
 Show element in all diagrams - if currently active diagram differs from selected

model element.

To generate a list of elements not used in any diagram:
1. Right click the package you would like to inspect.
2. Select the menu option "List elements not used in any diagram.

A list of unused element appears in the Messages pane. The list in parenthesis,
displays the specific elements which have been selected to appear in the unused list,
please see the View tab in Reference section under, Tools | Options for more
information.

To locate the missing elements in the Model Tree:
 Click the element name in the Messages pane.

Please note:
The unused elements are displayed for the current package and its sub packages.

Packages in the Model Tree tab:
Only the Root and Component packages are visible on startup, i.e. when no project is currently
loaded.

66 UModel User Interface Model Tree

© 2008 Altova GmbHAltova UModel 2008

 Packages can be created, or deleted at any position in the Model Tree
 Packages are the containers for all other UML modeling elements, use case diagrams

etc.
 Packages/contents can be moved/copied to other packages in the Model Tree (as well

as into valid model diagrams in the diagram tab)
 Packages and their contents can be sorted according to several criteria
 Packages can be placed within other packages
 Packages can be used as the source, or target elements, when generating or

synchronizing code

Generating/merging code:
UModel allows you to generate, or merge program code directly from the Model Tree, please
see: Synchronizing Model and source code for more information.

Constraining UML elements:
Constraints can be defined for most model elements in UModel. Please note that they are not
checked by the syntax checker, as constraints are not part of the Java code generation
process.

To constrain an element (Model Tree):
1. Right click the element you want to constrain, and select New | Constraint.
2. Enter the name of constraint and press Enter.
3. Click in the "specification" field of the Properties tab, and enter the constraint e.g. name

length > 10.

To constrain an element in UML diagrams:
1. Double click the specific element to be able to edit it.
2. Add the constraint between curly braces e.g. interestRate:float #{interestRate >=0}.

To assign constraints to multiple modeling elements:
1. Right click the "constrained elements" field in the Properties tab.
2. Select "Add element to constrained elements".

This opens the "Select Elements to be Constrained" dialog box.
3. Select the specific element you want to assign the current constraint to.

The "constrained element" field contains the names of the modeling elements it has
been assigned to. The image above, shows that Constraint1 has been assigned to the
bankview and com packages.

© 2008 Altova GmbH

Diagram Tree 67UModel User Interface

Altova UModel 2008

5.2 Diagram Tree

Diagram Tree tab
This tab displays the currently available UModel diagrams in two ways:

 Grouped by diagram type, sorted alphabetically
 As an alphabetical list of all project diagrams

Please note:
Diagrams can be added to, or deleted from, the Diagram Tree tab by right clicking and
selecting the requisite command.

To open a diagram in the Diagram tab:

 Double click the diagram you want to view in the diagram tab.

To view all Diagrams within their respective model groups:

 Right click in the pane, and activate the "Group diagram by diagram type" option.

Diagrams are grouped alphabetically within their group.

To view all Diagram types in list form (alphabetically):

 Right click in the pane, and deactivate the "Group diagram by diagram type" option.

68 UModel User Interface Diagram Tree

© 2008 Altova GmbHAltova UModel 2008

All Diagrams are shown in an alphabetically sorted list.

© 2008 Altova GmbH

Favorites 69UModel User Interface

Altova UModel 2008

5.3 Favorites

Favorites tab
Use this tab as a user-defined repository, or library, for all types of named UML elements i.e.
classes, objects, associations etc. but not ProfileApplication or Generalization dependencies.
This allows you to create your personal pick-list of modeling elements for quick access.

The contents of the Favorites tab are automatically saved with each project file. Select the
menu option Tools | Options, File tab and click the "Load and save with project file" check box
to change this setting.

To add an existing modeling element to the Favorites tab:
1. Right click an element in the Model Tree tab, or in the diagram working area.
2. Select the menu item "Add to Favorites".
3. Click the Favorites tab to see the element.

The element appears in the Favorites tab is a view of an existing element, i.e. it is not a
copy or clone!

To add a NEW element to the Favorites tab:
1. Right click a previously added package, to which you want to add the element.
2. Select New | "modeling element" from the context menu, where "modeling element"

is a class, component, or any other modeling element available in the context menu.
New elements are added to the same element/package in the project, and are therefore
also visible in the Model Tree tab.

To REMOVE an element from the Favorites tab:
1. Right click the same element/package that you added to Favorites.
2. Select Remove from Favorites.

Please note:
You can add and remove elements added to the Favorites tab, from the Favorites tab,
as well as the Model Tree tab.

Deleting elements from the Favorites tab:
1. Right click the element you want to delete, and press the Del key.

A message box appears, informing you that the element will be deleted from the
project.

2. Click OK if you want to delete it from the project.
3. Click Cancel to retain it, and use the Remove method described above, to delete it

from the Favorites tab.

70 UModel User Interface Properties

© 2008 Altova GmbHAltova UModel 2008

5.4 Properties

Properties tab
The Properties tab displays the UML properties of the currently active element.

 Clicking any model element in any of the supplied views, or tabs, displays its
properties.

 Once visible, model properties can be changed, or completed, by entering data, or
selecting various options in the tab.

 Selected properties can also be located in the diagram tabs by selecting Show in Active
Diagram from the context menu.

Select in Model Tree
Clicking an attribute in a class diagram displays its properties in the Properties tab. To
navigate/find it in the Model Tree:

1. Right click the type entry of the attribute in the Properties tab.
2. Click the "Select in Model Tree" popup.

The IBankAPI interface is now visible in the Model Tree.

© 2008 Altova GmbH

Properties 71UModel User Interface

Altova UModel 2008

72 UModel User Interface Styles

© 2008 Altova GmbHAltova UModel 2008

5.5 Styles

Styles tab
The Styles tab is used to view, or change attributes of diagrams, or elements that are displayed
in the diagram view.

These style attributes fall into two general groups:

 Formatting settings; i.e. font size, weight, color etc.
 Display settings/options; show background color, grid, visibility settings etc.

The Styles tab is subdivided into several different categories/sections which can be selected by
clicking the "Styles" combo box. The combo box contents depends on the currently selected
model element.

Clicking an element in a diagram tab automatically selects the Element Style context, while
clicking and element in the Model Tree tab selects the Project Style context.

Style precedence is bottom-up, i.e. changes made at the more specific level override the more
general settings. E.g changes (to an object) made at the Element Style level override the
current Element Family and Project Styles settings. However, selecting a different object and
changing the Element Family Styles setting, updates all other objects except for the one just
changed at the Element Style level.

Please note:
Style changes made to model elements can all be undone!

Element Styles:
Applies to the currently selected element in the currently active diagram. Multiple selections are
possible.

© 2008 Altova GmbH

Styles 73UModel User Interface

Altova UModel 2008

Styles of Elements with this Stereotype:
Applies to the currently selected stereotype class in the diagram it has been defined, please
see User-defined stereotype styles.

Element Family Styles:
Applies to all elements of the same type i.e. of the selected Element Family. E.g. you want to
have all Component elements colored in aqua. All components in the Component and
Deployment diagrams are now in aqua.

Node / Line Styles:
"Node" applies to all rectangular objects.
"Lines" applies to all connectors: association, dependency, realization lines etc. for the whole
project.

Project Styles:
Project Styles apply to the current UModel Project in its entirety (e.g. you want to change the
default Arial font to Times New Roman for all text in all diagrams of the project).

Diagram Styles:
These styles only becomes available when you click/select a diagram background. Changing
settings here, only affects the single UML diagram for which the settings are defined in the
project.

To change settings for all diagrams of a project:
1. Click in the respective diagram,
2. Select the Project Styles entry in the combo box, and scroll to the bottom of the tab.
3. Select one of the Diag.yyy options e.g. Diag. Background color.

This then changes the background color of all diagrams in the current project.

Styles display when multiple elements are selected:
If multiple elements are selected in the diagram pane, then all different style values are
displayed in the respective field. In the screenshot below, Class1 and Class2 have been
selected.
The fill Color field displays the values for each of the elements, i.e. aqua and silver.

Displaying cascading styles:
If a style is overridden at a more specific level, a small red triangle appears in the respective
field in the styles tab.
Placing the mouse pointer over the field displays a popup which indicates the style precedence.

74 UModel User Interface Styles

© 2008 Altova GmbHAltova UModel 2008

E.g.
The Enumeration, Package and Profile elements all have default fill color settings defined in the
Element Family Styles settings. To change the fill colors at the project level, clear the value in
the Element Family Styles i.e. select the empty entry in the drop-down list box, select Project
styles from the Styles combo box, and change the fill color there.

© 2008 Altova GmbH

Hierarchy 75UModel User Interface

Altova UModel 2008

5.6 Hierarchy

Hierarchy tab
The hierarchy tab displays all relations of the currently selected modeling item, in two different
views. The modeling element can be selected in a modeling diagram, the Model Tree, or in the
Favorites tab.

 Show Tree view

This view shows multiple relations of the currently selected element e.g. SchemaString.
Clicking the various icons in the icon bar, allows you to show all types of relations, or narrow
them down by clicking/activating the various icons. In the screenshot above, all icons are active
and thus all relations are shown in a tree view.

Double clicking one of the element icons, in the tab, displays the relations of that element.

 Show graph view

76 UModel User Interface Hierarchy

© 2008 Altova GmbHAltova UModel 2008

This view shows a single set of relations in an hierarchical overview. Only one of the relation
icons can be active at any one time. The Show Generalizations icon is currently active.

Double clicking one of the element icons in the tab, e.g. SchemaTypeNumber, displays the
relations of that element.

The currently selected element is now SchemaTypeNumber.

Creating a new diagram from the contents of the window:
The current contents of the graph view pane can be displayed in a new diagram.

1. Right click in the graph view pane and select Create diagram as this graph.

© 2008 Altova GmbH

Hierarchy 77UModel User Interface

Altova UModel 2008

2. Edit the diagram name if necessary, select the style options and click OK.
A new diagram is created.

78 UModel User Interface Overview - Documentation

© 2008 Altova GmbHAltova UModel 2008

5.7 Overview - Documentation

Overview tab
The Overview tab displays an outline view of the currently active diagram. Clicking and dragging
the red rectangle, scrolls the diagram view in the diagram tab.

Documentation tab
Allows you to document any of the UML elements available in the Model Tree tab. Click the
element you want to document and enter the text in the Documentation tab. The standard
editing shortcuts are supported i.e. cut, copy and paste.

Documentation and code engineering:
During code engineering, only class and interface documentation is input/output. This includes
documentation defined for class/interface properties and operations.

1. Select Project | Synchronization settings.
2. Activate the "Write Documentation as JavaDocs" check box to enable documentation

output.

Please note:
When importing XML schemas, only the first annotation of a complex- or simpleType is
displayed in the Documentation window.

© 2008 Altova GmbH

Layer 79UModel User Interface

Altova UModel 2008

5.8 Layer

Layer tab
The Layer tab allows you to define multiple layers for any UModel diagram. Single, as well as
multiple, layers can be shown, locked and hidden. Layers allow you to make logical groupings of
modeling elements on a diagram. You could for instance have internal info on classes, as
notes, or unfinished classes on separate layers.

Please note:
Any UML elements can be assigned to any layer. You could have all associations on one layer,
notes on another etc. New elements are always added to the currently active layer, which is
highlighted in the Layer window. The following section describes all functions available through
the Layer context menu.

 Associations, dependencies etc. can also be created between elements on different
layers, if those layers are currently visible.

 Multiple layers can be viewed and worked on simultaneously.
 Elements can be moved from one layer to another.
 Layers can be deleted where all elements are then merged to the layer you specify.
 When printing diagrams only those elements on the currently visible layer are printed.

 Append new layer
Appends a new layer to the current list of layers using a default name e.g. New Layer 1.

 Insert new layer
Inserts a new layer above the currently active layer in the layer list. This is only possible if more
than one layer exists.

Having inserted a new layer, it then becomes the active layer. The new layer settings are:

80 UModel User Interface Layer

© 2008 Altova GmbHAltova UModel 2008

 Visible, unlocked and (0) elements currently on this layer.
 Both the Default and New Layer are currently visible.

To add elements to a new layer:
1. Click the layer you want to add the elements to in the layer list, e.g. New Layer 1.
2. Insert the new objects in the Diagram window, e.g. a note containing text describing a

class.

Note that the element number on this layer has now changed to 1, and the elements of
the Default layer are also still visible.

To view elements of a specific layer:

1. Click the hide/show icon of the specific layer(s) you want to hide, so that only the
layer you want to view is still active/visible.

2. E.g. Click the hide/show icon of the Default layer to only show the elements on New
Layer 1.

Note that the show/hide icon changes to its hidden representation, and that only the
note element is now visible in the diagram tab.

To delete a layer:
1. Right click the specific layer in the layer list and select Delete from the context menu.

You are prompted if you want to Merge the layer items to one of the existing layers, and
delete the current one.
OK merges and deletes, Cancel, cancels the action.

© 2008 Altova GmbH

Layer 81UModel User Interface

Altova UModel 2008

To move elements to a different layer:
1. Right click the element you want to move and select the option Layer | "Name of

Layer" the element should be moved to.
2. E.g. right click the note element and select Layer | Default.

Alternatively:
1. Click the element and use drag & drop to to place it onto the target layer name, e.g.

Default, in the Layer list of the Layer tab.

To lock elements on a layer:

 Click the Lock icon of the specific layer, to lock the positions of all the elements of
the active layer.

Note that new elements can still be placed on the active layer, but cannot be selected or
moved once they have been inserted.

To select elements of a specific layer:
The layer must be unlocked to be able to use this feature.

1. Select the layer containing the elements you want to select in the layer list.

2. Click the Previous or Next element icon in the Layer icon bar.
Each element of the active layer is selected in sequence with every click on the icon, i.
e. you cycle through all elements of the active layer.

82 UModel User Interface Layer

© 2008 Altova GmbHAltova UModel 2008

To select all items of a layer:
1. Right click the layer in the Layer window and select Items | Select.

This selects all items of the current layer.

To select the items of all layers except the currently active layer:
1. Right click the layer in the Layer window and select Items | Select.Others.

This selects all items of all currently visible layers, except for those on the currently
active layer!

To toggle the element counter of the layer list:

 Click the icon of the icon bar.

To reset all layer states:

 Click the icon of the icon bar, to set all layers to visible and unlocked.

© 2008 Altova GmbH

Layer 83UModel User Interface

Altova UModel 2008

5.8.1 Layer Context menu

Right click in the layer list window to open the context menu.

Append
Appends a new layer to the current layer list, and assigns a default name which you can change
immediately or throught the context menu option "Rename".

Insert
Inserts a new layer above the currently active layer in the layer list.

Delete
Deletes the currently active layer and moves the elements to an existing layer you select in the
dialog box.

Rename
Allows you to rename the currently active layer in the layer list.

Merge to
Moves all the elements of the currently active layer to the layer you select in the flyout menu.
The flyout menu contains a list of the currently available layers.

The following commands affect only those elements which are currently visible in the diagram
tab, i.e. which are present on those layers which are currently set as active/visible.

Suboptions available are:

Selected Layer affects only the current/active layer & elements on that layer

Unselected -
Select Others

affects all other layers & elements on those layers

Items
Selected Layer, selects/marks all elements of the selected layer.
Unselected, selects/marks all elements of the unselected layer(s).

Show
Selected Layer, shows all elements of the selected layer.
Unselected, shows all elements of the unselected layer(s).

Hide
Selected Layer, hides all elements of the selected layer.
Unselected, hides all elements of the unselected layer(s).

Toggle Visibility
Selected Layer, toggles visibility of all elements of the selected layer.
Unselected, toggles visibility of all elements of the unselected layer(s).

Unlock
Selected Layer, unlocks all elements of the selected layer.
Unselected, unlocks all elements of the unselected layer(s).

Lock
Selected Layer, locks all elements of the selected layer.
Unselected, locks all elements of the unselected layer(s).

84 UModel User Interface Layer

© 2008 Altova GmbHAltova UModel 2008

Toggle lock
Selected Layer, toggles lock of all elements of the selected layer.
Unselected, toggles lock of all elements of the unselected layer(s).

© 2008 Altova GmbH

Messages 85UModel User Interface

Altova UModel 2008

5.9 Messages

The Messages window displays warnings, hints and error messages when merging code, or
checking the project syntax.

Clicking a parsing error in the Messages window of the Visual Studio .NET or Eclipse Editions,
opens the corresponding source code file with the cursor positioned in the line containing the
error.

86 UModel User Interface Diagram pane

© 2008 Altova GmbHAltova UModel 2008

5.10 Diagram pane

The diagram pane displays all the currently opened UModel diagrams as individual tabs.

To create a new diagram:
1. Click a package in the Model Tree tab.
2. Select New | YYY Diagram.

To create a new diagram containing contents of an existing package:
1. Right click a package and select Show in new Diagram | Content.

To open / access a diagram:

 Double click the diagram icon in any of the Model Tree pane tabs (to open).
 Clicking any of the tabs in the Diagrams pane (to access).

To close all but the active diagram:

 Right click the diagram tab that is to remain open, select the option Close All but
active.

Deleting a diagram:

 Click the diagram icon in the Model Tree and press Del. key.

Moving diagrams in a project:
 Drag the diagram icon to any other package in the Model Tree Tab.

You might have to enable the "no sort" option to move it.

Finding (deleting) class properties and options from the Model Tree:
Properties and options can also be deleted directly from the Model Tree. To do this safely, it is
important to first find the correct property. Assuming you have inserted "Operation1" in the
Account class (press F8, then Enter to insert):

1. Right click Operation1 in the Account class.
2. Select the option "Select in Model Tree" or press F4.

The Operation1 item is now highlighted under Account in the Model Tree tab.

© 2008 Altova GmbH

Diagram pane 87UModel User Interface

Altova UModel 2008

3. Press the Del key to delete the operation from the class and project!
Note that almost any modeling element can be found in the Model Tree when pressing
F4.

Please note:
It is also possible to navigate from the Properties pane to the Model Tree when viewing
an attributes properties, please see: the Properties in the User Interface section.

Deleting elements from a diagram:
Delete element from the diagram and project!
 Select the element you want to delete and press the Del. keyboard key.

Delete element from diagram only - not from the project!
1. Select the element you want to "delete"
2. Hold down the CTRL key and press Del.

An auto-layout function allows you to define how you would like your diagram to be visually
structured. Right click the diagram background and select either:

 Autolayout All | Force directed, or
 Autolayout All | Hierarchic

Showing relationships between modeling elements:
1. Right click the specific element and select Show.

The popup menu shown below is context specific, meaning that only those options are
available that are relevant to the specific element.

88 UModel User Interface Diagram pane

© 2008 Altova GmbHAltova UModel 2008

To show / hide text labels:

 Right click a class or association arrow and select Text labels | Show (Hide) all Text
labels.

To show a class attribute/property as an association:
1. Right click the property in the class.

2. Select the menu option Show | "PropertyXX" as Association.
This inserts/opens the referenced class and shows the relevant association.

© 2008 Altova GmbH

Diagram pane 89UModel User Interface

Altova UModel 2008

90 UModel User Interface Diagram pane

© 2008 Altova GmbHAltova UModel 2008

5.10.1 Diagram properties

Configuring diagram properties
Click on the diagram background and then select one of the styles from the Styles combo box.
Please see Styles pane for more information.

To enlarge the Diagram size:
The size of the diagram tab is defined by the elements and their placement.

 Drag an element to one of the diagram tab edges to automatically scroll the diagram
tab and enlarge it.

Positioning modeling elements - the grid
Modeling elements can be positioned manually, or made to snap to a visible/invisible grid in a
diagram.

 toggles between showing / hiding the grid

 toggles between snapping elements to the visible / invisible grid

Displaying the UML diagram heading

 toggles between displaying the UML diagram heading, i.e. the frame around a
diagram with its name tag in the top left corner.

Aligning modeling elements
Modeling elements can be aligned, and resized, in relation to other elements e.g. all centered,
left or right aligned etc.

Please note:
When marking several objects, the action that you apply uses the element that was selected
last as the template you apply. E.g. if you mark three class elements and click the "Make same
Width" icon, then all three will be made as wide as the last class you selected.

This also applies when marking several objects using the marquee, the element last selected by
the marquee becomes the template element whose properties are applied to the other marked
objects.

Icon functions for each icon group:
Align Left, align Right
Align Top, align Bottom
Center vertically, center horizontally

© 2008 Altova GmbH

Diagram pane 91UModel User Interface

Altova UModel 2008

Space Across, Space down
Line up horizontally, line up vertically.
Make same width, make same height, make same size.

Enhanced autocompletion window - selecting datatypes
When inputting datatypes for operations or properties, an autocomplete window is automatically
opened. The autocompletion popup has the following features:

 Clicking a column name sorts the window by that attribute in ascending/descending
order.

 The window can resized by dragging the bottom right corner.
 The window contents can be filtered by clicking the respective category icons at the

bottom of the window.

 The Single mode icon lets you switch between enabling only one of the category
icons at any one time (single mode), or enabling multiple category icons (multi mode).
Ths shot below shows the autocompletion window in "multi-mode", i.e. all category
icons are enabled. The single mode icon is not enabled.

 The Set all / Clear all Categories icons, set or clear all categories icons.
 On-demand popup pressing CTRL+Space, when autocompletion is disabled.

Filter categories:
Class, Interface, PrimitiveType, DataType, Enumeration, Class Template, Interface Template,
DataType Template.

Please note:
To enable/disable the autocompletion select Tools | Options | Diagram Edting tab,
then click the "Enable automatic entry helper" option. The on-demand availability is not
affected by this setting however.

92 UModel User Interface Diagram pane

© 2008 Altova GmbHAltova UModel 2008

5.10.2 Cut, copy and paste in UModel Diagrams

Cut, Copy and Paste of diagram elements within the Diagram pane
All UModel diagram elements can be cut, copied and pasted within, across the same type, and
even into other types of diagram tab. Mouse or keyboard shortcuts can be used to achieve this
in two different ways:

Having copied an element:
 "Paste", using the keyboard shortcut CTRL+V, or "Paste" from the context menu, as

well as Paste from the Edit menu, always adds a new modeling element to the diagram
and to the Model Tree.

 "Paste in diagram only", using the context menu, i.e. right clicking on the diagram
background, only adds a "link/view" of the existing element, to the current diagram and
not to the Model Tree.

Using the Class diagram as an example:

Paste (CTRL+V) of a copied class:
 Pasting a copied class in the same diagram (or package), inserts a new class with the

source class name plus a sequential number. E.g source class name is myClass,
pasted class name is myClass1. All operations and properties are also copied to the
new class.

 Pasting a copied class into a different package, also inserts a new class, but keeps the
original class name.

 In both cases the new class is also added to the Model Tree as well.

Paste (CTRL+V) of copied Properties or Operations:
 Pasting a Property in the same class, inserts a new property with the source property

name plus a sequential number e.g. MyProperty1.

 Pasting an Operation in the same class, inserts a new operation of the same name as
the source operation.

© 2008 Altova GmbH

Diagram pane 93UModel User Interface

Altova UModel 2008

 In both cases a new property/operation is added to the Model Tree.

"Paste in Diagram only":
Whenever you use the context menu and select this option, a "link", or "view" to the element is
created in the diagram you paste it into. Using the Class diagram as an example:

 "Paste in diagram only", creates a "view" to the original class
 The class is inserted into the diagram and displayed exactly as the source class
 A new class has not been added to the Model Tree!
 No class name or other Operation/Property changes are made
 Changing element properties in one of the "views", changes it in the other one

automatically

Copy and pasting of elements using the mouse:
1. Click on the modeling element you want to copy.
2. Move the mouse pointer to the position you want to place the new element.
3. Hold down the CTRL key. A small plus appears below the mouse pointer to signify that

this is a copy procedure.
4. Release the mouse button.

A popup menu appears at this point allowing you to select between Paste, and Paste in
Diagram only.

5. Select the option that you would like to perform.

Please note:

94 UModel User Interface Diagram pane

© 2008 Altova GmbHAltova UModel 2008

Using the mouse and CTRL key allows you to copy, or move properties and operations
directly within a class.

© 2008 Altova GmbH

Adding/Inserting model elements 95UModel User Interface

Altova UModel 2008

5.11 Adding/Inserting model elements

Model elements can be created and inserted into diagrams using several methods:

 By adding the elements to specific packages, in the Model Tree view
 By dragging existing elements from the Model Tree tab into the diagram tab
 By clicking a specific UML element icon, and inserting it into the diagram
 By using the context menu to add elements to the diagram (and automatically to the

Model Tree view).

Please note that multiple elements can be selected in the Model Tree using either
SHIFT+click, or CTRL+click.

Adding elements in the Model Tree/Favorites tab:

 Right click a package, select New, and then select the specific element from the
submenu.
This adds the new element to the Model Tree tab in the current project.

Inserting elements from the Model Tree view into a diagram:
Model elements can be inserted individually, or as a group. To mark multiple elements use the
CTRL key and click each item. There are two different methods of inserting the elements into
the diagram: drag left, and drag right.

 Drag left (normal drag and drop) inserts elements immediately at the cursor position
(any associations, dependencies etc. that exist between the currently inserted elements
and the new one, are automatically displayed).

 Drag right (holding down the right mouse button and releasing it in the diagram tab)
opens a popup menu from which you can select the specific associations,
generalizations you want to display.

Example:

96 UModel User Interface Adding/Inserting model elements

© 2008 Altova GmbHAltova UModel 2008

You want to replicate the Account Hierarchy diagram in a new class diagram.

1. Right click the bankview package and select New | Class Diagram.
2. Locate the abstract Account class in the model tree, and use drag right to place it in

the new diagram.
The context menu shown above, is opened.

3. Select the Insert with Generalization Hierarchy (specific) item.

4. Deselect the check boxes for specific items you want to appear in the elements
(Properties and Operations in this case).

5. Click OK.
The Account class and its three subclasses, are all inserted into the diagram tab. The
Generalization arrows are automatically displayed.

Adding elements to a diagram using the icons in the icon bar:
1. Select the specific element you want to insert by clicking the associated icon in the icon

bar.
2. Click in the diagram tab to insert the element.

Please note:
Holding down the CTRL key before clicking in the diagram tab, allows you to insert
multiple elements of the same type with each individual click in the diagram.

Adding elements to a diagram using the context menu:

 Right click the diagram background and select New | element name.

Please note:
Adding new elements directly to the diagram tab, automatically adds the same element
to the Model Tree tab. The element is added to the package containing the UML
diagram in the Model Tree view.

 Right click an element and select Show | xx
E.g. Right clicking the Account class and selecting Show | Generalization hierarchy.
This then inserts the derived classes into the diagram as well.

© 2008 Altova GmbH

Hyperlinking modeling elements 97UModel User Interface

Altova UModel 2008

5.12 Hyperlinking modeling elements

UModel now supports automatic and manual hyperlinking of modeling elements. Automatic
hyperlinking occurs when selecting the specific setting when importing source code, or binary
files, into a model.

Manual hyperlinks are created between most modeling elements (except for lines) and:

 any diagram in the current ump project
 any element on a diagram
 external documents, e.g. PDF, Excel or Word documents
 web pages

Opening the Bank Server diagram under the Bank Server package displays the IBankAPI
interface as well as the BankServer class. An enumeration element containing the names of the
EnumerationLiterals is also visible. What we want to do is create a hyperlink from the
Enumeration to the Account Hierarchy class diagram.

To create a diagram hyperlink:
1. Right click the element and select Hyperlinks | Insert/Edit hyperlinks.

This opens the Edit Hyperlinks dialog box in which you manage the hyperlinks.
2. Click the Add Diagram Link button to define a link to an existing diagram.

98 UModel User Interface Hyperlinking modeling elements

© 2008 Altova GmbHAltova UModel 2008

3. Select the hyperlink target that you want to be able to navigate to, e.g. Hierarchy of
Account diagram, and click OK.

Double clicking in the User defined name column allows you to define your own link
name.
Note that you can add multiple, as well as different kinds of links from a single modeling
element e.g. a web link to http://altova.com/support_help.html using the Add Web Link
button.

4. Click OK when you have finished defining your hyperlinks.
A link icon has now been added to the top left of the enumeration element. Placing the
mouse cursor over the link icon, displays a popup with the name of the target element.

Hyperlinks on operations

http://altova.com/support_help.html

© 2008 Altova GmbH

Hyperlinking modeling elements 99UModel User Interface

Altova UModel 2008

Hyperlinks from a state machine entry action

To create a link to a specific diagram element:
1. Create the hyperlink as before but click the + sign to expand the diagram contents.

2. Select the specific modeling element you want to link to and click OK to confirm.

Clicking the link icon opens the designated diagram with the element visible and

100 UModel User Interface Hyperlinking modeling elements

© 2008 Altova GmbHAltova UModel 2008

selected.

To create a link to a document:
1. Click the Add File Link button in the Edit Hyperlinks dialog box.
2. Select the document that you want to link e.g. *.DOC, *.XLS, *.PDF etc.

To create a hyperlink from a note:
1. Select the text in the note by dragging or double clicking a word.
2. Right click the selected text and select the menu object Insert/Edit Hyperlinks.
3. Use the Edit Hyperlinks dialog box to create a link to a diagram.

To navigate to a hyperlink target:
1. Click the hyperlink icon in the modeling element.

If only one target is defined then the target diagram, website etc., will appear
immediately.

If multiple targets were defined, a popup dialog appears allowing you to select one of
the available targets.

Clicking the first item opens the Hierarchy of Account diagram.

Navigating hyperlinks:

 Click the Previous and Next icons, in the main icon bar, to navigate the
source and destination links.

To edit/change a hyperlink target:
1. Right click the link icon and select Insert, edit or remove hyperlinks item.
2. Use the Edit Hyperlinks dialog box in to manage your hyperlinks.

© 2008 Altova GmbH

Bank samples 101UModel User Interface

Altova UModel 2008

5.13 Bank samples

The ...\UModelExamples folder contains sample files which show different aspects of UML
modeling in UModel. They are designed to show language specific models for Java, C# and a
combination of both languages in one modeling project.

The Bank_Java.ump sample file is shown below:
 the Java profile has been assigned to the Bankview package
 the Java namespace root has been assigned to the Banking access and BankView

packages.
 the Interaction View package contains two interaction elements which each contain a

sequence diagram.

The Bank_CSharp.ump sample file is shown below:
 the C# profile has been assigned to the BankView package
 the C# namespace root has been assigned to the Banking access and BankView

packages.
 the Interaction View package contains two interaction elements which each contain a

sequence diagram.

102 UModel User Interface Bank samples

© 2008 Altova GmbHAltova UModel 2008

The Bank_MultiLanguage.ump sample file is shown below:
 the Java profile has been assigned to the BankView package
 the C# namespace root has been assigned to the Bank Server package
 the Java namespace root has been assigned to the BankView package.
 the Interaction View package contains two interaction elements which each contain a

sequence diagram.

Chapter 6

UModel Command line interface

104 UModel Command line interface

© 2008 Altova GmbHAltova UModel 2008

6 UModel Command line interface

UModel now supports batch-processing. A UModelBatch.exe file is available in the ...\UModel
2008 folder.

The command line parameter syntax is shown below, and can be displayed in the command
prompt window by entering: umodelbatch /?

Please note:
If the path, or file name contains a space, please use quotes around the path/file
name i.e. "c:\Program Files\...\File name"

usage: umodelbatch [project] [options]

/? or /help ... display this help information

project ... project file (*.ump)
/new[=file] ... create/save/save as new project, see also File: New/Load/Save
options

/set ... set options permanent
/gui ... display UModel user interface

commands (executed in given order):
/chk ... check project syntax
/isd=path ... import source directory
/isp=file ... import source project file

(*.project,*.xml,*.jpx,*.csproj,*.csdproj,*.vbproj,*.vbdproj,*.sln,*.bdsproj)
/ibt=list ... import binary types (specify binary[typenames] list)
 (';'=separator, '*'=all types, '#' before assembly names)
/ixd=path ... import XML schema directory
/ixs=file ... import XML schema file (*.xsd)
/m2c ... update program code from model (export/forward engineer)
/c2m ... update model from program code (import/reverse engineer)
/ixf=file ... import XMI file
/exf=file ... export to XMI file
/inc=file ... include file
/mrg=file ... merge file
/doc=file ... write documentation to specified file
/lue[=cpri] ... list all elements not used on any diagram (i.e. unused)
/ldg ... list all diagrams
/lcl ... list all classes
/lsp ... list all shared packages
/lip ... list all included packages

options for import commands:
/iclg=lang ... code language (Java1.4 | Java5.0 | Java6.0 | C#1.2 | C#2.0 |
C#3.0 | VB7.1 | VB8.0 | VB9.0)
/ipsd[=0|1] ... process sub directories (recursive)
/ijdc[=0|1] ... JavaDocs as Java comments
/icdc[=0|1] ... DocComments as C# comments
/icds[=lst] ... C# defined symbols
/ivdc[=0|1] ... DocComments as VB comments
/ivds[=lst] ... VB defined symbols (custom constants)
/imrg[=0|1] ... synchronize merged
/iudf[=0|1] ... use directory filter
/iflt[=lst] ... directory filter (presets /iudf)

options for import binary types (after /iclg):
/ibrt=vers ... runtime version

© 2008 Altova GmbH

 105UModel Command line interface

Altova UModel 2008

/ibpv=path ... override of PATH variable for searching native code libraries
/ibro[=0|1] ... use reflection context only
/ibua[=0|1] ... use add referenced types with package filter
/ibar[=flt] ... add referenced types package filter (presets /ibua)
/ibot[=0|1] ... import only types
/ibuv[=0|1] ... use minimum visibility filter
/ibmv[=key] ... keyword of required minimum visibility (presets /ibuv)
/ibsa[=0|1] ... suppress attribute sections / annotation modifiers
/iboa[=0|1] ... create only one attribute per attribute section
/ibss[=0|1] ... suppress 'Attribute' suffix on attribute type names

options for diagram generation:
/dgen[=0|1] ... generate diagrams
/dopn[=0|1] ... open generated diagrams
/dsac[=0|1] ... show attributes compartment
/dsoc[=0|1] ... show operations compartment
/dscc[=0|1] ... show nested classifiers compartment
/dstv[=0|1] ... show tagged values

options for export commands:
/ejdc[=0|1] ... Java comments as JavaDocs
/ecdc[=0|1] ... C# comments as DocComments
/evdc[=0|1] ... VB comments as DocComments
/espl[=0|1] ... use user defined SPL templates
/ecod[=0|1] ... comment out deleted
/emrg[=0|1] ... synchronize merged
/egfn[=0|1] ... generate missing file names
/eusc[=0|1] ... use syntax check

options for XMI export
/exid[=0|1] ... export UUIDs
/exex[=0|1] ... export UModel specific extensions
/exdg[=0|1] ... export diagrams (presets /exex)
/exuv[=ver] ... UML version (UML2.0 | UML2.1.2)

options for documentation generation
/doof[=fmt] ... output format (HTML | RTF | MSWORD)

In the projects section:

The /new parameter defines the path and file name of the new project file (*.ump). It can also
be used to save an existing project under a different name e.g. UmodelBatch.exe MyFile.ump
/new=MyBackupFile.ump see also File: New/Load/Save options.

The /set parameter overwrites current default settings in the registry, with the options/settings
defined here.

The /gui parameter displays the UModel interface during the batch process.

Example 1:
Import source code and create new project file:

"C:\Program Files\Altova\UModel2008\UModelBatch.exe" /new="C:\Program
Files\Altova\UModel2008\UModelBatchOut\Fred.ump"
/isd="X:TestCases\UModel\Fred" /set /gui /iclg=Java5.0 /ipsd=1 /ijdc=1 /dgen=1
/dopn=1 /dmax=5 /chk

/new: Specifies that the newly-created project file should be called "Fred.ump" in
C:\Program Files\Altova\UM odel2008 \UModelBatchOut\

 /isd= Specifies that the root directory to import into should be
"X:\TestCases\UModel\Fred"

106 UModel Command line interface

© 2008 Altova GmbHAltova UModel 2008

/set: Specifies that any options used in the command line tool will be saved in the
registry (When subsequently starting UModel, these settings become the
default settings).

/gui: display the UModel GUI during batch processing

 /iclg: UModel will import the code as Java5.0

 /ipsd=1: recursively process all subdirectories of the root directory specified in the /isd
parameter

 /pfd=1: creates packages in the UModel project for each imported directory

 /ijdc=1: created JavaDoc from comments where appropriate

 /dgen=1: generates diagrams

 /dopn=1: opens generated diagrams

 /dmax=5: will open a maximum of 5 diagrams

 /chk: performs a syntax check

Example 2:
Imports source code from X:\TestCases\UModel, and saves the resulting project file in
"C:\Program...".

"C:\Program Files\Altova\UModel2008\UModelBatch.exe" /new="C:\Program
Files\Altova\UModel2008\UModelBatchOut\finalclass.ump"
/isd="X:\TestCases\UModel\
" /iclg=Java5.0 /ipsd=1 /ijdc=1 /dgen=1 /dopn=1 /dmax=5 /dsat=1 /dsnc=1 /chk

/dsat=1: suppresses attributes in the generated diagrams
/dsnc=1: suppresses nested classifiers in the generated diagrams

Example 3:
Synchronize code using existing project file (e.g. one of the ones created above).

"C:\Program Files\Altova\UModel2008\UModelBatch.exe" "C:\Program Files\Altova\
UModel2008\UModelBatchOut\Fred.ump" /m2c /ejdc=1 /ecod=1 /emrg=1 /egfn=1
/eusc=1

"C:\Program Files\Altova\UModel2008 \UModelBatchOut\Fred.ump": the project file we want to
use.

/m2c update the code from the model

/ejdc: comments in the project model should be generated as JavaDoc

/ecod=1: comment out any deleted code

/emrg=1 synchronize the merged code

/egfn=1: generate any missing filenames in the project

/eusc=1 use the syntax check

© 2008 Altova GmbH

File: New / Load / Save options 107UModel Command line interface

Altova UModel 2008

6.1 File: New / Load / Save options

Full batch mode i.e. /gui parameter not used.

new
UModelBatch /new=xxx.ump (options)
creates a new project, executes options, xxx.ump is always saved (regardless of
options)

auto save
UModelBatch xxx.ump (options)
loads project xxx.ump, executes options, xxx.ump is saved only if document has
changed (like /ibt)

save
UModelBatch xxx.ump (options) /new
loads project xxx.ump, executes options, xxx.ump is always saved (regardless of
options)

save as
UModelBatch xxx.ump (options) /new=yyy.ump
loads project xxx.ump, executes options, always saves xxx.ump as yyy.ump
(regardless of options)

Batch mode with UModel user interface visible i.e. /gui parrameter used.

new
UModelBatch /gui /new (options)
creates a new project, executes options, nothing saved, gui is left open

save new
UModelBatch /gui /new=xxx.ump (options)
creates a new project, executes options, xxx.ump saved, gui is left open

user mode
UModelBatch /gui xxx.ump (options)
loads project xxx.ump, executes options, nothing saved, gui is left open

save
UModelBatch /gui xxx.ump (options) /new
loads project xxx.ump, executes options, xxx.ump is saved, gui is left open

save as
UModelBatch /gui xxx.ump (options) /new=yyy.ump
loads project xxx.ump, executes options, xxx.ump is saved as yyy.ump, gui is left open

If "hard" errors occur on executing the other options nothing will be saved in all cases!
??

Chapter 7

Projects and code engineering

110 Projects and code engineering

© 2008 Altova GmbHAltova UModel 2008

7 Projects and code engineering

UModel now supports all Java specific constructs, among them:

 Java annotations
 Attributes, operations and nested qualifiers for EnumerationLiterals
 Enumerations can realize interfaces
 Netbeans project files

Reverse engineering now supports:

 The ability to generate a single diagram for all reverse engineered elements
 Possibility to show/hide anonymous bound elements on diagrams
 Ability to automatically create hyperlinks from packages to their corresponding package

content diagrams during the import process.

To create a new project:
1. Click the New icon in the icon bar, (or select the menu item File | New).

The Root and Component packages are automatically inserted when a new project is created,
and are visible in the Model Tree tab. A new project with the default name NewProject1 is
created. Note that starting UModel opens a new project automatically.

A newly created UModel project consists of the following packages:

 Root package, and
 Component View package

These two packages are the only ones that cannot be renamed, or deleted.

All project relevant data is stored in the UModel project file, which has an *.ump extension.
Each folder symbol in the Model Tree tab represents a UML package!

UModel Project workflow:
UModel does not force you to follow any predetermined modeling sequence!

You can add any type of model element: UML diagram, package, actor etc., to the project in any
sequence (and in any position) that you want; Note that all model elements can be inserted,
renamed, and deleted in the Model Tree tab itself, you are not even forced to create them as
part of a diagram.

© 2008 Altova GmbH

 111Projects and code engineering

Altova UModel 2008

To insert a new package:
1. Right click the package you want the new package to appear under, either Root, or

Component View in a new project.
2. Select New | Package.

A new package is created under an existing one. The name field is automatically
highlighted allowing you to enter the package name immediately.

 Packages are the containers for all other UML modeling elements, use case diagrams,
classes, instances etc.

 Packages can be created, at any position in the Model Tree.
 Packages/contents can be moved/copied to other packages in the Model Tree (as well

as into valid model diagrams in the diagram tab).
 Packages and their contents can be sorted (in the Model Tree tab) according to

several criteria.
 Packages can be placed within other packages.
 Packages can be used as the source, or target elements, when merging, or

synchronizing code.

To have elements appear in a UML diagram, you have to:
1. Insert a new UML diagram, by right clicking and selecting New | (Class) Diagram.
2. Drag and drop an existing model element from the Model Tree into the newly created

Diagram, or
3. Use the context menu within the diagram view, to add new elements directly.

To save a project:
Select the menu option File | Save as... (or File | Save).

To open a project:
Select the menu option File | Open, or select one of the files in the file list.

Please note:
Changes made externally to the project file, or included file(s), are automatically
registered and cause a prompt to appear. You can then choose if you want to reload
the project or not.

112 Projects and code engineering Minimalist UModel project - starting from scratch

© 2008 Altova GmbHAltova UModel 2008

7.1 Minimalist UModel project - starting from scratch

This section describes the steps necessary to create a project from scratch and successfully
generate code for a single class. Although it is very minimalist, it uses various diagrams to show
how to add methods etc., it is not the absolute minimum needed to produce code. All of the
actions could be achieved using only the Model Tree tab, there is no need to use modeling
diagrams to create classes or methods.

Creating a new project and defining the Namespace Root
In the Model Tree pane of UModel,

1. Select File | New to create a new modeling project.
2. Right click the Root package and select New Element | Package, name the package

e.g. MyPackage.

3. Right click MyPackage and select Code Engineering | Set as Java Namespace Root,
click OK to apply the UModel Java profile to the package.
This adds a Java Profile package to the Model Tree.

Including Java Lang to supply JDK datatypes
1. Click the Root package and select the menu option Project | Include Subproject.
2. Click the Java 1.4 tab and select the Java Lang.ump package. Click OK to use the

default option "Include by reference".
This adds a Java Lang, and an Unknown Externals package to the Model Tree.

Creating the class properties and methods
1. Right click MyPackage and select New Diagram | Class Diagram.
2. Right click in the class diagram and select New | Class to create a new class in the

diagram e.g. MyClass.
3. Press F7 and add some attributes e.g. UserName:String and Password:String.
4. Press F8 and add some operations e.g. GetUserName:String and GetPassword:String.

© 2008 Altova GmbH

Minimalist UModel project - starting from scratch 113Projects and code engineering

Altova UModel 2008

Creating a Component and defining the code directory
1. Right click the Component View package and add a new Component diagram.
2. Drag the MyFirstClass class element from the Model Tree into the Component

diagram.

3. Add a new component to the diagram e.g. MyComponent.
4. Click the component in the diagram to select it, then click in the directory field of the

Properties window and enter the directory you want the code to be placed in e.g. C:
\MyCode.

114 Projects and code engineering Minimalist UModel project - starting from scratch

© 2008 Altova GmbHAltova UModel 2008

Realizing the class
1. Click MyClass and drag the "ComponentRealization" handle at the bottom of the

element and drop it on the new component, MyComponent.

A class has to be "realized" before code can be generated. Note that you could also
drag the class and drop it on the component directly in the Model Tree.

Syntax check and generating code
1. Select Project | Check Project Syntax to check to see if everything is OK.

© 2008 Altova GmbH

Minimalist UModel project - starting from scratch 115Projects and code engineering

Altova UModel 2008

Zero errors and one warning are generated. Although the code name was not
previously set, a default name will be generated automatically.

2. Select Project | Merge Project code from UModel Project... to output/generate the
Java code.

116 Projects and code engineering Importing source code into projects

© 2008 Altova GmbHAltova UModel 2008

7.2 Importing source code into projects

Source code can be imported as a source project or as a source directory. For an example of
importing a source directory please see Round-trip engineering (code - model - code) in the
tutorial.

 JBuilder .jpx, Eclipse .project project files, as well as NetBeans (project.xml) are
currently supported.

 C# projects / Visual Basic projects:
- MS Visual studio.NET projects, sln, csproj, csdprj..., vbproj, vbp as well as
- Borland .bdsproj project files

To import an existing project into UModel:
1. Select Project | Import source project.

2. Click the browse button in the "Import Source Project" dialog box.

3. Select the project file type e.g. .jpx and click Open to confirm. This Jbuilder project file
is available in the OrgChart.zip file in the ...\UModelExamples folder.

© 2008 Altova GmbH

Importing source code into projects 117Projects and code engineering

Altova UModel 2008

4. Make sure that you have activated the Enable diagram generation check box, and
select any other specific import settings you need, and click Next.

Note that UModel can generate a single overview diagram and/or a diagram for each
package. The settings shown above are the default settings.

5. Click Next to continue.
This dialog box allows you to define the package dependency generation settings.

118 Projects and code engineering Importing source code into projects

© 2008 Altova GmbHAltova UModel 2008

6. Click Finish to use the default settings.

The project is parsed and the UModel model is generated.

Please note:
If you are importing into an existing project, you will be prompted for the package it
should be imported into. If you are using a new project, an OrgChart folder is
automatically created.

© 2008 Altova GmbH

Importing source code into projects 119Projects and code engineering

Altova UModel 2008

Defined symbols
C# or Visual Basic code allow you to enter a list of "Defined symbols" in the field of that name.
These directives are used to conditionally compile sections of code. Enter these directives as a
semicolon delimited list. Code not enclosed within these directives will be commented out??.

E.g. #If DEBUG Then
Dim i = 10
#Else
dim a = 20
#End If

Raised exceptions
Clicking an operation in one of the classes, then clicking the Exception combo box,
displays the exception information that an operation can throw.

120 Projects and code engineering Importing Java, C# and VB binaries

© 2008 Altova GmbHAltova UModel 2008

7.3 Importing Java, C# and VB binaries

UModel now supports the import of C# , Java and VB binaries. This is extremely useful when
working with binaries from a third party, or the original source code has become unavailable.

If you intend to import Java and/or C# binary files, the following programs/components must be
installed:

Java 1.4 / 5.0:
Sun Java Runtime Environment (JRE), or Development Kit (JDK) in Versions 1.4, 1.5, 1.6

UModel support:
Type import is supported for all Class Archives targeting these environments, i.e.
adhering to the Java Virtual Machine Specification.

C# 2.0 / C# 3.0: / Visual Basic 7.1, 8.0 and 9.0
.NET Framework 2.0, 3.0 and 8.0

UModel support:
Type import is supported for Assemblies targeting:

.NET Framework 1.1, 2.0, 3.0, 8.0

.NET Compact Framework v1.0, v2.0 (for PocketPC, Smartphone, WindowsCE)

Restrictions:
Assembly mscorlib with the .NET core types can only be imported from the .NET
Framework 2.0

These requirements only apply if you intend to import Java or C# binaries; if you do not, there is
no need for the Java Runtime Environment, or the MS .NET Framework to be installed.

The import of either Java, or C#, obfuscated binaries is not supported.

To import binary files:
1. Select the menu option Project | Import Binary Types.

2. Select the language and runtime edition, then click Next.
This opens the Import Binary Selection dialog box.

© 2008 Altova GmbH

Importing Java, C# and VB binaries 121Projects and code engineering

Altova UModel 2008

3. Click the Add button and select the Class Archive from the flyout window, e.g. Class
Archives from Java Runtime... .

3. Click the "+" expand button to expand the list of binaries, and activate the check box
(es) of those that you want to import (the first three in the screen shot below), then click
Next.

This opens the Import Binary Options dialog box.

122 Projects and code engineering Importing Java, C# and VB binaries

© 2008 Altova GmbHAltova UModel 2008

4. Select the specific options you need and click Next to continue.

5. Define the Import Target, or click the Import in new Package check box, then click
Next.

© 2008 Altova GmbH

Importing Java, C# and VB binaries 123Projects and code engineering

Altova UModel 2008

6. Select the Content Diagram Generation properties from the dialog box and click Next to
continue.
Note that you can generate a single diagram for each package, as well a single
overview diagram.

7. Select the Package Dependency options that you would like to include and click Finish
to complete the import procedure.
The screenshot below shows the diagram containing the package dependencies of the
Java binaries.

124 Projects and code engineering Importing Java, C# and VB binaries

© 2008 Altova GmbHAltova UModel 2008

8. Click the other tabs to see the class files etc.

Please note:
Clicking the link icon of a folder, automatically opens the referenced diagram.

© 2008 Altova GmbH

Synchronizing Model and source code 125Projects and code engineering

Altova UModel 2008

7.4 Synchronizing Model and source code

UModel allows you to synchronize model and code from both sides.

Code / model synchronization:
Code can be merged/synchronized at different levels described below. When using the context
menu, e.g. when right clicking a class, the context menu reflects your selection in the menu
option. Note that the Project menu only allows you to synchronize at the root/project level.

Project, Root package level:
1. Right click the Root package.
2. Select one of the code merging options: Merge Program..., or Merge UModel project...

Alternatively, use the Project menu.

Package level:
1. Use SHIFT, or CTRL + click to select the package(s) you want to merge.
2. Right click the selection, and select one of the code merging options:

Merge Program..., or Merge UModel project...

Class level:
1. Use SHIFT, or CTRL + click to select the classes(s) you want to merge.
2. Right click the selection, and select one of the code merging options:

Merge Program..., or Merge UModel project...

Define your synchronization options by selecting:
1. Project | Synchronization options.

Each tab allows you to define the specific merge settings.
2. Click the "Project Settings" button to select the specific programming language settings.
3. Define you specific settings and confirm with OK.

Please note:
When synchronizing code, you might be confronted with a dialog box that prompts you
to update your UModel project before synchronization.

126 Projects and code engineering Synchronizing Model and source code

© 2008 Altova GmbHAltova UModel 2008

This only occurs if you are using UModel projects created before the latest release.
Please click YES to update your project, and save your project file. This prompt will not
occur once this has been done.

Updating your model - effects:
There are several way to do this as mentioned above:

 Project | Overwrite UModel Project from Program Code
- This checks all directories (project files) of all different code languages you have
defined in your project.
- New files are identified and added to the project.
- An entry "Collecting source files in 'C:\UMTest'" appears in your message window.

 Right-click a class, interface,… in the Model Tree and select Code Engineering |
Overwrite UModel Class from Program Code
- This updates the selected class (interface,…) of your project.
- Since missing classes cannot be selected, nothing will be added to the project.

 Right-click a Component in the Model Rree (normally within the Component View
package) and Code Engineering | Overwrite UModel Component from Program
Code
- This updates the corresponding directory (or project file) only.
- New files in the directory (project file) are identified and added to the project.
- An entry "Collecting source files in 'C:\UMTest'" appears in your message window.

SPL Templates:
SPL templates are used during the generation of Java, C# and VB code.

To modify the provided SPL templates:

1. Locate the provided SPL templates in the default directory: ...\UModel2008
\UModelSPL\Java\Default\. (or ...\C#\Default, ...\VB\Default.)

2. Copy the SPL files you want to edit/modify into the parent directory, i.e. ...\UModel2008
\UModelSPL\Java\.

3. Make your changes and save them there.

To use the user-defined SPL templates:
1. Select the menu option Project | Synchronization settings.
2. Activate the "User-defined override default" checkbox in the SPL templates group.

Then select one of the menu options shown below, to initiate the synchronization process.

 Project | Merge Program Code from UModel project, please see Round-trip
engineering (model - code - model) for more information, or

 Project | Merge UModel Project from Project code, please see Round-trip
engineering (code - model - code) for more information.

Please note:
SPL templates are only used/accessed when new code is generated, i.e. new classes,
operations etc. have been added to the model. Existing code does not access/use the
SPL templates.

© 2008 Altova GmbH

Synchronizing Model and source code 127Projects and code engineering

Altova UModel 2008

7.4.1 Synchronization tips

Renaming of classifiers and reverse engineering:
The process described below applies to the stand-alone application as well as to the plug-in
versions (VS .NET or Eclipse) when reverse engineering, or autosynchronization takes place.

Renaming a classifier in the code window, of your programming application, causes it to be
deleted and re-inserted as new classifier in the Model Tree.

The new classifier is only re-inserted in those modeling diagrams that are automatically
created during the reverse-engineering process, or when generating a diagram using the "
Show in new Diagram | Content" option. The new classifier is inserted at a default position, on
the diagram, that probably differs from the previous location.

To enable automatic generation of ComponentRealizations:

 Open the menu item Tool | Options, Click the Code Engineering tab and activate the
Generate missing ComponentRealizations.

Automatic generation of ComponentRealizations
UModel is now capable of automatically generating ComponentRealizations during the code
engineering process. ComponentRealizations are only generated where it is absolutely clear to
which component a class should be assigned:

 Only one VS .NET project file exists in the UMP project.
 Multiple VS .NET project exist but their classes are completely separate in the model.

Automatic ComponentRealizations are created for a Classifier that can be assigned ONE (and
only ONE) Component.
 without any ComponentRealizations, or
 contained in a code language namespace

The way the Component is found differs for the two cases:

Component representing a code project file (property "projectfile" set)
 if there is ONE Component having/realizing classifiers in the containing package
 if there is ONE Component having/realizing classifiers in a subpackage of the

containing package (top down)
 if there is ONE Component having/realizing classifiers in one of the the parent

packages (bottom up)
 if there is ONE Component having/realizing classifiers in a subpackage of one of the

the parent packages (top down)

Component representing a directory (property "directory" set)
 if there is ONE Component having/realizing classifiers in the containing package
 if there is ONE Component having/realizing classifiers in one of the the parent

packages (bottom up)

Notes:
 The option "Code Engineering | Generate missing ComponentRealizations" has to

be set.
 As soon as ONE viable Component is found during one of the above steps, this

Component is used and the remaining steps are ignored!

Error/Warnings:
 If no viable Component was found, a warning is generated (message log)

128 Projects and code engineering Synchronizing Model and source code

© 2008 Altova GmbHAltova UModel 2008

 If more than one viable Component was found, an error is generated (message log)

© 2008 Altova GmbH

Forward engineering prerequisites 129Projects and code engineering

Altova UModel 2008

7.5 Forward engineering prerequisites

Minimum conditions needed to produce code for forward engineering:

 A component must be realized by one or more classes, or interfaces.
 The component must have a physical location, i.e. directory, assigned to it. The

generated code is then placed in this directory.
 Components must be individually set to be included in the code engineering process.
 The Java, C#, or VB namespace root package must be defined.

To create a component realization:
1. Drag the class, or interface onto the respective component in the Model Tree view.

You can also create a realization in a component diagram using the Realization icon.

To assign a physical location:
1. Select the component in the Model Tree, or in the diagram.

2. Click the Browse button of the directory property and select a directory (or enter it
directly).

To include components in the code engineering process:
1. Select the component in the Model Tree, or in the diagram.
2. Activate the "use for code engineering" check box.

To define the Java namespace root:
1. Right clicking a package and selecting "Set as Java namespace root" sets the Java

namespace root.

This means that this package and all sub packages, are enabled during the code

130 Projects and code engineering Forward engineering prerequisites

© 2008 Altova GmbHAltova UModel 2008

engineering process. The Java namespace root is denoted with a icon in the Model
Tree pane.

 Selecting the command again removes the Java namespace for this package.

© 2008 Altova GmbH

Java code to/from UModel elements 131Projects and code engineering

Altova UModel 2008

7.6 Java code to/from UModel elements

The table below shows the one-to-one correspondence between:

 UModel elements and Java code elements, when outputting model to code
 Java code elements and UModel model elements, when inputting code into model

The screenshot shows a small section of the table. Please click HERE to open the HTML
version of the table in your browser.

http://www.altova.com/manual2008/UModel/umodelenterprise/umjava_code_tofrom_umodel_elemen2.htm

132 Projects and code engineering C# code to/from UModel elements

© 2008 Altova GmbHAltova UModel 2008

7.7 C# code to/from UModel elements

The table below shows the one-to-one correspondence between:

 UModel elements and C# code elements, when outputting model to code
 C# code elements and UModel model elements, when inputting code into model

The screenshot shows a small section of the table. Please click HERE to open the HTML
version of the table in your browser.

http://www.altova.com/manual2008/UModel/umodelenterprise/c_code_tofrom_umodel_elements2.htm

© 2008 Altova GmbH

XML Schema to/from UModel elements 133Projects and code engineering

Altova UModel 2008

7.8 XML Schema to/from UModel elements

The table below shows the one-to-one correspondence between:

 UModel elements and XML Schema elements, when outputting model to code
 XML Schema elements and UModel model elements, when inputting code into model

The screenshot shows a small section of the table. Please click HERE to open the HTML
version of the table in your browser.

http://www.altova.com/manual2008/UModel/umodelenterprise/umxml_schema_tofrom_umod_element.htm

134 Projects and code engineering VB.NET code to/from UModel elements

© 2008 Altova GmbHAltova UModel 2008

7.9 VB.NET code to/from UModel elements

The table below shows the one-to-one correspondence between:

 UModel elements and VB.NET code elements, when outputting model to code
 VB.NET code elements and UModel model elements, when inputting code into model

The screenshot shows a small section of the table. Please click HERE to open the HTML
version of the table in your browser.

http://www.altova.com/manual2008/UModel/umodelenterprise/umvb_code_tofrom_umod_elements.htm

© 2008 Altova GmbH

Including other UModel projects 135Projects and code engineering

Altova UModel 2008

7.10 Including other UModel projects

UModel is supplied with several files that can be included in a UModel project. Clicking one of
the Java tabs allows you to include Java lang classes, interfaces and packages in your project,
by selecting one of the supplied files.

1. Select Project | Include Subproject to open the "Include" dialog box.
2. Click the UModel project file you want to include, and press OK.

UModel projects can be included within other UModel projects. To include projects place the
respective *.ump files in:

 ...\UModel2008\UModelInclude to appear in the Basic tab, or

 ...\UModel2008\UModelInclude\Java1.4 / Java5.0 to appear in the Java tab.

Please note:
An include file, which contains all types of the Microsoft .NET Framework 2.0, is
available in the C# 2.0 tab.

To view all currently imported projects:

 Select the menu option Project | Open Subproject as project.
The flyout menu displays the currently included subprojects.

To create a user-defined tab/folder:
1. Navigate to the ...\UModel2008\UModelInclude and create/add your folder below

...\UModelInclude, i.e. ...\UModelInclude\myfolder.

136 Projects and code engineering Including other UModel projects

© 2008 Altova GmbHAltova UModel 2008

To create descriptive text for each UModel project file:
1. Create a text file using the same name as the *.ump file and place in the same folder.

Eg. the MyModel.ump file requires a descriptive file called MyModel.txt. Please make
sure that the encoding of this text file is UTF-8.

To remove an included project:
1. Click the included package in the Model Tree view and press the Del. key.
2. You are prompted if you want to continue the deletion process.
3. Click OK to delete the included file from the project.

Please note:
 To delete or remove a project from the "Include" dialog box, delete or remove the

(MyModel).ump file from the respective folder.

© 2008 Altova GmbH

Merging UModel projects 137Projects and code engineering

Altova UModel 2008

7.11 Merging UModel projects

It is now possible to merge two different UModel project files into a common UModel *.ump
model. This is useful if multiple persons are working on the same project at the same time, or
you just want to consolidate your work into one model.

To merge two UML projects:
1. Open the UML file that is to be the target of the merge process, i.e. the file into which

the second model will be merged - the merged project file.
2. Select the menu option Project | Merge Project....
3. Select the second UML project that is to be merged into the first one.

The message window reports on the merge process, and logs the relevant details.

Please note:
Clicking on one of the entries in the message window displays that modeling element in
the Model Tree.

Merging results:
 New modeling elements i.e. those that do not exist in the source, are added to the

merged model.

 Differences in the same modeling elements; the elements from the second model
take precedence, e.g. there can only be one default value of an attribute, the default
value of the second file is used.

 Diagram differences: UModel first checks to see if there are differences between
diagrams of the two models.

If there are, then the new/different diagram is added to the merged model (with a
running number suffix, activity1 etc.) and the original diagram is retained.

If there are no differences, then identical diagrams(s) are ignored, and nothing is
changed.

You can then decide which of the diagrams you want to keep or delete, you can of
course keep both of them if you want.

 The whole merge process can be undone step-by-step by clicking the Undo icon in the
icon bar, or pressing CTRL+Z.

 Clicking an entry in the message window displays that element in the Model Tree.

 The file name of the merged file, the first file you opened, is retained!

138 Projects and code engineering Sharing Packages and Diagrams

© 2008 Altova GmbHAltova UModel 2008

7.12 Sharing Packages and Diagrams

UModel allows you to share packages and UML diagrams they might contain, between different
projects. Packages can be included in other UModel projects by reference, or as a copy.

Shared package prerequisites:

 Links to other packages outside of the shared scope are not permissible.

To share a package between projects:
1. Right click a package in the Model Tree tab and select Subproject | Share package.

A "shared" icon appears below the shared package in the Model Tree. This package
can now be included in any other UModel project.

To include/import a shared folder in a project:
1. Open the project which should contain the shared package (an empty project in this

example).

2. Select the menu item Project | Include Subproject...
3. Click the Browse button, select the project that contains the shared package and click

Open.

The "Include" dialog box allows you to choose between including the package/project

© 2008 Altova GmbH

Sharing Packages and Diagrams 139Projects and code engineering

Altova UModel 2008

by reference, or as a copy.
4. Select the specific option (Include by reference) and click OK.

The "Deployment View" package is now visible in the new package. The packages'
source project is displayed in parenthesis (BankView-start.ump).

Shared folders that have been included by reference can be changed to "Include by
copy" at any time, by right clicking the folder and selecting Subproject | Include as a
Copy.

Please note:
All included projects of the source project, have also been included: Java Lang,
Unknown Externals and Java Profile.

Shared packages - links to external elements:

Attempting to share a package which has links to external elements causes a prompt to appear.
E.g. trying to share the BankView package.

Clicking Yes, forces you to resolve the external links before you can save.

The Messages pane provides information on each of the external links.

140 Projects and code engineering Sharing Packages and Diagrams

© 2008 Altova GmbHAltova UModel 2008

Clicking an error entry, in the Messages pane, displays the relevant element in the Model Tree
tab.

© 2008 Altova GmbH

UML templates 141Projects and code engineering

Altova UModel 2008

7.13 UML templates

UModel now supports the use of UML templates and their mapping to/from Java 5.0, C# and
Visual Basic generics.

 Templates are "potential" model elements with unbound formal parameters.

 These parameterized model elements, describe a group of model elements of a
particular type: classifiers, or operations.

 Templates cannot be used directly as types, the parameters have to be bound.

 Instantiate means binding the template parameters to actual values.

 Actual values for parameters are expressions.

 The binding between a template and model element, produces a new model element (a
bound element) based on the template.

 If multiple constraining classifiers exist in C#, then the template parameters can be
directly edited in the Properties tab, when the template parameter is selected.

Template signature display in UModel:

 Class template called MyVector, with formal template parameter "T", visible in the
dashed rectangle.

 Formal parameters without type info (T) are implicitly classifiers: Class, Datatype,
Enumeration, PrimitiveType, Interface. All other parameter types must be shown
explicitly e.g. Integer.

 Property myArray with unbounded number of elements of type T.

Right clicking the template and selecting Show | Bound elements, displays the actual
bound elements.

Template binding display:

 A bound named template intvector

 Template of type, MyVector, where
 Parameter T is substituted/replaced by int.

 "Substituted by" is shown by - >.

Template use in properties/operations:

An anonymous template binding:
 Property MyFloatVector of type MyVector<T->float>

142 Projects and code engineering UML templates

© 2008 Altova GmbHAltova UModel 2008

Templates can also be defined when defining properties or operations. The autocomplete
function helps you with the correct syntax when doing this.

 Operation1 returns a vector of floats.

© 2008 Altova GmbH

UML templates 143Projects and code engineering

Altova UModel 2008

7.13.1 Template signatures

A Template signature is a string that specifies the formal template parameters. A template is a
parameterized element that is used to generate new model elements by substituting/binding the
formal parameters to actual parameters (values).

Formal template parameter
T
Template with a single untyped formal parameter
(stores elements of type T)

Multiple formal template parameters
KeyType:DateType, ValueType

Parameter substitution
T>aBaseClass

The parameter substitution must be of type "aBaseClass", or derived from it.

Default values for template parameters
T=aDefaultValue

Substituting classifiers
T>{contract}aBaseClass

allowsSubstitutable is true
Parameter must be a classifier that may be substituted for the classifier designated by
the classifier name.

Constraining template parameters
T:Interface>anInterface

When constraining to anything other than a class, (interface, datatype), the constraint is
displayed after the colon ":" character. E.g. T is constrained to an interface (T:Interface)
which must be of type "anInterface" (>anInterface).

Using wildcards in template signatures
T>vector<T->?<aBaseClass>

Template parameter T must be of type "vector" which contains objects which are a
supertype of aBaseClass.

Extending template parameters
T>Comparable<T->T>

144 Projects and code engineering UML templates

© 2008 Altova GmbHAltova UModel 2008

7.13.2 Template binding

Template binding involves the substitution of the formal parameters by actual values, i.e. the
template is instantiated. UModel automatically generates anonymously bound classes, when
this binding occurs. Bindings can be defined in the class name field as shown below.

Substituting/binding formal parameters
vector <T->int>

Create bindings using the class name
a_float_vector:vector<T->float>

Binding multiple templates simultaneously
Class5:vector<T->int, map<KeyType->int, ValueType<T->int>

Using wildcards ? as parameters (Java 5.0)
vector<T->?>

Constraining wildcards - upper bounds (UModel extension)
vector<T->?>aBaseClass>

Constraining wildcards - lower bounds (UModel extension)
vector<T->?<aDerivedClass>

© 2008 Altova GmbH

UML templates 145Projects and code engineering

Altova UModel 2008

7.13.3 Template usage in operations and properties

Operation returning a bound template
Class1
Operation1():vector<T->int>

Parameter T is bound to "int". Operation1 returns a vector of ints.

Class containing a template operation
Class1
Operation1<T>(in T):T

Using wildcards
Class1
Property1:vector<T->?>

This class contains a generic vector of unspecified type (? is the wildcard).

Typed properties can be displayed as associations:

 Right click a property and select Show | PropertyX as Association, or

 Drag a property onto the diagram background.

146 Projects and code engineering Project Settings

© 2008 Altova GmbHAltova UModel 2008

7.14 Project Settings

This option allows you to define the global project settings.

Select the menu item Tools | Options to define your local settings, please see Tools | Options
in the Reference section for more details on the local settings.

© 2008 Altova GmbH

Enhancing performance 147Projects and code engineering

Altova UModel 2008

7.15 Enhancing performance

Due to the fact that some modeling projects can become quite large, there are a few ways you
can enhance the modeling performance:

 Make sure that you are using the latest driver for your specific graphics card (resolve
this before addressing the following tips)

 Disable syntax coloring - Styles tab | Use Syntax Coloring = false.

 Disable "gradient" as a background color for diagrams, use a solid color. E.g. Styles
tab | Diagram background color | White.

 The automatically enabled autocompletion can be deactivated using Tools | Options |
Diagram Editing then unchecking the "Enable automatic entry helper" check box.

Chapter 8

Creating model relationships

150 Creating model relationships

© 2008 Altova GmbHAltova UModel 2008

8 Creating model relationships

Model relationships can be created and inserted into diagrams using several methods:

 By clicking the aggregation , or composition icons in the icon bar.
 By using the connection handles, please see Use cases for an example.

 By clicking the association icon in the icon bar, and creating a connection between
elements using drag and drop

When an association has been created, a new attribute is automatically inserted in the
originating (A:name) class, e.g. Property1:Class2, in the example below.

Having created the association it is shown as active, and the Properties tab displays its
properties. A text label shows the default name of the member end of the association, i.e.
Property1. Note that the context menu option Text Label... allows you to show / hide labels.

Clicking an association line, displays the association properties in the Properties tab. A:Name
and B:Name indicate the role of each class in the other.

Depending on the "memberEndKind" - property (of A:name "Property1"):
the attribute either belongs to:

 the class - i.e. A:memberEndKind = memberEnd, (attribute is visible in class1), or

 the association - i.e. B:memberEndKind = ownedEnd (attribute not visible in class2).

If both attributes belongs to the association, i.e. both ends are defined as "ownedEnd,
then this association becomes bi-directional, and the navigability arrow disappears.
Both ends of the association are "ownedEnd".

© 2008 Altova GmbH

 151Creating model relationships

Altova UModel 2008

If the memberEndKind of any of the association is set to "navigableOwnedEnd, then the
attribute is still part of the association, but the navigability arrow reappears depending on which
end (A:name or B:Name) it is set.

To define the type of association (association, aggregate, or composite)
1. Click the association arrow.
2. Scroll down to the aggregation item in the Properties tab.
3. Select: none, shared or composite.

None: a standard association
shared: an aggregate association
composite: a composite association.

Please note:
Associations can be created using the same class as both the source and target. This
is a so-called self link. It describes the ability of an object to send a message to itself,
for recursive calls.

Click the relationship icon, then drag from the element, dropping somewhere else on
the same element. A self-link appears.

Displaying associations in Diagrams automatically
When inserting diagram elements in a diagram, the "Automatically create Associations" option
in the Tools | Options | Editing tab, allows existing associations between modeling elements
to be automatically created/displayed in the current diagram. This occurs if the attributes type is
set, and the referenced "type" modeling element is in the current diagram.

Deleting relationships/associations:
1. Click the relationship in the diagram tab, or in the Model Tree.
2. Press the Del. keyboard key.

The dependency is deleted from the diagram and project.

Deleting class associations:
Deleting a class association does not delete the attribute/property that was automatically
generated, from the class!

1. Right click the attribute/property in the class.
2. Select the option "Delete PropertyX" from "ClassX" to delete it.

Creating association qualifiers:
1. Having defined an association between two classes
2. Right click the association line and select New | Qualifier.

Please note that qualifiers are attributes of an association.

152 Creating model relationships Associations, realizations and dependencies

© 2008 Altova GmbHAltova UModel 2008

8.1 Associations, realizations and dependencies

Creating relationships using connection handles:
1. Given two classes in the class diagram,
2. Click the first class to make it the active class.

Connection handles appear on three sides.
3. Move the mouse pointer over the top handle on the right side of the class.

A Tooltip appears, informing you of the type of relationship that this handle creates,
Association in this case.

4. Drag to create a connector, and drop it on the second class.
The target class is highlighted if this type of association is possible.

An association has now been created between these two classes.

Note that the lower handle of the class element creates a Collection Association.

Elements in the various model diagrams supply you with different connection handles.
E.g. a class in a class diagram supplies the following relationship handles (in clockwise
fashion):
 InterfaceRealization
 Generalization
 Association

An Artifact in the Deployment view supplies the following handles:
 Manifestation
 Association
 Deployment

Creating relationships using icons in the icon bar:
Given two elements in a modeling diagram,

1. Click the icon that represents the relationship you want to create e.g. association,
aggregation, or composition.

2. Drag from the one object to the other, and drop when the target element is highlighted.

When creating a new association, a new attribute is automatically inserted in the
originating (A:name) class, Property1:Class2, in the example below.

© 2008 Altova GmbH

Associations, realizations and dependencies 153Creating model relationships

Altova UModel 2008

UModel always shows all attributes of a class!

Please note:
The screenshots in this manual do not show the Association Ownership dot.

To enable it, set the Show Assoc. Ownership, in the Styles tab, to true.

Deleting relationships/associations:
1. Click the relationship in the diagram tab, or in the Model Tree.
2. Press the Del. keyboard key.

The dependency is deleted from the diagram and project.

Deleting class associations:
Deleting a class association does not delete the attribute/property that was automatically
generated, from the class!

1. Right click the attribute/property in the class.
2. Select the option "Delete PropertyX" from "ClassX" to delete it.

Collection Associations
UModel supports a special a special type of viewing Collection Associations.

Collection associations are special associations for collection templates. A class property (e.g.
interface) can generally be shown as an association to the "type" of the property. UModel also
allows an alternalte method of viewing this type of association.

Click on the lower of the two class handles on the right of the class, then drag and drop the
connector onto the target class.

Select the collection type from the popup menu.

A different type of association arrow is created.

154 Creating model relationships Associations, realizations and dependencies

© 2008 Altova GmbHAltova UModel 2008

Example:
If associations are automatically created during reverse engineering, you will see them as
Collection Associations if the settings in the Diagram Editing tab are set to: Resolve collections
and are also available in the Collection Templates dialog box.

The double arrow head shows that the "type" of myColors is not only Color, but a "collection of"
Colors.
The assocation will not be shown as List<E->Color>, but directly to the enumeration "Color",
thus hiding the information that Color is used in a template binding.

The concrete collection type of myColors can still be seen in the myColorsContainer, but not in
the association.

The Diagram Editing tab of the Tools | Options dialog box allows you to specify the templates
where you want this behavior and whether you want the collections to be resolved.

© 2008 Altova GmbH

Showing model relationships 155Creating model relationships

Altova UModel 2008

8.2 Showing model relationships

Showing relationships between modeling elements:
1. Right click the specific element and select Show.

The popup menu shown below is context specific, meaning that only those options are
available that are relevant to the specific element.

To show / hide text labels:

 Right click a class or association arrow and select Text labels | Show (Hide) all Text
labels.

To show a class attribute/property as an association:
1. Right click the property in the class.

156 Creating model relationships Showing model relationships

© 2008 Altova GmbHAltova UModel 2008

2. Select the menu option Show | "PropertyXX" as Association.
This inserts/opens the referenced class and shows the relevant association.

Chapter 9

Stereotypes and Profiles

158 Stereotypes and Profiles

© 2008 Altova GmbHAltova UModel 2008

9 Stereotypes and Profiles

The Profiles package is used to extend the UML meta model. The primary extension construct
is the Stereotype, which is itself part of the profile. Profiles must always be related to a
reference meta model such as UML, they cannot exist on their own.

The Java Profile.ump (C# Profile.ump or VB Profile.ump) file needs to be applied when
creating new UModel projects using the menu item Project | Include Subproject. This profile
supplies the Java datatypes and stereotypes, and is essential when creating code for round-trip
engineering.

The Bank_CSharp.ump sample file (in the ...\UModelExamples folder) shows how this is
done. The C# profile has been applied to the BankView package.

 Profiles are specific types of packages, that are applied to other packages.
 Stereotypes are specific metaclasses, that extend standard classes.
 "Tagged values" are values of stereotype attributes.

A Profile Application shows which profiles have been applied to a package, and is a type of
package import that states that a Profile is applied to a Package. The Profile extends the

package it has been applied to. Applying a profile, using the ProfileApplication icon , means
that all stereotypes that are part of it, are also available to the package.

Profile names are shown as dashed arrows from the package to the applied profile, along with
the <<apply>> keyword.

Stereotypes:
A stereotype defines how an existing metaclass may be extended. It is a kind of class that
extends Classes through Extensions. Stereotypes can only be created in Profiles. Stereotypes
are displayed as classes, in class diagrams, with the addition of the keyword <<stereotype>>

© 2008 Altova GmbH

 159Stereotypes and Profiles

Altova UModel 2008

added above the name of the class.

 Stereotypes may have properties, which are called "tag definitions"
 When the stereotype is applied to a model element, the property values are called "

tagged values"
 When stereotypes containing properties are applied, the tagged values are

automatically displayed in a comment element (shown below). Please see Tagged
values for more info on how to customize the tagged values view

 Stereotypes have their own style family
 If the attribute is of type "enumeration", then an popup menu allows you to select from

the predefined values. You can also enter/select the specific value in the Properties tab
e.g. <<GetAccessor>> visibility = public, protected etc.

160 Stereotypes and Profiles Adding Stereotypes and defining tagged values

© 2008 Altova GmbHAltova UModel 2008

9.1 Adding Stereotypes and defining tagged values

This section uses the Bank_MultiLanguage.ump file available in the ...\UModelExamples
folder.

Creating a stereotype and defining its attributes
1. Create a new profile in the Model Tree view, e.g. right click the Root package and

select New | Profile and name it "MyProfile".

2. Right click MyProfile and select New Diagram | Class Diagram.
3. Drag the newly created profile "MyProfile", from the Model Tree into the new class

diagram.
4. Drag the DesignView package into the new class diagram as well.

5. Click the ProfileApplication icon in the icon bar, select the DesignView package
and drag the connector onto the MyProfile package.

This allows the stereotypes defined in this profile (MyProfile) to be used in the
DesignView package, or any of its subpackages.

6. Click the stereotype icon in the icon bar and insert a stereotype "class", e.g.
MyKeyValuePair.

© 2008 Altova GmbH

Adding Stereotypes and defining tagged values 161Stereotypes and Profiles

Altova UModel 2008

7. Press F7 to add an attribute to the stereotype e.g. MyKey1. Do the same thing to add
MyKey2.

This concludes the definition of the stereotype for the moment. We can now use/assign
the stereotype when adding an attribute to a class which is part of the BankView
package.

Using / assigning stereotypes
1. Double click the BankView Main class diagram icon in the Model Tree.

162 Stereotypes and Profiles Adding Stereotypes and defining tagged values

© 2008 Altova GmbHAltova UModel 2008

This opens the class diagram and displays the associations between the various
classes. We now want to add an attribute to the BankView class, and assign/use the
previously defined stereotype.

2. Click the BankView class and press F7 to add an attribute.
3. Use the scrollbar of the Properties tab to scroll to the bottom of the list. Notice that the

MyKeyValuePair stereotype is available in the list box.

4. Click the MyKeyValuePair check box to activate/apply it. The two tagged values
MyKey1 and MyKey2, are now shown under the Stereotype entry.

5. Double click in the respective fields and enter some values.

© 2008 Altova GmbH

Adding Stereotypes and defining tagged values 163Stereotypes and Profiles

Altova UModel 2008

Displaying tagged values in a diagram
1. Click the Styles tab, scroll down to the Show Tagged Values entry and select all.

The diagram tab now displays the tagged values in the note element. Double clicking a
value in the note element allows you to edit it directly.

Please note:
When hiding attributes or operations using the "Show / Hide node content" context
menu option, tagged values are also shown/hidden together with the modeling element.

Association (member) ends can display stereotypes by setting the Show MemberEnd
stereotypes option to "true" in the Styles tab.

164 Stereotypes and Profiles Stereotypes and enumerations

© 2008 Altova GmbHAltova UModel 2008

9.2 Stereotypes and enumerations

UModel has an efficient method of selecting enumerated values of stereotypes.

Click the diagram tab containing the stereotype definition:

1. Click the Enumeration icon in the icon bar to insert an enumeration in the class
diagram (containing the previously defined stereotype).

2. Add EnumerationLiterals to the enumeration by pressing SHIFT+F7, or use the context
menu, e.g. Yes, No.

3. Click the stereotype "class" and press F7 to add a new attribute/property, e.g. Finished.
4. Select type "My Enum" from the Properties tab.

5. Switch back to the BankView Main class diagram.
6. Property Finished, is now shown as a tagged value in the note element.

Double clicking the Finished tagged value, presents the predefined enumeration values
in a popup. Click one of the enumerations to select it.

© 2008 Altova GmbH

Stereotypes and enumerations 165Stereotypes and Profiles

Altova UModel 2008

Enumeration default values
UModel allows you to define default tagged values. When adding an attribute to the stereotype,
double click in the default field and enter one of the existing enumerations as the default value.

In this case, the default value "Yes" is entered.
When a property is added to a class, and the MyEnum type is selected, the default value is
automatically inserted as the tagged value i.e. Finished = Yes.

166 Stereotypes and Profiles User-defined stereotype styles

© 2008 Altova GmbHAltova UModel 2008

9.3 User-defined stereotype styles

It is now possible to create user-defined styles for individual stereotypes. This means that you
can have specific fonts, colors etc. that are applied to those classes which are of that type of
stereotype.

To create user-defined stereotype styles:
1. Click a previously defined stereotype e.g. MyKeyValuePair in the Class diagram.
2. Activate the Styles tab, then select Styles of elements with this Stereotype from the

combo box.
3. Define the styles of this stereotype using the options in the Styles tab, e.g. Header

Gradient End Color = aqua.

Clicking the stereotype class automatically displays the stereotype styles in the Styles
tab.

4. Switch to a different Class Diagram and insert a new class.
5. Click the Class Header/Title and activate the MyKeyValuePair stereotype check box.

The new class now has the styles that were assigned to the stereotype i.e. an aqua
gradient. Note that the stereotype styles are not applied if the stereotype is applied to
an property or operation within the class.

6. Click the new stereotype class in the diagram then click the Styles tab.
7. Select the "Appled Stereotype Styles" entry in the Styles combo box.

© 2008 Altova GmbH

User-defined stereotype styles 167Stereotypes and Profiles

Altova UModel 2008

You can now preview the style settings defined for this stereotype in the Styles window.
Note that you cannot change the style settings here. This must be done in the class
diagram in which the stereotype was defined.

Chapter 10

Generating UML documentation

170 Generating UML documentation

© 2008 Altova GmbHAltova UModel 2008

10 Generating UML documentation

The Project | Generate Documentation... command generates detailed documentation about
your UML project in HTML, Microsoft Word, or RTF formats. Note: In order to generate
documentation in MS Word format, you must have MS Word (version 2000 or later) installed.

Note that you can also create partial documentation of modeling elements by right clicking an
element in the Model Tree and selecting "Generate Documentation". The documentation
options are the same in both cases.

Related elements are hyperlinked in the onscreen output, enabling you to navigate from
component to component. Note also that documentation is also generated for included C#, Java
and/or VB subprojects (profiles).

The Embed diagrams option is enabled for the Microsoft Word and RTF output options. When
this option is selected, diagrams are embedded in the generated file. Diagrams are created as
PNG files (for HTML), or PNG/EMF files (for MS Word and RTF), which are displayed in the
result file via object links.

Split output to multiple files generates an output file for each modeling element that would
appear in the TOC overview when generating a single output file e.g. a class C1 with a nested
class CNest exists; C1.html contains all info pertaining to C1 and CNest as well as all their
attributes, properties etc.

The Generate links to local files option allows you to specify if the generated links are to be
absolute, or relative, to the output file.

The Include tab allows you to select which diagrams and modeling elements are to appear in
the documentation.

© 2008 Altova GmbH

 171Generating UML documentation

Altova UModel 2008

Note that documenting subprojects can be disabled by deselecting the "Included subprojects"
check box.

The Details tab allows you to select the element details that are to appear in the
documentation.

If you intend to import XML tags text in your documentation, please de-activate the "as HTML"
option under the Documentation option. (what about Word, HTML etc. in the Main tab??).

172 Generating UML documentation

© 2008 Altova GmbHAltova UModel 2008

The Fonts tab allows you to customize the font settings for the various headers and text
content.

© 2008 Altova GmbH

 173Generating UML documentation

Altova UModel 2008

The following screenshots show the generated documentation for the Bank_MultiLanguage.
ump file that is included in the ...\UModelExamples directory.

The screenshot above shows the generated documentation with the diagram and element index
links at the top of the HTML file. The screenshot below shows the specifics of the Account class
and its relation to other classes.

Note that the individual attributes and properties in the class diagrams are also hyperlinked to
their definitions. Clicking a property takes you to its definition.

174 Generating UML documentation

© 2008 Altova GmbHAltova UModel 2008

Chapter 11

UML Diagrams

176 UML Diagrams

© 2008 Altova GmbHAltova UModel 2008

11 UML Diagrams

There are two major groups of UML diagrams, Structural diagrams, which show the static view
of the model, and Behavioral diagrams, which show the dynamic view. UModel supports all
thirteen diagrams of the UML 2.1.1 specification as well as an additional diagram: XML Schema
diagram.

Behavioral diagrams include Activity, state machine, and use case diagrams as well as the
interaction diagrams Communication Diagram, Interaction Overview Diagram Sequence
Diagram Timing Diagram.

Structural diagrams include: class, composite structure, component, deployment, object, and
package diagrams.

Additional diagrams XML schema diagrams, Business Processing Modeling Notation (BPMN).

© 2008 Altova GmbH

Behavioral Diagrams 177UML Diagrams

Altova UModel 2008

11.1 Behavioral Diagrams

These diagrams depict behavioral features of a system or business process, and include a
subset of diagrams which emphasize object interactions.

Behavioral Diagrams

 Activity Diagram

 State Machine Diagram

 Use Case Diagram

A subset of the Behavioral diagrams are those that depict the object interactions, namely:

 Communication Diagram

 Interaction Overview Diagram

 Sequence Diagram

 Timing Diagram

178 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

11.1.1 Activity Diagram

Activity diagrams are useful for modeling real-world workflows of business processes, and
display which actions need to take place and what the behavioral dependencies are. The
Activity diagram describes the specific sequencing of activities and supports both conditional
and parallel processing. The Activity diagram is a variant of the State diagram, with the states
being activities.

Please note that the Activity diagram shown in the following section is available in the
Bank_MultiLanguage.ump sample, in the ...\UModelExamples folder supplied with UModel.

© 2008 Altova GmbH

Behavioral Diagrams 179UML Diagrams

Altova UModel 2008

Inserting Activity Diagram elements

Using the toolbar icons:
1. Click the specific activity diagram icon in the Activity Diagram toolbar.
2. Click in the Activity Diagram to insert the element.

Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the activity diagram:
Most elements occurring in other activity diagrams, can be inserted into an existing activity
diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL + F, to search for any element).

2. Drag the element(s) into the activity diagram.

Inserting an action (CallBehavior):

1. Click the Action (CallBehavior) icon in the icon bar, and click in the Activity
diagram to insert it.

2. Enter the name of the Action, e.g. Validate References, and press Enter to confirm.

Inserting an action (CallOperation) and selecting a specific operation:

1. Click the Action (CallOperation) icon in the icon bar, and click in the Activity
diagram to insert it.

2. Enter the name of the Action, e.g. collectAccountInfo, and press Enter to confirm.
3. Click the Browse button to the right of the operation field in the Properties tab.

180 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

This opens the "Select Operation" dialog box in which you can select the specific
operation.

4. Navigate to the specific operation that you want to insert, and click OK to confirm.

In this example the operation "collectAccountInfos" is in the BankView class.

© 2008 Altova GmbH

Behavioral Diagrams 181UML Diagrams

Altova UModel 2008

Creating branches and merges

Creating a branch (alternate flow)
A branch has a single incoming flow and multiple outgoing guarded flows. Only one of the
outgoing flows can be traversed, so the guards should be mutually exclusive.

In this example the (BankView) references are to be validated:
 branch1 has the guard "reference missing", which transitions to the abort activity
 branch2 has the guard "valid", which transitions to the collectAccountInfos activity.

1. Click the DecisionNode icon in the title bar, and insert it in the Activity diagram.

2. Click the ActivityFinalNode icon which represents the abort activity, and insert it
into the Activity diagram.

3. Click the Validate References activity to select it, then click the right-hand handle,
ControlFlow, and drag the resulting connector onto the DecisionNode element.

The element is highlighted when you can drop the connector.
4. Click the DecisionNode element, click the right-hand connector, ControlFlow, and drop

it on the collectAccountInfos action. Please see "Inserting an Action (CallOperation" for
more information.

182 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

5. Enter the guard condition "valid", in the guard field of the Properties tab.

6. Click the DecisionNode element and drag from the right-hand handle, ControlFlow,
and drop it on the ActivityFinalNode element.
The guard condition on this transition is automatically defined as "else". Double click the
guard condition in the diagram to change it e.g. "reference missing".

Please note that UModel does not validate, or check, the number of Control/Object Flows in a
diagram.

Creating a merge:

© 2008 Altova GmbH

Behavioral Diagrams 183UML Diagrams

Altova UModel 2008

1. Click the MergeNode icon in the icon bar, then click in the Activity diagram to
insert it.

2. Click the ControlFlow (ObjectFlow) handles of the actions that are to be merged, and
drop the arrow(s) on the MergeNode symbol.

Activity Diagram elements

 Action (CallBehavior)
Inserts the Call Behavior Action element which directly invokes a specific behavior.
Selecting an existing behavior using the behavior combo box, e.g. HandleDisplayException,
and displays a rake symbol within the element.

 Action (CallOperation)
Inserts the Call Operation Action which indirectly invokes a specific behavior as a method.
Please see "Inserting an action (CallOperation)" for more information.

 AcceptEventAction
Inserts the Accept Event action which waits for the occurrence of an event which meets specific
conditions.

184 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

 AcceptEventAction (TimeEvent)
Inserts a AcceptEvent action, triggered by a time event, which specifies an instant of time by an
expression e.g. 1 sec. since last update.

 SendSignalAction
Inserts the Send Signal action, which creates a signal from its inputs and transmits the signal to
the target object, where it may cause the execution of an activity.

 DecisionNode
Inserts a Decision Node which has a single incoming transition and multiple outgoing guarded
transitions. Please see "Creating a branch" for more information.

 MergeNode
Inserts a Merge Node which merges multiple alternate transitions defined by the Decision Node.
The Merge Node does not synchronize concurrent processes, but selects one of the processes.

© 2008 Altova GmbH

Behavioral Diagrams 185UML Diagrams

Altova UModel 2008

 InitialNode
The beginning of the activity process. An activity can have more than one initial node.

 ActivityFinalNode
The end of the activity process. An activity can have more that one final node, all flows in the
activity stop when the "first" final node is encountered.

 FlowFinalNode
Inserts the Flow Final Node, which terminates a flow. The termination does not affect any other
flows in the activity.

 ForkNode
Inserts a vertical Fork node.
Used to divide flows into multiple concurrent flows.

 ForkNode (Horizontal)
Inserts a horizontal Fork node.
Used to divide flows into multiple concurrent flows.

 JoinNode
Inserts a vertical Fork node.
A Join node synchronizes multiple flows defined by the Fork node.

 Join Node (horizontal)
Inserts a horizontal Fork node.
A Join node synchronizes multiple flows defined by the Fork node.

 InputPin
Inserts an input pin onto a Call Behavior, or Call Operation action. Input pins supply input values
that are used by an action. A default name, "argument", is automatically assigned to an input
pin.

The input pin symbol can only be placed onto those activity elements where the mouse pointer

changes to the hand symbol . Dragging the symbol repositions it on the element border.

 OutputPin
Inserts an output pin action. Output pins contain output values produced by an action. A name
corresponding to the UML property of that action e.g. result, is automatically assigned to the
output pin.

186 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

The output pin symbol can only be placed onto those activity elements where the mouse pointer

changes to the hand symbol . Dragging the symbol repositions it on the element border.

 ValuePin
Inserts a Value Pin which is an input pin that provides a value to an action, that does not come
from an incoming object flow. It is displayed as an input pin symbol, and has the same
properties as an input pin.

 ObjectNode
Inserts an object node which is an abstract activity node that defines object flow in an activity.
Object nodes can only contain values at runtime that conform to the type of the object node.

 CentralBufferNode
Inserts a Central Buffer Node which acts as a buffer for multiple in- and out flows from other
object nodes.

 DataStoreNode
Inserts a Data Store Node which is a special "Central Buffer Node" used to store persistent (i.e.
non transient) data.

 ActivityPartition (horizontal)
Inserts a horizontal Activity Partition, which is a type of activity group used to identify actions that
have some characteristic in common. This often corresponds to organizational units in a
business model.

Double clicking a label allows you to edit it directly; pressing Enter orients the text correctly.

Please note that Activity Partitions are the UML 2.0 update to the "swimlane" functionality of
previous UML versions.

 Elements placed within a ActivityPartition become part of it when the boundary is
highlighted.

 Objects within an ActivityPartition can be individually selected using CTRL+Click, or by
dragging the marquee inside the boundary.

© 2008 Altova GmbH

Behavioral Diagrams 187UML Diagrams

Altova UModel 2008

 Click the ActivityPartition boundary, or title, and drag to reposition it.

 ActivityPartition (vertical)
Inserts a vertical Activity Partition, which is a type of activity group used to identify actions that
have some characteristic in common. This often corresponds to organizational units in a
business model.

 ActivityPartition (2 Dimensional)
Inserts a two dimensional Activity Partition, which is a type of activity group used to identify
actions that have some characteristic in common. Both axes have editable labels.

To remove the Dim1, Dim2 dimension labels:
1. Click the dimension label you want to remove e.g. Dim1
2. Double click in the Dim1 entry in the Properties tab, delete the Dim1 entry, and press

Enter to confirm.

188 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

Note that Activity Partitions can be nested:
1. Right click the label where you want to insert a new partition.
2. Select New | ActivityPartition.

 ControlFlow
A Control Flow is an edge, i.e. an arrowed line, that connects two activities/behaviours, and
starts an activity after the previous one has been completed.

 ObjectFlow
A Object Flow is an edge, i.e. an arrowed line, that connects two actions/object nodes, and
starts an activity after the previous one has been completed. Objects or data can be passed
along an Object Flow.

 ExceptionHandler

© 2008 Altova GmbH

Behavioral Diagrams 189UML Diagrams

Altova UModel 2008

An Exception Handler is an element that specifies what action is to be executed if a specified
exception occurs during the execution of the protected node.

An Exception Handler can only be dropped on an Input Pin of an Action.

 Activity
Inserts an Activity into the activity diagram.

 ActivityParameterNode
Inserts an Activity Parameter node onto an activity. Clicking anywhere in the activity places the
parameter node on the activity boundary.

190 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

 StructuredActivityNode
Inserts a Structured Activity Node which is a structured part of the activity, that is not shared
with any other structured node.

 ExpansionRegion
An expansion region is a region of an activity having explicit input and outputs (using
ExpansionNodes). Each input is a collection of values.

The expansion region mode is displayed as a keyword, and can be changed by clicking the
"mode" combo box in the Properties tab. Available settings are:parallel, iterative, or stream.

 ExpansionNode
Inserts an Expansion Node onto an Expansion Region. Expansion nodes are input and output
nodes for the Expansion Region, where each input/output is a collection of values. The arrows
into, or out of, the expansion region, determine the specific type of expansion node.

© 2008 Altova GmbH

Behavioral Diagrams 191UML Diagrams

Altova UModel 2008

 InterruptableActivityRegion
An interruptible region contains activity nodes. When a control flow leaves an interruptible
region all flows and behaviors in the region are terminated.

To add an interrupting edge:
Making sure that:
 an Action element is present in the InterruptableActivityRegion, as well as an outgoing

Control Flow to another action:

1. Right click the Control Flow arrow, and select New | InterruptingEdge.

Please note:
You can also add an InterrupingEdge by clicking the InterruptableActivityRegion, right
clicking in the Properties window, and selecting Add InterruptingEdge from the pop-up
menu.

192 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

11.1.2 State Machine Diagram

The State Machine Diagram models the behavior of a system by describing the various states
an object may be in, and the transitions between those states. They are generally used to
describe the behavior of an object spanning several use cases. A state machine can have any
number of State Machine Diagrams (or State Diagrams) UModel.

Two types of processes can achieve this:
Actions, which are associated to transitions, are short-term processes that cannot be
interrupted. E.g. an initial transition, internal error /notify admin.

State Activities (behaviors), which are associated to states, are longer-term processes that
may be interrupted by other events. E.g. listen for incoming connections.

Please note that the State machine diagrams shown in the following section are available in the
Bank_MultiLanguage.ump sample, in the ...\UModelExamples folder supplied with UModel.

Inserting state machine diagram elements

Using the toolbar icons:
1. Click the specific state machine diagram icon in the State Machine Diagram toolbar.

© 2008 Altova GmbH

Behavioral Diagrams 193UML Diagrams

Altova UModel 2008

2. Click in the State Diagram to insert the element.
Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the state machine diagram:
Most elements occurring in other state machine diagrams, can be inserted into an existing state
machine.

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL + F, to search for any element).

2. Drag the element(s) into the state diagram.

Creating states, activities and transitions

To insert a simple state:

1. Click the state icon in the icon bar and click in the State diagram to insert it.
2. Enter the name of the state and press Enter to confirm.

Simple states do not have any regions or any other type of substructure. UModel allows
you to add activities as well as regions to a simple state through the context menu.

To add an activity to a state:
1. Right click the state element, select New, and then one of the entries from the context

menu.

You can select one action from the Do, Entry and Exit action categories. Activities are
placed in their own compartment in the state element, though not in a separate region.
The type of activity that you select is used as a prefix for the activity e.g. entry / store
current time.

194 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

To delete an activity:
1. Click the respective activity in the state element and press the Del. key.

To create a transition between two states:
1. Click the Transition handle of the source state (on the right of the element).
2. Drag-and-drop the transition arrow onto the target state.

The Transition properties are now visible in the Properties tab. Clicking the "kind"
combo box, allows you to define the transition type: external, internal or local.

Transitions can have an event trigger, a guard condition and an action in the form
eventTrigger [guard condition] /activity.

To create a transition trigger:
1. Right click a previously created transition (arrow).

© 2008 Altova GmbH

Behavioral Diagrams 195UML Diagrams

Altova UModel 2008

2. Select New | Trigger.

An "a" character appears in the transition label above the transition arrow, if it is the first
trigger in the state diagram. Triggers are assigned default values of the form alphabetic
letter, source state -> target state.

3. Double click the new character and enter the transition properties in the form
eventTrigger [guard condition] /activity.

Transition property syntax; the text entered before the square brackets is the trigger,
between brackets the guard condition, and after the slash, the activity. Manipulating this
string automatically creates or deletes the respective elements in the Model Tree.

Please note:
To see the individual transition properties, right click the transition (arrow) and select
"Select in Model Tree". The event, activity and constraint elements are all shown below
the selected transition.

Adding an Activity diagram to a transition:
UModel has the unique capability of allowing you to add an Activity diagram to a transition, to
describe the transition in more detail.

1. Right click a transition arrow in the diagram, and select New | Activity Diagram.
This inserts an Activity diagram window into the diagram at the position of the transition
arrow.

2. Click the inserted window to make it active. You can now use the scroll bars to scroll
within the window.

3. Double click the Action window to switch into the Activity diagram and further define the

196 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

transition, e.g. change the Action name to Database logon.

Note that a new Activity Diagram tab has now been added to the project. You can add
any activity modeling elements to the diagram, please see "Activity Diagram" for more
information.

4. Click the State Machine Diagram tab to switch back to see the update transition.

5. Drag the Activity window to reposition it in the diagram, and click the resize handle if
necessary.

© 2008 Altova GmbH

Behavioral Diagrams 197UML Diagrams

Altova UModel 2008

Dragging the Activity window between the two states, displays the transition in and out
of the activity.

Composite states

 Composite state
This type of state contains a second compartment comprised of a single region. Any number of
states may be placed within this region.

To add a region to a composite state:
1. Right click the composite state and select New | Region from the context menu.

A new region is added to the state. Regions are divided by dashed lines.

To delete a region:
1. Click the region you want to delete in the composite state and press the Del. key.

Deleting a region of an orthogonal state reverts it back to a composite state; deleting
the last region of a composite state changes it back to a simple state.

To place a state within a composite state:
1. Click the state element you want to insert (e.g. Logging in User), and drop it into the

region compartment of the composite state.

198 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

The region compartment is highlighted when you can drop the element. The inserted
element is now part of the region, and appears as a child element of the region in the
Model Tree pane.

Moving the composite state moves all contained states along with it.

 Orthogonal state
This type of state contains a second compartment comprised of two or more regions, where the
separate regions indicate concurrency.

Right clicking a state and selecting New | Region allows you add new regions.

 Submachine state
This state is used to hide details of a state machine. This state does not have any regions but is
associated to a separate state machine.

To define a submachine state:
1. Having selected a state, click the submachine combo box in the Properties tab.

A list containing the currently defined state machines appears.
2. Select the state machine that you want this submachine to reference.

© 2008 Altova GmbH

Behavioral Diagrams 199UML Diagrams

Altova UModel 2008

Please note that a hyperlink icon automatically appears in the submachine, clicking it
opens the referenced statemachine, BankServer in this case.

To add entry / exit points to a submachine state:

 The state which the point is connected to, must itself reference a submachine State
Machine (visible in the Properties tab).

 This submachine must contain one or more Entry and Exit points

1. Click the ConnectionPointReference icon in the title bar, then click the
submachine state that you want to add the entry/exit point to.

2. Right click in the Properties tab and select Add entry. Please note that another Entry, or
Exit Point has to exist elsewhere in the diagram to enable this pop-up menu.

This adds an EntryPoint row to the Properties tab, and changes the appearance of the
ConnectionPointReferece element.

200 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

3. Use the same method to insert an ExitPoint, by selecting "Add exit" from the context
menu.

Diagram elements

 InitialState (pseudostate)
The beginning of the process.

 FinalState
The end of the sequence of processes.

 EntryPoint (pseudostate)
The entry point of a state machine or composite state.

 ExitPoint (pseudostate)
The exit point of a state machine or composite state.

 Choice
This represents a dynamic conditional branch, where mutually exclusive guard triggers are
evaluated (OR operation).

 Junction (pseudostate)
This represents an end to the OR operation defined by the Choice element.

 Terminate (pseudostate)
The halting of the execution of the state machine.

 Fork (pseudostate)
Inserts a vertical Fork bar.
Used to divide sequences into concurrent subsequences.

 Fork horizontal (pseudostate)
Inserts a horizontal Fork bar.
Used to divide sequences into concurrent subsequences.

 Join (pseudostate)

© 2008 Altova GmbH

Behavioral Diagrams 201UML Diagrams

Altova UModel 2008

Joins/merges previously defined subsequences. All activities have to be completed before
progress can continue.

 Join horizontal (pseudostate)
Joins/merges previously defined subsequences. All activities have to be completed before
progress can continue.

 DeepHistory
A pseudostate that restores the previously active state within a composite state.

 ShallowHistory
A pseudostate that restores the initial state of a composite state.

All pseudostate elements can be changed to a different "type", by changing the kind combo box
entry in the Properties tab.

 ConnectionPointReference
A connection point reference represents a usage (as part of a submachine state) of an
entry/exit point defined in the
statemachine reference by the submachine state.

To add Entry or Exit points to a connection point reference:

 The state which the point is connected to, must itself reference a submachine State
Machine (visible in the Properties tab).

 This submachine must contain one or more Entry and Exit points

 Transition
A direct relationship between two states. An object in the first state performs one or more
actions and then enters the second state depending on an event and the fulfillment of any guard
conditions.

Transitions have an event trigger, guard condition(s), an action (behavior), and a target state.

202 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

Supported event subelements are:

 ReceiveSignalEvent, SignalEvent, SendSignalEvent, ReceiveOperationEvent,
SendOperationEvent and ChangeEvent.

© 2008 Altova GmbH

Behavioral Diagrams 203UML Diagrams

Altova UModel 2008

11.1.3 Use Case Diagram

Please see the Use Cases section in the tutorial for more information on how to add use case
elements to the diagram.

204 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

11.1.4 Communication Diagram

Communication diagrams display the interactions i.e. message flows, between objects at run-
time, and show the relationships between the interacting objects. Basically, they model the
dynamic behavior of use cases.

Communication diagrams are designed in the same way as sequence diagrams, except that the
notation is laid out in a different format. Message numbering is used to indicate message
sequence and nesting.

UModel allows you to generate Communication diagrams from Sequence diagrams and vice
versa, in one simple action see "Generating Sequence diagrams" for more information.

Inserting Communication Diagam elements

Using the toolbar icons:
1. Click the specific communication icon in the Communication Diagram toolbar.

2. Click in the Communication diagram to insert the element.
Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the Communication Diagram:
Elements occurring in other diagrams, e.g. classes, can be inserted into a Communication
diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL + F, to search for any element).

2. Drag the element(s) into the Communication diagram.

Lifeline
The lifeline element is an individual participant in an interaction. UModel allows you to insert
other elements into the sequence diagram, e.g. classes. Each of these elements then appear
as a new lifeline. You can redefine the lifeline colors/gradient using the "Header Gradient"
combo boxes in the Styles tab. To create a multiline lifeline press CTRL + M to create a new
line.

© 2008 Altova GmbH

Behavioral Diagrams 205UML Diagrams

Altova UModel 2008

To insert a Communication lifeline:
1. Click the Lifeline icon in the title bar, then click in the Communication diagram to insert

it.

2. Enter the lifeline name to change it from the default name, Lifeline1, if necessary.

Messages
A Message is a modeling element that defines a specific kind of communication in an
interaction. A communication can be e.g. raising a signal, invoking an Operation, creating or
destroying an instance. The message specifies the type of communication as well as the sender
and the receiver.

 Message (Call) Message (Reply) Message (Creation) Message
(Destruction)

To insert a message:
1. Click the specific message icon in the toolbar.
2. Drag and drop the message line onto the receiver objects.

Lifelines are highlighted when the message can be dropped.

Note: holding down the CTRL key allows you to insert a message with each click.

To insert additional messages:
1. Right click an existing communication link and select New | Message.

206 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

 The direction in which you drag the arrow defines the message direction. Reply
messages can point in either direction.

 Having clicked a message icon and holding down CTRL, allows you to insert multiple
messages by repeatedly clicking and dragging in the diagram tab.

Message numbering
The Communication diagram uses the decimal numbering notation, which makes it easy to see
the hierarchical structure of the messages in the diagram. The sequence is a dot-separated list
of sequence numbers followed by a colon and the message name.

Generating Sequence diagrams from Communication diagrams:
UModel allows you to generate Communication diagrams from Sequence diagrams and vice
versa, in one simple action:

 Right click anywhere in a Communication diagram and select Generate Sequence Diagram
from the context menu.

© 2008 Altova GmbH

Behavioral Diagrams 207UML Diagrams

Altova UModel 2008

11.1.5 Interaction Overview Diagram

Interaction Overview Diagrams are a variant of Activity diagrams and give an overview of the
interaction between other interaction diagrams such as Sequence, Activity, Communication, or
Timing diagrams. The method of constructing a diagram is similar to that of Activity diagram
and uses the same modeling elements: start/end points, forks, joins etc.

Two types of interaction elements are used instead of activity elements: Interaction elements
and Interaction use elements.

Interaction elements are displayed as iconized versions of a Sequence, Communication,
Timing, or Interaction Overview diagram, enclosed in a frame with the "SD" keyword displayed
in the top-left frame title space.

Interaction occurrence elements are references to existing Interaction diagrams with "Ref"
enclosed in the frame's title space, and the occurrence's name in the frame.

Inserting Interaction Overview elements

Using the toolbar icons:
1. Click the specific icon in the Interaction Overview Diagram toolbar.

208 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

2. Click in the diagram to insert the element.
Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the Interaction Overview Diagram:
Elements occurring in other diagrams, e.g. Sequence, Activity, Communication, or Timing
diagrams can be inserted into a Interaction Overview diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL + F, to search for any element).

2. Drag the element(s) into the diagram.

Inserting an Interaction element:

1. Click the CallBehaviorAction (Interaction) icon in the icon bar, and click in the
Interaction Overview diagram to insert it.

The Collect Account Information sequence diagram is automatically inserted if you are
using the Bank_Multilanguage.ump example file from the ...\UModelExamples folder.
The first sequence diagram, found in the model tree, is selected per default.

2. To change the default interaction element: Click the behavior/diagram combo box in
the Properties tab.
A list of all the possible elements that can be inserted is presented.

© 2008 Altova GmbH

Behavioral Diagrams 209UML Diagrams

Altova UModel 2008

3. Click the element you want to insert to e.g. Connect to BankAPI.

As this is also a sequence diagram, the Interaction element appears as an iconized
version of the sequence diagram.
If you select <ref> BankAPI, then the Interaction element occurrence is displayed.

Inserting an Interaction element occurrence:

1. Click the CallBehaviorAction (InteractionUse) icon in the icon bar, and click in the
Interaction Overview diagram to insert it.

210 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

Collect Account Information is automatically inserted as a Interaction occurrence
element, if you are using the Bank_Multilanguage.ump example file from the ...\
UModelExamples folder. The first existing sequence diagram is selected per default.

2. To change the Interaction element: double click the behavior combo box in the
Properties tab.
A list of all the possible elements that can be inserted is presented.

3. Select the occurrence you want to insert.
Note that all elements inserted using this method appear in the form shown in the
screenshot above i.e. with "ref" in the frame's title space.

 DecisionNode
Inserts a Decision Node which has a single incoming transition and multiple outgoing guarded
transitions. Please see "Creating a branch" for more information.

 MergeNode
Inserts a Merge Node which merges multiple alternate transitions defined by the Decision Node.
The Merge Node does not synchronize concurrent processes, but selects one of the processes.

 InitialNode
The beginning of the activity process. An interaction can have more than one initial node.

 ActivityFinalNode
The end of the interaction process. An interaction can have more that one final node, all flows
stop when the "first" final node is encountered.

 ForkNode
Inserts a vertical Fork node.
Used to divide flows into multiple concurrent flows.

 ForkNode (Horizontal)
Inserts a horizontal Fork node.
Used to divide flows into multiple concurrent flows.

 JoinNode
Inserts a vertical Fork node.
A Join node synchronizes multiple flows defined by the Fork node.

© 2008 Altova GmbH

Behavioral Diagrams 211UML Diagrams

Altova UModel 2008

 Join Node (horizontal)
Inserts a horizontal Fork node.
A Join node synchronizes multiple flows defined by the Fork node.

 AddDurationConstraint
A Duration defines a ValueSpecification that denotes a duration in time between a start and
endpoint. A duration is often an expression representing the number of clock ticks, which may
elapse during this duration.

 ControlFlow
A Control Flow is an edge, i.e. an arrowed line, that connects two behaviours, and starts an
interaction after the previous one has been completed.

212 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

11.1.6 Sequence Diagram

UModel supports the standard Sequence diagram defined by UML, and allows easy
manipulation of objects and messages to model use case scenarios. Please note that the
sequence diagrams shown in the following sections are only available in the Bank_Java.ump,
Bank_CSharp.ump and Bank_MultiLanguage.ump samples, in the ...\UModelExamples
folder supplied with UModel.

Inserting sequence diagram elements

A sequence diagram models runtime dynamic object interactions, using messages. Sequence
diagrams are generally used to explain individual use case scenarios.

 Lifelines are the horizontally aligned boxes at the top of the diagram, together with a
dashed vertical line representing the object's life during the interaction. Messages are

© 2008 Altova GmbH

Behavioral Diagrams 213UML Diagrams

Altova UModel 2008

shown as arrows between the lifelines of two or more objects.

 Messages are sent between sender and receiver objects, and are shown as labeled
arrows. Messages can have a sequence number and various other optional attributes:
argument list etc. Conditional, optional, and alternative messages are all supported.
Please see Combined Fragment for more information.

Sequence diagram and other UModel elements, can be inserted into a sequence diagram using
several methods.

Using the toolbar icons:
1. Click the specific sequence diagram icon in the Sequence Diagram toolbar.
2. Click in the Sequence diagram to insert the element.

Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the sequence diagram:
Most classifier types, as well as elements occurring in other sequence diagrams, can be
inserted into an existing sequence diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL+F, to search for any element).

2. Drag the element(s) into the sequence diagram.

Lifeline

Lifeline

214 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

The lifeline element is an individual participant in an interaction. UModel also allows you to
insert other elements into the sequence diagram, e.g. classes and actors. Each of these
elements appear as a new lifeline once they have been dragged into the diagram pane from the
Model Tree tab.

The lifeline label appears in a bar at the top of the sequence diagram. Labels can be
repositioned and resized in the bar, with changes taking immediate effect in the diagram tab.
You can also redefine the label colors/gradient using the "Header Gradient" combo boxes in the
Styles tab.

To create a multiline lifeline press CTRL + M to create a new line.

Most classifier types can be inserted into the sequence diagram. The "represents" field in the
Properties tab displays the element type that is acting as the lifeline. Dragging typed properties
onto a sequence diagram also creates a lifeline.

Execution Specification (Object activation):
An execution specification (activation) is displayed as a box (rectangle) on the object lifeline. An
activation is the execution of a procedure and the time needed for any nested procedures to
execute. Activation boxes are automatically created when a message is created between two
lifelines.

A recursive, or self message (one that calls a different method in the same class) creates
stacked activation boxes.

Displaying/hiding activation boxes:
1. Click the Styles tab and scroll to the bottom of the list.

The "Show Execution Specifications" combo box allows you to show/hide the
activation boxes in the sequence diagram.

Lifeline attributes:
The destruction check box allows you to add a destruction marker, or stop, to the lifeline
without having to use a destruction message.

The selector field allows you to enter an expression that specifies the particular part
represented by the lifeline, if the ConnectableElement is multivalued, i.e. has a multiplicity
greater than one.

© 2008 Altova GmbH

Behavioral Diagrams 215UML Diagrams

Altova UModel 2008

Combined Fragment

CombinedFragment
Combined fragments are subunits, or sections of an interaction. The interaction operator
visible in the pentagon at top left, defines the specific kind of combined fragment. The constraint
thus defines the specific fragment, e.g. loop fragment, alternative fragment etc. used in the
interaction.

The combined fragment icons in the icon bar, allow you to insert a specific combined fragment:
seq, alt or loop. Clicking the interactionOperator combo box, also allows you to define the
specific interaction fragment.

InteractionOperators

Weak sequencing seq

The combined fragment represents weak sequencing between the behaviours of the operands.

216 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

Alternatives alt
Only one of the defined operands will be chosen, the operand must have a guard expression
that evaluates to true.

If one of the operands uses the guard "else", then this operand is executed if all other guards
return false. The guard expression can be entered immediately upon insertion, will appear
between the two square brackets.

The InteractionConstraint is actually the guard expression between the square brackets.

Option opt
Option represents a choice where either the sole operand is executed, or nothing happens.

Break break
The break operator is chosen when the guard is true, the rest of the enclosing fragment is
ignored.

Parallel par
Indicates that the combined fragment represents a parallel merge of operands.

Strict sequencing strict
The combined fragment represents a strict sequencing between the behaviours of the
operands.

Loop loop
The loop operand will be repeated by the number of times defined in the guard expression.

Having selected this operand, you can directly edit the expression (in the loop pentagon) by
double clicking.

Critical Region critical
The combined fragment represents a critical region. The sequence(s) may not be interrupted/
interleaved by any other processes.

© 2008 Altova GmbH

Behavioral Diagrams 217UML Diagrams

Altova UModel 2008

Negative neg
Defines that the fragment is invalid, and all others are considered to be valid.

Assert assert
Designates the valid combined fragment, and its sequences. Often used in combination with
consider, or ignore operands.

Ignore ignore
Defines which messages should be ignored in the interaction. Often used in combination with
assert, or consider operands.

Consider consider
Defines which messages should be considered in the interaction.

Adding InteractionOperands to a combined fragment:
1. Right click the combined fragment and select New | InteractionOperand.

The text cursor is automatically set for you to enter the guard condition.
2. Enter the guard condition e.g. !passwordOK and press Enter to confirm.

3. Use the same method to add the second interaction operand with the guard condition
"else".
Dashed lines separate the individual operands in the fragment.

Deleting InteractionOperands:
1. Double click the guard expression in the combined fragment element, of the diagram

(not in the Properties tab).
2. Delete the guard expression completely, and press Enter to confirm.

The guard expression/interaction operand is removed and the combined fragment is
automatically resized.

Interaction Use

InteractionUse
The InteractionUse element is a reference to an interaction element. This element allows you to
share portions of an interaction between several other interactions.

218 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

Clicking the "refersTo" combo box, allows you to select the interaction that you want to refer to.
The name of the interaction use you select, appears in the element.

Please note:
You can also drag an existing Interaction Use element from the Model Tree into the
diagram tab.

Gate

Gate
A gate is a connection point which allows messages to be transmitted into, and out of,
interaction fragments. Gates are connected using messages.

1. Insert the gate element into the diagram.
2. Create a new message and drag from the gate to a lifeline, or drag from a lifeline and

drop onto a gate.
This connects the two elements. The square representing the gate is now smaller.

© 2008 Altova GmbH

Behavioral Diagrams 219UML Diagrams

Altova UModel 2008

State Invariant

StateInvariant
A StateInvariant is a condition, or constraint applied to a lifeline. The condition must be fulfilled
for the lifeline to exist.

To define a StateInvariant:
1. Click the State invariant icon, then click a lifeline, or an object activation to insert it.
2. Enter the condition/constraint you want to apply, e.g. accountAmount > 0, and press

Enter to confirm.

Messages

Messages are sent between sender and receiver lifelines, and are shown as labeled arrows.
Messages can have a sequence number and various other optional attributes: argument list
etc. Messages are displayed from top to bottom, i.e. the vertical axis is the time component of
the sequence diagram.

 A call is a synchronous, or asynchronous communication which invokes an operation
that allows control to return to the sender object. A call arrow points to the top of the
activation that the call initiates.

 Recursion, or calls to another operation of the same object, are shown by the stacking
of activation boxes (Execution Specifications).

To insert a message:
1. Click the specific message icon in the Sequence Diagram toolbar.
2. Click the lifeline, or activation box of the sender object.
3. Drag and drop the message line onto the receiver objects lifeline or activation box.

Object lifelines are highlighted when the message can be dropped.

 The direction in which you drag the arrow defines the message direction. Reply
messages can point in either direction.

 Activation box(es) are automatically created, or adjusted in size, on the sender/receiver
objects. You can also manually size them by dragging the sizing handles.

 Depending on the message numbering settings you have enabled, the numbering
sequence is updated.

 Having clicked a message icon and holding down CTRL, allows you to insert multiple
messages by repeatedly clicking and dragging in the diagram tab.

To delete a message:
1. Click the specific message to select it.
2. Press the Del. key to delete it from the model, or right click it and select "Delete from

diagram".
The message numbering and activation boxes of the remaining objects are updated.

"Go to operation" for call messages:

220 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

The operations referenced by call messages can be found in sequence and communication
diagrams.

1. Right click a call message and select "Go to Operation".

The display changes and the connect operation is displayed in the Model Tree tab.

Please note:
Static operation names are show as underlined in sequence diagrams.

To position dependent messages:
1. Click the respective message and drag vertically to reposition it.

The default action when repositioning messages, is it to move all dependent messages
related to the active one.

Using CTRL+ click, allows you to select multiple messages.

To position messages individually:

1. Click the "Toggle dependent message movement" icon to deselect it.
2. Click the message you want to move and drag to move it.

© 2008 Altova GmbH

Behavioral Diagrams 221UML Diagrams

Altova UModel 2008

Only the selected message moves during dragging. You can position the message
anywhere in the vertical axis between the object lifelines.

To automatically create reply messages:

1. Click the "Toggle automatic creation of replies for messages" icon .
2. Create a new message betwween two lifelines.

A reply message is automatically inserted for you.

Message numbering:
UModel supports different methods of message numbering: nested, simple and none.

 None removes all message numbering.

 Simple assigns a numerical sequence to all messages from top to bottom i.e. in
the order that they occur on the time axis.

 Nested uses the decimal notation, which makes it easy to see the hierarchical
structure of the messages in the diagram. The sequence is a dot-separated list of
sequence numbers followed by a colon and the message name.

To select the message numbering scheme:
There are two methods of selecting the numbering scheme:
 Click the respective icon in the icon bar.
 Use the Styles tab to select the scheme.

To select the numbering scheme using the Styles tab:
1. Click the Styles tab and scroll down to the Message Numbering field.
2. Click the combo box and select the numbering option you want to use.

The numbering option you select is immediately displayed in the sequence diagram.

Please note:
The numbering scheme might not always correctly number all messages, if ambiguous
traces exist. If this happens, adding return messages will probably clear up any
inconsistencies.

Message replies:
Message reply icons are available to create reply messages, and are displayed as dashed
arrows.

222 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

Reply messages are also generally implied by the bottom of the activation box when activation
boxes are present. If activation boxes have been disabled (Styles tab | Show Execution
Specifics=false), then reply arrows should be used for clarity.

Activating the "toggle reply messages" icon, automatically creates syntactically correct
reply messages when creating a call message between lifelines/activations boxes.

Creating objects with messages:
1. Messages can create new objects. This is achieved using the Message Creation icon

.
2. Drag the message arrow to the lifeline of an existing object to create that object.

This type of message ends in the middle of an object rectangle, and often repositions
the object box vertically.

Sending messages to specific class methods/operations in sequence diagrams
Having inserted a class from the Model Tree into a sequence diagram, you can then create a
message from a lifeline to a specific method of the receiver class (lifeline) using UModel's
syntax help and autocompletion functions.

1. Create a message between two lifelines, the receiving object being a class lifeline
(Bank)
As soon as you drop the message arrow, the message name is automatically
highlighted.

2. Enter a character using the keyboard e.g. "b".
A pop-up window containing a list of the existing class methods is opened.

3. Select an operation from the list, and press Enter to confirm e.g. collectAccountInfos.
4. Press the spacebar and press Enter to select the parenthesis character that is

automatically supplied.
A syntax helper popup now appears, allowing you to enter the parameter correctly.

© 2008 Altova GmbH

Behavioral Diagrams 223UML Diagrams

Altova UModel 2008

Message icons:

Message (Call)

Message (Reply)

Message (Creation)

Message (Destruction)

Asynchronous Message (Call)

Asynchronous Message (Reply)

Asynchronous Message (Destruction)

Toggle dependent message movement

Toggle automatic creation of replies for messages

224 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

11.1.7 Timing Diagram

Timing diagrams depict the changes in state, or condition, of one or more interacting objects
over a given period of time. States, or conditions, are displayed as timelines responding to
message events, where a lifeline represents a Classifier Instance or Classifier Role.

A Timing diagram is a special form of a sequence diagram. The difference is that the axes are
reversed i.e. time increases from left to right, and lifelines are shown in separate vertically
stacked compartments.

Timing diagrams are generally used when designing embedded software or real-time systems.

There are two different types of timing diagram: one containing the State/Condition timeline as
shown above, and the other, the General value lifeline, shown below.

Inserting Timing Diagram elements

Using the toolbar icons:
1. Click the specific timing icon in the Timing Diagram toolbar.

© 2008 Altova GmbH

Behavioral Diagrams 225UML Diagrams

Altova UModel 2008

2. Click in the Timing Diagram to insert the element.
Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the timing machine diagram:
Elements occurring in other diagrams, e.g. classes, can be inserted into an Timing Diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL + F, to search for any element).

2. Drag the element(s) into the state diagram.

Lifeline

 or Lifeline
The lifeline element is an individual participant in an interaction, and is available in two different
representations: State/Condition timeline or General Value lifeline. To create a multiline lifeline
press CTRL + M to create a new line.

To insert a State Condition (StateInvariant) lifeline and define state changes:

1. Click the Lifeline (State/Condition) icon in the title bar, then click in the Timing
Diagram to insert it.

2. Enter the lifeline name to change it from the default name, Lifeline1, if necessary.
3. Place the mouse cursor over a section of one of the timelines and click left. This selects

the line.
4. Move the mouse pointer to the position you want a state change to occur, and click

again.

Note that you will actually see the double headed arrow when you do this.

A red box appears at the click position and divides the line at this point.
5. Move the cursor to the right hand side of the line and drag the line upwards.

Note that lines can only be moved between existing states of the current lifeline.

226 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

Any number of state changes can be defined per lifeline. Once the red box appears on
a line, clicking anywhere else in the diagram deletes it.

To add a new state to the lifeline:
1. Right click the lifeline and select New | State/Condition (StateInvariant).

A new State e.g. State3 is added to the lifeline.

To move a state within a lifeline:
1. Click the state label that you want to move.
2. Drag it to a different position in the lifeline.

To delete a state from a lifeline:
1. Click the state and press the Del. key, or alternatively, right click and select Delete.

To switch between timing diagram types:
1. Click the "toggle notation" icon at the bottom right of the lifeline.

This changes the display to the General Value lifeline, the cross-over point represents a
state/value change.

Please note that clicking the Lifeline (General Value) icon , inserts the lifeline as
shown above. You can switch between the two representations at any time.

To add a new state to the General value lifeline:
1. Right click the lifeline and select New | State/Condition (StateInvariant).
2. Edit the new name e.g. State3, and press Enter to confirm.

A new State is added to the lifeline.

Grouping lifelines
Placing, or stacking lifelines, automatically positions them correctly and preserves any tick

© 2008 Altova GmbH

Behavioral Diagrams 227UML Diagrams

Altova UModel 2008

marks that might have been added. Messages can also be created between separate lifelines
by dragging the respective message object.

Tick Mark

 TickMark
The tick mark is used to insert the tick marks of a timing ruler scale onto a lifeline.

To insert a TickMark:
1. Click the tick mark icon and click on the lifeline to insert it.

2. Insert multiple tick marks by holding down the CTRL key and repeatedly clicking at
different positions on the lifeline border.

3. Enter the tick mark label in the field provided for it.
Drag tick marks to reposition them on the lifeline.

To evenly space tick marks on a lifeline:
1. Use the marque, by dragging in the main window, to mark the individual tick marks.

2. Click the Space Across icon in the icon bar.

228 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

Event/Stimulus

Event / Stimulus
The Event/Stimulus ExecutionEvent is used to show the change in state of an object caused by
the respective event or stimulus. The received events are annotated to show the event causing
the change in condition or state.

To insert an Event/Stimulus:
1. Click the Event/Stimulus icon, then click the specific position in the timeline where the

state change takes place.

2. Enter a name for the event, in this example the event is "Code".
Note that the event properties are visible in the Properties tab.

DurationConstraint

DurationConstraint
A Duration defines a ValueSpecification that denotes a duration in time between a start and
endpoint. A duration is often an expression representing the number of clock ticks, which may
elapse during this duration.

To insert an DurationConstraint:
1. Click the DurationConstraint icon, then click the specific position on the lifeline where

the constraint is to be displayed.

The default minimum and maximum values, "d..t", are automatically supplied. These
values can be edited by double clicking the time constraint, or by editing the values in
the Properties window.

2. Use the "handles" to resize the object if necessary.

© 2008 Altova GmbH

Behavioral Diagrams 229UML Diagrams

Altova UModel 2008

Changing the orientation of the DurationConstraint:
1. Click the "Flip" icon to orient the constraint vertically.

TimeConstraint

TimeConstraint
A TimeConstraint is generally shown as graphical association between a TimeInterval and the
construct that it constrains. Typically this graphical association between an EventOccurrence
and a TimeInterval.

To insert a TimeConstraint:
1. Click the TimeConstraint icon, then click the specific position on the lifeline where the

constraint is to be displayed.

The default minimum and maximum values are automatically supplied, "d..t"
respectively. These values can be edited by double clicking the time constraint, or by
editing the values in the Properties window.

Message

 Message (Call) Message (Reply) Async message (Call)

230 UML Diagrams Behavioral Diagrams

© 2008 Altova GmbHAltova UModel 2008

A Message is a modeling element that defines a specific kind of communication in an
Interaction. A communication can be e.g. raising a signal, invoking an Operation, creating or
destroying an Instance. The Message specifies the type of communication defined by the
dispatching ExecutionSpecification, as well as the sender and the receiver.

Messages are sent between sender and receiver timelines, and are shown as labeled arrows.

To insert a message:
1. Click the specific message icon in the toolbar.
2. Click anywhere on the timeline sender object e.g. Idle.
3. Drag and drop the message line onto the receiver objects timeline e.g. NoCard.

Lifelines are highlighted when the message can be dropped.

 The direction in which you drag the arrow defines the message direction. Reply
messages can point in either direction.

 Having clicked a message icon and holding down CTRL, allows you to insert multiple
messages by repeatedly clicking and dragging in the diagram tab.

To delete a message:
1. Click the specific message to select it.
2. Press the Del. key to delete it from the model, or right click it and select "Delete from

diagram".

© 2008 Altova GmbH

Structural Diagrams 231UML Diagrams

Altova UModel 2008

11.2 Structural Diagrams

These diagrams depict the structural elements that make up a system or function. Both the
static, e.g. Class diagram, and dynamic, e.g. Object diagram, relationships are presented.

Structural Diagrams

 Class Diagram

 Component Diagram

 Composite Structure Diagram

 Deployment Diagram

 Object Diagram

 Package Diagram

232 UML Diagrams Structural Diagrams

© 2008 Altova GmbHAltova UModel 2008

11.2.1 Class Diagram

Please see the Class Diagrams section in the tutorial for more information on how to add
classes to a diagram.

Expanding / hiding class compartments in a UML diagram:
There are several methods of expanding the various compartments of class diagrams.

 Click on the + or - buttons of the currently active class to expand/collapse the specific
compartment.

 Use the marquee (drag on the diagram background) to mark multiple classes, then
click the expand/hide button. You can also use CTRL + click to select multiple classes.

 Press CTRL + A to select all classes, then click the expand/collapse button, on one of
the classes, to expand/collapse the respective compartments.

Expanding / collapsing class compartments in the Model Tree:
In the Model Tree classes are subelements of packages and you can affect either the packages
or the classes.

Click the package / class you want to expand and:

Press the * key to expand the current package/class and all sub-elements

Press the + key to open the current package/class.

To collapse the packages/classes, press the - keyboard key.
Note that you can use the standard keyboard keys, or the numeric keypad keys to achieve this.

Changing the visibility type icons

Clicking the visibility icon to the left of an operation , or property , opens a drop-down list
enabling you to change the visibility status. You can also change the type of visibility symbols
that you want to see.

 Click a class in the diagram window, click the Styles tab and scroll down the list until
you find the Show Visibility entry.

© 2008 Altova GmbH

Structural Diagrams 233UML Diagrams

Altova UModel 2008

You can choose between the UModel type shown above, or the UML conformant
symbols shown below.

Showing / Hiding node content (class attributes, operations, slots)
UModel now allows you to individually display the attributes or operations of a class, as well as
define which should be shown when adding them as new elements. Note that this it now
possible to show/hide object slots i.e. InstanceSpecifications using the same method.

Right click a class, e.g. SavingsAccount, and select the menu option Show/Hide Node content
.

Deselecting a protected checkbox in the Attributes group, deselects the protected attributes in
the preview window.

234 UML Diagrams Structural Diagrams

© 2008 Altova GmbHAltova UModel 2008

Having confirmed with OK, the protected attributes in the class are replaced with ellipsis "...".
Double clicking the ellipsis opens the dialog box.

Note that individual attributes can be affected by only deselecting the check box in the preview
window.

Showing / Hiding class attributes or operations - Element styles
UModel allows you to insert multiple instances of the same class on a single diagram, or
even different diagrams. The visibility settings can be individually defined for each of these
"views" to the class. The screenshot below shows two views to the same class i.e.
SavingsAccount.

The "When new elements are added and not hidden by Element Styles" option allows you to
define what will be made visible when new elements are added to the class. Elements can be
added manually in the model diagram and in the Model Tree, or automatically during the code
engineering process.

Show elements: displays all new elements that are added to any view of the class.

E.g. The interestRate:float attribute has been hidden in both "views" of SavingsAccount, leaving
the minimumBalance attribute visible. The "Show elements" radio button is active for the left-
hand class.

© 2008 Altova GmbH

Structural Diagrams 235UML Diagrams

Altova UModel 2008

Double clicking the ellipsis "..." in the attribute compartment of the left-hand class shows that
the "Show elements" radio button is active.

Double clicking the ellipsis "..." in the attribute compartment of the right-hand class shows that
the "Hide elements (except those added to this node)" radio button is active.

236 UML Diagrams Structural Diagrams

© 2008 Altova GmbHAltova UModel 2008

Clicking the left-hand class and pressing F7, (or clicking the class in the Model Tree and
pressing F7) adds a new attribute (Property1) to the class.

The new element is only visible in the left-hand class, because "Show elements" is set as
active. The right-hand class setting is "Hide elements...", so the new element is not shown
there.

Clicking the right-hand class and pressing F7 adds a new attribute (Property2) to the class.
This new attribute is now visible because the Hide elements... setting has the qualifier "except
those added to this node", where "node" generically means this class, or modelling element.

© 2008 Altova GmbH

Structural Diagrams 237UML Diagrams

Altova UModel 2008

The Property2 attribute is also visible in the left hand class, because the setting there is "Show
elements"

Please note:
Tagged values of hidden elements are also hidden when you select the hide option.

Changing the syntax coloring of operations/properties
UModel automatically enables syntax coloring, but lets you customize it to suit your needs. The
default settings are shown below.

To change the default syntax coloring options (shown below):

1. Switch to the Styles tab and scroll the SC prefixed entries.
2. Change one of the SC color entries e.g. SC Type to red.

To disable syntax coloring:
1. Switch to the Styles tab and change the Use Syntax Coloring entry to false.

238 UML Diagrams Structural Diagrams

© 2008 Altova GmbHAltova UModel 2008

2. Use the Attribute Color, or Operation Color entries in the Styles tab to customize
these items in the class.

Overriding base class operations and implementing interface operations
UModel gives you the ability to override the base-class operations, or implement interface
operations of a class. This can be done from the Model Tree, Favorites tab, or in Class
diagrams.

1. Right click one of the derived classes in the class diagram, e.g. CheckingAccount, and
select Override/Implement Operations.
This opens the Overriden Methods dialog box shown below.

2. Select the Operations that you want to override and confirm with OK.
The "Select undefined..." buttons select those method types in the window at left.

Please note:
When the dialog box is opened, operations of base classes and implemented interfaces
that have the same signature as existing operations are automatically checked (i.e.
active).

Creating getter / setter methods
During the modeling process it is often necessary to create get/set methods for existing

© 2008 Altova GmbH

Structural Diagrams 239UML Diagrams

Altova UModel 2008

attributes. UModel supplies you with two separate methods to achieve this:

 Drag and drop an attribute into the operation compartment
 Use the context menu to open a dialog box allowing you to manage get/set methods

To create getter/setter methods using drag and drop:
1. Drag an attribute from the Attribute compartment and drop it in the Operations

compartment.

A popup appears at this point allowing you to decide what type of get/set method you
want to create.

Selecting the first item creates a get and set method for interestRate:float.

To create getter/setter methods using the context menu:
1. Right click the class title, e.g. SavingsAccount, and select the context menu option

Create Getter/Setter Operations.

240 UML Diagrams Structural Diagrams

© 2008 Altova GmbHAltova UModel 2008

The Create Getters/Setters dialog box opens displaying all attributes available in the
currently active class.

2. Use the buttons to select the items as a group, or click the getter/setter check boxes
individually.

Please note:
You can also right click a single attribute and use the same method to create an
operation for it.

Ball and socket notation
UModel now supports the ball and socket notation of UML 2.0. Classes that require an
interface, display a "socket" and the interface name, while classes that implement an interface
display the "ball".

In the shots shown above, Class2 realizes Interface1, which is used by classes 1, 3, and 4. The
usage icons were used to create the usage relationship between the classes and the interface.

To switch between the standard and ball-and-socket view:

 Click the Toggle Interface notation icon at the base of the interface element.

© 2008 Altova GmbH

Structural Diagrams 241UML Diagrams

Altova UModel 2008

Adding Raised Exceptions to methods of a class
1. Click the method of the class you want to add the raised exception to in the Model Tree

window, e.g. getBalance of the Account class.
2. Right click in the Properties window and select Add Raised Exception from the popup

menu.

This adds the raised exceptions field to the Properties window, and automatically
selects the first entry in the popup menu.

3. Select an entry from the popup, or enter your own into the field.

242 UML Diagrams Structural Diagrams

© 2008 Altova GmbHAltova UModel 2008

© 2008 Altova GmbH

Structural Diagrams 243UML Diagrams

Altova UModel 2008

11.2.2 Composite Structure Diagram

The Composite Structure Diagram has been added in UML 2.0 and is used to show the internal
structure, including parts, ports and connectors, of a structured classifier, or collaboration.

Inserting Composite Structure Diagram elements

Using the toolbar icons:
1. Click the specific Composite Structure diagram icon in the toolbar.
2. Click in the Composite Structure diagram to insert the element.

Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the Composite Structure diagram:
Most elements occurring in other Composite Structure diagrams, can be inserted into an
existing Composite Structure diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL + F, to search for any element).

2. Drag the element(s) into the Composite Structure diagram.

244 UML Diagrams Structural Diagrams

© 2008 Altova GmbHAltova UModel 2008

 Collaboration
Inserts a collaboration element which is a kind of classifier/instance that communicates with
other instances to produce the behavior of the system.

 CollaborationUse
Inserts a Collaboration use element which represents one specific use of a collaboration
involving specific classes or instances playing the role of the collaboration. A collaboration use
is shown as a dashed ellipse containing the name of the occurrence, a colon, and the name of
the collaboration type.

When creating dependencies between collaboration use elements, the "type" field must be filled
to be able to create the role binding, and the target collaboration must have at least one part/
role.

 Part (Property)
Inserts a part element which represents a set of one or more instances that a containing
classifier owns. A Part can be added to collaborations and classes.

 Port
Inserts a port element which defines the interaction point between a classifier and its
environment, and can be added on parts with a defined type.

 Class
Inserts a Class element, which is the actual classifier that occurs in that particular use of the
collaboration.

 Connector
Inserts a Connector element which can be used to connect two or more instances of a part, or a
port. The connector defines the relationship between the objects and identifies the
communication between the roles.

 Dependency (Role Binding)
Inserts the Dependency element, which indicates which connectable element of the classifier or
operation, plays which role in the collaboration.

© 2008 Altova GmbH

Structural Diagrams 245UML Diagrams

Altova UModel 2008

11.2.3 Component Diagram

Please see the Component Diagrams section in the tutorial for more information on how to add
component elements to the diagram.

246 UML Diagrams Structural Diagrams

© 2008 Altova GmbHAltova UModel 2008

11.2.4 Deployment Diagram

Please see the Deployment Diagrams section in the tutorial for more information on how to add
nodes and artifacts to the diagram.

© 2008 Altova GmbH

Structural Diagrams 247UML Diagrams

Altova UModel 2008

11.2.5 Object Diagram

Please see the Object Diagrams section in the tutorial for more information on how to add new
objects/instances to the diagram.

248 UML Diagrams Structural Diagrams

© 2008 Altova GmbHAltova UModel 2008

11.2.6 Package Diagram

Package diagrams display the organization of packages and their elements, as well as their
corresponding namespaces. UModel additionally allows you to create a hyperlink and navigate
to the respective package content.

Packages are depicted as folders and can be used on any of the UML diagrams, although they
are mainly used on use-case and class diagrams.

Automatic Package Dependency diagram generation
UModel has the capability to generate a package dependency diagram for any package in the
Model Tree.

Dependency links between packages are created if there are any references between the
modeling elements of those packages. E.g. Dependencies between classes, derived classes, or
if attributes have types that are defined in a different package.

To generate a package dependency diagram:
1. Right click a package in the Model Tree, e.g. altova, and select Show in new Diagram

| Package Dependencies....
This opens the New Package Dependency Diagram dialog box.

© 2008 Altova GmbH

Structural Diagrams 249UML Diagrams

Altova UModel 2008

2. Select the specific options you need and click OK to confirm.

A new diagram is generated and displays the package dependencies of the altova
package.

Inserting Package Diagram elements

Using the toolbar icons:
1. Click the specific icon in the Package Diagram toolbar.

2. Click in the diagram to insert the element.
Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the Package Diagram:
Elements occurring in other diagrams, e.g. other packages, can be inserted into a Package
diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL + F, to search for any element).

2. Drag the element(s) into the diagram.

250 UML Diagrams Structural Diagrams

© 2008 Altova GmbHAltova UModel 2008

 Package
Inserts the package element into the diagram. Packages are used to group elements and also
to provide a namespace for the grouped elements. Being a namespace, a package can import
individual elements of other packages, or all elements of other packages. Packages can also be
merged with other packages.

 Profile
Inserts the Profile element, which is a specific type of package that can be applied to other
packages.

The Profiles package is used to extend the UML meta model. The primary extension construct
is the Stereotype, which is itself part of the profile. Profiles must always be related to a
reference meta model such as UML, they cannot exist on their own.

 Dependency
Inserts the Dependency element, which indicates a supplier/client relationship between
modeling elements, in this case packages, or profiles.

 PackageImport
Inserts an <<import>> relationship which shows that the elements of the included package will
be imported into the including package. The namespace of the including package gains access
to the included namespace; the namespace of the included package is not affected.

Note: elements defined as "private" within a package, cannot be merged or imported.

 PackageMerge
Inserts a <<merge>> relationship which shows that the elements of the merged (source)
package will be imported into the merging (target) package, including any imported contents the
merged (source) package.

If the same element exists in the target package then these elements' definitions will be
expanded by those from the target package. Updated or added elements are indicated by a
generalization relationship back to the source package.
Note: elements defined as "private" within a package, cannot be merged or imported.

 ProfileApplication
Inserts a Profile Application which shows which profiles have been applied to a package. This is
a type of package import that states that a Profile is applied to a Package.

The Profile extends the package it has been applied to. Applying a profile, using the
ProfileApplication icon, means that all stereotypes that are part of it, are also available to the
package.

Profile names are shown as dashed arrows from the package to the applied profile, along with
the <<apply>> keyword.

© 2008 Altova GmbH

Additional Diagrams 251UML Diagrams

Altova UModel 2008

11.3 Additional Diagrams

UModel now supports the import and generation of W3C XML Schemas as well as their forward
and reverse-engineering in the code-engineering process.

UModel now supports the Business Processing Modeling Notation Standard version 1.0 which
was adopted as an OMG standard in February 2006.

 XML Schema

 Business Process Modeling Notation

252 UML Diagrams Additional Diagrams

© 2008 Altova GmbHAltova UModel 2008

11.3.1 XML Schema Diagrams

XML Schema diagrams display schema components in UML notation. Global elements i.e.
elements, simpleTypes, complexTypes are shown as classes, or datatypes, with attributes in
the attributes compartment.

There are no operations in the Operation compartment. The Tagged Value note modeling
element is used to display the schema details.

To see how the UML elements and XML schema elements/attributes are mapped, navigate to
XML Schema to/from UModel elements.

Please note:
Invalid XML Schemas cannot be imported into UModel. XML Schemas are not
validated when importing, or creating them in UModel. XML Schemas are also not
taken into account during the project syntax check. A well-formed check is however
performed when importing an XML schema.

© 2008 Altova GmbH

Additional Diagrams 253UML Diagrams

Altova UModel 2008

Importing XML Schema(s)

To import a single XML Schema:
1. Select the menu option Project | Import XML Schema file.

2. Make sure that the Enable diagram generation check box is active and click Next, to
continue.

3. Define the Content diagram options in the group of that name. The first option creates a
separate diagram for each schema global element.

4. Select the compartments that are to appear in the class diagrams in the Style group.
The "Show schema details as tagged values" option displays the schema details in the
Tagged Value note modeling element.

5. Click Next to define the Package dependency diagram.

254 UML Diagrams Additional Diagrams

© 2008 Altova GmbHAltova UModel 2008

6. Click Finish to start the XML Schema import.
The schema(s) are imported into UModel and all diagrams are available as tabs. The
screenshot below shows the content of the EU-Address (complexType) diagram.

Please note:
A new package called All Schemas was created and set as the XSD Namespace Root. All XSD
globals generate an XML Schema diagram, with the diagrams under the respective namespace
packages.

© 2008 Altova GmbH

Additional Diagrams 255UML Diagrams

Altova UModel 2008

To import multiple XML Schemas:
1. Select the menu option Project | Import XML Schema directory.

2. Activate the "Process all subdirectories" if you want to import Schemas from all
subdirectories.
The rest of the import process follows the sequence of importing a single XML schema
described above.

Please note:
If an XML schema includes or imports other schemas, then these schemas will be

256 UML Diagrams Additional Diagrams

© 2008 Altova GmbHAltova UModel 2008

automatically imported as well.

Schema details display - tagged values
Schema details displayed as tagged values in the Tagged Value note element, can be
configured using the Show Tagged Values in the Styles tab, or by clicking the "Toggle compact
mode" icon at the bottom right of the Tagged Value note. This switches between the two states
"all" and "all, hide empty", both of which are shown below.

Show tagged values: all
Displays the tagged values of the class as well as those of the owned attributes, operations etc.

Show tagged values: all, hide empty
Displays only those tagged values where a value exists e.g. fixed=true.

© 2008 Altova GmbH

Additional Diagrams 257UML Diagrams

Altova UModel 2008

Show tagged values: element
Displays the tagged values of the class but not those of the owned attributes, operations etc.

Show tagged values: element, hide empty
Displays only those tagged element values of a class, without the owned attributes, where a
value exists e.g. id=123

XML Schema annotation:
When importing XML schemas, please note that only the first annotation of a complex- or
simpleType is displayed in the Documentation window.

Inserting XML Schema elements

Using the toolbar icons:
1. Click the specific XML Schema diagram icon in the toolbar.
2. Click in the XML Schema diagram to insert the element.

Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the XML Schema diagram:
Elements occurring in other diagrams can be inserted into an existing XML Schema diagram.

258 UML Diagrams Additional Diagrams

© 2008 Altova GmbHAltova UModel 2008

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL + F, to search for any element).

2. Drag the element(s) into the XML Schema diagram.

Note: you can also use the Copy and "Paste in diagram only" commands to insert
elements.

 XSD Target Namespace
Inserts/defines the target namespace for the schema. The XSD Target Namespace must
belong to an XSD Namespace Root package.

 XSD Schema
Inserts/defines an XML schema. The XSD schema must belong to an XSD Target Namespace
package.

 Element (global)
Inserts a global element into the diagram. Note that a property is also automatically generated in
the attributes compartment.

To define the property datatype:
1. Double click the property and place the cursor at the end of the line.
2. Enter a colon character ":", and select the datatype from the popup dialog box, e.g string.

© 2008 Altova GmbH

Additional Diagrams 259UML Diagrams

Altova UModel 2008

Creating a "content model" consisting of a complexType with mandatory elements:
This will entail inserting a complexType element, a sequence element/compositor, and three
elements.

1. Click the XSD ComplexType icon , then click in the diagram to insert it.
2. Double click the name and change it to Address.

3. Right click Address and select New | XSD Sequence.

4. Click the _sequence:mg_sequence attribute in the attribute compartment, and drag it
out into the diagram.

260 UML Diagrams Additional Diagrams

© 2008 Altova GmbHAltova UModel 2008

This creates a sequence class/compositor at the drop position.

5. Right click the sequence class and select New | XSD Element (local).
This adds a new property element.

6. Double click the property, enter the element name, e.g. Name, add a colon ":" and enter
"string" as the datatype.

7. Do the same for the two more elements naming them Street and City for example.
8. Click the Name property and drag it into the diagram.

© 2008 Altova GmbH

Additional Diagrams 261UML Diagrams

Altova UModel 2008

262 UML Diagrams Additional Diagrams

© 2008 Altova GmbHAltova UModel 2008

Creating and generating an XML Schema

You would generally import a schema, edit it in UModel, and output the changes. It is however
possible to generate a schema from scratch. This will only be described in broad detail
however.

Creating a new schema in UModel:
1. Create a new package in the Model Tree e.g. MY-Schemas.

2. Right click the new package and select the menu option Code Engineering | Set as
XSD namespace root.
You are asked if you want to assign the XSD profile if this is the first XSD Namespace
root in the project.

3. Click OK to assign the profile.
4. Right click the new package and select New Element | Package.
5. Double click in the package name field and change it to the namespace you want to

use, e.g. http://www.my-ns.com.
6. Click the <<namespace>> check box in the Properties tab, to define this as the target

namespace.

7. Right click the namespace package and select New diagram | XML Schema diagram.
You prompted if you want to add the Schema diagram to a new XSD Schema.

8. Click Yes to add the new diagram.

You can now create your schema using the icons in the XML Schema icon bar.

Generating the XML schema:
1. Drag the XSDSchema onto a component to create a Component Realization.

http://www.my-ns.com.

© 2008 Altova GmbH

Additional Diagrams 263UML Diagrams

Altova UModel 2008

2. Make sure that you set the code language, of the component, to XSD1.0, and enter a
path for the generated schema to be placed in, e.g. C:\schemacode\MySchema.xsd.

3. Select the menu option Project | Overwrite Program Code from UModel project, and
click OK to generate the schema.

264 UML Diagrams Additional Diagrams

© 2008 Altova GmbHAltova UModel 2008

11.3.2 Business Process Modeling Notation

BPMN is a standardized flow-chart notation which shows business processes as a workflow and
is easily understandable by all involved in the business process.

There are four basic element BPMN categories:

Flow objects Events, Activities (Tasks or Sub-Processes), Gateways

Connecting objects Sequence flow, Message Flow, Association

Swimlanes Pool, Lane

Artifacts Data Objects, Group, Text Annotation

Inserting BPMN diagrams and BPMN objects works in exactly the same way as inserting
modeling elements in UModel.

Objects can be inserted using the icon bar; associations to other objects can be directly created
by clicking on the object "handles" and dragging the connector to the target object. Properties
can be viewed and set using the Properties tab.

Note that you can use the Layers tab to create multiple layers per BPMN diagram, please see
Layer for more information.

© 2008 Altova GmbH

Additional Diagrams 265UML Diagrams

Altova UModel 2008

Flow objects

Flow objects are the graphical elements that define the behaviour of a business process. There
are three Flow Objects: Events, Activities and Gateways.

Events
An event is something that occurs during a business process and is represented by a circle.
Events affect the flow of the process and generally have a cause (trigger) and a result. There
are three different types of events: start, intermediate or end, where each group has its own
drop-down combo box.

To insert an Event:
1. Click the combo box to open the drop-down list of the type of event you want insert.
2. Select the specific Event and click in the diagram tab to insert it.

Start Event

Intermediate Event

Intermediate events can be attached to the boundary of a Task or Sub-Process, and show that
the activity is to be interrupted when the event is triggered.

End Event

266 UML Diagrams Additional Diagrams

© 2008 Altova GmbHAltova UModel 2008

Activity
Activities are actions that are performed during a business process, and are represented by
rounded rectangles. Process models can contain the following types of activity: Process, Sub-
Process and Task. Activites can occur singly or multiple times within a loop.

To insert an Activity:
1. Click the specific Task or Sub-Process icon of the icon bar.
2. Click in the diagram tab.

Activity - Task
Tasks are activities that are included in a process. Tasks cannot be broken down into lower
level subtasks, they are atomic.

Loop Task

Multi Instance
Task

Compensation
Task

Activity - Sub-Process
A Sub-Process is a compound activity that is included in a process, and allows hierarchical
business process model development. A Sub-Process can be broken down into finer detail
through various sub-activities.

A collapsed Sub-Process is displayed as a top-level element, where the details of the sub-
process are not visible. A "plus" icon in the element shows that an additional layer of complexity
exists.

An expanded Sub-Process displays the details of the Sub-Process within its boundaries. Note

© 2008 Altova GmbH

Additional Diagrams 267UML Diagrams

Altova UModel 2008

that a sequence flow cannot cross the boundary of a Sub-Process.

Gateway
Gateways are used to determine how Sequence Flows branch and merge within a process, and
are always shown as a diamond.

Inclusive Gateway (OR)

Parallel Gateway (AND)

Data Based Exclusive Gateway
(XOR)

Event Based Exclusive Gateway
(XOR)

Complex Gateway (Decision/
Merge)

268 UML Diagrams Additional Diagrams

© 2008 Altova GmbHAltova UModel 2008

Expanded Sub Processes

Expanded versions of sub processes show the process detail within the element boundaries.

Expanded Sub-Process

Expanded Loop Sub-Process

Expanded Multi Instance Sub-
Process

Expanded Ad Hoc Sub-Process

Expanded Compensation Sub-
Process

© 2008 Altova GmbH

Additional Diagrams 269UML Diagrams

Altova UModel 2008

Collapsed Sub Processes

Collapsed versions of sub-processes hide the process detail. The specific type of Sub-Process
is shown by the icon within the Sub-Process element.

Collapsed Sub-Process

Collapsed Loop Sub-Process

Collapsed Multi Instance Sub-
Process

Collapsed Ad Hoc Sub-Process

Collapsed Compensation Sub-
Process

270 UML Diagrams Additional Diagrams

© 2008 Altova GmbHAltova UModel 2008

Connecting objects

There are two ways of connecting objects: a Flow (using a sequence or message), and an
Association.

Sequence Flow
A Sequence Flow shows the order that activities are performed within a Process.

Conditional Flow
This type of Sequence Flow can have a conditional expression which is evaluated to determine
if the flow will be used or not. If the conditional flow originates from an activity, then a mini
diamond is displayed at the origin of the arrow.

Default Flow
This type of flow is used if all other conditional flows are "false" in Data-Base Exclusive, or
Inclusive decisions. A diagonal slash at the beginning of the arrow line is used as a visual
indication, e.g. "Accepted" default flow.

Message Flow
A Message Flow shows the flow of messages between two participants (entities or roles), that
can send and receive them. Participants are shown as separate Pools in the diagram.

© 2008 Altova GmbH

Additional Diagrams 271UML Diagrams

Altova UModel 2008

Association
Associations are used to associate Text and non-Flow Object data with Flow Objects, and show
how data are input and output from Activities. The diagram below shows a Text annotation
which provides the additional information "User Activity" for the Task "Review Issue List".

To create an Association between a Data Object and a Flow control:
1. Click the Association handle of the Data Object (on the left of the object).
2. Drag the connector onto the Flow Control arrow which is highlighted when you can drop

it.

Alternatively,
Click the Association icon and drag from the Data Object to the Flow Control.

272 UML Diagrams Additional Diagrams

© 2008 Altova GmbHAltova UModel 2008

Pools / Swimlanes

Pool
Pools are used to partition and organize activities. A business process may show the interaction
between various processes or participants. Each participant is represented by a rectangular box
called a Pool. A participant could be a business role or entity.

 BPMN objects placed within a pool become part of it when the pool boundary is
highlighted.

 Objects within a pool can be individually selected using CTRL+Click, or by dragging the
marquee inside the pool.

 Click the pool boundary, or title, and drag to reposition it.

Lane
Pools can be further subdivided into Lanes, which categorize activities within a pool. Note that
both horizontal and vertical lanes can be defined.

To add a new lane to a pool:
1. Right click the header of an existing pool object and select New | Lane.

This adds a new lane to the pool. Each lane can be named separately, by double
clicking in the name field.

Note:
Right clicking in one of the lanes allows you to add any of the elements allowed to be
placed in a pool using the New option.

© 2008 Altova GmbH

Additional Diagrams 273UML Diagrams

Altova UModel 2008

Artifacts

Artifacts allow you to show additional information about a Process i.e. how data, documents and
other objects are used and updated during the business process. Artifacts are not directly
related to sequence, or message flow, of the process.

Data Object
Data Objects are documents or other types of data, that show how data are used during a
business process. Data objects can be be used to define the input and output of data to/from
activites.

To create an Association between a Data Object and a Flow control:
1. Click the Association handle of the Data Object (on the left of the object).
2. Drag the connector onto the Flow Control object which is highlighted when you can drop

it.

Text Annotation
Text Annotations allow you to annotate various sections of a business process and are
connected to the specific object using an association.

Group
Groups are often used to highlight certain sections of a diagram, even across different pools.
Groups cannot connect to a sequence or message flow. Group objects are generally placed
behind task or process objects in the diagram.

Chapter 12

XMI - XML Metadata Interchange

276 XMI - XML Metadata Interchange

© 2008 Altova GmbHAltova UModel 2008

12 XMI - XML Metadata Interchange

UModel supports the export and import of XMI 2.1.1 for UML 2.0 / 2.1 / 2.1.1 and 2.1.2. Do not
use the Export to XMI function to archive your UModel projects, please archive the *.ump
project files instead.

Select the menu item File | Export to XMI File to generate an XMI file from the UModel project,
and File | Import from XMI File, to import a previously generated XMI file.

The XMI Export dialog box allows you to select the specific XMI format you want to output, XMI
for UML 2.0/2.1.1. During the export process included files, even those defined as "include by
reference" are also exported.

Please note:
If you intend to reimport generated XMI code into UModel, please make sure that you activate
the "Export UModel Extensions" check box.

Pretty-print XMI output
This option outputs the XMI file with XML appropriate tag indentation and carriage returns/line
feeds.

Export UUIDs
XMI defines three versions of element identification: IDs, UUIDs and labels.

 IDs are unique within the XMI document, and are supported by most UML tools.
UModel exports these type of IDs by default, i.e. none of the check boxes need
activated.

 UUID are Universally Unique Identifiers, and provide a mechanism to assign each
element a global unique identification, GUID. These IDs are globally unique, i.e. they
are not restricted to the specific XMI document. UUIDs are generated by selecting the
"Export UUIDs" checkbox.

 UUIDs are stored in the standard canonical UUID/GUID format (e.g
"6B29FC40-CA47-1067-B31D-00DD010662DA",
"550e8400-e29b-41d4-a716-446655440000",...)

 Labels are not supported by UModel.

Please note:
The XMI import process automatically supports both types of IDs.

© 2008 Altova GmbH

 277XMI - XML Metadata Interchange

Altova UModel 2008

Export UModel Extensions
XMI defines an "extension mechanism" which allows each application to export its tool-specific
extensions to the UML specification. Other UML tools will, however, only be able to import the
standard UML data (ignoring the UModel extensions). This UModel extension data will be
available when importing into UModel.

Data such as the file names of classes, or element colors, are not part of the UML specification
and thus have to be deleted in XMI, or be saved in "Extensions". If they have been exported as
extensions and re-imported, all file names and colors will be imported as defined. If extensions
are not used for the export process, then these UModel-specific data will be lost.

When importing an XMI document, the format is automatically detected and the model
generated.

Export diagrams
Exports UModel diagrams as "Extensions" in the XMI file. The option "Export UModel
Extensions" must be active to be able to save the diagrams as extensions.

Chapter 13

UModel plug-in for MS Visual Studio .NET

280 UModel plug-in for MS Visual Studio .NET

© 2008 Altova GmbHAltova UModel 2008

13 UModel plug-in for MS Visual Studio .NET

UModel can now be integrated into the Microsoft Visual Studio .NET IDE version 2005 or
2008. This unifies the best of both worlds, integrating advanced modeling capabilities with the
advanced development environment of Visual Studio .NET. To do this, you need to do the
following:

 Install Microsoft Visual Studio .NET, making sure that the Visual Studio .NET Help
Installation Kit (VSHIK) is also installed.

 Install UModel Enterprise Edition.

 Download and run the UModel Enterprise Edition Integration Module for Microsoft
Visual Studio .NET. This package is available on the UModel download page at
www.altova.com.

How to enable the plug-in
It is possible that the plug-in was not automatically enabled during the installation process.

To enable the plug-in:
1. Navigate to the directory Visual Studio IDE executable was installed in, e.g. c:\Program

Files\Microsoft Visual Studio 8\Common7\IDE
2. Enter the following command on the command-line devenv.exe /setup.
3. Wait for the process to terminate normally before starting to use the application within

Visual Studio.

http://www.altova.com/download/umodel/uml_tool_enterprise.html

© 2008 Altova GmbH

Opening UModel files in MS Visual Studio .NET 281UModel plug-in for MS Visual Studio .NET

Altova UModel 2008

13.1 Opening UModel files in MS Visual Studio .NET

To open a UModel file in VS .NET:
1. Select the menu option File | Open | Project/Solution.
2. Select the Bank_CSharp.ump file from the ...\UmodelExamples folder.
3. Double click the BankView Main diagram icon in the Model Tree to see the Class

diagram.

Please note:
You may have to reposition several of the windows to have them appear as shown in
the screenshot above. The window layout follows that of the standalone version of
UModel.

Synchronizing program and model code
1. Click the menu item Project | UModel Project.

You will notice that the menu contains two new items which are automatically set as
active, Automatically synchronize Program Code... and Automatically synchronize
UModel Project...

What this enables is the automatic updating of model and code, as soon as changes
are made to one or the other. Disabling these options requires you to generate code

282 UModel plug-in for MS Visual Studio .NET Opening UModel files in MS Visual Studio .NET

© 2008 Altova GmbHAltova UModel 2008

manually using the "Merge UModel Program Code from UModel project..." option
shown in the screenshot above.

© 2008 Altova GmbH

Differences between VS .NET and standalone versions 283UModel plug-in for MS Visual Studio .NET

Altova UModel 2008

13.2 Differences between VS .NET and standalone versions

Prerequisites:
The source code files you intend to use/synchronize with UModel, must be part of the same
solution as the UModel model.

Currently only one UModel project file, *.ump, should be present in a solution. All C# or VB
code projects that are part of the solution, are automatically available for synchronization.

The menu items Project | Import Source Directory and Project | Import Source Project do
not have the option to select "C#" or "VB.NET" in the Language combo box of each "Import
source..." dialog box. C# and VB.NET code are automatically added when you add a C# or
VB.NET project to your Visual Studio solution.

New menu items (UModel / context menu)

 Jump to UML Model / Jump to Code (Visual Basic and C#).
 Reverse engineer current file (Visual Basic and C#).

Both these menu items are available in the context menu of the respective code or
model windows.

Enabling / disabling various UModel windows:
 Select the menu item View | UModel and click the respective check box.

284 UModel plug-in for MS Visual Studio .NET Differences between VS .NET and standalone versions

© 2008 Altova GmbHAltova UModel 2008

Code-engineering
The merging/updating of a single class is not available in the Model Tree of VS .NET.
Automatic or manual synchronization updates all changes immediately.

If code is not parseable then a red UModel status icon appears in the status bar, showing the
code and model are currently not synchronized. It also appears if the last reverse engineering /
forward engineering process encountered an error. The same is true if the syntax check throws
an error in UModel. Clicking a parsing error in the Messages window opens the corresponding
source code file, with the cursor positioned on the line containing the error.

A progress bar in the status bar shows that model/code are currently being synchronized.

Wherever changes are made to code in the VS .NET environment, class details viewer etc., the
code is always reparsed and the model is updated.

Synchronization notes for the .NET edition of UModel:
Due to VS.NET limitations some C# and Visual Basic code modifications in VS.NET do not
trigger an internal VS event and are thus not automatically updated in UModel.

This means that making these changes in VS.NET code does not update the UML model
immediately, you have to force a synchronization manually, or make a different modification
which triggers a source file update.

© 2008 Altova GmbH

Differences between VS .NET and standalone versions 285UModel plug-in for MS Visual Studio .NET

Altova UModel 2008

Manual synchronization is necessary when adding/changing:

 Default values for attributes
 Default values for operation parameters
 TemplateParameters
 TemplateBindings (partial - see below)
 Summary section for all elements
 Remark section for all elements

To force a manual synchronization:
Having made any of the above changes to your code:

1. Right click in the source code file and force an update of the file by selecting "Reverse
engineer current file".

Please note:
Changing any of the above-mentioned modeling elements in UModel, automatically
updates the source code, there are no automatic synchronization limitations from model
to code.

Java limitations:
If your UModel project contains the language profile for Java, then automatic synchronization is
automatically disabled for that project; a message box informs you of this when opening such a
project. Synchronization has to be started manually for such projects.

286 UModel plug-in for MS Visual Studio .NET Minimalist project in Visual Studio .NET

© 2008 Altova GmbHAltova UModel 2008

13.3 Minimalist project in Visual Studio .NET

This section describes the quickest way to create a UModel project in Visual Studio .NET and
generate code.

There are basically only few things to do:
 Create a new Visual Studio .NET project.
 Add a UModel project to the Visual Studio project.
 Start the code engineering process and generate code.

Creating a Visual Studio project
1. Select the menu option File | New Project.
2. Select Visual C# in the Project types group, then select Windows Application in the

Templates group. Click OK when you have completed filling out the other fields in the
dialog box.

A new solution, WindowsApplication1, is created in the Solution Explorer window.

© 2008 Altova GmbH

Minimalist project in Visual Studio .NET 287UModel plug-in for MS Visual Studio .NET

Altova UModel 2008

Adding a UModel project to the Visual Studio project
1. Right click the newly created solution project name in the Solution window, and select

Add | New Project | UModel project, then click OK to confirm.

You are prompted if you want new UML diagrams to be created automatically for the
WindowsApplication1 project.

2. Click Yes to confirm.
3. Select the Content diagram options from the dialog box, click Next if you want to create

Package dependency diagrams, or click Finish if not.

A message box appears informing you that code synchronization of the project has
started. The UModel project has now been added to the solution and you can start the
code-engineering process.

288 UModel plug-in for MS Visual Studio .NET Minimalist project in Visual Studio .NET

© 2008 Altova GmbHAltova UModel 2008

Note that the class diagram "Content of WindowsApplication" is part of the UModel project.

Code engineering and code generation

To create a Component and define the code directory:
1. Right click the Component View package in the Model Tree and select New Diagram |

Component Diagram.
2. Drag the previously created class, myClass, from the Model Tree into the into the

Component diagram.
3. Right click in the diagram and select New | Component e.g. myComponent.
4. Click the component in the diagram to select it, then click in the directory field of the

Properties window and enter the directory you want the code to be placed in e.g. C:
\mycode.

Realizing the class
1. Click MyClass and drag the "ComponentRealization" handle at the bottom of the

element and drop it on the new component, MyComponent.

© 2008 Altova GmbH

Minimalist project in Visual Studio .NET 289UModel plug-in for MS Visual Studio .NET

Altova UModel 2008

A class has to be "realized" before code can be generated. Note that you could also
drag the class and drop it on the component directly in the Model Tree.

Syntax check and code generation
1. Select Project | UModel Project | Check Project Syntax to check to see if everything

is OK.
2. Select Project | UModel Project | Merge Project code from UModel Project... to

output/generate the C# code.

Double click the "Content of WindowsApplication" Diagram icon below Class Diagrams (in the
Solution window) that has automatically been created.

Chapter 14

UModel plug-in for Eclipse

292 UModel plug-in for Eclipse

© 2008 Altova GmbHAltova UModel 2008

14 UModel plug-in for Eclipse

Eclipse 3.x is an open source framework that integrates different types of applications delivered
in form of plugins. UModel for the Eclipse Platform, is an Eclipse Plug-in that allows you to
access the functionality of a previously installed UModel Edition from within the Eclipse 3.2 / 3.3
Platform.

Note that the Eclipse plug-in does not currently support 64-bit operating systems.

Installation Requirements
To successfully install the UModel Plug-in for Eclipse 3.x, you need the following:

 The UModel Enterprise edition

 The appropriate Java Runtime Edition (1.4, 5.0, or 6.0)

 Download and run the UModel Enterprise Edition Integration Module for Eclipse.
This package is available on the UModel download page at www.altova.com.

The UModel Plug-in for Eclipse supplies the following functionality:

 A fully-featured modeling tool that supports automatic synchronization between model
and code for Java.

 Code generation in Java, C# and Visual Basic.

 UModel user help under the menu item Help | UModel | Table of Contents.

Java run-time environment (JavaRTE) prerequisites:
The Eclipse plug-in supports Eclipse versions 3.2 and 3.3, which require a JavaRTE (run-time
environment) of version 1.5 or higher.

If the error message shown below occurs when trying to open a document, this indicates that
Eclipse is using an older JavaRTE. Eclipse uses the PATH environment variable to find a
javaw.exe.

Error:
java.lang.UnsupportedClassVersionError: com/altova/.... (Unsupported major.minor
version 49.0)

The problem can be solved by either:
 running Eclipse with the command-line parameter -vm and supplying the path to a

javaw.exe of version 1.5 or higher.

 checking the PATH variable for the location of the javaw.exe that gets found first, (if
multiple installations of Eclipse exist) and changing it to point to the newer version.

http://www.altova.com/download/umodel/uml_tool_enterprise.html

© 2008 Altova GmbH

Starting Eclipse and using UModel plugin 293UModel plug-in for Eclipse

Altova UModel 2008

14.1 Starting Eclipse and using UModel plugin

To start Eclipse:

1. Double click the Eclipse icon to start Eclipse.
This opens the Eclipse Welcome screen.

2. Click the Workbench icon to switch to the Eclipse Workbench.

This opens an empty workbench and loads the UModel icon bar.

UModel properties:
1. Select the menu option Window | Preferences, and click the UModel entry.
2. Activate the "Automatically switch to UModel perspective at file open" check box, to

switch to the UModel perspective when opening a file, and click OK to confirm.

294 UModel plug-in for Eclipse Starting Eclipse and using UModel plugin

© 2008 Altova GmbHAltova UModel 2008

Clicking the "Open UModel Options Dialog" button, opens the Options dialog which
allows you to define the specific UModel settings, i.e. Libraries, Code generation
settings etc.

© 2008 Altova GmbH

UModel / Editor, View and Perspectives 295UModel plug-in for Eclipse

Altova UModel 2008

14.2 UModel / Editor, View and Perspectives

To enable the UModel perspective in Eclipse:

 Select the menu option Window | Open perspective | Other | UModel.

The individual UModel tabs are now visible in the Eclipse Environment:

The UModel perspective can be automatically set if you activate the "Automatically
switch to UModel perspective at file open" in the Window | Preferences dialog box.

296 UModel plug-in for Eclipse Creating a UModel project / file

© 2008 Altova GmbHAltova UModel 2008

14.3 Creating a UModel project / file

An Eclipse project has to be created, or one has to exist, before you can open, or create a new
UModel *.ump project.

1. Right click in the Navigator pane and select New | Project.
2. Select General | Project and click Next.
3. Enter a project name in the Project name field, e.g. myuml and click the Finish button.

This adds a new Eclipse project to the workspace.

4. Right click the new project folder and select New | Other..., click the UModel Project
File entry and click Next.

5. Enter a UModel project file name, or use the one automatically supplied e.g. my_uml.
ump, then click Finish.
This creates a new empty UModel project.

© 2008 Altova GmbH

Creating a UModel project / file 297UModel plug-in for Eclipse

Altova UModel 2008

You can now create UModel project files inside this Eclipse project, or copy existing
ones into it. Whenever a model changes, the corresponding code will be generated
automatically. Code generation errors and warnings will be shown in the UModel view
called Messages and added to the Problems view of Eclipse.

298 UModel plug-in for Eclipse Importing / opening examples from Navigator

© 2008 Altova GmbHAltova UModel 2008

14.4 Importing / opening examples from Navigator

To Import the UModel Examples folder into the Navigator:

1. Right-click in the Navigator tab and click Import.
2. Select General | File system, then click Next.

3. Click the Browse button to the right of the "From directory:" text box, select the UModel
Examples directory checkbox in your C:\Documents and Settings\User folder\My
Documents\Altova\UModel2008 folder and click OK.

5. If not automatically supplied, click the Browse button, next to the "Into folder:" text box,
to select the target folder, then click Finish.

© 2008 Altova GmbH

Importing / opening examples from Navigator 299UModel plug-in for Eclipse

Altova UModel 2008

The selected folder structure and files will be copied into the Eclipse workspace.

To open an existing UModel project in the workspace:
1. Right click a file in Navigator tab, e.g. Bank_Java.ump, and select UModel | Load.

The file is opened and the folder structure is visible in the Model Tree tab.

2. Expand the Design View folder and double click the Overview diagram icon.

300 UModel plug-in for Eclipse Importing / opening examples from Navigator

© 2008 Altova GmbHAltova UModel 2008

This opens the Component diagram and displays the components and interface
elements.

Please note:
You can also click the UModel combo box and select Load Bank_Java from the entries

avaiable there.

© 2008 Altova GmbH

Differences between Eclipse and standalone versions 301UModel plug-in for Eclipse

Altova UModel 2008

14.5 Differences between Eclipse and standalone versions

Prerequisites:
All Java, C#, VB code projects that are part of the project workspace, are automatically
available for synchronization. Automatic synchronization is only supported for Java code.

The menu items Project | Import Source Directory and Project | Import Source Project do
not have the option to select "Java" in the Language combo box of each "Import source..."
dialog box. Java code is automatically added when you add a Java project to your Eclipse
project.

New menu items:
In general, most UModel commands are available from the UModel menu.

 Automatically synchronize Program Code from UModel Project.
 Automatically synchronize UModel Project from Program Code.

New toolbar:

A new toolbar is available in Eclipse and supplies the following functions:

 Code engineering status, checks the current status of the code engineering process
and displays any relevant information in the Messages tab.

 Open Umodel help, opens the UModel2008 User and Reference manual help file.

 Load UModel file, allows you to select the UModel project you want to open using the
combo box control. All UModel *.ump files that are in the currently loaded Eclipse
project, are displayed in the drop-down box. The name of the UModel file then appears
in the combo box.

302 UModel plug-in for Eclipse Differences between Eclipse and standalone versions

© 2008 Altova GmbHAltova UModel 2008

Code-engineering
The merging/updating of a single class is not available in the Model Tree. Automatic or manual
synchronization updates all changes immediately.

If code is not parseable then a red UModel status icon appears in the tool bar, showing the code
and model are currently not synchronized. The icon also appears if the last reverse
engineering / forward engineering process encountered an error. The same is true if the syntax
check throws an error in UModel.

Clicking a parsing error in the Messages window opens the corresponding source code file, with
the cursor positioned on the line containing the error.

A progress bar in the status bar shows that model/code are currently being synchronized.

Wherever changes are made to code in the Eclipse environment, the code is always reparsed
and the model is updated.

Synchronization notes for the Eclipse edition of UModel:
Some C# and Visual Basic code modifications in Eclipse do not trigger an internal event and are
thus not automatically updated in UModel.

This means that making these changes in Eclipse code does not update the UML model, you
have to force a synchronization manually, or make a different modification which triggers a
source file update.

C# and Visual Basic limitations:
If your UModel project contains the language profile for C#, and Visual Basic then automatic
synchronization is automatically disabled for that project; a message box informs you of this
when opening such a project. Synchronization has to be started manually for such projects.

© 2008 Altova GmbH

UModel code generation 303UModel plug-in for Eclipse

Altova UModel 2008

14.6 UModel code generation

Build Integration
Generation of code can be triggered manually by selecting Merge Program code..., or Merge
UModel Project.. menu entries of the UModel menu.

 Full integration into the Eclipse auto-build process is achieved by assigning the UModel
builder to an Eclipse project.

 For manual code generation: see below.

To manually build code
1. Right click the specific folder/package in the Model Tree tab, and select Code

Engineering | Merge Program Code from UModel Project.
You are prompted for a target folder for the generated code.

2. Select the folder and click OK to start code generation.

Chapter 15

UModel Diagram icons

306 UModel Diagram icons

© 2008 Altova GmbHAltova UModel 2008

15 UModel Diagram icons

The following section is a quick guide to the icons that are made available in each of the
modeling diagrams.

The icons are split up into two sections:
 Add - displays a list of elements that can be added to the diagram.

 Relationship - displays a list of relationship types that can be created between
elements in the diagram.

© 2008 Altova GmbH

Activity Diagram 307UModel Diagram icons

Altova UModel 2008

15.1 Activity Diagram

Add
Action (CallBehaviorAction)
Action (CallOperationAction)
AcceptEventAction
AcceptEventAction (TimeEvent)
SendSignalAction

DecisionNode (Branch)
MergeNode
InitialNode
ActivityFinalNode
FlowFinalNode
ForkNode (vertical)
ForkNode (horizontal)
JoinNode
JoinNode (horizontal)

InputPin
OutputPin
ValuePin

ObjectNode
CentralBufferNode
DataStoreNode
ActivityPartition (horizontal)
ActivityPartition (vertical)
ActivityPartition 2-Dimensional

ControlFlow
ObjectFlow
ExceptionHandler

Activity
ActivityParameterNode
StructuredActivityNode
ExpansionRegion
ExpansionNode
InterruptibleActivityRegion

Note
Note Link

308 UModel Diagram icons Class Diagram

© 2008 Altova GmbHAltova UModel 2008

15.2 Class Diagram

Relationship:
Association
Aggregation
Composition
AssociationClass
Dependency
Usage
InterfaceRealization
Generalization

Add:
Package
Class
Interface
Enumeration
Datatype
PrimitiveType
Profile
Stereotype
ProfileApplication
InstanceSpecification

Note
Note Link

© 2008 Altova GmbH

Communication diagram 309UModel Diagram icons

Altova UModel 2008

15.3 Communication diagram

Add
Lifeline
Message (Call)
Message (Reply)
Message (Creation)
Message (Destruction)

Note
Note Link

310 UModel Diagram icons Composite Structure Diagram

© 2008 Altova GmbHAltova UModel 2008

15.4 Composite Structure Diagram

Add
Collaboration
CollaborationUse
Part (Property)
Class
Interface
Port

Relationship
Connector
Dependency (Role Binding)
InterfaceRealization
Usage

Note
Note Link

© 2008 Altova GmbH

Component Diagram 311UModel Diagram icons

Altova UModel 2008

15.5 Component Diagram

Add:
Package
Interface
Class
Component
Artifact

Relationship:
Realization
InterfaceRealization
Usage
Dependency

Note
Note Link

312 UModel Diagram icons Deployment Diagram

© 2008 Altova GmbHAltova UModel 2008

15.6 Deployment Diagram

Add:
Package
Component
Artifact
Node
Device
ExecutionEnvironment

Relationship:
Manifestation
Deployment
Association
Generalization
Dependency

Note
Note Link

© 2008 Altova GmbH

Interaction Overview diagram 313UModel Diagram icons

Altova UModel 2008

15.7 Interaction Overview diagram

Add
CallBehaviorAction (Interaction)
CallBehaviorAction (InteractionUse)
DecisionNode
MergeNode
InitialNode
ActivityFinalNode
ForkNode
ForkNode (Horizontal)
JoinNode
JoinNode (Horizontal)
DurationConstraint

Relationship
ControlFlow

Note
Note Link

314 UModel Diagram icons Object Diagram

© 2008 Altova GmbHAltova UModel 2008

15.8 Object Diagram

Relationship:
Association
AssociationClass
Dependency
Usage
InterfaceRealization
Generalization

Add:
Package
Class
Interface
Enumeration
Datatype
PrimitiveType
InstanceSpecification

Note
Note Link

© 2008 Altova GmbH

Package diagram 315UModel Diagram icons

Altova UModel 2008

15.9 Package diagram

Add
Package
Profile

Relationship
Dependency
PackageImport
PackageMerge
ProfileApplication

Note
Note Link

316 UModel Diagram icons Sequence Diagram

© 2008 Altova GmbHAltova UModel 2008

15.10 Sequence Diagram

Add
Lifeline
CombinedFragment
CombinedFragment (Alternatives)
CombinedFragment (Loop)
InteractionUse
Gate
StateInvariant
DurationConstraint
TimeConstraint

Message (Call)
Message (Reply)
Message (Creation)
Message (Destruction)

Asynchronous Message (Call)
Asynchronous Message (Reply)
Asynchronous Message (Destruction)

Note
Note Link

No message numbering
Simple message numbering
Nested message numbering

Toggle dependent message movement
Toggle automatic creation of replies for messages

© 2008 Altova GmbH

State Machine Diagram 317UModel Diagram icons

Altova UModel 2008

15.11 State Machine Diagram

Add
Simple state
Composite state
Orthogonal state
Submachine state

FinalState
InitialState

EntryPoint
ExitPoint
Choice
Junction
Terminate
Fork
Fork (horizontal)
Join
Join (horizontal)
DeepHistory
ShallowHistory
ConnectionPointReference

Relationship
Transition

Note
Note link

318 UModel Diagram icons Timing Diagram

© 2008 Altova GmbHAltova UModel 2008

15.12 Timing Diagram

Add
Lifeline (State/Condition)
Lifeline (General value)
TickMark
Event/Stimulus
DurationConstraint
TimeConstraint

Message (Call)
Message (Reply)
Asynchronous Message (Call)

Note
Note Link

© 2008 Altova GmbH

Use Case diagram 319UModel Diagram icons

Altova UModel 2008

15.13 Use Case diagram

Add:
Package
Actor
UseCase

Relationship:
Association
Generalization
Include
Extend

Note
Note Link

320 UModel Diagram icons XML Schema diagram

© 2008 Altova GmbHAltova UModel 2008

15.14 XML Schema diagram

Add
XSD TargetNamespace
XSD Schema
XSD Element (global)
XSD Group
XSD ComplexType
XSD ComplexType (simpleContent)
XSD SimpleType
XSD List
XSD Union
XSD Enumeration
XSD Attribute
XSD AttributeGroup
XSD Notation
XSD Import

Relationship
XSD Include
XSD Redefine
XSD Restriction
XSD Extension
XSD Substitution

Note
Note link

© 2008 Altova GmbH

Business Process Modeling Notation 321UModel Diagram icons

Altova UModel 2008

15.15 Business Process Modeling Notation

Add
Start Event
Intermediate Event
Stop Event

Task
Loop Task
Multi Instance Task
Compensation Task

Collapsed Sub Process
Collapsed Loop Sub Process
Collapsed Multi Instance Sub Process
Collapsed Ad Hoc Process
Collapsed Compensation Sub Process

Expanded Sub Process
Expanded Loop Sub Process
Expanded Multi Instance Sub Process
Expanded Ad Hoc Process
Expanded Compensation Sub Process

Gateway
Inclusive Gateway (OR)
Parallel Gateway (AND)
Data Based Exclusive Gateway (XOR)
Event Based Exclusive Gateway (XOR)
Complex Gateway (Decision/Merge)

Sequence Flow
Conditionla Flow
Default Flow
Message Flow

Association

Pool
Data Object
Group

Text Annotation
Annotation Association

Chapter 16

UModel Reference

324 UModel Reference

© 2008 Altova GmbHAltova UModel 2008

16 UModel Reference

The following section lists all the menus and menu options in UModel, and supplies a short
description of each.

© 2008 Altova GmbH

File 325UModel Reference

Altova UModel 2008

16.1 File

New
Clears the diagram tab, if a previous project exists, and creates a new UModel project.

Open
Opens previously defined modeling project. Select a previously saved project file *.ump from
the Open dialog box.

Reload
Allows you to reload the current project and save, or discard, the changes made since you
opened the project file.

Save
Saves the currently active modeling project using the currently active file name.

Save as
Saves the currently active modeling project with a different name, or allows you to give the
project a new name if this is the first time you save it.

Save Diagram as Image
Opens the "Save as..." dialog box and allows you to save the currently active diagram as a
.PNG, or .EMF (enhanced metafile) file.

Save all Diagrams as Images
Save all diagrams of the currently active project as a .PNG, or .EMF (enhanced metafile) files.

Import from XMI file
Imports a previously exported XMI file. If the file was produced with UModel, then all extensions
etc. will be retained.

Export to XMI file
Export the model as an XMI file. You can select the UML version, as well as the specific IDs
that you want to export please see XMI - XML Metadata Interchange for more information.

Send by Mail
Opens your default mail application and inserts the current UModel project as an attachment.

Print
Opens the Print dialog box, from where you can print out your modeling project as hardcopy.

326 UModel Reference File

© 2008 Altova GmbHAltova UModel 2008

"Use current", retains the currently defined zoom factor of the modeling project. Selecting this
option enables the "Page split of pictures" group.

The Prevent option prevents modeling elements from being split over a page, and keeps them
as one unit.

"Use optimal" scales the modeling project to fit the page size. You can also specify the zoom
factor numerically.

Print all diagrams
Opens the Print dialog box and prints out all UML diagrams contained in the current project file.

Print Preview
Opens the same Print dialog box with the same settings as described above.

Print Setup
Opens the Print Setup dialog box in which you can define the printer you want to use and the
paper settings.

© 2008 Altova GmbH

Edit 327UModel Reference

Altova UModel 2008

16.2 Edit

Undo
UModel has an unlimited number of "Undo" steps that you can use to retrace you modeling
steps.

Redo
The redo command allows you to redo previously undone commands. You can step backward
and forward through the undo history using both these commands.

Cut/Copy//Delete
The standard windows Edit commands, allow you to cut, copy, etc., modeling elements, please
see "Cut, copy and paste in UModel Diagrams" for more information.

Paste
using the keyboard shortcut CTRL+V, or "Paste" from the context menu, as well as Paste from
the Edit menu, always adds a new modeling element to the diagram and to the Model Tree,
please see "Cut, copy and paste in UModel Diagrams".

Paste in Diagram only
using the context menu, i.e. right clicking on the diagram background, only adds a "link/view" of
the existing element, to the current diagram and not to the Model Tree, please see "Cut, copy
and paste in UModel Diagrams".

Delete from Diagram only
Deletes the selected modeling elements from the currently active diagram. The deleted
elements are not deleted from the modeling project and are available in the Model Tree tab.
Note that this option is not available to delete properties or operations from a class, they can be
selected and deleted there directly.

Select all
Select all modeling elements of the currently active diagram. Equivalent to the CTRL+A
shortcut.

Find
There are several options you can use to search for modeling elements:

 Use the text box in the Main title bar

 Use the menu option Edit | Find
 Press the shortcut CTRL+F to open the find dialog box.

Allows you to search for specific text in:

 Any of the three Model Tree panes: Model Tree, Diagram Tree and Favorites tab.
 The Documentation tab of the Overview pane.

328 UModel Reference Edit

© 2008 Altova GmbHAltova UModel 2008

 Any currently active diagram.
 The Messages pane.

Find Next F3
Searches for the next occurrence of the same search string in the currently active tab or
diagram.

Find Previous SHIFT+F3
Searches for the previous occurrence of the same search string in the currently active tab or
diagram.

Replace
Allows you to search and replace any modelling elements in the project. When the element is
found it is highlighted in the diagram as well as in the Model Tree.

Search and replace works in:

 All diagrams
 Any of the three Model Tree panes: Model Tree, Diagram Tree and Favorites tab.
 The Documentation tab of the Overview pane.

Copy as bitmap
Copies the currently active diagram into the clipboard from where you can paste it into the
application of your choice.

Please note:
Diagrams are copied into the system clipboard, you have to insert them into another
application to see, or get access to them.

© 2008 Altova GmbH

Edit 329UModel Reference

Altova UModel 2008

Copy selection as bitmap
Copies the currently selected diagram elements into the clipboard from where you can paste
them into the application of your choice.

330 UModel Reference Project

© 2008 Altova GmbHAltova UModel 2008

16.3 Project

Check Project Syntax...
Checks the UModel project syntax. The project file is checked on multiple levels detailed in the
tables below:

Level Checks if... Message...

Project level at least one Java Namespace Root exists Error

Components Project file / Directory is set Error

 If Realization exists Error

 "Use for code engineering" check box unchecked:
no check is performed and syntax check is disabled.

None

Class Code file name is set.

If class is nested then no check performed.

Error if the local
option "Generate
missing code file
names" is not set.
Warning if the option
is set.

 If contained in a code language namespace Error

 Type for operation parameter is set Error

 Type for properties is set Error

 Operation return type is set Error

 Duplicate operations (names + parameter types) Error

 If classes are involved in Realization, only if the
class is not nested.

Warning

Interface Code file name is set. Error if the local option
"Generate missing
code file names" is not
set.
Warning if the option
is set.

 Contained in a code language namespace Error

 Type for properties are set Error

 Type for operation param. are set Error

 Operation return type is set Error

 Duplicate operations (names + parameter types) Error

 If interfaces are involved in a
ComponentRealization

Warning

Enumeration Belongs to Java Namespace Root:
gives a warning to say that no code will be
generated.

Warning

 Does not belong to Java Namespace Root:
no check is performed and syntax check is disabled
for the enumeration. No check is performed on
contained package

None

© 2008 Altova GmbH

Project 331UModel Reference

Altova UModel 2008

Syntax check for all UML elements involved in code generation

class Checks name is a valid Java name (no forbidden
characters, name is not a keyword)

Error

class property Checks name is a valid Java name (no forbidden
characters, name is not a keyword)

Error

class operation Checks name is a valid Java name (no forbidden
characters, name is not a keyword) Checks for
existence of return parameter

Error

class operation
parameter

Checks name is a valid Java name (no forbidden
characters, name is not a keyword) Checks type has a
valid Java type name

Error

interface Checks name is a valid Java name (no forbidden
characters, name is not a keyword)

Error

interface
operation

Checks name is a valid Java name (no forbidden
characters, name is not a keyword)

Error

interface
operation
parameter

Checks name is a valid Java name (no forbidden
characters, name is not a keyword)

Error

interface
properties

Checks name is a valid Java name (no forbidden
characters, name is not a keyword)

Error

package with
stereotype
namespace

Checks name is a valid Java name (no forbidden
characters, name is not a keyword)

Error

package
without
stereotype
namespace

no element to check None

class multiple inheritance Error

Please note:
Constraints on model elements are not checked, as they are not part of the Java code
generation process. Please see "constraining model elements" for more information.

332 UModel Reference Project

© 2008 Altova GmbHAltova UModel 2008

Import Source Directory...
Opens the Import Source Directory wizard shown below. Please see "Round-trip engineering
(code - model - code)" for a specific example.

© 2008 Altova GmbH

Project 333UModel Reference

Altova UModel 2008

Import Source Project...

Opens the Import Source Project wizard shown below. Clicking the browse button allows
you to select the project file and the specific project type. Please see "Importing source code
into projects" for a specific example.

Java projects:
 JBuilder .jpx, Eclipse .project project files, as well as NetBeans (project.xml) are

currently supported.

C# projects:
 MS Visual studio.NET projects, csproj, csdprj..., as well as
 Borland .bdsproj project files

Import Binary Types
Opens the Import Binary Types dialog box allowing you to import Java, C#, and VB binary files.
Please see "Importing C# and Java binaries" for more information.

Import XML Schema directory
Opens the Import XML Schema Directory allowing you to import all XML Schemas in that
directory and optionally all XML Schemas in any of the subfolders.

Import XML Schema File
Opens the Import XML Schema File dialog box allowing you to import schema files. Please see
"XML Schema Diagrams" for more information.

Merge Program Code from UModel Project
Opens the Synchronization Settings dialog box with the "Code from Model" tab active. Clicking

334 UModel Reference Project

© 2008 Altova GmbHAltova UModel 2008

the Project Settings button allows you to select the specific programming language settings.

Merging or overwriting code
Assuming that code has been generated once from a model, and changes have since been
made to both model and code e.g.:

 Model elements have been added in UModel e.g. a new class X

 A new class has been added to the external code e.g. class Y

Merging (model into code) means that:
 the newly added class Y in the external code is retained

 the newly added class X, from UModel, is added to the code.

Overwriting (code according to model) means that:
 the newly added class Y in the external code is deleted

 the newly added class X, from UModel, is added to the code.

Merge UModel Project from Program Code
Opens the Synchronization Settings dialog box with the "Model from Code" tab active. Clicking
the Project Settings button allows you to select the specific programming language settings.

Merging or overwriting code
Assuming that code has been generated once from a model, and changes have since been
made to both model and code e.g.:

 Model elements have been added in UModel e.g. a new class X

 A new class has been added to the external code e.g. class Y

Merging (code into model) means that:
the newly added class X in UModel, is retained
the newly added class Y, from the external code, is added to the model

Overwriting (Model according to code) means that:

© 2008 Altova GmbH

Project 335UModel Reference

Altova UModel 2008

the newly added class X in UModel is deleted
the newly added class Y, from the external code, is added to the model

Project settings
Allows you to define the specific languages settings for your project.

Synchronization Settings...
Opens the Synchronization Settings dialog box as shown in the screenshots above.

Merge Project...
Merges two UModel project files into one model. The first file you open is the one the second
file will be merged into. Please see Merging UModel projects for more information.

Include Subproject
UModel is supplied with several files that can be included in a UModel project. Clicking the Java
tab allows you to include Java lang classes, interfaces and packages in your project, by
selecting one of the supplied files.

336 UModel Reference Project

© 2008 Altova GmbHAltova UModel 2008

1. Select Project | Include to open the "Include" dialog box.
2. Click the UModel project file you want to include and press OK.

UModel projects can be included within other UModel projects. To include projects place the
respective *.ump files in:

 ...\UModel2008\UModelInclude to appear in the Basic tab, or

 ...\UModel2008\UModelInclude\Java to appear in the Java tab.

Please note:
An include file, which contains all types of the Microsoft .NET Framework 2.0, is
available in the C# 2.0 tab.

To create a user-defined tab/folder:
1. Navigate to the ...\UModel2008\UModelInclude and create/add your folder below

...\UModelInclude, i.e. ...\UModelInclude\myfolder.

To create descriptive text for each UModel project file:
1. Create a text file using the same name as the *.ump file and place in the same folder.

Eg. the MyModel.ump file requires a descriptive file called MyModel.txt.

To remove an included project:
1. Click the included package in the Model Tree view and press the Del. key.
2. You are prompted if you want to continue the deletion process.
3. Click OK to delete the included file from the project.

Please note:
 To delete or remove a project from the "Include" dialog box, delete or remove the

(MyModel).ump file from the respective folder.

Open Subproject as project
Opens the selected subproject as a new project.

© 2008 Altova GmbH

Project 337UModel Reference

Altova UModel 2008

Clear Messages
Clears the syntax check and code merging messages, warnings and errors from the Messages
window.

Please note:
Errors are generally problems that must be fixed before code can be generated, or the model
code can be updated during the code engineering process. Warnings can generally be deferred
until later. Errors and warnings are generated by the syntax checker, the compiler for the
specific language, the UModel parser that reads the newly generated source file, as well as
during the import of XMI files.

Generate documentation
Allows you to generate documenation for the currently open project in HTML, Microsoft Word,
and RTF formats. please see Generating UML documentation for more information.

List Elements not used in any Diagram
Creates a list of all elements not used in any diagram in the project.

List shared Packages
Lists all shared packages of the current project.

List included Packages
Lists all include packages in the current project. Java Profile (Java Profile.ump) and Java Lang
(Java Lang.ump) are automatically supplied in the Bankview example supplied with UModel.

338 UModel Reference Layout

© 2008 Altova GmbHAltova UModel 2008

16.4 Layout

The commands of the Layout menu allow you to line up and align the elements of your
modeling diagrams.

When using the marquee (drag on the diagram background) to mark several elements, the
element with the dashed outline becomes the "active" element, i.e. the last marked element. All
alignment commands use this element as the origin, or basis for the following alignment
commands.

Align:
The align command allows you to align modeling elements along their borders, or centers
depending on the specific command you select.

Space evenly:
This set of commands allow you to space selected elements evenly both horizontally and
vertically.

Make same size:
This set of commands allow you to adjust the width and height of selected elements based on
the active element.

Line up:
This set of commands allow you to line up the selected elements vertically or horizontally.

Line Style:
This set of commands allow you to select the type of line used to connect the various modeling
elements. The lines can be any type of dependency, association lines used in the various model
diagrams.

Autosize:
This command resizes the selected elements to their respective optimal size(s).

Autolayout all:
This command allows you to choose the type of presentation of the modeling elements in the
UML diagram tab. "Force directed", displays the modeling elements from a centric viewpoint.
"Hierarchic", displays elements according to their relationships, superclass - derived class etc.

Reposition text labels:
Repositions modeling element names (of the selected elements) to their default positions.

© 2008 Altova GmbH

View 339UModel Reference

Altova UModel 2008

16.5 View

The commands available in this menu allow you to:

 Switch/activate tabs of the various panes

 Define the modeling element sort criteria of the Model Tree and Favorites tab

 Define the grouping criteria of the diagrams in the Diagram Tree tab

 Show or hide specific UML elements in the Favorites and Model Tree tab

 Define the zoom factor of the current diagram.

340 UModel Reference Tools

© 2008 Altova GmbHAltova UModel 2008

16.6 Tools

The tools menu allows you to:

 Customize your version: define your own toolbars, keyboard shortcuts, menus, and
macros

 Define the global program settings

© 2008 Altova GmbH

Tools 341UModel Reference

Altova UModel 2008

16.6.1 Customize...

The customize command lets you customize UModel to suit your personal needs.

Commands

The Commands tab allows you customize your menus or toolbars.

To add a command to a toolbar or menu:
1. Open this dialog box using Tools | Customize.
2. Select the command category in the Categories list box. The commands available

appear in the Commands list box.
3. Click on a command in the commands list box and drag "it" to an to an existing menu or

toolbar.

4. An I-beam appears when you place the cursor over a valid position to drop the
command.

5. Release the mouse button at the position you want to insert the command.

 A small button appears at the tip of mouse pointer when you drag a command. The
check mark below the pointer means that the command cannot be dropped at the
current cursor position.

 The check mark disappears whenever you can drop the command (over a tool bar or
menu).

 Placing the cursor over a menu when dragging, opens it, allowing you to insert the
command anywhere in the menu.

 Commands can be placed in menus or tool bars. If you created you own toolbar you
can populate it with your own commands/icons.

Please note:
You can also edit the commands in the context menus (right click anywhere opens the
context menu), using the same method. Click the Menu tab and then select the specific
context menu available in the Context Menus combo box.

To delete a command or menu:
1. Open this dialog box using Tools | Customize.
2. Click on the menu entry or icon you want to delete, and drag with the mouse.
3. Release the mouse button whenever the check mark icon appears below the mouse

pointer.
The command, or menu item is deleted from the menu or tool bar.

Toolbars

The Toolbars tab allows you to activate or deactivate specific toolbars, as well as create your
own specialized ones.

Toolbars contain symbols for the most frequently used menu commands. For each symbol you
get a brief "tool tip" explanation when the mouse cursor is directly over the item and the status
bar shows a more detailed description of the command.

You can drag the toolbars from their standard position to any location on the screen, where they
appear as a floating window. Alternatively you can also dock them to the left or right edge of the
main window.

To activate or deactivate a toolbar:
1. Click the check box to activate (or deactivate) the specific toolbar.

To create a new toolbar:
1. Click the New... button, and give the toolbar a name in the Toolbar name dialog box.

342 UModel Reference Tools

© 2008 Altova GmbHAltova UModel 2008

2. Add commands to the toolbar using the Commands tab of the Customize dialog box.

To reset the Menu Bar

 Click the Menu Bar entry and
 Click the Reset button, to reset the menu commands to the state they were when

installed.

To reset all toolbar and menu commands

 Click the Reset All button, to reset all the toolbar commands to the state they were
when the program was installed. A prompt appears stating that all toolbars and menus
will be reset.

 Click Yes to confirm the reset.

Show text labels:
This option places explanatory text below toolbar icons when activated.

Tools

The Tools tab allows you to create your own menu entries in the Tools menu.

Click the folder icon to add a new menu entry and use the Command field to associate it to an
application.

Keyboard

The Keyboard tab allows you to define (or change) keyboard shortcuts for any command.

To assign a new Shortcut to a command:
1. Select the commands category using the Category combo box.
2. Select the command you want to assign a new shortcut to, in the Commands list box
3. Click in the "Press New Shortcut Key:" text box, and press the shortcut keys that are

to activate the command.
The shortcuts appear immediately in the text box. If the shortcut was assigned
previously, then that function is displayed below the text box.

4. Click the Assign button to permanently assign the shortcut.

© 2008 Altova GmbH

Tools 343UModel Reference

Altova UModel 2008

The shortcut now appears in the Current Keys list box.
(To clear this text box, press any of the control keys, CTRL, ALT or SHIFT).

To de-assign (or delete a shortcut):
1. Click the shortcut you want to delete in the Current Keys list box, and
2. Click the Remove button (which has now become active).
3. Click the Close button to confirm all the changes made in the Customize dialog box.

Menu

The Menu tab allows you to customize the main menu bars as well as the (popup - right click)
context menus.

You can customize both the Default and UModel Project menu bars.
The Default menu is the one visible when no XML documents of any type are open.
The UModel Project menu is the menu bar visible when a *.ump file has been opened.

To customize a menu:
1. Select the menu bar you want to customize from the "Show Menus for:" combo box
2. Click the Commands tab, and drag the commands to the menu bar of your choice.

To delete commands from a menu:
1. Click right on the command, or icon representing the command, and
2. Select the Delete option from the popup menu,

or,
1. Select Tools | Customize to open the Customize dialog box, and
2. Drag the command away from the menu, and drop it as soon as the check mark icon

appears below the mouse pointer.

To reset either of the menu bars:
1. Select either the Default or UModel Project entry in the combo box, and
2. Click the Reset button just below the menu name.

A prompt appears asking if you are sure you want to reset the menu bar.

To customize any of the Context menus (right click menus):
1. Select the context menu from the "Select context menus" combo box.
2. Click the Commands tab, and drag the specific commands to context menu that is now

open.

To delete commands from a context menu:
1. Click right on the command, or icon representing the command, and
2. Select the Delete option from the popup menu

or,
1. Select Tools | Customize to open the Customize dialog box, and
2. Drag the command away from the context menu, and drop it as soon as the check

mark icon appears below the mouse pointer.

To reset any of the context menus:
1. Select the context menu from the combo box, and
2. Click the Reset button just below the context menu name.

A prompt appears asking if you are sure you want to reset the context menu.

344 UModel Reference Tools

© 2008 Altova GmbHAltova UModel 2008

To close an context menu window:
1. Click on the Close icon at the top right of the title bar, or
2. Click the Close button of the Customize dialog box.

Menu shadows

 Click the Menu shadows check box, if you want all your menus to have shadows.

Options

The Options tab allows you to set general environment settings.

Toolbar
When active, the Show ToolTips on toolbars check box displays a popup when the mouse
pointer is placed over an icon in any of the icon bars. The popup contains a short description of
the icon function, as well as the associated keyboard shortcut, if one has been assigned.

The Show shortcut keys in ToolTips check box, allows you to decide if you want to have the
shortcut displayed in the tooltip.

When active, the Large icons check box switches between the standard size icons, and larger
versions of the icons.

© 2008 Altova GmbH

Tools 345UModel Reference

Altova UModel 2008

16.6.2 Options

Select the menu item Tools | Options to define your project options.

The View tab allows you to define:
 Where the program logo should appear.
 The application title bar contents.

 The types of elements you want listed when using the "List elements not used in any
diagram" context menu option in the Model Tree, or Favorites tab. You also have the
option of ignoring elements contained in included files.

 If a selected element in a diagram is automatically selected/synchronized in the Model
Tree.

 The default depth of the hierarchy view when using the Show graph view in the
Hierarchy tab.

 The Autolayout Hierarchic settings.

346 UModel Reference Tools

© 2008 Altova GmbHAltova UModel 2008

The Editing tab allows you to define:
 If a new Diagram created in the Model Tree tab, is also automatically opened in the

main area.
 Default visibility settings when adding new elements - Properites or Operations.

 The default code language when a new component is added.

 If a newly added constraint, is to automatically constrain its owner as well.

 If a prompt should appear when deleting elements from a project, from the Favorites
tab or in any of the diagrams. This prompt can be deactivated when deleting items
there; this option allows you to reset the "prompt on delete" dialog box.

 The delay with which the syntax error popup should be closed.

© 2008 Altova GmbH

Tools 347UModel Reference

Altova UModel 2008

The Diagram Editing tab allows you to define:
 The number of items that can be automatically added to a diagram, before a prompt

appears.
 The display of Styles when they are automatically added to a diagram.

 If Associations between modeling elements, are to be created automatically when items
are added to a diagram.

 If the associations to collections are to be resolved.
 If templates from unknown externals are to be resolved as not fully qualified.

 or use preexisting Collection Templates, or define new ones.

Collection Templates should be defined as fully qualified i.e. a.b.c.List. If the template
has this namespace then UModel automatically creates a Collection Association.
Exception: If the template belongs to the Unknown Externals package, and the option
"Unknown externals: resolve unqualified", is enabled, then only the template name is
considered (i.e. List instead of a.b.c.List).

 If the autocompletion window is to be available when editing attributes or operations in
the class diagram.

348 UModel Reference Tools

© 2008 Altova GmbHAltova UModel 2008

The File tab allows you to define:
 The actions performed when files are changed.
 If the contents of the Favorites tab are to be loaded and saved with the current project.
 If the previously opened project is to automatically be opened when starting the

application.

© 2008 Altova GmbH

Tools 349UModel Reference

Altova UModel 2008

The Code Engineering tab allows you to define:
 The circumstances under which the Message window will open.

 If all coding elements i.e. those contained in a Java / C# / VB namespace root, as well
as those assigned to a Java / C# / VB component, are to be checked, or

only elements used for code engineering, i.e. where "use for code engineering"
check box is active, are to be checked.

 When updating program code if:
If a syntax check is to be performed.
If missing ComponentRealizations are to be automatically generated.
If missing code file names in the merged code are to be generated.
If namespaces are to be used in the code file path.

 The directories to be ignored when updating a UModel project from code, or directory.
Separate the respective directories with a semicolon ";". Child directories of the same
name are also ignored.

 The location of the XMLSpy Catalog File, RootCatalog.xml, which enables UModel as
well as XMLSpy to retrieve commonly used schemas (as well as stylesheets and other
files) from local user folders. This increases the overall processing speed, and enables
users to work offline.

350 UModel Reference Window

© 2008 Altova GmbHAltova UModel 2008

16.7 Window

Cascade:
This command rearranges all open document windows so that they are all cascaded (i.e.
staggered) on top of each other.

Tile horizontally:
This command rearranges all open document windows as horizontal tiles, making them all
visible at the same time.

Tile vertically:
This command rearranges all open document windows as vertical tiles, making them all visible
at the same time.

Arrange icons:
Arranges haphazardly positioned, iconized diagrams, along the base of the diagram viewing
area.

Close:
Closes the currently active diagram tab.

Close All:
Closes all currently open diagram tabs.

Close All but Active:
Closes all diagram tabs except for the currently active one.

Next:
Switches to the next modeling diagram in the tab sequence, or the next hyperlinked element.

Previous:
Switches to the previous modeling diagram in the tab sequence, or the previous hyperlinked
element.

Window list:
This list shows all currently open windows, and lets you quickly switch between them.

You can also use the Ctrl-TAB or CTRL F6 keyboard shortcuts to cycle through the open
windows.

© 2008 Altova GmbH

Help 351UModel Reference

Altova UModel 2008

16.8 Help

Allows access to the Table of Contents and Index of the UModel documentation, as well as
Altova web site links. The Registration option opens the Altova Licensing Manager, which
contains the licensing information for all of Altova products.

Chapter 17

Code Generator

354 Code Generator

© 2008 Altova GmbHAltova UModel 2008

17 Code Generator

UModel includes a built-in code generator which can automatically generate Java, C#, Visual
Basic, or XML Schema files from UML models.

© 2008 Altova GmbH

The way to SPL (Spy Programming Language) 355Code Generator

Altova UModel 2008

17.1 The way to SPL (Spy Programming Language)

This section gives an overview of Spy Programming Language, the code generator's template
language.

It is assumed that you have prior programming experience, and are familiar with operators,
functions, variables and classes, as well as the basics of object-oriented programming - which
is used heavily in SPL.

The templates used by UModel are supplied in the ...\UModelspl folder. You can use these files
as an aid to help you in developing your own templates.

How code generator works
Inputs to the code generator are the template files (.spl) and the object model provided by
UModel. The template files contain SPL instructions for creating files, reading information from
the object model and performing calculations, interspersed with literal code fragments in the
target programming language.

The template file is interpreted by the code generator and outputs .java, .cs source code files, ,
or any other type of file depending on the template.

356 Code Generator The way to SPL (Spy Programming Language)

© 2008 Altova GmbHAltova UModel 2008

17.1.1 Basic SPL structure

An SPL file contains literal text to output, interspersed with code generator instructions.

Code generator instructions are enclosed in square brackets '[' and ']'.
Multiple statements can be included in a bracket pair. Additional statements have to be
separated by a new line or a colon ':'.

Valid examples are:

[$x = 42
$x = $x + 1]

or

[$x = 42: $x = $x + 1]

Adding text to files
Text not enclosed by [and], is written directly to the current output file.
To output literal square brackets, escape them with a backslash: \[and \]; to output a backslash
use \\.

Comments
Comments inside an instruction block always begin with a ' character, and terminate on the next
line, or at a block close character].

© 2008 Altova GmbH

The way to SPL (Spy Programming Language) 357Code Generator

Altova UModel 2008

17.1.2 Variables

Any non-trivial SPL file will require variables. Some variables are predefined by the code
generator, and new variables may be created simply by assigning values to them.

The $ character is used when declaring or using a variable, a variable name is always prefixed
by $.
Variable names are case sensitive.

Variables types:
 integer - also used as boolean, where 0 is false and everything else is true
 string
 object - provided by UModel
 iterator - see foreach statement

Variable types are declared by first assignment:

[$x = 0]
x is now an integer.

[$x = "teststring"]
x is now treated as a string.

Strings
String constants are always enclosed in double quotes, like in the example above. \n and \t
inside double quotes are interpreted as newline and tab, \" is a literal double quote, and \\ is a
backslash. String constants can also span multiple lines.

String concatenation uses the & character:

[$BasePath = $outputpath & "/" & $JavaPackageDir]

Objects
Objects represent the information contained in the UModelproject. Objects have properties,
which can be accessed using the . operator. It is not possible to create new objects in SPL (they
are predefined by the code generator, derived from the input), but it is possible to assign objects
to variables.

Example:

class [=$class.Name]

This example outputs the word "class", followed by a space and the value of the Name property
of the $class object.

The following table show the relationship between UML elements their SPL equivalents along
with a short description.

358 Code Generator The way to SPL (Spy Programming Language)

© 2008 Altova GmbHAltova UModel 2008

Predefined variables

UML element SPL property Multiplicit
y

UML UModel Description

Attribute /
Association

Attribute /
Association

BehavioralFeature isAbstract isAbstract:Boolean

BehavioralFeature raisedExcepti
on

* raisedException:Type

BehavioralFeature ownedParam
eter

* ownedParameter:Para
meter

BehavioredClassif
ier

interfaceReali
zation

* interfaceRealization:Int
erfaceRealization

Class ownedOperati
on

* ownedOperation:Oper
ation

Class nestedClassifi
er

* nestedClassifier:Classi
fier

Classifier namespace * namespace:Packag
e

packages with code
language
<<namespace>> set

Classifier rootNamespa
ce

* project root
namespace:String

VB only - root
namespace

Classifier generalization * generalization:General
ization

Classifier isAbstract isAbstract:Boolean

ClassifierTemplat
eParameter

constrainingC
lassifier

* constrainingClassifier

Comment body body:String

DataType ownedAttribut
e

* ownedAttribute:Proper
ty

DataType ownedOperati
on

* ownedOperation:Oper
ation

Element kind kind:String

Element owner 0..1 owner:Element

Element appliedStereo
type

* appliedStereotype:S
tereotypeApplication

applied stereotypes

Element ownedComm
ent

* ownedComment:Com
ment

ElementImport importedElem
ent

1 importedElement:Pack
ageableElement

Enumeration ownedLiteral * ownedLiteral:Enumera
tionLiteral

Enumeration nestedClassifi
er

* nestedClassifier::Cl
assifier

Enumeration interfaceReali
zation

* interfaceRealization:
Interface

EnumerationLitera
l

ownedAttribut
e

* ownedAttribute:Prop
erty

EnumerationLitera
l

ownedOperati
on

* ownedOperation:Op
eration

EnumerationLitera
l

nestedClassifi
er

* nestedClassifier:Cla
ssifier

Feature isStatic isStatic:Boolean

Generalization general 1 general:Classifier

© 2008 Altova GmbH

The way to SPL (Spy Programming Language) 359Code Generator

Altova UModel 2008

Interface ownedAttribut
e

* ownedAttribute:Proper
ty

Interface ownedOperati
on

* ownedOperation:Oper
ation

Interface nestedClassifi
er

* nestedClassifier:Classi
fier

InterfaceRealizati
on

contract 1 contract:Interface

MultiplicityElemen
t

lowerValue 0..1 lowerValue:ValueSpec
ification

MultiplicityElemen
t

upperValue 0..1 upperValue:ValueSpe
cification

NamedElement name name:String

NamedElement visibility visibility:VisibilityKind

NamedElement isPublic isPublic:Boolean visibility <public>

NamedElement isProtected isProtected:Boolean visibility <protected>

NamedElement isPrivate isPrivate:Boolean visibility <private>

NamedElement isPackage isPackage:Boolean visibility <package>

NamedElement namespacePr
efix

namespacePrefix:St
ring

XSD only - namespace
prefix when exists

NamedElement parseableNa
me

parseableName:Stri
ng

CSharp, VB only - name
with escaped keywords
(@)

Namespace elementImpor
t

* elementImport:Elemen
tImport

Operation ownedReturn
Parameter

0..1 ownedReturnParam
eter:Parameter

parameter with direction
return set

Operation type 0..1 type type of parameter with
direction return set

Operation ownedOperati
onParameter

* ownedOperationPar
ameter:Parameter

all parameters excluding
parameter with direction
return set

Operation implementedI
nterface

1 implementedInterfac
e:Interface

CSharp only - the
implemented interface

Operation ownedOperati
onImplement
ations

* implementedOperati
on:OperationImplem
entation

VB only - the
implemented
interfaces/operations

OperationImpleme
ntation

implemented
OperationOw
ner

1 implementedOperati
onOwner:Interface

interface implemented
by the operation

OperationImpleme
ntation

implemented
OperationNa
me

name:String name of the
implemented operation

OperationImpleme
ntation

implemented
OperationPar
seableName

parseableName:Stri
ng

name of the
implemented operation
with esacped keywords

Package namespace * namespace:Packag
e

packages with code
language
<<namespace>> set

PackageableElem
ent

owningPacka
ge

0..1 owningPackage set if owner is a
package

PackageableElem
ent

owningName
spacePackag
e

0..1 owningNamespace
Package:Package

owning package with
code language
<<namespace>> set

Parameter direction direction:ParameterDir
ectionKind

360 Code Generator The way to SPL (Spy Programming Language)

© 2008 Altova GmbHAltova UModel 2008

Parameter isIn isIn:Boolean direction <in>

Parameter isInOut isInOut:Boolean direction <inout>

Parameter isOut isOut:Boolean direction <out>

Parameter isReturn isReturn:Boolean direction <return>

Parameter isVarArgList isVarArgList:Boolea
n

true if parameter is a
variable argument list

Parameter defaultValue 0..1 defaultValue:ValueSpe
cification

Property defaultValue 0..1 defaultValue:ValueSpe
cification

RedefinableEleme
nt

isLeaf isLeaf:Boolean

Slot name name:String name of the defining
feature

Slot values * value:ValueSpecificati
on

Slot value value:String value of the first value
specification

StereotypeApplica
tion

name name:String name of applied
stereotype

StereotypeApplica
tion

taggedValue * taggedValue:Slot first slot of the instance
specification

StructuralFeature isReadOnly isReadOnly

StructuredClassifi
er

ownedAttribut
e

* ownedAttribute:Proper
ty

TemplateBinding signature 1 signature:TemplateSig
nature

TemplateBinding parameterSu
bstitution

* parameterSubstitution:
TemplateParameterSu
bstitution

TemplateParamet
er

paramDefault paramDefault:String template parameter
default value

TemplateParamet
er

ownedParam
eteredElemen
t

1 ownedParameteredEle
ment:ParameterableEl
ement

TemplateParamet
erSubstitution

parameterSu
bstitution

parameterSubstituti
on:String

Java only - code
wildcard handling

TemplateParamet
erSubstitution

parameterDi
mensionCoun
t

parameterDimensio
nCount:Integer

code dimension count of
the actual parameter

TemplateParamet
erSubstitution

actual 1 OwnedActual:Paramet
erableElement

TemplateParamet
erSubstitution

formal 1 formal:TemplatePara
meter

TemplateSignatur
e

template 1 template:Templateabl
eElement

TemplateSignatur
e

ownedParam
eter

* ownedParameter:Tem
plateParameter

TemplateableEle
ment

isTemplate isTemplate:Boolean true if template
signature set

TemplateableEle
ment

ownedTempl
ateSignature

0..1 ownedTemplateSignat
ure:TemplateSignature

TemplateableEle
ment

templateBindi
ng

* templateBinding:Temp
lateBinding

© 2008 Altova GmbH

The way to SPL (Spy Programming Language) 361Code Generator

Altova UModel 2008

Type typeName * typeName:Package
ableElement

qualified code type
names

TypedElement type 0..1 type:Type

TypedElement postTypeMod
ifier

postTypeModifier:St
ring

postfix code modifiers

ValueSpecification value value:String string value of the value
specification

Adding a prefix to attributes of a class during code generation
You might need to prefix all new attributes with the "m_" characters in your project.

All new coding elements are written using the SPL templates:
If you look into UModelSPL\C#[Java]\Default\Attribute.spl, you can change the way how the
name is written, e.g. replace

write $Property.name

by

write "m_" & $Property.name

It is highly recommended that you immediately update your model from code, after code
generation to ensure that code and model are synchronized!

Please note:
As previously mentioned copy the SPL templates one directory higher (i.e. above the default
directory to UModelSPL\C#) before modifying them. This ensures that they are not overwritten
when you install a new version of UModel. Please make sure that the "user-defined override
default" check box is activated in the Code from Model tab of the Synchronization Setting
dialog box.

Global objects
$Options an object holding global options:

generateComments:bool generate doc comments (true/false)

$Indent a string used to indent generated code and represent the current
nesting level.

$IndentStep a string, used to indent generated code and represent one nesting
level.

$NamespacePrefix XSD only – the target namespace prefix if present

String manipulation routines
integer Find(s)
Searches the string for the first match of a substring s.
Returns the zero-based index of the first character of s or -1 if s is not found.

string Left(n)
Returns the first n characters of the string.

integer Length()
Returns the length of the string.

string MakeUpper()

362 Code Generator The way to SPL (Spy Programming Language)

© 2008 Altova GmbHAltova UModel 2008

Returns a string converted to upper case.

string MakeUpper(n)
Returns a string, with the first n characters converted to upper case.

string MakeLower()
Returns a string converted to lower case.

string MakeLower(n)
Returns a string, with the first n characters converted to lower case.

string Mid(n)
Returns a string starting with the zero-based index position n

string Mid(n, m)
Returns a string starting with the zero-based index position n and the length m

string RemoveLeft(s)
Returns a string excluding the substring s if Left(s.Length()) is equal to substring s.

string RemoveLeftNoCase(s)
Returns a string excluding the substring s if Left(s.Length()) is equal to substring s (case
insensitive).

string RemoveRight(s)
Returns a string excluding the substring s if Right(s.Length()) is equal to substring s.

string RemoveRightNoCase(s)
Returns a string excluding the substring s if Right(s.Length()) is equal to substring s (case
insensitive).

string Repeat(s, n)
Returns a string containing substring s repeated n times.

string Right(n)
Returns the last n characters of the string.

© 2008 Altova GmbH

The way to SPL (Spy Programming Language) 363Code Generator

Altova UModel 2008

17.1.3 Operators

Operators in SPL work like in most other programming languages.

List of SPL operators in descending precedence order:

. Access object property
() Expression grouping
true boolean constant "true"
false boolean constant "false"

& String concatenation

- Sign for negative number
not Logical negation

* Multiply
/ Divide
% Modulo

+ Add
- Subtract

<= Less than or equal
< Less than
>= Greater than or equal
> Greater than

= Equal
<> Not equal

and Logical conjunction (with short circuit evaluation)
or Logical disjunction (with short circuit evaluation)

= Assignment

364 Code Generator The way to SPL (Spy Programming Language)

© 2008 Altova GmbHAltova UModel 2008

17.1.4 Conditions

SPL allows you to use standard "if" statements. The syntax is as follows:

if condition
statements

else
statements

endif

or, without else:

if condition
statements

endif

Please note that there are no round brackets enclosing the condition!
As in any other programming language, conditions are constructed with logical and comparison
operators.

Example:
[if $namespace.ContainsPublicClasses and $namespace.Prefix <> ""]

whatever you want ['inserts whatever you want, in the resulting file]
[endif]

Switch
SPL also contains a multiple choice statement.

Syntax:
switch $variable

case X:
statements

case Y:
case Z:
statements

default:
statements

endswitch

The case labels must be constants or variables.

The switch statement in SPL does not fall through the cases (as in C), so there is no need for a
"break" statement.

© 2008 Altova GmbH

The way to SPL (Spy Programming Language) 365Code Generator

Altova UModel 2008

17.1.5 foreach

Collections and iterators

A collection contains multiple objects - like a ordinary array. Iterators solve the problem of
storing and incrementing array indexes when accessing objects.

Syntax:
foreach iterator in collection
statements

next

Example:
[foreach $class in $classes

if not $class.IsInternal
] class [=$class.Name];

[endif
next]

Foreach steps through all the items in $classes, and executes the code following the
instruction, up to the next statement, for each of them.

In each iteration, $class is assigned to the next class object. You simply work with the class
object instead of using, classes[i]->Name(), as you would in C++.

All collection iterators have the following additional properties:

Index The current index, starting with 0
IsFirst true if the current object is the first of the collection (index is 0)
IsLast true if the current object is the last of the collection

Example:
[foreach $enum in $facet.Enumeration

if not $enum.IsFirst
], [

endif
]"[=$enum.Value]"[

next]

366 Code Generator The way to SPL (Spy Programming Language)

© 2008 Altova GmbHAltova UModel 2008

17.1.6 Subroutines

Code generator supports subroutines in the form of procedures or functions.

Features:
 By-value and by-reference passing of values
 Local/global parameters (local within subroutines)
 Local variables
 Recursive invocation (subroutines may call themselves)

Subroutine declaration

Subroutines

Syntax example:

Sub SimpleSub()

... lines of code

EndSub

 Sub is the keyword that denotes the procedure.
 SimpleSub is the name assigned to the subroutine.
 Round parenthesis can contain a parameter list.
 The code block of a subroutine starts immediately after the closing parameter

parenthesis.
 EndSub denotes the end of the code block.

Please note:
Recursive or cascaded subroutine declaration is not permitted, i.e. a subroutine may
not contain another subroutine.

Parameters
Parameters can also be passed by procedures using the following syntax:

 All parameters must be variables
 Variables must be prefixed by the $ character
 Local variables are defined in a subroutine
 Global variables are declared explicitly, outside of subroutines
 Multiple parameters are separated by the comma character "," within round

parentheses
 Parameters can pass values

Parameters - passing values
Parameters can be passed in two ways, by value and by reference, using the keywords ByVal
and ByRef respectively.

Syntax:
' define sub CompleteSub()
[Sub CompleteSub($param, ByVal $paramByValue, ByRef $paramByRef)
] ...

 ByVal specifies that the parameter is passed by value. Note that most objects can only
be passed by reference.

 ByRef specifies that the parameter is passed by reference. This is the default if neither
ByVal nor ByRef is specified.

© 2008 Altova GmbH

The way to SPL (Spy Programming Language) 367Code Generator

Altova UModel 2008

Function return values
To return a value from a subroutine, use the return statement. Such a function can be called
from within an expression.

Example:
' define a function
[Sub MakeQualifiedName(ByVal $namespacePrefix, ByVal $localName)
if $namespacePrefix = ""
 return $localName
else
 return $namespacePrefix & ":" & $localName
endif
EndSub
]

Subroutine invocation

Use call to invoke a subroutine, followed by the procedure name and parameters, if any.

Call SimpleSub()
or,

Call CompleteSub("FirstParameter", $ParamByValue, $ParamByRef)

Function invocation
To invoke a function (any subroutine that contains a return statement), simply use its name
inside an expression. Do not use the call statement to call functions.
Example:

$QName = MakeQualifiedName($namespace, "entry")

368 Code Generator Error Codes

© 2008 Altova GmbHAltova UModel 2008

17.2 Error Codes

Operating System Error Codes
201 File not found: '%s'
202 Cannot create file '%s'
203 Cannot open file '%s'
204 Cannot copy file '%s' to '%s'

Syntax Error Codes
401 Keyword expected
402 '%s' expected
403 No output file specified
404 Unexpected end of file
405 Keyword not allowed

Runtime Error Codes
501 Unknown variable '%s'
502 Redefinition of variable '%s'
503 Variable '%s' is not a container
504 Unknown property '%s'
505 Cannot convert from %s to %s
507 Unknown function
508 Function already defined
509 Invalid parameter
510 Division by zero
511 Unknown method
512 Incorrect number of parameters
513 Stack overflow

Chapter 18

Appendices

370 Appendices

© 2008 Altova GmbHAltova UModel 2008

18 Appendices

These appendices contain technical information about UModel and important licensing
information.

License Information

 Electronic software distribution
 Copyrights
 End User License Agreement

© 2008 Altova GmbH

License Information 371Appendices

Altova UModel 2008

18.1 License Information

This section contains:

 Information about the distribution of this software product
 Information about the intellectual property rights related to this software product
 The End User License Agreement governing the use of this software product

Please read this information carefully. It is binding upon you since you agreed to these terms
when you installed this software product.

372 Appendices License Information

© 2008 Altova GmbHAltova UModel 2008

18.1.1 Electronic Software Distribution

This product is available through electronic software distribution, a distribution method that
provides the following unique benefits:

 You can evaluate the software free-of-charge before making a purchasing decision.
 Once you decide to buy the software, you can place your order online at the Altova

website and immediately get a fully licensed product within minutes.
 When you place an online order, you always get the latest version of our software.
 The product package includes a comprehensive integrated onscreen help system. The

latest version of the user manual is available at www.altova.com (i) in HTML format for
online browsing, and (ii) in PDF format for download (and to print if you prefer to have
the documentation on paper).

30-day evaluation period
After downloading this product, you can evaluate it for a period of up to 30 days free of charge.
About 20 days into this evaluation period, the software will start to remind you that it has not yet
been licensed. The reminder message will be displayed once each time you start the
application. If you would like to continue using the program after the 30-day evaluation period,
you have to purchase an Altova Software License Agreement, which is delivered in the form of
a key-code that you enter into the Software Activation dialog to unlock the product. You can
purchase your license at the online shop at the Altova website.

Helping Others within Your Organization to Evaluate the Software
If you wish to distribute the evaluation version within your company network, or if you plan to
use it on a PC that is not connected to the Internet, you may only distribute the Setup programs,
provided that they are not modified in any way. Any person that accesses the software installer
that you have provided, must request their own 30-day evaluation license key code and after
expiration of their evaluation period, must also purchase a license in order to be able to
continue using the product.

For further details, please refer to the Altova Software License Agreement at the end of this
section.

http://www.altova.com/
http://www.altova.com/
http://www.altova.com/support_help.html
http://www.altova.com/

© 2008 Altova GmbH

License Information 373Appendices

Altova UModel 2008

18.1.2 Software Activation and License Metering

As part of Altova’s Software Activation, the software may use your internal network and Internet
connection for the purpose of transmitting license-related data at the time of installation,
registration, use, or update to an Altova-operated license server and validating the authenticity
of the license-related data in order to protect Altova against unlicensed or illegal use of the
software and to improve customer service. Activation is based on the exchange of license
related data such as operating system, IP address, date/time, software version, and computer
name, along with other information between your computer and an Altova license server.

Your Altova product has a built-in license metering module that further helps you avoid any
unintentional violation of the End User License Agreement. Your product is licensed either as a
single-user or multi-user installation, and the license-metering module makes sure that no more
than the licensed number of users use the application concurrently.

This license-metering technology uses your local area network (LAN) to communicate between
instances of the application running on different computers.

Single license
When the application starts up, as part of the license metering process, the software sends a
short broadcast datagram to find any other instance of the product running on another computer
in the same network segment. If it doesn't get any response, it will open a port for listening to
other instances of the application.

Multi license
If more than one instance of the application is used within the same LAN, these instances will
briefly communicate with each other on startup. These instances exchange key-codes in order
to help you to better determine that the number of concurrent licenses purchased is not
accidentally violated. This is the same kind of license metering technology that is common in
the Unix world and with a number of database development tools. It allows Altova customers to
purchase reasonably-priced concurrent-use multi-user licenses.

We have also designed the applications so that they send few and small network packets so as
to not put a burden on your network. The TCP/IP ports (2799) used by your Altova product are
officially registered with the IANA (see
http://www.isi.edu/in-notes/iana/assignments/port-numbers for details) and our license-metering
module is tested and proven technology.

If you are using a firewall, you may notice communications on port 2799 between the computers
that are running Altova products. You are, of course, free to block such traffic between different
groups in your organization, as long as you can ensure by other means, that your license
agreement is not violated.

You will also notice that, if you are online, your Altova product contains many useful functions;
these are unrelated to the license-metering technology.

http://www.isi.edu/in-notes/iana/assignments/port-numbers

374 Appendices License Information

© 2008 Altova GmbHAltova UModel 2008

18.1.3 Intellectual Property Rights

The Altova Software and any copies that you are authorized by Altova to make are the
intellectual property of and are owned by Altova and its suppliers. The structure, organization
and code of the Software are the valuable trade secrets and confidential information of Altova
and its suppliers. The Software is protected by copyright, including without limitation by United
States Copyright Law, international treaty provisions and applicable laws in the country in which
it is being used. Altova retains the ownership of all patents, copyrights, trade secrets,
trademarks and other intellectual property rights pertaining to the Software, and that Altova’s
ownership rights extend to any images, photographs, animations, videos, audio, music, text and
"applets" incorporated into the Software and all accompanying printed materials. Notifications of
claimed copyright infringement should be sent to Altova’s copyright agent as further provided on
the Altova Web Site.

Altova software contains certain Third Party Software that is also protected by intellectual
property laws, including without limitation applicable copyright laws as described in detail at
http://www.altova.com/legal_3rdparty.html.

All other names or trademarks are the property of their respective owners.

http://www.altova.com/legal_3rdparty.html

© 2008 Altova GmbH

License Information 375Appendices

Altova UModel 2008

18.1.4 Altova End User License Agreement

THIS IS A LEGAL DOCUMENT -- RETAIN FOR YOUR RECORDS

ALTOVA® END USER LICENSE AGREEMENT

Licensor:

Altova GmbH
Rudolfsplatz 13a/9
A-1010 Wien
Austria

Important - Read Carefully. Notice to User:
This End User License Agreement (“Software License Agreement”) is a legal document

between you and Altova GmbH (“Altova”). It is important that you read this document before
using the Altova-provided software (“Software”) and any accompanying documentation, including,
without limitation printed materials, ‘online’ files, or electronic documentation (“Documentation”).
By clicking the “I accept” and “Next” buttons below, or by installing, or otherwise using the
Software, you agree to be bound by the terms of this Software License Agreement as well as the
Altova Privacy Policy (“Privacy Policy”) including, without limitation, the warranty disclaimers,
limitation of liability, data use and termination provisions below, whether or not you decide to
purchase the Software. You agree that this agreement is enforceable like any written agreement
negotiated and signed by you. If you do not agree, you are not licensed to use the Software, and you
must destroy any downloaded copies of the Software in your possession or control. Please go to our Web
site at http://www.altova.com/eula to download and print a copy of this Software License Agreement for
your files and http://www.altova.com/privacy to review the privacy policy.

1. SOFTWARE LICENSE
(a) License Grant. Upon your acceptance of this Software License Agreement Altova
grants you a non-exclusive, non-transferable (except as provided below), limited license to
install and use a copy of the Software on your compatible computer, up to the Permitted Number
of computers. The Permitted Number of computers shall be delineated at such time as you elect
to purchase the Software. During the evaluation period, hereinafter defined, only a single user
may install and use the software on one computer. If you have licensed the Software as part of a
suite of Altova software products (collectively, the “Suite”) and have not installed each product
individually, then the Software License Agreement governs your use of all of the software
included in the Suite. If you have licensed SchemaAgent, then the terms and conditions of this
Software License Agreement apply to your use of the SchemaAgent server software
(“SchemaAgent Server”) included therein, as applicable and you are licensed to use
SchemaAgent Server solely in connection with your use of Altova Software and solely for the
purposes described in the accompanying documentation. In addition, if you have licensed
XMLSpy Enterprise Edition or MapForce Enterprise Edition, or UModel, your license to
install and use a copy of the Software as provided herein permits you to generate source code
based on (i) Altova Library modules that are included in the Software (such generated code
hereinafter referred to as the “Restricted Source Code”) and (ii) schemas or mappings that you
create or provide (such code as may be generated from your schema or mapping source
materials hereinafter referred to as the “Unrestricted Source Code”). In addition to the rights
granted herein, Altova grants you a non-exclusive, non-transferable, limited license to compile
into executable form the complete generated code comprised of the combination of the
Restricted Source Code and the Unrestricted Source Code, and to use, copy, distribute or license
that executable. You may not distribute or redistribute, sublicense, sell, or transfer to a third
party the Restricted Source Code, unless said third party already has a license to the Restricted
Source Code through their separate license agreement with Altova or other agreement with
Altova. Altova reserves all other rights in and to the Software. With respect to the feature(s) of

http://www.altova.com/privacy

376 Appendices License Information

© 2008 Altova GmbHAltova UModel 2008

UModel that permit reverse-engineering of your own source code or other source code that you
have lawfully obtained, such use by you does not constitute a violation of this Agreement.
Except as otherwise permitted in Section 1(h) reverse engineering of the Software is strictly
prohibited as further detailed therein.
 (b) Server Use. You may install one copy of the Software on your computer file server for
the purpose of downloading and installing the Software onto other computers within your
internal network up to the Permitted Number of computers. If you have licensed SchemaAgent,
then you may install SchemaAgent Server on any server computer or workstation and use it in
connection with your Software. No other network use is permitted, including without limitation
using the Software either directly or through commands, data or instructions from or to a
computer not part of your internal network, for Internet or Web-hosting services or by any user
not licensed to use this copy of the Software through a valid license from Altova. If you have
purchased Concurrent User Licenses as defined in Section 1(c) you may install a copy of the
Software on a terminal server within your internal network for the sole and exclusive purpose of
permitting individual users within your organization to access and use the Software through a
terminal server session from another computer on the network provided that the total number of
user that access or use the Software on such network or terminal server does not exceed the
Permitted Number. Altova makes no warranties or representations about the performance of
Altova software in a terminal server environment and the foregoing are expressly excluded from
the limited warranty in Section 5 hereof and technical support is not available with respect to
issues arising from use in such an environment.
(c) Concurrent Use. If you have licensed a “Concurrent-User” version of the Software,
you may install the Software on any compatible computers, up to ten (10) times the Permitted
Number of users, provided that only the Permitted Number of users actually use the Software at
the same time. The Permitted Number of concurrent users shall be delineated at such time as you
elect to purchase the Software licenses.
(d) Backup and Archival Copies. You may make one backup and one archival copy of
the Software, provided your backup and archival copies are not installed or used on any
computer and further provided that all such copies shall bear the original and unmodified
copyright, patent and other intellectual property markings that appear on or in the Software. You
may not transfer the rights to a backup or archival copy unless you transfer all rights in the
Software as provided under Section 3.
(e) Home Use. You, as the primary user of the computer on which the Software is
installed, may also install the Software on one of your home computers for your use. However,
the Software may not be used on your home computer at the same time as the Software is being
used on the primary computer.
(f) Key Codes, Upgrades and Updates. Prior to your purchase and as part of the
registration for the thirty (30) -day evaluation period, as applicable, you will receive an
evaluation key code. You will receive a purchase key code when you elect to purchase the
Software from either Altova GMBH or an authorized reseller. The purchase key code will
enable you to activate the Software beyond the initial evaluation period. You may not re-license,
reproduce or distribute any key code except with the express written permission of Altova. If the
Software that you have licensed is an upgrade or an update, then the update replaces all or part
of the Software previously licensed. The update or upgrade and the associated license keys does
not constitute the granting of a second license to the Software in that you may not use the
upgrade or update in addition to the Software that it is replacing. You agree that use of the
upgrade of update terminates your license to use the Software or portion thereof replaced.
(g) Title. Title to the Software is not transferred to you. Ownership of all copies of the
Software and of copies made by you is vested in Altova, subject to the rights of use granted to
you in this Software License Agreement. As between you and Altova, documents, files,
stylesheets, generated program code (including the Unrestricted Source Code) and schemas
that are authored or created by you via your utilization of the Software, in accordance with its
Documentation and the terms of this Software License Agreement, are your property.
 (h) Reverse Engineering. Except and to the limited extent as may be otherwise
specifically provided by applicable law in the European Union, you may not reverse engineer,
decompile, disassemble or otherwise attempt to discover the source code, underlying ideas,

© 2008 Altova GmbH

License Information 377Appendices

Altova UModel 2008

underlying user interface techniques or algorithms of the Software by any means whatsoever,
directly or indirectly, or disclose any of the foregoing, except to the extent you may be expressly
permitted to decompile under applicable law in the European Union, if it is essential to do so in
order to achieve operability of the Software with another software program, and you have first
requested Altova to provide the information necessary to achieve such operability and Altova
has not made such information available. Altova has the right to impose reasonable conditions
and to request a reasonable fee before providing such information. Any information supplied by
Altova or obtained by you, as permitted hereunder, may only be used by you for the purpose
described herein and may not be disclosed to any third party or used to create any software
which is substantially similar to the expression of the Software. Requests for information from
users in the European Union with respect to the above should be directed to the Altova
Customer Support Department.
(i) Other Restrictions. You may not loan, rent, lease, sublicense, distribute or otherwise
transfer all or any portion of the Software to third parties except to the limited extent set forth in
Section 3 or otherwise expressly provided. You may not copy the Software except as expressly
set forth above, and any copies that you are permitted to make pursuant to this Software License
Agreement must contain the same copyright, patent and other intellectual property markings that
appear on or in the Software. You may not modify, adapt or translate the Software. You may
not, directly or indirectly, encumber or suffer to exist any lien or security interest on the
Software; knowingly take any action that would cause the Software to be placed in the public
domain; or use the Software in any computer environment not specified in this Software License
Agreement. You will comply with applicable law and Altova’s instructions regarding the use of
the Software. You agree to notify your employees and agents who may have access to the
Software of the restrictions contained in this Software License Agreement and to ensure their
compliance with these restrictions. YOU AGREE THAT YOU ARE SOLELY RESPONSIBLE
FOR THE ACCURACY AND ADEQUACY OF THE SOFTWARE FOR YOUR INTENDED
USE AND YOU WILL INDEMNIFY AND HOLD HARMLESS ALTOVA FROM ANY 3RD
PARTY SUIT TO THE EXTENT BASED UPON THE ACCURACY AND ADEQUACY OF
THE SOFTWARE IN YOUR USE. WITHOUT LIMITATION, THE SOFTWARE IS NOT
INTENDED FOR USE IN THE OPERATION OF NUCLEAR FACILITIES, AIRCRAFT
NAVIGATION, COMMUNICATION SYSTEMS OR AIR TRAFFIC CONTROL EQUIPMENT,
WHERE THE FAILURE OF THE SOFTWARE COULD LEAD TO DEATH, PERSONAL
INJURY OR SEVERE PHYSICAL OR ENVIRONMENTAL DAMAGE.

2. INTELLECTUAL PROPERTY RIGHTS
Acknowledgement of Altova's Rights. You acknowledge that the Software and any copies that
you are authorized by Altova to make are the intellectual property of and are owned by Altova
and its suppliers. The structure, organization and code of the Software are the valuable trade
secrets and confidential information of Altova and its suppliers. The Software is protected by
copyright, including without limitation by United States Copyright Law, international treaty
provisions and applicable laws in the country in which it is being used. You acknowledge that
Altova retains the ownership of all patents, copyrights, trade secrets, trademarks and other
intellectual property rights pertaining to the Software, and that Altova’s ownership rights extend
to any images, photographs, animations, videos, audio, music, text and “applets” incorporated
into the Software and all accompanying printed materials. You will take no actions which
adversely affect Altova’s intellectual property rights in the Software. Trademarks shall be used
in accordance with accepted trademark practice, including identification of trademark owners’
names. Trademarks may only be used to identify printed output produced by the Software, and
such use of any trademark does not give you any right of ownership in that trademark. XMLSpy,
Authentic, StyleVision, MapForce, Markup Your Mind, Axad, Nanonull, and Altova are
trademarks of Altova GmbH (registered in numerous countries). Unicode and the Unicode Logo
are trademarks of Unicode, Inc. Windows, Windows 95, Windows 98, Windows NT, Windows
2000 and Windows XP are trademarks of Microsoft. W3C, CSS, DOM, MathML, RDF,
XHTML, XML and XSL are trademarks (registered in numerous countries) of the World Wide
Web Consortium (W3C); marks of the W3C are registered and held by its host institutions, MIT,
INRIA and Keio. Except as expressly stated above, this Software License Agreement does not

378 Appendices License Information

© 2008 Altova GmbHAltova UModel 2008

grant you any intellectual property rights in the Software. Notifications of claimed copyright
infringement should be sent to Altova’s copyright agent as further provided on the Altova Web
Site.

3. LIMITED TRANSFER RIGHTS
Notwithstanding the foregoing, you may transfer all your rights to use the Software to another
person or legal entity provided that: (a) you also transfer each of this Software License
Agreement, the Software and all other software or hardware bundled or pre-installed with the
Software, including all copies, updates and prior versions, and all copies of font software
converted into other formats, to such person or entity; (b) you retain no copies, including
backups and copies stored on a computer; (c) the receiving party secures a personalized key
code from Altova; and (d) the receiving party accepts the terms and conditions of this Software
License Agreement and any other terms and conditions upon which you legally purchased a
license to the Software. Notwithstanding the foregoing, you may not transfer education,
pre-release, or not-for-resale copies of the Software.

4. PRE-RELEASE AND EVALUATION PRODUCT ADDITIONAL TERMS
If the product you have received with this license is pre-commercial release or beta Software
(“Pre-release Software”), then this Section applies. In addition, this section applies to all
evaluation and/or demonstration copies of Altova software (“Evaluation Software”) and
continues in effect until you purchase a license. To the extent that any provision in this section is
in conflict with any other term or condition in this Software License Agreement, this section
shall supersede such other term(s) and condition(s) with respect to the Pre-release and/or
Evaluation Software, but only to the extent necessary to resolve the conflict. You acknowledge
that the Pre-release Software is a pre-release version, does not represent final product from
Altova, and may contain bugs, errors and other problems that could cause system or other
failures and data loss. CONSEQUENTLY, THE PRE-RELEASE AND/OR EVALUATION
SOFTWARE IS PROVIDED TO YOU “AS-IS” WITH NO WARRANTIES FOR USE OR
PERFORMANCE, AND ALTOVA DISCLAIMS ANY WARRANTY OR LIABILITY
OBLIGATIONS TO YOU OF ANY KIND, WHETHER EXPRESS OR IMPLIED. WHERE
LEGALLY LIABILITY CANNOT BE EXCLUDED FOR PRE-RELEASE AND/OR
EVALUATION SOFTWARE, BUT IT MAY BE LIMITED, ALTOVA’S LIABILITY AND
THAT OF ITS SUPPLIERS SHALL BE LIMITED TO THE SUM OF FIFTY DOLLARS
(USD $50) IN TOTAL. If the Evaluation Software has a time-out feature, then the software will
cease operation after the conclusion of the designated evaluation period. Upon such expiration
date, your license will expire unless otherwise extended. Access to any files created with the
Evaluation Software is entirely at your risk. You acknowledge that Altova has not promised or
guaranteed to you that Pre-release Software will be announced or made available to anyone in
the future, that Altova has no express or implied obligation to you to announce or introduce the
Pre-release Software, and that Altova may not introduce a product similar to or compatible with
the Pre-release Software. Accordingly, you acknowledge that any research or development that
you perform regarding the Pre-release Software or any product associated with the Pre-release
Software is done entirely at your own risk. During the term of this Software License Agreement,
if requested by Altova, you will provide feedback to Altova regarding testing and use of the
Pre-release Software, including error or bug reports. If you have been provided the Pre-release
Software pursuant to a separate written agreement, your use of the Software is governed by such
agreement. You may not sublicense, lease, loan, rent, distribute or otherwise transfer the
Pre-release Software. Upon receipt of a later unreleased version of the Pre-release Software or
release by Altova of a publicly released commercial version of the Software, whether as a
stand-alone product or as part of a larger product, you agree to return or destroy all earlier
Pre-release Software received from Altova and to abide by the terms of the license agreement
for any such later versions of the Pre-release Software.

5. LIMITED WARRANTY AND LIMITATION OF LIABILITY
(a) Limited Warranty and Customer Remedies. Altova warrants to the person or entity

© 2008 Altova GmbH

License Information 379Appendices

Altova UModel 2008

that first purchases a license for use of the Software pursuant to the terms of this Software
License Agreement that (i) the Software will perform substantially in accordance with any
accompanying Documentation for a period of ninety (90) days from the date of receipt, and (ii)
any support services provided by Altova shall be substantially as described in Section 6 of this
agreement. Some states and jurisdictions do not allow limitations on duration of an implied
warranty, so the above limitation may not apply to you. To the extent allowed by applicable law,
implied warranties on the Software, if any, are limited to ninety (90) days. Altova’s and its
suppliers’ entire liability and your exclusive remedy shall be, at Altova’s option, either (i) return
of the price paid, if any, or (ii) repair or replacement of the Software that does not meet Altova’s
Limited Warranty and which is returned to Altova with a copy of your receipt. This Limited
Warranty is void if failure of the Software has resulted from accident, abuse, misapplication,
abnormal use, Trojan horse, virus, or any other malicious external code. Any replacement
Software will be warranted for the remainder of the original warranty period or thirty (30) days,
whichever is longer. This limited warranty does not apply to Evaluation and/or Pre-release
Software.
 (b) No Other Warranties and Disclaimer. THE FOREGOING LIMITED WARRANTY
AND REMEDIES STATE THE SOLE AND EXCLUSIVE REMEDIES FOR ALTOVA OR
ITS SUPPLIER’S BREACH OF WARRANTY. ALTOVA AND ITS SUPPLIERS DO NOT
AND CANNOT WARRANT THE PERFORMANCE OR RESULTS YOU MAY OBTAIN BY
USING THE SOFTWARE. EXCEPT FOR THE FOREGOING LIMITED WARRANTY, AND
FOR ANY WARRANTY, CONDITION, REPRESENTATION OR TERM TO THE EXTENT
WHICH THE SAME CANNOT OR MAY NOT BE EXCLUDED OR LIMITED BY LAW
APPLICABLE TO YOU IN YOUR JURISDICTION, ALTOVA AND ITS SUPPLIERS
MAKE NO WARRANTIES, CONDITIONS, REPRESENTATIONS OR TERMS, EXPRESS
OR IMPLIED, WHETHER BY STATUTE, COMMON LAW, CUSTOM, USAGE OR
OTHERWISE AS TO ANY OTHER MATTERS. TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW, ALTOVA AND ITS SUPPLIERS DISCLAIM ALL
OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, SATISFACTORY
QUALITY, INFORMATIONAL CONTENT OR ACCURACY, QUIET ENJOYMENT, TITLE
AND NON-INFRINGEMENT, WITH REGARD TO THE SOFTWARE, AND THE
PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES. THIS LIMITED
WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS. YOU MAY HAVE OTHERS,
WHICH VARY FROM STATE/JURISDICTION TO STATE/JURISDICTION.
 (c) Limitation Of Liability. TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW EVEN IF A REMEDY FAILS ITS ESSENTIAL PURPOSE, IN NO
EVENT SHALL ALTOVA OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WHATSOEVER
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER
PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE
SOFTWARE OR THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES,
EVEN IF ALTOVA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
IN ANY CASE, ALTOVA’S ENTIRE LIABILITY UNDER ANY PROVISION OF THIS
SOFTWARE LICENSE AGREEMENT SHALL BE LIMITED TO THE AMOUNT
ACTUALLY PAID BY YOU FOR THE SOFTWARE PRODUCT. Because some states and
jurisdictions do not allow the exclusion or limitation of liability, the above limitation may not
apply to you. In such states and jurisdictions, Altova’s liability shall be limited to the greatest
extent permitted by law and the limitations or exclusions of warranties and liability contained
herein do not prejudice applicable statutory consumer rights of person acquiring goods otherwise
than in the course of business. The disclaimer and limited liability above are fundamental to this
Software License Agreement between Altova and you.
 (d) Infringement Claims. Altova will indemnify and hold you harmless and will defend or
settle any claim, suit or proceeding brought against you by a third party that is based upon a
claim that the content contained in the Software infringes a copyright or violates an intellectual

380 Appendices License Information

© 2008 Altova GmbHAltova UModel 2008

or proprietary right protected by United States or European Union law (“Claim”), but only to the
extent the Claim arises directly out of the use of the Software and subject to the limitations set
forth in Section 5 of this Agreement except as otherwise expressly provided. You must notify
Altova in writing of any Claim within ten (10) business days after you first receive notice of the
Claim, and you shall provide to Altova at no cost with such assistance and cooperation as Altova
may reasonably request from time to time in connection with the defense of the Claim. Altova
shall have sole control over any Claim (including, without limitation, the selection of counsel
and the right to settle on your behalf on any terms Altova deems desirable in the sole exercise of
its discretion). You may, at your sole cost, retain separate counsel and participate in the defense
or settlement negotiations. Altova shall pay actual damages, costs, and attorney fees awarded
against you (or payable by you pursuant to a settlement agreement) in connection with a Claim
to the extent such direct damages and costs are not reimbursed to you by insurance or a third
party, to an aggregate maximum equal to the purchase price of the Software. If the Software or
its use becomes the subject of a Claim or its use is enjoined, or if in the opinion of Altova’s legal
counsel the Software is likely to become the subject of a Claim, Altova shall attempt to resolve
the Claim by using commercially reasonable efforts to modify the Software or obtain a license to
continue using the Software. If in the opinion of Altova’s legal counsel the Claim, the injunction
or potential Claim cannot be resolved through reasonable modification or licensing, Altova, at its
own election, may terminate this Software License Agreement without penalty, and will refund
to you on a pro rata basis any fees paid in advance by you to Altova. THE FOREGOING
CONSTITUTES ALTOVA’S SOLE AND EXCLUSIVE LIABILITY FOR INTELLECTUAL
PROPERTY INFRINGEMENT. This indemnity does not apply to infringements that would not
be such, except for customer-supplied elements.

6. SUPPORT AND MAINTENANCE
Altova offers multiple optional “Support & Maintenance Package(s)” (“SMP”) for the version of
Software product edition that you have licensed, which you may elect to purchase in addition to
your Software license. The Support Period, hereinafter defined, covered by such SMP shall be
delineated at such time as you elect to purchase a SMP. Your rights with respect to support and
maintenance as well as your upgrade eligibility depend on your decision to purchase SMP and
the level of SMP that you have purchased:
(a) If you have not purchased SMP, you will receive the Software AS IS and will not
receive any maintenance releases or updates. However, Altova, at its option and in its sole
discretion on a case by case basis, may decide to offer maintenance releases to you as a courtesy,
but these maintenance releases will not include any new features in excess of the feature set at
the time of your purchase of the Software. In addition, Altova will provide free technical support
to you for thirty (30) days after the date of your purchase (the “Support Period” for the purposes
of this paragraph a), and Altova, in its sole discretion on a case by case basis, may also provide
free courtesy technical support during your thirty (30)-day evaluation period. Technical support
is provided via a Web-based support form only, and there is no guaranteed response time.
(b) If you have purchased SMP, then solely for the duration of its delineated Support
Period, you are eligible to receive the version of the Software edition that you have licensed
and all maintenance releases and updates for that edition that are released during your Support
Period. For the duration of your SMP’s Support Period, you will also be eligible to receive
upgrades to the comparable edition of the next version of the Software that succeeds the
Software edition that you have licensed for applicable upgrades released during your Support
Period. The specific upgrade edition that you are eligible to receive based on your Support
Period is further detailed in the SMP that you have purchased. Software that is introduced as
separate product is not included in SMP. Maintenance releases, updates and upgrades may or
may not include additional features. In addition, Altova will provide Priority Technical Support
to you for the duration of the Support Period. Priority Technical Support is provided via a
Web-based support form only, and Altova will make commercially reasonable efforts to respond
via e-mail to all requests within forty-eight (48) hours during Altova’s business hours (MO-FR,
8am UTC – 10pm UTC, Austrian and US holidays excluded) and to make reasonable efforts to
provide work-arounds to errors reported in the Software.

© 2008 Altova GmbH

License Information 381Appendices

Altova UModel 2008

During the Support Period you may also report any Software problem or error to Altova. If
Altova determines that a reported reproducible material error in the Software exists and
significantly impairs the usability and utility of the Software, Altova agrees to use reasonable
commercial efforts to correct or provide a usable work-around solution in an upcoming
maintenance release or update, which is made available at certain times at Altova’s sole

discretion.
If Altova, in its discretion, requests written verification of an error or malfunction discovered by
you or requests supporting example files that exhibit the Software problem, you shall promptly
provide such verification or files, by email, telecopy, or overnight mail, setting forth in
reasonable detail the respects in which the Software fails to perform. You shall use reasonable
efforts to cooperate in diagnosis or study of errors. Altova may include error corrections in
maintenance releases, updates, or new major releases of the Software. Altova is not obligated to
fix errors that are immaterial. Immaterial errors are those that do not significantly impact use of
the Software. Whether or not you have purchased the Support & Maintenance Package,
technical support only covers issues or questions resulting directly out of the operation of the
Software and Altova will not provide you with generic consultation, assistance, or advice under
any circumstances.
Updating Software may require the updating of software not covered by this Software License
Agreement before installation. Updates of the operating system and application software not
specifically covered by this Software License Agreement are your responsibility and will not be
provided by Altova under this Software License Agreement. Altova’s obligations under this
Section 6 are contingent upon your proper use of the Software and your compliance with the
terms and conditions of this Software License Agreement at all times. Altova shall be under no
obligation to provide the above technical support if, in Altova’s opinion, the Software has failed
due to the following conditions: (i) damage caused by the relocation of the software to another
location or CPU; (ii) alterations, modifications or attempts to change the Software without
Altova’s written approval; (iii) causes external to the Software, such as natural disasters, the
failure or fluctuation of electrical power, or computer equipment failure; (iv) your failure to
maintain the Software at Altova’s specified release level; or (v) use of the Software with other
software without Altova’s prior written approval. It will be your sole responsibility to: (i)
comply with all Altova-specified operating and troubleshooting procedures and then notify
Altova immediately of Software malfunction and provide Altova with complete information
thereof; (ii) provide for the security of your confidential information; (iii) establish and maintain
backup systems and procedures necessary to reconstruct lost or altered files, data or programs.

7. SOFTWARE ACTIVATION, UPDATES AND LICENSE METERING
(a) License Metering. Altova has a built-in license metering module that helps you to
avoid any unintentional violation of this Software License Agreement. Altova may use your
internal network for license metering between installed versions of the Software.
(b) Software Activation. Altova’s Software may use your internal network and
Internet connection for the purpose of transmitting license-related data at the time of
installation, registration, use, or update to an Altova-operated license server and
validating the authenticity of the license-related data in order to protect Altova against
unlicensed or illegal use of the Software and to improve customer service. Activation is
based on the exchange of license related data between your computer and the Altova
license server. You agree that Altova may use these measures and you agree to follow any
applicable requirements.
(c) LiveUpdate. Altova provides a new LiveUpdate notification service to you, which is
free of charge. Altova may use your internal network and Internet connection for the purpose of
transmitting license-related data to an Altova-operated LiveUpdate server to validate your
license at appropriate intervals and determine if there is any update available for you.
(d) Use of Data. The terms and conditions of the Privacy Policy are set out in full at
http://www.altova.com/privacy and are incorporated by reference into this Software License
Agreement. By your acceptance of the terms of this Software License Agreement or use of the
Software, you authorize the collection, use and disclosure of information collected by Altova for
the purposes provided for in this Software License Agreement and/or the Privacy Policy as

http://www.altova.com/privacy

382 Appendices License Information

© 2008 Altova GmbHAltova UModel 2008

revised from time to time. European users understand and consent to the processing of personal
information in the United States for the purposes described herein. Altova has the right in its
sole discretion to amend this provision of the Software License Agreement and/or Privacy
Policy at any time. You are encouraged to review the terms of the Privacy Policy as posted on
the Altova Web site from time to time.

8. TERM AND TERMINATION
This Software License Agreement may be terminated (a) by your giving Altova written notice of
termination; or (b) by Altova, at its option, giving you written notice of termination if you
commit a breach of this Software License Agreement and fail to cure such breach within ten (10)
days after notice from Altova or (c) at the request of an authorized Altova reseller in the event
that you fail to make your license payment or other monies due and payable.. In addition the
Software License Agreement governing your use of a previous version that you have upgraded
or updated of the Software is terminated upon your acceptance of the terms and conditions of the
Software License Agreement accompanying such upgrade or update. Upon any termination of
the Software License Agreement, you must cease all use of the Software that it governs, destroy
all copies then in your possession or control and take such other actions as Altova may
reasonably request to ensure that no copies of the Software remain in your possession or control.
The terms and conditions set forth in Sections 1(g), (h), (i), 2, 5(b), (c), 9, 10 and 11 survive
termination as applicable.

9. RESTRICTED RIGHTS NOTICE AND EXPORT RESTRICTIONS
The Software was developed entirely at private expense and is commercial computer software
provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the U.S.
Government or a U.S. Government contractor or subcontractor is subject to the restrictions set
forth in this Agreement and as provided in FAR 12.211 and 12.212 (48 C.F.R. §12.211 and
12.212) or DFARS 227. 7202 (48 C.F.R. §227-7202) as applicable. Consistent with the above
as applicable, Commercial Computer Software and Commercial Computer Documentation
licensed to U.S. government end users only as commercial items and only with those rights as
are granted to all other end users under the terms and conditions set forth in this Software
License Agreement. Manufacturer is Altova GmbH, Rudolfsplatz, 13a/9, A-1010 Vienna,
Austria/EU. You may not use or otherwise export or re-export the Software or Documentation
except as authorized by United States law and the laws of the jurisdiction in which the Software
was obtained. In particular, but without limitation, the Software or Documentation may not be
exported or re-exported (i) into (or to a national or resident of) any U.S. embargoed country or
(ii) to anyone on the U.S. Treasury Department's list of Specially Designated Nationals or the
U.S. Department of Commerce's Table of Denial Orders. By using the Software, you represent
and warrant that you are not located in, under control of, or a national or resident of any such
country or on any such list.

10. THIRD PARTY SOFTWARE
The Software may contain third party software which requires notices and/or additional terms
and conditions. Such required third party software notices and/or additional terms and
conditions are located Our Website at http://www.altova.com/legal_3rdparty.html and are made
a part of and incorporated by reference into this Agreement. By accepting this Agreement, you
are also accepting the additional terms and conditions, if any, set forth therein.

11. GENERAL PROVISIONS
If you are located in the European Union and are using the Software in the European Union and
not in the United States, then this Software License Agreement will be governed by and
construed in accordance with the laws of the Republic of Austria (excluding its conflict of laws
principles and the U.N. Convention on Contracts for the International Sale of Goods) and you
expressly agree that exclusive jurisdiction for any claim or dispute with Altova or relating in any
way to your use of the Software resides in the Handelsgericht, Wien (Commercial Court,

© 2008 Altova GmbH

License Information 383Appendices

Altova UModel 2008

Vienna) and you further agree and expressly consent to the exercise of personal jurisdiction in
the Handelsgericht, Wien (Commercial Court, Vienna) in connection with any such dispute or
claim.
If you are located in the United States or are using the Software in the United States then this
Software License Agreement will be governed by and construed in accordance with the laws of
the Commonwealth of Massachusetts, USA (excluding its conflict of laws principles and the
U.N. Convention on Contracts for the International Sale of Goods) and you expressly agree that
exclusive jurisdiction for any claim or dispute with Altova or relating in any way to your use of
the Software resides in the federal or state courts of Massachusetts and you further agree and
expressly consent to the exercise of personal jurisdiction in the federal or state courts of
Massachusetts in connection with any such dispute or claim.
If you are located outside of the European Union or the United States and are not using the
Software in the United States, then this Software License Agreement will be governed by and
construed in accordance with the laws of the Republic of Austria (excluding its conflict of laws
principles and the U.N. Convention on Contracts for the International Sale of Goods) and you
expressly agree that exclusive jurisdiction for any claim or dispute with Altova or relating in any
way to your use of the Software resides in the Handelsgericht, Wien (Commercial Court,
Vienna) and you further agree and expressly consent to the exercise of personal jurisdiction in
the Handelsgericht Wien (Commercial Court, Vienna) in connection with any such dispute or
claim. This Software License Agreement will not be governed by the conflict of law rules of any
jurisdiction or the United Nations Convention on Contracts for the International Sale of Goods,
the application of which is expressly excluded.
This Software License Agreement contains the entire agreement and understanding of the parties
with respect to the subject matter hereof, and supersedes all prior written and oral
understandings of the parties with respect to the subject matter hereof. Any notice or other
communication given under this Software License Agreement shall be in writing and shall have
been properly given by either of us to the other if sent by certified or registered mail, return
receipt requested, or by overnight courier to the address shown on Altova’s Web site for Altova
and the address shown in Altova’s records for you, or such other address as the parties may
designate by notice given in the manner set forth above. This Software License Agreement will
bind and inure to the benefit of the parties and our respective heirs, personal and legal
representatives, affiliates, successors and permitted assigns. The failure of either of us at any
time to require performance of any provision hereof shall in no manner affect such party’s right
at a later time to enforce the same or any other term of this Software License Agreement. This
Software License Agreement may be amended only by a document in writing signed by both of
us. In the event of a breach or threatened breach of this Software License Agreement by either
party, the other shall have all applicable equitable as well as legal remedies. Each party is duly
authorized and empowered to enter into and perform this Software License Agreement. If, for
any reason, any provision of this Software License Agreement is held invalid or otherwise
unenforceable, such invalidity or unenforceability shall not affect the remainder of this Software
License Agreement, and this Software License Agreement shall continue in full force and effect
to the fullest extent allowed by law. The parties knowingly and expressly consent to the
foregoing terms and conditions.

Last updated: 2006-09-05

© 2008 Altova GmbH

Index 385

Index

.

.NET Framework,

Include file, 135

1
1.4,

Java, 55

5
5.0,

Java, 55

A
Absolute,

and relative links, 170

Abstract,

class, 24

Activation box,

Execution Specification, 213

Activity,

Add diagram to transition, 193

Add to state, 193

BPMN, 265

create branch / merge, 181

diagram elements, 183

icons, 307

Activity diagram, 178

inserting elements, 179

Actor,

user-defined, 17

Add,

diagram to package, 17

insert - delete from Model Tree, 63

move - delete - diagram, 86

new project, 110

package to project, 17

to Favorites, 69

Aligning,

elements, 90

All,

expand / collapse, 232

Annotation,

documenation, 78

text - BPMN, 273

XML schema, 253

Appendices, 370

Artifact,

add to node, 45

BPMN, 273

manifest, 45

Assign,

shortcut to a command, 342

stereotype, 160

Association,

aggregate/composite, 24

automatic display of, 150

between classes, 24

BPMN, 270

class memberEnd, 150

create by drag and drop, 152

defining the type, 150

display during code engineering, 55

object links, 35

qualifier, 150

role, 150

Show property as, 86

Show relationships, 86, 155

show typed property, 145

use case, 17

Attribut,

select in Model Tree, 70

Attribute,

autocompletion window, 345

coloring, 237

show / hide, 232

show / hide tagged values, 160

stereotype, 160

Autocomplete,

function, 24

Autocompletion,

single / multi mode, 90

Index

© 2008 Altova GmbH

386

Autocompletion,

window - types, 90

window on class editing, 345

Autogenerate,

reply message, 219

Automatic,

display of associations, 150

hyperlink, 97

B
Ball and socket,

interface notation, 232

Bank,

sample files, 101

Base,

class, 30

Base class,

inserting derived, 95

overriding, 232

Batch,

full batch mode, 107

new / load / save, 107

processing, 104, 107

Behavioral,

diagrams, 177

Binary,

obfuscated - support, 120

Binary files,

importing C# and Jave, 120

Binding,

template, 144

Bitmap,

save elements as, 327

Borland,

bsdj project file, 330

BPMN, 264

artifacts, 273

association, 270

flow objects, 265

Branch,

create in Activity, 181

bsdj,

Borland project, 330

Business Process Modeling Notation, 264

icons, 321

C
C#,

code, 354

code to model correspondence, 132

import binary file, 120

import settings, 116

C++,

code, 354

Call,

message, 219

Call message,

go to operation, 219

CallBehavior,

insert, 179

CallOperation,

insert, 179

Cascading,

styles, 72

Catalog,

file - XMLSpy Catalog file, 345

Center,

elements, 90

Check,

project syntax, 330

Class,

abstract and concrete, 24

add new, 24

add operations, 24

add properties, 24

associations, 24

ball and socket interface, 232

base, 30

base class overriding, 232

derived, 30

diagrams, 24

enable autocompletion window, 345

expand, collapse compartments, 232

icons, 308

in component diagram, 40

inserting derived classes, 95

multiple instances on diagram, 232

operation - overriding, 232

synchronization, 125

syntax coloring, 237

© 2008 Altova GmbH

Index 387

Class diagram, 232

Classifier,

constraining, 141

new, 127

renaming, 127

Close,

all but active diagram, 86

Code,

default, 345

generation - min. conditions, 129

prerequisites, 49

round trip engineering, 49

SPL, 355

synchronization, 125

target directory, 49

Code - C#,

to UModel elements, 132

Code - Java,

to UModel elements, 131

Code - VB.NET,

to UModel elements, 134

Code - XML Schema,

to UModel elements, 133

Code engineering, 49

generate ComponentRealizations, 127

import directory, 55

showing associations, 55

Code generation,

use namespace as directory, 49

Code Generator, 354

Collaboration,

Composite Structre diagram, 243

Collapse,

class compartments, 232

Collapsed,

sub process, 269

Color,

syntax coloring - enable/disable, 237

Combined fragment, 215

Command,

add to toolbar/menu, 341

context menu, 343

delete from menu, 343

line - new / load / save, 107

line processing, 104, 107

reset menu, 343

Comments,

documentation, 78

Communication,

icons, 309

Communication diagram, 204

generate from Sequence diagram, 204

Compartment,

expand single / multiple, 232

Compatibility,

updating projects, 125

Component,

diagram, 40

icons, 311

insert class, 40

realization, 40

Component diagram, 245

ComponentRealizations,

autogeneration, 127

Composite state, 197

add region, 197

Composite Structure,

icons, 310

insert elements, 243

Composite Structure diagram, 243

Composition,

association - create, 24

Concrete,

class, 24

Conditional flow, 270

Connecting objects, 270

Constrain,

element, 63

Constraining,

classifiers, 141

Constraint,

add in diagram, 63

assign to multiple element, 63

syntax check, 330

Content model,

of XML Schema, 257

Context menu,

commands, 343

Copy,

paste in Diagram, Model Tree, 92

Copyright information, 371

Create,

getter / setter methods, 232

XML schema, 262

csproj - csdproj,

MS Visual Studio .Net, 330

Index

© 2008 Altova GmbH

388

CTRl+Space,

on-demand autocompletion, 90

Customize, 341

context menu, 343

menu, 343

toolbar/menu commands, 341

D
Data object,

BPMN, 273

Datatype,

defining in Schema, 257

Datatypes,

adding - autocompletion, 90

Default,

layer, 79

menu, 343

path - examples folder, 12

project code, 345

SPL templates, 125

tagged value, 160

Default flow, 270

Defined,

symbols - importing code, 116

Delete,

class relationships, 150

command from context menu, 343

command from toolbar, 341

from Favorites, 69

icon from toolbar, 341

layer, 79

shortcut, 342

toolbar, 341

Dependency,

include, 17

Show relationships, 86, 155

usage, 40

Deployment,

diagram, 45

icons, 312

Deployment diagram, 246

Derived,

class, 30

classes inserting, 95

Diagram,

- Activity, 178

- Class, 232

- Communication, 204

- Component, 245

- Composite structure, 243

- Deployment, 246

- Interaction Overview, 207

- Object, 247

- Package, 248

- Sequence, 212

- State machine, 192

- Timing, 224

- Use Case, 203

- XML schema, 252

Add activity to transition, 193

Additional - XML schema, 251

close all but active, 86

constrain elements, 63

generate Package dependency diagram, 248

hyperlink, 97

icons, 306

ignore elem. from inluded files, 345

multiple instances of class, 232

open, 67

Paste in Diagram only, 92

properties, 86

save as png, 325

save elements as bitmap, 327

share package and diagram, 138

sizing, 86

styles, 72

using layers, 79

XML schema - import, 253

Diagram frame,

show UML diagram heading, 90

Diagram heading,

show UML diagram heading, 90

Diagram pane, 86

Diagram Tree, 67

Diagrams, 176

behavioral, 177

structural, 231

Directive,

defined symbols, 116

Directory,

examples folder, 12

for code generation, 49

ignoring on merge, 345

© 2008 Altova GmbH

Index 389

Directory,

import, 55

importing code from, 116

use namespace in path, 49

Distribution,

of Altova's software products, 371, 372, 374

Document,

hyperlink to, 97

Documentation,

Annotation, 78

generate UML project, 170

relative links, 170

Documentation tab, 78

Dot,

Ownership, 152

Drag and drop,

create association with handles, 152

right mouse button, 95

DurationConstraint,

Timing diagram, 228

E
Eclipse,

code generation, 303

importing UModel examples, 298

install UModel plugin, 295

start UModel plugin, 293

UModel plug-in, 292

Edit, 327

Element,

add to Favorites, 69

align, 90

assign constraint to, 63

associations when importing, 55

constrain, 63

cut, copy paste, 92

generate documentation, 170

hyperlink to, 97

inserting, 95

move to layer, 79

properties, 70

relationships, 150

save selected as bitmap, 327

show hierarchy, 75

styles, 72

Elements,

ignore from include files, 345

insert State Machine, 192

select all on layer, 79

End User License Agreement, 371, 375

Enhance,

performance, 147

Entry point,

add to submachine, 197

Enumeration,

and stereotypes, 164

default value, 164

Error,

messages, 85

syntax check, 49

Evaluation period,

of Altova's software products, 371, 372, 374

Event,

BPMN, 265

Event/Stimulus,

Timing diagram, 228

Examples,

tutorial folder, 12

Exception,

Adding raised exception, 232

Java operation, 116

Execution specification,

lifeline, 213

Exit point,

add to submachine, 197

Expand,

all class compartments, 232

collapsing packages, 63

Expanded,

sub process, 268

Export,

as XMI, 276

Extension,

XMI, 276

F
Favorites, 69

File, 325

merging project files, 137

new / load / save - batch, 107

Index

© 2008 Altova GmbH

390

File, 325

tutorial example, 12

ump, 110

Files,

sample files, 101

Filter types,

autocompletion window, 90

Find,

modeling elements, 63, 327

searching tabs, 62

unused elements, 63

Flow,

conditional, 270

default, 270

message, 270

sequence, 270

Flow objects, 265

Folder,

examples folder, 12

Format,

autocompletion window, 90

user-defined stereotype, 166

Forward,

engineering, 129

Frame,

show UML diagram heading, 90

From scratch,

Visual Studio project, 286

Full batch,

mode, 107

G
Gate,

sequence diagram, 218

Gateway,

BPMN, 265

General Value lifeline,

Timing diagram, 225

Generalize,

specialize, 30

Generate,

code from schema, 354

ComponentRealizations automatically, 127

reply message automatically, 219

Sequence dia from Communication, 204

UML project documentation, 170

XML Schema, 262

Get,

getter / setter methods, 232

Graph view,

single set of relations, 75

Grid,

show- snap to, 86

Group,

BPMN, 273

H
Handle,

create relationship, 152

Heading,

show UML diagram heading, 90

Help, 351

Hide,

show - slot, 232

tagged values - attributes, 160

text labels, 86, 155

view - layer, 79

Hierarchy,

show all relations, 75

Hotkey, 342

Hyperlink, 97

automatic, 97

I
Icon,

Activity, 307

add to toolbar/menu, 341

Business Process Modeling Notation, 321

class, 308

Communication, 309

component, 311

Composite Stucture, 310

deployment, 312

Interaction Overview, 313

object, 314

Package, 315

Sequence, 316

© 2008 Altova GmbH

Index 391

Icon,

show large, 344

State machine, 317

Timing, 318

use case, 319

XML Schema, 320

Icons,

visibility, 232

ID,

IDs and UUIDs, 276

Ignore,

directories, 345

elements in list, 345

Import,

association of elements, 55

binary files, 120

C# project, 116

directory, 55

project, 116

source code, 116

source project, 55

XMI file, 276

XML Schema, 253

Importing,

UModel generated XMI, 276

Include,

.NET Framework, 135

dependency, 17

share package and diagram, 138

status - changing, 138

UModel project, 135

Insert,

action (CallBehavior), 179

action (CallOperation), 179

Composite Stucture elements, 243

elements, 95

Interaction Overview elements, 207

Package diagram elements, 249

simple state, 193

Timing diagram elements, 224

with..., 95

Installation,

examples folder, 12

Installer,

multi-user, 12

Instance,

diagram, 35

multiple class, and display of, 232

object, 35

Integrate,

UModel project into VS .Net, 286

Integration,

package for VS .NET plug-in, 280

Intelligent,

autocomplete, 24

Interaction operand, 215

Interaction operator,

defining, 215

Interaction Overview,

icons, 313

inserting elements, 207

Interaction Overview diagram, 207

Interaction use, 217

Interface,

ball and socket, 232

implementing, 232

Introduction, 6

J
Java,

code, 354

code to model correspondence, 131

exception, 116

import binary file, 120

namespace root, 129

versions supported, 55

JavaDocs, 78

K
Keyboard shortcut, 342

L
Label,

IDs and UUIDs, 276

show / hide text label, 86, 155

Layer,

add to diagram, 79

delete, 79

Index

© 2008 Altova GmbH

392

Layer,

lock element, 79

reset, 79

Layout, 338

Legal information, 371

License, 375

information about, 371

License metering,

in Altova products, 373

Lifeline,

attributes, 213

General Value, 225

typed property as, 213

Limit,

constrain elements, 63

Line,

orthogonal, 40

Line break,

in actor text, 17

Line up,

elements, 90

Lines,

formatting, 35

Link,

create hyperlink, 97

Links,

relative to documentation, 170

List,

unused elements, 63

Local files,

absolute or relative links, 170

Lock,

elements on layer, 79

toggle on layer, 83

M
Mail,

send project, 325

Make same,

height - width - size, 90

Manifest,

artifact, 45

Manual,

sync in VS .NET, 283, 301

Mapping,

C# to/from model elements, 132

Java to/from model elements, 131

VB.NET to/from model elements, 134

XML Schema to/from model elements, 133

Mark,

elements on layer, 79

Member end,

stereotype, 160

MemberEnd,

association, 150

Menu,

Add menu to, 342

add/delete command, 341

customize, 343

Default/XMLSPY, 343

delete commands from, 343

edit, 327

file, 325

help, 351

layout, 338

project, 330

tools, 340

view, 339

window, 350

Merge,

code from model, 49

code into model, 330

create in Activity, 181

ignore directory, 345

model into code, 330

projects, 137

synchronize in VS .NET, 281

Merge to,

layer, 83

Message,

arrows, 219

call, 219

create object, 219

go to operation, 219

inserting, 219

moving, 219

numbering, 219

Timing diagram, 229

Message flow, 270

Messages pane, 85

Metadata,

XMI output, 276

Method,

© 2008 Altova GmbH

Index 393

Method,

Add raised exception, 232

Methods,

getter / setter, 232

Minimum,

code generation conditions, 129

Missing elements,

listing, 63

Model from code,

showing associations, 55

Model Tree,

opening packages, 63

pane, 63

select attribute in, 70

Modeling,

enhance performance, 147

Mouse,

copy, paste, 92

Move,

element to layer, 79

Moving message arrows, 219

MS Visual Studio .Net,

csproj - csdproj project file, 330

MS VS .NET,

UModel plug-in, 280

Multi mode,

autocompletion, 90

Multiline,

actor text, 17

Multiple elements,

styles display, 72

Multi-user,

examples folder, 12

MyDocuments,

example files, 12

N
Namespace,

Java namespace root, 129

use for code generation, 49

Navigate,

hyperlink, 97

New,

classifier, 127

Node,

add, 45

add artifact, 45

styles, 72

Note,

hyperlink from, 97

Numbering,

messages, 219

O
Obfuscated,

binary support, 120

Object,

create message, 219

diagram, 35

icons, 314

links - associations, 35

Object diagram, 247

On-demand autocompletion,

CTRL+Space, 90

Open,

diagram, 67

packages in tree view, 63

UModel files in VS. NET, 281

Operand,

interaction, 215

Operation,

autocompletion window, 345

coloring, 237

exception, 116

goto from call message, 219

overriding, 232

reusing, 30

show / hide, 232

template, 145

Operations,

adding, 24

Operator,

interaction, 215

Options,

project, 146

tools, 345

Orthogonal,

line, 40

state, 197

Output,

Index

© 2008 Altova GmbH

394

Output,

XMI file, 276

Override,

class operations, 232

default SPL templates, 125

Overview pane, 78

Overwrite,

code from model, 330

model from code, 330

OwnedEnd,

association, 150

Ownership,

dot, 152

P
Package,

expand/collapse, 63

icons, 315

profile, 160

sharing, 138

Package diagram, 248

generating dependency diagram, 248

insert elements, 249

PackageImport, 249

PackageMerge, 249

Page,

prevent split over pages, 325

Parameter,

batch, 104

template, 145

Partial,

documentation - generate, 170

Paste,

element in diagram, 92

in Diagram only, 92

Path,

examples folder, 12

use namespace in code, 49

Performance,

enhancement, 147

Plug-in,

code generation, 303

importing examples folder, 298

UModel Editor, View, 295

UModel for Eclipse, 292

PNG,

save diagram, 325

Pool,

swimlane, 272

Prerequisites,

forward engineering, 129

Pretty print,

XMI output, 276

Print,

preview, 325

Process,

collapsed sub process, 269

expanded sub process, 268

Profile,

ProfileApplication, 158

stereotypes, 158, 160

Project, 330

create, 110

default code, 345

file - updating, 125

generating documentation, 170

import, 116

include UModel project, 135

insert package, 110

Merge, 137

new in Visual Studio, 286

open last on start, 345

options, 146

send by mail, 325

styles, 72

syntax checking, 330

workflow, 110

Project files,

Borland - MS Visual Studio .Net, 330

Properties, 70

adding, 24

Property,

coloring, 237

reusing, 30

show as association, 86, 155

typed - show, 145

typed as lifeline, 213

Q
Qualifier,

© 2008 Altova GmbH

Index 395

Qualifier,

association, 150

R
Raised exception, 116

Adding, 232

Realization,

component, 40

generate ComponentRealizations, 127

Reference, 324

show referenced class, 86

Region,

add to composite state, 197

Relation,

show all - hierarchy tab, 75

Relationship,

Show model relationships, 86, 155

Relationships,

create using handles, 152

element, 150

Relative,

documentation links, 170

Remove,

from Favorites, 69

Rename,

classifier, 127

layer, 83

Reply,

message - autogenerate, 219

Reset,

Layer, 79

menu commands, 343

shortcut, 342

toolbar & menu commands, 341

Right dragging, 95

Role,

association, 150

Root,

catalog - XMLSpy, 345

Java namespace, 129

package/class synchronization, 125

Round trip,

code - model -code, 55

engineering, 49

model - code - model, 49

S
Sample,

example files, 101

Save,

diagram as image, 325

elements as bitmaps, 327

SC,

syntax coloring, 237

Schema,

code generator, 354

create XML Schema, 262

Datatype - defining, 257

XML Schema, 252

XML Schema - import, 253

Search,

Find, 327

Searching tabs, 62

Select all,

elements on layer, 79

Select attribute,

in Model Tree, 70

Send by mail,

project, 325

Sequence,

icons, 316

Sequence diagram, 212

combined fragment, 215

gate, 218

generate from Communication diag., 204

inserting elements, 212

interaction use, 217

lifeline, 213

messages, 219

state invariant, 219

Sequence flow, 270

Set,

getter / setter methods, 232

Setting,

synchronization, 125

Share,

package and diagram, 138

Shortcut, 342

assigning/deleting, 342

show in tooltip, 344

Index

© 2008 Altova GmbH

396

Show,

all relations - hierarchy tab, 75

graph view, 75

hide - slot, 232

hide - tagged values / attributes, 160

layer, 79

model relationships, 86, 155

or snap to grid, 86

property as association, 86, 145

tagged values, 256

text labels, 86, 155

Show/hide,

attributes, operations, 232

Signature,

template, 141, 143

Single mode,

autocompletion, 90

Size,

diagram pane, 86

Slot,

show / hide, 232

Snap,

to grid - show grid, 86

Socket,

Ball and socket, 232

Software product license, 375

Solution,

UModel files, 281

Sort,

diagram, 67

elements in Model Tree, 63

Source code,

importing, 116

Space,

across, 90

Specialize,

generalize, 30

Speed,

enhancememt, 147

SPL, 355

code blocks, 356

conditions, 364

foreach, 365

subroutines, 366

templates user-defined, 125

Split,

prevent split over pages, 325

Start,

UModel, 14

with previous project, 345

Starting,

plug-in for Eclipse, 293

State,

add activity, 193

composite, 197

define transition between, 193

insert simple, 193

orthogonal, 197

submachine state, 197

State changes,

defining on a timeline, 225

State invariant, 219

State machine,

composite states, regions, 197

diagram elements, 200

icons, 317

insert elements, 192

states, activities, transitions, 193

State Machine Diagram, 192

Stereotype,

and enumeration, 164

assigning, 160

attributes - defining, 160

default tagged value, 164

member end, 160

profiles, 158, 160

user-defined styles, 166

Structural,

diagrams, 231

Style,

user-defined stereotype, 166

Styles,

cascading, precedence, 72

multiple selections, 72

Styles tab, 72

Sub class,

inserting into diagram, 95

Sub Process,

collapsed, 269

expanded, 268

Submachine state,

add entry/exit point, 197

Swimlane,

pool, 272

Symbols,

defined - importing code, 116

© 2008 Altova GmbH

Index 397

Symbols,

visibillity icons, 232

Synchronization,

settings, 125

Synchronize,

in VS .NET, 283, 301

merge code from model, 49

merge model from code, 55

model/code in VS .NET, 281

root/package/class, 125

Syntax,

batch file, 104

check project syntax, 330

checking, 49

errors - warnings, 49

Syntax check,

messages, 85

Syntax coloring, 237

T
Tagged,

value - default, 164

value - hide/show attributes, 160

values, 158, 160

Tagged values,

show, 256

Template,

binding, 144

operation/parameter, 145

signature, 141, 143

Templates,

user-defined SPL, 125

Text annotation,

BPMN, 273

Text labels,

show - hide, 86, 155

Tick mark,

Timing diagram, 227

TimeConstraint,

Timing diagram, 229

Timeline,

defining state changes, 225

Timing,

icons, 318

Timing diagram, 224

DurationConstraint, 228

Event/Stimuls, 228

General Value lifeline, 225

inserting elements, 224

Lifeline, 225

Message, 229

switch between types, 225

Tick mark, 227

TimeConstraint, 229

Timeline, 225

Toggle,

lock on layer, 83

Toggle visibility,

elements on layer, 83

Toolbar,

activate/deactivate, 341

add command to, 341

create new, 341

reset toolbar & menu commands, 341

show large icons, 344

Tools, 340

Add to Tools menu, 342

options, 345

Tooltip,

show, 344

show shortcuts in, 344

Transition,

Add Activity diagram to, 193

define between states, 193

define trigger, 193

Traverse,

hyperlinks, 97

Trigger,

define transition trigger, 193

Tutorial,

aims, 12

example files, 12

examples folder, 12

Type,

property - show, 145

Typed,

property - as lifeline, 213

Types,

and autocompletion, 90

Index

© 2008 Altova GmbH

398

U
UML,

diagram - sharing, 138

diagram heading - show, 90

Diagrams, 176

templates, 141

variables, 357

visibility icons, 232

UModel,

differences standalone and VS .NET, 283, 301

importing generated XMI, 276

plug-in for Eclipse, 292

starting, 14

to C# code, 132

to Java code, 131

to VB.NET code, 134

to XML Schema code, 133

VS .NET plug-in, 280

UModel diagram icons, 306

UModel Inroduction, 6

UModel plug-in,

code generation, 303

Editor, View, perspective, 295

importing examples folder, 298

ump,

file extension, 110

open files in VS .NET, 281

Unlock,

elements on layer, 83

Unused elements,

listing, 63

Update,

project file, 125

Usage,

dependency, 40

Use case,

adding, 17

association, 17

compartments, 17

icons, 319

Use Case diagram, 203

User,

multi-user examples folder, 12

User defined,

actor, 17

User interface, 62

User-defined,

SPL templates, 125

stereotype styles, 166

UUID,

Universal Unique identifiers, 276

V
value,

tagged, 160

tagged, show, 256

Variables,

UML, 357

VB.NET,

code to model correspondence, 134

View, 339

hide - layer, 79

to multiple instances of element, 232

Visibility,

icons - selecting, 232

Visual Studio,

minimalist project, 286

VS .NET,

sync model and code, 283, 301

UModel differences, 283, 301

UModel files, 281

UModel plug-in, 280

W
Warning,

messages, 85

syntax check, 49

Web,

hyperlink, 97

Window, 350

Workflow,

project, 110

© 2008 Altova GmbH

Index 399

X
XMI, 276

extentions, 276

pretty print output, 276

XML Schema,

annotation, 253

code to model correspondence, 133

Content model, 257

create/generate, 262

diagram, 252

icons, 320

XML schema - insert element, 257

Z
Zoom,

sizing, 86

	UModel
	Introducing UModel
	What's new in UModel 2008 Release 2
	What's new in UModel 2008

	UModel tutorial
	Starting UModel
	Use cases
	Class Diagrams
	Creating derived classes

	Object Diagrams
	Component Diagrams
	Deployment Diagrams
	Round-trip engineering (model - code - model)
	Round-trip engineering (code - model - code)

	UModel User Interface
	Model Tree
	Diagram Tree
	Favorites
	Properties
	Styles
	Hierarchy
	Overview - Documentation
	Layer
	Layer Context menu

	Messages
	Diagram pane
	Diagram properties
	Cut, copy and paste in UModel Diagrams

	Adding/Inserting model elements
	Hyperlinking modeling elements
	Bank samples

	UModel Command line interface
	File: New / Load / Save options

	Projects and code engineering
	Minimalist UModel project - starting from scratch
	Importing source code into projects
	Importing Java, C# and VB binaries
	Synchronizing Model and source code
	Synchronization tips

	Forward engineering prerequisites
	Java code to/from UModel elements
	C# code to/from UModel elements
	XML Schema to/from UModel elements
	VB.NET code to/from UModel elements
	Including other UModel projects
	Merging UModel projects
	Sharing Packages and Diagrams
	UML templates
	Template signatures
	Template binding
	Template usage in operations and properties

	Project Settings
	Enhancing performance

	Creating model relationships
	Associations, realizations and dependencies
	Showing model relationships

	Stereotypes and Profiles
	Adding Stereotypes and defining tagged values
	Stereotypes and enumerations
	User-defined stereotype styles

	Generating UML documentation
	UML Diagrams
	Behavioral Diagrams
	Activity Diagram
	Inserting Activity Diagram elements
	Creating branches and merges
	Activity Diagram elements

	State Machine Diagram
	Inserting state machine diagram elements
	Creating states, activities and transitions
	Composite states
	Diagram elements

	Use Case Diagram
	Communication Diagram
	Inserting Communication Diagam elements

	Interaction Overview Diagram
	Inserting Interaction Overview elements

	Sequence Diagram
	Inserting sequence diagram elements
	Lifeline
	Combined Fragment
	Interaction Use
	Gate
	State Invariant
	Messages

	Timing Diagram
	Inserting Timing Diagram elements
	Lifeline
	Tick Mark
	Event/Stimulus
	DurationConstraint
	TimeConstraint
	Message

	Structural Diagrams
	Class Diagram
	Composite Structure Diagram
	Inserting Composite Structure Diagram elements

	Component Diagram
	Deployment Diagram
	Object Diagram
	Package Diagram
	Inserting Package Diagram elements

	Additional Diagrams
	XML Schema Diagrams
	Importing XML Schema(s)
	Inserting XML Schema elements
	Creating and generating an XML Schema

	Business Process Modeling Notation
	Flow objects
	Expanded Sub Processes
	Collapsed Sub Processes

	Connecting objects
	Pools / Swimlanes
	Artifacts

	XMI - XML Metadata Interchange
	UModel plug-in for MS Visual Studio .NET
	Opening UModel files in MS Visual Studio .NET
	Differences between VS .NET and standalone versions
	Minimalist project in Visual Studio .NET

	UModel plug-in for Eclipse
	Starting Eclipse and using UModel plugin
	UModel / Editor, View and Perspectives
	Creating a UModel project / file
	Importing / opening examples from Navigator
	Differences between Eclipse and standalone versions
	UModel code generation

	UModel Diagram icons
	Activity Diagram
	Class Diagram
	Communication diagram
	Composite Structure Diagram
	Component Diagram
	Deployment Diagram
	Interaction Overview diagram
	Object Diagram
	Package diagram
	Sequence Diagram
	State Machine Diagram
	Timing Diagram
	Use Case diagram
	XML Schema diagram
	Business Process Modeling Notation

	UModel Reference
	File
	Edit
	Project
	Layout
	View
	Tools
	Customize...
	Commands
	Toolbars
	Tools
	Keyboard
	Menu
	Options

	Options

	Window
	Help

	Code Generator
	The way to SPL (Spy Programming Language)
	Basic SPL structure
	Variables
	Operators
	Conditions
	foreach
	Subroutines
	Subroutine declaration
	Subroutine invocation

	Error Codes

	Appendices
	License Information
	Electronic Software Distribution
	Software Activation and License Metering
	Intellectual Property Rights
	Altova End User License Agreement

