
Altova MapForce 2024 Professional Edition

User & Reference Manual

All rights reserved. No parts of this work may be reproduced in any form or by any
means - graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems - without the written permission of the
publisher.

Products that are referred to in this document may be either trademarks and/or
registered trademarks of the respective owners. The publisher and the author make no
claim to these trademarks.

While every precaution has been taken in the preparation of this document, the
publisher and the author assume no responsibility for errors or omissions, or for
damages resulting from the use of information contained in this document or from the
use of programs and source code that may accompany it. In no event shall the publisher
and the author be liable for any loss of profit or any other commercial damage caused or
alleged to have been caused directly or indirectly by this document.

Published: 2024

© 2018-2024 Altova GmbH

Altova MapForce 2024 Professional Edition
User & Reference Manual

3Altova MapForce 2024 Professional Edition

Table of Contents

1 Introduction 14

.. 151.1 New Features

.. 151.1.1 Version 2024

.. 161.1.2 Version 2023

.. 161.1.3 Version 2022

.. 171.1.4 Version 2021

.. 181.1.5 Version 2020

.. 191.2 What Is MapForce?

.. 201.2.1 Mapping: Sources and Targets

.. 201.2.2 Mapping Scenarios

.. 211.2.3 Transformation Languages

.. 221.2.4 Integration with Altova Products

.. 241.3 User Interface Overview

.. 251.3.1 Bars

.. 251.3.2 Windows

.. 281.3.3 Messages Window

.. 301.3.4 Panes

2 Mapping Fundamentals 34

.. 362.1 Components

.. 402.1.1 Add Components

.. 422.1.2 Component Basics

.. 452.1.3 File Paths

.. 502.2 Connections

.. 532.2.1 Connection Types

.. 602.2.2 Connection Settings

.. 612.2.3 Connection Context Menu

.. 622.2.4 Faulty Connections

.. 642.2.5 Keep Connections after Deleting Components

Altova MapForce 2024 Professional Edition4

.. 662.3 General Procedures and Features

.. 662.3.1 Validation

.. 682.3.2 Code Generation

.. 702.3.3 Text View Features

.. 742.3.4 Text View Search

.. 772.3.5 Mapping Settings

.. 792.4 Projects

.. 792.4.1 Project Basics

.. 812.4.2 Project Settings

.. 822.4.3 Project Folders

3 Tutorials 84

.. 853.1 One Source to One Target

.. 863.1.1 Create and Save Design

.. 873.1.2 Add Source Component

.. 883.1.3 Add Target Component

.. 903.1.4 Connect Source and Target

.. 923.1.5 Preview Mapping Result

.. 943.2 Multiple Sources to One Target

.. 953.2.1 Prepare Mapping Design

.. 953.2.2 Add Second Source

.. 963.2.3 Configure Output

.. 973.2.4 Connect Second Source and Target

.. 993.3 Chained Mapping

.. 993.3.1 Prepare Mapping Design

.. 1003.3.2 Configure Second Target

.. 1023.3.3 Connect Targets

.. 1023.3.4 Filter Data

.. 1053.3.5 Preview and Save Output

.. 1073.4 Multiple Sources to Multiple Targets

.. 1093.4.1 Configure Input

.. 1103.4.2 Configure Output Part 1

.. 1123.4.3 Configure Output Part 2

5Altova MapForce 2024 Professional Edition

4 Structural Components 115

.. 1164.1 XML and XML Schema

.. 1174.1.1 XML Component Settings

.. 1214.1.2 Derived Types

.. 1234.1.3 NULL Values

.. 1274.1.4 Comments and Processing Instructions

.. 1274.1.5 CDATA Sections

.. 1294.1.6 Wildcards: xs:any/xs:anyAttribute

.. 1314.1.7 Custom Namespaces

.. 1334.1.8 Schema Manager

.. 1494.2 Databases

.. 1524.2.1 Connecting to a Data Source

.. 2354.2.2 General Procedures

.. 2644.2.3 Database Table Actions

.. 2834.2.4 DB Query Pane

.. 2934.2.5 Map XML Data to/from DB Fields

.. 3034.2.6 Stored Procedures

.. 3294.3 CSV and Text Files

.. 3294.3.1 Example: Mapping CSV Files to XML

.. 3314.3.2 Example: Iterating Through Items

.. 3344.3.3 Example: Creating Hierarchies from CSV and Fixed-Length Text Files

.. 3374.3.4 Setting the CSV Options

.. 3414.3.5 FLF to Database

.. 3454.3.6 Setting the FLF Options

5 Transformation Components 351

.. 3525.1 Simple Input

.. 3535.1.1 Adding Simple Input Components

.. 3545.1.2 Simple Input Component Settings

.. 3555.1.3 Creating a Default Input Value

.. 3565.1.4 Example: Using File Names as Mapping Parameters

.. 3625.2 Simple Output

Altova MapForce 2024 Professional Edition6

.. 3635.2.1 Adding Simple Output Components

.. 3645.2.2 Example: Previewing Function Output

.. 3665.3 Variables

.. 3685.3.1 Add a Variable

.. 3725.3.2 Scope and Context of Variables

.. 3745.3.3 Example: Counting Database Table Rows

.. 3755.3.4 Example: Filtering and Numbering Nodes

.. 3775.3.5 Example: Grouping and Subgrouping Records

.. 3795.4 Join Components

.. 3815.4.1 Adding Join Conditions

.. 3845.4.2 Joining Three or More Structures

.. 3855.4.3 Example: Join XML Structures

.. 3905.4.4 Join Database Data

.. 4085.5 Sort Components

.. 4105.5.1 Sorting by Multiple Keys

.. 4115.5.2 Sorting with Variables

.. 4145.6 Filters and Conditions

.. 4165.6.1 Example: Filtering Nodes

.. 4185.6.2 Example: Returning a Value Conditionally

.. 4195.6.3 Filter and Sort Database Data

.. 4265.7 Value-Maps

.. 4305.7.1 Example: Replacing Weekdays

.. 4335.7.2 Example: Replacing Job T itles

.. 4375.8 Exceptions

.. 4385.8.1 Example: Exception on "Greater Than" Condition

.. 4385.8.2 Example: Exception When Node Does Not Exist

6 Functions 441

.. 4426.1 Functions Basics

.. 4456.2 Manage Function Libraries

.. 4476.2.1 Local and Global Libraries

.. 4486.2.2 Relative Library Paths

.. 4496.3 Defaults and Node Functions

.. 4516.3.1 Rule Configuration

7Altova MapForce 2024 Professional Edition

.. 4546.3.2 Use-Case Scenarios

.. 4606.3.3 Node Metadata in Node Functions

.. 4646.4 User-Defined Functions

.. 4656.4.1 UDF Basics

.. 4706.4.2 UDF Parameters

.. 4736.4.3 Recursive UDFs

.. 4766.4.4 Look-up Implementation

.. 4796.5 Custom Functions

.. 4796.5.1 Import Custom XSLT Functions

.. 4866.5.2 Import Custom XQuery 1.0 Functions

.. 4906.5.3 Import Custom Java and .NET Libraries

.. 4976.5.4 Reference C#, C++ and Java Libraries Manually

.. 5126.6 Regular Expressions

.. 5166.7 Function Library Reference

.. 5186.7.1 core | aggregate functions

.. 5256.7.2 core | conversion functions

.. 5416.7.3 core | file path functions

.. 5456.7.4 core | generator functions

.. 5476.7.5 core | logical functions

.. 5536.7.6 core | math functions

.. 5586.7.7 core | node functions

.. 5646.7.8 core | QName functions

.. 5666.7.9 core | sequence functions

.. 5946.7.10 core | string functions

.. 6116.7.11 db

.. 6136.7.12 lang | datetime functions

.. 6326.7.13 lang | file functions

.. 6376.7.14 lang | generator functions

.. 6386.7.15 lang | logical functions

.. 6406.7.16 lang | math functions

.. 6486.7.17 lang | QName functions

.. 6496.7.18 lang | string functions

.. 6676.7.19 xpath2 | accessors

.. 6696.7.20 xpath2 | anyURI functions

.. 6706.7.21 xpath2 | boolean functions

Altova MapForce 2024 Professional Edition8

.. 6706.7.22 xpath2 | constructors

.. 6716.7.23 xpath2 | context functions

.. 6746.7.24 xpath2 | durations, date and time functions

.. 6906.7.25 xpath2 | node functions

.. 6966.7.26 xpath2 | numeric functions

.. 6986.7.27 xpath2 | string functions

.. 7096.7.28 xpath3 | external information functions

.. 7126.7.29 xpath3 | formatting functions

.. 7166.7.30 xpath3 | math functions

.. 7226.7.31 xpath3 | URI functions

.. 7236.7.32 xslt | xpath functions

.. 7266.7.33 xslt | xslt functions

7 Advanced Mapping Procedures 730

.. 7317.1 Map Node Names

.. 7327.1.1 Get Access to Node Names

.. 7407.1.2 Get Access to Nodes of Specific Type

.. 7437.1.3 Example: Map Element Names to Attribute Values

.. 7477.1.4 Example: Group and Filter Nodes by Name

.. 7517.2 Batch-Process Files

.. 7537.2.1 Example: Split One XML File into Many

.. 7557.2.2 Example: Split Database Table into Many XML Files

.. 7587.3 Parse and Serialize Strings

.. 7587.3.1 About the Parse/Serialize Component

.. 7607.3.2 Example: Serialize to String (XML to Database)

.. 7667.4 Mapping Rules and Strategies

.. 7677.4.1 Sequences

.. 7687.4.2 The Mapping Context

.. 7787.4.3 Priority context

.. 7837.4.4 Multiple target components

8 Mapping Documentation 787

.. 7908.1 Predefined StyleVision Power Stylesheets

9Altova MapForce 2024 Professional Edition

.. 7958.2 Custom Stylesheets

9 Debugger 797

.. 8009.1 Debugger Preparation

.. 8019.2 About the Debug Mode

.. 8049.3 Adding and Removing Breakpoints

.. 8069.4 Using the Values Window

.. 8089.5 Using the Context Window

.. 8109.6 Using the Breakpoints Window

.. 8129.7 Previewing Partially Generated Output

.. 8139.8 Viewing the Current Value of a Connector

.. 8149.9 Stepping back into Recent Past

.. 8159.10 Viewing the History of Values Processed by a Connector

.. 8169.11 Setting the Context to a Value

10 Automation with Altova Products 817

.. 81810.1 Automation with RaptorXML Server

.. 81910.2 Automation with MapForce Server

.. 82010.3 Preparing Mappings for Server Execution

.. 82510.4 Compiling Mappings to MapForce Server Execution Files

.. 82810.5 Deploying Mappings to FlowForce Server

.. 83310.6 StyleVision Output Panes

.. 83710.7 MapForce Command Line Interface

11 Altova Global Resources 841

.. 84211.1 Global Resource Setup Part 1

.. 84411.2 Global Resource Setup Part 2

.. 84811.3 XML Files as Global Resources

.. 85011.4 Folders as Global Resources

.. 85211.5 Databases as Global Resources

.. 85411.6 Transformation Results as Global Resources

.. 85811.7 Global Resources in Execution Environments

.. 85811.7.1 Global Resources in Generated Code

Altova MapForce 2024 Professional Edition10

.. 85911.7.2 Global Resources in MapForce Server

.. 85911.7.3 Global Resources in FlowForce Server

12 Catalogs in MapForce 862

.. 86312.1 How Catalogs Work

.. 86512.2 Catalog Structure in MapForce

.. 86712.3 Customizing Your Catalogs

.. 86912.4 Environment Variables

13 MapForce Plug-in for Visual Studio 870

14 MapForce Plug-in for Eclipse 873

.. 87414.1 Installing the MapForce Plug-in for Eclipse

.. 87614.2 The MapForce Perspective

.. 87914.3 Accessing Common Menus and Functions

.. 88314.4 Working with Mappings and Projects

.. 88314.4.1 Creating a MapForce/Eclipse Project

.. 88514.4.2 Creating New Mappings

.. 88714.4.3 Importing Existing Mappings into an Eclipse Project

.. 89014.4.4 Configuring Automatic Build and Generation of MapForce Code

.. 89314.5 Extending MapForce Plug-in for Eclipse

15 Code Generator 894

.. 89615.1 Generate, Build, and Run Code

.. 90215.2 Integrate Generated Code

.. 90215.2.1 Modify Input/Output, Define Error Handling

.. 90515.2.2 Change Data Type of Input/Output

.. 91115.2.3 Generate Code from XML Schemas or DTDs

.. 95515.2.4 Generated Classes (C++)

.. 97015.2.5 Generated Classes (C#)

.. 98515.2.6 Generated Classes (Java)

.. 99915.2.7 SPL Reference

11Altova MapForce 2024 Professional Edition

16 Menu Commands 1018

.. 101916.1 File

.. 102116.2 Edit

.. 102216.3 Insert

.. 102516.4 Project

.. 102716.5 Component

.. 102916.6 Connection

.. 103016.7 Function

.. 103116.8 Output

.. 103316.9 Debug

.. 103416.10 View

.. 103616.11 Tools

.. 103716.11.1 Customize Menus

.. 103816.11.2 Customize Shortcuts

.. 104016.11.3 Options

.. 105316.12 Window

.. 105416.13 Help

17 The MapForce API 1059

.. 106017.1 Accessing the API

.. 106317.2 The Object Model

.. 106417.3 Error Handling

.. 106617.4 Example C# Project

.. 107117.5 Example Java Project

.. 107417.6 JScript Examples

.. 107417.6.1 Start Application

.. 107517.6.2 Simple Document Access

.. 107617.6.3 Generate Code

.. 107817.6.4 Generate Code (Alternative)

.. 108017.6.5 Run a Mapping

.. 108317.6.6 Project Tasks

.. 108817.7 Object Reference

Altova MapForce 2024 Professional Edition12

.. 108817.7.1 Interfaces

.. 123317.7.2 Enumerations

18 ActiveX Integration 1241

.. 124218.1 Prerequisites

.. 124418.2 Adding the ActiveX Controls to the Toolbox

.. 124618.3 Integration at Application Level

.. 124918.4 Integration at Document Level

.. 125218.5 ActiveX Integration Examples

.. 125218.5.1 C#

.. 125918.5.2 Java

.. 126818.5.3 VB.NET

.. 127218.6 Command Reference

.. 127218.6.1 "File" Menu

.. 127318.6.2 "Edit" Menu

.. 127418.6.3 "Insert" Menu

.. 127418.6.4 "Project" Menu

.. 127518.6.5 "Component" Menu

.. 127618.6.6 "Connection" Menu

.. 127718.6.7 "Function" Menu

.. 127718.6.8 "Output" Menu

.. 127818.6.9 "Debug" Menu

.. 127918.6.10 "View" Menu

.. 127918.6.11 "Tools" Menu

.. 128018.6.12 "Window" Menu

.. 128018.6.13 "Help" Menu

.. 128218.7 Object Reference

.. 128218.7.1 MapForceCommand

.. 128418.7.2 MapForceCommands

.. 128518.7.3 MapForceControl

.. 129318.7.4 MapForceControlDocument

.. 129918.7.5 MapForceControlPlaceHolder

.. 130218.7.6 Enumerations

13Altova MapForce 2024 Professional Edition

19 Appendices 1303

.. 130419.1 Support Notes

.. 130419.1.1 Supported Sources and Targets

.. 130519.1.2 Supported Features in Generated Code

.. 130819.2 Engine Information

.. 130819.2.1 XSLT and XQuery Engine Information

.. 131319.2.2 XSLT and XPath/XQuery Functions

.. 140919.3 Technical Data

.. 140919.3.1 OS and Memory Requirements

.. 140919.3.2 Altova Engines

.. 141019.3.3 Unicode Support

.. 141019.3.4 Internet Usage

.. 141119.4 License Information

.. 141119.4.1 Electronic Software Distribution

.. 141219.4.2 Software Activation and License Metering

.. 141319.4.3 Altova End-User License Agreement

Index 1414

14 Introduction

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

1 Introduction

Altova MapForce 2024 Professional Edition is a powerful data transformation and ETL tool for integrating data.
MapForce is a 32/64-bit Windows application that runs on Windows 10, Windows 11, and Windows Server
2016 or newer. 64-bit support is available for the Enterprise and Professional editions.

MapForce enables you to convert data from and to nearly any format. MapForce has a graphical interface

that includes many options for managing, visualizing, manipulating, and executing individual mappings and
complex mapping projects. For data transformation, MapForce provides an extensive library of data processing
and conversion functions to filter and manipulate data according to the needs of your data integration
project.

As soon as you have finished designing your mapping, you can preview the output in a separate pane and save
the output to the desired location. Besides, you can generate code for external execution.

You can extend MapForce functionality by integrating MapForce with other Altova products:

· You can execute your mappings using MapForce Server. This will help you automate business
operations that require repetitive data transformations. MapForce Server includes a powerful data
transformation engine and can perform any-to-any data conversions. Importantly, it is a cross-platform
server that is available on Windows, macOS, and Linux.

· RaptorXML Server is a hyper-fast engine that validates your instances.
· FlowForce Server helps you automate your tasks and enables you to run your mappings as scheduled

jobs.
· StyleVision Server generates output in HTML, RTF, PDF and Word.
· You can use StyleVision to design StyleVision Power Stylesheets that enable StyleVision Server to

generate output in multiple formats.
· DatabaseSpy is a versatile tool that allows you to design, edit and query databases.
· XMLSpy is particularly useful when you want to edit your mapping files. Some MapForce dialogs allow

you to open files directly in XMLSpy.
· You can also use MapForce as a plug-in of Microsoft Visual Studio and Eclipse. This enables you to

access MapForce functionality without leaving your preferred development environment.

Last updated: 8 April 2024

24

441

68

https://www.altova.com/mapforce
https://www.altova.com/mapforce-server
https://www.altova.com/raptorxml
https://www.altova.com/flowforceserver
https://www.altova.com/stylevision-server
https://www.altova.com/stylevision
https://www.altova.com/stylevision-server
https://www.altova.com/databasespy
https://www.altova.com/xmlspy-xml-editor

© 2018-2024 Altova GmbH

New Features 15Introduction

Altova MapForce 2024 Professional Edition

1.1 New Features

This section describes new features of each MapForce release. For more details, see the respective
subsection.

1.1.1 Version 2024

Version 2024 Release 2

· It is now possible to access various video tutorials in the MapForceExamples project (Professional and

Enterprise editions). Besides, you can also add your own links to external resources. For details, see
Project Basics .

· When you deploy your mapping to FlowForce Server, you can choose to attach the mapping files for
later retrieval. This will prevent you from losing your mapping files and enable you to download them at
any time (Professional and Enterprise editions). For details, see Deploying Mappings to FlowForce
Server .

· Database components can now share the same database connection at runtime (Professional and
Enterprise editions). For details, see Database Component Settings .

· It is now possible to create a Value-Map from enumeration types in XML (all editions) and XBRL
components (Enterprise Edition). This feature makes it easier and faster to map enumeration values:
Both sides of the Value-Map become pre-filled with all enumeration values, and you will only need to
review and edit the relevant values of the Value-Map. For more information, see Value-Maps .

· Support for .NET 8.0 for C# code generation (Professional and Enterprise editions). For details, see
Code Generation .

· Support for FORTRAS EDI messages (Enterprise Edition).
· Support for PostgreSQL 16, MySQL 8.2, MySQL 8.3, MariaDB 11.2, SQLite 3.45 (Professional and

Enterprise editions). For details, see Databases .
· Internal updates and optimizations.

Version 2024

· A new MapForce utility called PDF Extractor is now available (Enterprise Edition). The PDF Extractor
enables you to create PDF extraction templates that you can import into MapForce and use as source
components in your mappings.

· It is now possible to create AI-powered mappings in MapForce (Enterprise Edition). MapForce enables
you to create REST Web service calls to an API, such as OpenAI API, Azure OpenAI API, AWS AI
Services, etc.

· Support for SWIFT 2023 (Enterprise Edition).
· A new sleep function is now available, which allows passing through data after a specified delay

(Professional and Enterprise editions). For more information, see sleep .
· Native support has been added for MySQL and MariaDB (Professional and Enterprise editions). For

more information about supported databases, see Databases .
· The functionality of matching-children connections has been improved and extended to include new

matching options. For details, see Matching-Children Connections .
· The Client Credentials and Resource Owner Password Credentials grant types are now supported in

OAuth credentials, in addition to the Authorization Code grant type (Enterprise Edition).
· Internal updates and optimizations.

81

828

248

429

68

149

664

149

56

16 Introduction New Features

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

1.1.2 Version 2023

Version 2023 Release 2

· It is now possible to generate the standalone="yes" declaration in the XML declaration of XML target
files. For details, see XML Component Settings .

· The Help system has been reorganized to provide Online Help by default, with an option to use the
locally installed PDF user manual as the alternative default.

· It is now possible to add sticky-note-style comments to a mapping. For more information, see
Comments .

· Settings have been added to define network settings .
· Support for VDA EDI messages has been added (Enterprise Edition).
· Internal updates and optimizations.

Version 2023

· Support for the following themes has been added: Classic, Light, and Dark . For more information, see
Window .

· Internal updates and optimizations.
· Eclipse support has been updated and now covers the following versions: 2022-09, 2022-06, 2022-03,

2021-12 (Professional and Enterprise editions). For more details, see MapForce Plug-in for Eclipse .
· Support for ODETTE EDI messages (Enterprise Edition).
· Support for the XII Transformation Registry 5 Specification (Enterprise Edition).
· It is now possible to create database-based UDF parameters and variables with a tree of related

tables (Professional and Enterprise editions).
· It is now possible to send an application/x-www-form-urlencoded request structure to a REST

service (Enterprise Edition).
· Support for UN/EDIFACT D.21B and D.22A Directories (Enterprise Edition).
· Support for SQLite 3.39.2, MariaDB 10.9.2, and PostgreSQL 14.5 (Professional and Enterprise

editions). To find out more about all supported databases, see Databases .
· Support for XML Schema Manager that provides a centralized way to install and manage XML

schemas for use across all Altova's XBRL-enabled applications.
· Support for mappable EDI delimiters (Enterprise Edition). The feature is currently supported for the

following EDI standards: EDIFACT, X12, and NCPDP SCRIPT.

1.1.3 Version 2022

Version 2022 Release 2

· Internal updates and optimizations
· Eclipse support has been updated and now covers the following versions: 2021-12, 2021-09; 2021-06;

2021-03 (Professional and Enterprise editions). For details, see MapForce Plug-in for Eclipse .
· Support for Visual Studio 2022 in the MapForce Plug-in for Visual Studio and code generation

(Professional and Enterprise editions). For more information, see MapForce Plug-in for Visual
Studio and code generation.

120

1054

1040

38

1050

1053

873

471 367

149

133

873

870

https://www.xbrl.org/Specification/inlineXBRL-transformationRegistry/REC-2022-02-16/inlineXBRL-transformationRegistry-REC-2022-02-16.html

© 2018-2024 Altova GmbH

New Features 17Introduction

Altova MapForce 2024 Professional Edition

· Support for .NET 6.0 in code generation (Professional and Enterprise editions). For details, see code
generation.

· New database versions are supported: PostgreSQL 14, SQLite 3.37.2, MariaDB 10.6.5, MySQL
8.0.28, IBM DB2 11.5.7 (Professional and Enterprise editions). To find out more about all supported
databases, see Databases .

· It is now possible to preview images in the Project window (Professional and Enterprise editions). For
more information, see Project Basics .

· It is now possible to create EBA-conformant filing indicators for target XBRL components (Enterprise
Edition).

Version 2022

· Internal updates and optimizations
· Eclipse support has been updated and now covers the following versions: 2021-09; 2021-06; 2021-03;

2020-12 (Professional and Enterprise editions). For details, see MapForce Plug-in for Eclipse .
· Copy-all connections now support JSON. This feature is available only for compatible JSON types

(Enterprise Edition).
· A new StyleVision output pane called Text has been introduced. If an SPS file is attached to a

component, the new plain text output format can be previewed in MapForce (Professional and
Enterprise editions). For more information, see StyleVision Output Panes .

· Support for JSON Schema in variables and UDF parameters (Enterprise Edition).
· Support for NoSQL databases: MongoDB and CouchDB (Enterprise Edition). To find out more about all

supported databases, see Databases .
· A new bson function library has now become available, which allows you to create and manipulate

some of the BSON types (Enterprise Edition).
· Support for UN/EDIFACT D.20B and D.21A Directories.
· Support for SWIFT 2021.

1.1.4 Version 2021

Version 2021 Release 3

· Support for new JSON Schema Draft 2019-09 and Draft 2020-12 (Enterprise Edition only).

Version 2021 Release 2

· XSLT 3.0 is now supported as mapping language. See Generating XSLT Code . MapForce now
includes new built-in functions that are supported when the mapping language is XSLT 3.0. For more
information, see Function Library Reference .

· When generating C# code, you can select .NET Core 3.1 and .NET 5.0 as target frameworks from
code generation options (this adds to existing support for .NET Framework projects). For details, see
Generating C# code.

· Internal updates and optimizations.

Version 2021

149

81

873

58

833

366 470

149

68

516

http://json-schema.org/specification-links.html
http://json-schema.org/specification-links.html

18 Introduction New Features

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· A MapForce mapping can read BLOB (binary large object) data from binary files and write binary files
to the disk. This makes it possible, for example, to read BLOB fields from a database and save them
as image files on the disk, or to read binary files such as PDFs from the disk and save them as
xs:base64Binary fields within an XML file. See Binary Files for more information.

· New database versions are supported: MariaDB 10.4, 10.5
· New Eclipse versions are supported: 2019.09, 2019.12, 2020.03, 2020.06
· When joining multiple database tables or views using SQL join components in a mapping, you can set

the join mode either as LEFT OUTER JOIN or INNER JOIN, see Changing the Join Mode .
· Internal updates and optimizations.

1.1.5 Version 2020

Version 2020 Release 2

· A new Manage Libraries window is available that enables you to view and manage all function
libraries imported at document and at program level (this includes MapForce user-defined functions and
other kinds of libraries). This makes it possible, for example, to easily copy-paste user-defined
functions from one mapping to another, see Copy-Pasting UDFs Between Mappings .

· When a mapping file imports libraries, the path of imported library files is relative to the mapping file by
default, see Relative Library Paths . You can still import mappings at application level, like in
previous releases, but in this case the library path is always absolute.

· If a mapping file imports XSLT or XQuery libraries, you can generate XSLT or XQuery code that
references the imported library files using a relative path. The new option is available in the Mapping
Settings dialog box.

· The MapForce API has been enhanced with new members that enable you to manage imported
libraries programmatically (for example, add or remove them).

· Code generated for XML schema wrapper libraries now provides more control over element
namespaces and prefixes. New methods are available to declare or override namespaces for an
element, or to append an element with a prefixed namespace. See Example: Purchase Order .

· New database versions are supported: PostgreSQL 12.1 and Informix 14.10.
· Internal updates and optimizations

Version 2020

· Support for Visual Studio 2019 in the MapForce Plug-in for Visual Studio and code generation.
· Support for Eclipse 4.9 - 4.12, see MapForce Plug-in for Eclipse .
· If an Oracle package contains public stored procedures or functions, those are also available to the

mapping, see Adding Stored Procedures to the Mapping .
· You can configure a database component so that database object names are treated as relative to the

default schema, not bound to a particular schema. This helps save time if you need to switch to a
different database in future, see Switching Databases and Schemas .

· You can deploy Global Resources created in MapForce to FlowForce Server, see Deploying Global
Resources to FlowForce Server .

· When replacing values with the help of a look-up table, you can paste tabular data (key-value pairs)
from external sources such as CSV or Excel into the mapping. Also, it is easier to handle cases when
a value is not found in the predefined look-up table—processing such values no longer requires the use
of substitute-missing function. See Using Value-Maps .

· Internal updates and optimizations

632

393

27

469

448

77

1059

948

870

873

305

238

860

426

© 2018-2024 Altova GmbH

What Is MapForce? 19Introduction

Altova MapForce 2024 Professional Edition

1.2 What Is MapForce?

Altova website: Data mapping tool

MapForce is a powerful graphical tool for any-to-any conversion and integration. See Mapping: Sources and
Targets for a complete list of available data formats. A typical mapping consists of one or more data
sources and one or more data targets . The mapping can also include one or several transformation
components that provide you with an extensive range of data-processing and filtering options. To find out
more about various mapping scenarios, see Mapping Scenarios and Tutorials .

To be able to carry out a mapping, you must provide a data structure that describes the structure of each of
your source and target files. For example, an XML schema defines the structure of an XML document. The
mapping (from source to target) is achieved by means of a drag-and-drop graphical user interface. You do not
have to write any program code for the mapping. The code is generated for you by MapForce. You can then use
this code to transform documents with the source data structure to documents with the target data structure.

All editions of MapForce are available as 32-bit applications. MapForce Professional and Enterprise editions are
additionally available as 64-bit applications.

Abstract model
The abstract model below illustrates one of the basic scenarios of data transformation in MapForce. The source
schema describes the structure of the source instance. The target schema describes the structure of the target
instance. Depending on your needs, source and target schemas can be the same or different structures. When
you connect the source and target, the mapping generates transformation code (in the selected transformation
language) that reads data from the source instance and writes this data to the target instance. To see how
this data transformation model is implemented in a concrete example, see Tutorial 1 .

In real-life situations, you can mix and match any combination of data sources (e.g., XML, EDI, and text files)
and map them to any combination of data targets (e.g., a database and an Excel file).

Conventions
Mapping files illustrated and referenced in the manual can be found in the following locations:

· C:\Users\<username>\Documents\Altova\MapForce2024\MapForceExamples
· C:\Users\<username>\Documents\Altova\MapForce2024\MapForceExamples\Tutorial

20

36

37

20 84

21

85

https://www.altova.com/mapforce

20 Introduction What Is MapForce?

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· C:
\Users\<username>\Documents\Altova\MapForce2024\MapForceExamples\Tutorial\BasicTutoria
ls

In this section
This section is organized into the following topics:

· Mapping: Sources and Targets
· Mapping Scenarios
· Transformation Languages
· Integration with Altova Products

1.2.1 Mapping: Sources and Targets

In MapForce, source and target are essential terms that refer to data structures from which or to which data is
mapped, respectively. Technologies that can be used as mapping sources and targets are listed below.

MapForce Basic Edition

· XML and XML Schema

MapForce Professional Edition

· XML and XML Schema
· Flat files, including comma-separated values (CSV) and fixed-length field (FLF) format
· Databases: all major relational databases
· Binary files (raw BLOB content)

MapForce Enterprise Edition

· XML and XML Schema
· Flat files, including comma-separated values (CSV) and fixed-length field (FLF) format
· Data from legacy text files can be mapped and converted to other formats with MapForce FlexText
· SQL Databases: all major relational databases
· NoSQL Databases
· Binary files (raw BLOB content)
· EDI standards
· JSON files
· Microsoft Excel 2007 and later files
· XBRL instance files and taxonomies
· Protocol Buffers
· PDF files based on PDF templates created in the PDF Extractor (can only be used as data sources)

1.2.2 Mapping Scenarios

Altova website: MapForce Video Demos

20

20

21

22

https://www.altova.com/mapforce/demos

© 2018-2024 Altova GmbH

What Is MapForce? 21Introduction

Altova MapForce 2024 Professional Edition

Depending on your business needs and requirements, the complexity of your mappings can vary: For example,
you may need to configure your mapping to read data from one source and write this data to multiple targets or
to merge data from multiple sources into one target. Different data structures can be used as sources and
targets: e.g., XML files, databases, EDI files, etc. To find out more about the supported data formats, see
Mapping: Sources and Targets .

The complexity of mapping designs is illustrated in but not limited to the following scenarios:

· Mapping one source to one target. For more information, see Tutorial 1 .
· Merging multiple data sources into one target. For more information, see Tutorial 2 .
· Mapping data from one source to the first target, then filtering the data in such a way that only a

subset of this data is mapped to the second target. See Tutorial 3 .
· Mapping multiple sources to multiple targets. See Tutorial 4 .

Regardless of the technology you work with, MapForce typically determines automatically the structure of your
data or suggests supplying a schema for your data. MapForce can also generate schemas from a sample
instance file. For example, if you have an XML instance file but no schema definition, MapForce can generate it
for you. Thus, MapForce makes the data inside the XML file available for mapping to other files or formats. To
find out more about the basic terms and features of MapForce, see Mapping Fundamentals and User
Interface Overview .

Projects (Professional and Enterprise editions)
For easier access and management, you can organize your data mapping designs into mapping projects. In
addition to generating code for individual mappings within the project, you can generate program code for entire
projects. For details, see Projects .

1.2.3 Transformation Languages

In MapForce, a transformation language is used to generate transformation code that executes mappings. You
can select/modify a transformation language at any time. You can generate program code via the menu
command File | Generate Code in or File | Generate Code in Selected Language and use this code to
carry out data transformations outside of MapForce. For more information, see Code Generation .

Depending on the MapForce edition, you can choose the following languages for your data transformation:

Basic Edition Professional and Enterprise editions

· XSLT 1.0
· XSLT 2.0
· XSLT 3.0

· XSLT 1.0
· XSLT 2.0
· XSLT 3.0
· BUILT-IN
· XQuery
· Java
· C#
· C++

If you select XSLT 1-3 or XQuery as a transformation language, you will be able to view the transformation code
in a separate pane of MapForce.

To select a transformation language, do one of the following:

20

85

94

99

107

34

24

79

68

22 Introduction What Is MapForce?

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· In the Output menu, click the name of the language you wish to use for transformation.
· Click the name of the language in the Language Selection toolbar (shown below).

When you change the transformation language of the mapping, certain MapForce features may not be
supported for that language. For more information, see Support Notes .

As you design or preview mappings, MapForce validates the integrity of your schemas and transformations. If
any validation errors occur, MapForce displays them in the Messages window . This is helpful, because you
can immediately review and correct these errors.

BUILT-IN
When you select Built-In as a transformation language, MapForce uses its native transformation engine to
execute mappings. MapForce also uses this option implicitly whenever you preview the output of a mapping in
which the selected transformation language is Java, C#, or C++.

The Built-In engine executes mappings without the need for any external processors, which may be a good
choice if memory usage is an issue. If you do not need to generate program code in a specific language, use
Built-In as a default option, because it supports most MapForce features compared to other languages (see
Support Notes). Furthermore, if you select Built-In as a transformation language, you will be able to
automate your mappings with MapForce Server. For more information, see Automation with Altova Products
.

1.2.4 Integration with Altova Products

Transformations can be run inside MapForce using built-in XSLT/XQuery engines. MapForce can also be used
in tandem with other Altova products (see below).

XMLSpy
If XMLSpy is installed on the same machine, you can conveniently open and edit any supported file types by
opening XMLSpy directly from the relevant MapForce contexts. For example, the menu command Component
| Edit Schema Definition in XMLSpy is available when you click an XML component.
RaptorXML Server
You can choose to run the generated XSLT code directly in MapForce and preview the data transformation
result immediately. When you need increased performance, you can process the mapping using RaptorXML
Server, an ultra-fast XML transformation engine.
MapForce Server (Enterprise and Professional editions)
You can automate MapForce tasks with the help of Altova MapForce Server, which can be installed on
Windows, Linux, and macOS systems. MapForce Server enables you to run the transformations specified in a
mapping, not only from the command line of the respective OS but also through API calls (.NET, COM, Java).
FlowForce Server (Enterprise and Professional editions)
You can also automate MapForce tasks with the help of Altova FlowForce Server, which can be installed on
Windows, Linux, and macOS systems. FlowForce Server enables you to carry out MapForce Server tasks
according to a schedule.
StyleVision (Enterprise and Professional editions)
With the help of StyleVision, you can design or reuse existing StyleVision Power Stylesheets and preview the
result of the mapping transformations as HTML, RTF, PDF or Word 2007+ documents.

1304

28

1304

817

https://www.altova.com/xmlspy-xml-editor
https://www.altova.com/raptorxml
https://www.altova.com/raptorxml
https://www.altova.com/mapforce-server
https://www.altova.com/flowforceserver
https://www.altova.com/stylevision

© 2018-2024 Altova GmbH

What Is MapForce? 23Introduction

Altova MapForce 2024 Professional Edition

MapForce as a plug-in
MapForce Professional and Enterprise editions can be installed as a plug-in of Visual Studio and Eclipse
integrated development environments. This way, you can design mappings and get access to the MapForce
functionality without leaving your preferred development environment.

For more information about automating tasks, see Automating MapForce Tasks with Altova Products . To
find out more about using MapForce as a plug-in, see Plug-in for Visual Studio and Plug-in for Eclipse .

817

870 873

24 Introduction User Interface Overview

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

1.3 User Interface Overview

The graphical user interface of MapForce is organized as an integrated development environment. The main
interface components are illustrated below. You can change the interface settings by using the menu command

Tools | Customize. Use the buttons displayed in the upper-right corner of each window to show, hide,
pin, or dock it. If you need to restore toolbars and windows to their default state, use the menu command Tools
| Restore Toolbars and Windows.

The image below illustrates the main parts of the MapForce graphical user interface.

In the screenshot above, the panes with the green logos are StyleVision panes. For details, see StyleVision
Output Panes .

For more information about the features and functions of each part of the interface, see the topics below:

· Bars
· Windows
· Messages Window
· Panes

33

25

25

28

30

© 2018-2024 Altova GmbH

User Interface Overview 25Introduction

Altova MapForce 2024 Professional Edition

1.3.1 Bars

This topic gives an overview of the available bars.

Menu bar and toolbars
The Menu bar displays the menu items. Each toolbar displays a group of buttons representing MapForce
commands. You can reposition the toolbars by dragging their handles to a desired location. The screenshot
below illustrates the the Menu bar and toolbars. The actual interface depends on your MapForce edition and
the settings you choose.

Application status bar
The application status bar appears at the bottom of the MapForce window and shows application-level
information. Tooltips are displayed when you move the mouse over a toolbar button. If you are using the 64-bit
version of MapForce, the application name appears in the status bar with the x64 suffix. There is no suffix for
the 32-bit version.

1.3.2 Windows

This topic gives an overview of the available windows.

Libraries window
The Libraries window lists the MapForce built-in functions organized by library. The list of available functions
changes depending on the transformation language you select either from the Output menu or from the
Language Selection toolbar. For more information, see Transformation Languages . If you have created
user-defined functions or imported external libraries, they also appear in the Libraries window.

21

26 Introduction User Interface Overview

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

To search functions by name or by description, enter the search value in the text box at the bottom of the
Libraries window. To find all occurrences of a function (within the currently active mapping), right-click the
function and select Find All Calls from the context menu. You can also view the function data type and
description directly from the Libraries window. For more information, see Functions .

Project window (Enterprise and Professional editions)
MapForce supports the Multiple Document Interface and allows grouping your mappings into mapping projects.
The Project window shows all files and folders that have been added to the project. Project files have a *.mfp

(MapForce Project) extension. To search for mappings inside projects, click anywhere inside the Project
window and press CTRL + F. For more information, see Projects .

441

79

© 2018-2024 Altova GmbH

User Interface Overview 27Introduction

Altova MapForce 2024 Professional Edition

Mapping window(s)
MapForce uses a Multiple Document Interface (MDI). Each mapping file you open in MapForce has a separate
window. This enables you to work with multiple mapping windows and arrange or resize them in various ways
inside the main (parent) MapForce window. You can also arrange all open windows using the standard
Windows layouts: Tile Horizontally, Tile Vertically, Cascade. When multiple mappings are open in MapForce,
you can quickly switch between them using the tabs displayed under the Mapping pane (see screenshot
below).

You can access Window management options using the menu command Window | Windows. The Windows
dialog box allows you to perform various actions including activating, saving, closing, or minimizing open
mapping windows. To select multiple windows in the Windows dialog box, click the required entries while
holding the Ctrl key pressed.

Manage Libraries window
From this window you can view and manage all user-defined functions (UDFs) and imported custom libraries
(including compiled Java .class files and .NET DLL assembly files) that are used by the currently open
mappings.

By default, the Manage Libraries window is not visible. To display it, do one of the following:

· In the View menu, click Manage Libraries.
· Click Add/Remove Libraries at the bottom of the Libraries window.

28 Introduction User Interface Overview

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

You can choose to view UDFs and libraries only for the mapping document that is currently active or for all
open mapping documents. To view imported functions and libraries for all of the currently open mapping
documents, right-click inside the window and select Show Open Documents from the context menu.

To display the path of the open mapping document instead of the name, right-click inside the window and
select Show File Paths from the context menu.

For more information, see Manage Function Libraries .

Overview window
The Overview window gives a bird's-eye view of the Mapping pane . Use it to navigate quickly to a particular
location in the mapping area when the size of the mapping is very large. To navigate to a particular location in
the mapping, click and drag the red rectangle.

1.3.3 Messages Window

The Messages window (see screenshot below) shows validation statuses, messages, errors, and/or warnings
when you preview or validate a mapping. Click the underlined text in the Messages window to see a
component or structure which caused the information, warning, or error message.

445

30

66

© 2018-2024 Altova GmbH

User Interface Overview 29Introduction

Altova MapForce 2024 Professional Edition

Validation status icons
When you validate a mapping, MapForce checks, for example, for unsupported component kinds, incorrect or
missing connections. The validation result is displayed in the Messages window with one of the following status
icons:

Icon Meaning

Validation has completed successfully.

Validation has completed with warnings.

Validation has failed.

The Messages window may additionally display any of the following message types: information messages,
warnings, and errors.

Icon Meaning

Indicates an information message. Information messages do not stop the mapping
execution.

Indicates a warning message. Warnings do not stop the mapping execution. They appear,
for example, when you do not create connections to some mandatory input connectors. In
such cases, the output will still be generated for those components where valid connections
exist.

Indicates an error. When an error occurs, the mapping execution fails, and no output is
generated. The preview of the XSLT or XQuery code is not possible.

To highlight the component or structure which caused the information, warning, or error message, click the
underlined text in the Messages window.

Message-related actions
The Messages window enables you to take the following actions:

30 Introduction User Interface Overview

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Icon Description

Filter messages by severity: information messages, errors, and warnings. Select Check All
to include all severity levels (this is the default behavior). Select Uncheck All to remove all
severity levels from the filter. In this case, only the general execution or validation status
message is displayed.

Jump to the next line.

Jump to the previous line.

Copy the selected line to the clipboard.

Copy the selected line to the clipboard, including any lines nested under it.

Copy the full contents of the Messages window to the clipboard.

Find a specific text in the Messages window. Optionally, to find only words, select Match
whole word only. To find text while preserving the upper or lower case, select Match
case.

Find a specific text starting from the currently selected line up to the end.

Find a specific text starting from the currently selected line up to the beginning.

Clear the Messages window.

When you work with multiple mapping files simultaneously, you might want to display information, warning, or
error messages in individual tabs for each mapping. In this case, click the numbered tabs available on the left
side of the Messages window before validating the mapping.

1.3.4 Panes

This topic gives an overview of the available panes.

Mapping pane
The Mapping pane is the working area where you design mappings . You can add mapping components
(e.g., files, schemas, constants, variables, and so on) to the mapping area from the Insert menu. For more
information, see Add Components to Mapping . You can also drag functions from the Libraries window into
the Mapping pane. For details, see Add a Function to the Mapping .

XSLT pane
The XSLT pane displays the XSLT transformation code generated from your mapping. To switch to this pane,
select XSLT, XSLT 2 or XSLT3 as a transformation language and click the tab with the same name.

This pane provides line numbering and code folding functionality. To expand or collapse portions of code, click
the + and - icons at the left side of the window. Any portions of collapsed code are displayed with an ellipsis
symbol. To preview the collapsed code without expanding it, move the mouse cursor over the ellipsis. This

66

40

442

21

© 2018-2024 Altova GmbH

User Interface Overview 31Introduction

Altova MapForce 2024 Professional Edition

opens a tooltip that displays the code being previewed, as shown in the image below. Note that, if the
previewed text is too big to fit into the tooltip, an additional ellipsis appears at the end of the tooltip.

To configure the display settings, including the indentation, end of line markers, and others, right-click the pane

and select Text View Settings from the context menu. Alternatively, click (Text View Settings) in the
toolbar.

XQuery pane (Enterprise and Professional editions)
The XQuery pane displays the XQuery transformation code generated from your mapping when you click the
XQuery button. This pane is available when you select XQuery as a transformation language. This pane also
provides line numbering and code folding functionality, which works in a similar way as in the XSLT pane (see
above).

DB Query pane (Enterprise and Professional editions)
The DB Query pane allows you to directly query any major database. You can work with multiple active
connections to different databases. For more information, see Browsing and Querying Databases .283

32 Introduction User Interface Overview

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Output pane
The Output pane displays the result of the mapping transformation. If the mapping generates multiple files, you
can navigate sequentially through each generated file.

© 2018-2024 Altova GmbH

User Interface Overview 33Introduction

Altova MapForce 2024 Professional Edition

This pane also provides line numbering and code folding functionality, which works in a similar way as in the
XSLT pane (see above).

StyleVision output panes (Enterprise and Professional editions)
If you have installed Altova StyleVision, the StyleVision output panes will become available next to the Output
pane. The StyleVision output panes enable you to preview and save the mapping output in HTML, RTF, PDF,
and Word 2007+ formats. This is possible thanks to StyleVision Power Stylesheet (SPS) files designed in
StyleVision and assigned to a mapping component in MapForce.

https://www.altova.com/stylevision

34 Mapping Fundamentals

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

2 Mapping Fundamentals

A MapForce mapping design (or simply mapping) is the visual representation of how data is to be transformed
from one format into another. A mapping consists of components that you add to the mapping area to create
your data transformations. A valid mapping consists of one or several source components connected to one or
several target components. You can run a mapping and preview its result directly in MapForce. You can
generate code and execute it externally. You can also compile a mapping to a MapForce execution file and
automate this mapping execution using MapForce Server or FlowForce Server, for example. MapForce saves
mappings as .mfd files.

The screenshot below illustrates the basic structure of a mapping:

New mapping

To create a new mapping, click (New) in the toolbar. Alternatively, click New in the File menu. Then
select Mapping and click OK. The next step is to add components to the mapping and create
connections .

Main parts of a mapping
The subsections below describe the main parts of a mapping design.

Component
In MapForce, the term component is what represents visually the structure of your data, or how data is to be
transformed. Components are the central building pieces of any mapping and are represented as rectangular
boxes. Components can be divided into two large groups:

· Source and target components
· Structural and transformation components

Note that these two groups are not mutually exclusive. The first group reflects the relations between
components: e.g., one component can be a source for one component and a target for another component.
MapForce reads data from a source component and writes this data to a target component. When you run a
mapping, the target component instructs MapForce to generate a file (or multiple files) or output the result as a

40

50

115 351

https://www.altova.com/mapforce-server
https://www.altova.com/flowforceserver

© 2018-2024 Altova GmbH

 35Mapping Fundamentals

Altova MapForce 2024 Professional Edition

string value for further processing in an external program. The types of components from the first group are
described below:

· A source is located on the left of a target component. MapForce reads data from the source.
· A target is located on the right of a source. MapForce writes data to the target component.
· A pass-through component is a subtype of source and target components. A pass-through component

acts both as a source and target. For more information, see Chained Mappings . Note that only
structural components can be pass-through.

The second group (structural/transformation components) shows whether a component has a data structure or
is used to transform data mapped from another component.

To find out more about components and component-related actions, see Components .

Connector
A connector is a small triangle located on the left or right side of a component. Input connectors are on the left
of a component and show data entry points to that component. Output connectors are on the right of a
component and show data exit points from that component.

Connection
A connection is a line that you can draw between two connectors. When you create connections, you instruct
MapForce to transform data in a specific way: for example, to read data from an XML document and write it to
another XML document.

In this section
This section describes the most common MapForce tasks and concepts. The section is organized into the
following subsections:

· Components
· Connections
· General Procedures and Features
· Projects

99

36

36

50

66

79

36 Mapping Fundamentals Components

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

2.1 Components

Components are the central elements of any mapping design in MapForce. Visually, components are
represented as rectangular boxes in the mapping area. This topic gives an overview of structural and
transformation components (see example below). The distinction is based on whether a component has a data
structure or is used to transform data. See the description of these types in the subsections below. See also
Mapping Fundamentals . Besides structural and transformation components, you can also add comments to
your mapping (see Comments below).

Components example
The sample mapping below illustrates two data source components (Books and Library), one data target
component (MergedLibrary), and one transformation component (the current-dateTime function).

Structural components
Structural components represent an abstract structure of your data (e.g., an XML file). The list of structural
components that can be used as data sources and targets is given in Structural Components . Structural
components can read data from some source(s), write data to some target(s), and store data at some
intermediary stage in the mapping process (e.g., to preview the data). The table below gives an overview of
structural components and their respective toolbar buttons.

Icon Description

XML component

Text component (Professional and Enterprise editions)

34

115

© 2018-2024 Altova GmbH

Components 37Mapping Fundamentals

Altova MapForce 2024 Professional Edition

Icon Description

Database component (Professional and Enterprise
editions for SQL Databases; Enterprise Edition for
NoSQL databases)

JSON component (Enterprise Edition)

Microsoft Excel component (Enterprise Edition)

EDI component (Enterprise Edition)

XBRL component (Enterprise Edition)

Protocol Buffers (Enterprise Edition)

Transformation components
Transformation components help you transform data , store an intermediate mapping result for further
processing, replace a value by another value , sort , group , join , and filter your data. You can
also add an exception , which stops the mapping process and displays an error when a condition defined by
a filter occurs. The table below gives an overview of transformation components and their respective toolbar
buttons.

Icon Description

Simple input

Simple output

Filter component

Sort component

Built-in function

User-defined function

SQL/NoSQL-WHERE/ORDER component
(Professional and Enterprise editions)

Value-Map component

Variable

Web service function (Enterprise Edition)

Exception (Professional and Enterprise editions)

Constant

If-Else Condition

441 366

426 408 566 379 414

437

38 Mapping Fundamentals Components

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Icon Description

Join component (Professional and Enterprise editions)

Comments
MapForce allows adding comments as standalone components and as notes under existing components.
Comment text is available not only in a mapping, but it is also added to the generated mapping
documentation . In the generated mapping documentation, component comments are added directly below
the corresponding component, and comment components are part of the Remaining components section.

Comment components
Comment components are free-standing boxes that can display multi-line text and cannot be connected to any
other components. To add a comment component, you can select one of the following options:

· Select the toolbar command, which opens a dialog where you can type your comment.
· Select the Insert | Comment menu command, which opens a dialog where you can type your

comment.
· Double-click the empty area of your mapping, type the # sign, type a comment, and press Enter. The

sign will not appear in the comment box.

To move a comment, drag it to the desired location. To delete a comment, click on the comment box and press
the Delete key. An example of a comment component is illustrated below (red rectangular box).

Component comments
Besides free-standing comment boxes, you can also add comments to any existing components. Such
comments are displayed below the component (circled red below).

787

© 2018-2024 Altova GmbH

Components 39Mapping Fundamentals

Altova MapForce 2024 Professional Edition

To add a comment under an existing component, you can choose one of the following options:

· Right-click inside the component and select Edit Comment from the context menu. This opens a
dialog where you can enter your comment.

· Select a component to which you would like to add a comment. Then select Edit Comment in the
Component menu. This opens a dialog where you can enter your comment.

The display of components' comments can be limited to a specified number of lines, which can be defined in
the menu Tools | Options | General | Mapping View. For more information, see Options .

To remove a component comment, take one of the following steps:

· Double-click the comment, delete all text, and click Enter.
· Right-click the comment or inside the component, select Edit Comment from the context menu,

delete text, and click OK.

Edit comments
You can edit both types of comments in one of the following ways:

· Double-click the text of the comment and start editing directly in the box. Then press Enter.
· Right-click the comment box, edit the text in the Edit Comment dialog, and click OK. For component

comments, you can also access the Edit Comment dialog by right-clicking inside the component and
selecting the Edit Comment option in the context menu.

In this section
This section gives an overview of components and is organized into the following topics:

· Add Components
· Component Basics
· File Paths

1040

40

42

45

40 Mapping Fundamentals Components

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

2.1.1 Add Components

This topic explains how to add components to a mapping. To add a component, you need to create a new
mapping design first and then do one of the following:

· In the Insert menu, choose a component type (e.g., XML Schema/File).
· Drag a file from Windows File Explorer into the mapping area.
· Click the relevant button in the Insert Component toolbar (see screenshot below).

Each component type has a specific purpose and function. To get an overview of components, see
Components . To find out more about data structures that can be used as sources and targets, see
Structural Components . For information about MapForce components used to store data temporarily or to
transform it, see Transformation Components .

When you want to add a structural component to your mapping, you can choose to add a local file, a
component from a URL or from the list of global resources (see subsections below).

Add components from URL
Adding components from a URL is supported only for source components . The supported protocols are
HTTP, HTTPS, and FTP. Depending on the type of data structure, the instructions on how to add a component
from a URL may vary. For most data structures, the following instructions apply:

1. Select the component type you wish to add (e.g., XML Schema/File).
2. Click Switch to URL in the Open dialog box.
3. Enter the URL of the file in the File URL text box and click Open (see below).

34

36

115

351

34

© 2018-2024 Altova GmbH

Components 41Mapping Fundamentals

Altova MapForce 2024 Professional Edition

The list below describes the available options in the Open dialog.

· Open as: This option defines grammar for the parser. The default and recommended option is Auto.

· File load: If the file you are loading is not likely to change, select the Use cache/proxy option to cache
the data and speed up file loading. Select Reload if you want the file to be reloaded every time you
open the mapping.

· Identification: If the server requires password authentication, you will need to enter your user name and
password. If you want your user name and password to be remembered next time, select the check
box Remember password between application starts.

· Server URL: For servers with Web Distributed Authoring and Versioning (WebDAV) support, you can
browse files after entering the server URL in the Server URL text box and clicking Browse. Although
the preview shows all file types, make sure to open the same file type as in Step 1 above. Otherwise,
errors will occur.

· Check in/out: If you use a Microsoft SharePoint Server, select the check box This is a Microsoft
SharePoint Server. This displays checked-in/checked-out files in the preview area. If you want to make
sure that no one else can edit the file on the server while you are using it, right-click the file and select
Check Out (see screenshot above). To check in any file that you previously checked out, right-click
the file and select Check In.

42 Mapping Fundamentals Components

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· Switch to File Dialog: Clicking this button will redirect you to the dialog in which you can select a local
file.

· Switch to Global Resources: Clicking this button will redirect you to the dialog that allows selecting a
global resource.

Add global resources
If you have defined a database (Professional and Enterprise editions), a file, or a folder as a global resource,
you can add it to your mapping. For more information about global resources, see Altova Global Resources .
Depending on the type of data structure you are working with, the instructions on how to add a global resource
may very. For most data structures, the following instructions apply:

1. Select the component type you wish to add (e.g., XML Schema/File).
2. Click Global Resources in the Open dialog box.
3. Select one of the resources from the list and click Open (see below).

If you want to add, edit, or delete global resources, click the Manage Global Resources icon (circled red
above). The Open dialog for global resources allows you to switch back to the dialog with local files (Switch to
File Dialog) or open a file from a URL (Switch to URL).

If you have created a database as a global resource and you want to add it to your mapping, follow the steps
described in Global Resources .

2.1.2 Component Basics

This topic explains how to set, search and manipulate structural components . For more information, see the
subsections below.

841

181

36

© 2018-2024 Altova GmbH

Components 43Mapping Fundamentals

Altova MapForce 2024 Professional Edition

Change component settings
After you add a component to the mapping area, you can configure its settings in the Component Settings
dialog box. You can open the Component Settings dialog box in one of the following ways:

· Double-click the component header.
· Select the component and click Properties in the Component menu.
· Right-click the component header and click Properties.

Note that the available options depend on the type of a component. The list of settings for each component
type is given below:

· XML Component Settings
· Database Component Settings
· CSV Component Settings
· Fixed-Length Field Component Settings

For any file-based component (e.g., an XML file) the (Basic Edition) or (Professional and
Enterprise editions) button appears next to the root node. This button specifies advanced options for processing
or generating multiple files in a single mapping. For more information, see Processing Multiple Input or Output
Files . This button also allows setting options for parsing strings and serializing data to strings .

Search a component
To search for a specific node in a component, take the following steps:

1. Click the component you want to search and press CTRL+F.
2. Enter a search term and click Find Next/Previous/All (see screenshot below).

Use the Advanced options to define which items (nodes) are to be searched. You can also restrict the search
options based on specific connections.

Align components

117

241

337

345

751 758

44 Mapping Fundamentals Components

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

When you move components in the mapping area, MapForce shows guide lines (dotted lines) that help you
align components (see screenshot below).

To enable this option, take the steps below:

1. Go to the Tools menu and click Options.
2. In the Editing group, select the check box Align components on mouse dragging.

Duplicate input
Sometimes, you may need to configure a component so that it can accept data from more than one source. If
you want the target schema to accept data from more than one source schema, you can duplicate any input
nodes in your target component. Duplicating input is meaningful only for a target component: Duplicated nodes
can only accept data, but it is not possible to map data from duplicated nodes. You can duplicate as many
nodes as you need.

There are two ways of duplicating input: (i) selecting Add Duplicate Input Before/After from the context menu
and (ii) connecting a source node with a target node that is already connected to a different node. The first
option is described below. Information about the second option can be found in the second tutorial .

Add Duplicate Input Before/After
To duplicate a particular input node, right-click it and select Add Duplicate Input Before/After from the
context menu (see screenshot below). In the image below, the author node is about to be duplicated so that
data can be mapped to the duplicated node from another source node.

94

© 2018-2024 Altova GmbH

Components 45Mapping Fundamentals

Altova MapForce 2024 Professional Edition

Note: Duplication of XML attributes is not allowed, as it will make the XML instance invalid.

2.1.3 File Paths

A mapping design (*.mfd) may have references to several schema and instance files. MapForce uses the

schema files to determine the structure of the data to be mapped. In MapForce Professional and Enterprise
editions, mappings can also include references to StyleVision Power Stylesheet (*.sps) files, which are used

to format data for outputs such as PDF, HTML and Word. Mappings can also have references to file-based
databases such as Microsoft Access or SQLite.

References to files are created by MapForce when you add a component to the mapping. However, you can
always set or change such path references manually if required.

This section provides instructions on how to set or change paths to different file types referenced by a mapping.
The section is organized into the following topics:

· Relative and Absolute Paths
· Paths in Execution Environments

2.1.3.1 Relative and Absolute Paths

This topic explains how to use absolute and relative paths of the files referenced by your component. An
absolute path shows the full location of a file, starting with the root directory (see Example: XML Component
below). A relative path shows the file location which is relative to the current working directory: e.g., Books.xml.

In the Component Settings dialog box (see example below), you can specify absolute or relative paths for
various files which can be referenced by the component. The list of these files is given below:

· Input files from which MapForce reads data;
· Output files to which MapForce writes data;
· Schema files, which are applicable to components with a schema;

45

48

46 Mapping Fundamentals Components

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· Structural files, which are used as input or output parameters of user-defined functions and variables;
· StyleVision Power Stylesheet (*.sps) files, which are used to format data for outputs such as PDF,

HTML and Word;
· Database files in the case of database components (Professional and Enterprise editions).

Copy-paste and relative paths
When you copy a component from a mapping and paste it into another mapping, MapForce checks whether
the relative paths of schema files can be resolved against the folder of the destination mapping. If the paths
cannot be resolved, you will be prompted to make the relative paths absolute.

Broken paths
When you add or change a file reference in a mapping, and the path cannot be resolved, MapForce displays a
warning message. Broken path references may happen in the following cases:

· You use relative paths and then move the mapping file to a new directory without moving the schema
and instance files.

· You use absolute paths to files in the same directory as the mapping file and then move the directory
to another location.

When one of these scenarios happens, MapForce highlights the component in red. The solution is to double-
click the red component header and update any broken path references in the Component Settings dialog
box. See also Change Component Settings .

Example: XML component
The example below shows how file paths are used in an XML component. If you want to save all the mapping-
related files relative to the mapping file (.mfd), check the box Save all file paths relative to MFD file at the

bottom of the Component Settings dialog box. This is the default and recommended option that affects all the
files referenced by the component (shown in the red frame in the image below). If you have not saved your
mapping yet, you will see absolute paths to the schema and/or instance files in the Component Settings
dialog box. To see relative paths in the Component Settings dialog box, take the following steps:

1. Create a new mapping and add a structural component : e.g., an XML file with an XML schema
assigned to it.

2. Double-click the header of the component to open the Component Settings dialog box.
3. Check the box Save all file paths relative to MFD file at the bottom of the Component Settings dialog

box.
4. Save your mapping.
5. You can now open Component Settings again to check the relative paths in the relevant text fields.

Note: Paths that reference a non-local drive or use a URL will not be made relative.

43

34 40

© 2018-2024 Altova GmbH

Components 47Mapping Fundamentals

Altova MapForce 2024 Professional Edition

When the check box Save all file paths relative to MFD file is selected, MapForce will keep track of the files
referenced by the component even when you save the mapping to a new folder. If all the files are in the same
directory as the mapping, the path references will not be broken when you move the entire directory to a new
location on the disk.

The setting Save all file paths relative to MFD file applies to the following files:

· Structural files used by complex input or output parameters of user-defined functions and variables of
complex type;

· Input or output flat files (Professional and Enterprise editions);
· Schema files referenced by database components which support XML fields (Professional and

Enterprise editions);
· Database files (Professional and Enterprise editions);
· Input or output XBRL, FlexText, EDI, Excel 2007+, JSON files (Enterprise Edition only).

Example: Database component (Professional and Enterprise editions)
When you add a database file such as Microsoft Access or SQLite to the mapping, you can enter a relative
path instead of an absolute one in the Select a Database dialog box (see screenshot below). Before entering
relative file paths, make sure to save the .mfd file first. If you want to change the path of a database component

which is already in the mapping, click Change in the Component Settings dialog box. For more information
about connecting to a database source, see Start Database Connection Wizard .154

48 Mapping Fundamentals Components

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Note: When you generate program code, compile MapForce Server execution files (.mfx), or deploy the

mapping to FlowForce Server, a relative path will be converted to an absolute path if you select the
check box Make paths absolute in generated code in the mapping settings . To find out more,
see About Paths in Generated Code .

2.1.3.2 Paths in Execution Environments

If you generate code from mappings, compile mappings to MapForce Server execution files (.mfx), or deploy

mappings to FlowForce Server, the generated files are run by the target environment you have chosen: for
example, RaptorXML Server, MapForce Server, or a C# application. For the mapping to run successfully, any
relative paths must be meaningful in the environment where the mapping runs. The base paths for each target
language are given below:

Target language Base path

XSLT, XSLT2, XSLT3 Path of the XSLT file.

XQuery* Path of the XQuery file.

C++, C#, Java* Working directory of the generated
application.

Built-In* (when previewing the mapping in MapForce) Path of the mapping file (.mfd).

Built-In* (when running the mapping with MapForce Server) The current working directory.

Built-In* (when running the mapping with MapForce Server
under FlowForce Server control)

The working directory of the job or the
working directory of FlowForce Server.

* Languages available in MapForce Professional and Enterprise editions

Relative path to absolute path
When you generate program code, compile MapForce Server execution files (.mfx), or deploy the mapping to

FlowForce Server, a relative path will be converted to an absolute path if you select the check box Make paths
absolute in generated code in the mapping settings .

When you generate code and the check box is selected, MapForce resolves any relative paths based on the
directory of the .mfd and makes them absolute in the generated code. This setting affects the paths of the

following files:

· Input and output instance files for all file-based components;
· Access and SQLite database files used as mapping components (Professional and Enterprise

editions).

Library paths in generated code
Mapping files may optionally contain path references to different libraries. For example, you can import user-
defined functions from another mapping file, from custom XSLT, XQuery*, C#* or Java* libraries, or from .mff*

(MapForce Function) files. For more information, see Managing Function Libraries .

77

48

77

445

https://www.altova.com/flowforceserver
https://www.altova.com/mapforce-server
https://www.altova.com/flowforceserver
https://www.altova.com/raptorxml
https://www.altova.com/mapforce-server
https://www.altova.com/flowforceserver

© 2018-2024 Altova GmbH

Components 49Mapping Fundamentals

Altova MapForce 2024 Professional Edition

* Features available in MapForce Professional and Enterprise editions

The option Make paths absolute in generated code applies only to mapping components and does not
affect paths to external libraries. For all libraries other than XSLT and XQuery, the library path will be converted
to an absolute path in generated code. For example, if your mapping file contains library references such as
.NET .dll or Java .class files, and if you want to run the generated code in some other environment, the

referenced libraries must exist at the same path in the target environment.

If you plan to generate an XSLT or XQuery file from a mapping, make the library path relative to the generated
XSLT or XQuery file:

1. Open the mapping settings .
2. Select the check box Reference libraries with paths relative to generated XSLT/XQuery file.

Make sure that the XSLT or XQuery library file exists at that path.

77

50 Mapping Fundamentals Connections

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

2.2 Connections

A connection is a line that connects a source to a target. Connections represent visually how data is mapped
from one node to another. The subsections below describe different connection-related actions you can
perform.

Create, copy, delete a connection
To create a connection between two items, press and hold the output connector of a source node and drag
it to a destination node. An input connector accepts only one connection. If you try to add a second connection
to the same input, MapForce will ask if you want to replace the connection with a new one or duplicate the
input item . An output connector can have several connections, each to a different input.

To copy a connection to a different item, press and hold the thick section at the end of the connection (see
screenshot in Move a connection) and drag it to the selected destination while holding the Ctrl key.

To delete a connection, click the connection and press the Delete key. Alternatively, right-click the connection
and click Delete in the context menu.

Mandatory inputs
To help you in the mapping process, MapForce highlights mandatory inputs in orange in target components.
The example below shows that as soon as you connect the book element of the Books component to the
publication element of the BookOutput component, the connectors of the mandatory nodes of the
BooksOutput component will be highlighted. If you do not connect mandatory inputs, the respective nodes will
not be mapped to the target, and the mapping will be invalid.

Missing parent connections
When you create connections between source and target node manually, MapForce analyzes possible
mapping outcomes. If you connect two child nodes without connecting their parent nodes, you will see a
notification message that suggests connecting the parent of the source node with the parent of the target node.
This notification message helps you prevent situations where a single child node appears in the Output pane.

If you want to disable such notifications, take the following steps:

1. Go to the Tools menu and click Options.
2. Open the Messages group.
3. Clear the check box When creating a connection, suggest connecting ancestor items.

Move a connection
To move a connection to a different node, press and hold the thick section at the end of the connection (see
screenshot below) and drag it to the selected destination.

35

44

© 2018-2024 Altova GmbH

Connections 51Mapping Fundamentals

Altova MapForce 2024 Professional Edition

See connection tooltips
Connection tooltips allow you to see the names of (i) nodes to which data is mapped or (ii) nodes from which

data is mapped. To be able to see tips, press the toolbar button (Show tips). To see the names of nodes
to which data is mapped, point the cursor at the thick section of a connection near the output connector (see
screenshot below). To see the name of a node from which data is mapped, point the cursor at the thick section
of a connection near the input connector. If multiple connections have been defined from the same output,
maximum ten item names will be displayed in the tooltip.

In the example below, the target node to which the data from the book element is mapped is called
publication.

Change connection settings
To change the connection settings, do one of the following:

· Select a connection. Then go to the Connection menu and click Properties.
· Double-click the connection.
· Right-click the connection and click Properties.

For more information, see Connection Settings .
60

52 Mapping Fundamentals Connections

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Highlight connections selectively
MapForce allows you to selectively highlight connections in a mapping. This feature may be useful when your
mapping has many components with multiple connections. Highlighting connections selectively will make it
easier to check whether the nodes of the selected component are mapped correctly. Note that the term
connector used for the toolbar buttons below refers to a connection, i.e., a line connecting component nodes.
See the available options below.

Show selected component connectors (only direct connections)

Show connectors from source to target (direct and indirect connections)

Only direct connections
When the Direct-connections button is not pressed, you can see all connections in black. When the Direct-
connections button is pressed, only connections related to the currently selected component are black. Other
connections are light gray.

Direct and indirect connections
The Source-to-target Connections button becomes available only when the Direct-connections button is
pressed. When the Source-to-target Connections button is pressed, you can trace connections of the
currently selected component, including its direct connections and connections of its connected components
up to the source and target files.

To understand how these two options work, see the example below.

Example
The screenshot below illustrates a part of the ChainedPersonList.mfd mapping, which is available in the

MapForceExamples folder. In the mapping below, we have pressed the Direct-connections button, clicked the

header of the concat component but have not yet pressed the Source-to-target Connections button.

Therefore, we can now see that only the direct connections of the concat function to the "-" constant, the

substring, position, and Contacts components are black. The other connections in the mapping are light
gray.

The next step is to press the Source-to-target Connections button. The screenshot below reflects the
changes:

© 2018-2024 Altova GmbH

Connections 53Mapping Fundamentals

Altova MapForce 2024 Professional Edition

With the Source-to-target Connections button pressed, some other connections have become black: (i) the
connections of the substring function to the 1 constant and the PersonList component, and (ii) the

connection of the position function to the PersonList component. However, the connections between the

PersonList component and its preceding component remain light gray. Thus, when you press the Source-to-
target Connections button and click on a component, you can trace the component's direct connections. If
the selected component is connected to some transformation components (e.g, functions, constants,
filters, sort components, SQL-NoSQL-WHERE/ORDER components, if-else conditions, value-maps), you will
also be able to see their connections up to the structural components (such as PersonList above),
variables, join components, or Web service functions, to which these transformation components are
connected.

In this section
This section gives an overview of connections and is organized into the following topics:

· Connection Types
· Connection Settings
· Connection Context Menu
· Faulty Connections
· Keep Connections after Deleting Components

2.2.1 Connection Types

The following connection types are available in MapForce:

· Target-driven connections (Standard)
· Source-driven connections (Mixed Content)
· Matching-children connections
· Copy-all connections (Copy Child Items)

Target-driven vs. source-driven connections
Target-driven and source-driven connections are mutually exclusive. The choice between these two options
depends on the order in which nodes need to be mapped. In target-driven connections, the order of nodes in the
output is determined by the target schema. This connection type is suitable for most mapping scenarios and is

37

36

53

60

61

62

64

53

54

56

58

54 Mapping Fundamentals Connections

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

the default connection type in MapForce. A target-driven connection is shown as a solid line (see screenshot
below).

Target-driven connections might not be suitable when you want to map XML nodes with mixed context (child
nodes and text). In this case, a source-driven connection is recommended: The order of nodes in the output
is determined by the source schema.

Matching-children and copy-all connections
Matching-children and copy-all connections belong to a subset of target-driven and source-driven connections.
Matching-children and copy-all connections map data between nodes with child nodes that are similar or the
same in the source and target components. Copy-all connections are similar to matching-children connections
but have only one thick connection instead of multiple connections, which prevents the mapping area from
being visually cluttered.

This section provides information about each connection type and the scenarios when these connection types
are useful.

2.2.1.1 Source-Driven Connections

A source-driven connection enables you to automatically map mixed content (text and child nodes) in the same
order as in the XML source file. A mixed-content connection is shown as a dotted line at parent-node level (see
Mapping the <para> element). This topic explains how to map mixed content. It also shows the effect of using
standard (target-driven) connections with mixed content.

Note: Source-driven connections can also be used in database fields with mixed-content (Professional and
Enterprise editions).

Note: In order to accept mixed content, target components must have mixed-content nodes.

Mapping mixed content
This topic explains how to map mixed content using a source-driven connection. You will need the following
files: Tut-OrgChart.xml, Tut-Orgchart.mfd, Tut-Person.xsd, and Tut-OrgChart.xsd, which are available

in the Tutorial folder .
Source XML instance
A snippet of Tut-OrgChart.xml is shown below. In this example, we will focus on the mixed-content element

<para> with its child nodes <bold> and <italic>. The <para> element also contains a processing instruction
(<?sort alpha-ascending?>) and a comment (<!--Company details... -->), both of which can also be
mapped, as shown below. Note the sequence of the text and bold/italic nodes in the XML instance file.

54

19

© 2018-2024 Altova GmbH

Connections 55Mapping Fundamentals

Altova MapForce 2024 Professional Edition

Mapping the <para> element
The image below illustrates a portion of Tut-Orgchart.mfd. In the example below, the dotted line shows that

the <para> element has mixed content. To create mixed-content connections, take the following steps:

1. Select the menu command Connection | Auto Connect Matching Children, which will connect
matching child nodes automatically. Alternatively, you can manually map the <para> node with its
child nodes.

2. Connect the <para> item in the source component with the <para> item in the target component. A
message box will ask if you would like to define the connection as source-driven.

3. Click Yes to create a mixed-content connection.

4. Click the Output pane to see the result of the mapping. Click the button (Wrap) in the Output
pane toolbar to view the full (i.e., not going beyond the scroll bar) code listing in the Output pane. The
mixed content of the <para> node has been mapped in the same order it appears in the XML source
file.

Processing instructions and comments
If your mapping has processing instructions and/or comments and you want to map them, take the steps
below:

1. Right-click the mixed-content connection (dotted line) and select Properties.
2. Under Source-Drive (Mixed content), select the check boxes Map Processing Instructions and/or

Map Comments.

Target-driven connections with mixed content
Choosing target-driven connections for mixed content may have undesirable consequences. To see how target-
driven connections affect the order of mixed-content nodes, follow the instructions below:

1. Open Tut-OrgChart.mfd from the Tutorial folder.

56

56 Mapping Fundamentals Connections

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

2. Press the toolbar button (Auto Connect Matching Children). Clear the check box Create copy-
all connections in the settings for matching-children connections . This will prevent MapForce from
creating copy-all connections automatically.

3. Create a connection between the para node in the source and the para node in the target. A message
will ask if you would like to define the connections as source-driven. Click No. This creates a target-
driven connection.

4. Click the Output pane to see the result of the mapping (screenshot below).

The screenshot above shows that the content of the text() item in the source has been mapped to the target.
However, the order of the child nodes (bold and italic) in the output corresponds to the order of these nodes
in the target XML schema. This means that the bold and italic elements are not integrated into the text but
are mapped separately.

2.2.1.2 Matching-Children Connections

Matching-children connections automatically connect all child nodes which have the same names in the source
and target files. To enable this option, do one of the following:

· Click the toolbar button (Auto Connect Matching Children).
· Go to the Connection menu and click Auto Connect Matching Children.

Settings for matching-children connections
To configure the settings for matching-children connections, right-click any connection and select the option
Connect Matching Children from the context menu or go to the Connection menu and click Settings for
Connect Matching Children. This opens the Settings for Connect Matching Children dialog (screenshot
below).

56

56

58

© 2018-2024 Altova GmbH

Connections 57Mapping Fundamentals

Altova MapForce 2024 Professional Edition

The list below describes the options available in the Settings for Connect Matching Children dialog box. The

settings in this dialog box apply only when the toolbar button (Toggle auto connect of children) is
pressed.

Matching Options
The Matching Options section enables you to relax matching criteria and define how to compare node names.
The following options are available:

· Use column names for Excel components: This option applies only to Excel components (Enterprise
Edition). This option means that user-defined column names (e.g., Company) will be used for
comparison instead of column reference names (e.g., A, B, C). User-defined column names are set in
the Select Range of Cells dialog and appear as annotations in an Excel component.

· Ignore namespaces: Matching children will be connected regardless of the namespaces of child nodes.
· Mix Attributes and Elements: This option allows creating connections between attributes and elements

that have the same names. For example, a connection is created if two ID nodes exist, even though
one is an element, and the other is an attribute.

· Ignore Case: Matching children will be connected regardless of the case of child node names.
· Match alpha-numeric character only: When this option is enabled, only digits and letters will be

compared. Other characters such as spaces, commas, dots, etc. will be discarded before comparison.

Descendants
The Descendants section defines how to proceed with child nodes. The following options are available:

58 Mapping Fundamentals Connections

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· Create copy-all connections: This setting is active by default. It creates (if possible) a copy-all
connection , which maps data between nodes with child nodes that are similar or the same. A copy-
all connection is represented by one thick line, which prevents clutter and makes the mapping easier
to understand.

· Recursive: This option creates new connections between any matching nodes if they have the same
names. It does not matter how deep the nodes are nested in the tree.

Existing Connections
The Existing Connections section specifies what to do with existing connections. The following options are
available:

· Ignore existing output connections: This option creates additional connections for any matching nodes
even if they already have outgoing connections.

· Retain: This option keeps existing connections.
· Overwrite: This option overwrites existing connections.
· Delete all existing: This option deletes all existing connections before creating new ones.

Delete connections as a group
If you want to delete connections as a group, follow the instructions below:

1. Right-click a node name in the component.
2. Select Delete Connections | Delete All <...> Connections from the context menu (see screenshot

below).

· Delete All Direct Connections: This option deletes all connections that are directly mapped to or from
the selected node.

· Delete All Incoming Child Connections: This option is active only if you have right-clicked a parent node
in a target component. This option deletes all incoming child connections of the selected parent node.

· Delete All Outgoing Child Connections: This option is active only if you have right-clicked a parent node
in a source component. This option deletes all outgoing child connections of the selected parent node.

2.2.1.3 Copy-All Connections

Copy-all connections map data between nodes with child nodes that are similar or the same. Copy-all
connections are possible only for identical formats (e.g., JSON to JSON or XML to XML). This principle also
applies to all text components: flat files, FlexText and EDI files. Since these formats are all text files, you can
combine any of them and create a copy-all connection between EDI and FlexText files, for example.

The main benefit of copy-all connections is that they visually simplify the mapping workspace: One connection,
represented by a thick line, is created instead of multiple connections (see example in Create Copy-all
Connections Manually). The subsections below explain how to create copy-all connections automatically and
manually.

58

© 2018-2024 Altova GmbH

Connections 59Mapping Fundamentals

Altova MapForce 2024 Professional Edition

Create copy-all connections automatically
To create a copy-all connection automatically, take the following steps:

1. Go to the Connection menu.
2. Click Settings for Connect Matching Children.
3. Check the box Create copy-all connections and click OK.
4. Press the toolbar button Toggle auto connect of children. Alternatively, go to the Connection menu

and click Auto Connect Matching Children.

If types and/or names of child nodes in the source and target are not the same, a copy-all connection will not
be created automatically, and you will need to create it manually.

Create copy-all connections manually
To create a copy-all connection manually, take the following steps:

1. Add a source file: Click XML Schema/File in the Insert menu and browse for Books.xml located in

the BasicTutorials folder .
2. Add a target file: Click XML Schema/File in the Insert menu and browse for Library.xsd located in

the same folder as Books.xml. Click Skip when MapForce suggests adding an XML sample file.

3. Map the <book> node of the Books component to the <publication> node of the Library component.

As the structures of the <book> and <publication> elements do not fully coincide, the copy-all
connection is not created. Instead, the Auto Connect Matching Children function automatically
connects all the child nodes with the same name, which is discussed in Tutorial 1 .

4. To change the automatic connection to a copy-all connection, right-click the connection between
<book> and <publication> and select Copy-All (Copy Child Items) from the context menu.

5. A pop-up window will suggest replacing the existing connections with a copy-all connection. Click OK.
Now the source and target have a copy-all connection (see screenshot below).

In the mapping above, only two child nodes are identical in the two structures: <author> and <title>.
Therefore, a copy-all connection exists between these nodes. Child nodes that are not the same cannot be
connected. The screenshot shows that id is not included in the copy-all connection, because its type is not
the same in the source and target: id is an attribute in the source and an element in the target. If you try to
create a connection between nodes that are not the same, e.g., <category> and <genre>, MapForce prompts
you to replace this connection or duplicate the input.

Duplicating input only makes sense if you want the target to accept data from more than one input, which is
not required here. If you choose to replace the copy-all connection, a message box prompts you again to

19

90

44

60 Mapping Fundamentals Connections

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

resolve or delete the copy-all connection. Click Resolve copy-all connection if you want to replace the copy-
all connection with individual target-driven connections . If you prefer to remove the copy-all connection
completely, click Delete child connections.

Important

When you create a copy-all connection between a schema and a parameter of a user-defined function ,
the two components must be based on the same schema. It is not necessary that they both have the same
root elements, however.

2.2.2 Connection Settings

The Connection Settings dialog box defines the settings of a connection. To open this dialog box, double-
click the connection. Alternatively, right-click a connection and select Properties from the context menu. The
settings are divided into two parts: connection types and annotation settings. For more information, see the
subsections below.

Connection types

53

464

© 2018-2024 Altova GmbH

Connections 61Mapping Fundamentals

Altova MapForce 2024 Professional Edition

You can choose one of the connection types described below:

· Target-driven (Standard) connections are suitable for most mapping scenarios.
· Copy-all (Copy child items) connections: If a source and target components have identical or

similar nodes with matching child nodes, a copy-all connection will automatically be created
between these matching nodes.

· Source-driven (mixed content) connections map mixed content (text and child nodes) in the
same order as in the XML source file. If you select Map Processing Instructions and/or Map
Comments, you will be able to include these data groups in the output file (see screenshot
below).

Annotation settings

The Annotation Settings section enables you to label a connection. This option is available for all
connection types. To annotate a connection, follow the instructions below:

1. Right-click the connection and select Properties from the context menu. Alternatively, double-
click the connection.

2. Enter the name of the selected connection in the Description field. This enables all the options in
the Annotation Settings section.

2. Use the remaining groups to define the Starting Location, Alignment and Position settings of
the label.

3. Press the toolbar button (Show Annotations). If the button is not yet visible in the toolbar,
activate the button in the View Options toolbar.

Note: If the Show annotations toolbar button is inactive, you can still see the annotation if you place

the cursor over the connection. The annotation will appear as a tooltip if the toolbar button
(Show tips) is active in the View Options toolbar.

2.2.3 Connection Context Menu

This topic describes commands available in the connection context menu. When you right-click a connection,
the following context commands become available:

53

58

54

62 Mapping Fundamentals Connections

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

For more information, see the subsections below.
General settings

· Connect Matching Children: Opens the Connect Matching Children dialog box. This command is
enabled when the connection is allowed to have matching children.

· Delete: Deletes the selected connection.
· Go to Source: <item name>: Highlights the output connector of the selected connection.
· Go to Target: <item name>: Highlights the input connector of the selected connection.

Connection types
See details about connection types in Connection Types and Connection Settings .

Insert commands

· Insert Sort: Nodes/Rows: Adds a sort component between a source node and a target node.
· Insert Filter: Nodes/Rows: Adds a filter component between a source node and a target node.
· Insert SQL/NoSQL-WHERE/ORDER: Adds an SQL/NoSQL-WHERE/ORDER component between a

source node and a target node (Professional and Enterprise editions). For details, see Filter and Sort
Database Data .

· Insert Value-Map: Adds a value-map between a source node and a target node.

Properties
Opens the Connection Settings dialog box.

2.2.4 Faulty Connections

There are situations in which you might want to change a schema of a source or target. Changes to a schema
can affect the validity of your mapping and result in several faulty connections. This topic explains how to fix
such connections after you have changed the schema file. Follow the instructions in the example below to
understand how to deal with faulty connections.

56

35

35

53 60

408

414

419

426

60

© 2018-2024 Altova GmbH

Connections 63Mapping Fundamentals

Altova MapForce 2024 Professional Edition

1. Open Tut-ExpReport.mfd available in the Tutorial folder . The portion of this mapping is shown

below.

2. Open ExpReport-Target.xsd in an editor (e.g., Altova XMLSpy) and change the Company root element

in the target schema to Company-EU. You do not need to close MapForce.
3. After you have edited the root element of the target schema, the Changed files prompt appears in

MapForce. Click the Reload button. Since the root element has been changed, the component
displays multiple faulty nodes.

4. Click Select new root element at the top of the component (see screenshot below). You can also
change the root element by right-clicking the component header and selecting Change Root Element
from the context menu.

5. Select Company-EU as the new root element and click OK. The Company-EU root element is now visible
at the top of the component.

6. Now you need to move the connection from the faulty Company node to the new root element. Press
and hold the thick section (see red arrow below) of Company's connection. Then drag the connection to
the Company-EU root element.

A notification dialog box will ask whether you would like to move all the matching connected child
nodes. You can choose between moving only the selected connection or the selected connection with
its child nodes that match the child nodes in the new root element. In our example, we have chosen
the option Include descendent connections. As soon as you click this button, all the faulty nodes
will disappear from the component.

19

https://www.altova.com/xmlspy-xml-editor

64 Mapping Fundamentals Connections

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Note: If the node to which you are mapping has the same name as the source node but a different
namespace, the notification dialog box will have an additional button Include descendants and map
namespace. Clicking this button moves child connections of the same namespace as the source
parent node to the same child nodes under the different namespace node.

Alternative solution
An alternative solution to the problem discussed above could be deleting the faulty nodes you may no longer
need in your mapping. For example, when you delete the connection between the concat function and Name,

the Name node will disappear from the ExpReport-Target component.

Faulty connections in databases (Professional and Enterprise editions)
If your database component has faulty connections, you will need to change the component settings .
Clicking the Change button in the Component Settings dialog box allows you to select a different database
or change tables in your database component. All valid/correct connections and relevant database data will be
kept if you select a database with the same structure.

2.2.5 Keep Connections after Deleting Components

MapForce allows you to keep connections even after deleting some transformation components : e.g.,
variables, sort and filter components, value-maps, simple inputs, SQL/NoSQL-WHERE/ORDER components.
Connections can be single or multiple. Keeping connections might be particularly useful with multiple child
connections, because you will not have to restore every single child connection manually after deleting a
transformation component. To enable this option, go to Tools | Options | Editing and select Smart
component deletion (keep useful connections). By default, this option is disabled, which means that
deleting a transformation component will also delete its direct connections.

Example
The sample file called Tut3-ChainedMapping is used to illustrate smart component deletion. The sample file is

available in the BasicTutorials folder.

Before deletion
The screenshot below shows that copy-all connections exist between the MergedLibrary component and
the publication filter, and between the publication filter and the FilteredLibrary component. Now we
want to delete the publication filter but keep the copy-all connections. In order to do that, select the check
box Smart component deletion in the Options dialog box (see above).

43

36

19

58

© 2018-2024 Altova GmbH

Connections 65Mapping Fundamentals

Altova MapForce 2024 Professional Edition

After deletion
After the publication function has been deleted, the copy-all connection has been created directly between
the publication node in MergedLibrary and the publication node in FilteredLibrary (see screenshot
below).

Note: If a filter component has both on-true and on-false outputs connected, the connections of both
outputs will be kept.

66 Mapping Fundamentals General Procedures and Features

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

2.3 General Procedures and Features

In addition to creating mappings, you can also validate your mapping and output, generate code, use text view
features and define mapping settings. This section is organized into the following topics:

· Validation
· Code Generation
· Text View Features
· Text View Search
· Mapping Settings

2.3.1 Validation

This topic explains how to validate mappings. The topic also shows how to preview, save and validate your
output.

Validate mappings
MapForce validates mappings automatically when you click the Output pane. You can also validate your
mapping manually, which can help you identify and correct potential errors and warnings before running the
mapping. To validate a mapping manually, click the Mapping pane and then do one of the following:

· Click Validate Mapping in the File menu.

· Click (Validate) in the toolbar.

When you validate a mapping, MapForce checks, for example, for unsupported component types, incorrect or
missing connections. To find out more about validation statuses, see Messages Window . The Messages
window also allows you to take message-related actions . To display the result of each validation in an
individual tab, click the numbered tabs available on the left side of the Messages window. This may be useful,
for example, if you work with multiple mapping files simultaneously.

Validation of transformation components
Validation of transformation components works as follows:

· If a mandatory input connector is not connected, an error message is generated, and the
transformation is stopped.

· If an output connector is not connected, a warning is generated, and the transformation process
continues. The component, which has caused the warning, and its data are ignored and not mapped to
the target.

Preview and validate output
MapForce allows you to preview the output without having to run and compile the generated code with an
external processor or compiler. In general, it is a good idea to preview the transformation output in MapForce
before processing the generated code externally. When you preview the mapping results, MapForce executes
the mapping and shows the output in the Output pane .

66

68

70

74

77

29

29

37

32

© 2018-2024 Altova GmbH

General Procedures and Features 67Mapping Fundamentals

Altova MapForce 2024 Professional Edition

Once the data is available in the Output pane, you can validate and save it if necessary. You can also use the
Find command (Ctrl + F) to quickly locate a particular text pattern in the output file. For more information, see
Text View Search . Any error, warning or information messages related to the mapping execution are
displayed in the Messages window .

If you select C++, C#, or Java (Professional and Enterprise editions) as a transformation language ,
MapForce executes the mapping using its built-in transformation engine and displays the result in the Output
pane.

To save the transformation output, click the Output pane and then do one of the following:

· Click Save Output File in the Output menu.

· Click (Save generated output) in the toolbar.

Load options
When you preview large output files, MapForce limits the amount of data displayed in the Output pane. In this
case, the Load more button appears in the lower area of the pane (see screenshot below). Clicking the Load
more button adds the next piece of data. You can configure the preview settings from the General tab of the
Options dialog box. For more information, see MapForce Options .

Validate output
As soon as the output becomes available in the Output pane, you can validate the output against the schema
associated with it. Note that the Validate Output button and its corresponding menu command (Output |
Validate Output File) are enabled only if the output file supports validation against a schema. The result of the
validation is displayed in the Messages window. To validate the output, do one of the following:

· Open the Output pane and click (Validate Output) in the toolbar.
· Open the Output pane and click Validate Output File in the Output menu.

The screenshot below illustrates unsuccessful validation. The Messages window contains detailed information
on the errors. For example, if you click the <Name> link, MapForce will highlight this element in the Output
pane.

74

28

21

1040

68 Mapping Fundamentals General Procedures and Features

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

2.3.2 Code Generation

Code Generator is a MapForce built-in feature which enables you to generate code from mapping files. You can
use the generated code to execute your mappings outside of MapForce, which will enable you to automate
your mapping operations. You can generate code in the following data transformation languages :

· XSLT 1.0/XSLT 2.0/XSLT 3.0 (all editions)
· XQuery (Professional and Enterprise editions)
· Java (Professional and Enterprise editions)
· C# (Professional and Enterprise editions)
· C++ (Professional and Enterprise editions)

You can generate code from a single mapping design (.mfd) or from a mapping project (.mfp). Code generation

from a project is supported only in Professional and Enterprise editions. For details, see the subsections
below.

Important points
Note the following code-generation aspects:

· Certain MapForce features are not supported in generated program code. For details, see Supported
features in generated code .

· For information about handling paths in generated code, see Paths in Execution Environments .
· Professional and Enterprise editions: You can change general code-generation options in the

Generation section of the Options dialog. For details, see Generation .
· Professional and Enterprise editions: Support for database connections varies depending on the

platform, and there are connection types that are not supported on all platforms. If your mapping
connects to a database, choose a database connection that is compatible with the target environment
for which you generate code. For details, see Database mappings in various execution
environments .

Support information
The table below summarizes support information about C++, C#, and Java.

Target Language C++ C# Java

Development
environments

Microsoft Visual Studio
2013, 2015, 2017, 2019,
2022

Microsoft Visual Studio
2013, 2015, 2017, 2019,
2022

Target frameworks:

· .NET Framework
· .NET Core 3.1
· .NET 5.0
· .NET 6.0
· .NET 8.0

Java SE JDK 8, 11, 17, 21
(including OpenJDK)
Eclipse 4.4 or later
Apache Ant

XML DOM
implementations

MSXML 6.0
Apache Xerces 3

System.Xml JAXP

Database API ADO ADO.NET JDBC

21

1305

48

1043

150

© 2018-2024 Altova GmbH

General Procedures and Features 69Mapping Fundamentals

Altova MapForce 2024 Professional Edition

Generate code from a mapping
To generate code from a mapping design (.mfd), follow the instructions below:

1. Select the relevant code-generation options in the Generation section of the Options dialog (applicable
to C# and C++) and in the Mapping Settings . For details about the code-generation settings in the
Options dialog, see Generation .

2. Click File | Generate code in and select the relevant transformation language. Alternatively, you can
select File | Generate Code in Selected Language. In this case, code will be generated in the
language selected in the toolbar.

3. Select a destination directory for the generated files and then click OK to confirm. MapForce generates
the code and displays the result of the operation in the Messages window .

Generate code from a project (Professional and Enterprise editions)
You can generate code from a mapping project (.mfp) that consists of multiple mapping design files (.mfd).

Note that all mapping design files in the project must qualify for generation, which means that all their
components must be supported in the selected transformation language (see Supported features in generated
code).

To generate code from a mapping project, follow the instructions below.

1. Open the relevant mapping project, for which you wish to generate code.
2. Right-click the project name in the Project window and then select Properties from the context menu.

Alternatively, click the project name and select the Project | Properties menu item.
3. Review and change the project settings if required. In particular, ensure that the target language and

the output directory are set correctly. Then click OK.
4. Click Generate Code for Entire Project in the Project menu.

Irrespective of the language selected in the Project Properties dialog, you can always choose to generate
project code in a different language, by selecting the menu command Project | Generate Code in |
<language>.

The progress and result of the code generation process are displayed in the Messages window. By default, the
name of the generated application is the same as the project name. If the project name contains spaces, these
are converted to underscores in the generated code. By default, code is generated in the same directory as the
MapForce project, in the output sub-directory.

You can change the output directory and/or the name of the project in the Project Properties dialog. If your
MapForce project contains folders, you can configure the code generation settings for each individual folder:
Right-click a folder of interest and select Properties from the context menu. Otherwise, all project folders
inherit the settings defined at top level. For more information about projects and project-related settings and
procedures, see Projects .

Next steps
Depending on the transformation language you have selected for code generation, the subsequent steps vary. If
you have generated code in XSLT 1-3 or XQuery, the next step will be to run the transformation from the
command line (see details below).

77

1043

28

1305

79

70 Mapping Fundamentals General Procedures and Features

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

If you have generated Java, C#, or C++ code, the next steps will be to build and run the generated code. For
more information about these procedures, see Code Generator . You can also modify the generated Java,
C#, and C++ code and integrate it into your custom code. For details, see Integrate Generated Code .

XSLT and XQuery code
After you have generated XSLT 1-3 code, the destination folder will include the following files:

1. An XSLT transformation file that has the following format: <Mapping>MapTo<TargetFileName>.xslt.

<Mapping> is the value of the Application Name field in the mapping settings . <TargetFileName> is
the name of the target component. To change this value, open the settings of the target component
and edit the value of the Component Name field. For more information, see Change Component
Settings and Library paths in generated code .

2. A DoTransform.bat file, which enables you to run the XSLT transformation with Altova RaptorXML

Server from the command line. In order to run the command, you will need to install RaptorXML.

If your mapping is chained , a separate transformation file will be generated for each target component.

XQuery code generation is similar to XSLT code generation, except that the transformation file(s) have a .xq

extension and the following format: <Mapping>MapTo<TargetFileName>.xq.

2.3.3 Text View Features

The Output pane , the XQuery pane , and the XSLT pane have multiple visual aids to make the display
of text easier: e.g., margins, text highlighting, indentation guides, end-of-line and whitespace markers. You can
customize these features in the Text View Settings dialog box (see screenshot below). The settings in this
dialog box apply to the entire application.

894

902

77

43 48

99

32 31 30

https://www.altova.com/raptorxml.html
https://www.altova.com/raptorxml.html

© 2018-2024 Altova GmbH

General Procedures and Features 71Mapping Fundamentals

Altova MapForce 2024 Professional Edition

To open the Text View Settings dialog box, do one of the following:

· Select Output | Text View Settings.

· Click (Text View Settings) in the toolbar.
· Right-click the blank area in the Output pane and select Text View Settings from the context menu.

Some of the navigation aids can also be toggled from the Text View toolbar, the application menu, or keyboard
shortcuts. For more information about shortcuts, see the Key map section of the Text View Settings dialog
box shown above.

See the list of available settings below.

Margins

Line number margin
Line numbers are displayed in the line number margin, which can be toggled on and off in the Text View
Settings dialog box. When a section of text is collapsed, the line numbers of the collapsed text are also
hidden.

Bookmark margin
Lines in the document can be bookmarked for quick reference and access. If the Bookmark margin
check box in the Text View Settings dialog box is selected, bookmarks are displayed in the bookmarks
margin (see screenshot below). If the Bookmark margin check box is not selected, the bookmarked
lines are highlighted in cyan.

72 Mapping Fundamentals General Procedures and Features

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

You can edit and navigate bookmarks using the commands given in the table below. The commands are
available in the Output menu and also through the context menu when you right-click the Output, XSLT
or XQuery pane.

Insert/Remove Bookmark (Ctrl + F2)

Go to Next Bookmark (F2)

Go to Previous Bookmark (Shift + F2)

Delete All Bookmarks (Ctrl + Shift + F2)

Folding margin
Source folding refers to the ability to expand and collapse nodes. This feature is displayed in the source
folding margin. The margin can be activated or disabled in the Text View Settings dialog box. To expand
or collapse portions of text, click the + and - nodes at the left side of the window. Any portions of
collapsed code are displayed with an ellipsis symbol (see screenshot below). To preview the collapsed
code without expanding it, hover over the ellipsis. This opens a tooltip that displays the previewed code,
as shown in the screenshot below. Note that if the previewed text is too big to fit in the tooltip, an
additional ellipsis appears at the end of the tooltip.

Enable auto-highlighting

The Enable auto-highlighting setting allows you to see all the matches of the selected piece of text.
The selection is highlighted in pale blue, and the matches are highlighted in light brown. The selection and

© 2018-2024 Altova GmbH

General Procedures and Features 73Mapping Fundamentals

Altova MapForce 2024 Professional Edition

its matches are indicated as gray marker-squares in the scroll bar. The current cursor position is shown
as the blue cursor-marker in the scroll bar. A selection can be an entire word or a fixed number of
characters. You can also specify whether case should be taken into account or not.

For character selection, you can specify the minimum number of characters that must match, starting
from the first character in the selection. For example, you can choose to match two or more characters.
For word searches, the following items are considered to be separate words: element names (without
angular brackets), the angular brackets of element tags, attribute names, and attribute values without
quotes.

Visual aid

Indentation guides
Indentation guides are vertical lines that indicate the extent of a line's indentation. They can be toggled on
and off in the Text View Settings dialog box. The Insert tabs and Insert spaces options take effect
when you use the option Output | Pretty-Print XML Text.

End-of-line and whitespace markers
End-of-line and whitespace markers (see screenshot below) can be toggled on in the Text View Settings
dialog box. The arrows represent tab characters. The CR abbreviation stands for a carriage return. The
dots represent space characters.

Other text view settings

Syntax coloring
Syntax coloring is another visual aid that makes code listings more reader-friendly. Syntax coloring
depends on the semantic value of the text. For example, in XML documents, depending on whether the
XML node is an element, attribute, content, CDATA section, comment, or processing instruction, the node
name (and in some cases the node's content) is colored differently.

Zooming in and out
You can zoom in and out by scrolling (with the scroll-wheel of the mouse) while holding the Ctrl key
pressed. Alternatively, press the - or + keys while holding the Ctrl key pressed.

Pretty-printing
The Pretty-Print XML Text command reformats the active XML document in Text View to give a
structured display of the document. By default, each child node is separated from its parent by four space
characters. This can be customized in the Text View Settings dialog box. To pretty-print an XML

document, select the menu command Output | Pretty-Print XML Text or click (Pretty-print) in the
toolbar.

74 Mapping Fundamentals General Procedures and Features

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Word wrapping
Word wrapping helps display a code listing within the borders of the working area. If the word wrap setting
is not enabled, some portions of text may not be fully visible in the working area. To toggle word wrapping

in the currently active document, select the menu command Output | Word Wrap or click (Word
Wrap) in the toolbar.

2.3.4 Text View Search

The text in the Output pane, the XQuery pane, and the XSLT pane can be searched with an extensive range
of options and visual aids.

You can search for a term in the entire document or within a text selection. To start a search , press Ctrl+F or
select the menu command Edit | Find. You can enter a string or use the combo box to select a string from one
of the last 10 strings. When you enter or select a string, all matches are highlighted, and the positions of the
matches are indicated by orange markers in the scroll bar (see screenshot below). The position of the currently
selected match (highlighted in gray) depends on where the cursor was last located.

You can see the total number of matches and the index position of the currently selected match. Use the

(Previous) and (Next) buttons to switch between the matches.

Find options
You can specify find criteria with the help of the buttons located under the search field. The list of the available
options is given in the table below.

Option Icon Description

Match case Does a case-sensitive search: e.g., Address is not the same as address.

© 2018-2024 Altova GmbH

General Procedures and Features 75Mapping Fundamentals

Altova MapForce 2024 Professional Edition

Option Icon Description

Match whole word Only identical words will match.

Use regular
expression

If this option is toggled on, the search term will be read as a regular
expression. See Regular expressions below.

Find anchor The position of an anchor depends on the place where the cursor was last
located. Clicking the Previous and Next buttons does not change the
position of the anchor.

Find in selection A selection is a marked piece of text. To find a term within a selection, mark
a piece of text, press Ctrl+F, make sure the Find in selection button is
pressed, and type the term in the search field.

Regular expressions
You can use regular expressions to find a text string. To do this, switch on the Use regular expressions

option (see table above). Then enter a regular expression in the search field. Clicking (Regular
Expression Builder) gives you a list of sample regular expressions (see below). The screenshot below shows
a regular expression that helps find email addresses.

Regular expression metacharacters
The table below shows metacharacters that you can use to find and replace text. All the metacharacters
except for the last two correspond to the menu items in Regular Expression Builder (see above).

Menu item Metacharacters Description

Any Character . Matches any character. This is a placeholder for a single character.

Character in
Range

[...] Matches any characters in this set. For example, [abc] matches

any of the characters a, b or c. You can also use ranges: e.g., [a-z]

for any lower case character.

Character Not in [^...] Matches any characters not in this set. For example, [^A-Za-z]

76 Mapping Fundamentals General Procedures and Features

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Menu item Metacharacters Description

Range matches any character except an alphabetic character.

Beginning of
Word

\< Matches the beginning of a word.

End of Word \> Matches the end of a word.

Beginning of Line ^ Matches the beginning of a line unless it is used inside a set (see
above).

End of Line $ Matches the end of a line. For example, A+$ matches one or more

A's at the end of a line.

Tagged
Expression

(abc) The parentheses mark the start and end of a tagged expression.
Tagged expressions may be useful when you need to tag
("remember") a matched region to refer to it later. Up to nine sub-
expressions can be tagged and then back-referenced later.

For example, (the) \1 matches the string the the. This

expression can be explained as follows: Match the string the and
remember it as a tagged region; the expression must be followed by
a space character and a back-reference to the tagged region
matched previously.

0 or More
Matches

* Matches zero or more matches of the preceding expression. For
example, Sa*m matches Sm, Sam, Saam, Saaam and so on.

1 or More
Matches

+ Matches one or more occurrences of the preceding expression. For
example, Sa+m matches Sam, Saam, Saaam and so on.

\n Where n is 1 through 9, n refers to the first through ninth tagged
region (see above).

\x Allows using a character x, which would otherwise have a special
meaning. For example, \[would be interpreted as [and not as the
start of a character set.

Find special characters
If the Use regular expressions option is enabled, you can search for any of the following special characters
within the text:

· \t (Tab)
· \r (Carriage Return)
· \n (New line)
· \\ (Backslash)

For example, to find a tab character, press Ctrl + F, select the Use regular expressions option, and enter \t

in the Find dialog box.

© 2018-2024 Altova GmbH

General Procedures and Features 77Mapping Fundamentals

Altova MapForce 2024 Professional Edition

2.3.5 Mapping Settings

The Mapping Settings dialog box (see screenshot below) allows you to define document-specific settings. To
open this dialog box, go to the File menu and click Mapping Settings. Alternatively, right-click the empty area
in the mapping pane and select Mapping Settings from the context menu.

The available settings are described in the subtopics below.

Code Generation

· Application name: Defines the prefix of the generated XSLT file or the name of the generated Java,
C#, or C++ application (Professional and Enterprise editions).

· Java base package name (Professional and Enterprise editions): This option applies when Java is
selected as a transformation language. The option defines the base package name of the Java
output.

· Make paths absolute in generated code: This check box affects all paths in mapping
components, except paths to external library files (e.g., XSLT libraries). The check box defines
whether the file paths should be relative or absolute in the generated program code, in MapForce
Server Execution files (.mfx) and in mapping functions deployed to FlowForce Server. For more
information, see Paths in Execution Environments .

48

https://www.altova.com/mapforce-server
https://www.altova.com/mapforce-server
https://www.altova.com/flowforceserver

78 Mapping Fundamentals General Procedures and Features

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· Reference libraries with paths relative to the generated XSLT/XQuery files: This check box is
applicable when the mapping language is XQuery (Professional and Enterprise editions) or XSLT.
This option is useful if your mapping references an XSLT or XQuery library, and you plan to
generate XSLT or XQuery files from the mapping. Select this check box if you want the library
paths to be relative to the directory of the generated XSLT or XQuery code. If the check box is not
selected, the library paths will be absolute in the generated code. See also Library paths in
generated code .

· Ensure Windows path convention for file path: This check box is applicable when the mapping
language is XQuery (MapForce Professional and Enterprise editions), XSLT 2.0 or XSLT 3.0. The
check box makes sure that Windows path conventions are followed. When you output XSLT 2.0,
XSLT 3.0 or XQuery, the currently processed file name is internally retrieved with the help of the
document-uri function, which returns a path in the file://URI format for local files. When this

check box is selected, a file://URI path specification is automatically converted to a complete
Windows file path (e.g., C:\...) to simplify further processing.

Output File Settings (Professional and Enterprise editions)

The Line ends combo box allows you to specify the line endings of the output files. Platform default
means the default option for the target operating system: e.g., Windows (CR+LF), macOS (LF), or Linux
(LF). You can also select a specific line ending manually. The settings you select here are important
when you compile a mapping to a MapForce Server Execution file (.mfx) or when you deploy a mapping
to FlowForce Server running on a different operating system.

XML Schema Version

This option allows you to define the XML schema version used in the mapping file. Note that not all version
1.1 specific features are currently supported. If the xs:schema vc:minVersion="1.1" declaration is
present, version 1.1 will be used; if not, version 1.0 will be used.

If the XSD document has no vc:minVersion attribute or the value of the vc:minVersion attribute is other
than 1.0 or 1.1, XSD 1.0 will be the default mode. Do not confuse the vc:minVersion attribute with the
xsd:version attribute. The first attribute has the XSD version number, while the second attribute has the
document version number. Changing this setting in an existing mapping causes the reloading of all
schemas of the selected XML schema version and might also change its validity.

Web Service Operation Settings (Enterprise edition)

The WSDL Definitions, Service, Endpoint and Operation fields are automatically filled if the mapping
document is part of a Web service implementation.

48

https://www.altova.com/mapforce-server
https://www.altova.com/flowforceserver

© 2018-2024 Altova GmbH

Projects 79Mapping Fundamentals

Altova MapForce 2024 Professional Edition

2.4 Projects

In addition to creating standalone mappings, you can also create mapping projects that include multiple
mappings. Mappings added to a project are accessible from the Project window (see screenshot below).

The main advantage of projects is that you can define common code generation settings (e.g., the target
language and the output directory) for all the mappings included in that particular project. You can also create
folders inside projects and specify custom code generation settings for each individual folder in a project.
MapForce Project files are saved with the .mfp extension.

In MapForce Enterprise Edition, you can additionally create Web Service projects. Such projects enable you to
generate Java or C# program code that implements SOAP Web services, based on existing WSDL (Web
Services Description Language) files.

2.4.1 Project Basics

The subsections below will help you get started with a project. Procedures associated with projects can be
broadly divided into (i) creating a project, (ii) organizing a project, and (iii) performing different actions. See
information about these procedures in the subsections below.

New project
To create a new project, take the steps below:

1. Click the button in the toolbar. Alternatively, go to the File menu and click New.
2. Select Project File and click OK.
3. Enter the project name in the Save Project As dialog box and click Save. The new project is now

displayed in the Project window.

To close a project, go to the Project menu and click Close Project.

80

80 Mapping Fundamentals Projects

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Project organization
Add a mapping to a project
If you want to add a currently open mapping to a project, do one of the following:

· Go to the Project menu and click Add Active File to Project.
· Right-click the relevant project in the Project window and select Add Active File to Project from the

context menu.

To add existing mapping files to a project, do one of the following:

· Go to the Project menu and click Add Files to Project.
· Right-click the relevant project in the Project window and select Add Files to Project.

Tip: If you want to add multiple files, hold the Ctrl key while selecting the files in the Open dialog box.

Delete a file from a project
To remove a file or folder from a project, do one of the following:

· Choose the file you would like to delete in the Project window. Right-click the file and select Delete
from the context menu.

· Select the relevant file in the Project window and press Delete.

MapForce project files have a .mfp extension. You can open existing MapForce projects in the same way as

mappings: Go to the File menu and click Open. By default, when you run MapForce for the first time, you will
see the MapForceExamples.mfp project in the Project window.

Project-related actions
Search a project
To search a project for files, follow the instruction below:

1. In the Project window, click the project or folder to be searched.
2. Press Ctrl + F. The Find dialog box allows you to define your search options. For example, if you want

to include folder names in the search, select the Find in folder names option (see screenshot below).

Generate code for your project
In projects, you can generate code for (i) individual mappings, (ii) a specific folder, or (iii) the entire project.

To generate code for a mapping or folder in your project, right-click the relevant mapping or folder and select
Generate Code or Generate code in. If you select Generate Code, the code will be generated in the

© 2018-2024 Altova GmbH

Projects 81Mapping Fundamentals

Altova MapForce 2024 Professional Edition

language specified in the project settings . You can also choose to generate code in one of the languages
available in your MapForce edition. For more information, see Code Generation .

To generate code for the entire project, go to the Project menu and select Generate Code for Entire Project.
Alternatively, right-click the name of the project in the Project window and select Generate Code. The code
will be generated in the language specified in the project settings . For the entire project, you can also select
a language to generate code in in the Project menu or in the project's context menu. The choice of languages
depends on your MapForce edition. For more information, see Code Generation .

Preview images
The Project window allows you to preview images of the following formats: .png, .jpeg, .gif, .bmp, .tiff,

and .ico (see screenshot below). Double-clicking an image file will open it in an external application, which

depends on file association in Windows.

Watch video tutorials and add Web links
Besides multiple sample files, the MapForceExamples project also contains links to various video tutorials on

the Altova website. Double-clicking any link will open the corresponding page in your default Web browser.

You can also insert your own external links in any of the following ways:

· By right-clicking the project name or a folder of interest and selecting Create Web Link from the
context menu.

· By selecting the project name or a folder of interest and then clicking Create Web Link in the Project
menu.

Either method causes the Web Link Properties dialog to pop up. Type the link's name that will be visible in
the interface and the URL of this resource. You also need to select an icon for your resource: as a general Web
link or as a link to a video. You can always change the location of any link, by dragging the link to the desired
location. You can also use the combination of the Ctrl + C and Ctrl + V keys to copy a link and paste it into
the desired location.

2.4.2 Project Settings

For any project, you can specify code generation settings that will affect all the mappings inside your project.
To open the Project Settings dialog box (see screenshot below), do one of the following:

81

68

81

68

82 Mapping Fundamentals Projects

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· Right-click the project name in the Project window and select Properties in the context menu.
· Go to the Project menu and click Properties.

The available settings are listed below. Note that the project name and the project directory cannot be changed
after the project has been created.

· Output name: The value entered in this text field determines the names of the generated
project/solution and other objects in the generated code.

· Output directory: Defines the Windows folder where the generated code from all mappings in this
project will be saved. By default, the output is saved to the MapForceExamples\output\ directory.

· Language: Defines a code generation language for all mapping files in this project. For details about
generating code, see Code Generation .

· Base package name: This setting applies if Java has been selected as a transformation language. The
setting defines the name of the base package in the generated Java project.

2.4.3 Project Folders

MapForce enables you to organize mappings inside a project into folders. You can create as many folders as
you need and add mappings to them. Such folders are virtual and exist only inside a MapForce project: These
folders do not correspond to the folders on your operating system. One of the advantages of creating folders in
a project is that you can define common code generation settings for all the mapping files in that particular
folder. To create a folder inside a MapForce project, take the steps below:

1. Go to the Project menu and click Create Folder. Alternatively, right-click the project in the Project
window and select Create Folder.

2. In the Properties dialog box (see screenshot below), enter the required code generation settings and
click OK.

68

© 2018-2024 Altova GmbH

Projects 83Mapping Fundamentals

Altova MapForce 2024 Professional Edition

The list below describes the settings you can define in the Properties dialog box.

· Name: This is the name of the folder in your project.
· Use default project settings: This option means that the code generation settings in the current folder

are the same as in the entire project. Therefore, when you generate code from your project, MapForce
will use the code generation settings defined in the project settings . If your folder requires custom
code generation settings, select Use following settings and specify the code output directory and
language as required.

· Output directory: This is the folder where the generated code from all the mappings in this folder will be
saved.

· Language: This option defines the code generation language for all the mapping files in this folder.

81

84 Tutorials

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

3 Tutorials

Altova website: MapForce Video Demos

With the help of these tutorials, you will be able to understand and use the basic data transformation
capabilities of MapForce. You will be guided through the basics step by step. The tutorials gradually grow in
complexity. Therefore, it is recommended to follow them sequentially. Basic knowledge of XML and XML
Schema will be advantageous.

Example files
The mapping files illustrated or referenced in these tutorials are available in the BasicTutorials folder . When
you are in doubt about the possible effects of changing the original MapForce examples, create back-ups
before changing them.

List of tutorials
One source to one target
This tutorial shows how to use key MapForce mechanisms to map the nodes of a source file to the nodes
of a target file. The tutorial goes on to explain how to convert an XML file defined by one XML schema to an
XML file defined by a different XML schema.

Multiple sources to one target
This tutorial shows how to merge data from multiple source XML files to one target file.

Chained mappings
In this tutorial , we create a simple mapping as in the second tutorial, then filter the data produced by this
mapping and pass the filtered data to the second target file.

Multiple sources to multiple targets
This tutorial shows how to read data from multiple XML instance files located in the same folder and write
this data to multiple XML files generated on the fly.

19

85

94

99

107

https://www.altova.com/mapforce/demos

© 2018-2024 Altova GmbH

One Source to One Target 85Tutorials

Altova MapForce 2024 Professional Edition

3.1 One Source to One Target

This tutorial describes how to create a mapping for one of the most basic scenarios. Our goal is to transfer data
from XML file A (with XML schema A assigned to it) to XML file B (with XML schema B assigned to it). The
broad outline of our method will be as follows:

1. Since we are using two data structures, we will create two components (Source and Target) in our
mapping design.

2. To transform one document into another, we will select a suitable transformation language .
3. Then we will need to connect source nodes to the desired target nodes. It is these connections that

constitute the mapping and determine what source node maps to what target node.
4. As a result of the mapping, we will get the target XML document that is valid in accordance with the

target schema.
5. Finally, we can save the output XML file.

For more information about how data transformation is carried out, see the abstract model below.

Abstract model
The abstract model below illustrates the data transformation in this tutorial:

Our mapping has one source and one target. The source schema (Books.xsd) describes the structure of the

source instance file (Books.xml). The target schema (Library.xsd) describes the structure of the target

instance file (BooksOutput.xml). When you connect the nodes of the source to the corresponding nodes of the

target, the mapping generates transformation code in XSLT 3.0. The transformation code reads data from
Books.xml and writes this data to BooksOutput.xml.

Source and target files
The code listing below shows sample data from Books.xml that will be used as a data source.

<books>
 <book id="1">
 <author>Mark Twain</author>
 <title>The Adventures of Tom Sawyer</title>
 <category>Fiction</category>
 <year>1876</year>

21

86 Tutorials One Source to One Target

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 </book>
 <book id="2">
 <author>Franz Kafka</author>
 <title>The Metamorphosis</title>
 <category>Fiction</category>
 <year>1912</year>
 </book>
</books>

This is how we want our data to look in the target file called BooksOutput.xml:

<library>
 <last_updated>2015-06-02T16:26:55+02:00</last_updated>
 <publication>
 <id>1</id>
 <author>Mark Twain</author>
 <title>The Adventures of Tom Sawyer</title>
 <genre>Fiction</genre>
 <publish_year>1876</publish_year>
 </publication>
 <publication>
 <id>2</id>
 <author>Franz Kafka</author>
 <title>The Metamorphosis</title>
 <genre>Fiction</genre>
 <publish_year>1912</publish_year>
 </publication>
</library>

Our goal is to populate the elements <author>, <title>, <genre> and <publish_year> of the target file with
the content of the equivalent elements in the source file (<author>, <title>, <category>, <year>). The
attribute id in the source file will be mapped to the <id> element in the target file. Finally, we will populate the
<last_updated> element of the target file with the date and time indicating when the file was last updated.

To carry out the required data transformation, take the steps described in the subsections below.

3.1.1 Create and Save Design

This topic explains how to create a new design, select a transformation language, validate and save your
mapping.

Create a new design
To be able to carry out a transformation, you will need to create a new mapping design, which can be done in
one of the following ways:

· Go to the File menu and click New. Then select Mapping and click OK.

· Click in the toolbar. Then select Mapping and click OK.

© 2018-2024 Altova GmbH

One Source to One Target 87Tutorials

Altova MapForce 2024 Professional Edition

Select a transformation language
Depending on your MapForce edition, different transformation languages are available. For this tutorial, we
have selected XSLT3. You can select this transformation language in one of the following ways:

· Click XSLT3 in the toolbar.
· Open the Output menu and click XSLT 3.0.

Validate and save the design
Validating a mapping is an optional step that enables you to see and correct potential mapping errors and
warnings before you run the mapping. You can validate your mapping at any stage. To check whether the
mapping is valid, do one of the following:

· Click Validate Mapping in the File menu.

· Click in the toolbar.

The Messages window displays the validation results as follows:

To save the mapping, do one of the following:

· Click Save in the File menu.

· Click in the toolbar.

For your convenience, the mapping created in this tutorial is saved as Tut1_OneToOne.mfd.

3.1.2 Add Source Component

At this stage, we want to add an XSD file that will be the structure of the first component and an XML file that
will provide the data for this component. The source file called Books.xsd can be added to the mapping in one

of the following ways:

· Click (Insert XML Schema/File) in the toolbar.
· In the Insert menu, click XML Schema/File.
· Drag Books.xsd from the Windows Explorer into the mapping area.

If you select one of the first two options, the Insert XML Schema File dialog will suggest choosing between a
prepackaged schema or a local or remote file. In our tutorials, all the files are local. For more information about
how to add XML files, see XML and XML Schema .

21

116

88 Tutorials One Source to One Target

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

If a component is created from an XSD file, you will be prompted to supply an XML file that will be used as the
component’s data file. If a component is created from an XML file, the XSD file that is referenced from the XML
file will be used to define the structure of the component’s data. If no reference to an XSD file exists, MapForce
will suggest generating an XSD file for this component.

Since we add the schema file first, MapForce suggests adding a sample XML file. Click Browse and search for
Books.xml that is located in the same folder. Thus, our source file contains both a schema and content.

View the structure
Now that the source file has been added to the mapping area, you can see its structure. In MapForce, this
structure is known as a mapping component or simply a component . You can expand elements in the
component by clicking the icon. Alternatively, you can press the + key on the numeric keypad. The
screnshot below illustrates the source component:

The name of the header (Books) only refers to the name of the component and not the name of the schema this
file is based on. To see the name of the schema and other properties of the component, double-click the
component's header. This will open the Component Settings dialog box.

The top-level node of the component (File: Books.xml) represents the name of the XML instance file. The

XML elements in the structure are represented by the icon. XML attributes are represented by the icon.
The small triangles, displayed on both sides of the component, represent data inputs on the left side and
outputs on the right side. In MapForce, these triangles are called input connectors and output connectors,
respectively.

For more information about components, connections, general procedures and features, see Mapping
Fundamentals .

3.1.3 Add Target Component

The next step is to add a target component and define its settings. Add the target file called Library.xsd to

the mapping. Click Skip when MapForce suggests supplying an instance file. At this stage, the mapping
design looks as follows:

34

117

34

© 2018-2024 Altova GmbH

One Source to One Target 89Tutorials

Altova MapForce 2024 Professional Edition

Note that when you open Library.xsd, it is displayed as an XML file in the component. In fact, MapForce only

creates a reference to the XML file called Library.xml, but this XML file itself does not yet exist. Thus, the

target component has a schema but no content.

Component settings
Now we need to rename the target component BooksOutput. The output file will be called BooksOutput.xml.

This will allow us to avoid confusion in the next tutorials, as we are going to use a separate file called
Library.xml, which has its own content and is based on the same Library.xsd schema. To rename the

target file, double-click the header of the target component. This opens the Component Settings dialog box
(see screenshot below), in which we need to change the names of the target component and target file as
follows:

The mapping design now looks as follows:

117

90 Tutorials One Source to One Target

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

3.1.4 Connect Source and Target

In this step, we will map the data in the source file to the target file. We will also supply information about the
current date and time using the XPath function current-dateTime .

Automatic connections
We will now create a mapping connection between the <book> element in the source component and the
<publication> element in the target component. To do this, press and hold the output connector (the small
triangle) to the right of the <book> element and drag the line to the input connector of the <publication>
element in the target. When you do this, MapForce may automatically connect all the child nodes of <book> in
the source file to the nodes with the same names in the target file. In our example, four connections have been
created simultaneously (see screenshot below). This feature is called Auto Connect Matching Children and
can be disabled and customized if necessary.

You can enable or disable Auto Connect Matching Children in one of the following ways:

672

56

© 2018-2024 Altova GmbH

One Source to One Target 91Tutorials

Altova MapForce 2024 Professional Edition

· Click (Toggle auto connect of children) in the toolbar.
· In the Connection menu, click Auto Connect Matching Children.

Connect mandatory items
Notice that some of the input connectors in the target component have been highlighted by MapForce in
orange, which indicates that these items are mandatory. They are mandatory, because they were set in such a
way in the the file's schema. To ensure the validity of the target XML file, provide values for the mandatory items
as follows:

· Connect the <category> element in the source with the <genre> element in the target component.
· Connect the <year> element in the source with the <publish_year> element in the target component.

Add the current date and time
Finally, you need to supply a value for the <last_updated> element. If you hover over its input connector, you

can see that the element is of type xs:dateTime (see screenshot below). To be able to see tips, press the

toolbar button. By clicking (Show Data Types) in the toolbar, you can also make the data type of each
item visible at all times.

You can get the current date and time by means of the current-dateTime function. To find this function, type

it in the text box located at the bottom of the Libraries window (see screenshot below). Alternatively, double-
click an empty area inside the Mapping pane and start typing current-date.

25

92 Tutorials One Source to One Target

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

To add the function to the mapping, drag the function into the Mapping pane. Then connect its output to the
input of the <last_updated> element (see screenshot below).

You can now validate and save your mapping, as shown in Create and Save Design .

3.1.5 Preview Mapping Result

MapForce uses its built-in engines to generate the output and allows previewing the result of the mapping
directly in the Output pane (see screenshot below).

86

© 2018-2024 Altova GmbH

One Source to One Target 93Tutorials

Altova MapForce 2024 Professional Edition

Save output
By default, the files displayed in the Output pane are not saved to disk. Instead, MapForce creates temporary
files. To save the output, open the Output pane and select the menu command Output | Save Output File or

click (Save generated output) in the toolbar.

To configure MapForce to write the output directly to final files instead of temporary ones, go to Tools |
Options | General and select the check box Write directly to final output files. Note that enabling this option is
not recommended while you follow this tutorial, because you may unintentionally overwrite the original tutorial
files.

Preview generated code
You can also preview the generated XSLT code that performs the transformation. To preview the code, open the
XSLT3 pane located at the bottom of the Mapping window. To generate the XSLT3 code and save it to a file,
select the menu item File | Generate Code in | XSLT 3.0. When prompted, select a folder where the
generated code must be saved. After the code generation has been completed, the destination folder will
include the following two files:

1. An XSLT transformation file, named after the target schema. This transformation file has the following
format: MappingMapTo<TargetFileName>.xslt.

2. A DoTransform.bat file, which enables you to run the XSLT transformation with Altova RaptorXML

Server from the command line. In order to run the command, you will need to install RaptorXML.

https://www.altova.com/raptorxml.html
https://www.altova.com/raptorxml.html

94 Tutorials Multiple Sources to One Target

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

3.2 Multiple Sources to One Target

In this tutorial, you will learn to merge the data from a new file called Library.xml with the data from

Books.xml. The result will be a target file called MergedLibrary.xml, which will contain the data from both

source files. The target file will be based on the Library.xsd schema. Note that the source files have different

schemas. If the source files had the same schema, you could also merge their data using a different approach,
described in Multiple Sources to Multiple Targets . The image below represents an abstract model of the
data transformation described in this tutorial.

The code listing below shows an extract from Books.xml that will be used as the first data source.

<books>
 <book id="1">
 <author>Mark Twain</author>
 <title>The Adventures of Tom Sawyer</title>
 <category>Fiction</category>
 <year>1876</year>
 </book>
</books>

The code listing below shows an extract from Library.xml that will be used as the second data source:

<library>
 <publication>
 <id>5</id>
 <author>Alexandre Dumas</author>
 <title>The Three Musketeers</title>
 <genre>Fiction</genre>
 <publish_year>1844</publish_year>
 </publication>
</library>

This is how we want our merged data to look in the target file called MergedLibrary.xml:

107

© 2018-2024 Altova GmbH

Multiple Sources to One Target 95Tutorials

Altova MapForce 2024 Professional Edition

<library>
 <publication>
 <id>1</id>
 <author>Mark Twain</author>
 <title>The Adventures of Tom Sawyer</title>
 <genre>Fiction</genre>
 <publish_year>1876</publish_year>
 </publication>
 <publication>
 <id>5</id>
 <author>Alexandre Dumas</author>
 <title>The Three Musketeers</title>
 <genre>Fiction</genre>
 <publish_year>1844</publish_year>
 </publication>
</library>

To carry out the transformation, take the steps described in the subsections below.

3.2.1 Prepare Mapping Design

The starting point of this tutorial is the Tut1_OneToOne.mfd mapping (screenshot below) that was designed in

Tutorial 1 . Before making any changes to the mapping, make sure to save this design with a new name in
the BasicTutorials folder.

3.2.2 Add Second Source

The next step is to add the second source file: Insert Library.xml into the mapping. Since the schema

(Library.xsd) is referenced in this XML file, you do not need to add the schema file in a separate step. To

check whether the schema reference is correct, open the Component Settings .

85

117

96 Tutorials Multiple Sources to One Target

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Then press and hold the header of the new component and place it under the Books component. You can
always move components in any direction. Nevertheless, placing a source component to the left of a target
component will make your mapping easier to read and understand. This is also the convention for all the
mappings illustrated in this documentation and the sample mapping files accompanying your MapForce
installation.

At this stage, the mapping design looks as follows:

3.2.3 Configure Output

At his stage, the mapping has two source components (Books and Library) and one target component
(BooksOutput). For consistency and to avoid confusion, we will need to change the settings of the BookOutput
component. Double-click the header of the target component. This will open the Component Settings dialog
box . Configure the settings as shown below.

117

© 2018-2024 Altova GmbH

Multiple Sources to One Target 97Tutorials

Altova MapForce 2024 Professional Edition

3.2.4 Connect Second Source and Target

The last step of the tutorial is to connect the second source component (Library) with the target component
(MergedLibrary). In order to do this, connect the <publication> element in Library.xml with the

<publication> element in MergedLibrary.xml. Since the target input connector already has a connection,

MapForce will prompt you to replace the connection or to duplicate the input. In this tutorial, our goal is to map
data from two sources to one target. Therefore, click Duplicate Input. By doing so, you configure the target
component in such a way that it will accept the data from the second source, too. The mapping now looks as
follows:

98 Tutorials Multiple Sources to One Target

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The screenshot above demonstrates that the publication element in the target component has been
duplicated. The new publication(2) node will accept data from Library.xml. Importantly, even though the

name of this node appears as publication(2) in the mapping, its name in the target XML file will be
publication, which is our goal in this case.

Copy-all connection
Since the child elements of the publication element in the Library component and the publication
element in the MergedLibrary component have the same names and data types, these elements are
connected with one thick line. Such a connection is called a copy-all connection , which makes the mapping
easier to understand.

Preview the output
Open the Output pane to view the result. You will notice that the data from both Books.xml and Library.xml

has now been merged into the new MergedLibrary.xml file. For your convenience, the mapping design in this

tutorial is saved as Tut2_MultipleToOne.mfd. This mapping will be used as a starting point in the next

tutorial .

58

99

© 2018-2024 Altova GmbH

Chained Mapping 99Tutorials

Altova MapForce 2024 Professional Edition

3.3 Chained Mapping

Altova website: Chained Mapping Video Tutorial

This tutorial shows how to work with multiple target components. The goal of the tutorial is to merge data from
two source files into one target file, then filter the data of this target file, and pass the filtered data to the second
target file. The image below illustrates an abstract model of the data transformation described in this tutorial.

In the diagram above, the data is first merged from two source files (Books.xml and Library.xml) into one

target file called MergedLibrary.xml. Then the data is transformed with a filtering function and passed further

to the next component called FilteredLibrary.xml. Note that FilteredLibrary.xml is based on the

Library.xsd schema. The intermediate component acts both as a data target and source. In MapForce, this

technique is known as a chained mapping. Chained mappings allow previewing and saving the intermediate
result(s) of the mapping (in our case, MergedLibrary.xml) and the result of the last target component (in our

case, FilteredLibrary.xml).

To carry out the transformation, take the steps described in the subsections below.

For another example of a chained mapping, see the video tutorial linked at the top of the page.

3.3.1 Prepare Mapping Design

The starting point of this tutorial is Tut2_MultipleToOne.mfd (see screenshot below). This mapping was

designed in the previous tutorial . Before making any changes to the mapping, make sure to save this design
with a new name in the BasicTutorials folder.

94

https://www.altova.com/mapforce/demos#chained-mapping

100 Tutorials Chained Mapping

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

3.3.2 Configure Second Target

The next step is to add and configure the second target file, which will contain only a subset of the
publication data from MergedLibrary.xml.

Add the second target component
Add Library.xsd to the mapping and click Skip when you are prompted to supply a sample instance file. The

second target component has only structure but no content. At a later stage, we will map the filtered data to
this target file. The mapping design now looks as follows:

© 2018-2024 Altova GmbH

Chained Mapping 101Tutorials

Altova MapForce 2024 Professional Edition

Configure the second target component
As shown above, the mapping now has two source components (Books and Library) and two target
components (MergedLibrary and Library). To avoid confusion, we will rename the newly added component
FilteredLibrary. To do this, double-click the header of the right-most component and edit the component
settings as follows:117

102 Tutorials Chained Mapping

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

3.3.3 Connect Targets

The next step is to map the publication element in MergedLibrary to the publication element in
FilteredLibrary. When you connect the output connector of MergedLibrary with the input connector of
FilteredLibrary, MapForce will inform you that you have created multiple target components in the mapping.

Notice that new buttons are now available in the upper-right corner of both target components: (Preview)

and (Pass-through). These buttons will be used and explained in the next steps.

3.3.4 Filter Data

In this step, we will filter the data from MergedLibrary in such a way that only the books published after 1900
will be passed to the FilteredLibrary component. We will use a Filter component for this purpose.

Add a filter
To add a filter, right-click the connection between MergedLibrary and FilteredLibrary and select Insert
Filter: Nodes/Rows from the context menu (screenshot below).

© 2018-2024 Altova GmbH

Chained Mapping 103Tutorials

Altova MapForce 2024 Professional Edition

The filter component has now been added to the mapping (screenshot below).

In the screenshot above, the bool input connector is highlighted in orange, which means that this input is
mandatory. If you hover over the connector, you will see that an input of type xs:boolean is required (see

screenshot below). To see tips, click (Show tips) in the toolbar.

104 Tutorials Chained Mapping

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Only books after 1900
The filter component requires a condition that returns true or false. When the Boolean condition returns true,
the data of the current publication sequence will be copied to the target. When the condition returns false,
the data will not be copied. In this tutorial, the required condition is to map only the books that were published
after 1900. To create the condition, do the following:

1. Click Constant in the toolbar and type 1900 in the text bar. Select Number as a type.
2. Add the greater function to the mapping.

3. Make the mapping connections to and from the greater function, as shown below. The greater

function will compare the value of the publish_year element of each publication with the value of the
constant. Only those publication records whose publication year is greater than 1900 will be mapped to
the target.

© 2018-2024 Altova GmbH

Chained Mapping 105Tutorials

Altova MapForce 2024 Professional Edition

3.3.5 Preview and Save Output

We are now ready to preview and save the output of each target component. When there are multiple target

components in the same mapping, each target component has a (Preview) button. Only one component
at a time can have the preview enabled. Using the Preview buttons, you can see the intermediate mapping
result (in our example, the data mapped to the MergedLibrary component) as well as the final result of the
chained mapping (the data mapped to the FilteredLibrary component). The MergedLibrary component also

has a (Pass-through) button. The Pass-through button controls how output will be generated (see details
below).

Preview and save intermediate and final outputs
If you want to view and save the outputs of both the MergedLibrary and FilteredLibrary components, take
the steps below:

1. Press the Pass-through button in the MergedLibrary component.
2. Make sure the Preview button of the FilteredLibrary component is also pressed.
3. Open the Output pane. The Back and Forward buttons enable you to switch between the outputs.
4. Switch to the output you wish to save to a file and click Save Output File in the toolbar. If you wish to

save both outputs, click the Save All Generated Outputs button in the toolbar.

When the pass-through feature is active, the Input XML File field of the intermediate component is
automatically deactivated. This is because the output generated when you preview the first portion of the
mapping between the sources (Books and Library) and the first target (MergedLibrary) is used by default as
input when you preview the second portion of the mapping between the first target (MergedLibrary) and the
second target (FilteredLibrary).

Preview and save intermediate output
Intermediate components with the pass-through button active cannot be previewed. The preview button of the
intermediate component is automatically disabled, because it is not meaningful to preview and let data pass
through at the same time. If you want to view and save the output of the intermediate component
(MergedLibrary) only, take the steps below:

1. Deactivate the Pass-though button of the MergedLibrary component if the button was previously
enabled.

2. Click the Preview button on the MergedLibrary component.
3. Open the Output pane.
4. Click the Save Output File button in the toolbar to save the output to a file.

Preview and save final output
If you want to view and save only the data mapped from the intermediate component to the second target
component, follow the instructions below.

1. Deactivate the Pass-though button of the MergedLibrary component if the button was previously
enabled.

2. Double-click the header of the MergedLibrary component.
3. Make sure to supply the same file name in the Input XML File field as in the Output XML File field

(screenshot below). When you disable the Pass-through button, you can choose what input file should
be read by the intermediate component. In most cases, this should be the same file as defined in the
Output XML File field. It usually makes sense for the intermediate component to receive one file for
processing and forward the same file to the subsequent mapping rather than look for a different file
name.

106 Tutorials Chained Mapping

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Having the same input and output file for the intermediate component is important when the Pass-
through button of the intermediate component is deactivated. This ensures that the output generated
when you preview the first portion of the mapping between the sources (Books and Library) and the
first target (MergedLibrary) is used as input when you preview the second portion of the mapping
between the first target (MergedLibrary) and the second target (FilteredLibrary). If you execute
your mapping with MapForce Server (Professional and Enterprise editions) or via generated code, the
same names of the input and output files of the intermediate component ensure that the mapping chain
is not broken. Note that not having the same input and output file names in the intermediate
component (when the Pass-through button is inactive) might cause errors in MapForce, generated
code, and MapForce Server execution.

4. Press the Preview button of the FilteredLibrary component.
5. Open the Output pane.
6. Click the Save Output File button in the toolbar to save the output to a file.

Important

· The pass-through feature is available only for file-based components, such as XML, CSV, and text.
Database components (Professional and Enterprise editions) can be intermediate, but the pass-
through button is not shown.

· When the mapping is executed by MapForce, the setting Write directly to final output file (configured
from Tools | Options | General) determines whether outputs are saved as temporary files or as
physical files. Note that this is only valid when the mapping is previewed directly in MapForce. If this
mapping is executed by MapForce Server or by generated code, actual files will be produced at each
stage of the mapping chain.

You have now finished designing the chained mapping that produces two output files. For your convenience, the
mapping design in this tutorial is saved as Tut3_ChainedMapping.mfd.

1040

© 2018-2024 Altova GmbH

Multiple Sources to Multiple Targets 107Tutorials

Altova MapForce 2024 Professional Edition

3.4 Multiple Sources to Multiple Targets

This tutorial shows you how to map data from multiple source files to multiple target files in the same
transformation. To illustrate this technique, we will create a mapping with the following goals:

1. To read data from multiple XML files located in the same directory. The files are based on the same
source schema.

2. For each source XML file, to generate a new XML target file. The target files will be based on a new
target schema.

The image below illustrates an abstract model of the data transformation used in this tutorial:

Broad outline
The starting point of this tutorial is the Tut1_OneToOne.mfd mapping from the first tutorial (screenshot

below).

85

108 Tutorials Multiple Sources to Multiple Targets

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Modify source component
We will modify the component settings of the source component so that it reads data from multiple source
files: BookTitle1.xml, BookTitle2.xml, and BookTitle3.xml. Each of these files is based on Books.xsd

and stores one book record (see below).

BookTitle1.xml

<?xml version="1.0" encoding="UTF-8"?>
<books xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="Books.xsd">
 <book id="1">
 <author>Mark Twain</author>
 <title>The Adventures of Tom Sawyer</title>
 <category>Fiction</category>
 <year>1876</year>
 </book>
</books>

BookTitle2.xml

<?xml version="1.0" encoding="UTF-8"?>
<books xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="Books.xsd">
 <book id="2">
 <author>Franz Kafka</author>
 <title>The Metamorphosis</title>
 <category>Fiction</category>
 <year>1912</year>
 </book>
</books>

BookTitle3.xml

<?xml version="1.0" encoding="UTF-8"?>
<books xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="Books.xsd">
 <book id="3">
 <author>Herman Melville</author>
 <title>Moby Dick</title>
 <category>Fiction</category>
 <year>1851</year>
 </book>
</books>

Modify target component
We will also configure the target component in such a way that the data will be written to multiple target files.
The target files will be based on the same schema called Library.xsd. The generated target files will be called

Publication1.xml, Publication2.xml, and Publication3.xml (code listings below).

Publication1.xml

<library>
 <publication>
 <id>1</id>
 <author>Mark Twain</author>

© 2018-2024 Altova GmbH

Multiple Sources to Multiple Targets 109Tutorials

Altova MapForce 2024 Professional Edition

 <title>The Adventures of Tom Sawyer</title>
 <genre>Fiction</genre>
 <publish_year>1876</publish_year>
 </publication>
</library>

Publication2.xml

<library>
 <publication>
 <id>2</id>
 <author>Franz Kafka</author>
 <title>The Metamorphosis</title>
 <genre>Fiction</genre>
 <publish_year>1912</publish_year>
 </publication>
</library>

Publication3.xml

<library>
 <publication>
 <id>3</id>
 <author>Herman Melville</author>
 <title>Moby Dick</title>
 <genre>Fiction</genre>
 <publish_year>1851</publish_year>
 </publication>
</library>

To carry out the required data transformation, take the steps described in the subsections below.

3.4.1 Configure Input

The first step is to modify the component settings of the source component. Before changing the component
settings, make sure to save your mapping with a new name in the BasicTutorials folder.

To instruct MapForce to process multiple XML instance files, double-click the component's header and type
BookTitle*.xml in the Input XML File field (screenshot below). The asterisk (*) in the file name instructs

MapForce to use all the files with the BookTitle prefix as mapping inputs. Because the path is relative,
MapForce will look for all BookTitle files in the same directory as the mapping file. You can also enter an
absolute path if necessary.

110 Tutorials Multiple Sources to Multiple Targets

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

3.4.2 Configure Output Part 1

The next step is to create the file name of each output file. For this purpose, we will use the concat function

that joins all the values supplied to it. When these values are joined together, they will create an output file
name (e.g., Publication1.xml). To generate the file names using the concat function, take the steps

described below.

Step 1: Add the concat function
Add the concat function (screenshot below) to the mapping area. By default, this function has two

parameters when it is added to the mapping. In our example, we need three parameters. Click (Add
parameter) inside the function component and add a third parameter to it. Note that clicking (Delete
parameter) deletes a parameter.

Step 2: Insert a constant
The next step is to add a constant. When you are prompted to supply a value, enter publication and leave
the String option unchanged. Connect the constant with value1 of the concat function, as shown in the

screenshot below:

597

90

© 2018-2024 Altova GmbH

Multiple Sources to Multiple Targets 111Tutorials

Altova MapForce 2024 Professional Edition

Step 3: Supply IDs
Connect the id attribute of the source component with value2 of the concat function (screenshot below). The

id attribute of the source XML file supplies a unique identifier value for each file. This helps prevent the files
from being generated with the same name. The connection becomes red when you click on it.

112 Tutorials Multiple Sources to Multiple Targets

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Step 4: Extract the file extension
Add the get-fileext function to the mapping area. Then create a connection from the top node of the

source component (File: BookTitle*.xml) to the filepath parameter of this function (screenshot below).

The next step is to connect the extension parameter of the get-fileext function to value3 of the concat

function. By doing this, you are extracting only the extension part (in this case, .xml) from the source file name

and passing it to the output file name.

3.4.3 Configure Output Part 2

In the second part of the output configuration, we will instruct MapForce to generate output files dynamically,
which means that the every output file will receive its name based on the arguments supplied to the concat

function. In order to do this, we will use dynamic file names (see subsections below). For more information
about dynamic file names, see Processing Multiple Input and Output Files .

Step 1: Set dynamic file names

To instruct MapForce to generate the instance files dynamically, click or next to the File node
of the target component and select Use Dynamic File Names Supplied by Mapping from the context menu
(screenshot below).

541

751

© 2018-2024 Altova GmbH

Multiple Sources to Multiple Targets 113Tutorials

Altova MapForce 2024 Professional Edition

Step 2: Connect concat function and dynamic node
The next step is to connect the result of the concat function with the File: <dynamic> node of the target

component (screenshot below).

Step 3: Check component settings
In the Component Settings, you will notice that the Input XML File and Output XML File text boxes are disabled
and show <File names supplied by the mapping> (screenshot below). This indicates that you have supplied the
instance file names dynamically from the mapping. Therefore, it is no longer possible to define them in the
component settings.

114 Tutorials Multiple Sources to Multiple Targets

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Step 4: Generate output files
You can now run the mapping and see the result as well as the names of the generated files. You can navigate
through the output files using the left and right buttons in the upper left corner of the Output pane or by clicking
a file from the adjacent drop-down list (screenshot below).

For your convenience, the mapping design in this tutorial is saved as Tut4_MultipleToMultiple.mfd.

© 2018-2024 Altova GmbH

 115Structural Components

Altova MapForce 2024 Professional Edition

4 Structural Components

This section provides information about various data formats that you can use as data sources and targets:

· XML and XML Schema
· Databases
· CSV and Text Files

MapForce also enables you to map data to and from binary files (BLOB data). For more information, see the
lang | file functions.

116

149

329

632

116 Structural Components XML and XML Schema

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

4.1 XML and XML Schema

Altova website: XML Mapping

XML is a markup language for text documents. XML Schema defines the structure and constraints of XML
documents. In MapForce, XML files are structural components that can be used as data sources and
targets. For information about basic data transformation scenarios, see Tutorials .

Insert XML schema/file

To insert an XML schema/file, select the menu command Insert | XML Schema/File or the toolbar button.
The dialog box (see screenshot below) will prompt you to choose between a packaged industry-standard
schema and a local or remote schema/instance file. If you choose a packaged schema, you will be prompted
to select an entry point. If the schema you wish to use is not yet installed, you will be redirected to the XML
Schema Manager to download it.

Generate an XML schema
When you add a local or remote XML file without a schema reference, MapForce will suggest generating an
XML schema for you. You will then be prompted to select the directory where the generated schema should be
saved.

When MapForce generates a schema from an XML file, data types for elements/attributes must be inferred from
the XML instance document and may not be exactly what you expect. It is recommended that you check
whether the generated schema is an accurate representation of the instance data.

If elements or attributes in more than one namespace are present, MapForce generates a separate XML
schema for each distinct namespace; therefore, multiple files may be created on the disk.

DTD as a document structure
Starting with MapForce 2006 SP2, namespace-aware DTDs are supported for source and target components.
To make mappings possible, the namespace-URIs are extracted from the DTD xmlns attribute declarations.
However, some DTDs contain xmlns* attribute declarations without namespace URIs (e.g., DTDs used by

36

84

133

https://www.altova.com/mapforce/xml-mapping
https://www.w3.org/TR/xml/
https://www.w3.org/TR/xmlschema11-1/

© 2018-2024 Altova GmbH

XML and XML Schema 117Structural Components

Altova MapForce 2024 Professional Edition

StyleVision). To make such DTDs usable in MapForce, define the xmlns attribute with the namespace URI as
follows:

<!ATTLIST fo:root
 xmlns:fo CDATA #FIXED 'http://www.w3.org/1999/XSL/Format'
 ...
>

Note about enumeration values
For nodes whose data types have enumeration facets, you can create a Value-Map that will have all
enumeration values pre-filled. This makes it easier to process and map enumeration values. For more
information, see Value-Maps .

In this section
The section is organized into the following topics:

· XML Component Settings
· Derived Types
· NULL Values
· Comments and Processing Instructions
· CDATA Sections
· Wildcards: xs:any/xs:anyAttribute
· Custom Namespaces
· XML Schema Manager

4.1.1 XML Component Settings

After you add an XML component to the mapping area, you can configure its settings in the Component
Settings dialog box (see screenshot below). You can open the Component Settings dialog box in one of the
following ways:

· By double-clicking the component header
· By right-clicking the component header and selecting Properties
· By selecting the component in the mapping and clicking Properties in the Component menu

429

117

121

123

127

127

129

131

133

118 Structural Components XML and XML Schema

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The available settings are described in the subsections below.

General settings
Component name

© 2018-2024 Altova GmbH

XML and XML Schema 119Structural Components

Altova MapForce 2024 Professional Edition

The component name is automatically generated when you create a component. However, you can
change the name at any time. The component name can contain spaces and full stops. It may not contain
slashes, backslashes, colons, double quotes, leading and trailing spaces. If you want to change the name
of the component, be aware of the following:

· If you intend to deploy the mapping to FlowForce Server, the component name must be unique.
· It is recommended to use only characters that can be entered at the command line. National

characters may have a different encoding in Windows and at the command line.

Schema File

Specifies the name or path of the XML schema file used by MapForce to validate and map data. To
change the schema file, click Browse and select a new file. To edit the file in Altova XMLSpy, click Edit.

Input XML File

Specifies the XML instance file from which MapForce will read data. This field is meaningful for a source
component and is filled when you first create the component and assign an XML instance file to this
component. In a source component, the instance file name is also used to detect the XML root element
and the referenced schema and to validate against the selected schema. To change the schema file, click
Browse and select a new file. To edit the file in Altova XMLSpy, click Edit.

Output XML File

Specifies the XML instance file to which MapForce will write data. This field is meaningful for a target
component. To change the schema file, click Browse and select a new file. To edit the file in Altova
XMLSpy, click Edit.

Prefix for target namespace

Allows you to enter a prefix for the target namespace. Before assigning the prefix, make sure the target
namespace is defined in the target schema.

Add schema/DTD reference

Adds the path of the referenced XML schema file to the root element of the XML output. The path of the
schema entered in this field is written into the generated target instance file(s) in the
xsi:schemaLocation attribute or into the DOCTYPE declaration if a DTD is used.

MapForce Professional and Enterprise editions: If you generate code in XQuery or C++, adding the DTD
reference is not supported.

Entering a path in this field allows you to define where the schema file referenced by the XML instance file
is to be located. This ensures that the output instance can be validated at the mapping destination when
the mapping is executed. You can enter an http:// address as well as an absolute or relative path in this

field.

Deactivating this option allows you to disconnect the XML instance from the referenced XML schema or
DTD. This may be useful, for example, if you want to send the XML output to someone who does not have
access to the underlying XML schema.

Write XML declaration

https://www.altova.com/xmlspy-xml-editor
https://www.altova.com/xmlspy-xml-editor
https://www.altova.com/xmlspy-xml-editor
https://www.altova.com/xmlspy-xml-editor

120 Structural Components XML and XML Schema

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

By default, the option is enabled, which means that the XML declaration is written to the output. The table
below shows how this feature is supported in MapForce target languages and execution engines.

Target language/Execution engine When output is a file When output is a string

Built-in (Professional and Enterprise
editions)

Yes Yes

MapForce Server (Professional and
Enterprise editions)

Yes Yes

XQuery (Professional and Enterprise
editions), XSLT

Yes No

Code generator (C++, C#, Java)
(Professional and Enterprise editions)

Yes Yes

Add standalone="yes"

Selecting this option inserts the standalone="yes" declaration into the XML declaration of your target
XML file. For more information, see Standalone Document Declaration.

Note the following points:

· When the standalone="yes" option is selected, output generation is compatible with XSLT 1-3,
Built-In, and generated code (C#, Java, C++ MSXML, C+ Xerces). The Built-In transformation
language and generated code are available in Professional and Enterprise editions. For more
information about code generation, see Code Generator .

· There is no support for XML embedded in database fields and Web service requests (Professional
and Enterprise editions).

Cast values to target types

This option allows you to define (i) whether the target XML schema types should be used in the mapping
or (ii) whether all data mapped to the target component should be treated as string values. By default, this
setting is enabled. Deactivating this option allows you to retain the precise formatting of values. For
example, this is useful to satisfy a pattern facet in a schema that requires a specific number of decimal
digits in a numeric value. You can use mapping functions to format the number as a string in the required
format and then map this string to the target.

Note that disabling this option will also disable the detection of invalid values, e.g. writing letters into
numeric fields.

Pretty print output

Reformats the output XML document to give it a structured look. Each child node is offset from its parent
by a single tab character.

Create digital signature (Enterprise Edition)

Allows you to add a digital signature to the XML output instance file. Adding a digital signature is possible
when you select Built-In as a transformation language.

21

894

https://www.w3.org/TR/xml/#sec-rmd

© 2018-2024 Altova GmbH

XML and XML Schema 121Structural Components

Altova MapForce 2024 Professional Edition

Output Encoding
Allows you to specify the following settings of the output instance file:

· Encoding name
· Byte order
· Whether the byte order mark (BOM) character should be included

By default, any new components have the encoding defined in the Default encoding for new components option.
You can access this option from Tools | Options (General section).

If the mapping generates XSLT 1.0/2.0, activating the Byte Order Mark check box does not have any effect, as
these languages do not support Byte Order Marks.

StyleVision Power Stylesheet file
This option allows you to select or create an Altova StyleVision stylesheet file. Such files enable you to output
data from the XML instance file to a variety of formats suitable for reporting, such as HTML, RTF, and others.
See also Using Relative Paths on a Component .

Other settings
Enable input processing optimizations based on min/maxOccurs

This option allows special handling for sequences that are known to contain exactly one item, such as
required attributes or child elements with minOccurs and maxOccurs="1". In this case, the first item of the
sequence is extracted, then the item is directly processed as an atomic value (and not as a sequence).

If the input data is not valid against the schema, an empty sequence might be encountered in a
mapping, which stops the mapping with an error message. To allow the processing of such invalid input,
disable this check box.

Save all file paths relative to MFD file

When this option is enabled, MapForce saves the file paths displayed on the Component Settings dialog
box relative to the location of the MapForce Design (.mfd) file. See also Relative and Absolute Paths .

4.1.2 Derived Types

This topic explains how to use derived types in mappings. Derived types are defined in the W3C XML Schema
Specification (Section 2.5.2). For a brief overview of primitive and derived types, see the Microsoft
documentation. In order to use derived types in a mapping, you must specify the xsi:type attribute in your
XML file (e.g., <Address xsi:type="UK-Address">).

Possible scenario
This subsection describes a possible scenario of using a derived type. For example, we have a company with
two branches: one in the UK and the other in the US. Now we would like to have two lists (UKCustomers and

45

45

https://www.w3.org/TR/xmlschema-2/#:~:text=implement%20this%20specification.-,2.5.2%20Primitive%20vs.%20derived%20datatypes,-Next%2C%20we%20distinguish
https://www.w3.org/TR/xmlschema-2/#:~:text=implement%20this%20specification.-,2.5.2%20Primitive%20vs.%20derived%20datatypes,-Next%2C%20we%20distinguish
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ms761405(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ms761405(v=vs.85)

122 Structural Components XML and XML Schema

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

USCustomers), each of which will include information about the respective branch address and all the
customers associated with this branch.

Definition of derived types
The screenshots below illustrate the definition of derived types called US-Address and UK-Address (XMLSpy
Schema view). The UK-Address and UK-Address elements have the same base type called AddressType that
includes the Name, Street, and City elements. In the US-Address element, the base type has been extended
to include Zip and State, whereas the UK-Address element includes the base type and the Postcode
element. For illustration purposes, we will map only the UK-Address element to the target file.

Derived type in a mapping
The instructions below show how to map data from the derived type. Our goal is to map information about the
UK office to the UKCustomers element. The sample files are available in the Tutorial folder.

1. Go to the Insert menu, click XML Schema/File, and open DerivedTypeSource.xml. This XML file is

based on DerivedTypeSource.xsd.

2. Insert the target file called DerivedTypeTarget.xsd. Note that the target schema does not have to

include the xsi:type attribute.

3. Click the button next to the Address element in the source component. This button indicates that
derived types exist for this element in the schema.

4. The Derived Types dialog box (see screenshot below) allows you to select any derived types available
for this specific element. In our sample mapping, we want only UK-Address to be mapped.

https://www.altova.com/xmlspy-xml-editor

© 2018-2024 Altova GmbH

XML and XML Schema 123Structural Components

Altova MapForce 2024 Professional Edition

5. As soon as you select the check box next to the UK-Address derived type, a new element called
Address xsi:type="UK-Address" appears in the component.

6. Now connect the nodes as shown in the mapping below.

Output
Clicking the Output pane will show the following result:

<UKCustomers>
 <BranchOffice>Sleuth Corp. UK</BranchOffice>
 <Street>222 Baker St</Street>
 <City>London</City>
 <Postcode>NW1 6XE</Postcode>
</UKCustomers>

The sample mapping is saved as Tutorial\DerivedType.mfd. You can also add another source XML file that

includes information about the customers in the UK and map this data to the Customers node in the target
component. This way, the UKCustomers element will include information about the UK address and all the
customers associated with this branch.

4.1.3 NULL Values

This section describes how MapForce handles NULL values in source and target components. To be able to
use the xsi:nil="true" attribute in your XML file, you must specify the nillable="true" attribute for the
relevant element(s) in your schema file. To find out more about the nillable and xsi:nil attributes, see the
W3C Specification. Note that the xsi:nil attribute is not visible in a component's tree in the Mapping pane.

The subsections below describe some of the possible scenarios of mapping NULL values.

https://www.w3.org/TR/xmlschema-1/#nillable
https://www.w3.org/TR/xmlschema-1/#nillable

124 Structural Components XML and XML Schema

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

NULL values in XML components
This subsection discusses some of the possible scenarios of mapping elements with an xsi:nil="true"
attribute.

Only the source element has xsi:nil="true"/Both source and target elements have xsi:nil="true"
This scenario has the following conditions:

· The connection is target-driven .
· The source element has an xsi:nil="true" attribute. The corresponding target element does not

have this attribute.
· Alternatively, both source and target elements can have xsi:nil="true" attributes.
· The nillable="true" attributes must be set in the source and target schemas.
· The source and target element are of simple type.

In this case, the target element will have the xsi:nil="true" attribute in the output file, as shown in the
sample output file below (highlighted in yellow).

<book id="7">
<author>Edgar Allan Poe</author>
<title>The Murders in the Rue Morgue</title>
<category xsi:nil="true"/>
<year>1841</year>
<OrderID id="213"/>

</book>

Note: If the nillable="true" attribute is not set in the target schema, the corresponding target element will
be empty in the output.

Only the target element has xsi:nil="true"
This scenario has the following conditions:

· The connection is target-driven .
· The source element does not have an xsi:nil="true" attribute.
· The corresponding target element has an xsi:nil="true" attribute.
· The source and target elements can be of simple or complex type.

In this case, the source element will overwrite the target element containing the xsi:nil="true" attribute. The
example below shows a sample output file. The <genre> element includes the xsi:nil="true" attribute in the
target element. However, this element has been overwritten at mapping runtime. Therefore, the <genre>
element (highlighted in yellow) has Fiction in the output.

<publication>
<id>1</id>
<author>Mark Twain</author>
<title>The Adventures of Tom Sawyer</title>
<genre>Fiction</genre>
<year>1876</year>
<OrderID id="124"/>

</publication>

Complex-type source element/both complex-type elements have xsi:nil="true"
This scenario has the following conditions:

53

53

© 2018-2024 Altova GmbH

XML and XML Schema 125Structural Components

Altova MapForce 2024 Professional Edition

· The connection is target-driven .
· The source element is of complex type. In our example, the source element has an id="213" attribute

and an xsi:nil="true" attribute. The corresponding target element is also of complex type and has
an id="124" attribute, but does not have an xsi:nil="true" attribute.

· Alternatively, the source and target elements, both of which are of complex type, can have
xsi:nil="true" attributes.

In this case, the source element will overwrite the target element (highlighted in yellow below). However, the
xsi:nil="true" attribute will not be written to the output file automatically. To see the xsi:nil="true"
attribute in the target element in the output file, use a copy-all connection.

<book id="7">
<author>Edgar Allan Poe</author>
<title>The Murders in the Rue Morgue</title>
<year>1841</year>
<OrderID id="213"/>

</book>

Useful functions
The following functions could help you check, replace, and assign NULL values:

· is-xsi-nil : Helps to check explicitly whether a source element has a xsi:nil attribute set to

true.
· substitute-missing : Substitutes a NULL value in the source element with something specific.

· set-xsi-nil : Assigns xsi:nil="true" attribute to a target element. This works for target

elements of simple and complex types.
· substitute-missing-with-xsi-nil : If there is content, it will be written to the target element; if

there are any missing values, using this function will result in a target element with a xsi:nil="true"
attribute in the output.

· Connecting the exists function to a source element with a NULL value returns true even though

the element has no content.

Note that functions which generate xsi:nil cannot be passed through functions or components which only
operate on values (such as the if-else function).

NULL values in database components
This subsection shows how NULL values are treated in database components.

Mapping NULL database fields to NULL elements
Target elements that receive NULL values from database fields are not created in the output automatically. To
see such elements in the output, you need to (i) add nillable="true" attributes to the relevant target
elements in the schema file and (ii) use the substitute-missing-with-xsi-nil function in the mapping.

The example below shows how to handle NULL values in mappings with a source database component.

Applications table in DB Query pane
The sample mapping is located at the following path: Tutorial\DBNullToXML.mfd. For our example, we have

chosen only one table (Application) from the Accounts database (see below).

53

58

559

594

562

563

568

563

126 Structural Components XML and XML Schema

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

To see the Application table, take the steps below:

· Open the DB Query pane.
· Select the Accounts database to see its structure in the Database Browser.
· Right-click the Application table and click Show in SQL Editor | SELECT.

· Click the (Execute Query) button. The Application table will appear in the Results tab.

To find out more about querying databases, see DB Query Pane .

Mapping
The Application table above shows that the second record has NULL values in the Description, Category,
and URL fields. For illustration purposes, we will map almost all the columns directly to the corresponding target
elements. For the URL column, we will use the substitute-missing-with-xsi-nil function so that the NULL

value in the target element has an xsi:nil="true" attribute (see mapping below).

Output
The output file below shows that the first record from the table has been fully written to the output, whereas the
second record has been written only partly. The NULL database values are absent from the output, except for
the URL element. Since the URL element has the nillable="true" attribute in the schema file and we are
using the substitute-missing-with-xsi-nil function, the URL element has now the xsi:nil="true"

attribute in the output (highlighted yellow).

<Application>
<AppID>1</AppID>
<AppName>Altova MapForce</AppName>
<Description>Best data mapping tool!</Description>
<Category>IDE</Category>
<URL>https://www.altova.com/mapforce</URL>

</Application>
<Application>
<AppID>2</AppID>
<AppName>Notepad</AppName>

283

© 2018-2024 Altova GmbH

XML and XML Schema 127Structural Components

Altova MapForce 2024 Professional Edition

<URL xsi:nil="true"/>
</Application>

Mapping NULL elements to NULL database fields
When you map a NULL XML element to a database column, MapForce writes the NULL value to the
corresponding database column. You can also use the set-null function if you want to set a database field

to NULL. To find out more about database-related functions, see the DB library .

4.1.4 Comments and Processing Instructions

This topic explains how to insert comments and processing instructions into target XML components. Note that
comment and processing instruction nodes have only input connections. Comments and processing
instructions cannot be defined for nodes that are part of a copy-all connection . Comments and processing
instructions are defined in the W3C Specification.

Insert a comment/processing instruction
To insert a processing instruction or a comment, take the steps below:

1. Right-click an element in the component and select Add Comment/Processing Instruction
Before/After. When you insert a processing instruction, you will also need to enter its name. In the
example below, a processing instruction called xml-stylesheet has been inserted after the State
element.

3. To supply the value of a comment or a processing instruction, you can use a constant, for example
(see screenshot above).

Note: Multiple processing instructions can be added before or after any element in the target component.

Note: Only one comment can be added before and after a single target node. To create multiple comments,
use the duplicate input function .

Delete a comment/processing instruction
To delete a comment/processing instruction, right-click the respective node, select Comment/Processing
Instruction, then select Delete Comment/Processing Instruction in the context menu.

4.1.5 CDATA Sections

CDATA sections are used to represent parts of a document as character data which would normally be
interpreted as markup. For more information about CDATA sections, see the W3C Specification. Target nodes
receiving data as CDATA sections can be any of the following: XML data, XML data embedded in database

612

611

58

44

https://www.w3.org/TR/xml/#:~:text=%5B%5E%3C%26%5D*%20%2D%20(%5B%5E%3C%26%5D*%20%27%5D%5D%3E%27%20%5B%5E%3C%26%5D*)-,2.5%20Comments,-%5BDefinition%3A%20Comments%20may
https://www.w3.org/TR/xml/#:~:text=within%20processing%20instructions.-,2.7%20CDATA%20Sections,-%5BDefinition%3A%20CDATA%20sections

128 Structural Components XML and XML Schema

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

fields, and XML child elements of typed dimensions in an XBRL target. CDATA sections can also be defined on
duplicate nodes and xsi:type nodes.

To create a CDATA section, right-click the relevant target node and select Write Content as CDATA Section.
A prompt will warn you that the input data should not contain the CDATA section close-delimiter]]>. The [C..

icon appears below the element tag, which indicates that this node is now defined as a CDATA section.

Example
The example below shows a scenario in which a CDATA section might be useful. The sample mapping called
MapForceExamples\HTMLinCDATA.mfd (see screenshot below) has the following aspects:

· The SubSection element has mixed content. For more information about mixed-content nodes, see
Source-Driven Connections .

· With the help of the concat function, the content of the Trademark element will have the tags.

· The content of the Keyword element will have the <i></i> tags.
· The data with the new tags is passed on to the duplicate text() nodes in the same order as in the

source document.
· The output of the MixedContent node is then passed on to the Description node in the ShortInfo

target component. The Description node has been defined as a CDATA section.

Output
Click the Output pane to see the CDATA section in the Description node (screenshot below).

54

© 2018-2024 Altova GmbH

XML and XML Schema 129Structural Components

Altova MapForce 2024 Professional Edition

4.1.6 Wildcards: xs:any/xs:anyAttribute

This topic explains how to deal with wildcards in mappings. The wildcards xs:any and xs:anyAttribute allow
you to use any elements/attributes defined in your schema file. For more information about wildcards, see the
W3C Specification.

Wildcards in schema definition
The screenshot below shows that an xs:any element has been defined as a child element of the Person
element (Schema view in Altova XMLSpy).

Wildcards in MapForce

When a wildcard is defined for an element and/or attribute, this wildcard node will have a (Change
Selection) button next to it (see screenshot below).

https://www.w3.org/TR/xmlschema11-1/#:~:text=one%20attribute%20wildcard.-,3.10.1%20The%20Wildcard%20Schema%20Component,-The%20wildcard%20schema
https://www.w3.org/TR/xmlschema11-1/#:~:text=one%20attribute%20wildcard.-,3.10.1%20The%20Wildcard%20Schema%20Component,-The%20wildcard%20schema
https://www.altova.com/xmlspy-xml-editor

130 Structural Components XML and XML Schema

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Wildcard selection

Now our goal is to add another element as a separate node. Click the button to see the list of elements that
you can add to the tree. Note that only elements and attributes that are globally declared in your schema can
be seen in the Wildcard selections dialog box (see screenshot below).

For our example, we have selected Department. Note that wildcard elements and attributes are inserted after

the node with the button. Now our component looks as follows:

You can now map to/from these nodes as usual. In a component, wildcard elements and attributes are marked
with (xs:any) and (xs:anyAttribute), respectively (see screenshot above).

Remove wildcards

To remove a wildcard node, click the button and clear the corresponding check box in the Wildcard
selections dialog box.

Elements/attributes from a different schema
The Wildcard selections dialog box (see above) allows you to use elements/attributes from a different
schema. Clicking the Import a different schema button will give you the following options: (i) importing a
schema file and (ii) generating a wrapper schema (see description below).

© 2018-2024 Altova GmbH

XML and XML Schema 131Structural Components

Altova MapForce 2024 Professional Edition

Import schema
The Import schema option imports the external schema into the current schema assigned to the component.
Note that this option overrides the existing schema on the disk. If the current schema is a remote schema that
has been opened from a URL (see Adding Components from a URL) and not from the disk, the schema
cannot be modified. In this case, use the Generate wrapper schema option.

Generate wrapper schema
The Generate wrapper schema option creates a new schema file called wrapper schema. The advantage of
using this option is that the existing schema of the component is not modified. Instead, a new schema will be
created which will include both the existing schema and the imported schema. When you select this option,
you are prompted to choose where the wrapper schema should be saved. By default, the wrapper schema has
the following format: somefile-wrapper.xsd.

After you save the wrapper schema, it is by default automatically assigned to the component. MapForce will
also ask you whether you want to adjust the schema location so that you can reference the previous main
schema. Click Yes to revert to the previous schema; otherwise, click No to have the newly created wrapper
schema assigned to the component.

Wildcards vs. dynamic node names
There are situations in which elements and/or attributes in an instance are too many to be declared in the
schema. Consider the following sample file:

<?xml version="1.0" encoding="UTF-8"?>
<message>
 <line1>1</line1>
 <line2>2</line2>
 <line3>3</line3>

 <line999></line999>
</message>

For such situations, it is recommended to use dynamic node names instead of wildcards. For more
information, see Mapping Node Names .

4.1.7 Custom Namespaces

When a mapping produces XML output, MapForce automatically derives the namespace (or set of
namespaces) of each element and attribute from the target schema. This is the default behavior that is suitable
for most scenarios of XML output generation. However, there are cases in which you may want to manually
declare the namespace of an element directly from the mapping.

Declaring custom namespaces is meaningful only for target XML components and applies to elements only.
The Add Namespace command is not available for attributes, wildcard nodes, and for nodes which receive
data from a copy-all connection .

To understand how custom namespaces work, follow the instructions in the subsection below.

40

731

58

132 Structural Components XML and XML Schema

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Declare namespace manually
For this example, you will need the following mapping: BasicTutorials\Tut1-OneToOne.mfd.

Add a namespace
Open the mapping, right-click the library node in the BooksOutput component, and select Add Namespace
from the context menu. Now two new nodes are available under the library element: namespace and prefix
(see screenshot below).

Supply namespace values
The next step is to supply values to the namespace and prefix nodes. In order to do it, we will use two
constants with the following string values: altova.library and lib (see screenshot below).

Note: Both the namespace and prefix input connectors must be mapped even if you provide empty values to
them.

© 2018-2024 Altova GmbH

XML and XML Schema 133Structural Components

Altova MapForce 2024 Professional Edition

Output
In the generated output, an xmlns:<prefix>="<namespace>" attribute is added to the element, where
<prefix> and <namespace> are values that are supplied by the mapping. The output will now look as follows
(note the highlighted part):

<?xml version="1.0" encoding="UTF-8"?>
<library xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:lib="altova.library" xsi:noNamespaceSchemaLocation="Library.xsd">
...

You can also declare multiple namespaces for the same element, if necessary. To do this, right-click the node
again and select Add Namespace from the context menu. A new pair of namespace and prefix nodes become
available, to which you can connect new prefix and namespace values.

Declare a default namespace
If you want to declare a default namespace, map an empty string value to prefix. The output would then looks
as follows (note the highlighted part):

<?xml version="1.0" encoding="UTF-8"?>
<library xmlns="altova.library" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:noNamespaceSchemaLocation="Library.xsd">
...

If you need to create prefixes for attribute names, for example <number prod:id="prod557">557</number>,
you can achieve this by using dynamic access to a node's attributes (see Mapping Node Names) or by
editing the schema so that it has a prod:id attribute for <number>.

Remove a namespace
To remove a previously added namespace declaration, right-click the ns:namespace node and select Remove
Namespace from the context menu.

4.1.8 Schema Manager

XML Schema Manager is an Altova tool that provides a centralized way to install and manage XML schemas
(DTDs for XML and XML Schemas) for use across all Altova's XML-Schema-aware applications, including
MapForce.

· On Windows, Schema Manager has a graphical user interface (screenshot below) and is also available
at the command line. (Altova's desktop applications are available on Windows only; see list below.)

· On Linux and macOS, Schema Manager is available at the command line only. (Altova's server
applications are available on Windows, Linux, and macOS; see list below.)

731

134 Structural Components XML and XML Schema

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Altova applications that operate with Schema Manager

Desktop applications (Windows only) Server applications (Windows, Linux, macOS)

XMLSpy (all editions) RaptorXML Server, RaptorXML+XBRL Server

© 2018-2024 Altova GmbH

XML and XML Schema 135Structural Components

Altova MapForce 2024 Professional Edition

MapForce (all editions) StyleVision Server

StyleVision (all editions)

Authentic Desktop Enterprise Edition

Installation and de-installation of Schema Manager
Schema Manager is installed automatically when you first install a new version of Altova Mission Kit or of any
of Altova's XML-schema-aware applications (see table above).

Likewise, it is removed automatically when you uninstall the last Altova XML-schema-aware application from
your computer.

Schema Manager features
Schema Manager provides the following features:

· Shows XML schemas installed on your computer and checks whether new versions are available for
download.

· Downloads newer versions of XML schemas independently of the Altova product release cycle. (Altova
stores schemas online, and you can download them via Schema Manager.)

· Install or uninstall any of the multiple versions of a given schema (or all versions if necessary).
· An XML schema may have dependencies on other schemas. When you install or uninstall a particular

schema, Schema Manager informs you about dependent schemas and will automatically install or
remove them as well.

· Schema Manager uses the XML catalog mechanism to map schema references to local files. In the
case of large XML schemas, processing will therefore be faster than if the schemas were at a remote
location.

· All major schemas are available via Schema Manager and are regularly updated for the latest versions.
This provides you with a convenient single resource for managing all your schemas and making them
readily available to all of Altova's XML-schema-aware applications.

· Changes made in Schema Manager take effect for all Altova products installed on that machine.
· In an Altova product, if you attempt to validate on a schema that is not installed but which is available

via Schema Manager, then installation is triggered automatically. However, if the schema package
contains namespace mappings, then there will be no automatic installation; in this case, you must
start Schema Manager, select the package/s you want to install, and run the installation. If, after
installation, your open Altova application does not restart automatically, then you must restart it
manually.

How it works
Altova stores all XML schemas used in Altova products online. This repository is updated when new versions of
the schemas are released. Schema Manager displays information about the latest available schemas when
invoked in both its GUI form as well as on the CLI. You can then install, upgrade or uninstall schemas via
Schema Manager.

Schema Manager also installs schemas in one other way. At the Altova website
(https://www.altova.com/schema-manager) you can select a schema and its dependent schemas that you want
to install. The website will prepare a file of type .altova_xmlschemas for download that contains information

about your schema selection. When you double-click this file or pass it to Schema Manager via the CLI as an
argument of the install command, Schema Manager will install the schemas you selected.144

https://www.oasis-open.org/committees/entity/spec-2001-08-06.html
https://www.altova.com/schema-manager

136 Structural Components XML and XML Schema

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Local cache: track ing your schemas
All information about installed schemas is tracked in a centralized cache directory on your computer, located
here:

Windows C:\ProgramData\Altova\pkgs\.cache

Linux /var/opt/Altova/pkgs\.cache

macOS /var/Altova/pkgs

This cache directory is updated regularly with the latest status of schemas at Altova's online storage. These
updates are carried out at the following times:

· Every time you start Schema Manager.
· When you start MapForce for the first time on a given calendar day.
· If MapForce is open for more than 24 hours, the cache is updated every 24 hours.
· You can also update the cache by running the update command at the command line interface.

The cache therefore enables Schema Manager to continuously track your installed schemas against the
schemas available online at the Altova website.

Do not modify the cache manually!
The local cache directory is maintained automatically based on the schemas you install and uninstall. It
should not be altered or deleted manually. If you ever need to reset Schema Manager to its original
"pristine" state, then, on the command line interface (CLI): (i) run the reset command, and (ii) run the
initialize command. (Alternatively, run the reset command with the --i option.)

4.1.8.1 Run Schema Manager

Graphical User Interface
You can access the GUI of Schema Manager in any of the following ways:

· During the installation of MapForce: Towards the end of the installation procedure, select the check
box Invoke Altova XML-Schema Manager to access the Schema Manager GUI straight away. This will
enable you to install schemas during the installation process of your Altova application.

· After the installation of MapForce: After your application has been installed, you can access the
Schema Manager GUI at any time, via the menu command Tools | XML Schema Manager.

· Via the .altova_xmlschemas file downloaded from the Altova website: Double-click the downloaded file

to run the Schema Manager GUI, which will be set up to install the schemas you selected (at the
website) for installation.

After the Schema Manager GUI (screenshot below) has been opened, already installed schemas will be shown
selected. If you want to install an additional schema, select it. If you want to uninstall an already installed
schema, deselect it. After you have made your selections and/or deselections, you are ready to apply your
changes. The schemas that will be installed or uninstalled will be highlighted and a message about the

147

145

143

https://www.altova.com/schema-manager

© 2018-2024 Altova GmbH

XML and XML Schema 137Structural Components

Altova MapForce 2024 Professional Edition

upcoming changes will be posted to the Messages pane at the bottom of the Schema Manager window (see
screenshot).

138 Structural Components XML and XML Schema

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Command line interface
You can run Schema Manager from a command line interface by sending commands to its executable file,
xmlschemamanager.exe.

The xmlschemamanager.exe file is located in the following folder:

· On Windows: C:\ProgramData\Altova\SharedBetweenVersions
· On Linux or macOS (server applications only): %INSTALLDIR%/bin, where %INSTALLDIR% is the

program's installation directory.

You can then use any of the commands listed in the CLI command reference section .

To display help for the commands, run the following:

· On Windows: xmlschemamanager.exe --help
· On Linux or macOS (server applications only): sudo ./xmlschemamanager --help

4.1.8.2 Status Categories

Schema Manager categorizes the schemas under its management as follows:

· Installed schemas. These are shown in the GUI with their check boxes selected (in the screenshot
below the checked and blue versions of the EPUB and HL7v3 NE schemas are installed schemas). If
all the versions of a schema are selected, then the selection mark is a tick. If at least one version is
unselected, then the selection mark is a solid colored square. You can deselect an installed schema
to uninstall it; (in the screenshot below, the DocBook DTD is installed and has been deselected,
thereby preparing it for de-installation).

· Uninstalled available schemas. These are shown in the GUI with their check boxes unselected. You
can select the schemas you want to install.

142

© 2018-2024 Altova GmbH

XML and XML Schema 139Structural Components

Altova MapForce 2024 Professional Edition

· Upgradeable schemas are those which have been revised by their issuers since they were installed.

They are indicated in the GUI by a icon. You can patch an installed schema with an available
revision.

Points to note

· In the screenshot above, both CBCR schemas are checked. The one with the blue background is
already installed. The one with the yellow background is uninstalled and has been selected for
installation. Note that the HL7v3 NE 2010 schema is not installed and has not been selected for
installation.

· A yellow background means that the schema will be modified in some way when the Apply button is
clicked. If a schema is unchecked and has a yellow background, it means that it will be uninstalled
when the Apply button is clicked. In the screenshot above the DocBook DTD has such a status.

· When running Schema Manager from the command line, the list command is used with different
options to list different categories of schemas:

xmlschemamanager.exe list Lists all installed and available schemas; upgradeables are also
indicated

xmlschemamanager.exe list

-i
Lists installed schemas only; upgradeables are also indicated

xmlschemamanager.exe list

-u
Lists upgradeable schemas

144

140 Structural Components XML and XML Schema

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Note: On Linux and macOS, use sudo ./xmlschemamanager list

4.1.8.3 Patch or Install a Schema

Patch an installed schema
Occasionally, XML schemas may receive patches (upgrades or revisions) from their issuers. When Schema
Manager detects that patches are available, these are indicated in the schema listings of Schema Manager and
you can install the patches quickly.

In the GUI

Patches are indicated by the icon. (Also see the previous topic about status categories .) If patches are
available, the Patch Selection button will be enabled. Click it to select and prepare all patches for installation.

In the GUI, the icon of each schema that will be patched changes from to , and the Messages pane at
the bottom of the dialog lists the patches that will be applied. When you are ready to install the selected
patches, click Apply. All patches will be applied together. Note that if you deselect a schema marked for
patching, you will actually be uninstalling that schema.

On the CLI
To apply a patch at the command line interface:

1. Run the list -u command. This lists any schemas for which upgrades are available.
2. Run the upgrade command to install all the patches.

Install an available schema
You can install schemas using either the Schema Manager GUI or by sending Schema Manager the install
instructions via the command line.

Note: If the current schema references other schemas, the referenced schemas are also installed.

In the GUI
To install schemas using the Schema Manager GUI, select the schemas you want to install and click Apply.

You can also select the schemas you want to install at the Altova website and generate a downloadable
.altova_xmlschemas file. When you double-click this file, it will open Schema Manager with the schemas you

wanted pre-selected. All you will now have to do is click Apply.

On the CLI
To install schemas via the command line, run the install command:

xmlschemamanager.exe install [options] Schema+

where Schema is the schema (or schemas) you want to install or a .altova_xmlschemas file. A schema is

referenced by an identifier of format <name>-<version>. (The identifiers of schemas are displayed when

you run the list command.) You can enter as many schemas as you like. For details, see the
description of the install command.

138

144

147

144

144

144

https://www.altova.com/schema-manager

© 2018-2024 Altova GmbH

XML and XML Schema 141Structural Components

Altova MapForce 2024 Professional Edition

Note: On Linux or macOS, use the sudo ./xmlschemamanager command.

Installing a required schema
When you run an XML-schema-related command in MapForce and MapForce discovers that a schema it needs
for executing the command is not present or is incomplete, Schema Manager will display information about the
missing schema/s. You can then directly install any missing schema via Schema Manager.

In the Schema Manager GUI, you can view all previously installed schemas at any time by running Schema
Manager from Tools | Schema Manager.

4.1.8.4 Uninstall a Schema, Reset

Uninstall a schema
You can uninstall schemas using either the Schema Manager GUI or by sending Schema Manager the
uninstall instructions via the command line.

Note: If the schema you want to uninstall references other schemas, then the referenced schemas are also
uninstalled.

In the GUI
To uninstall schemas in the Schema Manager GUI, clear their check boxes and click Apply. The selected
schemas and their referenced schemas will be uninstalled.

To uninstall all schemas, click Deselect All and click Apply.

On the CLI
To uninstall schemas via the command line, run the uninstall command:

xmlschemamanager.exe uninstall [options] Schema+

where each Schema argument is a schema you want to uninstall or a .altova_xmlschemas file. A schema

is specified by an identifier that has a format of <name>-<version>. (The identifiers of schemas are

displayed when you run the list command.) You can enter as many schemas as you like. For details,
see the description of the uninstall command.

Note: On Linux or macOS, use the sudo ./xmlschemamanager command.

Reset Schema Manager
You can reset Schema Manager. This removes all installed schemas and the cache directory.

· In the GUI, click Reset Selection.
· On the CLI, run the reset command.

146

144

146

145

142 Structural Components XML and XML Schema

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

After running this command, make sure to run the initialize command in order to recreate the cache
directory. Alternatively, run the reset command with the -i option.

Note that reset -i restores the original installation of the product, so it is recommended to run the
update command after performing a reset. Alternatively, run the reset command with the -i and -u
options.

4.1.8.5 Command Line Interface (CLI)

To call Schema Manager at the command line, you need to know the path of the executable. By default, the
Schema Manager executable is installed here:

C:\ProgramData\Altova\SharedBetweenVersions\XMLSchemaManager.exe

Note: On Linux and macOS systems, once you have changed the directory to that containing the
executable, you can call the executable with sudo ./xmlschemamanager. The prefix ./ indicates that

the executable is in the current directory. The prefix sudo indicates that the command must be run with

root privileges.

Command line syntax
The general syntax for using the command line is as follows:

<exec> -h | --help | --version | <command> [options] [arguments]

In the listing above, the vertical bar | separates a set of mutually exclusive items. The square brackets []

indicate optional items. Essentially, you can type the executable path followed by either --h, --help, or --
version options, or by a command. Each command may have options and arguments. The list of commands
is described in the following sections.

4.1.8.5.1 help

This command provides contextual help about commands pertaining to Schema Manager executable.

Syntax
<exec> help [command]

Where [command] is an optional argument which specifies any valid command name.

Note the following:

· You can invoke help for a command by typing the command followed by -h or --help, for example:

<exec> list -h

· If you type -h or --help directly after the executable and before a command, you will get general help

(not help for the command), for example: <exec> -h list

143

145

145

147 145

© 2018-2024 Altova GmbH

XML and XML Schema 143Structural Components

Altova MapForce 2024 Professional Edition

Example
The following command displays help about the list command:

xmlschemamanager help list

4.1.8.5.2 info

This command displays detailed information for each of the schemas supplied as a Schema argument. This
information for each submitted schema includes the title, version, description, publisher, and any referenced
schemas, as well as whether the schema has been installed or not.

Syntax
<exec> info [options] Schema+

· The Schema argument is the name of a schema or a part of a schema's name. (To display a schema's

package ID and detailed information about its installation status, you should use the list
command.)

· Use <exec> info -h to display help for the command.

Example
The following command displays information about the latest DocBook-DTD and NITF schemas:

xmlschemamanager info doc nitf

4.1.8.5.3 initialize

This command initializes the Schema Manager environment. It creates a cache directory where information
about all schemas is stored. Initialization is performed automatically the first time a schema-cognizant Altova
application is installed. You would not need to run this command under normal circumstances, but you would
typically need to run it after executing the reset command.

Syntax
<exec> initialize | init [options]

Options
The initialize command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

144

144 Structural Components XML and XML Schema

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Example
The following command initializes Schema Manager:

xmlschemamanager initialize

4.1.8.5.4 install

This command installs one or more schemas.

Syntax
<exec> install [options] Schema+

To install multiple schemas, add the Schema argument multiple times.

The Schema argument is one of the following:

· A schema identifier (having a format of <name>-<version>, for example: cbcr-2.0). To find out the

schema identifiers of the schemas you want, run the list command. You can also use an
abbreviated identifier if it is unique, for example docbook. If you use an abbreviated identifier, then the

latest version of that schema will be installed.
· The path to a .altova_xmlschemas file downloaded from the Altova website. For information about

these files, see Introduction to SchemaManager: How It Works .

Options
The install command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Example
The following command installs the CBCR 2.0 (Country-By-Country Reporting) schema and the latest DocBook
DTD:

xmlschemamanager install cbcr-2.0 docbook

4.1.8.5.5 list

This command lists schemas under the management of Schema Manager. The list displays one of the
following

144

133

© 2018-2024 Altova GmbH

XML and XML Schema 145Structural Components

Altova MapForce 2024 Professional Edition

· All available schemas
· Schemas containing in their name the string submitted as a Schema argument

· Only installed schemas
· Only schemas that can be upgraded

Syntax
<exec> list | ls [options] Schema?

If no Schema argument is submitted, then all available schemas are listed. Otherwise, schemas are listed as

specified by the submitted options (see example below). Note that you can submit the Schema argument

multiple times.

Options
The list command takes the following options:

--installed, --i List only installed schemas. The default is false.

--upgradeable, --u List only schemas where upgrades (patches) are available. The default is
false.

--help, --h Display help for the command.

Examples

· To list all available schemas, run: xmlschemamanager list

· To list installed schemas only, run: xmlschemamanager list -i

· To list schemas that contain either "doc" or "nitf" in their name, run: xmlschemamanager list doc

nitf

4.1.8.5.6 reset

This command removes all installed schemas and the cache directory. You will be completely resetting your
schema environment. After running this command, be sure to run the initialize command to recreate the
cache directory. Alternatively, run the reset command with the -i option. Since reset -i restores the original

installation of the product, we recommend that you run the update command after performing a reset and
initialization. Alternatively, run the reset command with both the -i and -u options.

Syntax
<exec> reset [options]

Options
The reset command takes the following options:

--init, --i Initialize Schema Manager after reset. The default is false.

--update, --u Updates the list of available schemas in the cache. The default is false.

143

147

146 Structural Components XML and XML Schema

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Examples

· To reset Schema Manager, run: xmlschemamanager reset

· To reset Schema Manager and initialize it, run: xmlschemamanager reset -i

· To reset Schema Manager, initialize it,and update its schema list, run: xmlschemamanager reset -i

-u

4.1.8.5.7 uninstall

This command uninstalls one or more schemas. By default, any schemas referenced by the current one are
uninstalled as well. To uninstall just the current schema and keep the referenced schemas, set the option --k.

Syntax
<exec> uninstall [options] Schema+

To uninstall multiple schemas, add the Schema argument multiple times.

The Schema argument is one of the following:

· A schema identifier (having a format of <name>-<version>, for example: cbcr-2.0). To find out the

schema identifiers of the schemas that are installed, run the list -i command. You can also use

an abbreviated schema name if it is unique, for example docbook. If you use an abbreviated name, then

all schemas that contain the abbreviation in its name will be uninstalled.
· The path to a .altova_xmlschemas file downloaded from the Altova website. For information about

these files, see Introduction to SchemaManager: How It Works .

Options
The uninstall command takes the following options:

--keep-references, --k Set this option to keep referenced schemas. The default is false.

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Example
The following command uninstalls the CBCR 2.0 and EPUB 2.0 schemas and their dependencies:

xmlschemamanager uninstall cbcr-2.0 epub-2.0

144

133

© 2018-2024 Altova GmbH

XML and XML Schema 147Structural Components

Altova MapForce 2024 Professional Edition

The following command uninstalls the eba-2.10 schema but not the schemas it references:
xmlschemamanager uninstall --k cbcr-2.0

4.1.8.5.8 update

This command queries the list of schemas available from the online storage and updates the local cache
directory. You should not need to run this command unless you have performed a reset and
initialize .

Syntax
<exec> update [options]

Options
The update command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Example
The following command updates the local cache with the list of latest schemas:

xmlschemamanager update

4.1.8.5.9 upgrade

This command upgrades all installed schemas that can be upgraded to the latest available patched version.
You can identify upgradeable schemas by running the list -u command.

Note: The upgrade command removes a deprecated schema if no newer version is available.

Syntax
<exec> upgrade [options]

Options
The upgrade command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

145

143

144

148 Structural Components XML and XML Schema

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

--help, --h Display help for the command.

© 2018-2024 Altova GmbH

Databases 149Structural Components

Altova MapForce 2024 Professional Edition

4.2 Databases

Altova website: Database mapping

MapForce enables you to use databases as data sources and targets.

The table below lists all the supported databases. If your Altova application is a 64-bit version, ensure that you
have access to the 64-bit database drivers needed for the specific database you are connecting to.

Database Notes

Firebird 2.x, 3.x, 4.x

IBM DB2 8.x, 9.x, 10.x, 11.x

IBM Db2 for i 6.x, 7.4, 7.5 Logical files are supported and shown as views.

IBM Informix 11.70 and later Informix supports connections via ADO, JDBC and ODBC. The
implementation does not support large object data types in any
of the code generation languages. MapForce will generate an
error message (during code generation) if any of these data
types are used.

MariaDB 10 and later MariaDB supports native connections. No separate drivers are
required.

Microsoft Access 2003 and later At the time of writing (early September 2019), there is no
Microsoft Access Runtime available for Access 2019. You can
connect to an Access 2019 database from Altova products only
if Microsoft Access 2016 Runtime is installed and only if the
database does not use the "Large Number" data type.

Microsoft Azure SQL Database SQL Server 2016 codebase

Microsoft SQL Server 2005 and later
Microsoft SQL Server on Linux

MySQL 5 and later MySQL 5.7 and later supports native connections. No separate
drivers are required.

Oracle 9i and later

PostgreSQL 8 and later PostgreSQL connections are supported both as native
connections and driver-based connections through interfaces
(drivers) such as ODBC or JDBC. Native connections do not
require any drivers.

Progress OpenEdge 11.6

SQLite 3.x SQLite connections are supported as native, direct connections
to the SQLite database file. No separate drivers are required.

https://www.altova.com/mapforce/database-mapping

150 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Database Notes

Sybase ASE 15, 16

Teradata 16 Connections are supported through ADO.NET, JDBC, and
ODBC.

When a mapping inserts data into a database table, database-
generated identity fields are not supported.

Database mappings in various execution environments
When you generate program code from a mapping, compile a mapping to MapForce Server execution
files , or deploy a mapping to FlowForce Server , the database connection details saved with the
generated files are adapted to drivers supported for the chosen target environment (see table below). For
example, if the mapping transformation language is set to Java, ADO connections are converted to JDBC when
Java code is generated from the mapping.

When the mapping is executed in an environment other than MapForce, you will need to make sure that the
database connection details are meaningful on the machine which executes the mapping (e.g., you may need
to check if the database driver is installed, the database path is correct, the database server is accessible,
etc.).

Some database connection types are not supported in some target environments, as shown in the table below.

Connection
type/Executio
n Environment

C# C++ Java MapForce
Server on
Windows

MapForce
Server on
Linux/Mac

ADO ADO bridge As is Converted to
JDBC

As is Converted to
JDBC

ADO.NET As is User defined Converted to
JDBC

As is Converted to
JDBC

JDBC User defined User defined As is As is As is

ODBC ODBC bridge ODBC bridge Converted to
JDBC

As is Converted to
JDBC

Native
PostgreSQL

Not supported Not supported Not supported As is As is

Native SQLite Not supported Not supported Not supported As is As is

Table legend:

· As is means that the database connection type (e.g., JDBC) remains as defined in MapForce.
· Converted to JDBC means that the database connection will be converted to a JDBC-like database

connection URL.

68

825 828

© 2018-2024 Altova GmbH

Databases 151Structural Components

Altova MapForce 2024 Professional Edition

· ADO bridge and ODBC bridge mean that the connection string remains as defined in MapForce, but
the generated code will use a suitable class which acts as an ADO bridge or ODBC bridge,
respectively (e.g., System.Data.OleDb.OleDbConnection or System.Data.Odbc.OdbcConnection).

· User defined means that, in order for the connection to work in generated code, you will need to
manually enter the connection details into the Database Component Settings dialog box.

Preventing possible issues with JDBC connections in Java environment
If the mapping connects to a database through JDBC, ensure that the JDBC driver used by the mapping is
installed on your system. To view the current JDBC settings of any database component in MapForce, double-
click the database component's header. This will open the Component Settings dialog. For more information,
see Database Component Settings and Creating a JDBC connection .

If the mapping uses a non-JDBC database connection, the connection may be converted to JDBC during Java
code generation, to provide compatibility in a Java environment. For details, see the table above.

If you run the generated Java application, the JDBC driver may need to be added as a classpath entry to the
current configuration. Otherwise, running the application could result in an error similar to the following:
java.lang.ClassNotFoundException: com.mysql.jdbc.Driver.

This subsection discusses some of the possible approaches to fixing JDBC-related issues.

Approach 1: Add JDBC driver as a dependency in Eclipse
If you work with Eclipse, you will need to add a JDBC driver as a dependency as follows:

1. Generate Java code in MapForce and import the project into Eclipse, as described in Generate, Build,
and Run Code .

2. Click the desired configuration in Eclipse (e.g., MappingApplication).
3. In the Dependencies tab, click Classpath entries and then click Add External JARs.
4. Browse for the .jar file of your JDBC driver (e.g., C:\jdbc\mysql\mysql-connector-java-5.1.16-

bin.jar).

5. Click Run to run the program with the database JDBC driver added as a dependency.

Approach 2: Add JDBC driver to classpath of test task in build.xml
If you get an error related to the JDBC driver when you run the Ant build.xml file, add the JDBC driver to the

classpath of the test task in build.xml. The code listing below is an example of an Ant test task that

includes a reference to the .jar file of the JDBC driver (highlighted in yellow below).

<target name="test" depends="compile">
 <java classpath="C:\codegen\java\mysql_mapping"
classname="com.mapforce.MappingConsole" fork="true" failonerror="true">
 <classpath>
 <pathelement path="${classpath}"/>
 <pathelement location="C:\jdbc\mysql\mysql-connector-java-5.1.16-bin.jar"/>
 </classpath>
 <arg line="${cmdline}"/>
 </java>
</target>

Approach 3: Include JDBC driver in application's manifest

241

241 174

898

152 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

If you build JAR files from the generated Java application, you will need to add a reference to the database
driver in the manifest section of the build.xml file. This ensures that the reference to the database driver is

available in the manifest (MANIFEST.MF) file after you build the project.

To add the database reference to the manifest file, take the steps below:

1. Locate the manifest element in the build.xml file.

2. Add a new element called attribute where the name attribute is Class-Path and the value attribute
is the name of the .jar file. For example, for MySQL 5.1.16, the updated manifest file could look as

follows (note the line highlighted in yellow):

<manifest file="C:\codegen\java\mysql_mapping/META-INF/MANIFEST.MF" mode="replace">
 <attribute name="Created-By" value="MapForce 2024"/>
 <attribute name="Main-Class" value="com.mapforce.MappingConsole"/>
 <attribute name="Class-Path" value="mysql-connector-java-5.1.16-bin.jar"/>
</manifest>

3. Copy the JAR file of the JDBC driver to the folder that contains the JAR file of the generated
application.

4.2.1 Connecting to a Data Source

In the most simple case, a database can be a local file such as a Microsoft Access or SQLite database file. In
a more advanced scenario, a database may reside on a remote or network database server which does not
necessarily use the same operating system as the application that connects to it and consumes data. For
example, while MapForce runs on a Windows operating system, the database from which you want to access
data (for example, MySQL) might run on a Linux machine.

To interact with various database types, both remote and local, MapForce relies on the data connection
interfaces and database drivers that are already available on your operating system or released periodically by
the major database vendors. In the constantly evolving landscape of database technologies, this approach
caters for better cross-platform flexibility and interoperability.

The following diagram illustrates, in a simplified way, data connectivity options available between MapForce
(illustrated as a generic client application) and a data store (which may be a database server or database file).

© 2018-2024 Altova GmbH

Databases 153Structural Components

Altova MapForce 2024 Professional Edition

* Direct native connections are supported for SQLite, MySQL, MariaDB, PostgreSQL databases. To connect to
such databases, no additional drivers are required to be installed on your system.

As shown in the diagram above, MapForce can access any of the major database types through the following
data access technologies:

· ADO (Microsoft® ActiveX® Data Objects), which, in its turn, uses an underlying OLE DB (Object
Linking and Embedding, Database) provider

· ADO.NET (A set of libraries available in the Microsoft .NET Framework that enable interaction with
data)

· JDBC (Java Database Connectivity)
· ODBC (Open Database Connectivity)

Note: Some ADO.NET providers are not supported or have limited support. See ADO.NET Support Notes .

About data access technologies
The data connection interface you should choose largely depends on your existing software infrastructure. You
will typically choose the data access technology and the database driver which integrates tighter with the
database system to which you want to connect. For example, to connect to a Microsoft Access 2013
database, you would build an ADO connection string that uses a native provider such as the Microsoft Office
Access Database Engine OLE DB Provider. To connect to Oracle, on the other hand, you may want to
download and install the latest JDBC, ODBC, or ADO.NET interfaces from the Oracle website.

While drivers for Windows products (such as Microsoft Access or SQL Server) may already be available on
your Windows operating system, they may not be available for other database types. Major database vendors
routinely release publicly available database client software and drivers which provide cross-platform access to

170

154 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

the respective database through any combination of ADO, ADO.NET, ODBC, or JDBC. In addition to this,
several third party drivers may be available for any of the above technologies. In most cases, there is more than
one way to connect to the required database from your operating system, and, consequently, from MapForce.
The available features, performance parameters, and the known issues will typically vary based on the data
access technology or drivers used.

4.2.1.1 Start Database Connection Wizard

MapForce provides a Database Copnnection Wizard that guides you through the steps required to set up a
connection to a data source. Before you go through the wizard steps, be aware that for some database types it
is necessary to install and separately configure several database prerequisites, such as a database driver or
database client software. These are normally provided by the respective database vendors, and include
documentation tailored to your specific Windows version. For a list of database drivers grouped by database
type, see Database Drivers Overview .

To start the Database Connection Wizard (see screenshot below), do the following:

· On the Insert menu, click Database.

The Database Connection Wizard (screenshot below) is started. On the left hand side of the window, you can
select the most suitable from the following ways to connect to your database:

· Connection Wizard, which prompts you to choose your database type and then guides you through the
steps for connecting to a database of that type

· Select an existing connection
· Select a data access technology: ADO, ADO.NET, ODBC, or JDBC
· Use an Altova global resource in which database connection is stored
· A native PostgreSQL connection

In the Connection Wizard pane (see screenshot below) databases can be sorted alphabetically by the name of
the database type or by recent usage. Select the option you want in the Sort By combo box. After you have
selected the database type to which you want to connect, click Next.

156

© 2018-2024 Altova GmbH

Databases 155Structural Components

Altova MapForce 2024 Professional Edition

The wizard will take you through the next steps according to the database type, connection technology (ADO,
ADO.NET, ODBC, JDBC), and driver that will be used. For examples applicable to each database type, see
Database Connection Examples .

Alternatively to using Connection Wizard, you can use one of the following database access technologies:

· Setting up an ADO Connection
· Setting up an ADO.NET Connection
· Setting up an ODBC Connection
· Setting up a JDBC Connection

182

159

164

171

174

156 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

4.2.1.2 Database Drivers Overview

The following table lists common database drivers you can use to connect to a particular database through a
particular data access technology. Note that this list does not aim to be either exhaustive or prescriptive; you
can use other native or third party alternatives in addition to the drivers shown below.

Even though a number of database drivers might be already available on your Windows operating system, you
may still need to download an alternative driver. For some databases, the latest driver supplied by the database
vendor is likely to perform better than the driver that shipped with the operating system.

Database vendors may provide drivers either as separate downloadable packages, or bundled with database
client software. In the latter case, the database client software normally includes any required database drivers,
or provides you with an option during installation to select the drivers and components you wish to install.
Database client software typically consists of administration and configuration utilities used to simplify
database administration and connectivity, as well as documentation on how to install and configure the
database client and any of its components.

Configuring the database client correctly is crucial for establishing a successful connection to the database.
Before installing and using the database client software, it is strongly recommended to read carefully the
installation and configuration instructions of the database client; these may vary for each database version and
for each Windows version.

To understand the capabilities and limitations of each data access technology with respect to each database
type, refer to the documentation of that particular database product and also test the connection against your
specific environment. To avoid common connectivity issues, note the following:

· Some ADO.NET providers are not supported or have limited support. See ADO.NET Support Notes .
· When installing a database driver, it is recommended that it has the same platform as the Altova

application (32-bit or 64-bit). For example, if you are using a 32-bit Altova application on a 64-bit
operating system, install the 32-bit driver, and set up your database connection using the 32-bit driver,
see also Viewing the Available ODBC Drivers .

· When setting up an ODBC data source, it is recommended to create the data source name (DSN) as
System DSN instead of User DSN. For more information, see Setting up an ODBC Connection .

· If the target database is MySQL or MariaDB through ODBC, the option Return matched rows instead of
affected rows must be enabled in the Cursor/Results tab of MySQL ODBC Connector. Alternatively, if
you enter the connection string manually in the Database Connection wizard, add Option=2 to the
connection string (e.g., Dsn=mydsn;Option=2;).

· When setting up a JDBC data source, ensure that JRE (Java Runtime Environment) or Java
Development Kit (JDK) is installed and that the CLASSPATH environment variable of the operating
system is configured. For more information, see Setting up a JDBC Connection .

· For the installation instructions and support details of any drivers or database client software that you
install from a database vendor, check the documentation provided with the installation package.

Database Interface Drivers

Firebird ADO.NET Firebird ADO.NET Data Provider (https://www.firebirdsql.org/en/additional-
downloads/)

JDBC Firebird JDBC driver (https://www.firebirdsql.org/en/jdbc-driver/)

ODBC Firebird ODBC driver (https://www.firebirdsql.org/en/odbc-driver/)

170

173

171

174

https://www.firebirdsql.org/en/additional-downloads/
https://www.firebirdsql.org/en/additional-downloads/
https://www.firebirdsql.org/en/jdbc-driver/
https://www.firebirdsql.org/en/odbc-driver/

© 2018-2024 Altova GmbH

Databases 157Structural Components

Altova MapForce 2024 Professional Edition

Database Interface Drivers

IBM DB2 ADO IBM OLE DB Provider for DB2

ADO.NET IBM Data Server Provider for .NET

JDBC IBM Data Server Driver for JDBC and SQLJ

ODBC IBM DB2 ODBC Driver

IBM DB2 for i ADO · IBM DB2 for i5/OS IBMDA400 OLE DB Provider
· IBM DB2 for i5/OS IBMDARLA OLE DB Provider
· IBM DB2 for i5/OS IBMDASQL OLE DB Provider

ADO.NET .NET Framework Data Provider for IBM i

JDBC IBM Toolbox for Java JDBC Driver

ODBC iSeries Access ODBC Driver

IBM Informix ADO IBM Informix OLE DB Provider

JDBC IBM Informix JDBC Driver

ODBC IBM Informix ODBC Driver

Microsoft
Access

ADO · Microsoft Jet OLE DB Provider
· Microsoft Access Database Engine OLE DB Provider

ADO.NET .NET Framework Data Provider for OLE DB

ODBC · Microsoft Access Driver

MariaDB ADO.NET In the absence of a dedicated .NET connector for MariaDB, use
Connector/NET for MySQL
(https://dev.mysql.com/downloads/connector/net/).

JDBC MariaDB Connector/J (https://downloads.mariadb.org/)

ODBC MariaDB Connector/ODBC (https://downloads.mariadb.org/)

Native
connection

Available. No drivers are required.

Microsoft SQL
Server

ADO · Microsoft OLE DB Driver for SQL Server (MSOLEDBSQL)
· Microsoft OLE DB Provider for SQL Server (SQLOLEDB)
· SQL Server Native Client (SQLNCLI)

ADO.NET · .NET Framework Data Provider for SQL Server
· .NET Framework Data Provider for OLE DB

JDBC · Microsoft JDBC Driver for SQL Server (https://docs.microsoft.com/en-
us/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server)

ODBC · ODBC Driver for Microsoft SQL Server (https://docs.microsoft.com/en-
us/SQL/connect/odbc/download-odbc-driver-for-sql-server)

https://dev.mysql.com/downloads/connector/net/
https://downloads.mariadb.org/
https://downloads.mariadb.org/
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server
https://docs.microsoft.com/en-us/SQL/connect/odbc/download-odbc-driver-for-sql-server
https://docs.microsoft.com/en-us/SQL/connect/odbc/download-odbc-driver-for-sql-server

158 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Database Interface Drivers

MySQL ADO.NET · Connector/NET (https://dev.mysql.com/downloads/connector/net/)

JDBC Connector/J (https://dev.mysql.com/downloads/connector/j/)

ODBC Connector/ODBC (https://dev.mysql.com/downloads/connector/odbc/)

Native
connection

Available for MySQL 5.7 and later. No drivers are required.

Oracle ADO · Oracle Provider for OLE DB
· Microsoft OLE DB Provider for Oracle

ADO.NET Oracle Data Provider for .NET
(http://www.oracle.com/technetwork/topics/dotnet/index-085163.html)

JDBC · JDBC Thin Driver
· JDBC Oracle Call Interface (OCI) Driver
These drivers are typically installed during the installation of your Oracle
database client. Connect through the OCI Driver (not the Thin Driver) if you
are using the Oracle XML DB component.

ODBC · Microsoft ODBC for Oracle
· Oracle ODBC Driver (typically installed during the installation of your

Oracle database client)

PostgreSQL JDBC PostgreSQL JDBC Driver (https://jdbc.postgresql.org/download.html)

ODBC psqlODBC (https://odbc.postgresql.org/)

Native
connection

Available. No drivers are required.

Progress
OpenEdge

JDBC JDBC Connector (https://www.progress.com/jdbc/openedge)

ODBC ODBC Connector (https://www.progress.com/odbc/openedge)

SQLite Native
connection

Available. No drivers are required.

Sybase ADO Sybase ASE OLE DB Provider

JDBC jConnect™ for JDBC

ODBC Sybase ASE ODBC Driver

Teradata ADO.NET .NET Data Provider for Teradata
(https://downloads.teradata.com/download/connectivity/net-data-provider-for-
teradata)

JDBC Teradata JDBC Driver
(https://downloads.teradata.com/download/connectivity/jdbc-driver)

https://dev.mysql.com/downloads/connector/net/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/odbc/
http://www.oracle.com/technetwork/topics/dotnet/index-085163.html
https://jdbc.postgresql.org/download.html
https://odbc.postgresql.org/
https://www.progress.com/jdbc/openedge
https://www.progress.com/odbc/openedge
https://downloads.teradata.com/download/connectivity/net-data-provider-for-teradata
https://downloads.teradata.com/download/connectivity/net-data-provider-for-teradata
https://downloads.teradata.com/download/connectivity/jdbc-driver

© 2018-2024 Altova GmbH

Databases 159Structural Components

Altova MapForce 2024 Professional Edition

Database Interface Drivers

ODBC Teradata ODBC Driver for Windows
(https://downloads.teradata.com/download/connectivity/odbc-driver/windows)

4.2.1.3 ADO Connection

Microsoft ActiveX Data Objects (ADO) is a data access technology that enables you to connect to a variety of
data sources through OLE DB. OLE DB is an alternative interface to ODBC or JDBC; it provides uniform
access to data in a COM (Component Object Model) environment. ADO is a precursor of the newer
ADO.NET and is still one of the possible ways to connect to Microsoft native databases such as Microsoft
Access or SQL Server, although you can also use it for other data sources.

Importantly, you can choose between multiple ADO providers, and some of them must be downloaded and
installed on your workstation before you can use them. For example, for connecting to SQL Server, the
following ADO providers are available:

· Microsoft OLE DB Driver for SQL Server (MSOLEDBSQL)
· Microsoft OLE DB Provider for SQL Server (SQLOLEDB)
· SQL Server Native Client (SQLNCLI)

From the providers listed above, the recommended one is MSOLEDBSQL; you can download it from
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15.
Note that it must match the platform of MapForce (32-bit or 64-bit). The SQLOLEDB and SQLNCLI providers
are considered deprecated and thus are not recommended.

The Microsoft OLE DB Provider for SQL Server (SQLOLEDB) is known to have issues with parameter
binding of complex queries like Common Table Expressions (CTE) and nested SELECT statements.

To set up an ADO connection:

1. Start the database connection wizard .
2. Click ADO Connections.

164

154

https://downloads.teradata.com/download/connectivity/odbc-driver/windows
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15

160 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

3. Click Build.

4. Select the data provider through which you want to connect. The table below lists a few common
scenarios.

© 2018-2024 Altova GmbH

Databases 161Structural Components

Altova MapForce 2024 Professional Edition

To connect to this database... Use this provider...

Microsoft Access · Microsoft Office Access Database Engine OLE DB
Provider (recommended)

· Microsoft Jet OLE DB Provider

If the Microsoft Office Access Database Engine OLE DB
Provider is not available in the list, make sure that you have
installed either Microsoft Access or the Microsoft Access
Database Engine Redistributable (https://www.microsoft.com/en-
us/download/details.aspx?id=54920) on your computer.

SQL Server · Microsoft OLE DB Driver for SQL Server
(MSOLEDBSQL) - this is the recommended OLE DB
provider. In order for this provider to appear in the list, it
must be downloaded from https://docs.microsoft.com/en-
us/sql/connect/oledb/download-oledb-driver-for-sql-
server?view=sql-server-ver15 and installed.

· Microsoft OLE DB Provider for SQL Server
(OLEDBSQL)

· SQL Server Native Client (SQLNCLI)

Other database Select the provider applicable to your database.

If an OLE DB provider to your database is not available, install the
required driver from the database vendor (see Database Drivers
Overview). Alternatively, set up an ADO.NET, ODBC, or JDBC
connection.

If the operating system has an ODBC driver to the required
database, you could also use the Microsoft OLE DB Provider
for ODBC Drivers, or preferably opt for an ODBC connection .

5. Having selected the provider of choice, click Next and complete the wizard.

The subsequent wizard steps are specific to the provider you chose. For SQL Server, you will need to provide or
select the host name of the database server, the authentication method, the database name, as well as the
database username and password. For an example, see Connecting to Microsoft SQL Server (ADO) . For
Microsoft Access, you will be asked to browse for or provide the path to the database file. For an example, see
Connecting to Microsoft Access (ADO) .

The complete list of initialization properties (connection parameters) is available in the All tab of the connection
dialog box—these properties vary depending on the chosen provider and may need to be set explicitly in order
for the connection to be possible. The following sections provide guidance on configuring the basic initialization
properties for Microsoft Access and SQL Server databases:

· Setting up the SQL Server Data Link Properties
· Setting up the Microsoft Access Data Link Properties

156

171

204

201

162

163

https://www.microsoft.com/en-us/download/details.aspx?id=54920
https://www.microsoft.com/en-us/download/details.aspx?id=54920
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15

162 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

4.2.1.3.1 Connecting to an Existing Microsoft Access Database

This approach is suitable when you want to connect to a Microsoft Access database which is not password-
protected. If the database is password-protected, set up the database password as shown in Connecting to
Microsoft Access (ADO) .

To connect to an existing Microsoft Access database:

1. Run the database connection wizard (see Starting the Database Connection Wizard).
2. Select Microsoft Access (ADO), and then click Next.
3. Browse for the database file, or enter the path to it (either relative or absolute).
4. Click Connect.

4.2.1.3.2 Setting up the SQL Server Data Link Properties

When you connect to a Microsoft SQL Server database through ADO , you may need to set the following
connection properties in the All tab of the Data Link Properties dialog box.

Data Link Properties dialog box

201

154

159

© 2018-2024 Altova GmbH

Databases 163Structural Components

Altova MapForce 2024 Professional Edition

Property Notes

Integrated Security If you selected the SQL Server Native Client data provider on the
Provider tab, set this property to a space character.

Persist Security Info Set this property to True.

4.2.1.3.3 Setting up the Microsoft Access Data Link Properties

When you connect to a Microsoft Access database through ADO , you may need to set the following
connection properties in the All tab of the Data Link Properties dialog box.

Data Link Properties dialog box

Property Notes

Data Source This property stores the path to the Microsoft Access database file. To
avoid database connectivity issues, it is recommended to use the UNC
(Universal Naming Convention) path format, for example:

\\anyserver\share$\filepath

159

164 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Property Notes

Jet OLEDB:System Database This property stores the path to the workgroup information file. You
may need to explicitly set the value of this property before you can
connect to a Microsoft Access database.

If you cannot connect due to a "workgroup information file" error, locate
the workgroup information file (System.MDW) applicable to your user
profile, and set the property value to the path of the System.MDW file.

Jet OLEDB:Database Password If the database is password-protected, set the value of this property to
the database password.

4.2.1.4 ADO.NET Connection

ADO.NET is a set of Microsoft .NET Framework libraries designed to interact with data, including data from
databases. To connect to a database from MapForce through ADO.NET, Microsoft .NET Framework 4 or later
is required. As shown below, you connect to a database through ADO.NET by selecting a .NET provider and
supplying a connection string.

A .NET data provider is a collection of classes that enables connecting to a particular type of data source (for
example, a SQL Server, or an Oracle database), executing commands against it, and fetching data from it. In
other words, with ADO.NET, an application such as MapForce interacts with a database through a data
provider. Each data provider is optimized to work with the specific type of data source that it is designed for.
There are two types of .NET providers:

1. Supplied by default with Microsoft .NET Framework.

© 2018-2024 Altova GmbH

Databases 165Structural Components

Altova MapForce 2024 Professional Edition

2. Supplied by major database vendors, as an extension to the .NET Framework. Such ADO.NET
providers must be installed separately and can typically be downloaded from the website of the
respective database vendor.

Note: Certain ADO.NET providers are not supported or have limited support. See ADO.NET Support
Notes .

To set up an ADO.NET connection:

1. Start the database connection wizard .
2. Click ADO.NET Connections.
3. Select a .NET data provider from the list.

The list of providers available by default with the .NET Framework appears in the "Provider" list.
Vendor-specific .NET data providers are available in the list only if they are already installed on
your system. To become available, vendor-specific .NET providers must be installed into the GAC
(Global Assembly Cache), by running the .msi or .exe file supplied by the database vendor.

4. Enter a database connection string. A connection string defines the database connection information,
as semicolon-delimited key/value pairs of connection parameters. For example, a connection string
such as Data Source=DBSQLSERV;Initial Catalog=ProductsDB;User

ID=dbuser;Password=dbpass connects to the SQL Server database ProductsDB on server

DBSQLSERV, with the user name dbuser and password dbpass. You can create a connection string by
typing the key/value pairs directly into the "Connection String" dialog box. Another option is to create it
with Visual Studio (see Creating a Connection String in Visual Studio).

The syntax of the connection string depends on the provider selected from the "Provider" list. For
examples, see Sample ADO.NET Connection Strings .

170

154

166

169

166 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

5. Click Connect.

4.2.1.4.1 Creating a Connection String in Visual Studio

In order to connect to a data source using ADO.NET, a valid database connection string is required. The
following instructions show you how to create a connection string from Visual Studio.

To create a connection string in Visual Studio:

1. On the Tools menu, click Connect to Database.
2. Select a data source from the list (in this example, Microsoft SQL Server). The Data Provider is filled

automatically based on your choice.

© 2018-2024 Altova GmbH

Databases 167Structural Components

Altova MapForce 2024 Professional Edition

3. Click Continue.

168 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

4. Enter the server host name and the user name and password to the database. In this example, we are
connecting to the database ProductsDB on server DBSQLSERV, using SQL Server authentication.

5. Click OK.

If the database connection is successful, it appears in the Server Explorer window. You can display the Server
Explorer window using the menu command View | Server Explorer. To obtain the database connection string,
right-click the connection in the Server Explorer window, and select Properties. The connection string is now
displayed in the Properties window of Visual Studio. Note that, before pasting the string into the "Connection
String" box of MapForce, you will need to replace the asterisk (*) characters with the actual password.

© 2018-2024 Altova GmbH

Databases 169Structural Components

Altova MapForce 2024 Professional Edition

4.2.1.4.2 Sample ADO.NET Connection Strings

To set up an ADO.NET connection, you need to select an ADO.NET provider from the database connection
dialog box and enter a connection string (see also Setting up an ADO.NET Connection). Sample ADO.NET
connection strings for various databases are listed below under the .NET provider where they apply.

.NET Data Provider for Teradata
This provider can be downloaded from Teradata website
(https://downloads.teradata.com/download/connectivity/net-data-provider-for-teradata). A sample connection
string looks as follows:

Data Source=ServerAddress;User Id=user;Password=password;

.NET Framework Data Provider for IBM i
This provider is installed as part of IBM i Access Client Solutions - Windows Application Package. A sample
connection string looks as follows:

DataSource=ServerAddress;UserID=user;Password=password;DataCompression=True;

For more information, see the ".NET Provider Technical Reference" help file included in the installation package
above.

.NET Framework Data Provider for MySQL
This provider can be downloaded from MySQL website (https://dev.mysql.com/downloads/connector/net/). A
sample connection string looks as follows:

Server=127.0.0.1;Uid=root;Pwd=12345;Database=test;

See also: https://dev.mysql.com/doc/connector-net/en/connector-net-programming-connecting-connection-
string.html

.NET Framework Data Provider for SQL Server
A sample connection string looks as follows:

Data Source=DBSQLSERV;Initial Catalog=ProductsDB;User ID=dbuser;Password=dbpass

See also: https://msdn.microsoft.com/en-us/library/ms254500(v=vs.110).aspx

IBM DB2 Data Provider 10.1.2 for .NET Framework 4.0

Database=PRODUCTS;UID=user;Password=password;Server=localhost:50000;

164

https://downloads.teradata.com/download/connectivity/net-data-provider-for-teradata
https://dev.mysql.com/downloads/connector/net/
https://dev.mysql.com/doc/connector-net/en/connector-net-programming-connecting-connection-string.html
https://dev.mysql.com/doc/connector-net/en/connector-net-programming-connecting-connection-string.html
https://msdn.microsoft.com/en-us/library/ms254500(v=vs.110).aspx

170 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Note: This provider is typically installed with the IBM DB2 Data Server Client package. If the provider is
missing from the list of ADO.NET providers after installing IBM DB2 Data Server Client package, refer
to the following technical note: https://www-01.ibm.com/support/docview.wss?uid=swg21429586.

See also:
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.swg.im.dbclient.adonet.ref.doc/d
oc/DB2ConnectionClassConnectionStringProperty.html

Oracle Data Provider for .NET (ODP.NET)
The installation package which includes the ODP.NET provider can be downloaded from the Oracle website
(see http://www.oracle.com/technetwork/topics/dotnet/downloads/index.html). A sample connection string
looks as follows:

Data Source=DSORCL;User Id=user;Password=password;

Where DSORCL is the name of the data source which points to an Oracle service name defined in the
tnsnames.ora file, as described in Connecting to Oracle (ODBC) .

To connect without configuring a service name in the tnsnames.ora file, use a string such as:

Data Source=(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=host)(PORT=port)))

(CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=MyOracleSID)));User

Id=user;Password=password;

See also: https://docs.oracle.com/cd/B28359_01/win.111/b28375/featConnecting.htm

4.2.1.4.3 ADO.NET Support Notes

The following table lists known ADO.NET database drivers that are currently not supported or have limited
support in MapForce.

Database Driver Support notes

All databases .Net Framework Data Provider
for ODBC

Limited support. Known issues exist with
Microsoft Access connections. It is
recommended to use ODBC direct
connections instead.

.Net Framework Data Provider
for OleDb

Limited support. Known issues exist with
Microsoft Access connections. It is
recommended to use ADO direct connections
instead.

Firebird Firebird ADO.NET Data Provider Limited support. It is recommended to use
ODBC or JDBC instead.

Informix IBM Informix Data Provider for Not supported. Use DB2 Data Server

216

https://www-01.ibm.com/support/docview.wss?uid=swg21429586
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.swg.im.dbclient.adonet.ref.doc/doc/DB2ConnectionClassConnectionStringProperty.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.swg.im.dbclient.adonet.ref.doc/doc/DB2ConnectionClassConnectionStringProperty.html
http://www.oracle.com/technetwork/topics/dotnet/downloads/index.html
https://docs.oracle.com/cd/B28359_01/win.111/b28375/featConnecting.htm

© 2018-2024 Altova GmbH

Databases 171Structural Components

Altova MapForce 2024 Professional Edition

Database Driver Support notes

.NET Framework 4.0 Provider instead.

IBM DB2 for i (iSeries) .Net Framework Data Provider
for i5/OS

Not supported. Use .Net Framework Data
Provider for IBM i instead, installed as part
of the IBM i Access Client Solutions -
Windows Application Package.

Oracle .Net Framework Data Provider
for Oracle

Limited support. Although this driver is
provided with the .NET Framework, its usage
is discouraged by Microsoft, because it is
deprecated.

PostgreSQL - No ADO.NET drivers for this vendor are
supported. Use a native connection instead.

Sybase - No ADO.NET drivers for this vendor are
supported.

4.2.1.5 ODBC Connection

ODBC (Open Database Connectivity) is a widely used data access technology that enables you to connect to
a database from MapForce. It can be used either as primary means to connect to a database, or as an
alternative to native, OLE DB, or JDBC-driven connections.

To connect to a database through ODBC, first you need to create an ODBC data source name (DSN) on the
operating system. This step is not required if the DSN has already been created, perhaps by another user of
the operating system. The DSN represents a uniform way to describe the database connection to any ODBC-
aware client application on the operating system, including MapForce. DSNs can be of the following types:

· System DSN
· User DSN
· File DSN

A System data source is accessible by all users with privileges on the operating system. A User data source is
available to the user who created it. Finally, if you create a File DSN, the data source will be created as a file
with the .dsn extension which you can share with other users, provided that they have installed the drivers used
by the data source.

Any DSNs already available on your machine are listed by the database connection dialog box when you click
ODBC connections on the ODBC connections dialog box.

172 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

ODBC Connections dialog box

If a DSN to the required database is not available, the MapForce database connection wizard will assist you to
create it; however, you can also create it directly on your Windows operating system. In either case, before you
proceed, ensure that the ODBC driver applicable for your database is in the list of ODBC drivers available to the
operating system (see Viewing the Available ODBC Drivers).

To connect by using a new DSN:

1. Start the database connection wizard .
2. On the database connection dialog box, click ODBC Connections.
3. Select a data source type (User DSN, System DSN, File DSN).

To create a System DSN, you need administrative rights on the operating system, and MapForce
must be run as administrator.

4. Click Add .
5. Select a driver, and then click User DSN or System DSN (depending on the type of the DSN you want

to create). If the driver applicable to your database is not listed, download it from the database vendor
and install it (see Database Drivers Overview).

6. On the dialog box that pops up, fill in any driver specific connection information to complete the setup.

For the connection to be successful, you will need to provide the host name (or IP address) of the database
server, as well as the database username and password. There may be other optional connection parameters—
these parameters vary between database providers. For detailed information about the parameters specific to

173

154

156

© 2018-2024 Altova GmbH

Databases 173Structural Components

Altova MapForce 2024 Professional Edition

each connection method, consult the documentation of the driver provider. Once created, the DSN becomes
available in the list of data source names. This enables you to reuse the database connection details any time
you want to connect to the database. Note that User DSNs are added to the list of User DSNs whereas
System DSNs are added to the list of System DSNs.

To connect by using an existing DSN:

1. Start the database connection wizard .
2. Click ODBC Connections.
3. Choose the type of the existing data source (User DSN, System DSN, File DSN).
4. Click the existing DSN record, and then click Connect.

To build a connection string based on an existing .dsn file:

1. Start the database connection wizard .
2. Click ODBC Connections.
3. Select Build a connection string, and then click Build.
4. If you want to build the connection string using a File DSN, click the File Data Source tab. Otherwise,

click the Machine Data Source tab. (System DSNs and User DSNs are known as "Machine" data
sources.)

5. Select the required .dsn file, and then click OK.

To connect by using a prepared connection string:

1. Start the database connection wizard .
2. Click ODBC Connections.
3. Select Build a connection string.
4. Paste the connection string into the provided box, and then click Connect.

4.2.1.5.1 Available ODBC Drivers

You can view the ODBC drivers available on your operating system in the ODBC Data Source Administrator.
You can access the ODBC Data Source Administrator (Odbcad32.exe) from the Windows Control Panel,
under Administrative Tools. On 64-bit operating systems, there are two versions of this executable:

· The 32-bit version of the Odbcad32.exe file is located in the C:\Windows\SysWoW64 directory
(assuming that C: is your system drive).

· The 64-bit version of the Odbcad32.exe file is located in the C:\Windows\System32 directory.

Any installed 32-bit database drivers are visible in the 32-bit version of ODBC Data Source Administrator, while
64-bit drivers—in the 64-bit version. Therefore, ensure that you check the database drivers from the relevant
version of ODBC Data Source Administrator.

154

154

154

174 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

ODBC Data Source Administrator

If the driver to your target database does not exist in the list, or if you want to add an alternative driver, you will
need to download it from the database vendor (see Database Drivers Overview). Once the ODBC driver is
available on your system, you are ready to create ODBC connections with it (see Setting up an ODBC
Connection).

4.2.1.6 JDBC Connection

JDBC (Java Database Connectivity) is a database access interface which is part of the Java software platform
from Oracle. JDBC connections are generally more resource-intensive than ODBC connections but may provide
features not available through ODBC.

Prerequisites
· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either

Oracle JDK or an open source build such as Oracle OpenJDK. MapForce will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options, see Java Settings ; b) The JVM path found in the Windows
registry; c) The JAVA_HOME environment variable.

· Make sure that the platform of MapForce (32-bit, 64-bit) matches that of the JRE/JDK.
· The JDBC drivers from the database vendor must be installed. These may be JDBC drivers installed as

part of a database client installation, or JDBC libraries (.jar files) downloaded separately, if available
and supported by the database, see also Database Connection Examples .

156

171

1045

182

© 2018-2024 Altova GmbH

Databases 175Structural Components

Altova MapForce 2024 Professional Edition

· The CLASSPATH environment variable must include the path to the JDBC driver (one or several .jar files)
on your Windows operating system. When you install some database clients, the installer may
configure this variable automatically. See also Configuring the CLASSPATH .

Connecting to SQL Server via JDBC with Windows credentials
If you connect to SQL Server through JDBC with Windows credentials (integrated security), note the following:

· The sqljdbc_auth.dll file included in the JDBC driver package must be copied to a directory that is on
the system PATH environment variable. There are two such files, one for the x86 and one for x64
platform. Make sure that you add to the PATH the one that corresponds to your JDK platform. Also,
make sure that you restart MapForce (or the program that runs the mapping, if applicable) after
changing the environment variable.

· The JDBC connection string must include the property integratedSecurity=true. You can add this

property from various places:
o from the database connection wizard, see below

o from the database component settings

o if applicable, by editing the database connection string in generated Java code.

For further information, refer to Microsoft JDBC driver for SQL Server documentation,
https://docs.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url.

Setting up a JDBC connection
1. Start the database connection wizard .
2. Click JDBC Connections.
3. Optionally, enter a semicolon-separated list of .jar file paths in the "Classpaths" text box. The .jar

libraries entered here will be loaded into the environment in addition to those already defined in the
CLASSPATH environment variable. When you finish editing the "Classpaths" text box, any JDBC drivers
found in the source .jar libraries are automatically added to the "Driver" list (see the next step).

177

241

154

https://docs.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url

176 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

4. Next to "Driver", select a JDBC driver from the list, or enter a Java class name. Note that this list
contains any JDBC drivers configured through the CLASSPATH environment variable (see Configuring the
CLASSPATH), as well as those found in the "Classpaths" text box.

The JDBC driver paths defined in the CLASSPATH variable, as well as any .jar file paths entered
directly in the database connection dialog box are all supplied to the Java Virtual Machine (JVM).
The JVM then decides which drivers to use in order to establish a connection. It is recommended
to keep track of Java classes loaded into the JVM so as not to create potential JDBC driver
conflicts and avoid unexpected results when connecting to the database.

5. Enter the username and password to the database in the corresponding boxes.
6. In the Database URL text box, enter the JDBC connection URL (string) in the format specific to your

database type. The following table describes the syntax of JDBC connection URLs (strings) for
common database types.

Database JDBC Connection URL

Firebird jdbc:firebirdsql://<host>[:<port>]/<database path or

alias>

IBM DB2 jdbc:db2://hostName:port/databaseName

IBM DB2 for i jdbc:as400://[host]

177

© 2018-2024 Altova GmbH

Databases 177Structural Components

Altova MapForce 2024 Professional Edition

Database JDBC Connection URL

IBM Informix jdbc:informix-
sqli://hostName:port/databaseName:INFORMIXSERVER=myserver

MariaDB jdbc:mariadb://hostName:port/databaseName

Microsoft SQL Server jdbc:sqlserver://hostName:port;databaseName=name

MySQL jdbc:mysql://hostName:port/databaseName

Oracle jdbc:oracle:thin:@hostName:port:SID

jdbc:oracle:thin:@//hostName:port/service

Oracle XML DB jdbc:oracle:oci:@//hostName:port:service

PostgreSQL jdbc:postgresql://hostName:port/databaseName

Progress OpenEdge jdbc:datadirect:openedge://host:port;databaseName=db_name

Sybase jdbc:sybase:Tds:hostName:port/databaseName

Teradata jdbc:teradata://databaseServerName

Note: Syntax variations to the formats listed above are also possible (for example, the database URL may
exclude the port or may include the username and password to the database). Check the
documentation of the database vendor for further details.

7. Click Connect.

4.2.1.6.1 Configuring the CLASSPATH

The CLASSPATH environment variable is used by the Java Runtime Environment (JRE) or the Java Development
Kit (JDK) to locate Java classes and other resource files on your operating system. When you connect to a
database through JDBC, this variable must be configured to include the path to the JDBC driver on your
operating system, and, in some cases, the path to additional library files specific to the database type you are
using.

The following table lists sample file paths that must be typically included in the CLASSPATH variable.
Importantly, you may need to adjust this information based on the location of the JDBC driver on your system,
the JDBC driver name, as well as the JRE/JDK version present on your operating system. To avoid connectivity
problems, check the installation instructions and any pre-installation or post-installation configuration steps
applicable to the JDBC driver installed on your operating system.

Database Sample CLASSPATH entries

Firebird C:\Program Files\Firebird\Jaybird-2.2.8-JDK_1.8\jaybird-full-
2.2.8.jar

IBM DB2 C:\Program Files (x86)\IBM\SQLLIB\java\db2jcc.jar;C:\Program
Files (x86)\IBM\SQLLIB\java\db2jcc_license_cu.jar;

178 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Database Sample CLASSPATH entries

IBM DB2 for i C:\jt400\jt400.jar;

IBM Informix C:\Informix_JDBC_Driver\lib\ifxjdbc.jar;

Microsoft SQL Server C:\Program Files\Microsoft JDBC Driver 4.0 for SQL
Server\sqljdbc_4.0\enu\sqljdbc.jar

MariaDB <installation directory>\mariadb-java-client-2.2.0.jar

MySQL <installation directory>\mysql-connector-java-version-bin.jar;

Oracle ORACLE_HOME\jdbc\lib\ojdbc6.jar;

Oracle (with XML DB) ORACLE_HOME\jdbc\lib\ojdbc6.jar;ORACLE_HOME\LIB\xmlparserv2.jar;

ORACLE_HOME\RDBMS\jlib\xdb.jar;

PostgreSQL <installation directory>\postgresql.jar

Progress OpenEdge %DLC%\java\openedge.jar;%DLC%\java\pool.jar;

Note: Assuming the Progress OpenEdge SDK is installed on the machine, %
DLC% is the directory where OpenEdge is installed.

Sybase C:\sybase\jConnect-7_0\classes\jconn4.jar

Teradata <installation directory>\tdgssconfig.jar;<installation

directory>\terajdbc4.jar

· Changing the CLASSPATH variable may affect the behavior of Java applications on your machine. To
understand possible implications before you proceed, refer to the Java documentation.

· Environment variables can be user or system. To change system environment variables, you need
administrative rights on the operating system.

· After you change the environment variable, restart any running programs for settings to take effect.
Alternatively, log off or restart your operating system.

To configure the CLASSPATH on Windows 7:

1. Open the Start menu and right-click Computer.
2. Click Properties.
3. Click Advanced system settings.
4. In the Advanced tab, click Environment Variables,
5. Locate the CLASSPATH variable under user or system environment variables, and then click Edit. If

the CLASSPATH variable does not exist, click New to create it.
6. Edit the variable value to include the path on your operating system where the JDBC driver is located.

To separate the JDBC driver path from other paths that may already be in the CLASSPATH variable,
use the semi-colon separator (;).

© 2018-2024 Altova GmbH

Databases 179Structural Components

Altova MapForce 2024 Professional Edition

To configure the CLASSPATH on Windows 10:

1. Press the Windows key and start typing "environment variables".
2. Click the suggestion Edit the system environment variables.
3. Click Environment Variables.
4. Locate the CLASSPATH variable under user or system environment variables, and then click Edit. If

the CLASSPATH variable does not exist, click New to create it.
5. Edit the variable value to include the path on your operating system where the JDBC driver is located.

To separate the JDBC driver path from other paths that may already be in the CLASSPATH variable,
use the semi-colon separator (;).

4.2.1.7 SQLite Connection

SQLite is a file-based, self-contained database type, which makes it ideal in scenarios where portability and
ease of configuration is important. Since SQLite databases are natively supported by MapForce, you do not
need to install any drivers to connect to them.

SQLite database support notes
· On Linux, statement execution timeout for SQLite databases is not supported.
· Full text search tables are not supported.
· SQLite allows values of different data types in each row of a given table. All processed values must be

compatible with the declared column type; therefore, unexpected values can be retrieved and run-time
errors may occur if your SQLite database has row values which are not the same as the declared
column type.

· If your mapping should write data to a SQLite database, and if you don't have the target database file
already, you will need to create it separately. In this case, you can create it with a tool such as
DatabaseSpy or download the SQLite command-line shell from the official website, and create the
database file from the command line (see also Example: Mapping data from XML to SQLite). For
complete reference to SQLite command syntax, refer to the official SQLite documentation.

· SQLite databases are supported in the MapForce BUILT-IN transformation language (either when you
preview the mapping or when you run a MapForce Server execution file).

· SQLite databases are not supported in user-defined functions (UDF).

Important

It is recommended to create tables with the STRICT keyword to ensure more predictable behavior of your
data. Otherwise, the data may not be read or written correctly when values of different types are mixed in one
column. To find out more about STRICT tables, see the SQLite documentation.

https://www.sqlite.org/index.html
https://www.altova.com/databasespy
https://www.sqlite.org/stricttables.html

180 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

4.2.1.7.1 Connect to an Existing SQLite Database

To connect to an existing SQLite database:

1. Run the database connection wizard (see Starting the Database Connection Wizard).
2. Select SQLite, and then click Next.
3. Browse for the SQLite database file, or enter the path (either relative or absolute) to the database. The

Connect button becomes enabled once you enter the path to a SQLite database file.
4. Click Connect.

4.2.1.8 Native Connection

Native connections are direct connections to the DB that do not need drivers to be installed. Also, if you intend
to deploy files for execution on a Linux or macOS server, you do not need to instally drivers on the target server
either.

You can set up native connections for the following DBs:

· MariaDB
· MySQL
· SQLite
· PostgreSQL

If you prefer to establish a connection by means of a driver, see the following topics:

· Setting up a JDBC Connection
· SQLite Connection
· Connecting to PostgreSQL (ODBC)

Connection setup
To set up a native connection, follow the steps below. You will need the following information: host name, port,
database name, username, and password.

1. Start the database connection wizard .
2. Select the DB you want to connect to (MariaDB, MySQL, PostgreSQL, or SQLite).
3. In the dialog that appears, enter the host (for example, localhost), optionally the port (typically 5432),

SSL Mode in the case of MySQL, the database name, username, and password in the corresponding
boxes.

4. Click Connect.

SQLite conections
For detailed information about SQLite connections, see the topic SQLite Connection .

Notes for PostrgreSQL
If the PostgreSQL database server is on a different machine, note the following:

154

174

179

220

154

179

© 2018-2024 Altova GmbH

Databases 181Structural Components

Altova MapForce 2024 Professional Edition

· The PostgreSQL database server must be configured to accept connections from clients. Specifically,
the pg_hba.conf file must be configured to allow non-local connections. Secondly, the
postgresql.conf file must be configured to listen on specified IP address(es) and port. For more
information, check the PostgreSQL documentation (https://www.postgresql.org/docs/9.5/static/client-
authentication-problems.html).

· The server machine must be configured to accept connections on the designated port (typically, 5432)
through the firewall. For example, on a database server running on Windows, a rule may need to be
created to allow connections on port 5432 through the firewall, from Control Panel > Windows
Firewall > Advanced Settings > Inbound Rules.

4.2.1.9 Global Resources

After you have created a database as a global resource, its connection details are stored and can be used
across all Altova products installed on your machine.

Create a database as a global resource
To create a database as a global resource, do the following

1. On the Tools menu of MapForce, click Global Resources.
2. Click Add, and then click Database.
3. Type in a name for the global resource in the Resource Alias field.
4. Click Choose Database. The Connection Wizard appears.
5. Use the Connection Wizard to add a database connection as described above.

Use a global-resource database
To use a database that has been created as a global resource (see above), do the following:

1. Start the Connection Wizard as described above.
2. Select Global Resources. All the databases that have been created as global resources will be listed

by their names in the Global Resources pane (see screenshot below).

3. Select the global resource that you want. Tip: Move the mouse cursor over a global resource in the list
to see information about the database.

154

https://www.postgresql.org/docs/9.5/static/client-authentication-problems.html
https://www.postgresql.org/docs/9.5/static/client-authentication-problems.html

182 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

4.2.1.10 Database Connection Examples

This section includes examples for connecting to a database from MapForce through ADO, ODBC, or JDBC.
The ADO.NET connection examples are listed separately, see Sample ADO.NET Connection Strings . For
instructions about establishing a native connection to PostgreSQL and SQLite, see Setting up a PostgreSQL
Connection and Setting up a SQLite Connection , respectively.

Note the following:

· The instructions may differ if your Windows configuration, network environment and the database client
or server software are not the same as the ones described in each example.

· For most database types, it is possible to connect using more than one data access technology
(ADO, ADO.NET, ODBC, JDBC) or driver. The performance of the database connection, as well as its
features and limitations will depend on the selected driver, database client software (if applicable), and
any additional connectivity parameters that you may have configured outside MapForce.

4.2.1.10.1 Firebird (JDBC)

This example illustrates how to connect to a Firebird database server through JDBC.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. MapForce will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options, see Java Settings ; b) The JVM path found in the Windows
registry; c) The JAVA_HOME environment variable.

· Make sure that the platform of MapForce (32-bit, 64-bit) matches that of the JRE/JDK.
· The Firebird JDBC driver must be available on your operating system (it takes the form of a .jar file

which provides connectivity to the database). The driver can be downloaded from the Firebird website
(https://www.firebirdsql.org/). This example uses Jaybird 2.2.8.

· You have the following database connection details: host, database path or alias, username, and
password.

To connect to Firebird through JDBC:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If

necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the
required .jar file is located at the following path: C:\jdbc\firebird\jaybird-full-2.2.8.jar. Note that you
can leave the "Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH
environment variable of the operating system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select org.firebirdsql.jdbc.FBDriver. Note that this entry is available if a valid .jar
file path is found either in the "Classpath" text box, or in the operating system's CLASSPATH
environment variable (see the previous step).

169

180 179

1045

154

177

https://www.firebirdsql.org/

© 2018-2024 Altova GmbH

Databases 183Structural Components

Altova MapForce 2024 Professional Edition

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the

highlighted values with the ones applicable to your database server.

jdbc:firebirdsql://<host>[:<port>]/<database path or alias>

7. Click Connect.

4.2.1.10.2 Firebird (ODBC)

This example illustrates how to connect to a Firebird 2.5.4 database running on a Linux server.

Prerequisites:

· The Firebird database server is configured to accept TCP/IP connections from clients.
· The Firebird ODBC driver must be installed on your operating system. This example uses the Firebird

ODBC driver version 2.0.3.154 downloaded from the Firebird website (https://www.firebirdsql.org/).
· The Firebird client must be installed on your operating system. Note that there is no standalone

installer available for the Firebird 2.5.4 client; the client is part of the Firebird server installation
package. You can download the Firebird server installation package from the Firebird website
(https://www.firebirdsql.org/), look for "Windows executable installer for full Superclassic/Classic or
Superserver". To install only the client files, choose "Minimum client install - no server, no tools"
when going through the wizard steps.

https://www.firebirdsql.org/
https://www.firebirdsql.org/

184 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Important:

· The platform of both the Firebird ODBC driver and client (32-bit or 64-bit) must correspond
to that of MapForce.

· The version of the Firebird client must correspond to the version of Firebird server to which
you are connecting.

· You have the following database connection details: server host name or IP address, database path (or
alias) on the server, user name, and password.

To connect to Firebird via ODBC:

1. Start the database connection wizard .
2. Click ODBC Connections.

3. Select User DSN (or System DSN, if you have administrative privileges), and then click Add .

4. Select the Firebird driver, and then click User DSN (or System DSN, depending on what you selected
in the previous step). If the Firebird driver is not available in the list, make sure that it is installed on
your operating system (see also Viewing the Available ODBC Drivers).

154

173

© 2018-2024 Altova GmbH

Databases 185Structural Components

Altova MapForce 2024 Professional Edition

5. Enter the database connection details as follows:

Data Source Name (DSN) Enter a descriptive name for the data source you are creating.

Database Enter the server host name or IP address, followed by a colon,
followed by the database alias (or path). In this example, the host
name is firebirdserv, and the database alias is products, as
follows:

firebirdserv:products

Using a database alias assumes that, on the server side, the
database administrator has configured the alias products to point to
the actual Firebird (.fdb) database file on the server (see the Firebird
documentation for more details).

You can also use the server IP address instead of the host name,
and a path instead of an alias; therefore, any of the following sample
connection strings are valid:

firebirdserver:/var/Firebird/databases/butterflies.fdb
127.0.0.1:D:\Misc\Lenders.fdb

186 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

If the database is on the local Windows machine, click Browse and
select the Firebird (.fdb) database file directly.

Client Enter the path to the fbclient.dll file. By default, this is the bin
subdirectory of the Firebird installation directory.

Database Account Enter the database user name supplied by the database
administrator (in this example, PROD_ADMIN).

Password Enter the database password supplied by the database
administrator.

6. Click OK.

4.2.1.10.3 IBM DB2 (JDBC)

This example illustrates how to connect to an IBM DB2 database server through JDBC.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. MapForce will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options, see Java Settings ; b) The JVM path found in the Windows
registry; c) The JAVA_HOME environment variable.

· Make sure that the platform of MapForce (32-bit, 64-bit) matches that of the JRE/JDK. This example
uses Oracle's OpenJDK 11.0 64-bit, and, consequently, the 64-bit version of MapForce.

· The JDBC driver (one or several .jar files that provide connectivity to the database) must be available on
your operating system. This example uses the JDBC driver available after installing the IBM Data
Server Client version 10.1 (64-bit). For the JDBC drivers to be installed, choose a Typical installation,
or select this option explicitly on the installation wizard.

1045

© 2018-2024 Altova GmbH

Databases 187Structural Components

Altova MapForce 2024 Professional Edition

If you did not change the default installation path, the required .jar files will be in the C:\Program
Files\IBM\SQLLIB\java directory after installation.

· You need the following database connection details: host, port, database name, username, and
password.

To connect to IBM DB2 through JDBC:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. This

examples refers to C:\Program Files\IBM\SQLLIB\java\db2jcc.jar. You may need to refer to the
db2jcc4.jar driver, depending on the database server version. For driver compatibility, refer to IBM
documentation (http://www-01.ibm.com/support/docview.wss?uid=swg21363866). Note that you can
leave the "Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH
environment variable of the operating system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select com.ibm.db2.jcc.DB2Driver. This entry becomes available only if a valid
.jar file path was found either in the "Classpaths" text box, or in the operating system's CLASSPATH
environment variable (see the previous step).

154

177

http://www-01.ibm.com/support/docview.wss?uid=swg21363866

188 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

5. Enter the username and password of the database user in the corresponding text boxes.
6. Enter the JDBC connection string in the Database URL text box. Make sure to replace the connection

details with the ones applicable to your database server.

jdbc:db2://hostName:port/databaseName

7. Click Connect.

4.2.1.10.4 IBM DB2 (ODBC)

This example illustrates how to connect to an IBM DB2 database through ODBC.

Prerequisites:

· IBM Data Server Client must be installed and configured on your operating system (this example uses
IBM Data Server Client 9.7). For installation instructions, check the documentation supplied with your
IBM DB2 software. After installing the IBM Data Server Client, check if the ODBC drivers are available
on your machine (see Viewing the Available ODBC Drivers).

· Create a database alias. There are several ways to do this:
o From IBM DB2 Configuration Assistant

o From IBM DB2 Command Line Processor

o From the ODBC data source wizard (for this case, the instructions are shown below)

· You have the following database connection details: host, database, port, username, and password.

To connect to IBM DB2:

1. Start the database connection wizard and select IBM DB2 (ODBC/JDBC).
2. Click Next.

173

154

© 2018-2024 Altova GmbH

Databases 189Structural Components

Altova MapForce 2024 Professional Edition

3. Select ODBC, and click Next. If prompted to edit the list of known drivers for the database, select the
database drivers applicable to IBM DB2 (see Prerequisites), and click Next.188

190 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

4. Select the IBM DB2 driver from the list, and then click Connect. (To edit the list of available drivers,
click Edit Drivers, and then check or uncheck the IBM DB2 drivers you wish to add or remove,
respectively.)

© 2018-2024 Altova GmbH

Databases 191Structural Components

Altova MapForce 2024 Professional Edition

5. Enter a data source name (in this example, DB2DSN), and then click Add.

6. On the Data Source tab, enter the user name and password to the database.

192 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

7. On the TCP/IP tab, enter the database name, a name for the alias, the host name and the port
number, and then click OK.

© 2018-2024 Altova GmbH

Databases 193Structural Components

Altova MapForce 2024 Professional Edition

8. Enter again the username and password, and then click OK.

194 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

4.2.1.10.5 IBM DB2 for i (JDBC)

This example illustrates how to connect to an IBM DB2 for i database server through JDBC.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. MapForce will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options, see Java Settings ; b) The JVM path found in the Windows
registry; c) The JAVA_HOME environment variable.

· Make sure that the platform of MapForce (32-bit, 64-bit) matches that of the JRE/JDK. This example
uses Oracle's OpenJDK 11.0 64-bit, and, consequently, the 64-bit version of MapForce.

· The JDBC driver (one or several .jar files that provide connectivity to the database) must be available on
your operating system. This example uses the open source Toolbox for Java/JTOpen version 9.8
(http://jt400.sourceforge.net/). After you download the package and unpack to a local directory, the
required .jar files will be available in the lib subdirectory.

· You need the following database connection details: host, username, and password.

To connect to IBM DB2 for i through JDBC:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. In this

example, the required .jar file is at the following path: C:\jdbc\jtopen_9_8\jt400.jar. Note that you can
leave the "Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH
environment variable of the operating system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select com.ibm.as400.access.AS400JDBCDriver. This entry becomes available
only if a valid .jar file path was found either in the "Classpaths" text box, or in the operating system's
CLASSPATH environment variable (see the previous step).

5. Enter the username and password of the database user in the corresponding text boxes.
6. Enter the JDBC connection string in the Database URL text box. Make sure to replace host with the

host name or IP address of your database server.

jdbc:as400://host

1045

154

177

http://jt400.sourceforge.net/

© 2018-2024 Altova GmbH

Databases 195Structural Components

Altova MapForce 2024 Professional Edition

7. Click Connect.

4.2.1.10.6 IBM DB2 for i (ODBC)

This example illustrates how to connect to an IBM DB2 for i database through ODBC.

Prerequisites:

· IBM System i Access for Windows must be installed on your operating system (this example uses
IBM System i Access for Windows V6R1M0). For installation instructions, check the documentation
supplied with your IBM DB2 for i software. After installation, check if the ODBC driver is available on
your machine (see Viewing the Available ODBC Drivers).

· You have the following database connection details: the I.P. address of the database server, database
user name, and password.

· Run System i Navigator and follow the wizard to create a new connection. When prompted to specify a
system, enter the I.P. address of the database server. After creating the connection, it is
recommended to verify it (click on the connection, and select File > Diagnostics > Verify
Connection). If you get connectivity errors, contact the database server administrator.

To connect to IBM DB2 for i:

1. Start the database connection wizard .
2. Click ODBC connections.

173

154

196 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

3. Click User DSN (alternatively, click System DSN, or File DSN, in which case the subsequent
instructions will be similar).

4. Click Add .
5. Select the iSeries Access ODBC Driver from the list, and click User DSN (or System DSN, if

applicable).

6. Enter a data source name and select the connection from the System combo box. In this example, the
data source name is iSeriesDSN and the System is 192.0.2.0.

Note: When adding an ODBC data source for an IBM DB2 for i database, a default flag is set which enables
query timeouts. This setting must be disabled for MapForce to correctly load mapping files. To disable

© 2018-2024 Altova GmbH

Databases 197Structural Components

Altova MapForce 2024 Professional Edition

the setting, select the Performance tab, click Advanced, and clear the Allow query timeout check
box.

7. Click Connection Options, select Use the User ID specified below and enter the name of the
database user (in this example, DBUSER).

8. Click OK. The new data source becomes available in the list of DSNs.
9. Click Connect.
10. Enter the user name and password to the database when prompted, and then click OK.

4.2.1.10.7 IBM Informix (JDBC)

This example illustrates how to connect to an IBM Informix database server through JDBC.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. MapForce will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options, see Java Settings ; b) The JVM path found in the Windows
registry; c) The JAVA_HOME environment variable.

· Make sure that the platform of MapForce (32-bit, 64-bit) matches that of the JRE/JDK.
· The JDBC driver (one or several .jar files that provide connectivity to the database) must be available on

your operating system. In this example, IBM Informix JDBC driver version 3.70 is used. For the driver's

1045

198 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

installation instructions, see the documentation accompanying the driver or the "IBM Informix JDBC
Driver Programmer's Guide").

· You have the following database connection details: host, name of the Informix server, database, port,
username, and password.

To connect to IBM Informix through JDBC:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If

necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the
required .jar file is located at the following path: C:\Informix_JDBC_Driver\lib\ifxjdbc.jar. Note that
you can leave the "Classpaths" text box empty if you have added the .jar file path(s) to the
CLASSPATH environment variable of the operating system (see also Configuring the CLASSPATH
).

4. In the "Driver" box, select com.informix.jdbc.IfxDriver. Note that this entry is available if a valid .jar
file path is found either in the "Classpaths" text box, or in the operating system's CLASSPATH
environment variable (see the previous step).

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the

highlighted values with the ones applicable to your database server.

jdbc:informix-sqli://hostName:port/databaseName:INFORMIXSERVER=myserver;

154

177

© 2018-2024 Altova GmbH

Databases 199Structural Components

Altova MapForce 2024 Professional Edition

7. Click Connect.

4.2.1.10.8 MariaDB (ODBC)

This example illustrates how to connect to a MariaDB database server through ODBC.

Prerequisites:

· The MariaDB Connector/ODBC (https://downloads.mariadb.org/connector-odbc/) must be installed.
· You have the following database connection details: host, database, port, username, and password.

To connect to MariaDB through ODBC:

1. Start the database connection wizard .
2. Select MariaDB (ODBC), and then click Next.

3. Select Create a new Data Source Name (DSN) with the driver, and choose MariaDB ODBC 3.0
Driver. If no such driver is available in the list, click Edit Drivers, and select any available MariaDB
drivers (the list contains all ODBC drivers installed on your operating system).

4. Click Connect.

154

https://downloads.mariadb.org/connector-odbc/

200 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

5. Enter name and, optionally, a description that will help you identify this ODBC data source in future.

6. Fill in the database connection credentials (TCP/IP Server, User, Password), select a database, and
then click Test DSN. Upon successful connection, a message box appears:

© 2018-2024 Altova GmbH

Databases 201Structural Components

Altova MapForce 2024 Professional Edition

7. Click Next and complete the wizard. Other parameters may be required, depending on the case (for
example, SSL certificates if you are connecting to MariaDB through a secure connection).

Note: If the database server is remote, it must be configured by the server administrator to accept remote
connections from your machine's IP address.

4.2.1.10.9 Microsoft Access (ADO)

A simple way to connect to a Microsoft Access database is to follow the wizard and browse for the database
file, as shown in Connecting to an Existing Microsoft Access Database . An alternative approach is to set up
an ADO connection explicitly, as shown in this topic. This approach is useful if your database is password-
protected.

It is also possible to connect to Microsoft Access through an ODBC connection, but it has limitations, so it is
best to avoid it.

To connect to a password-protected Microsoft Access database:

1. Start the database connection wizard .
2. Click ADO Connections.
3. Click Build.

162

154

202 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

4. Select the Microsoft Office 15.0 Access Database Engine OLE DB Provider, and then click Next.

© 2018-2024 Altova GmbH

Databases 203Structural Components

Altova MapForce 2024 Professional Edition

5. In the Data Source box, enter the path to the Microsoft Access file in UNC format, for example, \
\myserver\\mynetworkshare\Reports\Revenue.accdb, where myserver is the name of the server
and mynetworkshare is the name of the network share.

6. On the All tab, double click the Jet OLEDB:Database Password property and enter the database
password as property value.

Note: If you are still unable to connect, locate the workgroup information file (System.MDW) applicable to
your user profile, and set the value of the Jet OLEDB: System database property to the path of the
System.MDW file.

4.2.1.10.10 Microsoft Azure SQL (ODBC)

In order to connect properly to an Azure SQL database, you must install the latest SQL Server Native Client.

https://learn.microsoft.com/en-us/sql/relational-databases/native-client/applications/installing-sql-server-native-client?view=sql-server-ver16&redirectedfrom=MSDN

204 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

For information about connecting to an Azure SQL database in the cloud, see this Altova blog entry.

4.2.1.10.11 Microsoft SQL Server (ADO)

This example illustrates how to connect to a SQL Server database through ADO. These instructions are
applicable when you use the recommended Microsoft OLE DB Driver for SQL Server (MSOLEDBSQL),
which is available for download at https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-
sql-server?view=sql-server-ver15.

Before following these instructions, make sure that you have downloaded and installed the provider above
on your workstation. The ADO provider must match the platform of MapForce (32-bit or 64-bit).

If you would like to use other ADO providers such as SQL Server Native Client (SQLNCLI) or Microsoft OLE
DB Provider for SQL Server (SQLOLEDB), the instructions are similar, but these providers are deprecated
and thus not recommended. Also, for the connection to be successful with a deprecated provider, you may
need to set additional connection properties as described in Setting up the SQL Server Data Link Properties
.

The Microsoft OLE DB Provider for SQL Server (SQLOLEDB) is known to have issues with parameter
binding of complex queries like Common Table Expressions (CTE) and nested SELECT statements.

To connect to SQL Server:

1. Start the database connection wizard .
2. Select Microsoft SQL Server (ADO), and then click Next. The list of available ADO providers is

displayed. In this example, the Microsoft OLE DB Driver for SQL Server is used. If it's not in the list,
make sure that it is installed on your computer, as mentioned above.

3. Click Next. The Data Link Properties dialog box appears.

162

154

https://www.altova.com/blog/connecting-databasespy-to-a-sql-azure-database-in-the-cloud/
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15

© 2018-2024 Altova GmbH

Databases 205Structural Components

Altova MapForce 2024 Professional Edition

4. Select or enter the name of the database server, for example, SQLSERV01. If you are connecting to a
named SQL Server instance, the server name looks like SQLSERV01\SOMEINSTANCE.

5. If the database server was configured to allow connections from users authenticated on the Windows
domain, select Windows Authentication. Otherwise, select SQL Server Authentication, clear the
Blank password check box, and enter the database credentials in the relevant boxes.

6. Select the Allow saving password check box and the database to which you are connecting (in this
example, "Nanonull").

206 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

7. To test the connection at this time, click Test Connection. This is an optional, recommended step.
8. Click OK.

4.2.1.10.12 Microsoft SQL Server (ODBC)

This example illustrates how to connect to a SQL Server database through ODBC.

Prerequisites:

· Download and install the Microsoft ODBC Driver for SQL Server from the Microsoft website, see
https://docs.microsoft.com/en-us/SQL/connect/odbc/download-odbc-driver-for-sql-server. This example
uses Microsoft ODBC Driver 17 for SQL Server to connect to a SQL Server 2016 database. You
might want to download a different ODBC driver version, depending on the version of SQL Server where
you want to connect. For information about ODBC driver versions supported by your SQL Server
database, refer to the driver's system requirements.

https://docs.microsoft.com/en-us/SQL/connect/odbc/download-odbc-driver-for-sql-server

© 2018-2024 Altova GmbH

Databases 207Structural Components

Altova MapForce 2024 Professional Edition

To connect to SQL Server using ODBC:

1. Start the database connection wizard .
2. Click ODBC Connections.

3. Select User DSN (or System DSN, if you have administrative privileges), and then click Add .
4. Select the driver from the list. Note that the driver appears in the list only after it has been installed.

5. Click User DSN (or System DSN if you are creating a System DSN).

Creating a System DSN requires that MapForce be run as an administrator. Therefore, in order to
create a System DSN, cancel the wizard, make sure that you run MapForce as an administrator,
and perform the steps above again.

6. Enter a name and, optionally, a description to identify this connection, and then select from the list the
SQL Server to which you are connecting (SQLSERV01 in this example).

154

208 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

7. If the database server was configured to allow connections from users authenticated on the Windows
domain, select With Integrated Windows authentication. Otherwise, select one of the other
options, as applicable. This example uses With SQL Server authentication... , which requires that
the user name and password be entered in the relevant boxes.

© 2018-2024 Altova GmbH

Databases 209Structural Components

Altova MapForce 2024 Professional Edition

8. Optionally, select the Change the default database to check box and enter the name of the
database to which you are connecting (in this example, Sandbox).

210 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

9. Click Next and, optionally, configure additional parameters for this connection.

© 2018-2024 Altova GmbH

Databases 211Structural Components

Altova MapForce 2024 Professional Edition

10. Click Finish. A confirmation dialog box listing the connection details opens.

212 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

11. Click OK. The data source now appears in the list of User or System data sources, as configured, for
example:

4.2.1.10.13 MySQL (ODBC)

This example illustrates how to connect to a MySQL database server from a Windows machine through the
ODBC driver. The MySQL ODBC driver is not available on Windows, so it must be downloaded and installed
separately. This example uses MySQL Connector/ODBC 8.0.

© 2018-2024 Altova GmbH

Databases 213Structural Components

Altova MapForce 2024 Professional Edition

Prerequisites:

· MySQL ODBC driver must be installed on your operating system. Check the MySQL documentation
for the driver version recommended for your database server version (see
https://dev.mysql.com/downloads/connector/odbc/).

· You have the following database connection details: host, database, port, username, and password.

If you installed MySQL Connector/ODBC for 64-bit platform, make sure to install MapForce for 64-bit
platform as well.

To connect to MySQL via ODBC:

1. Start the database connection wizard .
2. Select MySQL (ODBC), and then click Next.

3. Select Create a new Data Source Name (DSN) with the driver, and select a MySQL driver. If no
MySQL driver is available in the list, click Edit Drivers, and select any available MySQL drivers (the
list contains all ODBC drivers installed on your operating system).

If you installed MapForce 64-bit, then the 64-bit ODBC drivers are shown in the list. Otherwise, the
32-bit ODBC drivers are shown. See also Viewing the Available ODBC Drivers .

4. Click Connect.

154

173

https://dev.mysql.com/downloads/connector/odbc/

214 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

5. In the Data Source Name box, enter a descriptive name that will help you identify this ODBC data
source in future.

6. Fill in the database connection credentials (TCP/IP Server, User, Password), select a database, and
then click OK.

Note: If the database server is remote, it must be configured by the server administrator to accept remote
connections from your machine's IP address. Also, if you click Details>>, there are several additional
parameters available for configuration. Check the driver's documentation before changing their default
values.

4.2.1.10.14 Oracle (JDBC)

This example shows you how to connect to an Oracle database server from a client machine, using the JDBC
interface. The connection is created as a pure Java connection, using the Oracle Instant Client Package
(Basic) available from the Oracle website. The advantage of this connection type is that it requires only the Java
environment and the .jar libraries supplied by the Oracle Instant Client Package, saving you the effort to install
and configure a more complex database client.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. MapForce will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you

© 2018-2024 Altova GmbH

Databases 215Structural Components

Altova MapForce 2024 Professional Edition

may have set in application Options, see Java Settings ; b) The JVM path found in the Windows
registry; c) The JAVA_HOME environment variable.

· Make sure that the platform of MapForce (32-bit, 64-bit) matches that of the JRE/JDK.
· The Oracle Instant Client Package (Basic) must be available on your operating system. The

package can be downloaded from the official Oracle website. This example uses Oracle Instant Client
Package version 12.1.0.2.0, for Windows 32-bit and, consequently, Oracle JDK 32-bit.

· You have the following database connection details: host, port, service name, username, and
password.

To connect to Oracle through the Instant Client Package:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If

necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the
required .jar file is located at the following path: C:\jdbc\instantclient_12_1\ojdbc7.jar. Note that you
can leave the "Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH
environment variable of the operating system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select either oracle.jdbc.OracleDriver or oracle.jdbc.driver.OracleDriver. Note
that these entries are available if a valid .jar file path is found either in the "Classpaths" text box, or in
the operating system's CLASSPATH environment variable (see the previous step).

5. Enter the username and password to the database in the corresponding text boxes.

6. Enter the connection string to the database server in the Database URL text box, by replacing the
highlighted values with the ones applicable to your database server.

1045

154

177

216 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

jdbc:oracle:thin:@//host:port:service

7. Click Connect.

4.2.1.10.15 Oracle (ODBC)

This example illustrates a common scenario where you connect from MapForce to an Oracle database server
on a network machine, through an Oracle database client installed on the local operating system.

The example includes instructions for setting up an ODBC data source (DSN) using the database connection
wizard in MapForce. If you have already created a DSN, or if you prefer to create it directly from the ODBC
Data Source administrator in Windows, you can do so, and then select it when prompted by the wizard. For
more information about ODBC data sources, see Setting up an ODBC Connection .

Prerequisites:

· The Oracle database client (which includes the ODBC Oracle driver) must be installed and configured
on your operating system. For instructions on how to install and configure an Oracle database client,
refer to the documentation supplied with your Oracle software.

· The tnsnames.ora file located in Oracle home directory contains an entry that describes the database
connection parameters, in a format similar to this:

ORCL =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = server01)(PORT = 1521))
)
 (CONNECT_DATA =
 (SID = orcl)
 (SERVER = DEDICATED)
)
)

The path to the tnsnames.ora file depends on the location where Oracle home directory was installed.
For Oracle database client 11.2.0, the default Oracle home directory path could be as follows:

C:\app\username\product\11.2.0\client_1\network\admin\tnsnames.ora

You can add new entries to the tnsnames.ora file either by pasting the connection details and saving
the file, or by running the Oracle Net Configuration Assistant wizard (if available). If you want these
values to appear in dropdown lists during the configuration process, then you may need to add the path
to the admin folder as a TNS_ADMIN environment variable.

To connect to Oracle using ODBC:

1. Start the database connection wizard .
2. Select Oracle (ODBC / JDBC), and then click Next.

171

154

© 2018-2024 Altova GmbH

Databases 217Structural Components

Altova MapForce 2024 Professional Edition

3. Select ODBC.

4. Click Edit Drivers.

218 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

5. Select the Oracle drivers you wish to use (in this example, Oracle in OraClient11g_home1). The list
displays the Oracle drivers available on your system after installation of Oracle client.

6. Click Back.
7. Select Create a new data source name (DSN) with the driver, and then select the Oracle driver

chosen in step 4.

© 2018-2024 Altova GmbH

Databases 219Structural Components

Altova MapForce 2024 Professional Edition

Avoid using the Microsoft-supplied driver called Microsoft ODBC for Oracle driver. Microsoft
recommends using the ODBC driver provided by Oracle (see http://msdn.microsoft.com/en-
us/library/ms714756%28v=vs.85%29.aspx)

8. Click Connect.

http://msdn.microsoft.com/en-us/library/ms714756%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms714756%28v=vs.85%29.aspx

220 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

9. In the Data Source Name text box, enter a name to identify the data source (in this example, Oracle
DSN 1).

10. In the TNS Service Name box, enter the connection name as it is defined in the tnsnames.ora file (see
prerequisites). In this example, the connection name is ORCL. Note: If you wish to have the
dropdown list of the combo box populated with the values of the tnsnames.ora file, then you may need
to add the path to the admin folder as a TNS_ADMIN environment variable.

11. Click OK.

12. Enter the username and password to the database, and then click OK.

4.2.1.10.16 PostgreSQL (ODBC)

This example illustrates how to connect to a PostgreSQL database server from a Windows machine through
the ODBC driver. The PostgreSQL ODBC driver is not available on Windows, so it must be downloaded and

216

© 2018-2024 Altova GmbH

Databases 221Structural Components

Altova MapForce 2024 Professional Edition

installed separately. This example uses the psqlODBC driver (version 11.0) downloaded from the official website
(see also Database Drivers Overview).

Note: You can also connect to a PostgreSQL database server directly (without the ODBC driver), see Setting
up a PostgreSQL Connection .

Prerequisites:

· psqlODBC driver must be installed on your operating system.
· You have the following database connection details: server, port, database, user name, and password.

To set up a connection to PostgreSQL using ODBC:

1. Start the database connection wizard .
2. Click ODBC Connections.
3. Select the User DSN option.

4. Click Create a new DSN and select the driver from the drop-down list. If no PostgreSQL driver is
available in the list, make sure that the PostgreSQL ODBC driver is installed on your operating system,
as mentioned in the prerequisites above.

5. Click User DSN.

156

180

154

222 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6. Fill in the database connection credentials (these must be supplied by the database owner), and then
click Save.

The connection is now available in the list of ODBC connections. To connect to the database, you can either
double-click the connection or select it, and then click Connect.

© 2018-2024 Altova GmbH

Databases 223Structural Components

Altova MapForce 2024 Professional Edition

4.2.1.10.17 Progress OpenEdge (JDBC)

This example illustrates how to connect to a Progress OpenEdge 11.6 database server through JDBC.

Prerequisites

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. MapForce will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options, see Java Settings ; b) The JVM path found in the Windows
registry; c) The JAVA_HOME environment variable.

· Make sure that the platform of MapForce (32-bit, 64-bit) matches that of the JRE/JDK.
· The operating system's PATH environment variable must include the path to the bin directory of the

JRE or JDK installation directory, for example C:\Program Files (x86)\Java\jre1.8.0_51\bin.
· The Progress OpenEdge JDBC driver must be available on your operating system. In this example,

JDBC connectivity is provided by the openedge.jar and pool.jar driver component files available in C:
\Progress\OpenEdge\java as part of the OpenEdge SDK installation.

· You have the following database connection details: host, port, database name, username, and
password.

Connecting to OpenEdge through JDBC

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If

necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the
required .jar file paths are: C:\Progress\OpenEdge\java\openedge.jar;C:

\Progress\OpenEdge\java\pool.jar;. Note that you can leave the "Classpaths" text box empty if

you have added the .jar file path(s) to the CLASSPATH environment variable of the operating system
(see also Configuring the CLASSPATH).

4. In the "Driver" box, select com.ddtek.jdbc.openedge.OpenEdgeDriver. Note that this entry is
available if a valid .jar file path is found either in the "Classpaths" text box, or in the operating system's
CLASSPATH environment variable (see the previous step).

1045

154

177

224 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the

highlighted values with the ones applicable to your database server.

jdbc:datadirect:openedge://host:port;databaseName=db_name

7. Click Connect.

4.2.1.10.18 Progress OpenEdge (ODBC)

This example illustrates how to connect to a Progress OpenEdge database server through the Progress
OpenEdge 11.6 ODBC driver.

Prerequisites:

· The ODBC Connector for Progress OpenEdge driver must be installed on your operating system. The
Progress OpenEdge ODBC driver can be downloaded from the vendor's website (see also Database
Drivers Overview). Make sure to download the 32-bit driver when running the 32-bit version of
MapForce, and the 64-bit driver when running the 64-bit version. After installation, check if the ODBC
driver is available on your machine (see also Viewing the Available ODBC Drivers).

156

173

© 2018-2024 Altova GmbH

Databases 225Structural Components

Altova MapForce 2024 Professional Edition

· You have the following database connection details: host name, port number, database name, user ID,
and password.

Connecting to Progress OpenEdge through ODBC

1. Start the database connection wizard .
2. Click ODBC Connections.
3. Click User DSN (alternatively, click System DSN, or File DSN, in which case the subsequent

instructions will be similar).

4. Click Add .
5. Select the Progress OpenEdge Driver from the list, and click User DSN (or System DSN, if

applicable).

154

226 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6. Fill in the database connection credentials (Database, Server, Port, User Name, Password), and then
click OK. To verify connectivity before saving the entered data, click Test Connect.

7. Click OK. The new data source now appears in the list of ODBC data sources.

© 2018-2024 Altova GmbH

Databases 227Structural Components

Altova MapForce 2024 Professional Edition

8. Click Connect.

4.2.1.10.19 Sybase (JDBC)

This example illustrates how to connect to a Sybase database server through JDBC.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. MapForce will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options, see Java Settings ; b) The JVM path found in the Windows
registry; c) The JAVA_HOME environment variable.

· Make sure that the platform of MapForce (32-bit, 64-bit) matches that of the JRE/JDK.
· Sybase jConnect component must be installed on your operating system (in this example, jConnect

7.0 is used, installed as part of the Sybase Adaptive Server Enterprise PC Client installation). For the
installation instructions of the database client, refer to Sybase documentation.

· You have the following database connection details: host, port, database name, username, and
password.

1045

228 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

To connect to Sybase through JDBC:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If

necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the
required .jar file path is: C:\sybase\jConnect-7_0\classes\jconn4.jar. Note that you can leave the
"Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH environment
variable of the operating system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select com.sybase.jdbc4.jdbc.SybDriver. Note that this entry is available if a
valid .jar file path is found either in the "Classpaths" text box, or in the operating system's
CLASSPATH environment variable (see the previous step).

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the

highlighted values with the ones applicable to your database server.

jdbc:sybase:Tds:hostName:port/databaseName

7. Click Connect.

154

177

© 2018-2024 Altova GmbH

Databases 229Structural Components

Altova MapForce 2024 Professional Edition

4.2.1.10.20 Teradata (JDBC)

This example illustrates how to connect to a Teradata database server through JDBC.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. MapForce will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options, see Java Settings ; b) The JVM path found in the Windows
registry; c) The JAVA_HOME environment variable.

· Make sure that the platform of MapForce (32-bit, 64-bit) matches that of the JRE/JDK.
· The JDBC driver (one or more .jar files that provide connectivity to the database) must be available on

your operating system. In this example, Teradata JDBC Driver 16.20.00.02 is used. For more
information, see https://downloads.teradata.com/download/connectivity/jdbc-driver.

· You have the following database connection details: host, database, port, username, and password.

To connect to Teradata through JDBC:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If

necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the .jar files
are located at the following path: C:\jdbc\teradata\. Note that you can leave the "Classpaths" text box
empty if you have added the .jar file path(s) to the CLASSPATH environment variable of the operating
system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select com.teradata.jdbc.TeraDriver. Note that this entry is available if a valid .jar
file path is found either in the "Classpath" text box, or in the operating system's CLASSPATH
environment variable (see the previous step).

1045

154

177

https://downloads.teradata.com/download/connectivity/jdbc-driver

230 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the

highlighted value with the one applicable to your database server.

jdbc:teradata://databaseServerName

7. Click Connect.

© 2018-2024 Altova GmbH

Databases 231Structural Components

Altova MapForce 2024 Professional Edition

4.2.1.10.21 Teradata (ODBC)

This example illustrates how to connect to a Teradata database server through ODBC.

Prerequisites:

· The Teradata ODBC driver must be installed (see
https://downloads.teradata.com/download/connectivity/odbc-driver/windows. This example uses
Teradata ODBC Driver for Windows version 16.20.00.

· You have the following database connection details: host, username, and password.

To connect to Teradata through ODBC:

1. Press the Windows key, start typing "ODBC", and select Set up ODBC data sources (32-bit) from
the list of suggestions. If you have a 64-bit ODBC driver, select Set up ODBC data sources (64-bit)
and use 64-bit MapForce in the subsequent steps.

2. Click the System DSN tab, and then click Add.

https://downloads.teradata.com/download/connectivity/odbc-driver/windows

232 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

3. Select Teradata Database ODBC Driver and click Finish.

© 2018-2024 Altova GmbH

Databases 233Structural Components

Altova MapForce 2024 Professional Edition

4. Enter name and, optionally, a description that will help you identify this ODBC data source in future.
Also, enter the database connection credentials (Database server, User, Password), and, optionally,
select a database.

5. Click OK. The data source now appears in the list.

234 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6. Run MapForce and start the database connection wizard .
7. Click ODBC Connections.

154

© 2018-2024 Altova GmbH

Databases 235Structural Components

Altova MapForce 2024 Professional Edition

8. Click System DSN, select the data source created previously, and then click Connect.

Note: If you get the following error: "The driver returned invalid (or failed to return) SQL_DRIVER_ODBC_VER:

03.80", make sure that the path to the ODBC client (for example, C:\Program
Files\Teradata\Client\16.10\bin, if you installed it to this location) exists in your system's PATH

environment variable. If this path is missing, add it manually.

4.2.2 General Procedures

This section explains how to add a database to your mapping, select, remove, and edit database objects,
handle database relationships, and configure various database settings.

Database column icons

Database tables are represented by the icon. Database columns are represented by the icon. If there is
a constraint set for the column, the column's icon will have an additional symbol. If a column has more than

236 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

one constraint assigned to it, only the constraint with the highest priority is shown in the column icon. The
priority of constraints is described in the table below, starting with the highest priority.

This column is used as the table's primary key.

This column has a unique constraint.

This column has a foreign key that references the primary key of a different table.

This column contains XML data .

There is a default value set for this column. If no value is supplied to this column, the default
value will be inserted instead.

Add a database to your mapping
To be able to add a database to your mapping, you must select one of the following transformation
languages : Built-In, C++, C#, or Java. SQLite databases are supported only in Built-In. If you intend to
deploy the mapping to FlowForce Server, execute it with MapForce Server, or use features such as Bulk
Transfer and stored procedures , you must select Built-In.

Once the desired transformation language is selected, you can add a database to the mapping in one of the
following ways:

· Select Database in the Insert menu.

· Click the toolbar button.

When you take any of these actions, the database connection wizard appears, guiding you through the
steps required to connect to the database. For more information about how to connect to a database, see
Connecting to a Data Source . Once the database connection is successfully established, you are prompted
to select database objects that you would like to add to your mapping (see subsections below).

Databases can also be added to the mapping as variables . When you add a database structure as a
variable, the same database connection wizard appears.

Add database objects
As soon as you have connected to the data source, you are prompted to select data objects you would like to
include in your mapping. The Insert Database Objects dialog below shows the structure of the
Altova.sqlite database. To include a database object in the mapping, select the check box next to it and

click OK. In our example, we have included all the user tables.

293

21

270 303

154

152

366

© 2018-2024 Altova GmbH

Databases 237Structural Components

Altova MapForce 2024 Professional Edition

Structure of Insert Database Objects dialog

The top node in the structure indicates the database connection. The subsequent structure varies depending

on the database kind. For example, Oracle and IBM DB2 databases have a schema node under the

connection node, while other database types have a catalog (database) node. The bold font indicates the
default catalog (database) or schema, as applicable.

If your database user account has access to multiple databases or schemas on the server, you can switch to

any of them by clicking the icon (see below).

Options available in Insert Database Objects dialog
The options available in the Insert Database Objects dialog are described below.

Filter

The (Filter) button allows you to filter objects by name. Once you click the Filter button, the filter
icon is available next to objects which support filtering (in this example, Tables). Click the filter icon to
choose one of the following options: No Filter, Contains, Does Not Contain, Start With, Ends With,
Equals. In our example, we have decided to include only tables whose names start with A (see below).

238 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Show checked objects only

The (Show checked objects only) button displays only items with selected check boxes.

Object locator

The (Object Locator) button allows you to find specific database items. Select a particular object or
type its name in the combo box which appears in the lower area of the dialog box.

Add/Edit SELECT statement

The Add/Edit SELECT Statement button enables you to add and edit custom SELECT statements for
the current database. The data returned by such statements becomes available as a mapping source. For
more information, see Custom SELECT Statements .

Add/Edit relations

The Add/Edit Relations button enables you to define local primary and foreign key relationships between
fields in the database, in addition to those that may already exist in the database. For more information,
see Local Relationships .

Add/Edit recordset structures

The Add/Edit Recordset Structures button applies to databases that support stored procedures . The
button is enabled only if a stored procedure is currently selected in the database tree.

Show preview

The Show Preview button enables you to quickly preview the data of the currently selected table or view.
Note that you can also browse and query a database independently of the mapping process, by using the
Database Browser. For more information, see Query Databases .

Use object names relative to default schema

In MapForce, making database objects names relative to a schema is important if you plan to switch to a
different database later. This is also useful if the database schema has been renamed on the server, and
you need to update the mapping accordingly. If the new schema has the same structure as the one used
at mapping design time, you can switch to it without having to change the mapping connections manually.

Note the following:

249

259

303

283

© 2018-2024 Altova GmbH

Databases 239Structural Components

Altova MapForce 2024 Professional Edition

· Using object names relative to a default schema is possible for only databases that support
schemas: IBM DB2, IBM Informix, IBM Db2 for i (iSeries), Oracle, PostgreSQL, Progress
OpenEdge, SQL Server and Sybase.

· It is not possible to use relative names if the database component includes local relationships
or SELECT Statements as Virtual Tables .

· The Use object names relative to default schema check box affects the generated C#, C++, and
Java program code. When this check box is selected, all the database references also become
relative in the generated code.

To make database objects names relative to the default schema, take the following steps:

1. Open the Insert Database Objects dialog or right-click the title bar of the existing database
component and select Add/Remove/Edit Database Objects from the context menu.

2. Select one or more objects that belong to the default schema or to the default catalog (database)
and schema. The default database and schema are shown in bold. In the example below, the
default catalog is Sandbox, and the default schema is user. This structure is specific for SQL
Server databases and may vary in other database types.

3. Select the Use object names relative to default schema check box. Note that this check box is
grayed out if the database does not support relative object names.

If the objects that you need in the mapping are in a different schema (not the default one), you have the
following alternatives:

· You can connect as another database user that has access to the required default schema.
· If you have the required privileges, you can reconfigure the database server so as to change the

default schema of the existing database user.

The example below shows how to change the default schema of a database user. The example is based
on SQL Server and assumes that the Sandbox catalog and both the user and the schema already exist.

USE [Sandbox]
GO

259

249

240 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

ALTER USER [test_user] WITH DEFAULT_SCHEMA=[test_schema]

GO

Switch to a DB/schema without losing mapping connections
When database objects names are relative to a schema, you can switch to a new database or schema
without losing mapping connections. The following options are available:

· Open the database component settings and click Change. Follow the wizard steps to
connect to the new database as a new user. If the new database has the same structure, all the
connections in the mapping will be updated automatically. This means that these connections will
now match the default catalog and schema of the new database user.

· If you need to switch to a new database on a regular basis, it is recommended to define the
database connection as a Global Resource . For example, the Global Resource could have two
configurations: a default configuration for the development database and a production
configuration.

If database objects appear in red after switching, this indicates that they do not exist in the new database
schema.

Edit database objects
To change database objects, right-click the database component and select Add/Remove/Edit Database
Objects from the context menu (see below). This opens the Add/Remove/Edit Database Objects dialog,
which allows you to define the same settings and properties as in the Insert Database Objects dialog.

SQL auto-completion suggestions
When you type SQL statements in certain contexts, MapForce may suggest text entries automatically. Auto-
completion is available in the SQL Editor (see DB Query Pane), the Custom SQL text box in the Database
Table Actions dialog box, and the Add SELECT Statement dialog box.

241

841

283

265 249

© 2018-2024 Altova GmbH

Databases 241Structural Components

Altova MapForce 2024 Professional Edition

To disable auto-completion suggestions, take the following steps:

1. Select the Tools | Options menu item or press Ctrl+Alt+O.
2. Open the Database | SQL Editor section.
3. Clear the Automatically open check box in the Entry Helpers section.

To invoke auto-completion suggestions manually, press Ctrl+Space.

To find out more about other database-related settings, see Database .

4.2.2.1 Database Component Settings

After you add a database component to the mapping area, you can configure various database settings in the
Component Settings dialog box (screenshot below). You can open the Component Settings dialog box in
one of the following ways:

· Double-click the component title bar.
· Right-click the component and click Properties.
· Select the component in the mapping. Then click the Component menu and select Properties from

the context menu.

1046

242 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The available settings are listed below.

Database
This group displays database connection information. Click Change to select a different database or to
redefine the database objects in the existing database component. Connections to tables with the same names
will be retained. You can also change the tables in the component, by right clicking a database component
and selecting Add/Remove/Edit Database Objects.

Data Source

Specifies the absolute or relative path of the current data source.

Connection Name

Specifies the name of the connection. This name is generated automatically by MapForce. Typically, it is
the same as the data source name, but it may also be an alias if you are connecting with Altova Global
Resources . If there are multiple database components with the same connection in the mapping, the
connection name will look as follows: <connection1>, <connection2>, etc.

Database Kind

240

841

© 2018-2024 Altova GmbH

Databases 243Structural Components

Altova MapForce 2024 Professional Edition

Specifies the database type (e.g., SQLite).

Connection String

Displays the current database connection string. This read-only field is generated based on the
information you supply when you create or change a database connection.

Login settings
The login settings are used for all code generation targets and the built-in execution engine.

User

Enables you to change the user name for connecting to a database. Mandatory if the database requires a
user name to connect.

Password

Enables you to change the password for connecting to a database. Mandatory if the database requires a
password to connect.

JDBC-specific settings
The JDBC-specific settings are relevant when the mapping contains a JDBC connection and is executed by
generated Java code or by MapForce Server.

Note: ADO, ADO.NET, and ODBC connections are converted to JDBC (and the JDBC settings below apply)
when the mapping is run on a Linux or macOS machine. For details, see Database Mappings in
Various Execution Environments .

JDBC Driver

Displays the currently active driver for the database component. The default driver is automatically entered
when you define the database component. You can change the driver entered here to suit your needs.
Make sure that the syntax of the entry in the Database URL field conforms to the specific driver you
choose.

Database URL

URL of the currently selected database. Make sure that this entry conforms to the JDBC driver syntax of
the specific driver entered in the JDBC Driver field.

ADO/OLEDB-specific settings
The ADO/OLEDB-specific settings are relevant when the mapping contains an ADO connection and is
executed by the generated C# code, C++ code, or by MapForce Server running on Windows. For details, see
Database Mappings in Various Execution Environments . The Data Source and Catalog settings are not
used by the built-in execution engine.

Data Source

150

150

244 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Displays the name of the ADO data source.

Catalog

Displays the name of the ADO catalog.

Provider

Displays the currently active provider of the database component.

Add. options

Displays any additional database options.

Generation settings
Generation settings apply to all code generation targets as well as the built-in execution engine. The Strip
schema names from table names option allows you to strip database schema names from the generated code
and retain only the table names. Note that this option works only for SQL SELECT statements generated by
MapForce. User-defined SQL statements will not be modified.

The Generation settings option is supported for backward compatibility and should be avoided. To make
database object names relative to the default schema, use the approach described in Use Object Names
Relative to Default Schema .

Timeout for statement execution
When a database is used as a target component, execution timeouts can occur due to server availability,
traffic, long-running triggers, and other factors.

Timeout

Defines a period of time, in seconds, during which the execution engine must wait for a database
response before aborting the execution of a database statement. The default timeout is 60 seconds.

Infinite

When enabled, this option instructs the execution engine to never time out.

Note: Timeout for statement execution is not applicable to SQLite databases.

Database transaction handling
During the execution of a mapping that has a database component, there may be various database-related
errors (e.g., duplicate index keys, NULL values inserted into non-NULL columns, etc.). To be able to roll back
your database data in case of an error, you need to enable database transaction handling. You can enable
transaction rollback at database-component level (current setting), at table-action level , and at stored-
procedure level . For more information about some of the possible transaction-handling scenarios, see
Transaction Rollback: Scenarios .

249

238

268

315

276

© 2018-2024 Altova GmbH

Databases 245Structural Components

Altova MapForce 2024 Professional Edition

Some mappings may contain multiple database components that may have the same or different database
connections. The outcome of such mappings in case of a database-related error depends on the execution
engine:

· If the mapping is run with MapForce, only one target component can be executed when the mapping

runs. This is the component where the button is enabled. If a database error occurs in that
component, and if the Use transactions check box is enabled, all the changes done by the component
will be rolled back.

· If the mapping is run with MapForce Server or a MapForce-generated program, all the target
components are executed, sequentially. In this case, when a database error occurs, the rollback will
take place for the database component where the error occurred. The mapping will stop or continue
executing the next target component depending on the value you selected from the When an error
occurs drop-down list (see below).

Use transactions

Enables transaction processing for a target database component. Transaction processing is enabled for
all tables of the database component when you select this option. Enabling transaction handling at
database-component level encloses all database changes in a single transaction that will be rolled back in
case of a database-related error.

When an error occurs

If you have selected the Use transaction check box, you can choose what to do when a database-related
error occurs:

· Rollback top transaction and stop: The transaction which encloses all the database changes is
rolled back, and the execution of the mapping stops.

· Rollback top transaction and continue: Same as above, but the mapping continues to run after
the rollback (e.g., to process a second target component).

At database-component level, you control whether processing should continue for other target
components. For example, in an XML-DB-JSON mapping, an error has occurred in the database
component. In this case, the JSON file can still be processed and retrieved if you have enabled the
Rollback top transaction and continue option.

Traces
When a mapping writes data to a database, you can enable database tracing and error logging. Tracing is
useful if you want to track all the changes made to the database during the execution of the mapping. The
changes made to the database are logged in a trace report. If there are errors during the execution, these errors
will also be logged. Tracing is compatible only with the Built-In transformation language.

You can enable tracing at different levels:

· Database-component level: Tracing at this level could be useful for mappings that have multiple target
database components, and you need to enable tracing only for some of them. Enabling tracing at
database-component level automatically enables it for all tables and stored procedures in that
component. To be able to be traced, the relevant tables and stored procedures must be connected to
source nodes.

246 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· Table or stored-procedure level: You can decide whether to enable tracing for a specific table or
stored procedure. At table level, tracing includes events related to table actions (e.g., Insert All). In the
case of stored procedures, events related to the stored procedure call are traced.

· Database-field level : By default, all fields are traced, but you can exclude certain fields from the
trace report or choose to include certain fields only in case of an error.

Importantly, the three levels above are hierarchical. This means that in order to set tracing at a lower level, you
must enable tracing at parent level first. For example, if you need to set tracing at table level, you must first
enable tracing at database-component level. The same principle applies when you narrow down the tracing
level. For example, if you limit tracing only to errors at database-component level, it is not possible to use full
tracing at table and stored-procedure level.

MapForce allows you to set the following tracing options:

Trace level

When tracing is enabled, the actions performed by the mapping against the database are logged in a
trace file. You can choose to log all actions, only errors, or disable tracing completely.

Trace file

Specifies the file to which database trace information will be written when the mapping runs. This path can
be absolute or relative and is influenced by the Save all file paths relative to MFD file check box. The trace
file is in XML format. If you prefer the log file to be in a format other than XML, you can map data from it to
some other component (e.g., a text file, another database, etc.).

Structure of a trace file
When you enable tracing for a database component, a tracing structure becomes available in the lower
half of the component (screenshot below).

269 315

270

© 2018-2024 Altova GmbH

Databases 247Structural Components

Altova MapForce 2024 Professional Edition

The screenshot above shows that the top node in the tracing structure is the name of the trace file
(Log.xml). The rest of the tracing structure is modeled based on the structure of the database tables or
stored procedures that take part in the mapping. In this example, the top element has the same name as
the database. The BookCatalog01 element has two child elements: Authors and trace:summary. The
Authors element reflects the structure of the table that is added to the database component. The
trace:summary element includes an errors attribute which reports the number of encountered errors.

The Authors element contains two child elements: trace:values and trace:actions. The
trace:values structure displays all the columns of the database table. By default, all columns are
traced, but you can change this by configuring tracing at database-filed level (see above). For stored
procedures, this structure displays the parameters of the stored procedure.

The trace:actions element includes information about all the actions that are defined for this particular
database table. In our example, two actions have been configured for the Authors table: Ignore If and
Insert Rest. Each traced action has a rows-affected attribute that specifies how many rows have been
affected by the respective database action. The trace:error element is populated only if an error occurs.
This element has two attributes: code and state. The text of the error and the attribute values are
supplied by the database driver and will therefore be different for different databases.

248 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Trace file in the Output pane
To preview the trace file, click the Output pane. Note that the trace report displayed in the Output pane is
for information purposes only and does not reflect the actual execution results. To produce an actual trace
report, run the SQL script from the Output pane. An example of a trace file is given below:

<BookCatalog01>
<Authors>

<trace:values>
<Author>Neil Gaiman</Author>
<Website>www.neilgaiman.com</Website>

</trace:values>
<trace:actions>

<trace:ignore/>
</trace:actions>

</Authors>
<Authors>...</Authors>
<Authors>...</Authors>
<trace:summary errors="0"/>

</BookCatalog01>

For more information about tracing, see Scenario 1 in Transaction Rollback: Scenarios .

Save all file paths relative to MFD file
When this option is enabled, MapForce saves the file paths displayed in the Component Settings dialog box
relative to the location of the MapForce design file (.mfd). Use relative paths if you intend to run the mapping

with MapForce Server on a different operating system. See also Relative and Absolute Paths .

Use shared database connection at runtime
This option enables you to choose whether several database components that use the same data source and
feature in the same mapping should share the same database connection. By default, this option is disabled;
otherwise, it might change the behavior of the mapping, especially when the same connection is shared
between one or more source components and a target component.

Sharing the same database connection enables you to solve various issues, for example, with table/row locks,
transaction isolation, and the number of server connections (see details below).

· When you read a row from a table and try to update the same row, it might happen (depending on the
vendor) that you run into a table/row lock error. With a shared database connection, this issue can be
avoided.

· With connection-sharing enabled, you will be able to read already changed rows that are wrapped in a
transaction. With separate connections, only committed changes are visible.

· Connection sharing also helps reduce the number of database logins, which will enable you to reduce
the overall processing time for mappings with a lot of database components that use the same data
source. The database logon procedure can be time consuming, especially with cloud server instances
over a slow network or when the database server is busy.

264

276

45

© 2018-2024 Altova GmbH

Databases 249Structural Components

Altova MapForce 2024 Professional Edition

4.2.2.2 Custom SELECT Statements

MapForce allows you to create custom SQL SELECT statements with or without parameters. These
statements are represented as table-like structures, from which you can map data to other components. For
example, you can create a custom statement to join tables, filter your database data, and define parameters
that can accept values from another component in the mapping.

SQL SELECT statements without parameters are supported in C++, C#, Java, and Built-In languages. SQL
SELECT statements with input parameters are compatible only with the Built-In transformation language.

Create/Edit/Remove a SELECT statement
To add a SELECT statement to a database component, follow the instructions below:

1. Right-click the title of the database component and select Add/Remove/Edit Database Objects from
the context menu. Alternatively, select the database component and select the menu command
Component | Add/Remove/Edit Database Objects.

2. In the Add/Remove/Edit Database Objects dialog, do one of the following:

o To enter a custom SELECT statement, click the Add/Edit SELECT Statement button.

o To generate the SELECT statement for a particular table, right-click the relevant table and select

Generate and add an SQL statement from the context menu. You will be able to edit the
generated statement afterwards.

To edit an existing SELECT statement, do one of the following:

· Right-click the SELECT statement in the component and select Edit SELECT Statement.
· Right-click the database component and select Add/Remove/Edit Database Objects from the

context menu. Then double-click the relevant SELECT statement in the Add/Remove/Edit Database
Objects dialog.

· In the Add/Remove/Edit Database Objects dialog, select the relevant SELECT statement and click
Add/Edit SELECT Statement.

· In the Add/Remove/Edit Database Objects dialog, right-click the relevant SELECT statement and
select Edit a SELECT Statement.

To remove a SELECT statement, take the steps below:

1. Right-click the database component and select Add/Remove/Edit Database Objects.
2. Right-click the SELECT statement you want to delete and select Remove SELECT Statement from

the context menu.

Important notes
Note the following points:

· All calculated expressions in the SELECT statement must have a unique correlation name (e.g.,
SELECT *, (Quantity*UnitPrice) AS Price) to become available as mappable items.

· If you connect to an Oracle or IBM DB2 database using JDBC, the SELECT statement must not have
the final semicolon.

250 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

SQL SELECT statements without parameters
The example below shows how to work with custom SELECT statements without parameters. In the mapping
shown below, we map database data to a text file. The BookCatalog.sqlite database has a parent table

called Authors and a child table called Books. However, only the SELECT statement with a tree structure is
displayed in the component. The structure of the tree depends on the SQL query you define in the Enter a
SQL SELECT Statement dialog. Since nothing will be mapped from the Authors and Books tables, these
tables are absent from the component.

SELECT statement
For the database component, we have added the following SQL statement (see instructions in
Create/Edit/Remove a SELECT Statement):

The SQL statement selects all the tables from the Authors table and filters database data to include only
authors from the UK. As soon as we add this statement to the Enter a SQL SELECT Statement dialog, the
statement becomes available in the Add/Remove/Edit Database Objects dialog (screenshot below). The
statement is also visible in the database component (see mapping above). The number of visible lines of the
SELECT statement can be configured in the Options dialog box (the Limit annotation display option).

1040

© 2018-2024 Altova GmbH

Databases 251Structural Components

Altova MapForce 2024 Professional Edition

Output
The output displays a list of comma-separated values that include authors only from the UK (code listing
below).

Author,Country,Website
Bram Stoker,UK,www.bramstoker.org
Charles Dickens,UK,www.charlesdickensinfo.com
Emily Brontë,UK,n/a
James Herbert,UK,www.james-herbert.co.uk
Neil Gaiman,UK,www.neilgaiman.com
Terry Pratchett,UK,www.terrypratchettbooks.com
Agatha Christie,UK,www.agathachristie.com
Roald Dahl,UK,www.roalddahlfans.com
David Walliams,UK,www.worldofdavidwalliams.com
Kenneth Grahame,UK,n/a
Philip Pullman,UK,www.philip-pullman.com
J.K. Rowling,UK,www.jkrowling.com
Ann Cleeves,UK,www.anncleeves.com

SQL SELECT statements with parameters
Our second example illustrates a mapping in which the database component has a custom SELECT statement
with a parameter (screenshot below).

SELECT statement
For the BookCatalog component, we have entered the following SQL statement:

252 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The statement uses the Country parameter. This parameter will accept values from the constant (under the
BookCatalog component). To be able to map data from the SELECT statement with the parameter, click the

 button next to the SELECT_Statement node in the database component (mapping above) and select Insert
Call with Parameters from the context menu. This inserts a Call component with parameters (central
component in mapping above). The Call component has two parts: The left part accepts an input parameter (in
our case, Country), and the right part replicates the SELECT statement with the tree structure from the
database component. The filtered data is then mapped to the Authors text file.

Output
The output now displays authors only from the USA (code listing below).

Author,Country,Website
Stephen King,US,www.stephenking.com
Frank Herbert,US,n/a
Isaac Asimov,US,www.asimovonline.com
Blake Crouch,US,www.blakecrouch.com
Ray Bradbury,US,www.raybradbury.com
Joe Hill,US,www.joehillfiction.com
Josh Malerman,US,www.joshmalerman.com
George R. R. Martin,US,www.georgerrmartin.com
A. J. Finn,US,n/a
Dan Brown,US,www.danbrown.com
Dean Koontz,US,www.deankoontz.com

Example files
For more information about mappings that use custom SQL SELECT statements as input, see the following
examples in the MapForceExamples folder:

· DB_EmployeeListByTitle.mfd

· DB_MostExpensiveArticle.mfd

· DB_ManagerList_AllOffices.mfd

· DB_ManagerList_SelectedDepartment.mfd

· DB_ManagerList_SelectedOffice.mfd

4.2.2.3 Database Relationships

When you add a database as a source component to your mapping, each table appears as the root table
(screenshot below). When you click on the plus icon of a root table, you can see all related tables below the
root table. The database component below displays two types of arrows that mean the following:

236

© 2018-2024 Altova GmbH

Databases 253Structural Components

Altova MapForce 2024 Professional Edition

· The arrow pointing to the left () indicates that the Books table is a child table of the Authors table.
· The arrow pointing to the right () shows that the Authors table is the parent of the Books table.

Structure of BookCatalog.sqlite
Depending on your business needs, you can use various mapping scenarios. The subsections below describe
some of the possible scenarios. All the scenarios described below feature a hierarchical database called
BookCatalog.sqlite. The database has two tables (Authors and Books) that have a foreign-key relationship.

The screenshot below shows that the Books table has a foreign key called AuthorID that references the
primary key in the Authors table.

254 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Sample data from BookCatalog.sqlite
The extracts from the Authors and Books tables are given below:

Authors table

Books table

© 2018-2024 Altova GmbH

Databases 255Structural Components

Altova MapForce 2024 Professional Edition

Scenario 1: Preserve the hierarchy
In our first scenario, we map data from BookCatalog.sqlite to Authors.xsd (see screenshot below). In this

mapping, Authors is the root table. Our goal is to preserve the hierarchical relationship and get all the authors
with their corresponding books in the output.

The code listing below shows an extract of the output:

<Authors>
<Author ID="23">

<Name>Fredrik Backman</Name>
<Country>Sweden</Country>
<Website>www.fredrikbackmanbooks.com</Website>
<Publications>

<Publication ID="26">
<Title>Anxious People</Title>
<ISBN>978-1-4059-3025-3</ISBN>
<Publisher>Penguin Books Ltd</Publisher>
<PrintLength>416</PrintLength>
<Year>2021</Year>
<Genre>Humor</Genre>
<Price>9.99</Price>

</Publication>
<Publication ID="27">

<Title>A Man Called Ove</Title>
<ISBN>9781444775815</ISBN>
<Publisher>Sceptre</Publisher>
<PrintLength>320</PrintLength>
<Year>2015</Year>
<Genre>Humor</Genre>

256 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

<Price>11.46</Price>
</Publication>

</Publications>
</Author>

</Authors>

Scenario 2: Swap the tables
In the second scenario, our goal is to get a list of books and their details in the output file. To achieve the goal,
we will use Books as the root table. The table relationships will stay intact. The mapping design looks as
follows:

The code listing below shows an extract of the output:

<Books>
<Book ID="3">

<Title>Blackout</Title>
<Author>Ragnar Jonasson</Author>
<AuthorID>2</AuthorID>
<ISBN>1910633461</ISBN>
<Publisher>Orenda Books</Publisher>
<PrintLength>276</PrintLength>
<Year>2016</Year>
<Genre>Crime & Mystery</Genre>
<Price>8.49</Price>

</Book>
<Book ID="4">

<Title>Outsider</Title>
<Author>Stephen King</Author>
<AuthorID>1</AuthorID>
<ISBN>1501180983</ISBN>
<Publisher>Scribner</Publisher>
<PrintLength>576</PrintLength>

© 2018-2024 Altova GmbH

Databases 257Structural Components

Altova MapForce 2024 Professional Edition

<Year>2018</Year>
<Genre>Horror</Genre>
<Price>12.79</Price>

</Book>
</Books>

Scenario 3: Map DB data from different root tables
In the third scenario, we will map data from each root table of the database component to Authors.xsd (see

screenshot below). The related tables will be ignored.

As a result, every single book, regardless of its author, will be listed under each author (code listing below).

<Author ID="19">
<Name>Sebastian Fitzek</Name>
<Country>Germany</Country>
<Website>www.sebastianfitzek.com</Website>
<Publications>

<Publication ID="1">
<Title>Misery</Title>
<ISBN>1501143107</ISBN>
<Publisher>Scribner</Publisher>
<PrintLength>368</PrintLength>
<Year>2016</Year>
<Genre>Horror</Genre>
<Price>11.99</Price>

</Publication>
<Publication ID="2">

<Title>Nightblind</Title>
<ISBN>9781910633113</ISBN>
<Publisher>Orenda Books</Publisher>
<PrintLength>231</PrintLength>

258 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

<Year>2016</Year>
<Genre>Crime & Mystery</Genre>
<Price>9.99</Price>

</Publication>
<Publication ID="3">...</Publication>
<Publication ID="4">...</Publication>
<Publication ID="5">...</Publication>
<Publication ID="6">...</Publication>
<Publication ID="7">...</Publication>
<Publication ID="8">...</Publication>

</Publications>
</Author>

Scenario 4: Map DB data to SQL/XML structure
In the fourth scenario, our goal is to map database data to a flat schema structure (SQL/XML Standard). The
flat schema model is based on the ISO-ANSI SQL/XML specification INCITS/ISO/IEC 9075-14-2008. The
SQL/XML specification defines how to map databases to XML. Relationships are defined in schemas using
identity constraints; there are no references to elements. Therefore, the schema is a flat structure which
resembles a tree-like view of the database. The specification can be purchased at the ANSI store. For more
information, see www.iso.org.

The mapping below shows that database data is mapped from different root tables to a flat SQL/XML structure.
The related tables are ignored. It is also possible to map database data from the related tables. However, if
there are Book records that do not belong to an Author, these Book records will not be mapped to the target.

As a result, we will get a list of Author rows and a separate list of Book rows (screenshot below).

<Author>
<row>

<ID>1</ID>
<Name>Stephen King</Name>

http://www.iso.org/iso/catalogue_detail.htm?csnumber=45499
http://webstore.ansi.org/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=45499

© 2018-2024 Altova GmbH

Databases 259Structural Components

Altova MapForce 2024 Professional Edition

<Country>US</Country>
</row>
<row>

<ID>2</ID>
<Name>Ragnar Jonasson</Name>
<Country>Iceland</Country>

</row>
<row>...</row>
<row>...</row>

</Author>
<Book>

<row>
<Title>Misery</Title>
<BookID>1</BookID>
<AuthorID>1</AuthorID>
<ISBN>1501143107</ISBN>
<Publisher>Scribner</Publisher>
<PrintLength>368</PrintLength>
<Year>2016</Year>
<Genre>Horror</Genre>
<Price>11.99</Price>

</row>
<row>

<Title>Nightblind</Title>
<BookID>2</BookID>
<AuthorID>2</AuthorID>
<ISBN>9781910633113</ISBN>
<Publisher>Orenda Books</Publisher>
<PrintLength>231</PrintLength>
<Year>2016</Year>
<Genre>Crime & Mystery</Genre>
<Price>9.99</Price>

</row>
<row>...</row>
<row>...</row>

</Book>

For more information about this scenario, see also the following mapping:
MapForceExamples\DB_Altova_SQLXML.mfd.

4.2.2.4 Local Relationships

When database tables do not have relationships between them, you can create primary and foreign key
relationships between columns of different tables directly in MapForce (i.e., local relationships). Any database
columns can be used as primary or foreign keys. You can also create new relations in addition to those
existing in the database. Locally defined relationships are saved together with the mapping.

The following table lists all the possible fields between which you can define local relations. Mixed relationships
are possible (e.g., mapping the output of a stored procedure to a database column). The fields taking part in the
relationship must have the same or compatible data types.

260 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Primary/unique key Foreign key

· Column of a database table or view
· Output parameter or return value of a stored

procedure (see also Stored Procedures)
· Column of a recordset returned by a stored

procedure. Applicable if the stored procedure
is called as a data source (without
parameters) or as a function (with input and
output parameters). In order for the recordset
to become available for selection, you must
execute the stored procedure once, to
retrieve the recordset.

· Column of a user-defined SELECT statement
(see also SQL SELECT Statements as
Virtual Tables)

· Column of a database table or view
· Input parameter of a stored procedure
· Input parameter of a user-defined SELECT

statement

Example
The BookCatalogNoRelation.sqlite database has two tables: Authors and Books (screenshot below). At

this stage, no foreign-key relationship exists between the tables.

DB component without relationships
When we insert the database into the mapping, the database component looks as follows:

303

249

© 2018-2024 Altova GmbH

Databases 261Structural Components

Altova MapForce 2024 Professional Edition

Local relationship definition
In this example, our goal is to reference the Authors table in the Books table. Follow the instructions below:

1. Right-click inside the component and select Add/Remove/Edit Database Objects from the context
menu.

2. Click the Add/Edit Relations button in the Add/Remove/Edit Database Objects dialog.
3. Click Add Relation in the Add/Edit Relations dialog (screenshot below).
4. Click [select object] in the Primary/Unique Key Object column and select Authors. Then select

AuthorID in the [select column] drop-down list.
5. Click [select object] in the Foreign Key Object column and select Books. Then select AuthorID in the

[select column] drop-down list.
6. Click OK to complete the local relation definition.

262 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

DB component with relationships
As soon as you have finished defining the local relations, the database component becomes available in the
mapping area (screenshot below). The component displays two possible database structures. In each of these
structures, the root table is different. For example, in the expanded structure below, Authors is the root table.
Depending on your needs, you can map data to and from any of the structures available in the component. You
can also mix and match tables from different structures in the component. For more information about these
scenarios, see Database Relationships .252

© 2018-2024 Altova GmbH

Databases 263Structural Components

Altova MapForce 2024 Professional Edition

4.2.2.5 Database-related Functions

When you work with databases, you may need to use various functions to handle null values, generate
sequential and unique values, and replace special characters. For more information, see the subsections
below.

Handle null values
MapForce provides the following functions to handle null values:

· To check at mapping runtime whether a database field is null, use the is-null and is-not-

null functions. To see if a table has null fields, query it using the Database Browser in MapForce

(see DB Query Pane).
· To set a database field to null, use the set-null function.

· To replace null database values with a string, use the substitute-null function.

For information about handling NULL values in a database, see Null Equal . See also Null Values in
Database Components .

Generate sequential and unique values
When you update database records, you might need to create on-the-fly sequential or unique values for those
database fields which do not receive any input data from the source. In such cases, you can use the following
functions:

· The auto-number function can be used to generate primary key values.

· The create-guid function creates a globally-unique identifier (as a hex-encoded string) for a

specific field.

Note that values for database fields can also be written using database-generated values. This option is
available in the Database Table Actions dialog box and is particularly useful when you need to generate
primary keys.

Replace special characters
When you update database data, you might need to remove special characters (e.g., carriage return/line feed
(CR/LF) characters). To achieve this, you can use the following approaches:

1. You can define a node function for a specific database field (or multiple fields) that you need to
process. The node function will receive the value of the database field as input, process this value, and
then return the outcome to the mapping. For more information about this approach, see Defaults and
Node Functions .

2. You can also process database values with the help of MapForce built-in functions. For example, to
identify specific characters, including control characters, you can use the char-from-code

function. To replace values, use the replace function.

611

611

283

612

612

267

123

545

637

265

449

594

661

264 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

4.2.3 Database Table Actions

When you use a database as a target component, you can configure various database table actions. For
example, you can insert all records from the source file into your database. You can also decide when to
update, delete, and ignore records. This section provides an overview of all the available actions and shows
some of the possible scenarios of using table actions.

SQL statements in the output
When you map data to a database and preview the result of the mapping in the Output pane, you will see an
SQL script. The script shows pseudo-SQL statements for information purposes only. You must not apply this
SQL script manually to the database, using SQL tools other than the following execution engines: MapForce,
MapForce Server (both standalone or under FlowForce Server management), or the execution
environment of the code generated for C++, C#, or Java. The script in the Output pane may contain values that
are not understood by external SQL editors.

If you want to apply changes to the database directly from MapForce, open the Output pane and click the Run
SQL/NoSQL-Script command in the toolbar or in the Output menu. This action will modify the database with
immediate effect.

When the mapping is executed with MapForce Server (standalone or under FlowForce Server management),
the changes to the database are made with immediate effect. The same happens in the generated code: The
database changes are made when you compile and run the code (e.g., by clicking the Run command in Visual
Studio).

Important note
Your MapForce installation includes several sample databases that are available in the MapForceExamples

folder. It is not recommended to modify any databases in this folder, as this may render several examples
unusable. A simple way to avoid overriding original data is to back up the entire MapForceExamples folder

before updating any files in it.

Note about MySQL/MariaDB ODBC
If the target database is MySQL or MariaDB through ODBC, the option Return matched rows instead of
affected rows must be enabled in the Cursor/Results tab of MySQL ODBC Connector. Alternatively, if you enter
the connection string manually in the Database Connection wizard, add Option=2 to the connection string
(e.g., Dsn=mydsn;Option=2;).

To enable this option from the MySQL ODBC Connector, take the steps below:

1. Press the Windows key and start typing ODBC.
2. Run the ODBC Data Sources Administrator (32-bit or 64-bit, depending on the platform of the installed

MySQL ODBC Connector).
3. Click the Data Source Name (DSN) used by the MapForce mapping and then click Configure (see

below).

825 828

© 2018-2024 Altova GmbH

Databases 265Structural Components

Altova MapForce 2024 Professional Edition

4. Click Details >> to make the advanced options available.
5. Click the Cursors/Results tab and select the check box Return matched rows instead of affected rows.

4.2.3.1 DB Table Actions: Settings

When you map data to a database table, this table will have the Database Actions button next to it. The
screenshot below shows that we map XML data to two database tables, and each table has its own Database
Actions button (circled red below).

Clicking the Database Actions button opens the Database Table Actions dialog box (see below), in which
you can configure various settings, actions and options. The Database Table Actions dialog comprises five
parts:

1. Actions to be performed before any actions defined for each record

266 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

2. Actions defined for each record
3. Database transaction settings
4. Tracing and error logging settings
5. Bulk transfer settings

To find out more about each part of the dialog, see the subsections below.

SQL statement to execute before first record
In this section, you can define SQL statements that will be executed before any actions defined in the Actions
to execute for each record section. The following options are available:

© 2018-2024 Altova GmbH

Databases 267Structural Components

Altova MapForce 2024 Professional Edition

· The None option means that no action will be performed. This is the default setting.
· The DELETE all records option will delete all records from the selected table. Additionally, you can

choose to delete all records in all child tables (the also delete all records in all child tables check box).
· The Custom SQL setting enables you to write a custom SQL statement that will affect the whole table.

For example, you can add a statement that will supply tracking information about a mapping. Note that
support for multiple SQL statements in one query depends on the database, connection method, and
the driver used.

For more information about these actions, see DB Table Actions: Scenarios .

Actions to execute for each record
The Actions to execute for each record section allows you to define database actions that will be performed for
each record in your database. To manage table actions, click the Append Action, Insert Action, or Delete
Action buttons. Multiple actions can be defined if necessary. Any table actions defined after the first Insert All
or Insert Rest action will never be executed, because the subsequent conditions cannot be satisfied. If you
have added a table action after the Insert All or Insert Rest action, a dialog box will inform you that the
subsequent table action will be deleted.

For each action, all input data is compared to the database data. If all the comparisons are true, a specific
action will be performed. The defined table actions are processed from left to right. For example, if you have
defined an Update If condition and then an Insert Rest condition, the Update If action will be processed first. If
the Update If condition is not satisfied, then the Insert Rest action will be performed. If neither condition is
satisfied, no action will take place.

Mapped value/DB-generated/max() + 1
When you set up the Insert All or Insert Rest action, you can decide how values are to be generated. The
following options are available: mapped value, DB-generated, and max() + 1. The mapped value option means
that source data will be mapped to the database field directly. The mapped value option is the standard setting
for most database fields.

When autoincrement is set for the primary key(s) in your database, you can choose between a mapped value
and a DB-generated value. When there is no autoincrement, you can choose between a mapped value and the
max() + 1 option. The max() + 1 option generates numeric values based on the existing values in the database.
For example, if a table has three records with primary keys 1, 2, and 3, then the primary key of a new record
will be 4.

NULL equal
When you select the NULL equal check box next to a record (screenshot below), null values in the source
record and null values in the target record will be considered equal. Not selecting this check box may lead to
incorrect results. You can use the NULL equal check box if all of the following conditions are true:

· The field for which you want to enable the NULL equal option is nullable. This means that this field has
been configured in such a way that it can accept NULL values.

· One or more of the following actions have been configured: Ignore If, Update If, or Delete If.
· One or more table actions (e.g., Ignore If) have at least one equal or equal (ignore case) condition (see

Author field in screenshot below).

271

268 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The image above shows that two actions have been set up for the Authors table: Ignore If and Insert Rest. The
Ignore If condition will compare the Author and Website values in the source with the Author and Website
values in the database. If these values are the same, these records will be ignored in the database, and the
records from the source that have no counterparts in the database will simply be inserted into the database.

The NULL equal option has been enabled for the Website column. For example, one of Author records has a
null value in the Website field in the source and target. With the NULL equal option enabled, this Author record
will be ignored and will not be inserted into the database. However, if the NULL equal check box is not
selected, the record will no longer satisfy the Ignore If condition and will be inserted into the database.

Child tables
If a foreign-key relationship exists in your database, you will be able to see the names of child tables in the
Database Table Actions dialog (Books in Database Table Actions dialog above). The following options will
become available:

· Delete data in child tables: This option may be particularly meaningful when you set up, for example,
the Update If action for a parent table and the Insert All action for its child table. The Update If
condition will update only those parent records that exist both in the source and the database. The
Update If condition will prevent you from getting duplicate records in the parent table.

The Delete data in child tables option will delete only those Book records whose parent records
(Authors) satisfy the Update If condition (i.e., exist in the source and the database). Deleting child
records will prevent you from getting duplicate or orphaned data in the child table. The Insert All action
defined for the child table will insert only those source child records whose parent records satisfy the
Update If condition.

· Ignore input child data: This option is useful when you want to update only a parent table and leave all
its child records unchanged.

Database transaction handling
The Database transaction handling section enables you to roll back an operation or sequence of operations
(transaction) in case of a database-related error (e.g., NULL values inserted into non-NULL columns). To enable
transactions at table-action level, select the Use transactions check box in the Database Table Actions
dialog box (screenshot below).

© 2018-2024 Altova GmbH

Databases 269Structural Components

Altova MapForce 2024 Professional Edition

The following transaction-handling options are available:

· Rollback top transaction and stop: Since transaction handling can be configured at different levels of
the database hierarchy, the top transaction can refer to (i) the transaction at database-component
level if you have enabled transactions at that level or (ii) to the transaction defined in the topmost
table. The changes made to the database will be rolled back for each level of the hierarchy up to the
topmost level, and then execution will stop.

· Rollback top transaction and continue: Same as above, but the mapping continues to run after the
rollback (e.g., to process another target component if such a component exists).

· Rollback current transaction and stop: When a database-related error occurs, only the changes
enclosed in the current transaction will be rolled back, and the processing of subsequent records will
stop. The changes made previously outside of the current transaction will be committed.

· Rollback current transaction and continue: Same as above, but the mapping continues to run after the
rollback.

For more information about various transaction-handling scenarios, see Transaction Rollback: Scenarios .

Traces
When a mapping writes data to a database, you can enable database tracing and error logging. Tracing is
useful if you want to track all the changes made to the database during the execution of the mapping. The
changes made to the database are logged in a trace report. If there are errors during the execution, these errors
will also be logged.

For more information about the structure of a trace report, see Trace File . For an example that has tracing
enabled, see Scenario 1 in Transaction Rollback: Scenarios .

To enable tracing at table level, take the steps below:

1. Make sure that the tracing level at database-component level is set to Always or Error.
2. Click the Table Action button next to the table for which you want to enable tracing.
3. Select one of the following trace levels in the Traces section of the Database Table Actions

(screenshot below): (i) the Always disabled option means that no tracing will occur for this table; (ii) the
Limit to errors option restricts tracing only to error events; (iii) the Use component settings option
inherits the settings that were defined at component level.

241

276

245

281

245

270 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Tracing at database field level
When you enable tracing at database-component level and table level, all the fields (database columns) are
included in the tracing report by default (screenshot below). If you want the trace report to include tracing
information only about specific database fields, click the Fields button in the Database Table Actions dialog
box. You can choose to hide fields, include them in any case or include them only in case of an error.

Use bulk transfer
The Use bulk transfer option means that multiple INSERT statements are executed as one query. Using this
option dramatically speeds up the Insert process, because only one statement needs to be executed instead of
many. The Use bulk transfer option is configured in MapForce, but the actual bulk transfer of data occurs when
the mapping is run by MapForce Server.

Prerequisites
The bulk transfer option is supported when the following conditions are true:

· The mapping transformation language is set to Built-In.
· The mapping is run by MapForce Server (standalone or under FlowForce Server management).
· The MapForce Server license is not limited to single-thread execution on a multi-core machine. This

means that the Limit to single thread execution option in the Server Management tab of Altova
LicenseServer must be disabled.

· The Insert All action is set for the relevant database table.
· The table into which you want to bulk-insert data must not have any related tables, views, or stored

procedures referencing the table in the mapping.
· The database driver supports bulk-insert operation in WHERE conditions.

Support for the bulk-insert operation depends on the database type and the driver used (table below).

DB Type ADO ODBC JDBC ADO.NET Native

Access No No n/a n/a n/a

DB2 No Yes Yes Yes n/a

Firebird n/a Yes Yes No n/a

Informix No Yes Yes Yes n/a

iSeries No Yes Yes Yes n/a

825 828

© 2018-2024 Altova GmbH

Databases 271Structural Components

Altova MapForce 2024 Professional Edition

DB Type ADO ODBC JDBC ADO.NET Native

MariaDB No Yes Yes No n/a

MySQL n/a Yes (MySQL
Version 5 or
later is required)

Yes No n/a

Oracle No Yes Yes Yes n/a

PostgreSQL n/a Yes Yes n/a Yes

Progress n/a Yes Yes n/a n/a

SQL Server Yes Yes Yes Yes n/a

SQLite n/a n/a n/a n/a No

Sybase No Yes Yes n/a n/a

Teradata n/a Yes Yes n/a n/a

Note: To enable bulk-insert support for MySQL and MariaDB via JDBC, use the
rewriteBatchedStatements=true connection option.

Sample DB
To test the bulk-insert operation, you can use SQL Server and the AdventureWorks database. When you load
this database into your mapping and open the Database Table Actions dialog, you will be able to specify the
batch size (1000 records in our example). The batch size defines the number of records that will be inserted at
a time. It is important to note that the Use bulk transfer option and the Use transactions option are mutually
exclusive: When one of these options is enabled, the other option becomes inactive.

Next step
Now that the bulk-insert option is enabled, the next step is to execute the mapping in MapForce Server
(standalone or under FlowForce Server management).

4.2.3.2 DB Table Actions: Scenarios

Altova website: MapForce Video Demos

This chapter discusses some of the possible scenarios of using database table actions . All the scenarios
use a hierarchical database called BookCatalog.sqlite. This database has three tables: Authors (parent),

Books (child), TrackingInfo (not connected to any other tables). The Authors and Books tables have a
foreign-key relationship. It is important to note that there is autoincrement set for the primary keys in the
Authors and Books tables. The structure of the database is described in the script below:

825

828

265

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://www.altova.com/mapforce/demos

272 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

CREATE TABLE
 "main"."Authors" (
"AuthorID" INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,

 "Author" TEXT,
 "Country" TEXT,
 "Website" TEXT
);

CREATE TABLE
 "main"."Books" (
 "BookID" INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
 "Title" TEXT,
 "AuthorID" INTEGER,
 "ISBN" TEXT,
 "Publisher" TEXT,
 "NumPages" INTEGER,
 "Year" INTEGER,
 "Genre" TEXT,
 "Price" DECIMAL,
 FOREIGN KEY ("AuthorID") REFERENCES "Authors" ("AuthorID") ON DELETE CASCADE
ON UPDATE NO ACTION
);

CREATE TABLE
 "main"."TrackingInfo" (
 "MappedOn" DATETIME
);

Scenario 1: Delete all DB data and insert all source data
In the first scenario, we want to delete all the data from the BookCatalog.sqlite database and populate the

database with all the data from the source file. Our mapping looks as follows:

© 2018-2024 Altova GmbH

Databases 273Structural Components

Altova MapForce 2024 Professional Edition

Even though the database has three tables, only Authors and Books are included in the database component.
Since nothing is mapped to the TrackingInfo table, this table is absent from the component. Since
autoincrement is set for the Authors and Books tables, we do not need to connect anything to the AuthorID
and BookID columns: these IDs will be generated automatically by the database.

DB table actions for Authors
The table actions for the Authors table (screenshot below) have been configured in the following way:

· In the SQL statement to execute before first record section, we have set up the DELETE action that
will delete all the records from the database, including all the child records.

· In the Actions to execute for each record section, we have set up the Insert All action.
· Authors' IDs will be generated automatically by the database (the DB-generated option in the Insert All

action).
· The other values will be mapped from the source file.

DB table actions for Books
For the Books table, we have set up the same Insert All action (screenshot below). Book IDs will be generated
by the database. The AuthorID column references the primary key in the Authors table. The values for this
column will be supplied automatically. All the other values will be mapped from the source file.

274 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Output
The code listing below shows an extract of the output:

DELETE FROM "Books"

DELETE FROM "Authors"

INSERT INTO "Authors" ("Author", "Country", "Website") VALUES ('Stephen King', 'US',
'www.stephenking.com')

SELECT "AuthorID" FROM "Authors" WHERE "AuthorID" = last_insert_rowid()
-- >>> %AuthorID1%

INSERT INTO "Books" ("AuthorID", "Title", "ISBN", "Publisher", "NumPages", "Year",
"Genre", "Price") VALUES ('%AuthorID1%', 'Misery', '1501143107', 'Scribner', 368,
2016, 'Horror', 11.99)

INSERT INTO "Books" ("AuthorID", "Title", "ISBN", "Publisher", "NumPages", "Year",
"Genre", "Price") VALUES ('%AuthorID1%', 'Outsider', '1501180983', 'Scribner', 576,
2018, 'Horror', 12.79)

Note that the SQL statements in the output are for information purposes only. To execute the SQL statements,
open the Output pane and run the Run SQL/NoSQL-Script toolbar command. For more information, see SQL
Statements in the Output .

Scenario 2: Update authors and books, insert rest, insert tracking info
In real-life situations, the database is constantly changing, and several people may be working on the same
database. Therefore, deleting all the database records may not be desirable. In the second scenario, we have
the following goals:

· To update authors and their books that exist both in the source file and the database
· To insert source records that do not exist in the database
· To supply tracking information about the date and time of the mapping

Our mapping has the same components and connections as in the first scenario. However, the database table
actions have been configured differently (see below).

264

© 2018-2024 Altova GmbH

Databases 275Structural Components

Altova MapForce 2024 Professional Edition

DB table actions for Authors
The screenshot below shows the actions defined for the Authors table. In the Update If condition, we have set
up the equal value on the Author column. This means that if there are authors with the same names in the
source and in the database, only these authors' records will be updated in the database. Authors that exist
only in the source file will simply be inserted into the database. Authors that exist only in the database will
remain unchanged.

DB table actions for Books
We have the same combination of actions for the Books table (see below). This time, the equal value is set on
the Title column. This means that if there are the same books in the source and the database, these book
records will be updated in the database. Books that exist only in the source will be inserted into the database.
Books that exist only in the database will remain unchanged.

No duplicate records
The major advantage of the Update If condition is that it prevents us from getting duplicate records in the
database.

Output
The code listing below shows an extract of the output:

UPDATE "Authors" SET "Country" = 'US', "Website" = 'www.stephenking.com' WHERE
("Authors"."Author" = 'Stephen King')

SELECT "AuthorID" FROM "Authors" WHERE ("Author" = 'Stephen King')
-- >>> %AuthorID1%

UPDATE "Books" SET "ISBN" = '1501143107', "Publisher" = 'Scribner', "NumPages" =
368, "Year" = 2016, "Genre" = 'Horror', "Price" = 11.99 WHERE ("Books"."AuthorID" =
'%AuthorID1%') AND ("Books"."Title" = 'Misery')

UPDATE "Books" SET "ISBN" = '1501180983', "Publisher" = 'Scribner', "NumPages" =
576, "Year" = 2018, "Genre" = 'Horror', "Price" = 12.79 WHERE ("Books"."AuthorID" =
'%AuthorID1%') AND ("Books"."Title" = 'Outsider')

276 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Alternative solution
To avoid duplicate records in the Books table, you can also choose to delete child records (see below) and
set the Insert All condition in the Books table. The actions for the Authors table remain unchanged. In this
setup, all the Book records whose authors exist in the source and the database will be deleted from the
database. With the Insert All condition set in the Books table, the following types of source Book records will be
inserted:

· Book records whose authors exist in the source and the database
· Book records of new authors that exist only in the source

If there is a source Book record without a parent, this Book record will also be mapped to the database, and its
parent record will be created in the Authors table. The new Author record will receive a new ID (primary key),
and all the other fields will receive NULL values. This is possible only if all the fields in the Authors table,
except for the primary key, are nullable. If the fields are not nullable, you will get an error message saying that
the NOT NULL constraint has failed.

Importantly, the results of the main scenario and the alternative solution may diverge. For example, if an author
in the database has five book records, and if the same author has only three records in the source, all the five
database records will be deleted and will be replaced with three records from the source.

Insert track ing info
When several people are working on the same database, it might be a good idea to know when the mapping
was last executed. There could be different possibilities: e.g., you can use various datetime functions; you
can also supply a custom SQL statement in the Database Table Actions dialog. In our example, we will add
the following SQL statement to the Actions to execute for each record section (Authors table):

INSERT INTO TrackingInfo VALUES (DATETIME())

When you run the SQL script , this SQL statement will be executed first, before any statements for
database records.

Some other possible scenarios
Instead of the Update If condition, you can also set the Delete If action. In this case, the Author and Book
records that exist in the source and the database will be deleted, and new records will be inserted into the
database (Insert Rest action). You can also choose to ignore the same records (Ignore If condition) and insert
new records into the database (Insert Rest action).

4.2.3.3 Transaction Rollback: Scenarios

When you map data to a database, you may encounter various database-related errors (e.g., the database
account may not have enough privileges to perform a specific database action). To prevent such errors from
aborting the execution of the mapping, you can configure transaction rollback settings, which will enable you to
revert changes. You can enable transaction rollback at database-component level , at table-action level ,
and at stored-procedure level .

268

613

266

264

244 268

315

© 2018-2024 Altova GmbH

Databases 277Structural Components

Altova MapForce 2024 Professional Edition

This topic describes some of the possible scenarios of transaction rollbacks. All the scenarios in this topic
feature a source XML file called Authors.xml and a target database called BookCatalog.sqlite (mapping

below). The Authors and Books tables have a foreign-key relationship. The Author table is the parent of the
Books table.

In all the scenarios, the same database table actions have been configured:

· The combination of the Update If and Insert Rest actions in the Authors table. The Update If condition
is set on the Author column.

· The combination of the Update If and Insert Rest actions in the Books table. The Update If condition is
set on the Title column.

Besides, tracing has been enabled at component level (set to Always), in the Authors table (Use
component settings), and in the Books table (Use component settings). Transaction rollback settings will vary
depending on the scenario.

Broad outline of scenarios
The scenarios described in this topic are outlined below:

· Scenario 1: If an Author record is faulty, it will be rolled back with all its child records; if only a Book
record is faulty, only this record will be rolled back.

· Scenario 2: If an Author record is faulty, it will be rolled back with all its child records.
· Scenario 3: If a Book record is faulty, only this record will be rolled back.

265

269

278 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· Scenario 4: If a Book record cannot be inserted, its parent record will be rolled back (similar to
Scenario 2).

· Scenario 5: If there is a database-related error, all the changes made to the database will be rolled
back.

Scenario 1: Roll back current Author and current Book
In the first scenario, we enable transaction handling at table-action level: The Rollback current transaction and
continue option is set in both tables of the database. The combination of these settings means that (i) if there
is a faulty Author record, neither this record nor its child Book records will be inserted into the database, and
then the processing of the next record will start; (ii) if there is a faulty Book record, but its parent Author record
is valid, only the faulty Book record will be rolled back, and the processing of the next record will start.

Authors.xml
The Authors.xml file contains information about authors and their books. One of the Author records lacks

information about the author's country. The source file also has one Book record that has no information about
the publisher.

BookCatalog.sqlite
We have set a NOT NULL constraint on the Country column in the Authors table and the Publisher column in
the Books table. Mapping null values to these columns will cause an error.

Output
After running the SQL script in the Output pane, we get the following dialog:264

© 2018-2024 Altova GmbH

Databases 279Structural Components

Altova MapForce 2024 Professional Edition

The Database Transaction Exception dialog informs us about a database-related error and the reason for this
error. In this example, a null value could not be inserted into the Country column of the Authors table (red
rectangular above). This dialog box also allows choosing the next action. By default, the action configured in
the Database Table Actions dialog is selected. It is also possible to apply the same setting to all
subsequent errors or to roll back the faulty transaction and stop.

After confirming the selection, we are notified about another error that has occurred in the Books table
(screenshot below). This error occurred because the mapping tried inserting absent Publisher information from
one of our Book records into the Publisher field of the Books table. Since the error occurred in the child table,
it is possible to roll back the current transaction (Rollback this transaction and stop/continue) or the changes
up to the top transaction (Rollback top and stop/continue). The top transaction in this context means the
parent record (Author) of the faulty child record (Book).

If there are multiple levels in the hierarchy, a rollback will be done for each level until the rollback reaches the
topmost level at which transaction handling has been enabled. Depending on your needs, you can choose to
continue or stop the execution of the mapping. The Rollback top and continue/stop option is available only

265

280 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

when there are nested transactions. For more information about rolling back top transactions, see Scenario 4
below.

In this example, we leave the transaction rollback option shown in the screenshot above unchanged. After the
processing of all the records has finished, we can see the generated SQL statements in the Output pane, the
trace report in XML format, and the data that is now available in the database.

Generated SQL statements
An extract of the generated SQL script is illustrated below. The failed insert operation has been rolled back to
the SAVEPOINT. The SAVEPOINT command represents a point in a transaction, to which the transaction will be
rolled back. The SAVEPOINT command allows undoing the changes made after the SAVEPOINT and restore the
transaction to the state at the time of the SAVEPOINT.

245

© 2018-2024 Altova GmbH

Databases 281Structural Components

Altova MapForce 2024 Professional Edition

Trace report
An extract of the trace report is provided below. The trace report shows the fields and their values that were
traced (e.g., <Price>8.6</Price>), provides information about the performed actions (e.g., insert) and the
error (see the trace:error element).

<Books>
<trace:values>

<Title>Cockroaches</Title>
<AuthorID>41</AuthorID>
<ISBN>0099590328</ISBN>
<Publisher xsi:nil="true"/>
<NumPages>464</NumPages>
<Year>2016</Year>
<Genre>Crime & Mystery</Genre>
<Price>8.6</Price>

</trace:values>
<trace:actions>

<trace:update rows-affected="0"/>
<trace:insert>

<trace:error code="19" state="1299">NOT NULL constraint failed:
Books.Publisher</trace:error>

</trace:insert>
</trace:actions>

</Books>

Updated data in DB
To see what data is currently available in the database, you can use the DB Query pane . The extract of the
Books table below shows that several new records have successfully been inserted. Since inserting one of Jo
Nesbo's books has failed (trace report above), only two of his books out of three have been mapped (The Bat
and The Redbreast).

283

282 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Other possible scenarios
Some other possible scenarios are described below.

Scenario 2: Roll back current Author and all Author's Books
In this scenario, the Rollback current transaction and continue option is set only in the Authors table. With
this setup, each Author record and the corresponding Book records are seen as an atomic operation. If there is
a faulty Author record or at least one of the author's books is faulty, this author's record and its related child
records will be rolled back. After that, processing continues with the next Author record.

Scenario 3: Roll back only current Book
In this scenario, the Rollback current transaction and continue option is set only in the Books table. If there is a
faulty Book record, only this Book record will be rolled back, and then processing will continue. If you set the
Rollback top transaction and continue option in the Books table and no other transaction-handling options at
parent level, still only the faulty Book record will be rolled back. In this case, there is no difference between
rolling back the top and current transaction, because there is only one transaction level and no transaction
nesting.

Scenario 4: Roll back Author if Book cannot be inserted
In this scenario, the transaction action for the Authors table is set to Rollback current transaction and
continue, and the transaction action for the Books table is Rollback top transaction and continue. With this
setup, if inserting a child record fails, the rollback operation will be done for each level of the hierarchy, up to
the topmost level at which transaction handling has been enabled. For example, we want to insert a new
Author record (Jo Nesbo) and its three child records. In one of the Book records (The Cockroaches), there is
no information about the publisher. Since the Books table has a NOT NULL constraint on the Publisher
column, mapping a null value to this field will cause an error. In this scenario, when an error occurs, the faulty
Book record (The Cockroaches) will be rolled back together with the other two Book records and the parent
record. Then processing will continue with the next Author record.

The combination of the transaction-handling options described in this scenario is particularly relevant to more
complex, nested structures (e.g., a parent table with two or more child tables).

Scenario 5: Roll back all DB transactions and continue
In this scenario, the Rollback top transaction and continue option is set at component level . This setting
can be particularly useful when you have a chained mapping (e.g., XML-DB-JSON). If there is a database-
related error, all the changes made to the database component will be rolled back, and processing will continue
with the JSON component.

241

© 2018-2024 Altova GmbH

Databases 283Structural Components

Altova MapForce 2024 Professional Edition

4.2.3.4 MERGE Statements

For certain mappings, MapForce generates MERGE statements (screenshot below) that will be executed
against the database at mapping runtime. The advantage of MERGE statements is that they reduce the
number of database server calls, since these statements combine the INSERT and UPDATE statements into
one. For MERGE statements, the consistency check is done by the database. MERGE statements are
supported if:

· the database is one the following: SQL Server 2008 and later, Oracle, DB2, Firebird;
· the target database has the combination of the Insert If and Insert Rest table actions .

If MERGE statements are not supported by your database type, the generated SQL script includes UPDATE
statements only. No INSERT statements are visible for preview, since these are executed only if the Update If
condition is not satisfied.

If you are updating multiple tables that have parent-child relationships, merges are created only for the deepest
child table to which data is mapped. For example, if a database has a parent table called Authors and a child
table called Books, the MERGE statement will be generated only for the Books table. For the Authors table,
UPDATE statements will be generated instead.

With MERGE statements, the Bulk Transfer option is supported only for ODBC and JDBC database
connections.

4.2.4 DB Query Pane

MapForce has the DB Query pane (illustrated below) that allows you to query and modify your database
independently of the mapping process. Such direct queries are not saved together with the mapping. A
separate DB Query pane exists for each currently active mapping. In each DB Query pane, you can connect to
different databases. Note that the connections created in the DB Query pane are not part of the mapping and
are not preserved after you close MapForce unless you define these connections as Global Resources .

267

270

841

284 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The DB Query pane consists of the following parts:

· Database Browser , which displays connection information and database tables;
· SQL Editor , in which you write your SQL queries;
· Results tab , which displays the query results in tabular format;
· Messages tab , which displays warnings and error messages.

To configure database query settings, use the Database section in the Options dialog box. For more
information, see Database Query Settings .

Connect to a database
Before querying a database , you must connect to it. If your mapping already includes a database
component, you can select the existing database connection from the upper part of the DB Query pane and
start querying your database.

If your mapping does not include a database component, or if you want to connect to a new database, click
button (Quick Connect) and follow the wizard steps (see Examples). You can also select an existing
database connection from Global Resources .

285

287

290

291

1046

287

182

841

© 2018-2024 Altova GmbH

Databases 285Structural Components

Altova MapForce 2024 Professional Edition

4.2.4.1 Database Browser

This topic explains how to customize the display of the database tree, filter and search database objects. It
also describes context menu options that are available for different database objects.

When you are connected to one or several databases, the Database Browser gives the full overview of the
objects in each database, including tables, views, procedures, and so on. For databases with XML support, the
Database Browser additionally shows registered XML schemas in a separate folder.

DB tree layouts
The Database Browser enables you to customize the display of the database tree. The predefined layouts are
available at the top of the Database Browser (screenshot below).

To select a layout, click the (Folders Layout) button and select the required option from the list. Note
that the button changes with the selected layout. The following options are available:

· The Folders layout organizes database objects into folders based on the object type (default setting).
· The No Schemas layout is similar to the Folders layout, except that there are no database schema

folders.
· The No Folders layout displays database objects in a hierarchy without using folders.
· The Flat layout displays database objects by type (e.g., all columns are displayed in a separate

Columns folder).
· The Table Dependencies layout categorizes tables based on their relationships with other tables (e.g.,

tables with foreign keys, referenced tables).

In addition to layout navigation, you can use the Database Browser for the following tasks:

· Creating SQL statements
· Filtering and searching database objects (see subsections below)
· Sorting tables into System and User tables (see below)

· Refreshing the root object of the active data source (the button)

To sort tables into User and System tables, right-click the Tables folder in the Database Browser and select
Sort into User and System Tables from the context menu. This function is available when one of the following
layouts is selected: Folders, No Schemas or Flat.

288

286 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Filter database objects
You can filter any database objects (schemas, tables, views, etc.) by name or part of a name. Objects are
filtered as you type in the characters. Filtering is case-insensitive by default. Filtering is not supported if you
have selected the No Folders layout.

To filter database objects, take the following steps:

1. Click button at the top of the Database Browser. Filter icons appear next to all folders in the
currently selected layout (screenshot below).

2. Click the filter icon next to the folder you want to filter and select the filtering option from the context
menu (e.g., Contains).

3. Enter the search text (e.g., G) in the empty field which appears next to the filter icon. The results are
adjusted as you type (screenshot below).

© 2018-2024 Altova GmbH

Databases 287Structural Components

Altova MapForce 2024 Professional Edition

Search database objects
To find a specific database object, you can use the filtering functionality (see above) or the Object Locator. To
find database objects using the Object Locator, follow the instructions below:

1. Click the button at the top of the Database Browser.
2. Enter some search text in the text bar.
3. Press Enter or click an object in the list to select it.

4.2.4.2 SQL Editor

Once you are connected to your database, you can use the SQL Editor to write and execute SQL statements.
The SQL Editor displays any SQL statements that you may have generated automatically, loaded from existing
SQL scripts, or written manually. The SQL Editor supports auto-completion , regions, and line/block
comments.

SQL Editor toolbar buttons
The SQL Editor toolbar has the following buttons:

The Toggle Browser button makes the Browser pane visible/invisible.

The Toggle Result button makes the Result visible/invisible.

The Execute Query button executes the SQL statements that are currently selected. If multiple
statements exist and none are selected, only the result of the last statement will be shown in the
Results tab. For multiple results, MapForce will suggest opening these results in Altova
DatabaseSpy.

The Undo button allows you to undo an unlimited number of edits in the SQL window.

240

288 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The Redo button allows you to redo previously undone commands.

The Import SQL file command opens an external SQL script, which can then be executed.

The Export SQL file command saves an SQL script to a desired location.

The Open SQL script in DatabaseSpy command opens the current SQL script in Altova
DatabaseSpy (must be installed).

The Options button opens the Options dialog box that allows you to define general database
query settings as well as SQL Editor settings.

Create SQL statements
You can query your database using the following methods:

· You can import an SQL script or copy some SQL statements and paste them into the SQL Editor (The
Import SQL file toolbar command).

· You can write SQL statements in the SQL Editor manually.
· You can also right-click an object in the Database Browser and generate a query (typically,

SELECT).

To generate an SQL SELECT statement in the Database Browser, do one of the following:

· Press and hold a database object (e.g., a table) or a folder in the Database Browser and drag this
object of folder into the SQL Editor.

· Right-click a database object in the Database Browser and select Show in SQL Editor | SELECT.

Execute SQL statements
The SQL statements in the SQL Editor can be executed with immediate effect. To execute an SQL statement,

click the button. The result of the SQL query and the number of affected rows are displayed in the
Messages tab of the DB Query pane.

When multiple SQL statements appear in the SQL Editor, only the result of the selected statement or the
result of the last statement (if no statements have been selected) will be displayed in the Results tab. In case
there are multiple results, MapForce will suggest opening them in Altova DatabaseSpy.

Import/Export SQL scripts

You can import and export SQL scripts. To import an external SQL file, click the toolbar button and select

the SQL file you want to open. To export the contents of the SQL Editor pane to an SQL file, click the
toolbar button and enter the name of the SQL script.

Add/Remove SQL line/block comments
The SQL Editor allows you to comment out statements, parts of statements, or groups of statements. Such
statements are skipped when the SQL script is executed. You can insert a line or a block comment. The line
comment indicates that the current line or the remaining part of it is commented out. The block comment can
span multiple lines. The block comment can also be used to comment out individual words.

1046

285

© 2018-2024 Altova GmbH

Databases 289Structural Components

Altova MapForce 2024 Professional Edition

To insert a line/block comment, take the following steps:

1. Select a statement or part of a statement.
2. Right-click the selected statement and select Insert/Remove Line/Block Comment from the context

menu.

The screenshot below illustrates a block comment (green text).

To remove a line/block comment, take the steps below:

1. Select the part of the statement that is commented out.
2. Right-click the selected part and select Insert/Remove Block (or Line) Comment from the context

menu.

You can also remove the comment characters manually.

Add bookmarks
Bookmarks are used to mark items of interest in scripts. To add a bookmark, right-click the line you want to

have bookmarked and select Insert/Remove Bookmark from the context menu. The bookmark icon is
displayed in the margin at the beginning of the bookmarked line.

To remove a bookmark, right-click the line from which you want to remove the bookmark and select
Insert/Remove Bookmark from the context menu. To remove all bookmarks, right-click anywhere inside the
SQL Editor and select Remove all Bookmarks from the context menu.

To jump to the next/previous bookmark, right-click the relevant line and select Go to Next/Previous
Bookmark.

Insert SQL regions
Regions are sections of text that you mark and declare as a unit to structure your SQL scripts. Regions can be
collapsed and expanded to display or hide parts of SQL scripts. It is also possible to nest regions within other
regions. When you insert a region, an expand/collapse icon and a --region comment are inserted above the

selected text. You can change the name of a region by adding descriptive text to the --region comment. The
word region must not be deleted.

290 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

To add a region, follow the instructions below:

1. Select the statements you want to transform into a region.
2. Right-click the selected statements and select Insert Region from the context menu. An example of a

region is illustrated below.

To remove a region, delete the -- region and -- endregion comments.

4.2.4.3 Results Tab

The Results tab of the DB Query pane shows the recordset retrieved as a result of a database query
(screenshot below).

Toolbar buttons for navigation
At the top of the Results tab, there are two toolbar buttons that enable you to navigate the query results. The

 (Find) toolbar button allows you to run a search in the retrieved results. When you press this button, the
Find dialog pops up (screenshot below). This dialog box allows you to configure various search parameters
(e.g., match the whole word). Use the Find next and Find prev buttons to switch between the occurrences of
the search term.

© 2018-2024 Altova GmbH

Databases 291Structural Components

Altova MapForce 2024 Professional Edition

The (Go to statement) toolbar command jumps to the SQL Editor and highlights the SQL statement that
produced the current result. This might be particularly useful when the SQL Editor contains multiple
statements.

Select data
To select data in the query results, you can use the following methods:

· You can click a column's header to select the entire column.
· You can click a row's number to select the entire row.
· You can press and hold the Shift key to select a range of cells.
· You can right-click a cell of interest and select various options from the context menu: Selection |

[Row | Column | All].
· You can also select all the cells by clicking somewhere inside the table and pressing Ctrl + A.

Copy data
To copy the selected cells, press Ctrl + C. Alternatively, right-click the selected cells and select Copy
selected cells or Copy selected cells with header from the context menu.

Sort data
To sort data, you can choose one of the following options:

· Right-click anywhere in the column of interest and select Sorting | [Ascending | Descending] from
the context menu.

· Click the dot icon (screenshot below) in the column header until you have selected the relevant option:
the arrow pointing up sorts data in ascending order, the arrow pointing down sorts data in descending
order.

To restore the default sort order, right-click anywhere in the table and choose Sorting | Restore default from
the context menu.

4.2.4.4 Messages Tab

The Messages tab of the DB Query pane provides information about the last executed SQL statement(s) and
can display errors and warnings.

292 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Toolbar buttons
You can use different filters to customize the view of the Messages tab. The buttons at the top of the
Messages tab (screenshot above) are used to navigate messages, copy text to the clipboard, and hide certain
parts of the message. When you right-click anywhere inside the Messages tab, you will also be able to see
these options in the context menu.

The Filter button opens a menu in which you can select types of messages you would
like to see in the Messages tab. The following options are possible: Check All, Uncheck All,
Summary, Success, Warning, Error, Autoinsertion, and Progress.

The Autoinsertion option refers to messages that appear when SQL statements or SQL constructs
are inserted automatically in the SQL Editor. The Progress option informs about the database
connection result as well as the outcome of SQL parsing and data-structure loading.

The Next button jumps to and highlights the next message.

The Previous button jumps to and highlights the previous message.

Copy selected message to the clipboard

Copy selected message including its children to the clipboard

Copy all messages to the clipboard

The Find command opens the Find dialog box that allows you to configure search criteria.

The Find previous command jumps to the previous occurrence of the search string specified in the
Find dialog box.

The Find next command jumps to the next occurrence of the search string specified in the Find
dialog box.

The Clear button removes all messages from the Message tab of the SQL Editor.

© 2018-2024 Altova GmbH

Databases 293Structural Components

Altova MapForce 2024 Professional Edition

4.2.5 Map XML Data to/from DB Fields

MapForce enables you to map data to or from database fields (columns) that store XML content. This means
that XML data stored by the database field (column) can be extracted and written to any other structure
supported by MapForce, and the other way round. You can map data as follows:

1. To or from fields of a dedicated XML type (for example, Xml in SQL Server, XMLType in Oracle).
Reading or writing XML to/from dedicated XML fields is applicable to databases that have native support
for XML (such as IBM DB2, Oracle, and SQL Server).

2. To or from text fields storing XML content (for example, Text, Varchar). This applies to any database
where the text field has sufficient length to store an XML document.

In either of the cases, a valid XML schema must exist for each database column to/from which you want to
map data. When a database column stores XML, MapForce provides you with the choice to assign an XML
schema directly from the database (if supported by the database), or select a schema from an external file.
You can assign one XML schema per database column. If the schema has multiple root elements, you can
select a single root element of that schema.

When XML is stored as a string field in a database, the character encoding of the XML document is that of the
underlying string field. If the database field does not store text as Unicode, some characters cannot be
represented.

Some databases support XML encoding for XML fields (which may not necessarily be the same as that of the
database character set). If supported by the database, the XML document encoding declaration is assumed to
be the one declared in the XML field. For information about the XML encoding support provided by various
databases, refer to their documentation.

4.2.5.1 Assigning an XML Schema to a Database Field

This topic illustrates how to assign a schema to a field that is natively defined as XML type in the database.
The instructions below use SQL Server 2014 and the AdventureWorks 2014 database. The latter can be
downloaded from the AdventureWorks samples page on GitHub (https://github.com/Microsoft/sql-server-
samples/releases/tag/adventureworks). Note that mapping of data to or from XML fields works in the same way
with other database types that support XML fields.

To add the Adventure Works 2014 database as a mapping component:

1. On the Insert menu, click Database, and follow the wizard to connect to the database using your
preferred method (ADO or ODBC). For more information, see ADO Connection and ODBC
Connection . NOTE: If you use the SQL Server Native Client driver, you might need to set the
Integrated Security property to a space character (see Setting up the SQL Server Data Link
Properties).

2. On the Insert Database Object dialog box, expand the Production schema, and then select the
ProductModel table.

159

171

162

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks

294 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

3. Click OK.

The database table has now been added to the mapping area. Notice that this table has two fields of XML type:
CatalogDescription and Instructions:

For the structure of the XML fields to appear on the mapping, the XML schema of the field content is required.
Right-click the Instructions field and select Assign XML Schema to Field from the context menu.

© 2018-2024 Altova GmbH

Databases 295Structural Components

Altova MapForce 2024 Professional Edition

In this particular example, you will assign a schema to the Instructions field directly from the database. To do
this, select the Production.ManuInstructionsSchemaCollection item next to the Database option, and then
click OK.

296 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The structure of the XML field now appears on the component. You can now draw connections (and map data)
to or from this field.

4.2.5.2 Example: Writing XML Data to a SQLite Field

This example walks you through the steps required to create a MapForce mapping which reads data from
multiple XML files and writes it to a SQLite database. The goal of the mapping is to create, for each source
XML file, a new database record in the SQLite database. Each record will store the XML document as a TEXT
field.

All the files used in this example are available at the following path:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\. The file names are as follows:

The mapping design file · XmlToSqliteField.mfd

The source XML files · bookentry1.xml
· bookentry2.xml
· bookentry3.xml

The XML schema used for
validation

· books.xsd

The target SQLite database · Library.sqlite

© 2018-2024 Altova GmbH

Databases 297Structural Components

Altova MapForce 2024 Professional Edition

To achieve the goal of the mapping, the following steps will be taken:

1. Add the XML component and configure it to read from multiple files.
2. Add the SQLite database component and assign an XML schema to the target TEXT field.
3. Create the mapping connections and configure the database INSERT action.

Step 1: Add the XML component
1. On the Insert menu, click XML Schema/File and browse for the books.xsd schema located in the

<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\ directory. When prompted to
supply a sample XML file, click Skip. When prompted to select a root element, select Books.

2. Double-click the component header and type bookentry*.xml in the Input XML File box. This
instructs MapForce to read all XML files whose name begins with "bookentry-" in the source directory.
For more information about this technique, see Processing Multiple Input or Output Files
Dynamically .

Step 2: Add the SQLite component
On the Insert menu, click Database, and follow the wizard to connect to the Library.sqlite database file from
the <Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\ directory (see also Connecting to
an Existing SQLite Database). When prompted to select the database objects, select the BOOKS table.

The database field where XML content will be written is called metadata. To assign an XML schema to this
field, right-click it and select Assign XML Schema to Field from the context menu.

751

180

298 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

In this tutorial, the schema assigned to the metadata field is the same one used to validate the source XML
files. Click Browse and select the books.xsd schema from the
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\ directory:

The books.xsd schema has two elements with global declaration: book and books. In this example, we will set
book as the root element of the XML written to the database field. Click Choose, and select book as root
element:

Step 3: Create the mapping connections and configure the database INSERT action
Create the mapping connections as follows:

© 2018-2024 Altova GmbH

Databases 299Structural Components

Altova MapForce 2024 Professional Edition

As shown above, the connection from book to book is a "Copy-All" connection, since both the source and
target use the same schema and the names of child elements are the same. For more information about such
connections, see Copy-all connections .

The topmost connection (books to BOOKS) iterates through each book element in the source and writes a new
record in the BOOKS table. Click the A:In button on the database component and set the database update
settings as shown below:

The DELETE all records option instructs MapForce to delete the contents of the BOOKS table before inserting
any records.

The Insert All actions specify that a database INSERT query will take place. The field id is generated from the
database itself, while the field metadata will be populated with the value provided by the mapping.

Make sure to save the mapping before running it.

58

300 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

To run the mapping and view the generated output, click the Output pane. Note that this action does not
update the database immediately. When you are ready to run the generated database script, select the menu

command Output | Run SQL Script (or click the toolbar button).

4.2.5.3 Example: Extracting Data from IBM DB2 XML Type Columns

This example illustrates how to extract data from IBM DB2 database columns of XML type and write it to a
target CSV file. It also illustrates how to use XQuery statements embedded into SQL in order to retrieve XML
content conditionally. The example requires access to an IBM DB2 database where you have permission to
create and populate tables.

First, let's prepare the database so that it actually contains XML data. This can be done either in a database
administration tool specific to your database, or directly in MapForce. To do this directly in MapForce, follow
the steps below:

1. Create a new mapping and click the DBQuery tab.

2. Click Quick Connect () and follow the wizard steps to create a new database connection (see
also Database Connection Examples).

3. Paste the following text into the SQL Editor. This SQL query creates a database table called ARTICLES
and populates it with data.

-- Create the table

CREATE TABLE

 ARTICLES (
 id INTEGER NOT NULL,

 article XML) ;
-- Populate the table

INSERT INTO ARTICLES VALUES

 (1, '<Article>
 <Number>1</Number>
 <Name>T-Shirt</Name>
 <SinglePrice>25</SinglePrice>
 </Article>'),
(2, '<Article>
 <Number>2</Number>
 <Name>Socks</Name>
 <SinglePrice>230</SinglePrice>
 </Article>'),
(3, '<Article>
 <Number>3</Number>
 <Name>Pants</Name>
 <SinglePrice>34</SinglePrice>
 </Article>'),
 (4, '<Article>
 <Number>4</Number>
 <Name>Jacket</Name>
 <SinglePrice>5750</SinglePrice>
 </Article>');

4. Click the Execute () button. The query execution result is displayed in the Query Results window.
If the query is executed successfully, four rows are added to the newly created table.

182

© 2018-2024 Altova GmbH

Databases 301Structural Components

Altova MapForce 2024 Professional Edition

Next, we will create a mapping which retrieves XML data from the ARTICLES table created above conditionally.
The goal is to retrieve from the ARTICLES column only articles with a price greater than 100.

Step 1: Add the database
1. Click the Mapping tab to switch back to the mapping pane.
2. On the Insert menu, click Database, and follow the wizard steps to connect to the database.
3. When prompted to select the database objects, select the ARTICLES table created previously.

Step 2: Assign the schema to the XML type field
1. Right-click the ARTICLE item of the component, and select Assign XML Schema to field from the

context menu.

2. Select File, and browse for the following schema:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\DB2xsd.xsd.

Step 3: Add the SQL WHERE/ORDER component
1. On the Insert menu, click SQL WHERE/ORDER.
2. Connect the ARTICLE XML type column to the input of the SQL WHERE/ORDER.

302 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

3. In the SQL-WHERE/ORDER Properties dialog box, enter the following text:

XMLEXISTS('$a/Article[SinglePrice>100]' PASSING ARTICLE as "a")

The text above represents the "WHERE" part of the SQL query. At mapping runtime, it will be
combined with the "SELECT" part displayed on the dialog box. This statement uses the XMLEXISTS
function and syntax specific to IBM DB2 databases.

Step 4: Add the target CSV file
1. On the Insert menu, click Text File.
2. When prompted, select Use simple processing for standard CSV... , and click Continue.
3. Click Append Field three times to add three fields which will store the article number, name, and

price, respectively. Leave all other settings as is.
4. Draw the mapping connections as shown below.

© 2018-2024 Altova GmbH

Databases 303Structural Components

Altova MapForce 2024 Professional Edition

You can now preview the mapping result, by clicking the Output pane. As expected, only articles with price
greater than 100 are shown in the output.

4.2.6 Stored Procedures

Stored procedures are programs that are hosted and run on a database server. Stored procedures can be
called by client applications and they are often written in some extended dialect of SQL. Some databases
support also implementations in Java, .NET CLR, or other programming languages.

Typical uses of stored procedures include querying a database and returning data to the calling client, or
performing modifications to the database after additional validation of input parameters. Stored procedures can
also perform other actions outside the database, such as sending e-mails.

A stored procedure may have zero or more input and output parameters, and may optionally return zero or
more recordsets, in addition to the default return value. Consequently, in MapForce, you can call a stored
procedure in various ways:

· Call a stored procedure in order to retrieve data, as if it were a source component on the mapping. This
is applicable for procedures that do not take input parameters. When the mapping runs, the procedure
is called, and it returns some recordset or output parameters. You can map the recordset, or the
output parameters, or both, to any other data type supported by MapForce. For an example, see
Stored Procedures as Data Source .

· Call a stored procedure as a function-like call, with parameters. In this case, you supply all required
input parameters from the mapping, and you can also map the returned recordset, or the output
parameters, or both, to some other target supported by MapForce. For an example, see Stored
Procedures with Input and Output .

· Call a stored procedure as if it were a target component on the mapping. The typical use case is
calling a stored procedure with parameters in order to modify the database (for example, insert a
record). This approach is suitable if you do not need any output from the stored procedure. Also, in this
approach you can execute the stored procedure within a database transaction that can be rolled back
in case of an error. For an example, see Stored Procedures in Target Components .

There are also cases where you may need to call stored procedures or perform actions on database tables in a
specific order (first insert, then update, and so on). For example, you may need to pass the output parameter of
a stored procedure to another stored procedure. Or you may need to combine data returned by a stored

308

311

315

304 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

procedure with data from a table. Such actions are possible with the help of local relations defined in
MapForce, even when the underlying database does not enforce primary/foreign key relationships between
tables. For more information, see Stored Procedures and Local Relations .

Note: To illustrate how MapForce implements stored procedures, this chapter uses Microsoft SQL Server
2016 and the "AdventureWorks 2016" database. The latter can be downloaded from
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks.

Support notes
· Stored procedures can be used only in the BUILT-IN execution engine. Code generation in C++, C#, or

Java is not supported.
· User-defined types, cursor types, variant types and many "exotic" database-specific data types (such

as arrays, geometry, CLR types) are generally not supported as input or output parameter types.
· Procedure and function overloading (multiple definitions of routines with the same name and different

parameters) is not supported.
· Some databases support default values on input parameters, this is currently not supported. You

cannot omit input parameters in the mapping to use the default value.
· Stored procedures returning multiple recordsets are supported depending on the combination of driver

and database API (ODBC/ADO/ADO.NET/JDBC). Only procedures that return the same number of
recordsets with a fixed column structure are supported.

· Whenever possible, use the latest version of the database native driver maintained by the database
vendor. Avoid using bridge drivers, such as ODBC to ADO Bridge, or ODBC to JDBC Bridge.

· You can optionally enable database transactions for stored procedures that are called as data target,
see Stored Procedures in Target Components . Transactions are not supported for stored
procedures that are called as a data source (without input parameters), or those that are called like a
function (with both input and output).

The following table lists the database-specific support notes.

Database Support notes

Access · Stored procedures in Microsoft Access databases have very limited
functionality and are not supported in MapForce.

DB2 · Supported in MapForce: stored procedures, scalar functions, table-valued
functions.

· Return values from DB2 stored procedures are not supported because they
cannot be read via the database APIs used in MapForce.

· Row-valued functions (RETURNS ROW) are not supported.
· It is recommended to install at minimum "IBM_DB2 9.7 Fix Pack 3a" to avoid a

confirmed JDBC driver issue when reading errors/warnings after execution. This
also fixes an issue with the ADO provider that causes one missing result set
row.

Firebird · Supported in MapForce: stored procedures, table-valued functions

Informix · Supported in MapForce: stored procedures, table-valued functions.

MariaDB · Supported in MapForce: stored procedures, scalar functions

MySQL · Supported in MapForce: stored procedures, scalar functions

318

315

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks

© 2018-2024 Altova GmbH

Databases 305Structural Components

Altova MapForce 2024 Professional Edition

Database Support notes

· MySQL includes complete support for stored procedures and functions starting
with version 5.5. If you are using an earlier version, functionality in MapForce is
limited.

Oracle · Supported in MapForce: stored procedures, scalar functions, table-valued
functions. This includes standalone stored procedures and functions as well as
those defined inside an Oracle package.

· It is recommended to use a native Oracle driver instead of the Microsoft OLE
DB Provider for Oracle.

· Oracle has a special way to return result sets to the client by using output
parameters of type REF CURSOR. This is supported by MapForce for stored
procedures, but not for functions. The names and number of recordsets is
therefore always fixed for Oracle stored procedures.

PostgreSQL · Supported in MapForce: scalar functions, row-valued functions, table-valued
functions.

· In PostgreSQL, any output parameters defined in a function describe the
columns of the result set. This information is automatically used by MapForce
- no detection by execution or manual input of recordsets is needed.
Parameters of type refcursor are not supported.

Progress
OpenEdge

· Supported in MapForce: stored procedures.

SQL Server · Supported in MapForce: stored procedures, scalar functions, table-valued
functions.

· It is recommended to use the latest SQL Server Native Client driver instead
of the Microsoft OLE DB Provider for SQL Server.

· The ADO API has limited support for some data types introduced with SQL
Server 2008 (datetime2, datetimeoffset). If you encounter data truncation
issues with these temporal types when using ADO with the SQL Server Native
Client, you can set the connection string argument
DataTypeCompatibility=80 or use ODBC.

· SQL Server Procedures have an implicit return parameter of type int null,
which is available for mapping. If the procedure omits a RETURN statement,
the resulting value is 0.

SQLite · SQLite does not use stored procedures.

Teradata · Supported in MapForce: stored procedures, macros.
· Scalar functions, aggregate functions and table functions are not supported
· Known issue: The Teradata ODBC driver refuses to populate output parameter

values after a procedure call.

4.2.6.1 Adding Stored Procedures to the Mapping

On the mapping area, stored procedures are shown as part of the database component where they belong. In
order for stored procedures to be visible on the database component, you must explicitly select them when
adding the database component to the mapping, as shown below. In this example, we connect to the
"AdventureWorks" database running on SQL Server. Instructions are similar for other database types.

306 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

In case of Oracle databases, stored procedures or functions may be standalone or part of Oracle packages.
You can add both categories to the mapping. The stored procedures or functions belonging to a package
appear under the respective package name on the "Insert Database Objects" dialog box illustrated below.

To add stored procedures to the mapping:

1. Do one of the following:

· On the Insert menu, click Database.

· Click the Insert Database () toolbar button.

2. Follow the database wizard steps until you get to the "Insert Database Objects" dialog box. For
detailed instructions applicable to each database type, see Database Connection Examples .

3. Select the check boxes next to the database objects that you need to be displayed on the mapping,
and click OK. In this example, we have selected all the tables, views, and stored procedures available
in the "HumanResources" schema.

Notes
· You can change the selected objects at any time later, by right-clicking the title bar of a database

component, and selecting Add/Remove/Edit Database Objects from the context menu.
· Your database user account must have rights to view and execute stored procedures in the

database.

The database component is now added to the mapping. Notice that stored procedures are identified by the
icon. In addition, tables, views and procedures are sorted alphabetically in the database component.

182

© 2018-2024 Altova GmbH

Databases 307Structural Components

Altova MapForce 2024 Professional Edition

The Show Context Menu button next to each stored procedure lets you configure how the stored
procedure is to be called, and other procedure-related settings, as follows:

Option Usage

Show Nodes as Source Select this option if you want to call a stored procedure without
parameters in order to retrieve data from a database and map it to another
component supported by MapForce (XML, text, EDI, and so on). For an
example, see Stored Procedures as Data Source .

Show Nodes as Target Select this option if you want to call a stored procedure in order to modify
the database or perform another specific action where you don't need the
output of the stored procedure. For an example, see Stored Procedures in
Target Components .

Insert Call with Parameters Select this option if you want to call a stored procedure with parameters
and want to map the returned data to another component supported by
MapForce. For an example, see Stored Procedures with Input and Output
Parameters .

Edit Recordset Structures Applicable for stored procedures that return recordsets. Select this option
to execute the stored procedure once, so that MapForce can determine
the structure of the returned recordset and display it on the mapping.
Alternatively, if you don't want to execute the stored procedure at design
time, you can define the recordset structure manually.

Procedure Settings Applicable only for stored procedures that were configured as
"target" (that is, those that update the database). Select this option to
configure additional procedure-related settings, such as running a custom
SQL query before calling the procedure, or enabling database
transactions.

308

315

311

308 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

4.2.6.2 Stored Procedures as Data Source

This example shows you how to call a procedure that takes no input parameters and just retrieves some data
from the database. In this scenario, the stored procedure acts as a source component to the mapping, and you
can map data retrieved by it to any other target component supported by MapForce. If you need to call a stored
procedure with input parameters, see Stored Procedures with Input and Output .

Let us first create the demo stored procedure in the "AdventureWorks" database. To do this, run the script
below against the database. You can do this from a query window of Microsoft SQL Server Management
Studio, or directly from the DB Query pane of MapForce, see Browsing and Querying Databases . In either
case, make sure that your database user account has permission to create stored procedures.

CREATE PROCEDURE HumanResources.uspGetAllEmployees

AS

 SELECT LastName, FirstName, JobTitle, Department

 FROM HumanResources.vEmployeeDepartment

The stored procedure above returns employee information from the vEmployeeDepartment view. The following
steps show you how to create a mapping that consumes data returned by this procedure.

1. Connect to the "AdventureWorks" database from MapForce and add the stored procedure to the
mapping, as described in Adding Stored Procedures to the Mapping . Make sure that your database
user account has permission to view and execute stored procedures.

2. Click the Show Context Menu button next to the stored procedure and select Show Nodes as
Source.

3. Click the Show Context Menu button again and select Edit Recordset Structures. The
"Recordset Structures" dialog box appears.

311

283

305

© 2018-2024 Altova GmbH

Databases 309Structural Components

Altova MapForce 2024 Professional Edition

Calling a stored procedure at design time may have side effects (depending on the procedure
implementation). If you do not want to execute the stored procedure at design time, do not click
Execute, as further described in subsequent steps. Instead, define the expected recordset in the
"Recordset Structures" dialog box, by adding recordsets and their associated columns manually.
Use the Add recordset or Add column buttons in the "Recordset Structures" dialog box.

4. Click Define input parameters and call procedure. The "Evaluate Stored Procedure" dialog box
appears.

310 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

5. Click Execute, and then click OK. The recordset structure ("RS1") is now visible both on the
"Recordset Structures" dialog box and on the mapping.

6. At this stage, you can add a target component where the retrieved data will be written. In this example,
data will be written to a CSV file. On the Insert menu, click Text File, and add a CSV component to
the mapping. For more information, see CSV and Text Files .329

© 2018-2024 Altova GmbH

Databases 311Structural Components

Altova MapForce 2024 Professional Edition

You can now preview the mapping. Click the Output button and observe the mapping result in the Output
pane, for example:

4.2.6.3 Stored Procedures with Input and Output

This example shows you how to call a procedure that takes input parameters and also retrieves some output
from the database. In this scenario, the stored procedure is called similar to a Web service, or a function, and
you can map data retrieved by it to any other target component supported by MapForce.

Let us first create the demo stored procedure in the "AdventureWorks" database. To do this, run the script
below against the database. You can do this from a query window of Microsoft SQL Server Management
Studio, or directly from the DB Query pane of MapForce, see Browsing and Querying Databases . In either
case, make sure that your database user account has permission to create stored procedures.

CREATE PROCEDURE Production.uspSearchProducts

 @SearchString nvarchar(50)
 ,@MaxPrice money
 ,@ComparePrice money OUTPUT

AS

BEGIN

 SET NOCOUNT ON

 SELECT pr.[Name], pr.ListPrice FROM [Production].[Product] pr

 WHERE pr.[Name] like @SearchString AND pr.ListPrice < @MaxPrice

 SET @ComparePrice = @MaxPrice

 RETURN @ComparePrice

END

283

312 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The stored procedure above retrieves a recordset containing product information. It takes as input two
parameters: a string with the product name (@SearchString) and the maximum product price (@MaxPrice). In
addition to the recordset and the default return parameter, it also retrieves an output parameter
(@ComparePrice).

The following steps show you how to create a mapping that consumes data returned by this procedure.

1. Connect to the "AdventureWorks" database from MapForce and add the stored procedure to the
mapping, as described in Adding Stored Procedures to the Mapping . Make sure that your database
user account has permission to view and execute stored procedures.

2. Click the Show Context Menu button next to the stored procedure and select Insert Call with
Parameters. The stored procedure now appears in a separate component on the mapping, where the
left side lists the input parameters, and the right side contains the return and the output parameters.

3. Click the Show Context Menu button again, and select Edit Recordset Structures. This is
necessary so as to provide to MapForce information about the structure of the recordset returned by
the procedure. The "Recordset Structures" dialog box appears.

305

© 2018-2024 Altova GmbH

Databases 313Structural Components

Altova MapForce 2024 Professional Edition

Calling a stored procedure at design time may have side effects (depending on the procedure
implementation). If you do not want to execute the stored procedure at design time, do not click
Execute, as further described in subsequent steps. Instead, define the expected recordset in the
"Recordset Structures" dialog box, by adding recordsets and their associated columns manually.
Use the Add recordset or Add column buttons in the "Recordset Structures" dialog box.

4. Click Define input parameters and call procedure. The "Evaluate Stored Procedure" dialog box
appears.

314 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

5. Fill in the parameter values as shown above, and click Execute.
6. Click OK. The recordset structure ("RS1") is now visible both on the "Recordset Structures" dialog box

and on the mapping.
7. At this stage, you can add a target component where the retrieved data will be written. In this example,

data will be written to a CSV file. On the Insert menu, click Text File, and add a CSV component to
the mapping, see also CSV and Text Files . Next, draw the mapping connections as illustrated
below. Notice that the procedure's input parameters are supplied by means of constants. For more
information about constants, see Add a Constant to the Mapping .

329

442

© 2018-2024 Altova GmbH

Databases 315Structural Components

Altova MapForce 2024 Professional Edition

You can now preview the mapping. Click the Output button and observe the mapping result in the Output
pane, for example:

4.2.6.4 Stored Procedures in Target Components

This example shows you how to call a procedure that takes input parameters and updates a database. Calling
a procedure this way makes it possible to enable transactions and roll the action back in case of an error, or
add a custom SQL statement to be executed before the procedure is called. This scenario implies that the
stored procedure acts like a target component in MapForce and you are not interested in the output returned by
it. For an example that illustrates how to pass parameters and also map data returned by a stored procedure,
see Stored Procedures with Input and Output .

Let us first create the demo stored procedure in the "AdventureWorks" database. To do this, run the script
below against the database. You can do this from a query window of Microsoft SQL Server Management
Studio, or directly from the DB Query pane of MapForce, see Browsing and Querying Databases . In either
case, make sure that your database user account has permission to create stored procedures.

CREATE PROCEDURE Production.uspAddProductModel

 @ModelName nvarchar(50)
 ,@Inst xml
AS

BEGIN

INSERT INTO [Production].[ProductModel]

 ([Name]
 ,[Instructions]
 ,[rowguid]
 ,[ModifiedDate])
 VALUES
 (@ModelName
 ,@Inst
 ,NEWID()
 ,GETDATE())
END

The stored procedure above takes two parameters (@ModelName, @Inst) as input and inserts the corresponding
values into the ProductModel table of the AdventureWorks database, along with some database-generated
data.

The following steps show you how to create a mapping that consumes data returned by this procedure.

311

283

316 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

1. Connect to the "AdventureWorks" database from MapForce and add the stored procedure to the
mapping, as described in Adding Stored Procedures to the Mapping . Make sure that your database
user account has permission to view and execute stored procedures.

2. Click the Show Context Menu button next to the stored procedure and select Show Nodes As
Target. The stored procedure now appears as target component on the mapping, where the left side
lists the input parameters.

3. Click the Show Context Menu button again, and select Procedure Settings. This optional step
enables you to execute the stored procedure inside a transaction that can be rolled back. You can
also add a custom SQL statement to be executed before the procedure is called.

4. Select the Use Transactions check box.

Note: In this example, database tracing is disabled at database component level and no tracing is set to take
place. However, you can enable database tracing for stored procedures if necessary.

5. Add the source component that provides data to be inserted into the database. In this example, the
source data is supplied by constants; however, any other source component supported by MapForce
could act as input. For more information about constants, see Add a Constant to the Mapping .

305

442

© 2018-2024 Altova GmbH

Databases 317Structural Components

Altova MapForce 2024 Professional Edition

Since this mapping updates a database, you do not preview its output directly like with other mappings.
Instead, click the Output button to display the pseudo-SQL containing hints about how the database will be
modified. If you enabled transactions, these will occur as indicated by the comments.

The pseudo-SQL displayed in the Output pane does not show the actual transaction commands, only
hints (as comments). The actual SQL commands are sent to the underlying database API, however.

To run the mapping against the database, do one of the following:

· On the Output menu, click Run SQL-Script.

· Click the Run SQL-Script toolbar button.

Stored procedures and duplicate inputs
If you need to map data from multiple sources on the mapping to the same stored procedure, you can duplicate
the stored procedure so that it accepts multiple inputs. To do this, right-click the stored procedure item on the
component and select Add duplicate input from the context menu, see also Duplicating Input . When the
mapping runs, such duplicate stored procedures will be called once for each duplicated input.

Note that the Add duplicate input command is disabled for the stored procedure parameters, because each
parameter is an atomic value (and could also be "nullable").

Tracing at stored-procedure level
To enable tracing at stored-procedure level:

44

318 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

1. Make sure that the tracing level at database component level is set to either Always or Error (see
above).

2. Do one of the following, click the Show Context Menu button, and then select Procedure
Settings from the context menu.

3. Select the trace level. The Use component settings option inherits the same settings that were
defined at the component level. The Limit to errors option restricts tracing only to error events.
Always disabled means that no tracing will occur for this table or stored procedure.

4.2.6.5 Stored Procedures and Local Relations

Local relations are logical relationships between database fields that you can create in MapForce, saving you
the need to change the underlying database, see also Defining Local Relationships . You can define local
relations not only for database fields, but also for stored procedures as well, both in source and target
components.

In source components, local relations make it easy to read data from related objects, for example, read IDs
from a database table and call a stored procedure with each of these IDs to retrieve related information. It is
also possible to call a stored procedure with data retrieved from another procedure.

In target components, local relations enable you to define a hierarchical order in which multiple related
procedures are to be called. For example, you can first call a stored procedure that creates an ID value, and
another one that inserts related information into a table. It is also possible to mix stored procedures and tables
in local relations. For example, you can perform the insert directly on a related table instead of calling another
procedure, see Using Stored Procedures to Generate Keys .

To create a local relation:

1. Right-click the title bar of a database component and select Add/Remove/Edit Database Objects
from the context menu. The "Add/Remove/Edit Database Objects" dialog box opens.

2. Click Add/Edit Relations.
3. Click Add Relation and select the objects between which you want to create the relationship.

As illustrated above, a local relation consists of a primary/unique key object and a foreign key object. Think
of it as a parent-child relationship. On the mapping component, the object (table, view, procedure, and so on)
where the primary/unique key is will appear as a parent while the object where the foreign key is will appear
nested under it. For example, in the database component illustrated below, a local relation was defined
between a recordset column (RS1.Department) and a table column (Department.Name). Consequently, the
Department table appears as a child of the stored procedure on the mapping. This example is discussed in
more detail in Local Relations in Source Components .

259

323

319

© 2018-2024 Altova GmbH

Databases 319Structural Components

Altova MapForce 2024 Professional Edition

The following table lists all the possible fields between which you can define local relations. Mixed relationships
are possible (e.g., mapping the output of a stored procedure to a database column). The fields taking part in the
relationship must have the same or compatible data types.

Primary/unique key Foreign key

· Column of a database table or view
· Output parameter or return value of a stored

procedure (see also Stored Procedures)
· Column of a recordset returned by a stored

procedure. Applicable if the stored procedure
is called as a data source (without
parameters) or as a function (with input and
output parameters). In order for the recordset
to become available for selection, you must
execute the stored procedure once, to
retrieve the recordset.

· Column of a user-defined SELECT statement
(see also SQL SELECT Statements as
Virtual Tables)

· Column of a database table or view
· Input parameter of a stored procedure
· Input parameter of a user-defined SELECT

statement

4.2.6.6 Local Relations in Source Components

This example shows you how to combine data returned by a stored procedure with data from a table in the
same database, with the help of local relations.

If you haven't done so already in a previous example, run the following script to create the demo stored
procedure in the "AdventureWorks" database. You can do this from a query window of Microsoft SQL Server
Management Studio, or directly from the DB Query pane of MapForce, see Browsing and Querying
Databases . In either case, make sure that your database user account has permission to create stored
procedures.

303

249

283

320 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

CREATE PROCEDURE HumanResources.uspGetAllEmployees

AS

 SELECT LastName, FirstName, JobTitle, Department

 FROM HumanResources.vEmployeeDepartment

The stored procedure above returns employee information from the vEmployeeDepartment view. The following
steps show you how to create a mapping that consumes data returned by this procedure.

1. Connect to the "AdventureWorks" database from MapForce, as described in Adding Stored Procedures
to the Mapping . Make sure that your database user account has permission to view and execute
stored procedures.

2. When prompted to choose database objects, select the Department table and the
uspGetAllEmployees stored procedure.

3. Click the Show Context Menu button next to the stored procedure and select Show Nodes as
Source.

4. Click the Show Context Menu button again and select Edit Recordset Structures. The
"Recordset Structures" dialog box appears.

5. Click Define input parameters and call procedure. The "Evaluate Stored Procedure" dialog box
appears.

305

© 2018-2024 Altova GmbH

Databases 321Structural Components

Altova MapForce 2024 Professional Edition

6. Click Execute, and then click OK. The recordset structure ("RS1") is now visible both on the
"Recordset Structures" dialog box and on the mapping.

Define the local relationships
Let's now define a local relationship between the Department column of the returned recordset and the Name
column of the Department table.

1. Right-click the title bar of the database component and select Add/Remove/Edit Database Objects
from the context menu.

2. Click Add/Edit Relations, and then click Add Relation. Define the relationships as shown below.

322 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

3. Click OK to close the dialog box. Notice that the Department table has now become a child of the
RS1 recordset.

Completing the mapping
Thanks to the relationship that was just created, it is now possible to map data from the recordset combined
with data from the table. For the scope of this example, let's write data to a target XML file, as follows:

1. On the Insert menu, click XML Schema/File and select the following file:
<Documents>\Altova\MapForce2024\MapForceExamples\EmployeesWithDetails.xsd.

© 2018-2024 Altova GmbH

Databases 323Structural Components

Altova MapForce 2024 Professional Edition

2. When prompted to provide a sample XML instance file, click Skip.
3. Draw the mapping connections as shown below.

The mapping illustrated above writes data from the database to a target XML file. The source data is a
combination of data extracted by the stored procedure with data extracted directly from a table. The mapping
uses the concat function to produce a string that includes the department name, followed by a dash

character, followed by the group name.

To preview the mapping, click the Output button and observe the mapping result in the Output pane, for
example:

4.2.6.7 Using Stored Procedures to Generate Keys

This example shows you how to insert some key (ID) generated by a stored procedure into another table, with
the help of local relations.

Let us first create the demo stored procedure in the "AdventureWorks" database. To do this, run the script

597

324 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

below against the database. You can do this from a query window of Microsoft SQL Server Management
Studio, or directly from the DB Query pane of MapForce, see Browsing and Querying Databases . In either
case, make sure that your database user account has permission to create stored procedures.

CREATE PROCEDURE Production.uspAddProductModelEx

 @ModelName nvarchar(50)
 ,@Inst xml
 ,@ProductModelID int OUTPUT

AS

BEGIN

INSERT INTO [Production].[ProductModel]

 ([Name]
 ,[Instructions]
 ,[rowguid]
 ,[ModifiedDate])
 VALUES
 (@ModelName
 ,@Inst
 ,NEWID()
 ,GETDATE())
 SELECT @ProductModelID = SCOPE_IDENTITY()

END

The stored procedure above takes two parameters (@ModelName, @Inst) as input and performs an INSERT
operation into the ProductModel table. It then returns the generated @ProductModelID as output parameter.
The requirement is to insert the @ProductModelID returned by the stored procedure into the
ProductModelIllustration table.

The following steps show you how to create a mapping that satisfies the requirement above.

1. Connect to the "AdventureWorks" database from MapForce, as described in Adding Stored Procedures
to the Mapping . Make sure that your database user account has permission to view and execute
stored procedures.

2. When prompted to choose database objects, select the ProductModelIllustration table and the
uspAddProductModelEx stored procedure.

3. Click the Show Context Menu button next to the stored procedure and select Show Nodes As
Target. The stored procedure now appears as target component on the mapping, where the left side
lists the input parameters.

283

305

© 2018-2024 Altova GmbH

Databases 325Structural Components

Altova MapForce 2024 Professional Edition

4. Optionally, if you want to execute the stored procedure inside a transaction, click the Show Context

Menu button again, select Procedure Settings, and then select the Use Transactions check
box. Defining the transaction for the stored procedure ensures that retrieving the key and inserting the
record occur during the same transaction.

5. Right-click the title bar of the database component and select Add/Remove/Edit Database Objects
from the context menu.

6. Click Add/Edit Relations, and then click Add Relation. Define the relationships as shown below.

7. Click OK to close the dialog box. Notice that the ProductModelIllustration table now appears as a
child of the stored procedure. The stored procedure output parameter (@ProductModelID) is displayed
as an indicator that it will be used in the local relation, but it does not have any input or output
connectors.

326 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

8. In this example, the @Inst parameter is of XML type. Right-click the @Inst parameter on the
component and select Assign XML Schema to Field from the context menu. Next, select the
Production.ManuInstructionsSchemaCollection schema from the database. When prompted to
select a root element, leave the default value as is, and click OK. For more information about mapping
data to database XML fields, see Mapping XML Data to / from Database Fields .

9. Add the source components that provides data to be inserted into the database. In this example, the
source data is supplied by constants; however, any other source component supported by MapForce
could act as input. For more information about constants, see Add a Constant to the Mapping .

293

442

© 2018-2024 Altova GmbH

Databases 327Structural Components

Altova MapForce 2024 Professional Edition

Since this mapping updates a database, you do not preview its output directly like with other mappings.
Instead, click the Output button to display the pseudo-SQL containing hints about how the database will be
modified. If you enabled transactions, these will occur as indicated by the comments.

The pseudo-SQL displayed in the Output pane does not show the actual transaction commands, only
hints (as comments). The actual SQL commands are sent to the underlying database API, however.

To run the mapping against the database, do one of the following:

328 Structural Components Databases

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· On the Output menu, click Run SQL-Script.

· Click the Run SQL-Script toolbar button.

© 2018-2024 Altova GmbH

CSV and Text Files 329Structural Components

Altova MapForce 2024 Professional Edition

4.3 CSV and Text Files

MapForce includes support for mapping data to or from text-based file formats such as CSV (comma-separated
values) and FLF (Fixed-Length Field) text files. In MapForce, CSV and FLF files are structural components
that can be used as data sources and targets.

An FLF is a common text format where data is conventionally separated into fields which have a fixed length
(for example, the first 5 characters of every row represent a transaction ID, and the next 20 characters
represent a transaction description).

Note that, in the case of CSV, your files can have as delimiter not only commas, but also tabs, semicolons,
spaces, or any other custom values.

In addition to CSV and FLF files, mapping to or from text files with more complex or custom structures is
possible using MapForce FlexText (this module is available in MapForce Enterprise Edition). FlexText
essentially enables you to define the structure of your custom text data (using a so-called "FlexText
template"), for the purpose of mapping it to other formats.

Mapping data to or from text files is supported in any one of the following languages: Java, C#, C++, or BUILT-
IN.

There are two ways that mapped flat file data can be generated:

· By clicking the Output pane which generates a preview using the Built-in execution engine. You can
also save the mapping result by selecting the menu option Output | Save output file, or clicking the

 icon.
· By selecting File | Generate code in | Java, C#, or C++ , and then compiling and executing the

generated code.

4.3.1 Example: Mapping CSV Files to XML

The goal of this example is to create a mapping which reads data from a simple CSV file and writes it to an
XML file. The files used in the example are available in the
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\ folder.

1. Select one of the following as transformation language: Java, C#, C++, or BUILT-IN.
2. Add a Text file component to the mapping area (on the Insert menu, click Text File, or click the

Insert Text file toolbar button ().
3. On the Component Settings dialog box, click Input file and browse for the Altova_csv.csv file. The file

contents are now visible in the lower part of the dialog box. Note that only the first 20 rows of the text
file are displayed when in preview mode.

36

330 Structural Components CSV and Text Files

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

4. Click inside the Field1 header and change the text to First-name. Do the same for all the other fields,
as follows: Field 2 => Last-name, Field 3 =>Tel-extension, Field 4 => Email, Field 5 => Position. TIP:
Press the Tab key to cycle through all the fields: header1, header2 etc.

5. Click OK.
6. When prompted to change the component name, click "Change component name". The CSV

component is now visible in the mapping.
7. Add MFCompany.xsd as the target XML component of the mapping (on the Insert menu, click XML

Schema/File).
8. Click Skip when prompted to supply a sample XML file, and select Company as the root element.
9. Map the corresponding items of both components, making sure to map the Rows item to the Person

item in the schema target.

© 2018-2024 Altova GmbH

CSV and Text Files 331Structural Components

Altova MapForce 2024 Professional Edition

The connector from the Rows item in the CSV component to the Person item in the schema is
essential, as it defines which elements will be iterated through. That is, for each row in the CSV
file, a new Person element will be created in the XML output file.

10. Click the Output pane to see the result.

The data from the CSV file is now successfully mapped to an XML file.

4.3.2 Example: Iterating Through Items

This example illustrates how to create iterations (multiple rows) in a target CSV file. The mapping design file
accompanying this example is available at the following path:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\Tut-xml2csv.mfd.

332 Structural Components CSV and Text Files

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Tut-xml2csv.mfd

This mapping has been intentionally created as incomplete. If you attempt to validate the example file using the
menu command File | Validate Mapping, you will notice that validation warnings occur. Also, if you preview
the mapping output, a single row is produced, which may or may not be your intended goal.

Let's assume that your goal is to create multiple rows in the CSV file from a sequence of items in the XML file.
You can achieve this by drawing a connection to the Rows item of the target CSV file.

For example, to iterate through all offices and have the output appear in the CSV file, it is necessary to connect
Office to Rows. By doing this, you are instructing MapForce: for each Office item of the source XML, create a
row in the target CSV file.

© 2018-2024 Altova GmbH

CSV and Text Files 333Structural Components

Altova MapForce 2024 Professional Edition

The Rows item in the CSV component acts as an iterator for the sequence of items connected to it. Therefore, if
you connect the Office item, the output creates a row for each office found in the source XML.

In a similar fashion, if you connect Department to the Rows item, a row will be produced for each department
found in the source XML.

334 Structural Components CSV and Text Files

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The output would then look as follows:

Finally, mapping Person to the Rows item results in all the Persons being output. In this case, MapForce will
iterate through the records as follows: each Person within each Department, within each Office.

4.3.3 Example: Creating Hierarchies from CSV and Fixed-Length
Text Files

This example is available at the following path:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\Tut-headerDetail.mfd. The example
uses a CSV file (Orders.csv) which has the following format:

· Field 1: H defines a header record and D a detail record.
· Field 2: A common key for both header and detail records.
· Each Header or Detail record is on a separate line.

The contents of the Orders.csv file are shown below.

© 2018-2024 Altova GmbH

CSV and Text Files 335Structural Components

Altova MapForce 2024 Professional Edition

The aim of the mapping is as follows:

· Map the flat file CSV to an hierarchical XML file
· Filter the Header records, designated with an H
· Associate the respective detail records, designated with a D, with each of the header records.

tut-headerDetail.mfd

For this to be achieved, the header and detail records must have one common field. In this case the common
field, or key, is the second field of the CSV file, i.e. OrderNo. In the CSV file, both the first header record and
the following two detail records contain the common value 111.

The Orders.csv file has been inserted twice to make the mapping more intuitive.

The Tut-headerDetail.xsd schema file has a hierarchical structure: Order is the root element, with Header as
its child element, and Detail being a child element of Header.

336 Structural Components CSV and Text Files

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The first Orders.csv file supplies the Header records (and all mapped fields) to the Header item in the schema
target file. The filter component is used to filter out all records other than those starting with H. The Rows item
supplies these filtered records to the Header item in the schema file.

The second Orders.csv file supplies the Detail records (and all mapped fields) by filtering out the Detail records
that match the OrderNo key of the Header record. This is achieved by:

· Comparing the OrderNo field of the Header record with the same field of the Detail records, using the
equal function (the priority context is set on the a parameter for enhanced performance).

· Using the Logical-and function to only supply those Detail records containing the same OrderNo field,
as the Header record.

The Rows item supplies these filtered records to the Header and Detail items in the schema file, through the
on-true parameter of the filter component.

Clicking the Output pane produces the XML file displayed below. Each Header record contains its data, and all
associated Detail records that have the same Order No.

Let's now have a look at another example, which uses a slightly different CSV file and is available in the
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\ folder as Head-detail-inline.mfd. The
difference is that:

· No record designator (H, or D) is available

778

© 2018-2024 Altova GmbH

CSV and Text Files 337Structural Components

Altova MapForce 2024 Professional Edition

· A common key field, the first field of the CSV file, still exists for both header and detail records (Head-
key, Detail-key...). The field is mapped to OrderNo in the schema target

· Header and all respective Detail fields are all on the same line.

The mapping has been designed as follows:

· The key fields are mapped to the respective OrderNo items in the schema target.
· The Detail item in the schema target file has been duplicated, and is displayed as Detail (2). This

allows you to map the second set of detail records to the correct item.
· The result of this mapping is basically the same XML file that was produced in the first example.

Head-detail-inline.mfd

4.3.4 Setting the CSV Options

After you add a text component to the mapping area, you can configure the settings applicable to it from the
Component Settings dialog box. You can open the Component settings dialog box in one of the following ways:

338 Structural Components CSV and Text Files

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· Select the component and, on the Component menu, click Properties.
· Double-click the component header.
· Right-click the component header, and then click Properties.

Text Component Settings dialog box (in CSV mode)

The available settings are as follows.

Component name The component name is automatically generated when you create a
component. However, you can change the name at any time. The
component name can contain spaces and full stops. It may not
contain slashes, backslashes, colons, double quotes, leading and
trailing spaces. If you want to change the name of the component, be
aware of the following:

© 2018-2024 Altova GmbH

CSV and Text Files 339Structural Components

Altova MapForce 2024 Professional Edition

· If you intend to deploy the mapping to FlowForce Server, the
component name must be unique.

· It is recommended to use only characters that can be entered
at the command line. National characters may have a different
encoding in Windows and at the command line.

Input file Specifies the file from which MapForce will read data. This field is
meaningful for a source component and is filled when you first create
the component and assign to it a text file. The field can remain empty
if you are using the text file component as a target for your mapping.

In a source component, MapForce uses the value of this field to read
column names and preview the contents of the instance text file.

To select a new file, click Input File.

Output file Specifies the file to which MapForce will write data. This field is
meaningful for a target component.

To select a new file, click Output File.

Save all file paths relative to MFD
file

When this option is enabled, MapForce saves the file paths displayed
on the Component Settings dialog box relative to the location of the
MapForce Design (.mfd) file. This setting affects the input and output
files used by the text component. See also Using Relative Paths on a
Component .

Input / Output Encoding Allows you specify the following settings of the output instance file:

· Encoding name
· Byte order
· Whether the byte order mark (BOM) character should be

included.

By default, any new components have the encoding defined in the
Default encoding for new components option. You can access
this option from Tools | Options, General tab.

Field delimiter CSV files are comma delimited "," by default. This option enables you
to select the Tab, Semicolon, or Space characters as delimiters.
You can also enter a custom delimiter in the Custom field.

First row contains field names Select this option to instruct MapForce to treat the values in the first
record of the text file as column headers. The column headers then
appear as item names on the mapping.

Treat empty fields as absent When this option is enabled, empty fields in the source file will not
produce a corresponding empty item (element or attribute) in the
target file.

For example, the CSV record "General outgassing
pollutants,,,," consists of four fields, the last three of which are
empty.

45

340 Structural Components CSV and Text Files

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Assuming that the output is an XML file, when this option is disabled,
the empty fields will be created in the output with an empty value (in
this example, the elements Last, Title, and Email):

When this option is enabled, the empty fields will not be created in the
output:

Quote character If your input file contains quotes around field values, select the quote
character that exists in the source file. The same setting will also be
used for output files.

For output files, you can specify additional settings:

Add when needed Adds the selected quote character to only those
fields where the text contains the field delimiter, or
line breaks.

Add always Adds the selected quote character to all fields of
the generated CSV file.

CSV / Fixed Changes the component type to either CSV or FLF (fixed-length field).

Preview area The lower part of the dialog box displays a preview of up to 20 rows of
the file selected as input or output.

If necessary, you can create the structure of the file (or change the
structure of the existing one), as follows.

Append field Creates a new field after the last CSV record.

© 2018-2024 Altova GmbH

CSV and Text Files 341Structural Components

Altova MapForce 2024 Professional Edition

Insert field Creates a new field immediately before the
currently selected CSV record.

Remove field Deletes the currently selected field.

<< Moves the currently selected field one position to
the left.

>> Moves the currently selected field one position to
the right.

To change the name of a field, click the header (for example, Field1),
and type the new value. Note that the field names are not editable
when the First row contains field names option is enabled.

To change the data type of a field, select the required value from the
drop-down list. MapForce checks the data type, so if the input data
and the field format to do not agree, then the data is highlighted in
red.

The field types are based on the default XML schema data types. For
example, the Date type is in the form YYYY-MM-DD.

4.3.5 FLF to Database

This topic explains how to map data of a fixed-length text file (FLF) to an SQLite database. The files used in
this topic are available in the Tutorial folder. The source text file and the target database store a list of

employees. In the source file, the records are delimited by their size as follows:

Field position and name Size (in characters)

Field 1 (First name) 8

Field 2 (Last name) 10

Field 3 (Phone extension) 3

Field 4 (Email) 25

342 Structural Components CSV and Text Files

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Field position and name Size (in characters)

Field 5 (Position) 25

The goal of the mapping is to map the FLF data to the database component. We also want to map the phone
extensions with a new prefix. To achieve this, take the steps below.

Step 1: Insert a text component
The first step is to add and configure a text component. Follow the instructions below:

1. Select the menu item Insert | Text file or click the toolbar button (Insert Text file).
2. Click Input file in the Component Settings dialog box (see below) and select Altova-FLF.txt.

3. Select Fixed.
4. Clear the Assume record delimiters present check box.

© 2018-2024 Altova GmbH

CSV and Text Files 343Structural Components

Altova MapForce 2024 Professional Edition

5. The yellow rows are editable and enable you to specify i) the field name, ii) the data type, and iii) the
field size. Set the field size to 8 (the third yellow line from the top) and press Enter. More data is now
visible in the first column, which is now 8 characters wide.

6. Click Append Field to add a new field and set the length of the second field to 10 characters.
7. Use the same method to create three more fields of the following lengths: 3, 25, and 25 characters.

Then change the field headers, as shown in the screenshot below.

8. In Fixed Length Field Settings, select Custom and type the hash (#) character. This instructs
MapForce to treat the # character as a fill character.

9. Click OK.
10. MapForce will ask you if you would like to change the component name to match the instance files.

Click Change component name. The Altova-FLF component appears in the mapping window.

Step 2: Insert a database component
The next step is to add a database component. Follow the steps below:

1. Go to Insert | Database, select SQLite, and click Next.
2. Select the Altova.sqlite database and click Connect.

3. Select the Person table (see below) and click OK.

344 Structural Components CSV and Text Files

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Step 3: Design the mapping
The next step is to create a mapping:

1. Drag the core | concat function from the Libraries window into the mapping.

2. Go to Insert | Constant, select Number as a type, and enter 100 in the text field. This constant stores
the new telephone extension prefix.

3. Create connections as shown below.

4. In the database component, click the Table Action button next to Person. This opens the Database
Table Actions dialog box (see screenshot below).

5. Next to Action on record data, select Update if. Set the equal action for the First and Last fields.
Click OK. MapForce will be instructed to update the Person table only if the first and last names in the
source file are equal to the corresponding database fields. When this condition is true, the telephone
extension will get a prefix 100 and will be copied to the PhoneExt field of the Person table.

6. To generate the SQL statements (for preview in MapForce), click the Output pane. To run the SQL

statements against the database, click the Run SQL-script button .

597

© 2018-2024 Altova GmbH

CSV and Text Files 345Structural Components

Altova MapForce 2024 Professional Edition

4.3.6 Setting the FLF Options

After you add a text component to the mapping area, you can configure the settings applicable to it from the
Component Settings dialog box. You can open the Component settings dialog box in one of the following ways:

· Select the component and, on the Component menu, click Properties.
· Double-click the component header.
· Right-click the component header, and then click Properties.

Text Component Settings dialog box (in fixed-length field mode)

The available settings are as follows.

346 Structural Components CSV and Text Files

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Component name The component name is automatically generated when you create a
component. However, you can change the name at any time. The
component name can contain spaces and full stops. It may not
contain slashes, backslashes, colons, double quotes, leading and
trailing spaces. If you want to change the name of the component, be
aware of the following:

· If you intend to deploy the mapping to FlowForce Server, the
component name must be unique.

· It is recommended to use only characters that can be entered
at the command line. National characters may have a different
encoding in Windows and at the command line.

Input file Specifies the file from which MapForce will read data. This field is
meaningful for a source component and is filled when you first create
the component and assign to it a text file. The field can remain empty
if you are using the text file component as a target for your mapping.

In a source component, MapForce uses the value of this field to read
column names and preview the contents of the instance text file.

To select a new file, click Input File.

Output file Specifies the file to which MapForce will write data. This field is
meaningful for a target component.

To select a new file, click Output File.

Save all file paths relative to MFD
file

When this option is enabled, MapForce saves the file paths displayed
on the Component Settings dialog box relative to the location of the
MapForce Design (.mfd) file. This setting affects the input and output
files used by the text component. See also Using Relative Paths on a
Component .

Input / Output Encoding Allows you specify the following settings of the output instance file:

· Encoding name
· Byte order
· Whether the byte order mark (BOM) character should be

included.

By default, any new components have the encoding defined in the
Default encoding for new components option. You can access
this option from Tools | Options, General tab.

Fill Character This option allows you to define the characters that are to be used to
complete, or fill in, the rest of the (fixed) field when the incoming data
is shorter than the respective field definitions. The custom field allows
you to define your own fill character.

45

© 2018-2024 Altova GmbH

CSV and Text Files 347Structural Components

Altova MapForce 2024 Professional Edition

If the incoming data already contains specific fill characters, and you
enter the same fill character in the Custom field, then the incoming
data will be stripped of those fill characters!

Assume record delimiters present This option is useful when you want to read data from a source flat file
that does not contain record delimiters such as CR/LF, or when you
want to produce a target flat FLF file without record delimiters.

See the Understanding the "Assume record delimiters present"
option section below.

Treat empty fields as absent When this option is enabled, empty fields in the source file will not
produce a corresponding empty item (element or attribute) in the
target file.

Assuming that the output is an XML file, when this option is disabled,
the empty fields will be created in the output with an empty value (in
this example, the elements Last, Title, and Email):

When this option is enabled, the empty fields will not be created in the
output:

CSV / Fixed Changes the component type to either CSV or FLF (fixed-length field).

Preview area The lower part of the dialog box displays a preview of up to 20 rows of
the file selected as input or output.

If necessary, you can create the structure of the file (or change the
structure of the existing one), as follows.

Append field Creates a new field after the last record.

Insert field Creates a new field immediately before the
currently selected record.

Remove field Deletes the currently selected field.

<< Moves the currently selected field one position to
the left.

348

348 Structural Components CSV and Text Files

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

>> Moves the currently selected field one position to
the right.

To change the name of a field, click the header (in this example,
Field1), and type the new value.

To change the data type of a field, select the required value from the
drop-down list. MapForce checks the data type, so if the input data
and the field format to do not agree, then the data is highlighted in
red.

To set the size of the field in characters, enter the field size in the
third row from the top.

Understanding the "Assume record delimiters present" option
To better understand this option, open the Altova-FLF.txt file available in the
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\ folder. Notice that the file consists of
71-character long records, without any delimiters such as CR/LF. If you would need to read data from this
particular file, first you would need to split this file into records. That is, create several fields whose total size
sums up to 71 characters (as shown below), and then disable Assume record delimiters present. For a step-
by-step example, see Example: Mapping Fixed-Length Text Files to Databases .

341

© 2018-2024 Altova GmbH

CSV and Text Files 349Structural Components

Altova MapForce 2024 Professional Edition

If you would need to write data from this file to a destination file which uses the same structure, then enabling
Assume record delimiters present creates a new record after every 71 characters.

The mapping result when "Assume record delimiters present "is enabled

If Assume record delimiters present is disabled, the mapping result appears as one long string.

350 Structural Components CSV and Text Files

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The mapping result when "Assume record delimiters present "is disabled

© 2018-2024 Altova GmbH

 351Transformation Components

Altova MapForce 2024 Professional Edition

5 Transformation Components

This section describes transformation components that can be used to transform data or to store data
temporarily for further processing. The list of transformation components is given below:

· Simple input
· Simple output
· Variables
· Join Components
· Sort Components
· Filters and Conditions
· Value-Maps
· Exceptions

Note that functions also belong to transformation components. However, functions are organized as a
standalone section.

352

362

366

379

408

414

426

437

441

352 Transformation Components Simple Input

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

5.1 Simple Input

If you need to create a mapping that takes parameters as input, you can do so by adding a special component
type called "simple input component". Simple input components always have a simple data type (for example,
string, integer, and so on) instead of a structure of items and sequences. For example, in the mapping
illustrated below, there is a simple input component count. Its role is to supply as parameter the maximum
number of rows that should be retrieved from the source XML file (with value 10 as default). Importantly, the
nodes supplied as input to the first-items function are sorted with the help of a sort component, so the
mapping outputs the highest N temperatures only, where N is the parameter's value.

FindHighestTemperatures.mfd

Another fairly common usage of simple input components is to supply a file name to the mapping. This is
useful in mappings that read input files or write output files dynamically, see Processing Multiple Input or
Output Files Dynamically .

You can use simple input components in any the following MapForce transformation languages:

· BUILT-IN (when you preview the mapping transformation directly in MapForce, from the Preview tab)
· BUILT-IN (when you run a compiled MapForce Server execution file)
· XSLT 1.0, XSLT 2.0, XSLT 3.0
· XQuery
· C++
· C#
· Java

In case of mappings executed with MapForce Server or by means of generated code, simple input components
become command line parameters. In case of mappings generated as XSLT transformations, simple input
components correspond to stylesheet parameters in the generated XSLT file.

You can create each simple input component (or parameter) as optional or mandatory, see Adding Simple
Input Components . If necessary, you can also create default values for the mapping input parameters, see
Creating a Default Input Value . This enables you to safely run the mapping even if you do not explicitly
supply a parameter value at mapping execution time. For an example, see Example: Using File Names as
Mapping Parameters .

570

751

353

355

356

© 2018-2024 Altova GmbH

Simple Input 353Transformation Components

Altova MapForce 2024 Professional Edition

Input parameters added on the main mapping area should not be confused with input parameters in user-
defined functions . There are some similarities and differences between the two, as follows.

Input parameters on the mapping Input parameters of user-defined functions

Added from Function | Insert Input menu. Added from Function | Insert Input menu.

Can have simple data types (string, integer, and so
on).

Can have simple as well as complex data types.

Applicable to the entire mapping. Applicable only in the context of the function in which
they were defined.

When you create a reversed mapping (using the menu command Tools | Create Reversed Mapping), a
simple input component becomes a simple output component.

5.1.1 Adding Simple Input Components

To add a simple input to the mapping:

1. Make sure that the mapping window displays the main mapping (not a user-defined function).
2. Do one of the following:

· On the Function menu, click Insert Input.
· On the Insert menu, click Insert Input.

· Click the Insert Input toolbar button.

3. Enter a name and select the data type required for this input. If the input should be treated as a
mandatory mapping parameter, select the Input is required check box. For a complete list of
settings, see Simple Input Component Settings .

464

354

354 Transformation Components Simple Input

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Note: The parameter name can contain only letters, digits, and underscores; no other characters are allowed.
This makes it possible for a mapping to work across all code generation languages.

4. Click OK.

You can change later any of the settings defined here (see Simple Input Component Settings).

5.1.2 Simple Input Component Settings

You can define the settings applicable to a simple input component when adding it to the mapping area. You
can also change the settings at a later time, from the Edit Input dialog box.

To open the Edit Input dialog box, do one of the following:

· Select the component, and, on the Component menu, click Properties.
· Double-click the component.
· Right-click the component, and then click Properties.

Edit Input dialog box

The available settings are as follows.

Name Enter a descriptive name for the input parameter corresponding to this component. At
mapping execution time, the value entered in this text box becomes the name of the
parameter supplied to the mapping; therefore, no spaces or special characters are
allowed.

Datatype By default, any input parameter is treated as string data type. If the parameter should
have a different data type, select the respective value from the list. When the mapping
is executed, MapForce casts the input parameter to the data type selected here.

354

© 2018-2024 Altova GmbH

Simple Input 355Transformation Components

Altova MapForce 2024 Professional Edition

Input is required When enabled, this setting makes the input parameter mandatory (that is, the
mapping cannot be executed unless you supply a parameter value).

Clear this check box if you want to specify a default value for the input parameter (see
Creating a Default Input Value).

Specify value This setting is applicable only if you execute the mapping during design time, by
clicking the Preview tab. It allows you to enter directly in the component the value to
use as mapping input.

Value This setting is applicable only if you execute the mapping during design time, by
clicking the Preview tab. To enter a value to be used by MapForce as mapping input,
select the Specify Value check box, and then type the required value.

Note: If you click the Specify value check box and enter a value in the adjacent
box, the entered value takes precedence over the default value when you
preview the mapping (that is, at design-time execution). However, the design-
time value has no effect in the generated XSLT, XQuery, or program code, in
execution by MapForce Server, or deployment to FlowForce Server.

5.1.3 Creating a Default Input Value

After you add an Input component to the mapping area, notice the default item to the left of the component.

Simple input component

The default item enables you to connect an optional default value to this input component, as follows:

1. Add a constant component (on the Insert menu, click Constant), and then connect it to the default
item of the input component.

2. Double-click the input component and clear the Input is required check box. When you create a
default input value, this setting is not meaningful and causes mapping validation warnings.

355

356 Transformation Components Simple Input

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

3. Click OK.

Note: If you click the Specify value check box and enter a value in the adjacent box, the entered value
takes precedence over the default value when you preview the mapping (that is, at design-time
execution). However, the design-time value has no effect in the generated XSLT, XQuery, or program
code, in execution by MapForce Server, or deployment to FlowForce Server.

5.1.4 Example: Using File Names as Mapping Parameters

This example walks you through the steps required to execute a mapping that takes input parameters at
runtime. The mapping design file used in this example is available at the following path:
<Documents>\Altova\MapForce2024\MapForceExamples\FileNamesAsParameters.mfd.

This mapping reads data from a source XML file and writes it to a target XML file. The data is written to the
target file almost unchanged; only the attributes PrimaryKey and Name are populated with some constant
values from the mapping. The main goal of the mapping is to enable the caller to specify the name of the input
file and the name of the output file, as mapping parameters, at mapping runtime.

To achieve this, the mapping has two input components: InputFileName and OutputFileName. These supply
the input file name (and the output file name, respectively) of the source and target XML file. For this reason,
they are connected to the File: <dynamic> item. You can switch a component to this mode by clicking the

File/String () button, and selecting Use Dynamic File Names Supplied by Mapping.

© 2018-2024 Altova GmbH

Simple Input 357Transformation Components

Altova MapForce 2024 Professional Edition

FileNamesAsParameters.mfd (MapForce Enterprise Edition)

If you double-click the title bar of either of the InputFileName and OutputFileName components, you can
view or edit their properties. For example, you can specify the data type of the input parameter or change the
input parameter name, as described in Simple Input Component Settings . In this example, the input and
output parameters are configured as follows:

· The InputFileName parameter is of type "string" and it has a default value supplied by a constant
defined in the same mapping. The constant is of type "string" and its value is
"Altova_Hierarchical.xml". Therefore, when this mapping runs, it will attempt to read data from a file
called "Altova_Hierarchical.xml", assuming that you do not supply some other value as parameter.

· The OutputFileName parameter is of type "string" and it also has a default value supplied by a
constant defined in the same mapping. The constant is of type "string" and its value is
"Altova_Hierarchical_output.xml". Therefore, the mapping will create an XML output file called
"Altova_Hierarchical_output.xml" when it runs, assuming that you do not supply some other value as
parameter.

The following sections illustrate how to run the mapping and supply parameters in the following transformation
languages:

· XSLT 2.0 , using RaptorXML Server
· Built-in (MapForce Server Execution File) , using MapForce Server
· Java
· C#
· C++

354

358

358

359

360

360

358 Transformation Components Simple Input

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

XSLT 2.0
If you generate code in XSLT 1.0, XSLT 2.0, or XSLT 3.0, a DoTransform.bat batch file is generated in the
chosen target directory, in addition to the XSLT file. The DoTransform.bat lets you execute the mapping with
RaptorXML Server, see Automation with RaptorXML Server .

To use a different input (or output) file, edit the DoTransform.bat file to include the required parameters, as
follows:

1. First, generate the XSLT code. For example, to generate XSLT 2.0, select the menu command File |
Generate Code In | XSLT 2.0.

2. Copy the Altova_Hierarchical.xml file from
<Documents>\Altova\MapForce2024\MapForceExamples\ to the directory where you generated
the XSLT 2.0 code (in this example, c:\codegen\examples\xslt2). As stated previously, the mapping
will attempt to read this file if you do not supply a custom value to the InputFileName parameter.

3. Edit DoTransform.bat to include the custom input parameter either before or after %*. Note that the

parameter value is enclosed with single quotes. The available input parameters are listed in the rem
(Remark) section. Let's suppose that you would like to generate an output file called output.xml. To
achieve this, change the DoTransform.bat file as follows:

@echo off

RaptorXML xslt --xslt-version=2
 --input="MappingMapToAltova_Hierarchical.xslt"
 --param=OutputFileName:'output.xml' %* "MappingMapToAltova_Hierarchical.xslt"
rem --param=InputFileName:
rem --param=OutputFileName:
IF ERRORLEVEL 1 EXIT/B %ERRORLEVEL%

When you run the DoTransform.bat file, RaptorXML Server completes the transformation using
Altova_Hierarchical.xml as input. If you followed the steps above, the name of the generated output file will
be output.xml.

MapForce Server Execution File
To supply custom input parameters to a MapForce Server execution file:

1. If you haven't done that already, open the FileNamesAsParameters.mfd example from the
<Documents>\Altova\MapForce2024\MapForceExamples\ directory.

818

© 2018-2024 Altova GmbH

Simple Input 359Transformation Components

Altova MapForce 2024 Professional Edition

2. On the File menu, click Compile to MapForce Server Execution File, see also Compiling
Mappings to MapForce Server Execution Files . When prompted, save the .mfx execution file to a
directory on your computer (in this example, c:\codegen\examples\mfx).

3. Copy the Altova_Hierarchical.xml file from the
<Documents>\Altova\MapForce2024\MapForceExamples\ directory to the directory where you
saved the .mfx file.

4. Run MapForce Server with the following command:

MapForceServer.exe run "C:\codegen\examples\mfx\FileNamesAsParameters.mfx"
 -p=InputFileName:"C:\codegen\examples\mfx\Altova_Hierarchical.xml"
 -p=OutputFileName:"C:\codegen\examples\mfx\OutputFile.xml"

In the MapForce Server command above, -p=InputFileName and -p=OutputFileName are the input
parameters to the mapping. You can use any file name as the value of -OutputFileName. However, the file
name supplied in -InputFileName parameter must exist as a physical file; otherwise, the mapping will fail.

Note: If you see the message "MapForceServer.exe is not recognized as an internal or external command,
operable program, or batch file", change the current directory to the one where the MapForce Server
executable is installed. To avoid changing the path every time when you run a mapping, add to your
operating system's PATH environment variable the path of the directory where the MapForce Server
executable is installed (for example, C:\Program Files (x86)\Altova\MapForceServer2024\bin).

With MapForce Server, running a mapping is also possible by calling the MapForce Server API (which is
invokable from languages such as C++, C#, or Java). For further information about this scenario, refer to the
MapForce Server documentation (https://www.altova.com/documentation).

Java
To supply a custom input parameter to a Java .jar application:

1. If you haven't done that already, open the FileNamesAsParameters.mfd example from the
<Documents>\Altova\MapForce2024\MapForceExamples\ directory.

2. On the File menu, click Generate Code In | Java.
3. Compile the Java code into an executable JAR file. For an example of how to do this in Eclipse, see

Example: Generate and Run Java Code.
4. Copy the Altova_Hierarchical.xml file from

<Documents>\Altova\MapForce2024\MapForceExamples\ to the directory where the .jar file is. As
stated previously, the mapping will attempt to read this file if you do not supply a custom value to the
InputFileName parameter.

5. Run the Java application with the following command:

java -jar Mapping.jar /OutputFileName "output.xml"

In the command above, the input parameter /OutputFileName supplies the name of the output file to be
generated.

Note: If you use wildcards when passing parameters to .jar files, enclose the wildcard parameters within
quotes, for example:

java -jar Mapping.jar /InputFileName "altova-*.xml"

825

https://www.altova.com/documentation

360 Transformation Components Simple Input

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

C#
To supply a custom input parameter to a C# command line application generated by MapForce:

1. If you haven't done that already, open the FileNamesAsParameters.mfd example from the
<Documents>\Altova\MapForce2024\MapForceExamples\ directory.

2. On the File menu, click Generate Code In | C#, and select a target directory (C:
\codegen\examples\cs, in this example).

3. Open the solution in Visual Studio and build it (Ctrl + Shift + B).
4. Copy the Altova_Hierarchical.xml file from

<Documents>\Altova\MapForce2024\MapForceExamples\ to the directory where Mapping.exe
was generated (in this example, C:\codegen\examples\cs\Mapping\bin\Debug). As stated
previously, the mapping will attempt to read this file if you do not supply a custom value to the
InputFileName parameter.

5. Open a Command Prompt window and change to the directory where Mapping.exe is.

cd C:\codegen\examples\cs\Mapping\bin\Debug

6. Run the application with the following command:

Mapping.exe /OutputFileName output.xml

In the command above, the input parameter /OutputFileName supplies the name of the output file to be
generated.

C++
To supply a custom input parameter to a C++ command line application generated by MapForce:

1. If you haven't done that already, open the FileNamesAsParameters.mfd example from the
<Documents>\Altova\MapForce2024\MapForceExamples\ directory.

2. On the File menu, click Generate Code In | C++, and select a target directory (C:
\codegen\examples\cpp, in this example).

3. Open the solution in Visual Studio and build it (Ctrl + Shift + B).
4. Copy the Altova_Hierarchical.xml file from

<Documents>\Altova\MapForce2024\MapForceExamples\ to the directory where Mapping.exe
was generated (in this example, C:\codegen\examples\cpp\Mapping\Debug). As stated previously,
the mapping will attempt to read this file if you do not supply a custom value to the InputFileName
parameter.

5. Open a Command Prompt window and change to the directory where Mapping.exe is.

cd C:\codegen\examples\cpp\Mapping\Debug

6. Run the application with the following command:

Mapping.exe /OutputFileName output.xml

© 2018-2024 Altova GmbH

Simple Input 361Transformation Components

Altova MapForce 2024 Professional Edition

In the command above, the input parameter /OutputFileName supplies the name of the output file to be
generated.

362 Transformation Components Simple Output

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

5.2 Simple Output

An output component (or "simple output") is a MapForce component which enables you to return a string value
from the mapping. Output components represent one possible type of target components , but should not be
confused with the latter. Use a simple output component when you need to return a string value from the
mapping. On the mapping area, simple output components play the role of a target component which has a
string data type instead of a structure of items and sequences. Consequently, you can create a simple output
component instead of (or in addition to) a file-based target component. For example, you can use a simple
output component to quickly test and preview the output of a function (see Example: Testing Function
Output). The main purpose of a simple output component is, however, to get back a string when calling the
MapForce Server API, without writing any files.

Simple output components should not be confused with output parameters of user-defined functions (see User-
Defined Functions). There are some similarities and differences between the two, as follows.

Output components Output parameters of user-defined functions

Added from Function | Insert Output menu. Added from Function | Insert Output menu.

Have "string" as data type. Can have simple as well as complex data types.

Applicable to the entire mapping. Applicable only in the context of the function in which
they were defined.

If necessary, you can add multiple simple output components to a mapping. You can also use simple output
components in combination with file-based and database target components. When your mapping contains
multiple target components, you can preview the data returned by a particular component by clicking the

Preview () button in the component title bar, and then clicking the Output pane on the Mapping window.

You can use simple output components as follows in MapForce transformation languages:

Language How it works

BUILT-IN (when previewing the
mapping transformation)

You can preview Output components in the same way as you would
preview a file-based mapping output—by clicking the Output pane on the
Mapping window.

BUILT-IN (when running the
MapForce Server execution file)

When you run a compiled MapForce Server execution file (see Compiling a
MapForce mapping), the mapping output is returned in the standard
output stream (stdout), so you can view it or redirect to a file. For example,
assuming that the name of the MapForce server execution file is
MyMapping.mfx, use the following syntax to redirect the mapping output
to the output.txt file and any errors to the log.txt file:

MapForceServer.exe run MyMapping.mfx >output.txt 2>log.txt

XSLT 1.0, XSLT 2.0, XSLT 3.0 In the generated XSLT files, a simple output component defined in the
mapping becomes the output of the XSLT transformation.

34

364

464

825

© 2018-2024 Altova GmbH

Simple Output 363Transformation Components

Altova MapForce 2024 Professional Edition

Language How it works

If you are using RaptorXML Server, you can instruct RaptorXML Server to
write the mapping output to the file passed as value to the --output
parameter.

To write the output to a file, add or edit the --output parameter in the
DoTransform.bat file. For example, the following DoTransform.bat file
has been edited to write the mapping output to the Output.txt file (see
highlighted text).

RaptorXML xslt --xslt-version=2 --
input="MappingMapToResult1.xslt" --output="Output.txt" %*
"MappingMapToResult1.xslt"

If an --output parameter is not defined, the mapping output will be written
to the standard output stream (stdout) when the mapping is executed.

C++, C#, Java In the generated C++, C#, and Java code, the mapping output is written to
the standard output of the generated application.

If the mapping contains multiple target components, the generated
application concatenates the standard output of each target component
and returns it as one unified standard output.

When you create a reversed mapping (using the menu command Tools | Create Reversed Mapping), the
simple output component becomes a simple input component.

5.2.1 Adding Simple Output Components

To add an output component to the mapping area:

1. Make sure that the mapping window displays the main mapping (not a user-defined function).
2. Do one of the following:

a. On the Function menu, click Insert Output.

b. Click the Insert output toolbar button.

3. Enter a name for the component.
4. Click OK.

364 Transformation Components Simple Output

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Create Output dialog box

You can change the component name at any time later, in one of the following ways:

· Select the component, and, on the Component menu, click Properties.
· Double-click the component header.
· Right-click the component header, and then click Properties.

5.2.2 Example: Previewing Function Output

This example illustrates how to preview the output returned by MapForce functions with the help of simple
output components. You will make the most of this example if you already have a basic understanding of
functions in general, and of MapForce functions in particular. If you are new to MapForce functions, you may
want to refer to Using Functions before continuing.

Our aim is to add a number of functions to the mapping area, and learn how to preview their output with the help
of simple output components. In particular, the example uses a few simple functions available in the core
library. Here is a summary of their usage:

string-length Returns the number of characters in the string provided as argument. For example, if
you pass to this function the value "Lorem ipsum", the result is "11", since this is the
number of characters that the text "Lorem ipsum" takes.

substring-

after
Returns the part of the string that occurs after the separator provided as argument.
For example, if you pass to this function the value "Lorem ipsum" and the space
character (" "), the result is "ipsum".

substring-

before
Returns the part of the string that occurs before the separator provided as argument.
For example, if you pass to this function the value "Lorem ipsum" and the space
character (" "), the result is "Lorem".

To test each of these functions against a custom text value ("Lorem ipsum", in this example), follow the steps
below:

1. Add a constant with the value "Lorem ipsum" to the mapping area (use the menu command Insert |
Constant). The constant will be the input parameter for each of the functions to be tested.

441

600

601

602

© 2018-2024 Altova GmbH

Simple Output 365Transformation Components

Altova MapForce 2024 Professional Edition

2. Add the string-length, substring-after, and substring-before functions to the mapping area,

by dragging them to the mapping area from the core library, string functions section.
3. Add a constant with an empty space (" ") as value. This will be the separator parameter required by the

substring-after and substring-before functions.

4. Add three simple output components (use the menu command Function | Insert Output). In this
example, they have been named Result1, Result2, and Result3, although you can give them another
title.

5. Connect the components as illustrated below.

Testing function output with simple output components

As shown in the sample above, the "Lorem ipsum" string acts as input parameter to each of the string-

length, substring-after, and substring-before functions. In addition to this, the substring-after and

substring-before functions take a space value as second input parameter. The Result1, Result2, and

Result3 components can be used to preview the result of each function.

To preview the output of any function:

· Click the Preview () button in the component title bar, and then click the Output pane on the
Mapping window.

366 Transformation Components Variables

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

5.3 Variables

A variable is a special type of components used to store an intermediate mapping result for further processing.
Variables can be of simple type (e.g., string, integer, boolean, etc) and complex type (a tree structure). See the
examples of both types in the subtopics below.

One of the most important aspects of variables is that they are sequences and can be used to create
sequences. The term sequence means a list of zero or more items. This makes it possible for a variable to
process multiple items for the duration of the mapping lifetime. For more information, see also Mapping Rules
and Strategies . However, it is also possible to assign a value to a variable once and keep this value the
same for the rest of the mapping. For details, see Changing the Context and Scope of Variables .

Simple variables
A simple variable is built to represent atomic types such as strings, numbers, and booleans (see screenshot
below).

Complex variables
A complex variable has a tree structure. The structures on which a complex variable can be based are
summarized in the list below.
MapForce Basic Edition:

· XML Schema Structure
MapForce Professional Edition:

· XML Schema Structure
· Database Structure

MapForce Enterprise Edition:
· XML Schema Structure
· Database Structure
· EDI Structure
· FlexText Structure
· JSON Schema Structure

Example 1: Variable based on XML Schema
You can create a complex variable by supplying an XML schema which defines the structure of the variable
(see screenshot below). If the schema defines any elements globally, you can choose which one should
become the root node of the variable structure. Note that a variable does not have an associated instance XML
file. The data of the variable is computed at mapping runtime.

766

372

© 2018-2024 Altova GmbH

Variables 367Transformation Components

Altova MapForce 2024 Professional Edition

Example 2: Variable based on a database (MapForce Professional and Enterprise editions)
If you choose a database structure for your variable (see screenshot below), you can choose a specific
database table as the root item for the variable structure. MapForce allows you to create DB-based variables
with a tree of related tables. The tree of related tables represents an in-memory structure that has no
connection to the database at runtime. This also means that there is no automatic handling of foreign keys and
no table actions in parameters or variables.

Compute-when
In both examples above, each variable has an item called compute-when. Connecting this item is optional: This
enables you to control how the variable value should be computed in the mapping. For more information, see
Changing the Context and Scope of Variables .

Variables with duplicated inputs
When necessary, items of a variable structure can be duplicated to accept data from more than one source
connection. This is similar to duplicating inputs in standard components. This does not apply, however, to
variables created from database tables. The screenshot below illustrates a simple variable with duplicated
inputs.

372

44

368 Transformation Components Variables

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Chained mappings vs. variables
Variables can be compared to intermediate components of a chained mapping . However, variables are more
flexible and convenient if you do not need to produce intermediary files at each stage of the mapping. The table
below outlines differences between variables and chained mappings.

Chained mappings Variables

Chained mappings involve two independent steps.
For example, a mapping has three components,
namely A, B, and C. Step 1: mapping data A to B.
Step 2: mapping data from B to C.

You can control when and how often the variable
value is computed when the mapping is carried out.
For details, see Changing the Context and Scope of
Variables .

When the mapping is carried out, intermediate
results are stored externally in files.

When the mapping is carried out, intermediate
results are stored internally. No external files
containing the results of a variable are produced.

The intermediate result can be previewed using the
preview button.

The result of a variable cannot be previewed, since it
is computed at mapping runtime.

Note: Variables are not supported if the mapping transformation language is set to XSLT 1.0.

5.3.1 Add a Variable

This topic explains how to add a variable to a mapping. The first option is to add a variable via the menu or
toolbar command. The second option allows you to add a variable via the context menu.

Option 1: via the menu or toolbar command
This option enables you to add a variable via the menu or toolbar command. Take the steps below:

1. Go to the Insert menu and click Variable. Alternatively, click the toolbar button (Variable).

99

372

© 2018-2024 Altova GmbH

Variables 369Transformation Components

Altova MapForce 2024 Professional Edition

2. Select the type of variable you want to insert (simple or complex type).

If you select Complex type, there are a few additional steps:

3. Click Choose to select the source which should provide the structure of the variable . The structures
illustrated in the screenshot below only apply to MapForce Enterprise Edition. See the list of structures
relevant to other MapForce editions in the previous topic .

366

366

370 Transformation Components Variables

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

4. When prompted, specify the root item of the structure of the variable. For example, in XML schemas,
you can select any element or type from the selected source (see screenshot below).

© 2018-2024 Altova GmbH

Variables 371Transformation Components

Altova MapForce 2024 Professional Edition

Option 2: via the context menu
The second option allows you to create a variable using the context menu. The possible options are listed
below.

Variable from a source node
To create a variable from a source node, right-click the output connector of a component (in this example, the
output connector of the <Article> element) and select Create Variable from Source Node (see screenshot
below).

This creates a complex variable with the source schema of the Articles component. All the items are
automatically connected with a copy-all connection (see screenshot below).58

372 Transformation Components Variables

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Variable from a target node
To create a variable from a target node, right-click the input connector of a target component and select Create
Variable for Target Node. This creates a complex variable with the same schema as in the target. All the
items are automatically connected with a copy-all connection.

Variable from a filter:
To create a variable using a filter, right-click the output connector of a filter component (on-true/on-false)
and select Create Variable from Source Node. This creates a complex component with the source schema
and automatically uses the item linked to the filter input as the root element of the intermediate component.

5.3.2 Scope and Context of Variables

Every variable has a compute-when input item (see screenshot below), which allows you to control the scope of
the variable. This means that you can control when and how often the variable value is computed when the
mapping is executed. You do not have to connect this input in many cases, but it can be essential to override
the default context or to optimize the mapping performance.

The following terms are relevant to the discussion of the scope and context of variables: subtree and variable
value. A subtree is a set of an item/node in a target component and all of its descendants: for example, a
<Person> element with its <FirstName> and <LastName> child elements.

A variable value is the data that is available at the output side of the variable component.

· For simple variables, it is a sequence of atomic values that have the datatype specified in the
component properties.

· For complex variables, it is a sequence of root nodes (of the type specified in the component
properties), each one including all its descendant nodes.

The sequence of atomic values (or nodes) may contain one or even zero elements. This depends on what is
connected to the input side of the variable, and to any parent items in the source and target components.

© 2018-2024 Altova GmbH

Variables 373Transformation Components

Altova MapForce 2024 Professional Edition

Compute-when is not connected (default)
If the compute-when input item is not connected to an output node of a source component, the variable value is
computed whenever it is first used in a target subtree directly via a connector from the variable component to a
node in the target component or indirectly via functions. The same variable value is also used for all target child
nodes inside the subtree.

The actual variable value depends on any connections between parent items of the source and target
components. This default behavior is the same as that of complex outputs of regular user-defined functions
and Web service function calls. If the variable output is connected to multiple unrelated target nodes, the
variable value is computed separately for each of them. This can produce different results in each case,
because different parent connections influence the context in which the variable's value is evaluated.

Compute-when is connected
By connecting an output connector of a source component to compute-when, the variable is computed
whenever that source item is first used in a target subtree.

The variable actually acts as if it were a child item of the item connected to compute-when. This makes it
possible to bind the variable to a specific source item. That is, at runtime the variable is re-evaluated whenever
a new item is read from the sequence in the source component. This is related to the general rule governing
connections in MapForce: For each source item, one target item is created. In this case, compute-when
instructs MapForce to compute the variable value for each source item. For more information, see Mapping
Rules and Strategies .

Compute-once
If necessary, you can choose to compute the variable value once before each of the target components,
making the variable essentially a global constant for the rest of the mapping. To do this, right-click the
compute-when item and select Compute Once from the context menu:

When you change the scope of a variable to compute-when=once, the input connector is removed from the
compute-when item, since such a variable is only evaluated once. In a user-defined function, the compute-
when=once variable is evaluated each time the function is called before the actual function result is evaluated.

Parent-context
The parent-context argument is an optional argument in some MapForce core aggregation functions (e.g.,

467

766

374 Transformation Components Variables

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

min, max, avg, count). In a source component which has multiple hierarchical sequences, the parent context

determines the set of nodes on which the function should operate.

Adding a parent-context item may be necessary, for example, if your mapping uses multiple filters and you
need an additional parent node to iterate over. For details, see Example: Changing the Parent Context . To
add a parent-context to a variable, right-click the root node (in this example, PersonList) and select Add
Parent Context from the context menu. This adds a new node, parent-context, to the existing hierarchy.

The parent context adds a virtual parent node to the hierarchy within the component. This allows you to iterate
over an additional node in the same or in a different source component.

5.3.3 Example: Counting Database Table Rows

The mapping illustrated in this example is available as DB_UserList.mfd in the
<Documents>\Altova\MapForce2024\MapForceExamples\ folder. This mapping extracts user records from
a database table called "Users" and writes them to an XML file. The database column "Username" contains
both the first name and the surname of a person (for example, "Vernon Callaby"). This mapping has the
following goals:

1. For each record in the "Users" table, create a new Person element in the XML file.
2. Split the value extracted from the database field "Username" into two separate fields in the XML file

("First" and "Last").
3. For each record, find its sequential number compared to the number of total records present in the

database (for example, "Record 1 of 4") and write this information to the Details element.

773

© 2018-2024 Altova GmbH

Variables 375Transformation Components

Altova MapForce 2024 Professional Edition

DB_UserList.mfd

As illustrated above, in order to achieve the first goal, a connection is drawn between the source "Users" table
and the Person element of the target XML file. This ensures that, for each record in the source table, a new
Person element will be created in the target.

The value of the field "Username" is supplied to the substring-before and substring-after

functions. These two functions extract the text before and after the space character (" "), respectively, which
takes care of the second mapping goal.

Finally, to achieve the third goal, the mapping uses the count function. The result of the count function is

passed on to a variable. The variable ensures that this result is stored on the mapping and available when
writing the "Details" element of each person to the target XML. Note that, for efficiency reasons, database
records should be counted only once, so the variable scope is set to compute-when=once (see Changing the
Context and Scope of Variables)

5.3.4 Example: Filtering and Numbering Nodes

The mapping illustrated in this example is available as PositionInFilteredSequence.mfd in the
<Documents>\Altova\MapForce2024\MapForceExamples\ folder.

This mapping reads an XML file which contains contact data of several people, filters them, and writes them to
a target XML file. The goal of the mapping is to filter from the source XML file only those people whose last
name begins with letter "M" or a subsequent letter. Secondly, the extracted contacts must be numbered. The
number is going to act as the unique identifier of each contact in the target XML file.

602 601

372

376 Transformation Components Variables

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

PositionInFilteredSequence.mfd

To achieve the goal above, the following component types were added to the mapping:

· A filter (see Filters and Conditions)
· A complex variable (see Adding Variables)
· The functions greater and position (see Add a Function to the Mapping)

· A constant (To add a constant, select the menu command Insert | Constant).

The variable uses the same schema as the source component. If you right-click the variable and select
Properties from the context menu, notice that the node BranchOffices/Office/Contact is selected as root
node for this variable structure.

First, data of the source component is passed on to the filter. The filter passes onwards to the variable only
those records that meet the filter condition. Namely, the filter is configured to get only those Contact nodes
where the last name is equal or greater than M. To achieve this, the function greater compares each last

item with the constant value "M".

The variable has the compute-when input connected to the root item of the source component
(BranchOffices). At runtime, this causes the variable to be re-evaluated whenever a new item is read from the
sequence in the source component. In this mapping, however, connecting or not connecting the compute-when
item does not make a difference. The reason is that the variable is connected to the Contact source item
(indirectly through the filter), and it would compute as many times as there are instances of Contact which
meet the filter condition.

The position functions returns, for each iteration of the variable, the number of the current sequence. Only

eight contacts meet the filter condition; therefore, if you preview the mapping and look at the output, notice how
IDs 1 through 8 were written to the ID element of the target component.

In case you were wondering why the variable was necessary at all, it is because of the requirement to number
all records. Had we connected the filter result directly to the target component, there would have been no way
to number each occurrence of Contact. The purpose of the variable in this mapping is, therefore, to store each
instance of Contact temporarily on the mapping, so that it can be numbered before it is written to the target.

414

368

549 587 442

549

587

© 2018-2024 Altova GmbH

Variables 377Transformation Components

Altova MapForce 2024 Professional Edition

5.3.5 Example: Grouping and Subgrouping Records

The mapping illustrated in this example is available as DividePersonsByDepartmentIntoGroups.mfd in the
<Documents>\Altova\MapForce2024\MapForceExamples\ folder.

This mapping processes an XML file that contains employee records of a fictitious company. The company has
two offices: "Nanonull, Inc." and "Nanonull Partners, Inc". Each office has several departments (for example,
"IT", "Marketing", and so on), and each department has one or more employees. The goal of the mapping is to
create groups of maximum three people from each department, regardless of the office. The size of each group
is three by default; however, it should be easy to change if necessary. Each group must be saved as a
separate XML file, with the name having the format "<Department Name>_GroupN" (for example,
Marketing_Group1.xml, Marketing_Group2.xml, and so on).

DividePersonsByDepartmentIntoGroups.mfd

As illustrated above, in order to achieve the mapping goal, a complex variable was added to the mapping, and a
few other component types (primarily functions). The variable has the same structure as a Department item in
the source XML. If you right-click the variable in order to view its properties, you will notice that it uses the
same XML schema as the source component, and has Department as root element. Importantly, the variable
has two nested parent-context items, which ensure that the variable is computed first in the context of each
department, and then in the context of each group within each department (see also Changing the Context and
Scope of Variables).

Initially, the mapping iterates through all departments in order to obtain the name of each department (this will
be subsequently required to create the file name corresponding to each group). This is achieved by connecting
the group-by function to the Department source item, and by supplying the department name as grouping

key.

372

574

378 Transformation Components Variables

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Next, within the context of each department, a second grouping takes place. Namely, the mapping calls the
group-into-blocks function in order to create the required groups of people. The size of each group is

supplied by a simple input component which has a default value of "3". The default value is supplied by a
constant. In this example, in order to change the size of each group, one can easily modify the constant value
as required. However, the "size" input component can also be modified so that, if the mapping is run by
generated code or with MapForce Server, the size of each group could be conveniently supplied as a parameter
to the mapping. For more information, see Supplying Parameters to the Mapping .

Next, the value of the variable is supplied to the target PersonList XML component. The file name for each
created group was computed by concatenating the following parts, with the help of the concat function:

1. The name of each department
2. The string "_Group"
3. The number of the group in the current sequence (for example, "1" if this is the first group for this

department)
4. The string ".xml"

The result of this concatenation is stored in the Name item of the variable, and then supplied as a dynamic file
name to the target component. This causes a new file name to be created for each received value. In this
example, the variable computes eight groups in total, so eight output files are created when the mapping runs,
as required. For more information about this technique, see Processing Multiple Input or Output Files
Dynamically .

580

352

597

751

© 2018-2024 Altova GmbH

Join Components 379Transformation Components

Altova MapForce 2024 Professional Edition

5.4 Join Components

Sometimes, you may need to combine data from two or more structures based on some condition (for
example, if field A in the first structure has the same value as field B in the second structure). For such
mapping requirements, a Join component can be used.

A Join component is a MapForce component which enables joining two or more structures on the mapping
based on custom-defined conditions. It returns the association (joined set) of items that satisfy the condition.
Joins are particularly useful to combine data from two structures which share a common field (such as an
identity).

For example, on the mapping illustrated below, the middle component is a "Join" component. In this mapping,
two XML structures (a list of people and a list of addresses) are being joined. The goal here is to get the full
details of each person into a target XML file. The FirstName and LastName fields act as joining keys. Namely,
if value of FirstName and LastName (under Person) is the same as that of FirstName and LastName (under
Address), the address details belong to one and the same person and they become "joined". Any items from
the joined structure can further be mapped to a subsequent target (in this case, an XML file). The join condition

itself is defined in the properties of the Join component, by clicking the Define Join Condition () button.
This example is accompanied by a mapping sample and is explained in more detail in Example: Join XML
Structures .

JoinPeopleInfo.mfd

As illustrated above, the source structures and the Join component are connected by means of "Copy-All"
connection, which reduces the mapping clutter. In general, such connections are created automatically by
MapForce when the context is relevant (for more information, see Copy-All Connections).

The structures that are to be joined may either be from separate components (as in the mapping above), or
belong to the same component. The structures to be joined may also be of different kinds (for example, an XML

385

58

380 Transformation Components Join Components

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

structure and a database table). For more information about database-related joins, see Joining Database
Data .

To add a Join component:

1. Set the mapping transformation language to BUILT-IN (to do this, either click the toolbar button, or
use the Output | Built-In Execution Engine menu command).

2. On the Insert menu, click Join. Alternatively, click the Join () toolbar button. The Join component
appears on the mapping. By default, it accepts data from two structures, so it has two nodes/rows
inputs. If necessary, you can add new inputs to the join by clicking the Add Input () button, see
Joining Three or More Structures .

3. Connect the structures that are to be joined to the nodes/rows items of the join component.
4. Add the condition for the join (or multiple conditions). To do this, right-click the Join component and

select Properties. Join conditions can also be added directly from the mapping, by connecting the
Boolean result of some function to the condition item of the Join component. In certain cases when
database tables are joined, the join condition (or conditions) can be created automatically by
MapForce. For further information, see Adding Join Conditions .

Notes:

· Join components are supported when the target language of the mapping is set to BUILT-IN. Code
generation in C#, C++, or Java is not supported.

· When a structure is not a valid or supported input source for the join, MapForce displays hints either
immediately directly on the mapping, or in the Messages window, when you validate the mapping (see
Validating Mappings).

· Join components should not be connected to input parameters or results of inline user-defined
functions. If such connections exist, validation errors will occur during mapping validation.

· When you connect eligible database components (such as tables or views) directly to a Join

component, an SQL mode () button automatically appears at the top-right corner of the Join
component. When enabled, this button provides special SQL features applicable to the join operation
(see Joins in SQL Mode).

· It is not possible to connect the output of the joined item to another Join component. If necessary,
however, you can connect a partial result of one join to another one.

Join components compared to other component types
In some cases, complex variables or filters can be used instead of Join components to achieve the same
results (see Using Variables and Filters and Conditions , respectively). However, unlike other component
types, Join components make the mapping easier to understand, because you can see at a glance the data
that is being joined. Additionally, if SQL mode is enabled on the join component, the mapping performance
improves significantly (this applies to database joins, see Joining Database Tables).

390

384

381

66

392

366 414

390

© 2018-2024 Altova GmbH

Join Components 381Transformation Components

Altova MapForce 2024 Professional Edition

Adding a parent context
In some special cases, in order to achieve a specific mapping result, you can explicitly provide a mapping
context (a so-called "parent context") for data connected to the Join component. To add a parent context, right-
click the joined item of the Join component, and select Add Parent Context from the context menu. The Join
component changes appearance to include an additional parent-context input where you can connect the
required source item. For more information, see Example: Changing the Parent Context .

The parent-context argument is an optional argument in some MapForce core aggregation functions (e.g.,
min, max, avg, count). In a source component which has multiple hierarchical sequences, the parent context

determines the set of nodes on which the function should operate.

5.4.1 Adding Join Conditions

A join works by combining items of two or more structures according to a condition, so a join always requires
at least one condition. There are several ways to add join conditions, as shown below.

Note: When database tables are joined in SQL mode, MapForce will create the join condition (or conditions)
automatically, based on foreign key relationships detected between tables. For automatic join
conditions to happen, the database tables must be in a child-parent relationship on the MapForce
component (that is, one table must be "parent" or "child" of another one on the component), see
Example: Join Tables in SQL Mode .

Approach 1: Add a join condition from the component properties
1. On the mapping, make sure that at least two structures (or database tables) are connected to the Join

component. The Join component illustrated in this example is part of the JoinPeopleInfo.mfd
mapping available in the folder <Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\.
This mapping is discussed in more detail in Example: Join XML Structures .

2. On the Join component, click the Define Join Condition () button (or right-click the header of the
component, and select Properties from the context menu).

3. Select an item from the left structure and another one from the right structure (that is, whenever the
comparison of this pair returns true, the left and right structures become joined).

773

395

385

382 Transformation Components Join Components

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

If you need to add multiple conditions, click Add Condition, and then select a new pair of items. For
example, in the image above, two join conditions are defined:

1. FirstName in the Structure 1 must be equal to FirstName in Structure 2, and
2. LastName in Structure 1 must be equal to LastName in Structure 2.

To remove a join condition, click the Delete button next to it.

Notes:

· When multiple join conditions exist, all of them must be satisfied in order for the two structures to be
joined. In other words, multiple conditions are joined by a logical AND operation. This also includes
optional conditions that were added from the mapping (see Approach 2 below).

· If more than two structures are connected to the Join component, such additional structures appear in
the drop-down list below "Structure 2". When you select such an additional structure from the drop-

© 2018-2024 Altova GmbH

Join Components 383Transformation Components

Altova MapForce 2024 Professional Edition

down list, the left pane displays all structures that occur before it on the Join component. This way you
can define join conditions between any of the multiple structures. For an example, see Example:
Create CSV Report from Multiple Tables .

· To view the data type of items in each structure, select the Show types check box. The Show
annotations option displays additional information about items, provided that such information exists
in the underlying schema (or database). If both check boxes are selected, the layout changes to
accommodate the display of both annotations and types, for example:

Approach 2: Add a join condition from the mapping
· On the mapping, add components which produce a Boolean value, and then connect the Boolean

output to the input of the condition item. For example, the equal function may compare a value with

some mapping item, and supply the Boolean result as input to the condition item of the join
component.

403

384 Transformation Components Join Components

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Note: If no condition is defined from the join component properties (Approach 1), the condition item of the
join component must be connected (Approach 2).

Approach 3: Mixed approach
In the same mapping, it is possible to define some join conditions in component properties (Approach 1) and
combine them with the one from the mapping (Approach 2). However, if you intend to join database tables in
SQL mode, the conditions must be defined strictly using Approach 1, see also Joins in SQL Mode .

5.4.2 Joining Three or More Structures

When you add a Join component to the mapping using the menu command Insert | Join, it accepts two
structures by default (that is, the component contains only two nodes/rows inputs).

If you need to join more than two structures, click the Add input () button and create as many nodes/rows
as necessary. If you need to remove a nodes/rows input, click the Delete input () button. Note that a join
requires at least two structures, so the button is only available when more than two inputs exist.

392

© 2018-2024 Altova GmbH

Join Components 385Transformation Components

Altova MapForce 2024 Professional Edition

When a join has multiple inputs, the join conditions must accordingly take into consideration each of the inputs
that you want to be joined, see Adding Join Conditions . For a step-by-step example of how to join multiple
database tables, see Example: Create CSV Report from Multiple Tables .

5.4.3 Example: Join XML Structures

This example shows you how to combine data from two XML structures conditionally, by using a join
component. The example is accompanied by a mapping sample which is available at the following path:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\JoinPeopleInfo.mfd.

The purpose of this mapping is to collect people data (name, surname, address, email, and phone) from two
source XML files into a single target XML file.

The first XML file stores the name and surname of each person, as well as their email and phone, as shown in
the sample code listing below (note that the XML declaration, namespaces, and some records have been
omitted, for simplicity):

<People>

 <Person>

 <FirstName>Marquita</FirstName>

 <LastName>Bailey</LastName>

 <Email>m.bailey@nanonull.com</Email>

 <Phone>555323698</Phone>

 </Person>

 <Person>

 <FirstName>Totie</FirstName>

 <LastName>Rea</LastName>

 <Email>t.rea@nanonull.com</Email>

 <Phone>555598653</Phone>

 </Person>

</People>

People.xml

The second XML file stores the name and surname of each person, as well as their address details:

<Addresses>

 <Address>

 <FirstName>Marquita</FirstName>

 <LastName>Bailey</LastName>

381

403

386 Transformation Components Join Components

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 <City>Bridgedell</City>

 <Street>Olive Street</Street>

 <Number>4</Number>

 </Address>

 <Address>

 <FirstName>Totie</FirstName>

 <LastName>Rea</LastName>

 <City>Roseford</City>

 <Street>Evergreen Lane</Street>

 <Number>34</Number>

 </Address>

</Addresses>

Addresses.xml

The goal of the mapping is to combine the <Person> information from the first file with <Address> information
from the second file, wherever the first and last names match. Specifically, for each <Person> in the first file,
and for each <Address> in the second file, the FirstName and LastName must be compared. If both values are
the same, then the corresponding <Person> and <Address> records refer to the same person, and must be
joined. The target XML structure should look like this:

<PeopleInfo>

 <Row>

 <FirstName>Marquita</FirstName>

 <LastName>Bailey</LastName>

 <City>Bridgedell</City>

 <Street>Olive Street</Street>

 <Number>4</Number>

 <Email>m.bailey@nanonull.com</Email>

 <Phone>555323698</Phone>

 </Row>

 <Row>

 <FirstName>Totie</FirstName>

 <LastName>Rea</LastName>

 <City>Roseford</City>

 <Street>Evergreen Lane</Street>

 <Number>34</Number>

 <Email>t.rea@nanonull.com</Email>

 <Phone>555598653</Phone>

 </Row>

</PeopleInfo>

PeopleInfo.xml

This mapping goal can be easily achieved by adding a Join component to the mapping. Note that it is also
possible to achieve the same result using other component types; however, in the steps below, you will be
using a Join component, which is the subject of this example.

To create the required mapping, follow the steps below.

© 2018-2024 Altova GmbH

Join Components 387Transformation Components

Altova MapForce 2024 Professional Edition

Step 1: Add the source XML files to the mapping
1. On the Insert menu, click XML Schema/File, and browse for the following source file:

<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\People.xml.
2. Repeat the step above for Addresses.xml (the second source file).

Step 2: Add the target schema file to the mapping
· On the Insert menu, click XML Schema/File, and browse for

<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\PeopleInfo.xsd (the target
XSD schema file). When prompted to supply a sample XML file, click Skip. When prompted to select a
root element, select PeopleInfo as root element.

Step 3: Add the Join component

1. On the Insert menu, click Join. (Alternatively, click the Join toolbar button). At this stage, the
mapping should look as follows (you will need to drag and resize the components in order to make
them look as illustrated below):

Observe the structure of the Join component. It has two nodes/rows items, which makes it possible to
connect to it the two structures that need to be compared (in this case, the Person and the Address
structures).

2. Draw a connection from Person to the first nodes/rows item of the Join component. Likewise, connect

Address to the second nodes/rows item.

388 Transformation Components Join Components

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

3. As mentioned earlier, the join should take place only if the FirstName and LastName values are equal

in both structures. To define this condition, click the Define Join Condition button.
4. Select the pair of items that define the first join condition (FirstName under Structure 1, and

FirstName under Structure 2).
5. Click Add Condition, and repeat the step above for LastName.

© 2018-2024 Altova GmbH

Join Components 389Transformation Components

Altova MapForce 2024 Professional Edition

In some mappings, a condition consisting of one comparison may be sufficient to perform the join. However, in
this example, it is important that two comparisons are created:

1) FirstName in Structure1 = FirstName in Structure 2
2) LastName in Structure 1 = LastName in Structure 2.

When multiple conditions are defined, all of them must be true in order for the join to take place. Therefore, in
this example, a join will happen only when both comparisons are true (which is the intended behaviour).
Otherwise, if only one of the comparisons above were defined, a join could happen for persons that have the
same first name but different last names.

Step 4: Map the Join component to the target schema
Now that the two structures are joined, you can define which items of the joined structure should be mapped to
the target. To do this, create connections from items of both joined structures to the target component, as

390 Transformation Components Join Components

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

shown below. The connection between joined and Row has the following purpose: whenever the join condition
is satisfied, it creates a new Row item in the target.

To preview the mapping output, click the Output pane. As expected, each person record (<Row>) now includes
the full address details, joined from two different sources.

5.4.4 Join Database Data

In mappings that read data from databases, you can join database objects such as tables or views by adding a
Join component to the mapping. For example, you could combine data from two or more tables bound by
foreign key relationships, which is the typical way data is stored in relational databases. The result would be
the same as if you ran against the database an SQL query where two or more tables are joined by means of an
INNER JOIN (or LEFT JOIN, if applicable) operation.

Depending on the kind of data connected to the join component, the join operation can happen either in
standard (non-SQL) mode, or in SQL mode. Joins in non-SQL mode are undertaken by MapForce, while joins
in SQL mode are undertaken by the database from which the mapping reads data.

Joins in non-SQL mode are more flexible because they support more component types as input (for example,
the join can be between tables from different databases, or between XML structures and database tables). For
an example of a non-SQL join, see Example: Join XML Structures . On the other hand, a non-SQL join
causes the mapping engine to perform memory-costly comparisons (because the total number of comparisons
represents the cross-join, or Cartesian product, of all joined structures). Usually this process is very fast and
causes negligible load in mappings which are not data-intensive; however, if the joined data sources consist of
a huge number of records, then the mapping will require significant time to execute. If your mappings must
process a very large number of records, consider licensing MapForce Server Advanced Edition, which includes
dedicated join optimization to speed up the mapping execution.

A join in SQL mode accepts only eligible database objects as input (such as tables or views), so it is not as
flexible as a non-SQL join. However, it offers better mapping performance because it is executed natively by the
database. For further information, see Joins in SQL Mode .

385

392

© 2018-2024 Altova GmbH

Join Components 391Transformation Components

Altova MapForce 2024 Professional Edition

Note: Using a Join component is not the only way to join database tables or views. Joins applicable to
databases can also be performed by using SQL SELECT statements, see SQL SELECT Statements
as Virtual Tables . A major difference between SQL SELECT statements and Join components is
that the former are written by hand so they might provide more flexibility. Join components are a
simpler alternative if you do not feel comfortable writing SQL statements by hand.

To add a Join component:

1. Set the mapping transformation language to BUILT-IN (to do this, either click the toolbar button, or
use the Output | Built-In Execution Engine menu command).

2. On the Insert menu, click Join. Alternatively, click the Join () toolbar button. The Join component
appears on the mapping. By default, it accepts data from two structures, so it has two nodes/rows
inputs. If necessary, you can add new inputs to the join by clicking the Add Input () button, see
Joining Three or More Structures .

3. Connect the structures that are to be joined to the nodes/rows items of the join component.
4. Add the condition for the join (or multiple conditions). To do this, right-click the Join component and

select Properties. Join conditions can also be added directly from the mapping, by connecting the
Boolean result of some function to the condition item of the Join component. In certain cases when
database tables are joined, the join condition (or conditions) can be created automatically by
MapForce. For further information, see Adding Join Conditions .

Notes:

· Join components are supported when the target language of the mapping is set to BUILT-IN. Code
generation in C#, C++, or Java is not supported.

· When a structure is not a valid or supported input source for the join, MapForce displays hints either
immediately directly on the mapping, or in the Messages window, when you validate the mapping (see
Validating Mappings).

· Join components should not be connected to input parameters or results of inline user-defined
functions. If such connections exist, validation errors will occur during mapping validation.

· When you connect eligible database components (such as tables or views) directly to a Join

component, an SQL mode () button automatically appears at the top-right corner of the Join
component. When enabled, this button provides special SQL features applicable to the join operation
(see Joins in SQL Mode).

· It is not possible to connect the output of the joined item to another Join component. If necessary,
however, you can connect a partial result of one join to another one.

249

384

381

66

392

392 Transformation Components Join Components

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

5.4.4.1 Joins in SQL Mode

When you connect eligible database components (such as tables or views) directly to a join component, an

SQL mode button appears at the top-right corner of the join component. When SQL mode is enabled, the
join operation is undertaken by the database from where the mapping reads data. In other words, MapForce will
internally send to the database a query with the appropriate SQL syntax to select and combine data from all
tables that take part in the join. Importantly, you do not need to write any SQL; the required query is produced
based on how you visually designed the Join component on the mapping, as you will see in subsequent
examples.

For SQL mode to be possible, the following conditions must be met:

1. Both objects (tables or views) that are to be joined must be from the same database.
2. Both objects that are to be joined must originate from the same MapForce component. (Note that you

can quickly add/remove database objects in a component as follows: right-click the database
component, and select Add/Remove/Edit Database Objects from the context menu.)

3. The Join condition (or conditions) must be defined only from the component properties (by right-clicking
the header of the join component, and selecting Properties), and not on the mapping (see also Adding
Join Conditions).

Note: When database tables are joined in SQL mode, MapForce will create the join condition (or conditions)
automatically, based on foreign key relationships detected between tables. For automatic join
conditions to happen, the database tables must be in a child-parent relationship on the MapForce
component (that is, one table must be "parent" or "child" of another one on the component), see
Example: Join Tables in SQL Mode .

4. All database tables must not yet be in the current target context. When the join result is used in a
target component, none of the joined tables may be connected directly or indirectly to any target
parent nodes. For more information about how a mapping is executed, see Mapping Rules and
Strategies .

You can view or control the SQL mode through the SQL () button at the top-right corner of the join
component, as follows:

SQL mode is disabled (join will be executed by MapForce (or, if applicable, by MapForce Server).

SQL mode is enabled (join will be executed by the database).

If the button is missing, this means that SQL mode is not meaningful or not supported for the data that is
being joined.

In certain cases, the SQL mode must be explicitly disabled (), for example:

· When your mapping requires join conditions outside of the join component properties (that is,
conditions defined on the mapping and connected to the condition item of the join component).

· When you want to join tables from different databases. Use a standard (non-SQL) join if you need to
join tables from different databases.

381

395

766

© 2018-2024 Altova GmbH

Join Components 393Transformation Components

Altova MapForce 2024 Professional Edition

Changing the Join mode

When the Join component is in SQL mode , you can join database tables or views in one of the following
ways:

· INNER JOIN - Only records which satisfy the condition in both input sets are returned by the Join
component.

· LEFT OUTER JOIN - The Join component includes all records from the "leftmost" table (in MapForce,
this is the topmost table of a Join component), plus those records from the subsequently joined table
that satisfy the join condition.

To view the join mode of a table or view on the Join component, observe the icon shown in front of the joined
table or view. One of the following icons can be shown for any joined table or view except the first one:

· Inner Join
· Left Join

To display a tooltip with details about the join, move the cursor over the icon:

To change the join mode, do one of the following:

· Click the Inner Join or Left Join icon in front of each joined table or view, and select Inner Join
or Left Outer Join from the context menu.

· Right-click the second (or third, fourth, etc) joined table or view on the Join component, and select Join
Type | Inner Join, or Join Type | Left Outer Join from the context menu.

394 Transformation Components Join Components

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Note the following:

· If you changed the join mode to LEFT OUTER JOIN, then the upper table or view represents the "left"
side of the join.

· Changing the join mode affects the data returned by the join component in the same way that INNER
JOIN or LEFT JOIN affects the result of a SQL query in a database.

Alias names
It is often the case that joined database tables or views contain identical field names in both joined structures.
When SQL mode is enabled, such items appear on the component prefixed by the keyword "AS". For
example, if two joined tables contain an "id" field, this field appears as "id" on the first joined table and as "id
AS id2" on the second joined table. Joined tables can also produce alias names, for example, if the same table
is joined to itself.

The alias field or table names are important if you need to refer to them subsequently on a mapping. For
example, imagine a case when you want to filter or sort the result of the join. To achieve this, the output of the
join component can be connected to a SQL WHERE/ORDER component, where you would enter the SQL
WHERE and ORDER BY clauses.

To refer to a field from the WHERE clause, write the table name, followed by a dot (.) character, followed by the
field name. To refer to a table alias, use the alias name as it appears on the Join component. In the ORDER
BY clause, you can either use the same technique (table.field), or write just the alias field name (the name
that appears after "AS").

For an example mapping which uses SQL WHERE/ORDER clauses, see Example: Join Tables in SQL
Mode .

395

© 2018-2024 Altova GmbH

Join Components 395Transformation Components

Altova MapForce 2024 Professional Edition

Note: SQL WHERE/ORDER components are not allowed between a database table and the join component;
they can be added only after (but not before) a join component. For more information about SQL
WHERE/ORDER components, see Filtering and Sorting Database Data (SQL WHERE/ORDER) .

5.4.4.2 Example: Join Tables in SQL Mode

This example illustrates how to join data from two database tables, using a MapForce join component. The join
operation is performed in SQL mode, as described in Joins in SQL Mode . Note that joining three or more
tables works in a very similar way, see also Example: Create CSV Report from Multiple Tables .

The example is accompanied by a mapping sample which is available at the following path:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\JoinDatabaseTables.mfd.

JoinDatabaseTables.mfd

The purpose of the mapping above is to combine data from two source database tables into a single target CSV
file. As illustrated in the database diagram below, the first table (users) stores people's names and emails, and
the second table (addresses) stores people's addresses. The two tables are linked by a common field (id in
users corresponds to user_id in addresses). In database terminology, this kind of relation is also known as a
"foreign key relationship".

419

392

403

396 Transformation Components Join Components

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

For convenience, the image below illustrates the actual data in both tables.

© 2018-2024 Altova GmbH

Join Components 397Transformation Components

Altova MapForce 2024 Professional Edition

Each user record in the users table can have zero or more addresses in the addresses table. For example, a
user may have one address of type "home", or two addresses (one of type "home" and another of type "work"),
or no address at all.

The goal of the mapping is to retrieve full data (name, surname, email, city, street, number) of all users that
have at least one address in the addresses table. It should also be possible to easily retrieve only addresses of
a specific kind (for example, only home addresses, or only work addresses). The kind of addresses to retrieve
("home" or "work") should be supplied as a parameter to the mapping. The retrieved people records must be
sorted alphabetically by last name.

The mapping requirement will be accomplished with the help of a Join component, as illustrated in the steps
below.

Note: Using a Join component is not the only way to join database tables or views. Joins applicable to
databases can also be performed by using SQL SELECT statements, see SQL SELECT Statements
as Virtual Tables . A major difference between SQL SELECT statements and Join components is
that the former are written by hand so they might provide more flexibility. Join components are a
simpler alternative if you do not feel comfortable writing SQL statements by hand.

249

398 Transformation Components Join Components

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Step 1: Add the source database

1. On the Insert menu, click Database. (Alternatively, click the Insert Database toolbar button).
2. Select "SQLite" as database kind, and click Next.
3. Browse for the Nanonull.sqlite file available in the folder:

<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\, and click Connect.
4. When prompted, select the addresses and users tables.

Step 2: Add the join component

1. On the Insert menu, click Join. (Alternatively, click the Join toolbar button).
2. Draw a connection from the users table to the first input of the join component.
3. Expand the users table and draw a connection from the addresses table (child of users) to the

second input of join component. The button enables you to add more tables if necessary; however, in
this example, only two tables are being joined.

Note: It is also possible to add the connection directly from the addresses table (the one which is not child
of users); however, in this case, the join conditions would have to be defined manually, as described in
Adding Join Conditions . For the purpose of this example, make sure to create the connections as
shown above. This ensures the required join condition is created automatically.

4. Click the Define Join Condition button available on the join component. Notice that the join
condition has been created automatically (users.id = addresses.user_id).

381

© 2018-2024 Altova GmbH

Join Components 399Transformation Components

Altova MapForce 2024 Professional Edition

Step 3: Add the target CSV component

1. On the Insert menu, click Text File. (Alternatively, click the Insert Text File toolbar button).
2. When prompted to choose a text processing mode, select Use simple processing for standard

CSV... .
3. Click Append Field several times to create seven CSV fields. Leave all other settings as is.

4. Double-click the title cell of each field to give it a descriptive name (this will make your mapping easier
to read).

400 Transformation Components Join Components

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

5. Draw the mapping connections between the Join component and the CSV component as shown below.
The connection between the joined item of the join component and the Rows item of the target
component means "create as many records (rows) in the target as there are records that meet the join
condition".

Step 4: Add the SQL WHERE/ORDER condition and input parameter
1. Right-click the connection between the joined item of the Join component and the Rows item of the

target CSV component, and select Insert SQL-WHERE/ORDER.
2. Enter the WHERE and ORDER BY clauses as shown below.

© 2018-2024 Altova GmbH

Join Components 401Transformation Components

Altova MapForce 2024 Professional Edition

3. On the mapping, add an input component (using the Insert | Insert Input menu command) and
connect its output to the address_type parameter created in the previous step.

4. Double-click the input component and configure it as shown below. A design-time value is required (in
this case, "home") to preview the mapping output in MapForce. If you want the preview to retrieve work
addresses, replace this value with "work".

402 Transformation Components Join Components

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The mapping explained
The join condition automatically created in step 2 ensures that only records which satisfy the join condition
users.id = addresses.user_id are copied to the target. The join condition was added automatically
because the two tables are bound by a foreign key relationship and the mapping connections were drawn
accordingly. For more information about table relationships, see Handling Database Relationships . Because
this example has made use of the already existing table relationships, you did not have to define any join
conditions manually. For an example that shows you how to define join conditions manually, see Example:
Create CSV Report from Multiple Tables .

The two source tables are from the same database and from the same component, so this join benefits from

the SQL mode. Since SQL mode is enabled, the join operation is undertaken by the database, not by
MapForce. In other words, an INNER JOIN statement is generated internally by MapForce and sent to the
database for execution. The type of the join (INNER JOIN) is indicated by the Inner Join icon in front of the
addresses table on the Join component. You can also change the join type to LEFT OUTER JOIN , as
described in Changing the Join Mode . Note, however, that changing the join mode does not affect the output
of this example.

The SQL WHERE/ORDER component added in step 4 enables filtering (to retrieve either home or work
addresses) and sorting the recordset. Notice that the WHERE clause created a parameter :address_type of

type string. This parameter makes it possible to supply the address kind (home or work) from the mapping.
For more information about SQL WHERE/ORDER, see Filtering and Sorting Database Data (SQL
WHERE/ORDER) .

Finally, the input component makes it possible to supply the actual parameter value when the mapping runs.
Note that, when the mapping runs outside MapForce (for example, when it is executed by MapForce Server on
a different machine), the input must be supplied at mapping runtime as a command-line parameter, so the
design-time value mentioned above is ignored. For more information, see Supplying Parameters to the
Mapping .

252

403

393

419

352

© 2018-2024 Altova GmbH

Join Components 403Transformation Components

Altova MapForce 2024 Professional Edition

5.4.4.3 Example: Create CSV Report from Multiple Tables

This example illustrates how to join multiple database tables for the purpose of extracting data into a single
report in CSV format. The database used in this example is called Nanonull.sqlite and is available at the
following path: <Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\. This database stores
information about a fictitious business (which includes orders, products, users and their addresses). As is
typically the case with relational databases, the information is normalized and spread across multiple tables.
For example, the users table stores user personal data (which includes first name, last name, and email). The
database also stores information about products ordered by users, in two different tables: orders (which
includes the unique ID of the order, and the time when it took place) and orderedproducts (which includes a
list of products ordered, and their quantity). Furthermore, the names of the products themselves is stored in a
separate table called products.

The goal of the example is to produce a report based on data extracted from various tables, so as to make it
clear who ordered certain products, when, and in which quantity. To achieve the mapping goal, follow the steps
below:

1. On the Insert menu, click Database.
2. When prompted to select a database kind, click SQLite, and then click Next.
3. Browse for the Nanonull.sqlite database mentioned above, and click Connect.
4. When prompted, select the tables orderedproducts, orders, products, and users, and click OK.

5. Add a Join component to the mapping and create four nodes/rows items by clicking the Add input (
) button.

6. Connect the four tables from the database component to the corresponding input items of the Join
component.

Note: In an alternative scenario, you could connect the table orderedproducts to the Join component, then
the table orders (the one which is nested under it, not the one at the same level), and so on, so that
all joined tables are nested under the same "root" table, see also Handling Database Relationships .
The mapping result would be the same if you joined tables this way. The difference is that in this

252

404 Transformation Components Join Components

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

example the join conditions are created manually, whereas in the alternative scenario the join
conditions would be created automatically by MapForce. For an example of joining tables without
having to define join conditions manually, see Example: Join Tables in SQL Mode . Another
mapping where all joined tables are under the same "root" table is available at the following path:
<Documents>\Altova\MapForce2024\MapForceExamples\DB_Denormalize.mfd.

In this example, the tables connected to the Join component have the following order:

1. orderedproducts
2. orders
3. products
4. users

This order affects how the respective structures are displayed on the "Define Join Condition" dialog box, when

you click the Define Join Condition () button. Namely, the first table (orderedproducts) appears by
default under Structure 1, and the table immediately after it (orders) appears under Structure 2.

To define the first join condition, click the order_id item in the left pane and the id item in the right pane. Now
the fields orderedproducts.order_id and orders.id. are paired:

So far, only two tables have been joined. To define join conditions which involve a third table, select the desired
table from the drop-down list available above the right pane. The left pane displays in this case all tables that
occur before it on the Join component. For example, if you select products on the right side, then the left side
displays orderedproducts and orders (since these tables occur before products on the Join component).
You can now pair fields of table products with fields of tables preceding it (in this case,
orderedproducts.product_id and products.id).

395

© 2018-2024 Altova GmbH

Join Components 405Transformation Components

Altova MapForce 2024 Professional Edition

To join a fourth table (users), select the users table from the drop-down list. You can now pair the fields
orders.user_id and users.id.

406 Transformation Components Join Components

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Now that all required join conditions have been defined, items of the Join component can be further mapped to a
target component. To finish the mapping, add a CSV component (see CSV and Text Files), and connect
items from the Join component to the target CSV component as illustrated below:

329

© 2018-2024 Altova GmbH

Join Components 407Transformation Components

Altova MapForce 2024 Professional Edition

The mapping illustrated above produces a report (in CSV format) compiled from all four tables involved in the
join, as follows:

· ID of the order (taken from the orderedproducts table)
· Quantity of ordered items (taken from the orderedproducts table)
· Time when the order took place (taken from the orders table)
· Name of the product ordered (taken from the products table)
· First name and last name of the user who ordered the product (taken from the users table).

All the tables in this example are joined using INNER JOIN mode. For information about changing the join mode
to LEFT OUTER JOIN, see Changing the join mode .393

408 Transformation Components Sort Components

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

5.5 Sort Components

To sort input data based on a specific sort key, use a Sort component. The Sort component supports the
following target languages: XSLT2, XQuery, and Built-in. When the transformation language is "Built-in", the
Sort component can be used to sort database table data. Better performance is, however, achieved using an
SQL-WHERE/ORDER component. For more details, see Filtering and Sorting Database Data (SQL
WHERE/ORDER) .

To add a sort component to the mapping, do one of the following:

· Right-click an existing connection, and select Insert Sort: Nodes/Rows from the context menu. This
inserts the Sort component and automatically connects it to the source and target components. For
example, in the mapping below, the Sort component was inserted between a variable and an XML
component. The only thing that remains to be connected manually is the sorting key (the field by which
you want to sort).

· On the Insert menu, click Sort (alternatively, click the Sort toolbar button). This inserts the Sort
component in its "unconnected" form.

As soon as a connection is made to the source component, the title bar name changes to that of the
item connected to the nodes/rows item.

To define the item by which you want to sort:

· Connect the item by which you want to sort to the key parameter of the Sort component. For example,
in the mapping below, the Person nodes/rows are sorted by the field Last.

419

© 2018-2024 Altova GmbH

Sort Components 409Transformation Components

Altova MapForce 2024 Professional Edition

To change the sort order:

· Click the icon in the Sort component. It changes to to show that the sort order has been
reversed.

To sort input data consisting of simple type items:

· Connect the item to both the nodes/rows and key parameters of the sort component. In the mapping
below, the element of simple type first is being sorted.

To sort strings using language-specific rules:

· Double-click the header of the Sort component to open the Sort Properties dialog box.

410 Transformation Components Sort Components

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Unicode codepoint collation: This (default) option compares/orders strings based on code point values. Code
point values are integers that have been assigned to abstract characters in the Universal Character Set adopted
by the Unicode Consortium. This option allows sorting across many languages and scripts.

Language-specific collation: This option allows you to define the specific language and country variant you
want to sort by. This option is supported when using the BUILT-IN execution engine. For XSLT, support
depends on the specific engine used to execute the code.

5.5.1 Sorting by Multiple Keys

After you add a Sort component to the mapping, one sorting key called key is created by default.

Default Sort component

If you want to sort by multiple keys, adjust the Sort component as follows:

· Click the Add Key () icon to add a new key (for example, key2 in the mapping below).
· Click the Delete Key () icon to delete a key.
· Drop a connection onto the icon to add a key and also connect to it.

A mapping which illustrates sorting by multiple key is available at the following path:
<Documents>\Altova\MapForce2024\MapForceExamples\SortByMultipleKeys.mfd.

© 2018-2024 Altova GmbH

Sort Components 411Transformation Components

Altova MapForce 2024 Professional Edition

SortByMultipleKeys.mfd

In the mapping above, Person records are sorted by three sorting keys:

1. Shares (number of shares a person holds)
2. Last (last name)
3. First (first name)

Note that the position of the sorting key in the Sort component determines its sort priority. For example, in the
mapping above, records are initially sorted by the number of shares. This is the sorting key with the highest
priority. If the number of shares is the same, people are then sorted by their last name. Finally, when multiple
people have the same number of shares and the same last name, the person's first name is taken into account.

The sort order of each key can be different. In the mapping above, the key Shares has a descending sort order
(Z-A), while the other two keys have ascending sort order (A-Z).

5.5.2 Sorting with Variables

In some cases, it may be necessary to add intermediate variables to the mapping in order to achieve the
desired result. This example illustrates how to extract records from an XML file, and sort them, with the help of
intermediate variables. The example is accompanied by a mapping sample located at the following path:
<Documents>\Altova\MapForce2024\MapForceExamples\Altova_Hierarchical_Sort.mfd.

412 Transformation Components Sort Components

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Altova_Hierarchical_Sort.mfd

This mapping reads data from a source XML file called Altova_Hierarchical.xml and writes it to a target XML
file. As shown above, the source XML contains information about a fictitious company. The company is divided
into offices. Offices are sub-divided into departments, and departments are further divided into people.

The target XML component, PersonList, contains a list of Person records. The Details item is meant to store
information about the office and department where the person belongs.

The aim is to extract all persons from the source XML and sort them alphabetically by last name. Also, the
office and department name where each person belongs must be written to the Details item.

To achieve this goal, this example makes use of the following component types:

1. The concat function. In this mapping, this function returns a string in the format Office(Department).

It takes as input the office name, the department name, and two constants which supply the start and
end brackets. See also Add a Function to the Mapping .

2. An intermediate variable. The role of the variable is to bring all data relevant to a person into the same
mapping context. The variable causes the mapping to look up the department and office of each
person, in the context of each person. To put it differently, the variable "remembers" the office and

442

© 2018-2024 Altova GmbH

Sort Components 413Transformation Components

Altova MapForce 2024 Professional Edition

department name to which a person belongs. Without the variable, the context would be incorrect, and
the mapping would produce unwanted output (for more information about how a mapping is executed,
see Mapping Rules and Strategies). Notice that the variable replicates the structure of the target
XML file (it uses the same XML schema). This makes it possible to connect the sort result to the
target, through a Copy-All connection. See also Using Variables and Copy-All Connections .

3. A Sort component, which performs the actual sorting. Notice that the key input of the Sort component
is connected to the Last item of the variable, which sorts all person records by their last name.

766

366 58

414 Transformation Components Filters and Conditions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

5.6 Filters and Conditions

When you need to filter data, or get a value conditionally, you can use one of the following component types:

· Filter: Nodes/Rows ()

· SQL WHERE/ORDER ()

· If-Else Condition ()

You can add these components to the mapping either from the Insert menu, or from the Insert Component
toolbar. Importantly, each of the components above has specific behavior and requirements. The differences are
explained in the following sections.

Filtering nodes or rows
When you need to filter data, including XML nodes or CSV rows, use a Filter Nodes/Rows component. The
Filter Nodes/Rows component enables you to retrieve a subset of nodes from a larger set of data, based on a
true or false condition. Its structure on the mapping area reflects this:

In the structure above, the condition connected to bool determines whether the connected node/row goes to
the on-true or on-false output. Namely, if the condition is true, the node/row will be redirected to the on-true
output. Conversely, if the condition is false, the node/row will be redirected to the on-false output.

When your mapping needs to consume only items that meet the filter condition, you can leave the on-false
output unconnected. If you need to process the items that do not meet the filter condition, connect the on-
false output to a target where such items should be redirected. If you want to add an exception when the filter
condition is not met, connecting the on-false output is mandatory (see Adding Exceptions).

For a step-by-step mapping example, see Example: Filtering Nodes .

Filtering database data
Filter Nodes/Rows components can filter data from any other component structure supported by MapForce,
including databases. However, if you want to filter data from a database, it is recommended to use a SQL
WHERE/ORDER component instead. The SQL WHERE/ORDER component is optimized for working with
databases and provides better performance than a Filter Nodes/Rows component.

For more information about such components, see SQL WHERE / ORDER Component .

Returning a value conditionally
If you need to get a single value (not a node or row) conditionally, use an If-Else Condition. Note that If-Else
conditions are not suitable for filtering nodes or rows. Unlike Filter Nodes/Rows components, an If-Else

437

416

419

© 2018-2024 Altova GmbH

Filters and Conditions 415Transformation Components

Altova MapForce 2024 Professional Edition

Condition returns a value of simple type (such as a string or integer). Therefore, If-Else Conditions are only
suitable for scenarios where you need to process a simple value conditionally. For example, let's assume you
have a list of average temperatures per month, in the format:

<Temperatures>

 <data temp="19.2" month="2010-06" />

 <data temp="22.3" month="2010-07" />

 <data temp="19.5" month="2010-08" />

 <data temp="14.2" month="2010-09" />

 <data temp="7.8" month="2010-10" />

 <data temp="6.9" month="2010-11" />

 <data temp="-1.0" month="2010-12" />

</Temperatures>

An If-Else Condition would enable you to return, for each item in the list, the value "high" if temperature
exceeds 20 degrees Celsius, and value "low" if temperature is lower than 5 degrees Celsius.

On the mapping, the structure of the If-Else Condition looks as follows:

If the condition connected to bool is true, then the value connected to value-true is output as result. If the
condition is false, the value connected to value-false is output as result. The data type of result is not known
in advance; it depends on the data type of the value connected to value-true or value-false. The important
thing is that it should always be a simple type (string, integer, and so on). Connecting input values of complex
type (such as nodes or rows) is not supported by If-Else Conditions.

If-Else Conditions are extendable. This means that you can add multiple conditions to the component, by
clicking the Add () button. To delete a previously added condition, click the Delete () button. This feature
enables you to check for multiple conditions and return a different value for each condition, if it is true.

Expanded If-Else Conditions are evaluated from top to bottom (first conditions is checked first, then the
second one, and so on). If you want to return a value when none of the conditions are true, connect it to
otherwise.

For a step-by-step mapping example, see Example: Returning a Value Conditionally .418

416 Transformation Components Filters and Conditions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

5.6.1 Example: Filtering Nodes

This example shows you how to filter nodes based on a true/false condition. A Filter: Nodes/Rows ()
component is used to achieve this goal. The technique illustrated in this example works in the same way not
only for XML, but also for other component types, such as CSV or text. In case of databases, although you can
use a filter, it is recommended to use a SQL WHERE/ORDER component instead, for better performance (see
SQL WHERE / ORDER Component).

The mapping described in this example is available at the following path:
<Documents>\Altova\MapForce2024\MapForceExamples\MarketingExpenses.mfd.

As shown above, the mapping reads data from a source XML which contains an expense report ("ExpReport")
and writes data to a target XML ("MarketingExpenses"). There are several other components between the target

and source. The most relevant component is the expense-item filter (), which represents the subject of
this topic.

The goal of the mapping is to filter out only those expense items that belong to the Marketing department. To
achieve this goal, a filter component has been added to the mapping. (To add a filter, click the Insert menu,
and then click Filter: Nodes/Rows.)

To identify whether each expense item belongs to Marketing, this mapping looks at the value of the "expto"
attribute in the source. This attribute has the value "Marketing" whenever the expense is a marketing expense.
For example, in the code listing below, the first and third expense item belongs to Marketing, the second
belongs to Development, and the fourth belongs to Sales:

...

 <expense-item type="Meal" expto="Marketing">

 <Date>2003-01-01</Date>

419

© 2018-2024 Altova GmbH

Filters and Conditions 417Transformation Components

Altova MapForce 2024 Professional Edition

 <expense>122.11</expense>

 </expense-item>

 <expense-item type="Lodging" expto="Development">

 <Date>2003-01-02</Date>

 <expense>122.12</expense>

 </expense-item>

 <expense-item type="Lodging" expto="Marketing">

 <Date>2003-01-02</Date>

 <expense>299.45</expense>

 </expense-item>

 <expense-item type="Entertainment" expto="Sales">

 <Date>2003-01-02</Date>

 <expense>13.22</expense>

 </expense-item>

...

XML input before the mapping is executed

On the mapping area, the node/row input of the filter is connected to the expense-item node in the source
component. This ensures that the filter component gets the list of nodes that it must process.

To add the condition based on which filtering should occur, we have added the equal function from the

MapForce core library, see also Add a Function to the Mapping . The equal function compares the value of

the expto attribute to a constant which has the value Marketing. (To add a constant, click the Insert menu,
and then click Constant.)

Since we need to filter only those items that satisfy the condition, we connected only the on-true output of the
filter to the target component.

When you preview the mapping result, by clicking the Output pane, MapForce evaluates, for each expense-
item node, the condition connected to the bool input of the filter. When the condition is true, the expense-item
node is passed on to the target; otherwise, it is ignored. Consequently, only the expense items matching the
criteria are displayed in the output:

...

 <expense-item>

 <type>Meal</type>

 <Date>2003-01-01</Date>

 <expense>122.11</expense>

 </expense-item>

 <expense-item>

 <type>Lodging</type>

 <Date>2003-01-02</Date>

 <expense>299.45</expense>

 </expense-item>

...

XML output after the mapping is executed

442

418 Transformation Components Filters and Conditions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

5.6.2 Example: Returning a Value Conditionally

This example shows you how to return a simple value from a component, based on a true/false condition. An If-

Else Condition () is used to achieve the goal. Note that If-Else Conditions should not be confused with
filter components. If-Else Conditions are only suitable when you need to process simple values conditionally
(string, integer, etc.). If you need to filter complex values such as nodes, use a filter instead (see Example:
Filtering Nodes).

The mapping described in this example is available at the following path:
<Documents>\Altova\MapForce2024\MapForceExamples\ClassifyTemperatures.mfd.

This mapping reads data from a source XML which contains temperature data ("Temperatures") and writes data
to a target XML which conforms to the same schema. There are several other components between the target
and source, one of them being the if-else condition (highlighted in red), which is also the subject of this topic.

The goal of the mapping is to add short description to each temperature record in the target. Specifically, if
temperature is above 20 degrees Celsius, the description should be "high". If the temperature is below 5
degrees Celsius, the description should be "low". For all other cases, no description should be written.

To achieve this goal, conditional processing is required; therefore, an If-Else Condition has been added to the
mapping. (To add an If-Else Condition, click the Insert menu, and then click If-Else Condition.) In this
mapping, the If-Else Condition has been extended (with the help of the button) to accept two conditions:
bool1 and bool2.

416

© 2018-2024 Altova GmbH

Filters and Conditions 419Transformation Components

Altova MapForce 2024 Professional Edition

The conditions themselves are supplied by the greater and less functions, which have been added from the

MapForce core library, see also Add a Function to the Mapping . These functions evaluate the values
provided by two input components, called "upper" and "lower". (To add an input component, click the Insert
menu, and then click Insert Input. For more information about input components, see Supplying Parameters to
the Mapping .)

The greater and less functions return either true or false. The function result determines what is written to the

target instance. Namely, if the value of the "temp" attribute in the source is greater than 20, the constant value
"high" is passed to the if-else condition. If the value of the "temp" attribute in the source is less than 5, the
constant value "low" is passed on to the if-else condition. The otherwise input is not connected. Therefore, if
none of the above conditions is met, nothing is passed to the result output connector.

Finally, the result output connector supplies this value (once for each temperature record) to the "desc"
attribute in the target.

When you are ready to preview the mapping result, click the Output pane. Notice that the resulting XML output
now includes the "desc" attribute, whenever the temperature is either greater than 20 or lower than 5.

...

 <data temp="-3.6" month="2006-01" desc="low"/>

 <data temp="-0.7" month="2006-02" desc="low"/>

 <data temp="7.5" month="2006-03"/>

 <data temp="12.4" month="2006-04"/>

 <data temp="16.2" month="2006-05"/>

 <data temp="19" month="2006-06"/>

 <data temp="22.7" month="2006-07" desc="high"/>

 <data temp="23.2" month="2006-08" desc="high"/>

...

XML output after the mapping is executed

5.6.3 Filter and Sort Database Data

When you need to filter and sort database data, use the SQL/NoSQL-WHERE/ORDER component. This
enables you to manually enter an SQL WHERE clause that filters data. Optionally, you can also specify an
ORDER BY clause if you want to sort the record set by a particular database field, in ascending or descending
order.

The SQL/NoSQL-WHERE/ORDER component must be connected to a table or field of a database mapping
component. It is also possible to connect an SQL/NoSQL-WHERE/ORDER component with a Join component
if you need to filter the joined set or records. For more information, see Joining Database Data .

Add an SQL/NoSQL-WHERE/ORDER component
To add an SQL/NoSQL-WHERE/ORDER component to the mapping, follow the instructions below:

1. Go to the Insert menu and click SQL/NoSQL-WHERE/ORDER. By default, this component has the
following structure:

442

352

390

420 Transformation Components Filters and Conditions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

2. Connect a source database table or field to the table/field item of the SQL/NoSQL-
WHERE/ORDER component. You can find the sample mapping FilterDatabaseRecords.mfd (see

screenshot below) in the following folder:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\. In this mapping, the

SQL/NoSQL-WHERE/ORDER component takes the data from the source table users, filters all its
records and selects only those where the last name begins with the letter M (see the explanation in the
subsection below).

3. Double-click the header of the SQL/NoSQL-WHERE/ORDER component. Alternatively, right-click it
and select Properties from the context menu. This opens the dialog box SQL/NoSQL-
WHERE/ORDER Properties.

© 2018-2024 Altova GmbH

Filters and Conditions 421Transformation Components

Altova MapForce 2024 Professional Edition

4. Type an SQL WHERE clause in the text box at the top. In our example, the SQL Where clause is as
follows: last_name LIKE :sqlparam. Optionally, type an ORDER BY clause. The image above

illustrates the WHERE and ORDER BY clauses defined in the FilterDatabaseRecords.mfd mapping

(these settings are further explained below). For more examples, see Creating WHERE and ORDER
BY Clauses .

Parameters in SQL/NoSQL-WHERE/ORDER components
The SQL/NoSQL-WHERE/ORDER component used in the mapping FilterDatabaseRecords.mfd has the

following WHERE clause: last_name LIKE :sqlparam, where last_name refers to the name of the database

field in the connected table; LIKE is an SQL operator; :sqlparam creates a parameter called sqlparam in the
mapping.

Parameters in the SQL/NoSQL-WHERE/ORDER component are optional. They are useful if you want to pass a
value to the WHERE clause from the mapping. Without parameters, the WHERE clause above could have been
written as follows: Last LIKE "M%". This would retrieve all persons whose last name begins with the letter M.
In order to make this query even more flexible, we have added a parameter instead of "M%". This makes it
possible to supply any other letter from the mapping: e.g., D, and thus retrieve people whose last name begins

423

422 Transformation Components Filters and Conditions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

with D by changing a constant or a mapping input parameter. In the mapping above, the input letter comes from
an input component called input. If you double-click the title bar of this component and open its properties,
you will notice that m is given as a design-time execution value (see screenshot below).

In the mapping, the SQL wildcard character % is provided by a constant. This wildcard character is then
concatenated with the parameter value with the help of the concat function. The advantage is that you do not

have to type SQL wildcards in the command line if this mapping runs in another environment (e.g., MapForce
Server).

Appearance of SQL/NoSQL-WHERE/ORDER components
SQL/NoSQL WHERE/ORDER components change their appearance depending on the settings defined in
them. This way you can quickly view directly from the mapping what the SQL/NoSQL WHERE/ORDER
component does (see table below).

A WHERE clause has been defined.

A WHERE clause with a parameter has been defined. The parameter name is
visible under the table/field item.

A WHERE clause with a parameter has been defined. Additionally, an ORDER BY
clause has been defined. The sorting is indicated by the A-Z sort icon.

If you place the mouse cursor over the SQL/NoSQL WHERE/ORDER header, you will see a tooltip displaying
the various clauses that have been defined.

© 2018-2024 Altova GmbH

Filters and Conditions 423Transformation Components

Altova MapForce 2024 Professional Edition

5.6.3.1 Creating WHERE and ORDER BY Clauses

After an SQL/NoSQL-WHERE/ORDER component is added to the mapping, it needs a WHERE condition
(clause) through which you specify how exactly you want to filter the data connected to the component. The
WHERE condition must be entered in the dialog box SQL/NoSQL-WHERE/ORDER Properties (see previous
section).

Writing a WHERE condition from MapForce is similar to writing the same SQL clause outside MapForce. Use
the syntax applicable to the SQL dialect of the corresponding database. For example, you can use operators,
wildcards, as well as sub-selects or aggregate functions. To create a parameter that you can pass from the
mapping, enter a colon character (:) followed by the parameter's name.

Note: When you finish writing the WHERE clause and click OK, MapForce validates the integrity of the final
SQL statement. A dialog box prompts you if there are syntax errors.

The table below lists some typical operators that can be used in the WHERE clause:

Operator Description

= Equal

<> Not equal

< Less than

> Greater than

>= Greater than/equal

<= Less than/equal

IN Retrieves a known value of a column

LIKE Searches for a specific pattern

BETWEEN Searches between a range

Use the % (percentage) wildcard to represent any number of characters in a pattern. For example, to retrieve all
records ending in "r" from a field called lastname, use the following expression:

lastname = "%r"

When querying databases that support storing and querying of XML database data (for example, IBM DB2,
Oracle, SQL Server), you can use XML functions and keywords applicable to that particular database, for
example:

xmlexists('$c/Client/Address[zip>"55116"]' passing USER.CLIENTS.CONTACTINFO AS "c")

See also Example: Extracting Data from IBM DB2 XML Type Columns .
300

424 Transformation Components Filters and Conditions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Optionally, if you want to sort the retrieved recordset by a particular field, add an ORDER BY clause in the
corresponding text box of the dialog box SQL/NoSQL-WHERE/ORDER Properties. To sort by multiple fields,
separate the field names by commas. To change the sort order, use the ASC and DESC keywords. For example,
the following ORDER BY clause retrieves records ordered by lastname, and then by firstname, in descending
order:

lastname, firstname DESC

Example 1
The following WHERE condition is attached to the users table of the Nanonull.sqlite database component.

It retrieves those records where last_name is greater than the letter M. In other words, it retrieves all names
starting from user called Marzolla onwards.

last_name > "M"

Note how the connections are placed:

· The connection to table/field originates in the table that you want to query (users in this case).
· The result output is connected to a parent item of the fields that are queried/filtered (in this case the

row item).

Example 2
The following WHERE condition creates a parameter param which then appears in the SQL/NoSQL-
WHERE/ORDER component in the mapping.

last_name LIKE :param

© 2018-2024 Altova GmbH

Filters and Conditions 425Transformation Components

Altova MapForce 2024 Professional Edition

The constant component %M supplies the value of param. The wildcard % denotes any number of characters.
This causes the mapping to search for a pattern in the column last_name (all last names starting with the
letter M).

Example 3
The following WHERE condition creates two parameters, min and max, to which the current values of quantity
are compared. The min and max values are supplied by two constant components from the mapping.

quantity > :min and quantity < :max

The WHERE condition in this example could also be written using the BETWEEN operator:

quantity BETWEEN :min and :max

426 Transformation Components Value-Maps

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

5.7 Value-Maps

The Value-Map component (screenshot below) enables you to replace a value by another value with the help of
a predefined look-up table. Such a component processes only one value at a time; therefore, it has one input
and one result on the mapping.

A Value-Map is very useful when you would like to map individual items within two sets in order to replace
items. For example, you could map the days of the week expressed as numbers (1, 2, 3, 4, 5, 6, and 7) to the
name of each day of the week ("Monday", "Tuesday", and so on). Likewise, you could map the month names
("January", "February", "March", etc) to the numeric representation of each month (1, 2, 3, etc). At mapping run
time, the matching values will be replaced according to your custom look-up table. The values in both sets can
be of different type, but each set must store values of the same data type.

Value-Map components are suitable for simple look-ups, where each value in the first set corresponds to a
single value in the second set. If a value is not found in the look-up table, you can either replace it with a
custom value or an empty value, or pass it on as is. If you need to look up or filter values based on more
complex criteria, use one of the filtering components instead.

Importantly, when you generate code or compile a MapForce Server Execution file from the mapping, the look-
up table data is embedded into the generated code or file. Consequently, defining a look-up table directly on the
mapping is a good choice only if your data does not change frequently and is not very big (less than maybe a
few hundred entries). If the look-up data changes regularly, you may find it difficult to maintain both the mapping
and the generated code regularly—it is easier to maintain the look-up data as text, XML, database, or Excel.

If the look-up table is huge, the mapping execution will be slowed down by the look-up table. In this case, it is
recommended to use a database component with SQL-Where instead. SQLite databases are good
candidates for this, given their portability. On the server side, you can improve the performance of look-up
tables by running a mapping with MapForce Server or MapForce Server Advanced Edition.

Create a Value-Map
To add a Value-Map component to the mapping, do one of the following:

· Click the Insert Value-Map toolbar button.
· On the Insert menu, click Value-Map.
· Right-click a connection, and select Insert Value-Map from the context menu.

This adds a new Value-Map component to the mapping. You can now start adding pairs of items to the look-up
table. To do this, double-click the component's title bar or right-click it and select Properties from the context
menu.

414

419

© 2018-2024 Altova GmbH

Value-Maps 427Transformation Components

Altova MapForce 2024 Professional Edition

At mapping run time, MapForce checks each value that reaches the input of the Value-Map. If there is a
matching value in the left column of the look-up table, then it replaces the original input value with the value
from the right column. Otherwise, you can optionally configure it to return one of the following:

· A replacement value. In the example above, the replacement value is the text "incorrect date". You can
also set the replacement value to be empty, by not entering any text at all.

· The original input value. This means that, if no match is found in the look-up table, the original input
value will be passed further on to the mapping, unchanged.

If you do not configure an "Otherwise" condition, the Value-Map returns an empty node whenever a match
is not found. In this case, nothing will be passed to the target component and the output will contain
missing fields. To prevent this from happening, you should either configure the "Otherwise" condition, or
use the substitute-missing function.

There is a difference between setting an empty replacement value and not specifying the "Otherwise" condition.
In the first case, the field will be generated in the output, but it will have an empty value. In the latter case, the
field (or XML element) enclosing the value will not be created at all. For more information, see Example:
Replacing Job Titles .

Populate a Value-Map
In a look-up table, you can define as many pairs of values as needed. You can enter the values manually, or
copy-paste tabular data from text, CSV, or Excel files. Copy-pasting tables from an HTML page using a

594

433

428 Transformation Components Value-Maps

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

common browser will also work in most cases. You can also paste data from the database grid in the DB
Query pane . If you copy data from text files, the fields must be separated by tab characters. In addition,
MapForce will recognize text separated by commas or semicolons in most cases.

Keep in mind the following when creating look-up tables:

1. All items in the left column must be unique. Otherwise, it would not be possible to determine which
item you want to match specifically.

2. Items that belong to the same column must be of the same data type. You can choose the data type
from the drop-down list at the top of each column in the look-up table. If you need to convert Boolean
types, enter the text "true" or "false" literally. For an illustration of this case, see Example: Replacing
Weekdays .

If MapForce encounters invalid data in the look-up table, it displays an error message and highlights the invalid
rows in pink color, for example:

To import data from an external source into the Value-Map component, take the steps below:

1. Select the cells of interest in the source program (for example, Excel). This can be either a single
column of data or two adjacent columns.

2. Copy data to clipboard using the Copy command of the external program.
3. On the Value-Map component, click the row before which you would like to paste the data .

4. Click the Paste table from clipboard button on the Value-Map component. Alternatively, press
Ctrl+V or Shift+Insert.

Note: The Paste table from clipboard button is enabled only if you have copied data from some source first
(that is, if there is data on the clipboard).

When your clipboard data contains multiple columns, then only data from the first two columns are inserted
into the look-up table; any other subsequent columns will be ignored. If you paste data from a single column on
top of any existing values, a context menu appears, asking whether the clipboard data should be inserted as
new rows or the existing rows should be overwritten. Therefore, if you need to overwrite existing values in the
look-up table as opposed to inserting new rows, ensure that the clipboard contains only one column, not
multiple.

To insert rows manually before an existing row, first click the row of interest, and then click the Insert
button.

To move an existing row to some other position, drag the row to the new position (upwards or downwards) while
holding the left mouse button pressed.

283

430

© 2018-2024 Altova GmbH

Value-Maps 429Transformation Components

Altova MapForce 2024 Professional Edition

To copy or cut rows for subsequent pasting at some other position, first select the row, and then click the

Copy button (or Cut button, respectively). You can also copy or cut multiple rows that are not
necessarily consecutive. To select multiple rows, hold the Ctrl key pressed while clicking the rows. Note that
the cut or copied text always contains values from both columns; you cannot cut or copy values from one
column only.

To remove a row, click it, and then click the Delete button.

To swap the left and right columns, click the Swap button.

Rename Value-Map parameters
By default, the input parameter of a Value-Map component is called "input" and the output parameter is called
"result". To make the mapping clearer, you can optionally rename any of these parameters by clicking the Edit

 button next to the respective name. The following is an example of a Value-Map with custom parameter
names:

Preview a Value-Map
After you have finished creating a Value-Map, you can quickly preview its implementation directly from the
mapping by holding the mouse over the component's title bar:

Create a Value-Map from enumeration type
MapForce enables you to create a Value-Map from nodes with enumeration values. The feature is currently
supported for XML components whose nodes have enumeration facets (all editions) and EDI components
whose nodes have EDI codelists (Enterprise Edition). Depending on your needs, you can create such a Value-
Map from a node's input or output connector.

To create a Value-Map from an enumeration type, follow the instructions below:

430 Transformation Components Value-Maps

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

1. Depending on your goals, right-click the input or output connector of the node for the enumeration
values of which you would like to create a Value-Map. In our example (screenshot below), we have
selected the output connector of the Genre node.

2. Select Create Value-Map for Enumeration Values from the context menu.
3. The Value-Map Properties dialog appears. Both input and result parts of the Value-Map are pre-

filled with the same enumeration values. You can now review and edit the values as necessary. The
screenshot below shows the list of Genre values that the source XML file originally has (input) and the
list of modified values we want to map (result).

4. After reviewing the enumeration values, click OK. This action will add a Value-Map component to the
mapping area. The Value-Map component will automatically be connected to the node from whose
enumeration values the Value-Map was created.

5. Connect the other parameter of the Value-Map with the relevant node and continue designing your
mapping as required.

5.7.1 Example: Replacing Weekdays

This example illustrates a Value-Map that replaces integer values with weekday names (1 = Sunday, 2 =
Monday, and so on). This example is accompanied by a mapping which is available at the following path:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\Expense-valmap.mfd.

© 2018-2024 Altova GmbH

Value-Maps 431Transformation Components

Altova MapForce 2024 Professional Edition

Expense-valmap.mfd

This mapping extracts the day of the week from the Date item in the source file, converts the numerical value
into text, and writes it to the Weekday item of the target component. More specifically, the following happens:

· The weekday function extracts the weekday number from the Date item in the source file. The result of

this function are integers ranging from 1 to 7.
· The first Value-Map component transforms the integers into weekdays (1 = Sunday, 2 = Monday, and

so on). If the component encounters an invalid integer outside of the 1-7 range, then it will return the
text "incorrect date".

432 Transformation Components Value-Maps

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· If the weekday contains "Tuesday", then the text "Prepare Financial Reports" is written to the Notes
item in the target component. This is achieved with the help of the contains function, which passes a

Boolean true or false value to a second Value-Map component. The second Value-Map has the
following configuration:

The Value-Map illustrated above should be understood as follows:

· Whenever a Boolean true is encountered, convert it to the text "-- Prepare financial reports -- ! ". For all
other cases, return the text "--".

Notice that the data type of the first column is set to "boolean". This ensures that the input Boolean value true
is recognized as such.

© 2018-2024 Altova GmbH

Value-Maps 433Transformation Components

Altova MapForce 2024 Professional Edition

5.7.2 Example: Replacing Job Titles

This example shows you how to replace values of specific elements in an XML file with the help of Value-Map
components (that is, using a predefined look-up table).

The XML file required for this example is available at the following path:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\MFCompany.xml. It stores, among
other data, information about company employees and their job titles, for example:

<Person>

 <First>Michelle</First>

 <Last>Butler</Last>

 <Title>Software Engineer</Title>

</Person>

<Person>

 <First>Lui</First>

 <Last>King</Last>

 <Title>Support Engineer</Title>

</Person>

<Person>

 <First>Steve</First>

 <Last>Meier</Last>

 <Title>Office Manager</Title>

</Person>

Let's assume that you need to replace some of the job titles in the XML file above. Specifically, the title
"Software Engineer" must be replaced with "Code Magician". Also, the title "Support Engineer" must be
replaced with "Support Magician". All the other job titles must remain unchanged.

To achieve the goal, add the XML file to the mapping area, by clicking the Insert XML Schema/File
toolbar button or by running the Insert | XML Schema/File menu command. Next, copy-paste the XML
component on the mapping and create the connections as shown below. Note that you might need to turn off

the Toggle auto-connect of children toolbar option first, in order to prevent unnecessary connections
from being created automatically.

434 Transformation Components Value-Maps

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The mapping created so far simply copies the Person elements to the target XML file, without making any
changes to the First, Last, and Title elements.

To replace the required job titles, let's add a Value-Map component. Right-click the connection between the two
Title elements, and select Insert Value-Map from the context menu. Set up the Value-Map properties as
shown below:

According to the setup above, each occurrence of "Software Engineer" will be replaced with "Code Magician",
and each occurrence of "Support Engineer" will be replaced with "Support Magician". Notice that the
Otherwise condition was not specified yet. For this reason, the Value-Map returns an empty node whenever
the job title is other than "Software Engineer" and "Support Engineer". Consequently, if you click the Output
pane and preview the mapping, some of the Person elements will have a missing a Title, for example:

<Person>

 <First>Vernon</First>

 <Last>Callaby</Last>

</Person>

<Person>

© 2018-2024 Altova GmbH

Value-Maps 435Transformation Components

Altova MapForce 2024 Professional Edition

 <First>Frank</First>

 <Last>Further</Last>

</Person>

<Person>

 <First>Michelle</First>

 <Last>Butler</Last>

 <Title>Code Magician</Title>

</Person>

As stated before, empty nodes cause missing entries in the generated output; therefore, in the XML fragment
above, only Michelle Butler had the title replaced, because her title was present in the look-up table. The
configuration created so far still does not fulfill the original requirement. The correct setup is as follows:

With the configuration above, the following happens at mapping run time:

· Each occurrence of "Software Engineer" will be replaced with "Code Magician"
· Each occurrence of "Support Engineer" will be replaced with "Support Magician"
· If the original title is not found in the look-up table, the Value-Map will return it unchanged.

For illustrative purposes only, we can also change all the job titles other than "Software Engineer" and "Support
Engineer" to a custom value, for example "N/A". To achieve this, set the Value-Map properties as shown below:

When you preview the mapping this time, each job title is present in the output, but those that were not
matched have the "N/A" value, for example:

436 Transformation Components Value-Maps

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

<Person>

 <First>Vernon</First>

 <Last>Callaby</Last>

 <Title>N/A</Title>

</Person>

<Person>

 <First>Frank</First>

 <Last>Further</Last>

 <Title>N/A</Title>

</Person>

<Person>

 <First>Michelle</First>

 <Last>Butler</Last>

 <Title>Code Magician</Title>

</Person>

This concludes the Value-Map example. By applying the logic above, you can now achieve the desired result in
other mappings.

© 2018-2024 Altova GmbH

Exceptions 437Transformation Components

Altova MapForce 2024 Professional Edition

5.8 Exceptions

An exception is a special component type that enables you to stop the mapping process and display an error
when a condition returned by a filter occurs. You can add an exception when your mapping includes a filter that
checks for a true/false condition (see Filters and Conditions). For example, you may want to throw an
exception if the value of some mapping item is greater than some custom threshold.

To add an exception to the mapping:

1. On the Insert menu, click Exception.

2. Click the Insert Exception () toolbar button.
3. Connect the throw input of the exception either to an on-true or on-false output of a filter.
4. Optionally, connect the error-text input of the exception to another component (typically, a constant)

that supplies the text of the error when this exception is thrown.

Note: Both the on-true and on-false outputs of the filter must be connected. Specifically, one of these
outputs must be connected directly to the exception (without any intermediary functions or
components). The other output must be connected to the target component, either directly, or through
other intermediary components.

When the mapping encounters an exception, you are notified about it as follows:

· In MapForce, the Messages window displays an error, and the exception text (in this case, "Expense
limit exceeded").

If the mapping language is XSLT 2.0 or XQuery, an "Execution failed" error appears in the Messages
window, and the respective XSLT2 or XQuery tab is opened. The error line is highlighted in the
Messages window.

· If you run the mapping with MapForce Server, the error "Exception was thrown!" is returned, followed by
the custom exception text you have defined in MapForce.

· If you run the mapping from the generated C#, C++, or Java code, the error "USER EXCEPTION" is
returned, followed by the custom exception text you have defined in MapForce.

414

438 Transformation Components Exceptions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

5.8.1 Example: Exception on "Greater Than" Condition

This example illustrates a mapping that throws an exception when a "Greater Than" condition occurs. The
sample mapping accompanying this example can be found at:
<Documents>\Altova\MapForce2024\MapForceExamples\ExpenseLimit.mfd.

This mapping throws an exception whenever the expense item in the source XML instance has a value greater
than 200. The value "200" is provided by a constant. The less function is then used to compare the two values.

If the value of expense is less than 200, then its parent, the expense-item, is passed on to the filter, and no
exception is thrown. Otherwise, an exception is thrown, with the custom text "Expense limit exceed".

As shown above, the exception is identified by the icon and it consists of two items: throw and error-text.
The throw item must be connected to the on-false or on-true output of a filter. The error-text is connected to
a constant which provides the custom text of the exception.

Importantly, both outputs of the filter are connected; otherwise, the exception would not be thrown. In this
particular example, the on-false output is connected to the exception, while the on-true output is connected to
the target component.

5.8.2 Example: Exception When Node Does Not Exist

This example illustrates how to throw an exception when a node in the source XML schema does not exist. For
the sake of simplicity, this example uses the same XML schema both as source and target component.

© 2018-2024 Altova GmbH

Exceptions 439Transformation Components

Altova MapForce 2024 Professional Edition

To add the source schema to the mapping:

1. On the Insert menu, click XML Schema/File, and browse for
<Documents>\Altova\MapForce2024\MapForceExamples\BookList.xsd.

2. When prompted to provide an instance file, click Skip.
3. When prompted to select a schema root element, select BookList as root element.

To add the target schema, follow the same steps. Then, using the corresponding commands from Insert menu
(or the corresponding toolbar buttons), add the following:

· A Filter: Nodes/Rows component (see also Filters and Conditions)
· A constant with the text "No year defined!"
· An exception

Finally, drag the exists function from the Libraries window into the mapping area, and make the connections

as illustrated below.

According to the XML schema, all attributes of the Book element are optional, except the book title. Therefore,
the "Year" attribute may or may not exist in a valid XML instance. The goal of the mapping is to process
successfully an XML instance where the "Year" attribute exists for each book. Otherwise, the mapping must
throw an exception.

To test the successful execution of the mapping:

1. Double-click the header of the source component and, next to Input XML file, browse for the following
file: <Documents>\Altova\MapForce2024\MapForceExamples\BookList.xml.

2. Click the Output button to run the mapping.

To test the exception:

1. Create, in the same directory, a copy of the BookList.xml file called BookListInvalid.xml.

414

440 Transformation Components Exceptions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

2. Modify it so as to remove the "Year" attribute from a Book element.
3. Double-click the header of the source component, and, next to Input XML file, browse for the

BookListInvalid.xml file.
4. Click the Output button to run the mapping.

Let's now have a closer look at how the mapping works.

Connection A ensures that a book in the target instance is created for each book in the source instance.
Connections B, C, D, E ensure that the "Title", "Year", "Price", and "Author" are copied from the source to the
target, for each book.

Connection F triggers the exists function to check for the existence of the "Year" attribute. Connection G

passes the function result (true or false) to the filter. If the result is true, the "Year" attribute exists, and the
book is passed on to the filter, and subsequently to the target through connection H.

Notice that the filter was not connected directly to the Year output of the source component. Had we done
so, the filter would filter the Year by its own existence, which is not meaningful, and the exception would
never be thrown.

Connection I is there because the exception must be connected either to an on-false or on-true output of a
filter, according to the rules. Finally, connection K passes the custom error text from the constant to the
exception component.

© 2018-2024 Altova GmbH

 441Functions

Altova MapForce 2024 Professional Edition

6 Functions

In MapForce, you can use the following categories of functions to transform data according to your needs:

· MapForce built-in functions — these functions are predefined in MapForce and you can use them in
your mappings to perform a wide range of processing tasks that involve strings, numbers, dates, and
other types of data. You can also use them to perform grouping, aggregation, auto-numbering, and
various other tasks. For reference to all available built-in functions, see Function Library Reference .

· Node functions and defaults — these are more specialized functions that let you create and apply
custom processing logic to one or multiple descendant nodes on a mapping component. They enable
you to process data either before it reaches a node of a mapping structure, or immediately after it
leaves a node. For more details, see Defaults and Node Functions .

· User-defined functions (UDFs) — these are MapForce functions that you can create yourself, using
as basis the native component kinds and built-in functions already available in MapForce, see User-
Defined Functions .

· Custom functions — these are functions that you can import from external sources such as XSLT
libraries, XQuery library modules, Java .class files, .NET .dll files, and adapt to MapForce. Note that, in
order to be reusable in MapForce, your custom functions must return data of simple type (such as
string or integer) and they must also take parameters of simple type. For more information, see
Importing Custom XSLT Functions , Importing Custom XQuery 1.0 Functions , and Importing
Custom Java and .NET Libraries .

Note: You can import custom external libraries of functions either directly (no configuration required) or by
configuring a MFF (MapForce Function File) recognized by MapForce. If you use the latter approach,
you can also import C++ libraries, in addition to Java classes and .NET assemblies. Note that libraries
imported via .mff files must meet the prerequisites mentioned in Referencing Java, C# and C++
Libraries Manually .

516

449

464

479 486

490

497

442 Functions Functions Basics

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.1 Functions Basics

The subsections below give an overview of basic function-related actions. The functions you see in the Libraries
window depend on the transformation language you have selected. For more information, see Transformation
Languages .

Add a function
MapForce includes a large number of built-in functions that you can add to a mapping. For more information
about all available built-in functions, see Function Library Reference . To add a function to a mapping, you
can choose one of the following methods:

· Press and hold the required function in the Libraries window and drag it to the mapping area. To filter
functions by name, start typing the function name in the text box at the bottom of the window.

· Double-click anywhere in the empty area of the mapping and start typing the function name (see
screenshot below). To see a tooltip with more details about a function, click this function in the list. To
add a function to your mapping, double-click the relevant function in the combo box.

Add a UDF
You can also add user-defined functions (UDFs) to your mapping using the same approaches as described
above if (i) a UDF has already been created in the same mapping or (ii) you have imported a mapping that
contains a UDF as a local or global library.

Add a constant
Constants enable you to supply custom text and numbers to a mapping. To add a constant to your mapping,
you can choose one of the following options:

· Right-click anywhere in the empty mapping area and select Insert Constant from the context menu.
Enter the value and select one of the data types: String, Number, or All other.

· Select the Insert | Constant menu command. Enter the value and select one of the data types: String,
Number, or All other.

· Click the Constant toolbar command. Enter the value and select one of the data types: String,
Number, or All other.

· Double-click anywhere in the empty mapping area. Type the double quotation mark followed by the
constant value. The closing double quotation mark is optional. To add a numeric constant, just type the
number.

21

516

© 2018-2024 Altova GmbH

Functions Basics 443Functions

Altova MapForce 2024 Professional Edition

Search for a function
To search for a function in the Libraries window, start typing the function name in the text field at the bottom of
the window. By default, MapForce searches by function name and description text. If you want to exclude the
function description from the search, click the down-arrow and disable the Search in function descriptions
option. To cancel the search, press the Esc key or click .

To find all occurrences of a function within the currently active mapping, right-click the function name in the
Libraries window and select Find All Calls from the context menu. The search results are displayed in the
Messages window.

View a function's type and description
To view the data type of a function's input/output argument, move your mouse over the argument part of a

function (see screenshot below). Make sure that the (Show tips) toolbar button is enabled.

To view the description of a function, move the mouse over the function's header (see screenshot below). Make

sure that the (Show tips) toolbar button is enabled.

Add/delete function arguments
For some MapForce built-in functions, it is possible to add as many parameters as you need for your mapping
purposes. One such example is the concat function. To add or delete function arguments (for functions that

support that), click Add parameter () or Delete parameter () next to the parameter you want to add or
delete, respectively (see below). Moving a connection to the symbol adds another parameter and connects
this parameter.

597

444 Functions Functions Basics

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

© 2018-2024 Altova GmbH

Manage Function Libraries 445Functions

Altova MapForce 2024 Professional Edition

6.2 Manage Function Libraries

In MapForce, you can import and use the following kinds of libraries in a mapping:

· Any mapping design files (*.mfd) that contain user-defined functions (UDFs). This specifically refers to
mapping files that contain UDFs created with MapForce, using the MapForce built-in functions and
components as building blocks. For further information, see Creating User-Defined Functions .

· Custom XSLT files that contain functions. This refers to XSLT functions written outside of MapForce
that qualify for import into MapForce as described in Importing Custom XSLT Functions .

· Custom XQuery 1.0 files that contain functions. This refers to XQuery functions written outside of
MapForce that qualify for import into MapForce as described in Importing Custom XQuery 1.0
Functions .

· Java .class files and .NET .dll libraries which qualify for import into MapForce as described in Importing
Custom Java and .NET Libraries .

Note: You can import custom external libraries of functions either directly (no configuration required) or by
configuring a MFF (MapForce Function File) recognized by MapForce. If you use the latter approach,
you can also import C++ libraries, in addition to Java classes and .NET assemblies. Note that libraries
imported via .mff files must meet the prerequisites mentioned in Referencing Java, C# and C++
Libraries Manually .

Manage Libraries window
You can view and manage all libraries used by a mapping file from the Manage Libraries window. This includes
UDFs and custom libraries.

By default, the Manage Libraries window is not visible. To display it, do one of the following:

· In the View menu, click Manage Libraries.
· Click Add/Remove Libraries at the bottom of the Libraries window.

You can choose to view UDFs and libraries only for the mapping document that is currently active or for all
open mapping documents. To view imported functions and libraries for all of the currently open mapping
documents, right-click inside the window and select Show Open Documents from the context menu.

To display the path of the open mapping document instead of the name, right-click inside the window and
select Show File Paths from the context menu.

465

479

486

490

497

446 Functions Manage Function Libraries

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Data displayed in the Manage Libraries window is organized as a tree hierarchy as follows:

· Any currently open mapping documents are displayed as top-level entries. Each entry has two
branches: User-Defined Functions and Own Library Imports.
o The User-Defined Functions branch displays any UDFs contained in that document.

o The Own Library Imports branch displays libraries imported locally into the current mapping

document. The term "libraries" means other mapping documents (.mfd files that contain user-
defined functions) or custom external libraries written in XSLT 1.0, XSLT 2.0, XQuery 1.0*, Java*,
C#*, or .mff files mentioned previously. Note that the Own Library Imports structure could be
several levels deep, since any mapping document may import any other mapping document as a
library.

· The Global Library Imports entry encloses any custom libraries that you have imported globally at
application level. Again, in case of .mfd files, the structure could be several levels deep, for the reasons
mentioned above.

* These languages are supported only in MapForce Professional or Enterprise edition.

Note: The XSLT, XQuery, C#, and Java libraries may have dependencies of their own. Such dependencies are
not displayed in the Libraries window.

Context menu commands
You can quickly perform various operations against objects in the Manage Libraries window by right-clicking an
object and selecting one of the following context menu options:

Command Description Applicable for

Open Opens the mapping. Mappings

Add Opens a dialog box where you can browse for a
custom library of functions.

Own Library Imports

Locate Function in Libraries
Window

Changes focus to the Libraries window, and
selects the function.

Functions

Cut, Copy, Delete These standard Windows commands are
applicable only to MapForce user-defined
functions. You cannot copy-paste functions
from external XSLT files or other library kinds.

User-defined functions

Paste Lets you paste a user-defined function that was
previously copied to clipboard into the current
library.

Libraries (UDF)

Options Opens a dialog box where you can set or
change options for the current library.

Libraries

Show All Open Documents When this option is switched on, the Manage
Libraries window will display all currently open
mappings. This is typically useful if you need to
copy-paste functions between mappings.

Always

© 2018-2024 Altova GmbH

Manage Function Libraries 447Functions

Altova MapForce 2024 Professional Edition

Command Description Applicable for

Otherwise, only the mapping that is currently in
focus is shown.

Show File Paths When this option is switched on, objects in the
Manage Libraries window are displayed with
their full path. Otherwise, only the object name
is shown.

Always

6.2.1 Local and Global Libraries

You can import libraries locally or globally. Global imports are at application level. If a library was imported
globally, you can use its functions from any mapping.

Local imports are at mapping file level. For example, let's suppose that, while working on mapping A.mfd, you
decide to import all user-defined functions from mapping B.mfd. In this case, mapping B.mfd is considered to
be imported as a local library into A.mfd and you can use functions from B.mfd in A.mfd as well. Likewise, if
you import functions from an XSLT file into A.mfd, this is also a local import.

You can view and manage all local and global imports from the Manage Libraries window. To import a library,
do one of the following:

1. Click the Add/Remove Libraries button at the bottom of the Libraries window . The Manage
Libraries window opens (see screenshot below).

2. To import functions as a local library (in the scope of the current document only), click Add under the
current mapping name. To import functions as a global library (at program level), click Add next to
Global Library Imports. When you import a library locally, you can set the path of the library file to be
relative to the mapping file. With globally imported libraries, the path of the imported library is always
absolute.

Conflicting function names
You may come across situations where the same function name is defined at any of the following levels:

· in the main mapping
· in a library that was imported locally
· in a library that was imported globally

When it encounters such cases, MapForce will attempt to call the function exactly in the order above, to
prevent ambiguity. That is, the function defined directly in the mapping takes precedence if the same function
name exists in a locally imported library. Also, the function imported locally takes precedence over the function
imported globally (assuming that both functions have the same name).

25

448 Functions Manage Function Libraries

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

If multiple functions with the same name exist, only the "winning" function will be called, according to the rule
above; any other ambiguous function names will be blocked. Such blocked functions appear as grayed out in
the Libraries window, and it is not be possible to use them in the mapping.

6.2.2 Relative Library Paths

You can set the path of any imported library file to be relative to the mapping design file (.mfd), provided that the
library was imported locally (not globally), as described in Local and Global Libraries .

Setting a relative library path is applicable only for those libraries that were imported locally at document
level. If a mapping was imported globally at program level, its path is always absolute.

To set a library path as relative to the mapping design file:

1. Click Add/Remove Libraries at the base of the Libraries window. The Manage Libraries window
opens.

2. Click Options next to the library of interest. (Alternatively, right-click the library, and select Options
from the context menu.)

3. Select the Save file path as relative to MFD file check box.

Note: If the check box is grayed out, make sure that the library was indeed imported locally, and not globally.

When the check box is selected, MapForce will keep track and update the path to any referenced library files
when you save the mapping file to a new directory using the Save as menu command. Also, if the library files
are in the same directory as the mapping file, the path reference will not be broken when you move the entire
directory to a new location on the disk, see also Using Relative Paths on a Component .

Note that the Save file path as relative to MFD file check box specifies that paths are relative to the
mapping file, and it does not affect paths in generated code. For information about how library references are
handled in generated code, see Paths in Various Execution Environments .

447

27

45

48

© 2018-2024 Altova GmbH

Defaults and Node Functions 449Functions

Altova MapForce 2024 Professional Edition

6.3 Defaults and Node Functions

Defaults and node functions are particularly useful when you want to apply the same processing logic to
multiple descendant items in a structure. Usually you would need to copy-paste the same function multiple
times in the mapping. This could clutter the mapping and make it more difficult to understand. Defaults and
node functions can apply to a single item or to multiple items at once. Defaults replace empty sequences. If
the connection transports a value, the default will be ignored.

Defaults and node functions are suitable for most components that have a tree with nodes (e.g., XML, EDI, Join
components, variables).

Defaults and node functions are compatible only with the Built-In transformation language. Running such
mappings from generated C#, C++, Java program code or with generated XSLT/XQuery transformations is not
supported. On the server side, you can execute such mappings with MapForce Server Advanced Edition.

Advantages of node functions and defaults
Creating node functions and defaults means defining a rule. Rules have the following important characteristics
that make them flexible and easy to use:

· Inheritance. When you define a rule on an item that has descendants, the rule will be inherited by
descendants by default unless you choose to disable this option. If the item for which you define the
function has multiple levels of child items nested under it, you can choose to apply the rule only to
direct child items or to all descendant items.

· Filtering. MapForce applies rules conditionally, based on the data type of each item. This makes it
possible, for example, to apply a certain default value or function to all items of type string and a
different default or function to all items of type decimal. For details, see Scenario 2 in Use-Case
Scenarios . You can also define more advanced filtering options: For example, you can specify a
data type that your function must match (this could be a category of data types such as numeric) and
then filter the nodes of this data type based on the node name or node type (e.g., integer). For
details, see Scenario 5 .

For example, you can instruct MapForce to do the following:

· Every time an empty or null value is encountered, replace it with some other value and do this
recursively for all descendant items.

· Every time a specific value is encountered, replace it with some other value (or with an empty string)
and do this recursively for all descendant items.

· Replace all database null values with empty strings or custom text.
· Append a custom prefix or suffix to all values that are written to a target file or database.

Output vs. input side
You can define node functions and defaults on the input side, output side, or on both sides of a component,
depending on your needs. In MapForce, a mapping works in the following way: (i) it first reads data from a
source component (e.g., an XML file), (ii) then optionally processes the data in some way (e.g., using a
function), and (iii) finally writes data to some target component (e.g., a database). Considering this basic
principle, you can set node functions and defaults at various stages:

454

458

450 Functions Defaults and Node Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· Immediately after data is read from the source, but before it is further processed by your mapping,
which means the function/default is defined on the output side of the source component (see example
below).

· Immediately before data is written to the target component (and after it has finished all intermediary
processing), which means the function/default is defined on the input side of the target component (see
example below).

· At an intermediary stage in the mapping process. For example, if the mapping contains an
intermediary variable of complex type (e.g., an XML structure), you can trim all values before they are
supplied to the XML structure or immediately after they are returned by the XML structure (see example
below).

· On the output side of a source component and on the input side of a target component. In the example
below, a default has been defined for all the nodes of type string in the ArticlesOfClothing
component. In the ArticlesInfo component, we have defined a node function that will transform all
values of string nodes into uppercase characters.

© 2018-2024 Altova GmbH

Defaults and Node Functions 451Functions

Altova MapForce 2024 Professional Edition

In this section
This section explains how to configure a rule, describes real-life scenarios in which defaults and node functions
can be useful, and shows how to add node metadata to node functions. The section is organized into the
following topics:

· Rule Configuration
· Use-Case Scenarios
· Node Metadata in Node Functions

6.3.1 Rule Configuration

You can create node functions and defaults for almost any item in the mapping. Creating node functions and
defaults means defining a rule. To create a rule, select an item (node or field) for which you want to define a
rule. This can be a single node or a node with child nodes. If you choose to create a rule for a node with
children, the rule will apply to all the children unless you disable this option explicitly.

Important aspects of defaults and node functions
Defaults and node functions have the following important aspects:

· You can create defaults and node functions on the input side of a target component or on the output
side of a source component. To establish which side is right for your needs, see Input vs. Output
Side .

· When multiple rules exist for one and the same item, MapForce will apply the rule that is closer to that
item. To find out how to override rules, see Scenario 4 in Use-Case Scenarios .

· Defaults and node functions can be created if the connection type between the source and target is
source-driven or target-driven. However, copy-all connections are not supported. Specifically, node
functions and defaults do not apply to descendants of copy-all connections. The parent node with the
copy-all connection can have node functions and defaults but only if this parent node has a simple
value, for example, an XML element with simple-type content and attributes. For more information
about connection types, see Connection Types .

· Creating defaults and node functions is not supported for the File node.

451

454

460

449

457

53

452 Functions Defaults and Node Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· Inside a node function, only certain components meaningful in this context are supported (e.g., built-in
functions, variables, if-else conditions). Complex structures such as XML, JSON, EDI, or databases
are not supported. Adding inline user-defined functions and join components to a node function is not
supported.

· A node function can have one input parameter or no parameter at all. The input parameter is always
called raw_value. Do not delete the input parameter even if you do not need an input for your function;
otherwise, validation errors will occur when you run the mapping. The same applies to the function's
output. Should you need to restore an accidentally deleted input component, run the menu command
Function | Insert Input.

· MapForce allows you to supply node metadata (e.g., a node name, an annotation) to a node function.
For details, see Node Metadata in Node Functions .

· The Filter Node Functions and Defaults dialog box allows you to choose from an extensive range of
data types, some of which are categories of types. This means that they will match a larger selection
of types. For example, the type string matches various other data types derived from string, such
as normalizedString, token, NCName, NMTOKEN, IDREF, ENTITY, and others. Likewise, the type
decimal will match the derived types integer, long, short, and others. The hierarchy of types is
specified in the XML Schema W3C Recommendation.

Create a rule
To create a rule, take the following steps:

1. Right-click the node of interest and select Node Functions and Defaults | Input/Output Node
Functions and Defaults from the context menu. Whether it is Input or Output Node Functions and
Defaults depends on the side of the component on which you need to create a node function or a
default. Alternatively, right-click a connector and select the node function command for that side. The
Mapping pane will display the Node Functions window, in which you can define defaults and node
functions (red rectangle in screenshot below).

If a parent node has rules defined for it, and you want to transfer these rules from the parent to a child,
select the Inherit rules from ancestors check box (screenshot above). For more information about
inheritance, see Use-Case Scenarios .

2. The next step is to define whether you want to add a default () or a function (). As soon as you
click the relevant option, a new rule will be created (a row in the grid in the Node Functions window).
For information about rule configuration, see Rule Configuration below. If you are defining a function,
the mapping area will display the function's input and output parameters.

Edit/delete rules

To view, modify, or delete a rule, click the icon (black or red) next to a node of interest. The Node Functions

window will display all the rules defined for this node. If you have added a node function, you will see the

460

454

https://www.w3.org/TR/xmlschema-2/#:~:text=implement%20this%20specification.-,3%20Built%2Din%20datatypes,-Each%20built%2Din

© 2018-2024 Altova GmbH

Defaults and Node Functions 453Functions

Altova MapForce 2024 Professional Edition

button in the grid, which allows you to change the implementation of the function. If the button is not

present, the function is most likely defined on some ancestor. In this case, click the icon near the item for
which the rule has been defined.

To delete a rule, select it from the grid in the Node Functions window and then click the button.

Configure a rule
As soon as you select Node Functions and Defaults | Input/Output Node Functions and Defaults from the
context menu (see instructions above), you will see the Node Functions window in which you can configure
node functions and defaults. The available settings are described below.

· Apply to: A rule can apply to the current item, its direct child items, or to all descendant items. If the
item you have selected has no descendants, only the Current item option will be available.

· Data type: Click the button and select a data type from the dialog box. The rule will apply only to
items of this data type (or a derived data type). If the item you have selected has no descendants, the
item's data type is the only choice.

· Default Value/Function Description: If you are defining a default, type the default value that you wish to
set for the selected item (and all descendants, if applicable). To set an empty string as a default, leave
this field empty. If you are defining a function, this field is for information only: It displays a summary of
the function.

To exit the Node Functions window, click the button in the upper-left corner of this window or press Escape.

Visual clues
MapForce displays different visual clues to help you understand which rules are defined and whether they apply
to a specific node (see table below).

Icon Description

This icon indicates that a rule has been defined for this item and may affect all its descendants.
Click the icon to modify or delete the rule.

This icon indicates that the item inherits the rule defined at ancestor level.

This icon indicates that a rule is defined for and applies to this item. This icon usually appears
when a function or a default is defined for a single node.

This icon indicates that even though a rule applies to this item, it is deliberately blocked. This
icon is displayed only if inheritance is blocked and no other rules are defined for this node. If a

rule from an ancestor does apply, the icon has priority.

This icon indicates that a rule defined for this item is inactive. For example, this icon may
appear for child items that are not connected yet.

This icon indicates that the rule is currently inactive, because no matching and connected
nodes have been identified. By matching the following is meant: Before applying a function or a
default, MapForce looks for the data type you have defined; if you have also specified a filter

454 Functions Defaults and Node Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Icon Description

that must match a specific node name, for example, MapForce will also look for the relevant
node name.

6.3.2 Use-Case Scenarios

This topic describes different scenarios in which defaults and node functions can be useful. To test these
scenarios, you will need the following sample mapping: Tutorial\MissingFields.mfd. Our starting point is

the mapping illustrated below.

Some of the nodes in the source file are empty. At this stage, the output file looks as follows:

T-Shirt
Shirt
Pants
Jacket

25.3
70.3

57.5

20
60

40

Available in black, blue, and red

Limited stock

The scenarios described below will show you how to set a default for all nodes of type string, set defaults for
different data types, block rules for specific nodes, override inherited rules, set a node function and conditionally
apply this function to relevant nodes, and apply defaults to unconnected nodes.

Scenario 1: Set a default for all string nodes
In our mapping, some of the nodes of type string are empty. Our goal is to set a default value n/a instead of
the empty strings. Take the following steps:

1. Right-click the Article element and select Node Functions and Defaults | Output Node Functions
and Defaults from the context menu.

2. Click the option in the Node Functions window and type n/a in the Default value field (see
screenshot below).

© 2018-2024 Altova GmbH

Defaults and Node Functions 455Functions

Altova MapForce 2024 Professional Edition

In the ArticlesOfClothing component, the Name and Description elements are of type string, which

makes the default value suitable for both of them. Therefore, the icon appears next to these nodes. Since
default values apply only to empty values, only two Field4 nodes have received the n/a values in the output
(highlighted yellow below).

T-Shirt
Shirt
Pants
Jacket

25.3
70.3

57.5

20
60

40

Available in black, blue, and red
n/a
Limited stock
n/a

Scenario 2: Set defaults for different data types
Besides setting a default for nodes of one specific type, you can additionally set another default for some other
data type. For example, one of the articles has empty values in Price and ItemsInStock, both of which are of
numeric type. Now our goal is to replace these empty values with 0. Take the steps below:

1. Repeat the steps from Scenario 1. This will add a default value for all nodes of type string that have
empty values.

2. Add another default and select numeric as a data type.
3. Type 0 in the Default value field (see screenshot below).

456 Functions Defaults and Node Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The output now looks as follows (note the highlighted parts):

T-Shirt
Shirt
Pants
Jacket

25.3
70.3
0
57.5

20
60
0
40

Available in black, blue, and red
n/a
Limited stock
n/a

Note: According to the XML Schema Specification, integer is derived from decimal, and both of them
belong to the numeric data type. In our example, the rule will apply to both ItemsInStock and Price
elements if you select numeric as a data type in the Node Functions window. If you select decimal as
a data type, the rule will still apply to both elements. However, if you select integer as a data type,
the rule will apply only to the ItemsInStock element.

Scenario 3: Block rules for specific nodes
In this scenario, we want to apply defaults for all string and numeric nodes, but we do not want to set a default
for the Price item. To achieve the goal, reproduce the steps from Scenario 2, click the Price element, and
clear the check box Inherit rules from ancestors. In the mapping below, the Price element no longer inherits

rules from its parent, Article. Therefore, the icon appears next to the Price element (see screenshot
below).

https://www.w3.org/TR/xmlschema-2/#:~:text=implement%20this%20specification.-,3%20Built%2Din%20datatypes,-Each%20built%2Din

© 2018-2024 Altova GmbH

Defaults and Node Functions 457Functions

Altova MapForce 2024 Professional Edition

The output below shows that the empty value of the Price element, for which the rule has been blocked, has
been mapped to Field2 (note the highlighted parts).

T-Shirt
Shirt
Pants
Jacket

25.3
70.3

57.5

20
60
0
40

Available in black, blue, and red
n/a
Limited stock
n/a

Scenario 4: Override inherited rules
In this scenario, we want to set defaults for all string and numeric nodes; however, for the Price element
exclusively, we want to set 100 as a default value. To achieve this, repeat the steps outlined in Scenario 2,
click Price in the ArticlesOfClothing component, add a new default and type 100, as shown in the
screenshot below. The inherited rules have a yellow background.

The rule defined directly on a node has priority over the rules created at parent level. Therefore, the output now
looks as follows (note the highlighted part):

458 Functions Defaults and Node Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

T-Shirt
Shirt
Pants
Jacket

25.3
70.3
100
57.5

20
60
0
40

Available in black, blue, and red
n/a
Limited stock
n/a

If you have defined more than one rules for the same node, the rule at the top of the grid will apply to the current
node. You can swap the order of these rules by manually dragging the rules in the grid.

Scenario 5: Create a node function and apply it conditionally
This scenario will explain how to create a node function and apply it conditionally. We will use the concat

function to add some text to nodes of type string. Follow the instructions below.

1. Right-click the Article element and select Node Functions and Defaults | Output Node Functions
and Defaults from the context menu.

2. Add a node function by clicking the icon and create the function shown below.

At this stage, we have not filtered the nodes yet, and the output looks as follows (note the highlighted parts):

T-Shirt (XXS,
L-XXL)
Shirt (XXS, L-
XXL)
Pants (XXS, L-
XXL)
Jacket (XXS, L-
XXL)

25.3
70.3

57.5

20
60

40

Available in black, blue, and red (XXS, L-XXL)

Limited stock (XXS, L-XXL)

The output shows that our rule has been applied to both elements of type string: Name and Description. Now
we want the rule to apply only to the Name element. To achieve this, go to the Node Functions window and click

the button in the Data type and filter column. This opens the Filter Node Functions and Defaults dialog
box, in which you can change data types and specify filtering options. Define the filter as shown in the
screenshot below.

© 2018-2024 Altova GmbH

Defaults and Node Functions 459Functions

Altova MapForce 2024 Professional Edition

The output now looks as follows:

T-Shirt (XXS,
L-XXL)
Shirt (XXS, L-
XXL)
Pants (XXS, L-
XXL)
Jacket (XXS, L-
XXL)

25.3
70.3

57.5

20
60

40

Available in black, blue, and red

Limited stock

Filter by node type
This option allows you to narrow down the data type you have selected in the Filter Node Functions and
Defaults dialog. For example, you have chosen to apply your node function to numeric nodes. Then you can
specify a subtype (e.g., Filter by/Node name: xs:decimal).

Filter with regular expressions
For more advanced filtering options, you can use regular expressions (e.g., to match multiple node names or
type names). For more information, see Regular Expressions . Note the following points:

512

460 Functions Defaults and Node Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· The anchors ^ and $ are implicit and must not be entered in the Match to box.

· Case sensitivity can be specified in the Match Case check box. Therefore, the i flag is not supported.

· Matching on multiple lines is not meaningful for node filtering. Therefore, the m flag is not supported.

Scenario 6: Create defaults for unconnected nodes
MapForce allows you to apply defaults to unconnected nodes but only if the parent node and/or a sibling are
connected. Consider the following example:

In the mapping above, we have defined a default value for the Field4 node in the ArticlesInfo component. At
this stage, Field4 does not have an input connection. The parent and sibling nodes are connected. If Field4
remains unconnected, the default value will overwrite all the Description values in the output (see below). If
you connect Description and Field4, the default value will apply only to empty sequences.

T-Shirt
Shirt
Pants
Jacket

25.3
70.3

57.5

20
60

40

n/a
n/a
n/a
n/a

Note: Defaults do not apply to unconnected nodes in JSON components.

6.3.3 Node Metadata in Node Functions

There might be cases in which you want a node function to do something based on node metadata. By node
metadata, we understand miscellaneous information about the node on which the function applies (e.g., a node
name, value length, and precision), which is stored in the schema. The table below lists all possible metadata
parameters that you can use in a node function. Note that some metadata parameters apply only to specific
data types. MapForce will display a warning when you attempt to use metadata that is incompatible with the
current node.

Metadata parameters Description

node_name Supplies the name of the current node as it is shown in the component.
This metadata is supported by all nodes. In XML files, node_name refers to
the name of the current element or attribute. In CSV components,

© 2018-2024 Altova GmbH

Defaults and Node Functions 461Functions

Altova MapForce 2024 Professional Edition

Metadata parameters Description

node_name refers to the name of a CSV field. In databases, node_name
refers to the name of a table column.

node_annotation Displays annotation text next to the node value in the output. This metadata
is supported by all nodes.

node_minLength Supplies the value of the minLength facet of the node's data type.
Applicable to XML and text nodes with appropriate types. For more
information about length-constraining facets, see the XML Schema
Recommendation.

node_maxLength Supplies the value of the maxLength facet of the node's data type.
Applicable to XML and text nodes with appropriate types. For more
information about length-constraining facets, see the XML Schema
Recommendation.

node_totalDigits Supplies the value of the totalDigits facet of the node's data type.
Applicable to XML nodes with appropriate types. For details about the
totalDigits facet, see the XML Schema Recommendation.

node_fractionDigits Supplies the value of the fractionDigits facet of the node's data type.
Applicable to XML nodes with appropriate types. For details about the
fractionDigits facet, see the XML Schema Recommendation.

node_length Supplies the length (in bytes) of a number. Applicable to database fields
with appropriate types. To find out more about length, see the Microsoft
documentation.

node_precision Supplies the number of all digits of a number. Applicable to database fields
with appropriate types. For more information, see the Microsoft
documentation.

node_scale Supplies the number of digits to the right of the decimal point of a number.
Applicable to database fields with appropriate types. For more information,
see the Microsoft documentation.

Note: The data type of a metadata parameter must coincide with the data type of the relevant node.
Otherwise, the function execution will fail.

Add metadata to a node function
To add a metadata parameter to a node function, you need to create a node function and then click the Add
Node Specifics option, which is located under the Node Functions window. This will open the Insert Input
with Node Specific dialog box, in which you can select a relevant metadata parameter. Instead of the Add
Node Specifics option, you can also choose one of the following options:

· Right-clicking an empty area in the mapping and selecting Insert Input from the context menu.

· Clicking the toolbar command.
· Clicking Insert Input in the Function menu.

452

https://www.w3.org/TR/xmlschema-2/#:~:text=4.3.1.4%20Constraints%20on%20length%20Schema%20Components
https://www.w3.org/TR/xmlschema-2/#:~:text=4.3.1.4%20Constraints%20on%20length%20Schema%20Components
https://www.w3.org/TR/xmlschema-2/#:~:text=4.3.1.4%20Constraints%20on%20length%20Schema%20Components
https://www.w3.org/TR/xmlschema-2/#:~:text=4.3.1.4%20Constraints%20on%20length%20Schema%20Components
https://www.w3.org/TR/xmlschema-2/#:~:text=the%20parent%20maxExclusive-,4.3.11%20totalDigits,-%5BDefinition%3A%5D%C2%A0%C2%A0%20totalDigits
https://www.w3.org/TR/xmlschema-2/#:~:text=the%20parent%20totalDigits-,4.3.12%20fractionDigits,-%5BDefinition%3A%5D%C2%A0%C2%A0%20fractionDigits
https://docs.microsoft.com/en-us/sql/t-sql/data-types/precision-scale-and-length-transact-sql?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/t-sql/data-types/precision-scale-and-length-transact-sql?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/t-sql/data-types/precision-scale-and-length-transact-sql?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/t-sql/data-types/precision-scale-and-length-transact-sql?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/t-sql/data-types/precision-scale-and-length-transact-sql?view=sql-server-ver16

462 Functions Defaults and Node Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

When metadata is not supported by a node
When a metadata parameter is not supported by a node, you can instruct MapForce to return an empty
sequence or not to apply the node function (both options are available in the Insert Input with Node Specific
dialog box). The empty sequence must be handled; otherwise, the node function might not return a value at all.
You would typically need to use sequence functions (e.g., substitute-missing and exists) or other
component types to process the empty sequence further.

Example
The example below explains how to supply annotation text to a node function. For this example, you will need
the following mapping:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\MissingFields.mfd. In

MissingFields.xsd (on which MissingFields.xml is based), we have added the following annotation for the

Name element: Article name from catalog Spring 2022. Our goal is to supply this annotation to a node
function and to see the annotation in the output. Follow the instructions below.

1. Create a node function for the Name element in the ArticlesOfClothing component.
2. Replicate the function shown below. To add a node_annotation parameter, click Add Node Specifics

(see red rectangle below) and select this parameter from the list. To find out how to add and
manipulate functions, see Functions Basics .

Note: By default, deeply nested structures are not fully scanned so as to preserve memory and improve the
user experience. If the component where you apply the node function has such deeply nested
structures, you can expand the relevant nodes in the mapping to make MapForce aware of them. In
this case, MapForce will take the expanded nodes into account when you add a new metadata
parameter, and the warning may disappear. The node function must be connected in order to take
effect; expanding unconnected items is not relevant.

Output
The listing below shows that the annotation has been added to the values of the Name elements.

594 568

452

442

© 2018-2024 Altova GmbH

Defaults and Node Functions 463Functions

Altova MapForce 2024 Professional Edition

T-Shirt (Article name from catalog Spring 2022) 25.5 20 Available in black, blue,
and red
Shirt (Article name from catalog Spring 2022) 70.3 60

Pants (Article name from catalog Spring 2022) Limited
stock
Jacket (Article name from catalog Spring 2022) 57.5 40

464 Functions User-Defined Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.4 User-Defined Functions

User-Defined Functions (UDFs for short) are custom functions that are defined once and can be reused multiple
times within the same mapping or across multiple mappings. UDFs are like mini-mappings themselves: They
typically consist of one or more input parameters, some intermediary components to process data, and an
output to return data to the caller. The caller is the main mapping or another UDF.

Advantages of UDFs
UDFs have the following advantages:

· UDFs are reusable within one mapping or across multiple mappings.
· UDFs can make your mapping easier to read: For example, you can package parts of the mapping into

smaller components and abstract away the implementation details. The diagram below illustrates this
principle.

· UDFs are flexible functions that enable you to process strings, numbers, dates, and other data in a
custom way that extends the built-in MapForce functions. For example, you might want to concatenate
or split text in a particular way, perform some advanced calculations, manipulate dates and times, and
so on.

· Another common use of UDFs is to look up a field in an XML file, database or some other data format
supported by your MapForce edition and present this data in a convenient way. For details, see Look-
up Implementation .

· UDFs can be called recursively (i.e., the UDF calls itself). This requires that the UDF be defined as a
regular (not inline) function . Recursive UDFs can fulfill various advanced mapping requirements,
such as iterating over data structures having a depth of N children, where N is not known in advance.

Example
Below is an example of a simple UDF that splits a string into two separate strings. This UDF is part of a larger
mapping called MapForceExamples\ContactsFromPO.mfd. The UDF takes the name as a parameter (e.g.,

Helen Smith), applies the built-in functions substring-before and substring-after, and then returns two

values: Helen and Smith.

476

467 473

© 2018-2024 Altova GmbH

User-Defined Functions 465Functions

Altova MapForce 2024 Professional Edition

In this section
This section explains how to work with UDFs and is organized into the following topics:

· UDF Basics
· UDF Parameters
· Recursive UDFs
· Look-up Implementation

6.4.1 UDF Basics

This topic explains how to create, import, edit, copy-paste, and delete user-defined functions (UDFs for short).

Create a UDF
This subsection explains how to create a UDF from scratch and from already existing components. The
minimum requirement is one output component to which some data is connected. For input parameters, a
function can have zero, one or more inputs. The input and output parameters can be of simple type (e.g., a
string) or complex type (a structure). For more information about simple and complex parameters, see UDF
Parameters .

UDF from scratch
To create a UDF from scratch, follow the instructions below:

1. Select Function | Create User-Defined Function. Alternatively, click the toolbar button.

2. Enter the relevant information into the Create User-defined Function dialog (see screenshot below).

465

470

473

476

470

466 Functions User-Defined Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The available options are listed below.

· Function Name: Mandatory field. For the name of your UDF, you can use the following characters:
alphanumeric characters (a-z, A-Z, 0-9), an underscore (_), a hyphen/dash (-), and a colon (:).

· Library Name: Mandatory field. This is the name of a function library (in the Libraries window) in
which your function will be saved. If you do not specify the name of a library, the function will be
placed into a default library called user.

· Syntax: Optional field. Enter some text that concisely describes the syntax of the function (e.g.,
expected parameters). This text will be displayed next to the function in the Libraries window and
does not affect the implementation of the function.

· Detail: Optional field. This description will be displayed when you move the cursor over the function in
the Libraries window or in other contexts.

· Inlined use: Select this check box if the function should be created as inline. For more information,
see Regular vs. Inline UDFs below.

3. Click OK. The function becomes immediately visible in the Libraries window under the library name
specified above. The mapping window is now redrawn to allow you to create a new function (this is a
standalone mapping referred to as the function's mapping). The function's mapping includes an output
component by default.

25

© 2018-2024 Altova GmbH

User-Defined Functions 467Functions

Altova MapForce 2024 Professional Edition

4. Add all the required components to the function's mapping. You can do this in the same way as for a
standard mapping.

To use the UDF in a mapping, drag the UDF from the Libraries window onto the main mapping area. See also
Call and import UDFs below.

UDF from existing components
To create a UDF from existing components, take the steps below:

1. Select the relevant components on the mapping by making a rectangular selection with the mouse.
You can also select multiple components by clicking each one while holding the Ctrl key pressed.

2. Select the menu command Function | Create User-Defined Function from Selection. Alternatively,

click the toolbar button.
3. Follow Steps 2-4 from UDF From Scratch.

Regular vs. Inline UDFs
There are two types of UDFs: regular and inline. You can specify the type of your UDF when you create it.
Inline and regular functions behave differently in terms of code generation, recursiveness, and the ability to have
multiple output parameters. The table below summarizes the main differences between regular and inline UDFs.

Inline functions (dashed border) Regular functions (solid border)

With inline functions, the UDF code is inserted at all
locations where the function is called. If the UDF is
called several times, the generated program code
would be significantly longer.

The code for the UDF is generated once, and inputs
to it are passed as parameter values. If the UDF is
called several times, the UDF is evaluated each time
with the corresponding parameter values.

Inline functions can have multiple outputs and thus
return multiple values.

Regular functions can have only one output. To return
multiple values, you can declare the output to be of
complex type (e.g., an XML structure), which would
allow you to pass multiple values to the caller.

Inline functions cannot be called recursively. Regular functions can be called recursively.

Inline functions do not support setting a priority
context on a parameter.

Regular functions support setting a priority context
on a parameter.

Note: Switching a UDF from inline to regular, and vice versa, may affect the mapping context , and this
may cause the mapping to produce a different result.

Call and import UDFs
After you have created a UDF, you can call it from the same mapping where you created it or from any other
mapping.

Call UDF from the same mapping
To call a UDF from the same mapping, take steps below:

1. Find the relevant function in the Libraries window under the library that you specified when you
created the function. To do that, start typing the name in the Libraries window.

778

768

468 Functions User-Defined Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

2. Drag the function from the Libraries window into the mapping. You can now connect all the required
parameters to the function.

Import UDF from a different mapping
To import a UDF from another mapping, follow the instructions below:

1. Click the Add/Remove Libraries button at the bottom of the Libraries window . The Manage
Libraries window opens (see screenshot below).

2. To import functions as a local library (in the scope of the current document only), click Add under the
current mapping name. To import functions as a global library (at program level), click Add next to
Global Library Imports. When you import a library locally, you can set the path of the library file to be
relative to the mapping file. With globally imported libraries, the path of the imported library is always
absolute.

3. Browse for the .mfd file that contains the UDF and click Open. A message box will inform you that a

new library has been added and can be accessed in the Libraries window.

You can now use any of the imported functions in the current mapping by dragging them from the Libraries
window into the mapping. For more information about viewing and organizing function libraries, see Manage
Function Libraries .

Mapping with credentials (Enterprise Edition)
If the imported .mfd file contains credentials, these are shown as imported (with a yellow background) in the

Credentials Manager. By default, imported credentials are not saved with the mapping, but you can optionally
create a local copy and save them in the mapping.

Edit UDFs
To edit a UDF, take the steps below:

1. Open the mapping that contains a UDF.
2. Double-click the title bar of the UDF in the mapping to see the function's contents where you can add,

edit, or remove components as required.
3. To change the function's properties (e.g., the name or description), right-click an empty area in the

mapping and select Function Settings from the context menu. Alternatively, click the toolbar
button.

You can also edit a function by double-clicking its name in the Libraries window. However, only functions in
the currently active document can be opened this way. Double-clicking a UDF that was created in another
mapping opens that mapping in a new window. If you edit or delete a UDF that was imported into multiple
mappings, all these mappings will be affected by the change.

To go back to the main mapping, click the button in the top-left corner of the mapping window.

25

445

© 2018-2024 Altova GmbH

User-Defined Functions 469Functions

Altova MapForce 2024 Professional Edition

MapForce allows you to navigate through different mappings and UDFs by using the and toolbar buttons.
The corresponding keyboard shortcuts for these buttons are Alt+Left and Alt+Right, respectively.

Copy-paste UDFs
To copy a UDF and paste it into another mapping, follow the steps below:

1. Open the Manage Libraries window .
2. Right-click inside an empty area in the Libraries window and select the option Show All Open

Documents.
3. Open both the source and destination mappings. Make sure that both mappings are saved to disk.

This ensures correct resolution of paths. See also Copy-Paste and Relative Paths .
4. Right-click the relevant UDF from the source mapping in the Manage Libraries window and select

Copy from the context menu (see screenshot below) or press Ctrl+C. Leave the Manage Libraries
window open.

5. Switch to the destination mapping (and the Manage Libraries window will change accordingly), right-
click User-Defined Functions, and select Paste from the context menu.

Delete UDFs
To delete a UDF, take the steps below:

1. Double-click the title bar of the UDF in the mapping.

2. Click the button in the top-right corner of the Mapping window.
3. If the function is used in the currently open mapping, MapForce will ask whether you want to replace all

instances with internal components. Click Yes if you want to delete the function and replace all
instances where it is called with the function's components. This lets you keep the main mapping valid
even if the function is deleted. However, if the deleted function is used in any other external mappings,
those will not be valid. Click No if you want to delete the function and all its internal components
permanently. In this case, all the mappings where the function is used will not be valid.

445

46

470 Functions User-Defined Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.4.2 UDF Parameters

When you create a UDF, you must specify what input parameters it should take (if any) and what output it
should return. While input parameters are sometimes not necessary, an output parameter is mandatory in all
cases. Function parameters can be of simple type (e.g., string or integer) or a complex structure . For
example, the FindArticle UDF illustrated below has two input and one output parameters:

· POArtNr is an input parameter of type string.
· Amount is an input parameter of type integer.
· CompletePO is an output parameter that has a complex XML structure.

Parameter order
When a UDF has multiple input or output parameters, you can change the order in which parameters will
appear to the callers of this function. The order of parameters in the function's mapping (starting from the top)
dictates the order in which they appear to the callers of this function.

Important

· Input and output parameters are sorted by their position from top to bottom. Therefore, if you move the
input3 parameter to the top in the function's mapping, it will become the first parameter of this
function.

· If two parameters have the same vertical position, the leftmost takes precedence.
· In the unusual case that two parameters have exactly the same position, the internal component ID is

automatically used.

Complex-type structures
The structures on which a parameter in a UDF can be based are summarized in the list below.

MapForce Basic Edition
· XML Schema Structure

MapForce Professional Edition
· XML Schema Structure
· Database Structure

470

© 2018-2024 Altova GmbH

User-Defined Functions 471Functions

Altova MapForce 2024 Professional Edition

MapForce Enterprise Edition
· XML Schema Structure
· Database Structure
· EDI Structure
· FlexText Structure
· JSON Schema Structure

UDFs based on database structures (Professional and Enterprise editions)
MapForce allows you to create DB-based UDF parameters with a tree of related tables. The tree of related
tables represents an in-memory structure that has no connection to the database at runtime. This also means
that there is no automatic handling of foreign keys and no table actions in parameters or variables.

Add Parameters
To add an input or output parameter, take the following steps:

1. Create a UDF or open an existing one .
2. Run the menu command Function | Insert Input or Function | Insert Output (see screenshot

below). Alternatively, click (Insert Input) or (Insert Output) in the toolbar.

3. Choose whether input or output parameters should be of simple or complex type (see dialog box
above). See the list of available complex structures above. For example, to create a parameter that is
a complex XML type, click Choose next to Structure and browse for the XML schema that describes
the required structure.

If the function's mapping already includes XML schemas, they become available for selection as structures.
Otherwise, you can select a new schema that will provide the structure of the parameter. The same is true for
databases and other complex structures if they are supported by your MapForce edition. With XML structures,
it is possible to select the root element for your structure if the XML schema allows it. To specify the root
element, click Choose next to Root and select the root item from the dialog box that opens.

465 467

472 Functions User-Defined Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

If selected, the check box Save structure file path relative to MFD file will change the absolute path of the
structure into a path relative to the current mapping, when you save the mapping. For more information, see
Relative and Absolute Paths . The check boxes Input is required and Input is a Sequence are explained
below.

Input is required
To make a parameter mandatory in a UDF, select the Input is required check box (see dialog box above). If
you clear the Input is required check box, the parameter will become optional and have a dashed border in the
mapping.

You can also specify a default parameter value by connecting it to the default input of a parameter (see
example below). The default value will apply only if there is no other value. If the optional parameter receives a
value when the function is called, that value takes precedence over the default.

Input is a sequence
You can optionally define whether a function's parameter should be treated as a single value (default option) or
as a sequence. A sequence is a range of zero or more values. A sequence might be useful when your UDF
expects input data as a sequence in order to calculate values in that sequence, for example, by calling
functions such as avg, min, max. To treat the input of the parameter as a sequence, select the Input is

sequence check box. Note that this check box is enabled only if the UDF is regular .

The usage of a sequence is illustrated in the following mapping: MapForceExamples\InputIsSequence.mfd. In

the extract of this mapping (see screenshot below), the data filter is connected to the UDF called Calculate.
The filter's output is a sequence of items. Therefore, the input parameter of the function is set to be a
sequence.

45

467

© 2018-2024 Altova GmbH

User-Defined Functions 473Functions

Altova MapForce 2024 Professional Edition

Illustrated below is the implementation of the Calculate function that aggregates all the sequence values: It
runs the avg, min, and max functions on the input sequence. To see the internal structure of the Calculate

function, double-click the header of the Calculate component in the mapping above.

As a rule of thumb, the input data (sequence or non-sequence) determines how often the function is called:

· When input data is connected to a sequence parameter, the UDF is called only once, and the
complete sequence is passed into the UDF.

· When input data is connected to a non-sequence parameter, the UDF is called once for each single
item in the sequence.

· If you connect an empty sequence to a non-sequence parameter, the function is not called at all. This
can happen if the source structure has optional items or when a filter condition returns no matching
items. To avoid this, use the substitute-missing function before the function input to ensure that
the sequence is never empty. Alternatively, set the parameter to a sequence and add handling for the
empty sequence inside the function.

The Output is a Sequence check box may be required for output parameters, too. When a function passes a
sequence of multiple values to its output component, and the output component is not set to sequence, the
function will return only the first item in the sequence.

6.4.3 Recursive UDFs

This topic explains how to search for data in a source XML file with the help of a recursive UDF. To test the
recursive UDF, you will need the following mapping: MapForceExamples\RecursiveDirectoryFilter.mfd. In

the mapping below, the FilterDirectory UDF receives data from the source file Directory.xml and the
simple input component SearchFor that supplies the .xml extension. After the data has been processed by
the UDF, it is mapped to the target file.

The main mapping (see screenshot below) describes the general mapping layout. The way the UDF processes
the data is defined separately, in the function's mapping (See UDF Implementation below).

594

474 Functions User-Defined Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Goal
Our goal is to list files with a .xml extension in the output while preserving the entire directory structure. The

subsections below explain the mapping process in detail.

Source file
Below is an extract from the source XML file (Directory.xml) that contains information about files and

directories. Note that the files in this listing have different extensions (e.g., .xml, .dtd, .sps). According to the

schema (Directory.xsd), the directory element can have file children and directory children. All

directory elements are recursive.

<directory name="ExampleSite">
<file name="blocks.sps" size="7473"/>
<file name="blocks.xml" size="670"/>
<file name="block_file.xml" size="992"/>
<file name="block_schema.xml" size="1170"/>
<file name="contact.xml" size="453"/>
<file name="dictionaries.xml" size="206"/>
<file name="examplesite.dtd" size="230"/>
<file name="examplesite.spp" size="1270"/>
<file name="examplesite.sps" size="20968"/>
...
<directory name="output">

<file name="examplesite1.css" size="3174"/>
<directory name="images">

<file name="blank.gif" size="88"/>
<file name="block_file.gif" size="13179"/>
<file name="block_schema.gif" size="9211"/>
<file name="nav_file.gif" size="60868"/>
<file name="nav_schema.gif" size="6002"/>

</directory>
</directory>

</directory>

UDF implementation
To see the internal implementation of the UDF, double-click its header in the main mapping. The UDF is
recursive, that is, it includes a call to itself. Because it is connected to the recursive element directory, this
function will be called as many times as there are nested directory elements in the source XML instance. To
support recursive calls, the function must be regular .467

© 2018-2024 Altova GmbH

User-Defined Functions 475Functions

Altova MapForce 2024 Professional Edition

The implementation of the UDF consists of two parts: (i) defining the files and (ii) defining the directory to be
searched.

Defining files
The UDF processes the files as follows: The contains function checks whether the first string (the file name)

contains the substring .xml (supplied by the simple input component SearchFor). If the function returns true,
the file name with a .xml extension is written to the output.

Processing child directories
Child directories of the current directory are sent as input to the current UDF. The UDF thus iterates through all
directory elements and check whether files with the .xml extension exist.

Output
When you click the Output pane, MapForce will display only files with the .xml extension (see extract below).

<directory name="ExampleSite">
<file name="blocks.xml" size="670"/>
<file name="block_file.xml" size="992"/>
<file name="block_schema.xml" size="1170"/>
<file name="contact.xml" size="453"/>
...
<directory name="output">

<directory name="images"/>
</directory>

</directory>

476 Functions User-Defined Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.4.4 Look-up Implementation

This topic explains how to look up data about employees and present this information in a suitable way. To test
the look-up implementation, you will need the following mapping:
MapForceExamples\PersonListByBranchOffice.mfd.

Goals
Our goals are as follows:

· To look up data about each employee (their phone extension, email address, and title) in a separate
XML file.

· To present this data as a comma-separated list and map this list to the Details element of the target
XML file.

· To extract information about employees only from one branch office called Nanonull, Inc.

To achieve these goals, we have designed our mapping in the following way:

· To filter only employees from Nanonull, Inc., the mapping uses the Office filter.
· To look up information about employees in a different XML file, the mapping calls the LookupPerson

UDF. The implementation of this UDF is described in the subsection below.
· To process employee data, the LookupPerson function internally calls other functions that retrieve and

concatenate information about each employee. All these operations are in the function's mapping and
not visible in the main mapping. The LookupPerson function then maps the employee data to the
Details element in PersonList.

LookupPerson implementation
The look-up functionality is provided by the LookupPerson function, whose definition is illustrated below. To see
the internal implementation of the UDF, double-click its header in the main mapping.

© 2018-2024 Altova GmbH

User-Defined Functions 477Functions

Altova MapForce 2024 Professional Edition

The UDF is defined as follows:

· The data is retrieved from the XML file Altova_Hierarchical.xml: (i) the name of the office and first

and last names of employees, which are used to select employees only from Nanonull, Inc., and (ii)
the email, title, and phone extension that are concatenated into one string. The definitions of the
EqualAnd and Person2Detail functions are described below.

· The UDF also has three input parameters that provide the look-up values Office_Name, First_Name,
and Last_Name. The value of the Office_Name parameter is retrieved from the OfficeName input from
the main mapping, and the values of First_Name and Last_Name are supplied by the BranchOffices
component from the main mapping.

· The value of the EqaulAnd function (true or false) is passed to the Details filter each time a new
employee's details (title, email, phone) are processed. When the Details filter gets the value true,
the look-up operation is successful and the employee's details are retrieved and returned to the main
mapping. Otherwise, the next item in the context is examined, and this procedure continues until the
loop finishes.

EqualAnd implementation
The EqualAnd function (see below) is a separate UDF defined inside the LookupPerson UDF. To see the
internal structure of the EqualAnd UDF, double-click the function's header.

478 Functions User-Defined Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The EqualAnd UDF first checks whether a equals b; if the result is true, it is passed as the first parameter of
the logical-and function. If both values are true in the logical-and function, the result is also true and is

passed on to the next EqualAnd function. The result of the third EqaulAnd function (see LookupPerson UDF
above) is passed on to the Details filter.

Person2Detail implementation
The Person2Details UDF is another function inside the LookupPerson UDF. The Person2Details UDF (see
below) concatenates three values (retrieved from Altova_Hierarchical.xml) and two text constants.

Output
When you click the Output pane, MapForce will display first and last names, and details of employees only
from Nanonull, Inc (see extract below).

<PersonList>
<Person>

<First>Vernon</First>
<Last>Callaby</Last>
<Details>Office Manager, EMail:v.callaby@nanonull.com, Phone: 582</Details>

</Person>
<Person>

<First>Frank</First>
<Last>Further</Last>
<Details>Accounts Receivable, EMail:f.further@nanonull.com, Phone: 471</Details>

</Person>
...

</PersonList>

© 2018-2024 Altova GmbH

Custom Functions 479Functions

Altova MapForce 2024 Professional Edition

6.5 Custom Functions

This section explains how to import custom XSLT , XQuery , Java and .NET functions. The section
also shows how to reference C#, C++ and Java libraries manually .

6.5.1 Import Custom XSLT Functions

You can extend the XSLT 1.0, XSLT 2.0, and XSLT 3.0 function libraries available in MapForce with your own
custom functions, provided that your custom functions return simple types.

Only custom functions that return simple data types (for example, strings) are supported.

To import functions from an XSLT file:

1. Click the Add/Remove Libraries button at the bottom of the Libraries window . The Manage
Libraries window opens (see screenshot below).

2. To import functions as a local library (in the scope of the current document only), click Add under the
current mapping name. To import functions as a global library (at program level), click Add next to
Global Library Imports. When you import a library locally, you can set the path of the library file to be
relative to the mapping file. With globally imported libraries, the path of the imported library is always
absolute.

3. Browse for the .xsl file that contains the functions, and click Open. A message box appears informing
you that a new library has been added.

Imported XSLT files appear as libraries in the Libraries window, and display all named templates as functions
below the library name. If you do not see the imported library, ensure you have selected XSLT as a
transformation language . See also Managing Function Libraries .

Note the following:

· To be eligible for import into MapForce, functions must be declared as named templates conforming to
the XSLT specification in the XSLT file. You can also import functions that occur in an XSLT 2.0
document in the form <xsl:function name="MyFunction">. If the imported XSLT file imports or

includes other XSLT files, then these XSLT files and functions will be imported as well.
· The mappable input connectors of imported custom functions depends on the number of parameters

used in the template call; optional parameters are also supported.
· Namespaces are supported.

479 486 490

497

25

21 445

480 Functions Custom Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· If you make updates to XSLT files that you have already imported into MapForce, changes are detected
automatically and MapForce prompts you to reload the files.

· When writing named templates, make sure that the XPath statements used in the template are bound
to the correct namespace(s). To see the namespace bindings of the mapping, preview the generated
XSLT code .

Data types in XPath 2.0
If your XML document references an XML Schema and is valid according to it, you must explicitly construct or
cast datatypes that are not implicitly converted to the required datatype by an operation.

In the XPath 2.0 Data Model used by the Altova XSLT 2.0 Engine, all atomized node values from the XML
document are assigned the xs:untypedAtomic datatype. The xs:untypedAtomic type works well with

implicit type conversions.

For example,

· the expression xs:untypedAtomic("1") + 1 results in a value of 2 because the xdt:untypedAtomic
value is implicitly promoted to xs:double by the addition operator.

· Arithmetic operators implicitly promote operands to xs:double.
· Value comparison operators promote operands to xs:string before comparing.

See also:
Example: Adding Custom XSLT Functions
Example: Summing Node Values
XSLT 1.0 engine implementation
XSLT 2.0 engine implementation

6.5.1.1 Example: Adding Custom XSLT Functions

This example illustrates how to import custom XSLT 1.0 functions into MapForce. The files needed for this
example are available in the following folder: C:

\Users\<username>\Documents\Altova\MapForce2024\MapForceExamples.

· Name-splitter.xslt. This XSLT file defines a named template called tokenize with a single
parameter string. The template works through an input string and separates capitalized characters
with a space for each occurrence.

· Name-splitter.xml (the source XML instance file to be processed)
· Customers.xsd (the source XML schema)
· CompletePO.xsd (the target XML schema)

To add a custom XSLT function:

1. Click the Add/Remove Libraries button at the bottom of the Libraries window . The Manage
Libraries window opens (see screenshot below).

68

480

483

1308

1308

25

© 2018-2024 Altova GmbH

Custom Functions 481Functions

Altova MapForce 2024 Professional Edition

2. To import functions as a local library (in the scope of the current document only), click Add under the
current mapping name. To import functions as a global library (at program level), click Add next to
Global Library Imports. When you import a library locally, you can set the path of the library file to be
relative to the mapping file. With globally imported libraries, the path of the imported library is always
absolute.

3. Browse for the .xsl or .xslt file that contains the named template you want to act as a function, in
this case Name-splitter.xslt, and click Open. A message box appears informing you that a new
library has been added, and the XSLT file name appears in the Libraries window, along with the
functions defined as named templates (in this example, Name-splitter with the tokenize function).

To use the XSLT function in your mapping:

1. Drag the tokenize function into the Mapping window and map the items as show below.

482 Functions Custom Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

2. Click the XSLT pane to see the generated XSLT code.

Note: As soon as a named template is used in a mapping, the XSLT file containing the named template is
included in the generated XSLT code (xsl:include href...), and is called using the command
xsl:call-template.

3. Click the Output pane to see the result of the mapping.

To remove custom XSLT libraries from MapForce:

1. Click Add/Remove Libraries at the base of the Libraries window. The Manage Libraries window
opens.

2. Click Delete Library next to the library that is to be deleted.

© 2018-2024 Altova GmbH

Custom Functions 483Functions

Altova MapForce 2024 Professional Edition

6.5.1.2 Example: Summing Node Values

This example shows you how to process multiple nodes of an XML document and have the result mapped as a
single value to a target XML document. Specifically, the goal of the mapping is to calculate the price of all
products in a source XML file and write it as a single value to an output XML file. The files used in this example
are available in the <Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\ folder:

· Summing-nodes.mfd — the mapping file
· input.xml — the source XML file
· input.xsd — the source XML schema
· output.xsd — the target XML schema
· Summing-nodes.xslt — A custom XSLT stylesheet containing a named template to sum the

individual nodes.

There are two different ways to achieve the goal of the mapping:

· By using the sum function. This MapForce built-in function is available in the Libraries window.
· By importing a custom XSLT stylesheet into MapForce.

Solution 1: Using the "sum" aggregate function
To use the sum function in the mapping, drag it from the Libraries window into the mapping. Note that the

functions available in the Libraries window depend on the XSLT language version you selected (XSLT 1 or XSLT
2). Next, create the mapping connections as shown below.

For more information about aggregate functions of the core library, see also core | aggregate functions .

Solution 2: Using a custom XSLT Stylesheet
As mentioned above, the aim of the example is to sum the Price fields of products in the source XML file, in
this case products A and B.

<?xml version="1.0" encoding="UTF-8"?>
<Input xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="input.xsd">

 <Products>

 <Product>

 <Name>ProductA</Name>

 <Amount>10</Amount>

525

518

484 Functions Custom Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 <Price>5</Price>

 </Product>

 <Product>

 <Name>ProductB</Name>

 <Amount>5</Amount>

 <Price>20</Price>

 </Product>

 </Products>

</Input>

The code listing below shows a custom XSLT stylesheet which uses the named template "Total" and a single
parameter string. The template works through the XML input file and sums all the values obtained by the
XPath expression /Product/Price.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>

 <xsl:template match="*">

 <xsl:for-each select=".">

 <xsl:call-template name="Total">

 <xsl:with-param name="string" select="."/>

 </xsl:call-template>

 </xsl:for-each>

 </xsl:template>

 <xsl:template name="Total">

 <xsl:param name="string"/>

 <xsl:value-of select="sum($string/Product/Price)"/>

 </xsl:template>

</xsl:stylesheet>

Note: To sum the nodes in XSLT 2.0, change the stylesheet declaration to version="2.0".

Before importing the XSLT stylesheet into MapForce, select XSLT 1.0 as a transformation language . You
are now ready to import the custom function, as follows:

1. Click the Add/Remove Libraries button at the bottom of the Libraries window . The Manage
Libraries window opens (see screenshot below).

2. To import functions as a local library (in the scope of the current document only), click Add under the
current mapping name. To import functions as a global library (at program level), click Add next to
Global Library Imports. When you import a library locally, you can set the path of the library file to be
relative to the mapping file. With globally imported libraries, the path of the imported library is always

21

25

© 2018-2024 Altova GmbH

Custom Functions 485Functions

Altova MapForce 2024 Professional Edition

absolute.

3. Browse for <Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\Summing-
nodes.xslt, and click Open. A message box appears informing you that a new library has been
added, and the new library appears in the Libraries window.

4. Drag the Total function from the Libraries into the mapping, and create the mapping connections as

shown below.

To preview the mapping result, click the Output pane. The sum of the two Price fields is now displayed in the
Total field.

<?xml version="1.0" encoding="UTF-8"?>
<Output xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="output.xsd">

 <Total>25</Total>

 <Product>

 <Name>ProductA</Name>

 <Amount>10</Amount>

 <Price>5</Price>

 </Product>

 <Product>

 <Name>ProductB</Name>

 <Amount>5</Amount>

 <Price>20</Price>

486 Functions Custom Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 </Product>

</Output>

6.5.2 Import Custom XQuery 1.0 Functions

When XQuery is selected as mapping transformation language, MapForce displays the built-in function libraries
available for XQuery in the Libraries window. If necessary, you can extend this list with custom XQuery
functions, by importing custom XQuery 1.0 library modules into MapForce.

To be eligible for import into MapForce, an XQuery file must satisfy the following requirements:

· It must be a valid library module according to XQuery specification. In other words, it must start with a
module declaration such as module namespace <prefix>="<namespace name"

· All functions declared in the imported library module must return atomic data types (for example,
xs:string, xs:boolean, xs:integer, etc). Function parameters must also have atomic types.

To import an XQuery library module:

1. Click the Add/Remove Libraries button at the bottom of the Libraries window . The Manage
Libraries window opens (see screenshot below).

2. To import functions as a local library (in the scope of the current document only), click Add under the
current mapping name. To import functions as a global library (at program level), click Add next to
Global Library Imports. When you import a library locally, you can set the path of the library file to be
relative to the mapping file. With globally imported libraries, the path of the imported library is always
absolute.

3. Browse for the .xq or .xquery library file, and click Open.

The imported library modules appear in the Libraries window, and then you can drag specific functions into the
mapping area and use them like any other MapForce function component, see also Add a Function to the
Mapping .

If you do not see the imported XQuery library module, make sure that XQuery is selected as a transformation
language .

See also:
XQuery engine implementation

25

442

21

1310

© 2018-2024 Altova GmbH

Custom Functions 487Functions

Altova MapForce 2024 Professional Edition

6.5.2.1 Example: Import Custom XQuery Function

This example shows you how to import a demo XQuery library module into MapForce and call its functions from
a mapping. The demo module in this example consists of only one function which calculates tax on decimal
amounts as 20% of the amount. In a production scenario, an XQuery module may contain multiple functions.

All functions declared in the XQuery module must return atomic types and their parameters must also be
of atomic data types. Otherwise, the module is not eligible for import into MapForce.

You can find the demo XQuery module file at the following path relative to your personal "Documents" folder on
the computer where MapForce is installed:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\module.xq.

xquery version "1.0";

module namespace demo="http://www.altova.com/mapforce/demo";

declare function demo:calculatetax($val as xs:decimal) as xs:decimal {

 $val*0.2

};

module.xq

After you import the XQuery module file into MapForce, you will be able to call the demo:calculatetax

function from a mapping. Note that calculating the tax amount with the help of an XQuery function is just for
demo purposes—you can achieve the same result by using MapForce built-in functions.

A demo mapping which calls the demo:calculatetax function above is available at the following path:

<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\CalculateTax_XQuery.mfd. When
you open this mapping initially, MapForce displays a warning that it contains one or more components that are
not available in XQuery. This warning is normal and it occurs because the mapping references a function from a
custom XQuery library module that was not imported yet. To remove the warning and run the mapping, we will
import the missing XQuery module into MapForce as shown below.

To import the XQuery module into MapForce:

1. Click the Add/Remove Libraries button at the bottom of the Libraries window . The Manage
Libraries window opens (see screenshot below).

2. To import functions as a local library (in the scope of the current document only), click Add under the
current mapping name. To import functions as a global library (at program level), click Add next to

25

488 Functions Custom Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Global Library Imports. When you import a library locally, you can set the path of the library file to be
relative to the mapping file. With globally imported libraries, the path of the imported library is always
absolute.

3. Browse for <Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\module.xq and
click Open. A message box appears informing you that a new library has been added.

The imported library and the demo:calculatetax function are now visible in the Libraries window.

Also, the mapping can now be validated and run without warnings. The demo:calculatetax function illustrated

in the image below originates from the imported XQuery module, and it can be added to the mapping just like
any other built-in function, see Add a Function to the Mapping .

442

© 2018-2024 Altova GmbH

Custom Functions 489Functions

Altova MapForce 2024 Professional Edition

CalculateTax_XQuery.mfd

The mapping explained
The CalculateTax_XQuery.mfd mapping illustrated above takes as input an XML file that stores articles.
Each article has a single price expressed as a decimal value, for example:

<Articles>

 <Article>

 <Number>1</Number>

 <Name>T-Shirt</Name>

 <SinglePrice>25</SinglePrice>

 </Article>

 <Article>

 <Number>2</Number>

 <Name>Socks</Name>

 <SinglePrice>2.30</SinglePrice>

 </Article>

 <Article>

 <Number>3</Number>

 <Name>Pants</Name>

 <SinglePrice>34</SinglePrice>

 </Article>

 <Article>

 <Number>4</Number>

 <Name>Jacket</Name>

 <SinglePrice>57.50</SinglePrice>

 </Article>

</Articles>

Articles.xml

The mapping produces an XML file which abides by the same schema as the source XML file. Therefore, both
the source and target components have the same structure on the mapping. As the mapping connections
suggest, nearly all elements are mapped in a straightforward way from target to source—for example, for each
Article in the source there will be an Article in the target. The values of all items are copied verbatim from the
source XML, except for SinglePrice. The value of SinglePrice is calculated with the help of two functions:

490 Functions Custom Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· The demo:calculatetax XQuery function calculates the tax amount by taking the original

SinglePrice as input.
· The MapForce built-in add function adds the tax amount to the original SinglePrice amount and

returns the final amount.

Importantly, the data type of the SinglePrice item is xs:decimal—which corresponds to the input parameter
type and the return type of the XQuery function.

The output produced by the mapping when you click the Output pane is illustrated below. Notice the increase
of 20% applied to each price compared to the source XML.

6.5.3 Import Custom Java and .NET Libraries

This section explains how to import compiled Java class files and .NET DLL assemblies (including .NET 4.0
assemblies) into MapForce. If the imported libraries contain functions that use basic data types as parameters
and return simple types, such functions appear in the Libraries window and can be used in mappings as any
other function available in MapForce. The mapping output of imported Java and .NET functions can be
previewed in the Output pane, and the functions are available in the generated code. To find out more about
importing custom libraries, see the examples provided in Import Custom Java Class and Import Custom
.NET DLL Assembly .

Important:

· To import custom Java or .NET functions, you need compiled Java classes (.class) or .NET.dll
assembly files. The import of Java .jar files or .dll files that are not a .NET assembly is not
supported.

494

495

© 2018-2024 Altova GmbH

Custom Functions 491Functions

Altova MapForce 2024 Professional Edition

· .NET assembly files are supported when the mapping language is set to C#. The .NET assemblies
may be written in .NET languages other than C# (e.g., C++.NET or VB.NET) if they use only the basic
data types from the System Assembly as parameters and return types. For details, see .NET Function
Support .

· If you want to use custom .NET functions in the built-in output preview (in the Output pane), these
functions need to be compiled for .NET Framework 4.x or .NET Standard 2.0.

· Compiled Java class (.class) files are supported when the mapping language is set to Java. Java
Runtime Environment 7 or later must be installed on your computer. Only specific types and members
are supported (see Java function support).

· You cannot set the mapping language to C++ if the mapping uses imported Java .class or .NET DLL
assemblies.

· You cannot set the mapping language to XSLT if the mapping uses imported Java .class or .NET DLL
assemblies (a custom XSLT function that acts as an adapter would have to be written).

· The import of functions from native C++ DLLs is limited and requires a special approach. For more
information, see Reference Java, C# and C++ Libraries Manually .

· All functions called from a MapForce mapping should return the same value each time the function is
called with the same input parameters. The exact order and the number of times a function is called by
MapForce is undefined.

· In the case of Java, the imported class files and their packages do not need to be added to the
CLASSPATH variable since the Built-in execution engine and generated Java code will automatically add
imported packages to the Java engine’s classpath or to Ant, respectively. However, any dependencies
of the imported class files and packages will not be handled automatically. Therefore, if imported Java
class files or packages depend on other class files, make sure to add the parent directories of all
dependent packages to the CLASSPATH environment variable.

Java function support
Top-level classes, static member classes and non-static member classes are supported:

· new <classname>(<arg1>, <arg2>, ...)
· <object>.new <member-class>(<arg1>, <arg2>, ...)

Member functions and static functions are supported:

· <function>(<arg1>, <arg2>, ...)
· <object>.<method>(<arg1>, ...)

Supported connections between XML Schema and Java types:

 Schema type Java type

 xs:string String

 xs:byte byte

 xs:short short

492

491

497

492 Functions Custom Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 Schema type Java type

 xs:int int

 xs:long long

 xs:boolean boolean

 xs:float float

 xs:double double

 xs:decimal java.math.BigDecimal

 xs:integer java.math.BigInteger

Connections in both directions are possible. Other Java types (including array types) are not supported.
Methods using such parameters or return values, will be ignored. Object types are supported by calling their
constructor or as a return value of a method. They can be mapped to other Java methods. Manipulating the
object using MapForce means is not possible.

.NET function support
Top-level classes and member classes are supported:

· new <classname>(<arg1>, <arg2>, ...)

Member functions and static functions are supported:

· <function>(<arg1>, <arg2>, ...)

· <object>.<method>(<arg1>, ...)

Supported connections between XML Schema and .NET/C# types:

 Schema type .NET type C# type

 xs:string System.String string

 xs:byte System.SByte sbyte

 xs:short System.Int16 short

 xs:int System.Int32 int

 xs:long System.Int64 long

 xs:unsignedByte System.Byte byte

 xs:unsignedShort System.UInt16 ushort

 xs:unsignedInt System.UInt32 uint

 xs:unsignedLong System.UInt64 ulong

 xs:boolean System.Boolean bool

© 2018-2024 Altova GmbH

Custom Functions 493Functions

Altova MapForce 2024 Professional Edition

 Schema type .NET type C# type

 xs:float System.Single float

 xs:double System.Double double

 xs:decimal System.Decimal decimal

Connections in both directions are possible. Other .NET/C# types (including array types) are not supported.
Methods using such parameters or return values will be ignored. Object types are supported by calling their
constructor or as a return value of a method. They can be mapped to other .NET methods. Manipulating the
object using MapForce means is not possible.

Data type issues and workarounds
When a function in your custom library expects integer types, connecting constants of type Number to the
function's arguments may cause a type mismatch error similar to this one: No match for
MyCustomClassLibrary, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null.MyCustomClassLibrary.Converter.AddValues(MyCustomClassLibrary.Converter

, xs:decimal, xs:decimal). Check argument types. This issue is specific to constants of type Number
only. A sample mapping that could generate this error is shown below. In this mapping, two constants of type
Number are connected to the function's arguments of type Integer.

The possible workarounds are described below:

1. Change the constant type from Number to All other. You can do this after double-clicking the title bar
of the constant component.

2. Instead of a constant, use a source component (for example, an XML file) that provides values of the
data type expected by the function.

3. In your external code, create a wrapper function that accepts a decimal value and returns an integer
value. The wrapper solution may be imported as a separate library. Therefore, you do not need to
change the original source code of the target function to use this approach.

494 Functions Custom Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.5.3.1 Example: Import Custom Java Class

This example shows how to import a custom Java .class file into MapForce.

Note: Java SE 8 Runtime Environment or later is required to complete this example.

Java .class import
To add a Java .class file as a MapForce library, take the following steps:

1. Click the Add/Remove Libraries button at the bottom of the Libraries window . The Manage
Libraries window opens (see screenshot below).

2. To import functions as a local library (in the scope of the current document only), click Add under the
current mapping name. To import functions as a global library (at program level), click Add next to
Global Library Imports. When you import a library locally, you can set the path of the library file to be
relative to the mapping file. With globally imported libraries, the path of the imported library is always
absolute.

3. Search for the following file:
<Documents>\Altova\MapForce2024\MapForceExamples\Java\Format\Format.class. A message

appears informing you that a new library has been added. The imported library is now visible in the
Libraries window (see screenshot below).

25

© 2018-2024 Altova GmbH

Custom Functions 495Functions

Altova MapForce 2024 Professional Edition

If you do not see the newly imported library in the Libraries window, make sure that the transformation
language is set to Java. To add the function to the mapping, drag it from the Libraries window into the
mapping area. For details, see Add a Function to the Mapping .

Mapping output
To preview the mapping output in MapForce, take the following steps:

1. Open the following mapping:
<Documents>\Altova\MapForce2024\MapForceExamples\Java\FormatNumber.mfd. This is a

complete mapping that already imports the Java .class library mentioned above.
2. Click the Output button to see the result of the mapping (see screenshot below).

Mapping in Java
To run the mapping in Java, follow the instructions below:

1. Click Generate Code In | Java in the File menu.
2. Select a target directory where the code should be generated and click OK.
3. Import the generated libraries into your Java project and build the Java application. For more

information, see Example: Generate and Run Java Code.

6.5.3.2 Example: Import Custom .NET DLL Assembly

This example shows how to import a custom .NET DLL assembly created in C# into MapForce. The source
code of this sample is available at the following path:
<Documents>\Altova\MapForce2024\MapForceExamples\C#\Format. The .dll assembly file that will be

imported into MapForce is in the ..\bin\Debug directory. You can also open the .sln solution file in Visual

Studio and compile a new .dll file.

Note: If you want to use custom .NET functions in the built-in output preview (in the Output pane), these
functions need to be compiled for .NET Framework 4.x or .NET Standard 2.0.

.NET assembly import
To import a .NET assembly file, take the following steps:

1. Click the Add/Remove Libraries button at the bottom of the Libraries window . The Manage
Libraries window opens (see screenshot below).

21

442

25

496 Functions Custom Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

2. To import functions as a local library (in the scope of the current document only), click Add under the
current mapping name. To import functions as a global library (at program level), click Add next to
Global Library Imports. When you import a library locally, you can set the path of the library file to be
relative to the mapping file. With globally imported libraries, the path of the imported library is always
absolute.

3. Search for Format.dll in the following directory: ...\MapForceExamples\C#\Format\bin\Debug\. A

message appears informing you that a new library has been added. The imported library is now visible
in the Libraries window.

If you do not see the newly imported library in the Libraries window, make sure that the transformation
language is set to C#. To add the function to the mapping, drag it from the Libraries window into the
mapping area. For more information, see Add a Function to the Mapping .

Mapping output
To preview the mapping output, take the following steps:

1. Open the FormatNumber.mfd file available in the following folder: ...\MapForceExamples\C#. This is a

sample mapping that has an imported .dll library mentioned above.
2. Click the Output button to see the result of the mapping (see screenshot below).

21

442

© 2018-2024 Altova GmbH

Custom Functions 497Functions

Altova MapForce 2024 Professional Edition

Mapping in C#
To run the mapping from a custom C# application, follow the instructions below:

1. Click Generate Code In | C# in the File menu.
2. Select a target directory where the code should be generated and click OK.
3. Build the application with Visual Studio and run the generated console application. For more details,

see Generating C# code.

6.5.4 Reference C#, C++ and Java Libraries Manually

This section explains how to reference custom libraries in a .mff file (MapForce Function File). The .mff file
containing the reference can then be imported as a MapForce library. A .mff file is an XML file in which you
manually define the link between class definitions in your custom code and MapForce. Once you create a
custom .mff file, you can import it into MapForce, which is similar to importing a .NET DLL or Java class file.

Important:

· If you want to use custom .NET functions in the built-in output preview (in the Output pane), these
functions need to be compiled for .NET Framework 4.x or .NET Standard 2.0.

· You can import a function into MapForce only if its return type and parameters are of simple type. To
find out more about a list of data types available for each language, see Data Type Mapping .

· When you import function libraries from custom .mff files, the preview of the mapping directly in
MapForce (in the Output pane) is limited. For libraries written in C++, the preview of the mapping in
MapForce is not supported. For Java and C#, the preview is available when your library uses native
language types, but it is not available if your library imports the Altova generated classes. However,
you can generate code in the specific language targeted by your library. The custom functions will be
available in the generated code, enabling you to run the mapping from the generated code.

· The exact order in which functions are called by the generated mapping code is undefined. MapForce
may need to cache calculated results for reuse or evaluate expressions in any order. Therefore, it is
recommended to use only custom functions that have no side effects.

· It is important to distinguish between user-defined functions and custom function libraries. User-defined
functions are created graphically in a mapping; they cannot and need not be saved to a .mff file,

503

498 Functions Custom Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

because they are saved together with the .mfd file in which they are created. For more information, see
Call and Import UDFs .

· If you are upgrading from a MapForce version earlier than 2010, you may need to update the data types
used in your custom functions. For details, see Data Type Mapping .

To find out more about how to create and configure a custom .mff file, see Configure .mff File . The
examples are provided in the following topics:

· Reference C# in .mff
· Reference C++ in .mff
· Reference Java in .mff

6.5.4.1 Configure .mff File

This topic provides instructions on how to configure a MapForce Function File file (.mff). A .mff file is a
configuration file in XML format that allows importing functions from custom Java, C#, or C++ libraries into
MapForce so that they appear in the Libraries window. A .mff file is an intermediary between your custom
libraries and MapForce. The .mff file must be configured to specify i) the interfaces for the custom functions
and ii) where the implementation can be found in the generated code.

Important:

· The *.mff library files must be valid against the following schema: C:\Program

Files\MapForceLibraries\mff.xsd. The mff.xsd schema defines the custom library configuration

and is for internal use only. Altova GmbH retains the right to change this file format with new releases.
· It is only possible to define one C#, C++, or Java class per .mff file.

Sample .mff for C#
The following code listing illustrates a sample .mff file for C++:

<?xml version="1.0" encoding="UTF-8"?>
<mapping version="9" library="mylib" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="mff.xsd">
 <implementations>
 <implementation language="cpp">
 <setting name="namespace" value="mylib"/>
 <setting name="class" value="Greetings"/>
 <setting name="path" value="C:\Libraries\cpp"/>
 <setting name="include" value="Greetings.h"/>
 <setting name="source" value="Greetings.cpp"/>
 </implementation>
 </implementations>
 <group name="greetings">
 <component name="sayhello">
 <sources>
 <datapoint name="ismorning" type="xs:boolean"/>
 </sources>
 <targets>
 <datapoint name="result" type="xs:string"/>

467

503

498

506

507

509

© 2018-2024 Altova GmbH

Custom Functions 499Functions

Altova MapForce 2024 Professional Edition

 </targets>
 <implementations>
 <implementation language="cpp">
 <function name="SayHello"/>
 </implementation>
 </implementations>
 <description>
 <short>result = sayhello(ismorning)</short>
 <long>Returns "Good morning" or "Good day", depending on the input
parameter.</long>
 </description>
 </component>
 </group>
</mapping>

Imported custom library
The image below shows how a custom .mff file may look after being imported into MapForce. Notice that the
custom library mylib appears as a library entry (sorted alphabetically), containing the sayhello string
function.

Configuration steps
To configure the .mff file, follow the instructions below.

Step 1. Configure the library name
The library name can be found in the .mff file (see below). By convention, library names are written in
lowercase in MapForce; however, you can also use uppercase letters.

<mapping version="9" library="mylib" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="mff.xsd">

In the sample above, the entry that will appear in the Libraries window is called mylib.

Step 2. Configure the language implementations
The <implementations> element is a mandatory element which specifies which languages your library should
support, and it must be added as a child element of <mapping> (see example below).

500 Functions Custom Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

<!-- ... -->
<mapping version="9" library="mylib" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="mff.xsd">
 <implementations>
 <implementation language="cpp">
 <setting name="namespace" value="mylib"/>
 <setting name="class" value="Greetings"/>
 <setting name="path" value="C:\Libraries\cpp"/>
 <setting name="include" value="Greetings.h"/>
 <setting name="source" value="Greetings.cpp"/>
 </implementation>
 </implementations>
<!-- ... -->

The settings within each <implementation> element allow the generated code to call the specific functions
defined in Java, C++ or C#. A .mff file can be written so that it targets more than one programming language.
In this case, every additional language must contain an additional <implementation> element. The specific
settings for each programming language are discussed below.
Java library reference

<!-- ... -->
<implementation language="java">
 <setting name="package" value="com.hello.functions"/>
 <setting name="class" value="Greetings"/>
</implementation>
<!-- ... -->

It is important for the generated code to be able to find your Greetings.class file. Therefore, make sure to add

a reference to your class to the Java class path.
C# library reference

<!-- ... -->
 <implementation language="cs">
 <setting name="namespace" value="MyLibrary" />
 <setting name="class" value="Greetings" />
 <setting name="reference" value="C:
\Libraries\cs\MyLibrary\bin\debug\MyLibrary.dll" />
 </implementation>
<!-- ... -->

For C#, it is important that the namespace in the code should correspond to the namespace defined in the
.mff file (in the code listing above, the namespace is MyLibrary). The same is true for the class name (in the

code listing above, the class name is Greetings). The third setting, reference, provides the path of the dll

that is to be linked to the generated code.
C++ library reference

<!-- ... -->
 <implementation language="cpp">
 <setting name="namespace" value="MyLibrary"/>
 <setting name="class" value="Greetings"/>
 <setting name="path" value="C:\Libraries\cpp"/>
 <setting name="include" value="Greetings.h"/>
 <setting name="source" value="Greetings.cpp"/>

© 2018-2024 Altova GmbH

Custom Functions 501Functions

Altova MapForce 2024 Professional Edition

 </implementation>
<!-- ... -->

For C++, note the following:

· namespace is the namespace in which your Greetings class will be defined. It must be equal to the
library attribute in mapping element.

· path is the path in which the include and the source files are to be found.
· When code for a mapping is generated, the include and source files will be copied to the directory

targetdir/libraryname, which is defined when you select the menu command File | Generate

code in | C++, and included in the project file.

All the include files you supply will be included in the generated algorithm.

Step 3. Add a component
In the Libraries window, each function appears nested under a function group, for example, string functions. In
the .mff file, a function corresponds to a <component> element. Conversely, each <component> must be
nested under a <group> element, for example:

<!-- ... -->
<group name="string functions">
 <component name="sayhello">
 <!-- ... -->
 </component>
</group>
<!-- ... -->

The code shown below defines a sample function (component) called sayhello.

<!-- ... -->
<component name="sayhello">
 <sources>
 <datapoint name="ismorning" type="xs:boolean"/>
 </sources>
 <targets>
 <datapoint name="result" type="xs:string"/>
 </targets>
 <implementations>
 <!-- ... -->
 </implementations>
 <description>
 <short>result = sayhello(ismorning)</short>
 <long>Returns "Good morning" or "Good day", depending on the input
parameter.</long>
 </description>
</component>
<!-- ... -->

This is how the component above would look in MapForce:

502 Functions Custom Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

In the code listing above, the <datapoint> element can be loosely defined as the input or output parameter of
a function (also known as an input or output connector). The type argument of the <datapoint> element
specifies the data type of the parameter or the data type of the return value. Only one target datapoint is
allowed for each function. The number of source datapoints you can define is not limited.

The data type of each datapoint must be one of the XML Schema types (e.g., xs:string, xs:integer, etc.)
These data types must correspond to the data types of the function's parameters you defined in your Java, C++
or C# library. To find out more about mapping of XML Schema datatypes to language types, see Data Type
Mapping .

Functions are accompanied by short and long descriptions in the Libraries window. The short description is
always shown to the right of the function name, while the long description is displayed as a tooltip when you
place the mouse cursor over the short description (see screenshot below).

Step 4. Define language implementations
We can now connect the function in the Libraries window with the function in the custom Java, C# or C++
classes. This is achieved through the <implementation> element. One function may have multiple
<implementation> elements—one for each supported programming language. A function may be called Hello
in Java or SayHello in C++. This is why you need to specify a separate function name for each programming
language. A function for each of the three programming languages might look as follows:

<!-- ... -->
<component name="sayhello">
<!-- ... -->
 <implementations>
 <implementation language="cs">
 <function name="HelloFunction"/>
 </implementation>
 <implementation language="java">
 <function name="Hello"/>
 </implementation>
 <implementation language="cpp">
 <function name="SayHello"/>
 </implementation>
 </implementations>
<!-- ... -->

503

© 2018-2024 Altova GmbH

Custom Functions 503Functions

Altova MapForce 2024 Professional Edition

</component>
<!-- ... -->

The value you supply as a function name must match the name of the method in the Java, C# or C++ class.

6.5.4.2 Import .mff Libraries

After you have created a custom .mff file, you can import it into MapForce as follows:

1. Click the Add/Remove Libraries button at the bottom of the Libraries window . The Manage
Libraries window opens (see screenshot below).

2. To import functions as a local library (in the scope of the current document only), click Add under the
current mapping name. To import functions as a global library (at program level), click Add next to
Global Library Imports. When you import a library locally, you can set the path of the library file to be
relative to the mapping file. With globally imported libraries, the path of the imported library is always
absolute.

3. Search for the custom .mff file and click Open.

The imported library becomes visible in the Libraries window after you set the mapping language to a language
targeted by the custom library.

If you save the *.mff file in ...\Altova\MapForce2024\MapForceLibraries, which is relative to the Program

Files (or Program Files (x86) folder), the library is automatically loaded into the Libraries window when you
start MapForce. Libraries and their functions can be toggled on or off, by deleting or adding the respective
library file (*.mff).

6.5.4.3 Data Type Mapping

The table below lists the data types supported as function return types and parameter types when you create
custom .mff files that reference your Java, C#, and C++ libraries. The table lists both native and non-native
data types. If you need support for non-native data types such as Altova date, time and duration types, your
custom Java and C# libraries must include a reference to the Altova libraries. In the case of C++, the Altova
libraries must always be imported. For information about how to generate the Altova libraries, see Code
Generator .

XML Schema Type Java Type C# Type C++ Type

anyAtomicType String string string_type

498

25

894

504 Functions Custom Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

XML Schema Type Java Type C# Type C++ Type

anySimpleType String string string_type

anyURI String string string_type

base64Binary byte[] byte[] altova::mapforce::blo
b

boolean boolean bool bool

byte int int int

date com.altova.types.Date
Time

Altova.Types.DateTime altova::DateTime

dateTime com.altova.types.Date
Time

Altova.Types.DateTime altova::DateTime

dayTimeDuration com.altova.types.Dura
tion

Altova.Types.Duration altova::Duration

decimal java.math.BigDecimal decimal double

double double double double

duration com.altova.types.Dura
tion

Altova.Types.Duration altova::Duration

ENTITIES String string string_type

ENTITY String string string_type

float double double double

gDay com.altova.types.Date
Time

Altova.Types.DateTime altova::DateTime

gMonth com.altova.types.Date
Time

Altova.Types.DateTime altova::DateTime

gMonthDay com.altova.types.Date
Time

Altova.Types.DateTime altova::DateTime

gYear com.altova.types.Date
Time

Altova.Types.DateTime altova::DateTime

gYearMonth com.altova.types.Date
Time

Altova.Types.DateTime altova::DateTime

hexBinary byte[] byte[] altova::mapforce::blo
b

ID String string string_type

IDREF String string string_type

985 970

955

985 970

955

989 975

958

989 975

958

985 970

955

985 970

955

985 970

955

985 970

955

985 970

955

© 2018-2024 Altova GmbH

Custom Functions 505Functions

Altova MapForce 2024 Professional Edition

XML Schema Type Java Type C# Type C++ Type

IDREFS String string string_type

int int int int

integer java.math.BigInteger decimal __int64

language String string string_type

long long long __int64

Name String string string_type

NCName String string string_type

negativeInteger java.math.BigInteger decimal __int64

NMTOKEN String string string_type

NMTOKENS String string string_type

nonNegativeInteger java.math.BigInteger decimal unsigned __int64

nonPositiveInteger java.math.BigInteger decimal __int64

normalizedString String string string_type

NOTATION String string string_type

positiveInteger java.math.BigInteger decimal unsigned __int64

QName javax.xml.namespace.Q
Name

Altova.Types.QName altova::QName

short int int int

string String string string_type

time com.altova.types.Date
Time

Altova.Types.DateTime altova::DateTime

token String string string_type

unsignedByte long ulong unsigned __int64

unsignedInt long ulong unsigned __int64

unsignedLong java.math.BigInteger ulong unsigned __int64

unsignedShort long ulong unsigned __int64

untypedAtomic String string string_type

yearMonthDuration com.altova.types.Dura
tion

Altova.Types.Duration altova::Duration

985 970

955

989 975

958

506 Functions Custom Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.5.4.4 Reference C# Library in .mff

This example shows how to create a sample C# library and reference it in a MapForce Function File (.mff).
The .mff file can then be imported as a MapForce library. Referencing a C# library in a .mff file is one of the
ways to import C# libraries into MapForce. A simpler alternative is to import .NET assemblies directly. For
more information, see Example: Import Custom .NET DLL Assembly .

Configuration steps
To reference a C# library in a .mff file, follow the instruction below.

Note: If you want to use custom .NET functions in the built-in output preview (in the Output pane), these
functions need to be compiled for .NET Framework 4.x or .NET Standard 2.0.

Step 1. Create a new class library in VS
Create a new class library project in Visual Studio. Notice that the function has been defined as public

static.

namespace MyLibrary
{
 public class Greetings
 {
 public static string SayHello(bool isMorning)
 {
 if (isMorning)
 return "Good morning!";
 return "Good Day!";
 }
 }
}

Step 2. Add a reference to Altova.dll
If you need special XML Schema types (such as date and duration), add a reference from your Visual Studio
project to the Altova.dll library. To obtain this library, generate C# code from a mapping without custom
functions. The Altova.dll file will be located in the ..\Altova\bin\debug directory relative to the directory

where the code was generated. To add the reference to Altova.dll in Visual Studio, click Add Reference in
the Project menu and search for Altova.dll. Then add the line using Altova.Types; to your code. For

information about how XML Schema types map to C# types, see Data Type Mapping .

Step 3. Build your VS project
Build your Visual Studio project. The MyLibrary.dll file is generated in your project output directory.

Step 4.Create .mff and reference your C# library
Using an XML editor, create a new .mff file and validate it against the following schema: C:\Program

Files\MapForceLibraries\mff.xsd. Make sure that all references under implementation language="cs"

point to the correct C# members and paths created previously. The line function name="SayHello" must

refer to the function name exactly as it was defined in C#. For details, see Configure .mff File .

<?xml version="1.0" encoding="UTF-8"?>
<mapping version="9" library="mylib" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="mff.xsd">

495

503

498

© 2018-2024 Altova GmbH

Custom Functions 507Functions

Altova MapForce 2024 Professional Edition

 <implementations>
 <implementation language="cs">
 <setting name="namespace" value="MyLibrary" />
 <setting name="class" value="Greetings" />
 <setting name="reference" value="C:
\Libraries\cs\MyLibrary\bin\debug\MyLibrary.dll" />
 </implementation>
 </implementations>
 <group name="string functions">
 <component name="sayhello">
 <sources>
 <datapoint name="ismorning" type="xs:boolean"/>
 </sources>
 <targets>
 <datapoint name="result" type="xs:string"/>
 </targets>
 <implementations>
 <implementation language="cs">
 <function name="SayHello"/>
 </implementation>
 </implementations>
 <description>
 <short>result = sayhello(ismorning)</short>
 <long>Returns "Good morning" or "Good day", depending on the input
parameter.</long>
 </description>
 </component>
 </group>
</mapping>

Step 5. Import .mff as a library
Now that your custom library is referenced in the .mff file, you can import the .mff file into MapForce as a
library. For more information, see Import.mff Libraries .

6.5.4.5 Reference C++ in .mff

This example shows how to create a sample C++ library and reference it in a MapForce Function File (.mff).
The .mff file can then be imported as a MapForce library.

Configuration steps
To reference a C++ library in a .mff file, follow the instructions below.

Step 1. Create a header file
Create a header (.h) file for your class library. The following code listing illustrates a sample header file called
Greetings.h.

#ifndef MYLIBRARY_GREETINGS_H_INCLUDED
#define MYLIBRARY_GREETINGS_H_INCLUDED

#if _MSC_VER > 1000
#pragma once

503

508 Functions Custom Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

#endif // _MSC_VER > 1000

using namespace altova;

namespace mylib {

class ALTOVA_DECLSPECIFIER Greetings
{
 public:
 static string_type SayHello(bool isMorning);
};

} // namespace mylib

#endif // MYLIBRARY_GREETINGS_H_INCLUDED

Notice that the function is declared as static and that the namespace altova is imported. Remember to write
ALTOVA_DECLSPECIFIER in front of the class name: this ensures that your classes will be compiled correctly—
whether you use dynamic or static linkage in the generated code.

Step 2. Create a .cpp file
Create a .cpp file with the same name as the header file. The .cpp file must be in the same directory as the .h
file. The following code listing illustrates a sample .cpp file called Greetings.cpp that includes the

Greetings.h file created previously:

#include "StdAfx.h"
#include "../Altova/Altova.h"
#include "../Altova/AltovaException.h"
#include "../Altova/SchemaTypes.h"

#include "Greetings.h"

namespace mylib {

 string_type Greetings::SayHello(bool isMorning)
 {
 if(isMorning)
 return _T("Good morning!");
 return _T("Good day!");
 }
}

Notice the lines that import StdAfx.h and several Altova libraries. These lines must be left unchanged. If the

paths to the Altova libraries are correct in the generated code, these paths will point to the respective files. In
contrast to Java or C#, you do not need to compile your source C++ files. They will be copied to the generated
code and compiled with the rest of the generated mapping code.

Step 3. Create .mff and reference your C++ library
Using an XML editor, create a new .mff file and validate it against the following schema: C:\Program

Files\MapForceLibraries\mff.xsd. Make sure that the namespace, function names and data types defined

here correspond to those in the C++ code, as described in Configure .mff File . For information about data
type support, see Data Type Mapping .

498

503

© 2018-2024 Altova GmbH

Custom Functions 509Functions

Altova MapForce 2024 Professional Edition

<?xml version="1.0" encoding="UTF-8"?>
<mapping version="9" library="mylib" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="mff.xsd">
 <implementations>
 <implementation language="cpp">
 <setting name="namespace" value="mylib"/>
 <setting name="class" value="Greetings"/>
 <setting name="path" value="C:\Libraries\cpp"/>
 <setting name="include" value="Greetings.h"/>
 <setting name="source" value="Greetings.cpp"/>
 </implementation>
 </implementations>
 <group name="greetings">
 <component name="sayhello">
 <sources>
 <datapoint name="ismorning" type="xs:boolean"/>
 </sources>
 <targets>
 <datapoint name="result" type="xs:string"/>
 </targets>
 <implementations>
 <implementation language="cpp">
 <function name="SayHello"/>
 </implementation>
 </implementations>
 <description>
 <short>result = sayhello(ismorning)</short>
 <long>Returns "Good morning" or "Good day", depending on the input
parameter.</long>
 </description>
 </component>
 </group>
</mapping>

Step 4. Import .mff as a library
Now that your custom library is referenced in the .mff file, you can import the .mff file into MapForce as a
library. For more information, see Import .mff File .

C++ compiler errors
In order to execute mappings that use native C++ libraries, you will need to generate C++ code and run the
mapping from your C++ code or application, as described in Generating C++ code. If you get a compiler error in
 #import "msado15.dll" rename("EOF", "EndOfFile"), modify the project properties to include a

reference to msado15.dll in C:\Program Files\Common Files\System\ADO.

6.5.4.6 Reference Java in .mff

This example shows how to create a sample Java library and reference it in a MapForce Function File (.mff).
The .mff file can then be imported as a MapForce library. Referencing a Java library in a .mff file is one of the
ways to import Java libraries into MapForce. A simpler alternative is to import Java .class files directly. For
more information, see Example: Import Custom Java Class .

503

494

510 Functions Custom Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Configuration steps
To reference a C# library in a .mff file, follow the instruction below.

Step 1. Create a new project
Create a new Java project in your preferred development environment (for example, Eclipse).

Step 2. Add the com.mylib package
Add to the project a new package called com.mylib which consists of a class called Greetings. In the code

listing below, notice that the SayHello function has been defined as public static.

package com.mylib;

public class Greetings {

 public static String SayHello (boolean isMorning) {
 if(isMorning)
 return "Good Morning!";
 return "Good Day!";
 }

}

Step 3. Import com.altova.types
Optionally, if your project needs support for special schema types such as date, time, and duration, import the
com.altova.types package. To obtain this package, generate Java code from a mapping without custom
functions: import com.altova.types.*;.

Step 4. Compile your custom library
Compile your custom library to a class file and add it to the Java classpath.

Step 5. Create .mff and reference your Java library
Using an XML editor, create a new .mff file and validate it against the following schema: C:\Program

Files\MapForceLibraries\mff.xsd. Make sure that all references under implementation

language="java" point to the correct Java members created previously. Also, the line function

name="SayHello" must refer to the function name exactly as it was defined in Java. For more detail, see

Configure .mff File .

<?xml version="1.0" encoding="UTF-8"?>
<mapping version="9" library="custom" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="mff.xsd">
 <implementations>
 <implementation language="java">
 <setting name="package" value="com.mylib"/>
 <setting name="class" value="Greetings"/>
 </implementation>
 </implementations>
 <group name="greetings">
 <component name="sayhello">
 <sources>
 <datapoint name="ismorning" type="xs:boolean"/>
 </sources>

498

© 2018-2024 Altova GmbH

Custom Functions 511Functions

Altova MapForce 2024 Professional Edition

 <targets>
 <datapoint name="result" type="xs:string"/>
 </targets>
 <implementations>
 <implementation language="java">
 <function name="SayHello"/>
 </implementation>
 </implementations>
 <description>
 <short>result = sayhello(ismorning)</short>
 <long>Returns "Good morning" or "Good day", depending on the input
parameter.</long>
 </description>
 </component>
 </group>
</mapping>

Step 6. Import .mff as a library
Now that your custom library is referenced in the .mff file, you can import the .mff file into MapForce as a
library. For more information, see Import .mff Libraries .503

512 Functions Regular Expressions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.6 Regular Expressions

When designing a MapForce mapping, you can use regular expressions ("regex") in the following contexts:

· In the pattern parameter of the match-pattern and tokenize-regexp functions

· To filter the nodes on which a node function should apply. For more information, see Applying Node
Functions and Defaults Conditionally .

The regular expression syntax and semantics for XSLT and XQuery are as defined in Appendix F of "XML
Schema Part 2: Datatypes Second Edition".

Note: When generating C++, C#, or Java code, the advanced features of the regular expression syntax might
differ slightly. See the regex documentation of each language for more information.

Terminology
Let's examine the basic regular expression terminology by analyzing the tokenize-regexp function as an

example. This function splits text into a sequence of strings, with the help of regular expressions. To achieve
this, the function takes the following input parameters:

input The input string to be processed by the function. The regular expression will operate on this
string.

pattern The actual regular expression pattern to be applied.

flags This is an optional parameter that defines additional options (flags) that determine how the
regular expression is interpreted, see "Flags" below.

In the mapping below, the input string is "Altova MapForce". The pattern parameter is a space character, and
no regular expression flags are used.

This causes the text to be split whenever the space character occurs, so the mapping output is:

<items>

 <item>Altova</item>

 <item>MapForce</item>

</items>

Note that the tokenize-regexp function excludes the matched characters from the result. In other words, the

space character in this example is omitted from the output.

658 608

458

https://www.w3.org/TR/xmlschema-2/#regexs
https://www.w3.org/TR/xmlschema-2/#regexs

© 2018-2024 Altova GmbH

Regular Expressions 513Functions

Altova MapForce 2024 Professional Edition

The example above is very basic and the same result can be achieved without regular expressions, with the
tokenize function. In a more practical scenario, the pattern parameter would contain a more complex
regular expression. The regular expression can consist of any of the following:

· Literals
· Character classes
· Character ranges
· Negated classes
· Meta characters
· Quantifiers

Literals
Use literals to match characters exactly as they are written (literally). For example, if input string is
abracadabra, and pattern is the literal br, the output is:

<items>

 <item>a</item>

 <item>acada</item>

 <item>a</item>

</items>

The explanation is that the literal br had two matches in the input string abracadabra. After removing the

matched characters from the output, the sequence of three strings illustrated above is produced.

Character classes
If you enclose a set of characters in square brackets ([and]), this creates a character class. One and only

one of the characters inside the character class is matched, for example:

· The pattern [aeiou] matches any lowercase vowel.

· The pattern [mj]ust matches "must" and "just".

Note: The pattern is case sensitive, so a lowercase "a" does not match the uppercase "A". To make the
matching case insensitive, use the i flag, see below.

Character ranges
Use [a-z] to create a range between the two characters. Only one of the characters will be matched at one

time. For example, the pattern [a-z] matches any lowercase character between "a" and "z".

Negated classes
Using the caret (^) as the first character after the opening bracket negates the character class. For example,

the pattern [^a-z] matches any character not in the character class, including newline characters.

Matching any character
Use the dot (.) meta character to match any single character, except for newline character. For example, the

pattern . matches any single character.

603

514 Functions Regular Expressions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Quantifiers
Within a regular expression, quantifiers define how many times the preceding character or sub-expression is
allowed to occur in order for the match to take place.

? Matches zero or one occurrences of the immediately preceding item. For
example, the pattern mo? will match "m" and "mo".

+ Matches one or more occurrences of the immediately preceding item. For
example, the pattern mo+ will match "mo", "moo", "mooo", and so on.

* Matches zero or more occurrences of the immediately preceding item.

{min,max} Matches any number of occurrences between min and max. For example,
the pattern mo{1,3} matches "mo", "moo", and "mooo".

Parentheses
Parentheses (and) are used to group parts of a regex together. They can be used to apply quantifiers to a

sub-expression (as opposed to just one character), or with alternation (see below).

Alternation
The vertical bar (pipe) character | means "or". It can be used to match any of the several sub-expressions

separated by |. For example, the pattern (horse|make) sense will match both "horse sense" and "make

sense".

Flags
These are optional parameters that define how the regular expression is to be interpreted. Each flag
corresponds to a letter. Letters may be in any order and can be repeated.

s If this flag is present, the matching process operates in the "dot-all" mode.

If the input string contains "hello" and "world" on two different lines, the regular expression
hello*world will only match if the s flag is set.

m If this flag is present, the matching process operates in multi-line mode.

In multi-line mode, the caret ^ matches the start of any line, i.e. the start of the entire string and

the first character after a newline character.

The dollar character $ matches the end of any line, i.e. the end of the entire string and the

character immediately before a newline character.

Newline is the character #x0A.

i If this flag is present, the matching process operates in case-insensitive mode. For example, the
regular expression [a-z] plus the i flag matches all letters a-z and A-Z.

© 2018-2024 Altova GmbH

Regular Expressions 515Functions

Altova MapForce 2024 Professional Edition

x If this flag is present, whitespace characters are removed from the regular expression prior to the
matching process. Whitespace characters are #x09, #x0A, #x0D and #x20.

Note: Whitespace characters within a character class are not removed, for example, [#x20].

516 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7 Function Library Reference

This reference section describes the MapForce built-in functions available in the Libraries window . The
functions are organized by library. The availability of function libraries in the Libraries window depends on the
transformation language you choose for your mapping. To find out more about the list of available transformation
languages, see this topic .

The information about the compatibility of functions and transformation languages is provided in the subsections
below.

core functions
The lists below summarize the compatibility of core functions with transformation languages.
core | aggregate functions

· avg, max, max-string, min, min-string: XSLT 2.0, XSLT 3.0, XQuery 1.0, C#, C++, Java, Built-In;

· count, sum: all transformation languages.

core | conversion functions

· boolean, string, number: all transformation languages;

· format-date, format-dateTime, format-time: XSLT 2.0, XSLT 3.0, C#, C++, Java, Built-In;

· format-number: XSLT 1.0, XSLT 2.0, XSLT 3.0, C#, C++, Java, Built-In;

· parse-date, parse-dateTime, parse-number, parse-time: C#, C++, Java, Built-In.

core | file path functions
All the file path functions are compatible with all the transformation languages.

core | generator functions
The auto-number function is available for all the transformation languages.

core | logical functions
The logical functions are compatible with all the transformation languages.

core | math functions

· add, ceiling, divide, floor, modulus, multiply, round, subtract: all transformation languages;

· round-precision: C#, C++, Java, Built-In.

core | node functions

· is-xsi-nil, local-name, static-node-annotation, static-node-name: all transformation

languages;
· node-name, set-xsi-nil, substitute-missing-with-xsi-nil: XSLT 2.0, XSLT 3.0, XQuery 1.0, C#,

C++, Java, Built-In.

core | QName functions
The QName functions are compatible with all the transformation languages except for XSLT1.0.

core | sequence functions

25

21

© 2018-2024 Altova GmbH

Function Library Reference 517Functions

Altova MapForce 2024 Professional Edition

· exists, not-exists, position, substitute-missing: all transformation languages;

· distinct-values, first-items, generate-sequence, item-at, items-from-till, last-items,

replicate-item, replicate-sequence, set-empty, skip-first-items: XSLT 2.0, XSLT 3.0, XQuery

1.0, C#, C++, Java, Built-In;
· group-adjacent, group-by, group-ending-with, group-into-blocks, group-starting-with:

XSLT 2.0, XSLT 3.0, C#, C++, Java, Built-In.

core | string functions

· concat, contains, normalize-space, starts-with, string-length, substring, substring-after,

substring-before, translate: all transformation languages;

· char-from-code, code-from-char, tokenize, tokenize-by-length, tokenize-regexp: XSLT 2.0,

XSLT 3.0, XQuery 1.0, C#, C++, Java, Built-In.

bson functions (MapForce Enterprise Edition only)
All the BSON functions are compatible only with Built-In.

db functions (MapForce Professional and Enterprise editions)
The db functions are compatible with C#, C++, Java, Built-In.

edifact functions (MapForce Enterprise Edition only)
The edifact functions are compatible with C#, C++, Java, Built-In.

lang functions (MapForce Professional and Enterprise editions)
The lists below summarize the compatibility of lang functions with transformation languages.
lang | datetime functions
The lang | datetime functions are compatible with C#, C++, Java, Built-In.

lang | file functions
The functions read-binary-file and write-binary-file are compatible only with Built-In.

lang | generator functions
The create-guid function is available for C#, C++, Java, Built-In.

lang | logical functions
The lang | logical functions are available for C#, C++, Java, Built-In.

lang | math functions
The lang | math functions are available for C#, C++, Java, Built-In.

lang | QName functions
The lang | QName functions are compatible with C#, C++, Java, Built-In.

lang | string functions

· charset-decode, charset-encode: Built-In;

· match-pattern: C#, Java, Built-In.

518 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· capitalize, count-substring, empty, find-substring, format-guid-string, left, left-trim,

lowercase, pad-string-left, pad-string-right, repeat-string, replace, reversefind-

substring, right, right-trim, string-compare, string-compare-ignore-case, uppercase: C#,

C++, Java, Built-In.

mime functions (MapForce Enterprise Edition only)
The mime functions are available for Built-In only.

xbrl functions (MapForce Enterprise Edition only)
The xbrl functions are compatible with C#, C++, Java, Built-In.

xlsx functions (MapForce Enterprise Edition only)
The xlsx functions are compatible with XSLT 2.0, XSLT 3.0, C#, Java, and Built-In.

xpath2 functions
All the xpath2 functions are compatible with XSLT 2.0, XSLT 3.0, and XQuery 1.0.

xpath3 functions
All the xpath3 functions are compatible only with XSLT 3.0.

xslt10 functions
The lists below summarize the compatibility of xslt10 functions with transformation languages.
xslt10 | xpath functions

· local-name, name, namespace-uri: XSLT 1.0, XSLT 2.0, and XSLT 3.0.

· lang, last, position: XSLT 1.0.

xslt10 | xslt functions

· generate-id, system-property: XSLT 1.0, XSLT 2.0, and XSLT 3.0.

· current, document, element-available, function-available, unparsed-entity-uri: XSLT 1.0.

6.7.1 core | aggregate functions

"Aggregating" means processing multiple values of the same type so as to obtain a single result, such as a
sum, a count, or an average. You can perform data aggregation in MapForce with the help of aggregation
functions, such as avg, count, max, and others.

The following two arguments are common to all aggregation functions:

1. parent-context. This argument is optional; it lets you override the default mapping context (and thus
change the scope of the function, or the values that the function must iterate over). For a worked
example, see Example: Changing the Parent Context . 773

© 2018-2024 Altova GmbH

Function Library Reference 519Functions

Altova MapForce 2024 Professional Edition

2. values. This argument must be connected to a source item that supplies the values to be processed.
For example, in the mapping illustrated below, the sum function takes as input a sequence of numeric

values that originates from a source XML file. For each item in the source XML file, the multiply

function gets the item's price times quantity, and passes the result to the sum function. The sum

function will aggregate all input values and produce a total result that is also the output of the mapping.
You can find this mapping in the MapForceExamples folder.

SimpleTotal.mfd

Some aggregate functions, such as min, max, sum, and avg, work exclusively with numeric values. The input
data of these functions is converted to the decimal data type for processing.

6.7.1.1 avg

Returns the average value of all values within the input sequence. The average of an empty set is an empty set.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

520 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Parameters

Argument Description

parent-context Optional argument. Supplies the parent context. See also Example: Changing the
Parent Context .

The parent-context argument is an optional argument in some MapForce core
aggregation functions (e.g., min, max, avg, count). In a source component which has

multiple hierarchical sequences, the parent context determines the set of nodes on
which the function should operate.

values This argument must be connected to a source item which supplies the actual data.
Note that the supplied argument value must be numeric.

Example
See Example: Grouping Records by Key .

6.7.1.2 count

Returns the number of individual items making up the input sequence. The count of an empty set is zero.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Note that this function has limited functionality in XSLT 1.0.

Parameters

Argument Description

parent-context Optional argument. Supplies the parent context. See also Example: Changing the
Parent Context .

The parent-context argument is an optional argument in some MapForce core
aggregation functions (e.g., min, max, avg, count). In a source component which has

multiple hierarchical sequences, the parent context determines the set of nodes on
which the function should operate.

nodes/rows This argument must be connected to the source item to be counted.

773

574

773

© 2018-2024 Altova GmbH

Function Library Reference 521Functions

Altova MapForce 2024 Professional Edition

Example
See Example: Changing the Parent Context , Example: Counting Database Table Rows .

6.7.1.3 max

Returns the maximum value of all numeric values in the input sequence. The maximum of an empty set is an
empty set.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

parent-context Optional argument. Supplies the parent context. See also Example: Changing the
Parent Context .

The parent-context argument is an optional argument in some MapForce core
aggregation functions (e.g., min, max, avg, count). In a source component which has

multiple hierarchical sequences, the parent context determines the set of nodes on
which the function should operate.

values This argument must be connected to a source item which supplies the actual data.
Note that the supplied argument value must be numeric. To get the maximum from a
sequence of strings, use the max-string function.

Example
See Example: Grouping Records by Key .

6.7.1.4 max-string

Returns the maximum value of all string values in the input sequence. For example, max-string("a", "b",

"c") returns "c". The function returns an empty set if the strings argument is an empty set.

773 374

773

521

574

522 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

parent-context Optional argument. Supplies the parent context. See also Example: Changing the
Parent Context .

The parent-context argument is an optional argument in some MapForce core
aggregation functions (e.g., min, max, avg, count). In a source component which has

multiple hierarchical sequences, the parent context determines the set of nodes on
which the function should operate.

strings This argument must be connected to a source item which supplies the actual data. The
supplied argument value must be a sequence (zero or many) of xs:string.

6.7.1.5 min

Returns the minimum value of all numeric values in the input sequence. The minimum of an empty set is an
empty set.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

parent-context Optional argument. Supplies the parent context. See also Example: Changing the
Parent Context .

The parent-context argument is an optional argument in some MapForce core

773

773

© 2018-2024 Altova GmbH

Function Library Reference 523Functions

Altova MapForce 2024 Professional Edition

Argument Description

aggregation functions (e.g., min, max, avg, count). In a source component which has

multiple hierarchical sequences, the parent context determines the set of nodes on
which the function should operate.

values This argument must be connected to a source item which supplies the actual data.
Note that the supplied argument value must be numeric. To get the minimum from a
sequence of strings, use the min-string function.

Example
See Example: Grouping Records by Key .

6.7.1.6 min-string

Returns the minimum value of all string values in the input sequence. For example, min-string("a", "b",

"c") returns "a". The function returns an empty set if the strings argument is an empty set.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

parent-context Optional argument. Supplies the parent context. See also Example: Changing the
Parent Context .

The parent-context argument is an optional argument in some MapForce core
aggregation functions (e.g., min, max, avg, count). In a source component which has

multiple hierarchical sequences, the parent context determines the set of nodes on
which the function should operate.

strings This argument must be connected to a source item which supplies the actual data. The
supplied argument value must be a sequence (zero or many) of xs:string.

523

574

773

524 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.1.7 string-join

Concatenates all the values of the input sequence into one string delimited by whatever string you choose to
use as the delimiter. The function returns an empty string if the strings argument is an empty set.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

parent-context Optional argument. Supplies the parent context. See also Example: Changing the
Parent Context .

The parent-context argument is an optional argument in some MapForce core
aggregation functions (e.g., min, max, avg, count). In a source component which has

multiple hierarchical sequences, the parent context determines the set of nodes on
which the function should operate.

strings This argument must be connected to a source item which supplies the actual data. The
supplied argument value must be a sequence (zero or many) of xs:string.

delimiter Optional argument. Specifies the delimiter to be inserted between any two consecutive
strings.

Example
In the example below, the source XML file contains four Article items, with the following numbers: 1, 2, 3, and
4.

773

© 2018-2024 Altova GmbH

Function Library Reference 525Functions

Altova MapForce 2024 Professional Edition

The constant supplies the character "#" as the delimiter. The mapping result is, therefore, 1#2#3#4. If you do

not supply a delimiter, then the result becomes 1234.

6.7.1.8 sum

Returns the arithmetic sum of all values in the input sequence. The sum of an empty set is zero.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

parent-context Optional argument. Supplies the parent context. See also Example: Changing the
Parent Context .

The parent-context argument is an optional argument in some MapForce core
aggregation functions (e.g., min, max, avg, count). In a source component which has

multiple hierarchical sequences, the parent context determines the set of nodes on
which the function should operate.

values This argument must be connected to a source item which supplies the actual data.
Note that the supplied argument value must be numeric.

Example
See Example: Summing Node Values .

6.7.2 core | conversion functions

To support explicit data type conversion, several type conversion functions are available in the conversion
library. Note that the conversion functions are not always necessary because, in most cases, MapForce
creates the necessary conversions automatically. Conversion functions are typically useful to format date and
time values, or to compare values. For example, if some mapping items are of differing types (such as integer
and string), you can use the number conversion function to force a numeric comparison.

773

483

534

526 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.2.1 boolean

Converts the value of arg to a Boolean value. This may be useful for working with logical functions (such as
equal, greater, and so on), as well as filters and if-else conditions . To get a Boolean false, supply an

empty string or numeric 0 as argument. To get a Boolean true, supply a non-empty string or numeric 1 as
argument.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameter

Argument Description

arg Mandatory argument. Supplies the value to be converted.

6.7.2.2 format-date

Converts a date value of type xs:date to a string and formats it according to specified options.

Languages
Built-in, C++, C#, Java, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

value The xs:date value to be formatted.

format A format string identifying the way in which the date is to be formatted. This argument is
used in the same way as the format argument in the format-dateTime function.

language Optional argument. When supplied, the name of the month and the day of the week are
returned in a specific language. Valid values:

414

527

© 2018-2024 Altova GmbH

Function Library Reference 527Functions

Altova MapForce 2024 Professional Edition

Argument Description

de German

en (default) English

es Spanish

fr French

ja Japanese

Example
The following mapping outputs the current date in a format like: "25 March 2020, Wednesday". To translate this
value to Spanish, set the value of the language argument to es.

Note that the mapping above is designed for the Built-in, C++, C#, or Java transformation languages. In XSLT
2.0, the same result can be achieved by the following mapping:

6.7.2.3 format-dateTime

Converts a value of type xs:dateTime to a string. The string representation of date and time is formatted
according to the value of the format argument.

528 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Languages
Built-in, C++, C#, Java, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

value The xs:dateTime value to be formatted.

format A format string identifying the way in which value is to be formatted. See "Remarks"
below.

language Optional argument. When supplied, the name of the month and the day of the week are
returned in a specific language. Valid values:

de German

en (default) English

es Spanish

fr French

ja Japanese

Note: If the function’s output (result) is connected to an item of type other than string, the formatting may be
lost as the value is cast to the target type. To disable this automatic cast, clear the Cast target
values to target types check box in the Component Settings of the target component.

Remarks
The format argument consists of a string containing so-called variable markers enclosed in square brackets,
for example [Y]/[M]/[D]. Characters outside the square brackets are literal characters. If square brackets are

needed as literal characters in the result, then they should be doubled.

Each variable marker consists of a component specifier identifying which component of the date or time is to be
displayed, an optional formatting modifier, another optional presentation modifier and an optional width modifier,
preceded by a comma if it is present.

format := (literal | argument)*
argument := [component(format)?(presentation)?(width)?]
width := , min-width ("-" max-width)?

43

© 2018-2024 Altova GmbH

Function Library Reference 529Functions

Altova MapForce 2024 Professional Edition

The components are as follows:

Specifier Description Default Presentation

Y year (absolute value) four digits (2010)

M month of the year 1-12

D day of month 1-31

d day of year 1-366

F day of week name of the day (language dependent)

W week of the year 1-53

w week of month 1-5

H hour (24 hours) 0-23

h hour (12 hour) 1-12

P A.M. or P.M. alphabetic (language dependent)

m minutes in hour 00-59

s seconds in minute 00-59

f fractional seconds numeric, one decimal place

Z timezone as a time offset from UTC +08:00

z timezone as a time offset using GMT GMT+n

The formatting modifier can be one of the following:

Character Description Example

1 Decimal numeric format with no leading zeros 1, 2, 3

01 Decimal format, two digits 01, 02, 03

N Name of component, upper case1 MONDAY, TUESDAY

n Name of component, lower case1 monday, tuesday

Nn Name of component, title case1 Monday, Tuesday

Footnotes:

1. The N, n, and Nn modifiers are supported by the following components only: M, d, D.

The width modifier, if necessary, is introduced by a comma, followed by a digit that expresses the minimum

530 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

width. Optionally, you can add a dash followed by another digit that expresses the maximum width. For
example:

· [D,2] is the day of the month, with leading zeros (two digits).

· [MNn,3-3] is the name of the month, written as three characters, e.g. Jan, Feb, Mar, and so on.

Examples
The table below illustrates some examples of formatting xs:dateTime values with the help of the format-

dateTime function. The "Value" column specifies the value supplied to the value argument. The "Format"

column specifies the value of the format argument. The "Result" column illustrates what is returned by the
function.

Value Format Result

2003-11-
03T00:00:00

[D]/[M]/[Y] 3/11/2003

2003-11-
03T00:00:00

[Y]-[M,2]-[D,2] 2003-11-03

2003-11-
03T00:00:00

[Y]-[M,2]-[D,2] [H,2]:[m]:[s] 2003-11-03 00:00:00

2010-06-02T08:02 [Y] [MNn] [D01] [F,3-3] [d] [H]:[m]:[s].[f] 2010 June 02 Wed 153
8:02:12.054

2010-06-02T08:02 [Y] [MNn] [D01] [F,3-3] [d] [H]:[m]:[s].[f]
[z]

2010 June 02 Wed 153
8:02:12.054 GMT+02:00

2010-06-02T08:02 [Y] [MNn] [D1] [F] [H]:[m]:[s].[f] [Z] 2010 June 2 Wednesday
8:02:12.054 +02:00

2010-06-02T08:02 [Y] [MNn] [D] [F,3-3] [H01]:[m]:[s] 2010 June 2 Wed 08:02:12

6.7.2.4 format-number

Converts a number into a string and formats it according to the specified options.

Languages
Built-in, C++, C#, Java, XSLT 1.0, XSLT 2.0, XSLT 3.0.

© 2018-2024 Altova GmbH

Function Library Reference 531Functions

Altova MapForce 2024 Professional Edition

Parameters

Argument Description

value Mandatory argument. Supplies the number to be formatted.

format Mandatory argument. Supplies a format string that identifies the way in
which the number is to be formatted. See "Remarks" below.

decimal-point-format Optional argument. Supplies the character to be used as the decimal point
character. The default value is the full stop (.) character.

grouping-separator Optional argument. Supplies the character used to separate groups of
numbers. The default value is the comma (,) character.

Note: If the function’s output (result) is connected to an item of type other than string, the formatting may be
lost as the value is cast to the target type. To disable this automatic cast, clear the Cast target
values to target types check box in the Component Settings of the target component.

Remarks
The format argument takes the following form:

format := subformat (;subformat)?
 subformat := (prefix)? integer (.fraction)? (suffix)?
 prefix := any characters except special characters
 suffix := any characters except special characters
 integer := (#)* (0)* (allowing ',' to appear)
 fraction := (0)* (#)* (allowing ',' to appear)

The first subformat is used for formatting positive numbers, and the second subformat for negative numbers. If
only one subformat is specified, then the same subformat will be used for negative numbers, but with a minus
sign added before the prefix.

Special Character Default Description

zero-digit 0 A digit will always appear at this point in the result

digit # A digit will appear at this point in the result string
unless it is a redundant leading or trailing zero

decimal-point . Separates the integer and the fraction part of the
number.

grouping-separator , Separates groups of digits.

percent-sign % Multiplies the number by 100 and shows it as a
percentage.

per-mille ‰ Multiplies the number by 1000 and shows it as per-
mille.

43

532 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The table below illustrates examples of format strings and their result.

Note: The rounding method used by the format-number function is "half up", which means that the value

gets rounded up if the fraction is greater than or equal to 0.5. The value gets rounded down if the
fraction is less than 0.5. This method of rounding applies only to generated program code and the built-
in execution engine. In XSLT 1.0, the rounding mode is undefined. In XSLT 2.0, the rounding mode is
"round-half-to-even".

Number Format String Result

1234.5 #,##0.00 1,234.50

123.456 #,##0.00 123.46

1000000 #,##0.00 1,000,000.00

-59 #,##0.00 -59.00

1234 ###0.0### 1234.0

1234.5 ###0.0### 1234.5

.00025 ###0.0### 0.0003

.00035 ###0.0### 0.0004

0.25 #00% 25%

0.736 #00% 74%

1 #00% 100%

-42 #00% -4200%

-3.12 #.00;(#.00) (3.12)

-3.12 #.00;#.00CR 3.12CR

Example
The mapping illustrated below reads data from source XML and writes it to a target XML. There are multiple
SinglePrice elements in the source that contain the following decimal values: 25, 2.30, 34, 57.50. The
mapping has two goals:

1. Pad all values with zeros to the left so that the significant part takes 5 digits exactly
2. Pad all values with zeros to the right so that the decimal part takes 2 digits exactly

To achieve this, the format string 00000.00 was supplied as argument to the format-number function.

© 2018-2024 Altova GmbH

Function Library Reference 533Functions

Altova MapForce 2024 Professional Edition

PreserveFormatting.mfd

Consequently, the values in the target have become:

00025.00
00002.30
00034.00
00057.50

You can find the mapping design file at the following path:
<Documents>\Altova\MapForce2024\MapForceExamples\PreserveFormatting.mfd.

6.7.2.5 format-time

Converts an xs:time input value into a string.

Languages
Built-in, C++, C#, Java, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

value Mandatory argument. Supplies the xs:time value to be formatted.

format Mandatory argument. Supplies a format string. This argument is used in the
same way as the format argument in the format-dateTime function.

527

534 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Example
The following mapping outputs the current time in a format like 2:15 p.m. . To achieve this, it uses the format

string [h]:[m] [P], where:

· [h] is the current hour in 12-hour format
· [m] is the current minute
· [P] is the "a.m." or "p.m." part

Note that the mapping above is designed for the Built-in, C++, C#, or Java transformation languages. In XSLT
2.0, the same result can be achieved by the following mapping:

6.7.2.6 number

Converts the value of arg into a number, where arg is a string or Boolean value. If arg is a string, MapForce will
attempt to parse it as a number. For example, a string like "12.56" is converted to the decimal value 12.56. If

arg is Boolean true, it is converted to numeric 1. If arg is Boolean false, it is converted to numeric 0.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

arg Mandatory argument. Supplies the value to be converted.

© 2018-2024 Altova GmbH

Function Library Reference 535Functions

Altova MapForce 2024 Professional Edition

Example
In the example below, the first constant is of type string and it contains the string "4". The second constant
contains the numeric constant 12. In order for the two values to be compared as numbers, the types must
agree.

Adding a number function to the first constant converts the string "4" to the numeric value of 4. The result of the

comparison is then "true". If the number function were not used (that is, if "4" was connected directly to a), a

string comparison would occur, with the result being "false".

6.7.2.7 parse-date

Converts a string into a date. This function uses the parse-dateTime function as a basis, while ignoring the
time component. The result is of type xs:date.

Languages
Built-in, C++, C#, Java.

Parameters

Argument Description

value Mandatory argument. Supplies the string value to be converted.

format Mandatory argument. Supplies a format string. This argument is used in the
same way as the format argument in the parse-dateTime function.

Example
The mapping below parses the string "01 Apr 2015", converts it to a date and writes the result to a target item

(pubdate) of type xs:date. This was achieved by using the format [D01] [MNn,3-3] [Y], where:

· [D01] is the date of the month, expressed as two digits

· [MNn,3-3] is the month name, with a minim and maximum width of 3 characters

· [Y] is the year

536

536

536 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The result is as follows (excluding the XML and namespace declarations):

<book>

 <title>Linux Bible</title>

 <pubdate>2015-04-01</pubdate>

</book>

6.7.2.8 parse-dateTime

Converts a date and time value expressed as a string into a value of type xs:dateTime.

Languages
Built-in, C++, C#, Java.

Parameters

Argument Description

value The string value to be converted.

format Specifies the format mask to apply to value.

Remarks
A format mask can consist of the following components:

Component Description Default Presentation

Y year (absolute value) four digits (2010)

M month of the year 1-12

© 2018-2024 Altova GmbH

Function Library Reference 537Functions

Altova MapForce 2024 Professional Edition

Component Description Default Presentation

D day of month 1-31

d day of year 1-366

H hour (24 hours) 0-23

h hour (12 hour) 1-12

P A.M. or P.M. alphabetic (language dependent)

m minutes in hour 00-59

s seconds in minute 00-59

f fractional seconds numeric, one decimal place

Z timezone as a time offset from UTC +08:00

z timezone as a time offset using GMT GMT+n

Some of the components above take modifiers (for example, they can be used to interpret a date either as a
single digit or as two digits):

Modifier Description Example

1 decimal numeric format with no leading zeros: 1, 2, 3, ... 1, 2, 3

01 decimal format, two digits: 01, 02, 03, ... 01, 02, 03

N name of component, upper case FEBRUARY, MARCH

n name of component, lower case february, march

Nn name of component, title case February, March

Note: N, n, and Nn modifiers support only the component M (month).

The width modifier, if necessary, is introduced by a comma, followed by a digit that expresses the minimum
width. Optionally, you can add a dash followed by another digit that expresses the maximum width. For
example:

· [D,2] is the day of the month, with leading zeros (two digits).

· [MNn,3-3] is the name of the month, written as three characters, e.g. Jan, Feb, Mar, and so on.

The table below lists some format examples:

Value Format Result

21-03-2002 16:21:12.492
GMT+02:00

[D]-[M]-[Y] [H]:[m]:[s].[f] [z] 2002-03-
21T16:21:12.492+02:00

538 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Value Format Result

315 2004 +01:00 [d] [Y] [Z] 2004-11-10T00:00:00+01:00

1.December.10 03:2:39 p.m.
+01:00

[D].[MNn].[Y,2-2] [h]:[m]:[s] [P]
[Z]

2010-12-01T15:02:39+01:00

20110620 [Y,4-4][M,2-2][D,2-2] 2011-06-20T00:00:00

Example
In the mapping below, the string value 2019-12-24 19:43:04 +02:00 is converted into its dateTime

equivalent, by applying the format mask [Y]-[M]-[D] [H]:[m]:[s] [Z].

The result is as follows (excluding the XML and namespace declarations):

<FlightInformation>

 <FlightInfo departuredatetime="2019-12-24T19:43:04+02:00">

 <Station airportcode="KIV"/>

 </FlightInfo>

</FlightInformation>

6.7.2.9 parse-number

The parse-number function (see below) converts a string into a decimal number according to a specified

pattern. The function uses the pattern to determine only the prefix, suffix and digit grouping. The actual length of
the number is not checked against the pattern. If the input value is longer or shorter than specified by the
pattern, this will be ignored in the checking.

© 2018-2024 Altova GmbH

Function Library Reference 539Functions

Altova MapForce 2024 Professional Edition

Languages
Built-in, C++, C#, Java.

Parameters

Argument Description

value The string to be converted to a number.

format Optional argument. A format string that identifies the way in which the
number is currently formatted. The format string is the same as that
used in format-number .

Default is "#,##0.#"

decimal-point-character Optional argument. Specifies the character to be used as the decimal
point character. Default is the '.' character.

grouping-separator Optional argument. Specifies the separator/delimiter used to separate
groups of numbers. Default is the "," character.

Example
The following mapping parses the string value "1,234.50" to a decimal equivalent, by using the format mask

#,##0.00. In this mapping , there is no need to connect the decimal-point-character and grouping-

separator arguments, since their default values match the format of the input string.

The output (excluding the XML and namespace declarations) is shown below:

<Article>

530

540 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 <Number>1</Number>

 <Name>Office chair</Name>

 <SinglePrice>1234.5</SinglePrice>

</Article>

6.7.2.10 parse-time

Converts a string into an xs:time value. This function uses the parse-dateTime function as a basis, while
ignoring the date component.

Languages
Built-in, C++, C#, Java.

Parameters

Argument Description

value Mandatory argument. Supplies the string value to be converted.

format Mandatory argument. Supplies a format string. This argument is used in the
same way as the format argument in the parse-dateTime function.

6.7.2.11 string

Converts an input value into a string. The function can also be used to retrieve the text content of a node. If the
input node is an XML complex type, then all descendants are also output as a single string.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

536

536

© 2018-2024 Altova GmbH

Function Library Reference 541Functions

Altova MapForce 2024 Professional Edition

Parameters

Argument Description

arg Mandatory argument. Supplies the value to be converted.

6.7.3 core | file path functions

The file path functions allow you to directly access and manipulate file path data, such as folders, file names,
and extensions for further processing in your mappings. They can be used in all languages supported by
MapForce.

6.7.3.1 get-fileext

Returns the extension of the file path including the dot "." character.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

filepath Mandatory argument. Supplies the file path to be processed.

Example
If you supply "c:\data\Sample.mfd" as argument, the result is .mfd.

6.7.3.2 get-folder

Returns the folder name of the file path including the trailing slash, or backslash character.

542 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

filepath Mandatory argument. Supplies the file path to be processed.

Example
If you supply "c:\data\Sample.mfd" as argument, the result is c:\data\.

6.7.3.3 main-mfd-filepath

Returns the full path of the mapping design file (.mfd) containing the main mapping. An empty string is returned
if the .mfd is currently not saved.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

6.7.3.4 mfd-filepath

If the function is called in the main mapping, it returns the same as the main-mfd-filepath function, i.e. the
full path of the .mfd file containing the main mapping. An empty string is returned if the .mfd file is currently not
saved. If called within a user-defined function which is imported by an .mfd file, it returns the full path of the
imported .mfd file that contains the definition of the user-defined function.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

542

© 2018-2024 Altova GmbH

Function Library Reference 543Functions

Altova MapForce 2024 Professional Edition

6.7.3.5 remove-fileext

Removes the extension of the file path, including the dot character.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

filepath Mandatory argument. Supplies the file path to be processed.

Example
If you supply "c:\data\Sample.mfd" as argument, the result is c:\data\Sample.

6.7.3.6 remove-folder

Removes the directory of the file path, including the trailing slash, or backslash character.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

filepath Mandatory argument. Supplies the file path to be processed.

Example
If you supply "c:\data\Sample.mfd" as argument, the result is Sample.mfd.

544 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.3.7 replace-fileext

Replaces the extension of the file path supplied by the filepath parameter with the one supplied by the
connection to the extension parameter.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

filepath Mandatory argument. Supplies the file path to be processed.

extension Mandatory argument. Supplies the new extension to use.

Example
If you supply "c:\data\Sample.log" as filepath, and ".txt" as extension, the result is c:\data\Sample.txt.

6.7.3.8 resolve-filepath

Resolves a relative file path against a base folder. The function supports '.' (current directory) and '..' (parent
directory).

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

© 2018-2024 Altova GmbH

Function Library Reference 545Functions

Altova MapForce 2024 Professional Edition

Parameters

Argument Description

basefolder Mandatory argument. Supplies the base directory relative to which the path
should be resolved. This can be an absolute or relative path.

filepath Mandatory argument. Supplies the relative file path to be resolved.

Examples
In the mapping below, the relative file path ..\route.gpx is resolved against the C:\data directory.

The mapping result is C:\route.gpx.

6.7.4 core | generator functions

The core / generator functions library includes functions which generate values.

6.7.4.1 auto-number

Generates integer numbers in a sequence (for example, 1,2,3,4, ...). It is possible to set the starting integer,
the increment value, and other options by means of parameters.

The exact order in which functions are called by the generated mapping code is undefined. MapForce may
need to cache calculated results for reuse, or evaluate expressions in any order. Also, unlike other
functions, the auto-number function returns a different result when called multiple times with the same

input parameters. Therefore, it is strongly recommended to use the auto-number function cautiously. In

some cases, it is possible to achieve the same result by using the position function instead.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

587

546 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Parameters

Argument Description

global-id Optional parameter. If a mapping design contains multiple auto-number

functions, they will generate sequences with duplicate (overlapping)
numbers. To make all auto-number functions aware of each other, and

thus generate sequences that do not overlap, connect a common string (for
example, a constant) to the global-id input of each auto-number function.

start-with Optional parameter. Specifies the integer with which the generated
sequence begins. The default value is 1.

increment Optional parameter. Specifies the increment value. The default value is 1.

restart-on-change Optional parameter. Resets the counter to start-with, when the content of
the connected item changes.

Example
The following mapping is a variation of the ParentContext.mfd mapping discussed in the Example: Changing
the Parent Context .

The goal of the mapping illustrated below is to generate multiple XML files, one for each department in the
source XML file. There are some departments with the same name (that's because they belong to different
parent offices). For this reason, each generated file name must begin with a sequential number, for example 1-
Administration.xml, 2-Marketing.xml, and so on.

773

© 2018-2024 Altova GmbH

Function Library Reference 547Functions

Altova MapForce 2024 Professional Edition

To achieve the mapping goal, the auto-number function was used. The result of this function is concatenated

with a dash character, followed by the department name, followed by the ".xml" string in order to create the
unique name of the generated file. Importantly, the third parameter of the concat function (the department

name) has a priority context applied. This has the effect that the auto-number function is called in the

context of each department, and produces the required sequential values. If priority context were not used, the
auto-number function would keep generating number 1 (in the absence of any context), and duplicate file

names would be generated as a consequence.

6.7.5 core | logical functions

Logical functions are (generally) used to compare input data and return a Boolean true or false. They are
generally used to test data before passing on a subset to the target component using a filter . Nearly all
logical functions have the following structure:

· input parameters: a | b or value1 | value2
· output parameter: result

The evaluation result depends on the input values as well as the data types used for the comparison. For
example, the less than comparison of the integer values 4 and 12 yields the boolean value true, since 4 is less

than 12. If the two input parameters contain string values 4 and 12, the lexical analysis results in the output

value false, since 4 is alphabetically greater than the first character 1 of the second operand (12).

If all input values are of the same data type, then the comparison is done for the common type. If input values
are of different types (for example, integer and string, or string and date), then the data type used for the
comparison is the most general (least restrictive) of the two.

Before comparing two values of different types, all input values are converted to a common data type. Using the
previous example, the data type string is less restrictive than integer. Comparing the integer value 4 with the

string 12 converts the integer value 4 to the string 4, which is then compared with the string 12.

Note: Logical functions cannot be used to test the existence of null values. If you supply a null value as an
argument to a logical function, it returns a null value. For more information about handling null values,
see Nil Values / Nillable .

6.7.5.1 equal

The equal function (see screenshot below) returns Boolean true if a is the same as b; false otherwise. The

comparison is case-sensitive.

Example:

a = hi
b = hi

778

414

123

548 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

In this example, both values are the same. Therefore, the result is true. If, for instance, b equaled Hi, the
function would return false.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

a Mandatory parameter. Provides the first value to compare.

b Mandatory parameter. Provides the second value to compare.

6.7.5.2 equal-or-greater

Returns Boolean true if a is equal to or greater than b; false otherwise.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

a Mandatory parameter. Provides the first value to compare.

b Mandatory parameter. Provides the second value to compare.

6.7.5.3 equal-or-less

Returns Boolean true if a is equal to or less than b; false otherwise.

© 2018-2024 Altova GmbH

Function Library Reference 549Functions

Altova MapForce 2024 Professional Edition

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

a Mandatory parameter. Provides the first value to compare.

b Mandatory parameter. Provides the second value to compare.

6.7.5.4 greater

Returns Boolean true if a is greater than b; false otherwise.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

a Mandatory parameter. Provides the first value to compare.

b Mandatory parameter. Provides the second value to compare.

6.7.5.5 less

Returns Boolean true if a is less than b; false otherwise.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

550 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Parameters

Argument Description

a Mandatory parameter. Provides the first value to compare.

b Mandatory parameter. Provides the second value to compare.

6.7.5.6 logical-and

Returns Boolean true only if each input value is true; false otherwise. You can connect the result to another
logical-and function and thus join an arbitrary number of conditions with logical AND, in order to test that

they all return true. Also, this function can be extended to take additional arguments, see Add or Delete
Function Arguments .

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

value1 Mandatory parameter. Provides the first value to compare.

value2 Mandatory parameter. Provides the second value to compare.

Example
The mapping illustrated below returns true because all input values to the logical-and function are true as

well. If any of the input values were false, then the mapping's result would be false as well.

443

© 2018-2024 Altova GmbH

Function Library Reference 551Functions

Altova MapForce 2024 Professional Edition

See also Example: Look-up and Concatenation .

6.7.5.7 logical-not

Inverts or flips the logical result of the input value. For example, if value is true, the function's result is false. If
value is false, then result is true.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

value Mandatory parameter. Provides the input value.

6.7.5.8 logical-or

This function requires both input values to be Boolean. If at least one of the input values is true, then the result
is true. Otherwise, the result is false.

This function can be extended to take additional arguments, see Add or Delete Function Arguments .

476

443

552 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

value1 Mandatory parameter. Provides the first value to compare.

value2 Mandatory parameter. Provides the second value to compare.

Example
The result of the mapping below is true, because at least one of the function's arguments is true.

6.7.5.9 not-equal

Returns Boolean true if a is not equal to b; false otherwise.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

a Mandatory parameter. Provides the first value to compare.

b Mandatory parameter. Provides the second value to compare.

© 2018-2024 Altova GmbH

Function Library Reference 553Functions

Altova MapForce 2024 Professional Edition

6.7.6 core | math functions

Math functions are used to perform basic mathematical operations on data. Note that they cannot be used to
perform computations on durations or datetime values.

Most math functions take two input parameters (value1, value2) that are operands of the mathematical
operation. The input values are automatically converted to decimal type for further processing. The result of
math functions is also of decimal type.

The example shown above adds 20% sales tax to each of the articles mapped to the target component.

6.7.6.1 add

Adds value1 to value2 and returns the result as a decimal value. This function can be extended to take
additional arguments, see Add or Delete Function Arguments .

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

value1 Mandatory parameter. Provides the first operand.

value2 Mandatory parameter. Provides the second operand.

443

554 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.6.2 ceiling

Returns the smallest integer that is greater than or equal to value.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

value Mandatory parameter. Provides the function's input value.

Example
If the input value is 11.2, then applying the ceiling function to it makes the result 12, i.e. the smallest integer

that is greater than 11.2.

6.7.6.3 divide

Divides value1 by value2 and returns the result as decimal value. The result precision depends on the target
language. Use the round-precision function to define the precision of result.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

value1 Mandatory parameter. Provides the first operand.

value2 Mandatory parameter. Provides the second operand.

557

© 2018-2024 Altova GmbH

Function Library Reference 555Functions

Altova MapForce 2024 Professional Edition

6.7.6.4 floor

Returns the greatest integer that is less than or equal to value.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

value Mandatory parameter. Provides the function's input value.

Example
If the input value is 11.7, then applying the floor function to it makes the result 11, i.e. the greatest integer

than is less than 11.7.

6.7.6.5 modulus

Returns the remainder of dividing value1 by value2.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

value1 Mandatory parameter. Provides the first operand.

value2 Mandatory parameter. Provides the second operand.

556 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Example
If the input values are 1.5 and 1, then the result of the modulus function is 0.5. The explanation is that 1.5 / 1

leaves a remainder of 0.5.

If the input values are 9 and 3, then the result is 0, since 9 / 3 leaves no remainder.

6.7.6.6 multiply

Multiplies value1 by value2 and returns the result as a decimal value.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

value1 Mandatory parameter. Provides the first operand.

value2 Mandatory parameter. Provides the second operand.

6.7.6.7 round

Returns the value rounded to the nearest integer. When the value is exactly in between two integers, the
"Round Half Towards Positive Infinity" algorithm is used. For example, the value "10.5" gets rounded to "11",
and the value "-10.5" gets rounded to "-10".

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

© 2018-2024 Altova GmbH

Function Library Reference 557Functions

Altova MapForce 2024 Professional Edition

Parameters

Argument Description

value Mandatory parameter. Provides the function's input value.

6.7.6.8 round-precision

Rounds the input value to N decimal places, where N is the decimals argument.

Languages
Built-in, C++, C#, Java.

Parameters

Argument Description

value Mandatory parameter. Provides the function's input value.

decimals Mandatory parameter. Specifies the number of decimals to round to.

Example
Rounding the value 2.777777 to 2 decimals yields 2.78. Rounding the value 0.1234 to 3 decimals yields 0.123.

6.7.6.9 subtract

Subtracts value2 from value1 and returns the result as decimal value.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

558 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Parameters

Argument Description

value1 Mandatory parameter. Provides the first operand.

value2 Mandatory parameter. Provides the second operand.

6.7.7 core | node functions

The functions from the core | node functions library allow you to access information about nodes on a
mapping component (such as the node name or annotation), or to process nillable elements, see also Nil
Values / Nillable .

Be aware that there is an alternative way to access node names, which does not require node functions at all,
see Mapping Node Names .

The mapping illustrated below shows a few node functions that get information from the
msg:InterchangeHeader node of the source XML file. More specifically, the following information is extracted:

1. The node-name function returns the qualified name of the node, which includes the node prefix.

2. The local-name function returns just the local part.

3. The static-node-name function is similar to the node-name function, but is available in XSLT 1.0 as

well.
4. The static-node-annotation function gets the element's annotation as it was defined in the XML

schema.

The output of the mapping is as follows (excluding the XML and namespace declarations):

<row>

 <col1>msg:InterchangeHeader</col1>

 <col2>InterchangeHeader</col2>

 <col3>msg:InterchangeHeader</col3>

123

731

© 2018-2024 Altova GmbH

Function Library Reference 559Functions

Altova MapForce 2024 Professional Edition

 <col4>Interchange header</col4>

</row>

6.7.7.1 is-xsi-nil

Returns true if the element node has the xsi:nil attribute set to true.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

element Mandatory parameter. Must be connected to the source node that is to be
checked.

Example
The mapping design illustrated below copies data from a source to a target XML file conditionally, and also
illustrates the usage of several functions, including is-xsi-nil. This mapping is called HandlingXsiNil.mfd

and can be found in the <Documents>\Altova\MapForce2024\MapForceExamples\ directory.

560 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

As illustrated above, the is-xsi-nil function checks whether the xsi:nil attribute is "true" for the state item

in the source file. If this attribute is "false", the filter will copy the parent Address element to the target. The
source XML file looks as follows (excluding the XML and namespace declarations):

<BranchOffices>

 <Name>Nanonull</Name>

 <Office>

 <Name>Nanonull Research Outpost</Name>

 <EMail>sp@nanonull.com</EMail>

 <Fax xsi:nil="true"/>

 <Phone>+8817 3141 5926</Phone>

 <Address>

 <city>South Pole</city>

 <state xsi:nil="true"/>

 <street xsi:nil="true"/>

 <zip xsi:nil="true"/>

 </Address>

 <Contact>

 <first>Scott</first>

 <last>Amundsen</last>

 </Contact>

 </Office>

</BranchOffices>

The result of the mapping is that no Address is copied to the target at all, because there is only one Address
in the source, and the xsi:nil attribute is set to "true" for the state element. Consequently, the mapping
output is as follows:

© 2018-2024 Altova GmbH

Function Library Reference 561Functions

Altova MapForce 2024 Professional Edition

<BranchOffices>

 <Name>Nanonull</Name>

 <Office>

 <Name>Nanonull Research Outpost</Name>

 <EMail xsi:nil="true"/>

 <Fax>n/a</Fax>

 <Phone>+8817 3141 5926</Phone>

 <Contact>

 <first>Scott</first>

 <last>Amundsen</last>

 </Contact>

 </Office>

</BranchOffices>

6.7.7.2 local-name

Returns the local name of the node. Unlike the node-name function, local-name does not return the node's

prefix. If the node does not have a prefix, then local-name and node-name return the same value.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

node Mandatory parameter. Connect this input to the node whose name you
want to get.

6.7.7.3 node-name

Returns the qualified name (QName) of the connected node. If the node is an XML text() node, an empty
QName is returned. This function works only on those nodes that have a name. If XSLT 2.0 is the target
language (which calls fn:node-name), the function returns an empty sequence for nodes which have no names.

Note: Getting the node name is not supported for "File input" nodes, database tables or fields, XBRL, Excel,
JSON, or Protocol Buffers fields.

561

562 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

node Mandatory parameter. Connect this input to the node whose name you
want to get.

6.7.7.4 set-xsi-nil

Sets the target node to xsi:nil.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

6.7.7.5 static-node-annotation

Returns the string with annotation of the connected node. The input must be: (i) a source component node, or
(ii) a user-defined function of type "inline " that is directly connected to a parameter , which in turn is
directly connected to a node in the calling mapping.

The connection must be direct. It cannot pass through a filter or a regular (not "inline") user-defined function.
This is a pseudo-function, which is replaced at generation time with the text acquired from the connected node,
and is therefore available for all languages.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

467 470

© 2018-2024 Altova GmbH

Function Library Reference 563Functions

Altova MapForce 2024 Professional Edition

Parameters

Argument Description

node Mandatory parameter. Connect this input to the node whose annotation you
want to get.

6.7.7.6 static-node-name

Returns the string with the name of the connected node. The input must be: (i) a source component node, or (ii)
a user-defined function of type "inline " that is directly connected to a parameter , which in turn is directly
connected to a node in the calling mapping.

The connection must be direct. It cannot pass through a filter or a non-inlined user-defined function. This is a
pseudo-function, which is replaced at generation time with the text acquired from the connected node, and is
therefore available for all languages.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Argument Description

node Mandatory parameter. Connect this input to the node whose name you
want to get.

6.7.7.7 substitute-missing-with-xsi-nil

For nodes with simple content, this function substitutes any missing (or null values) of the source component,
with the xsi:nil attribute in the target node.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

467 470

564 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Parameters

Argument Description

input Mandatory parameter. Connect this input to the node whose name you
want to get.

6.7.8 core | QName functions

QName functions provide ways to manipulate the Qualified Names (QName) in XML documents.

6.7.8.1 QName

Constructs a QName from a namespace URI and a local part. Use this function to create a QName in a target
component. The uri and node-name parameters can be supplied by a constant function.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

uri Mandatory. Provides the URI.

node-name Mandatory. Provides the name of the node.

6.7.8.2 local-name-from-QName

Extracts the local name part from a value of type xs:QName. Note that, unlike the local-name function which
returns the local name of the node, this function processes the content of the item connected to the qname
input.

561

© 2018-2024 Altova GmbH

Function Library Reference 565Functions

Altova MapForce 2024 Professional Edition

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

qname Mandatory. Provides the function's input value, of type xs:QName.

6.7.8.3 namespace-uri-from-QName

Returns the namespace URI part of the QName value supplied as argument.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

qname Mandatory. Provides the function's input value.

Example
The following XML file contains a QName value, o:name. Note that the prefix "o" is mapped to the namespace
http://NamespaceTest.com/Order.

<?xml version="1.0" encoding="utf-8"?>
<p:Purchase xsi:schemaLocation="http://NamespaceTest.com/Purchase Main.xsd"

 xmlns:p="http://NamespaceTest.com/Purchase"

 xmlns:o="http://NamespaceTest.com/Order"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <p:Order>o:name</p:Order>

</p:Purchase>

A mapping that processes the QName value and gets the namespace URI is illustrated below:

566 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The output of this mapping is http://NamespaceTest.com/Order.

6.7.9 core | sequence functions

Sequence functions allow processing of input sequences and grouping of their content.

6.7.9.1 distinct-values

Processes the sequence of values connected to the values input and returns only the distinct values, as a
sequence. This is useful when you need to remove duplicate values from a sequence and copy only the unique
items to the target component.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

values This input must receive a connection from a mapping item that provides a
sequence of zero or more values. For example, the connection may
originate from a source XML item, a CSV field, a database record, and so
on.

Example
The following XML file contains information about employees of a demo company. Some employees have the
same role; therefore, the "role" attribute role contains duplicate values. For example, both "Loby Matise" and
"Susi Sanna" have the role "Support".

<?xml version="1.0" encoding="UTF-8"?>
<KeyValueList xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="KeyValueList.xsd">

767

767

© 2018-2024 Altova GmbH

Function Library Reference 567Functions

Altova MapForce 2024 Professional Edition

 <Item>

 <Property Key="role">Manager</Property>

 <Property Key="First">Vernon</Property>

 <Property Key="Last">Callaby</Property>

 </Item>

 <Item>

 <Property Key="role">Programmer</Property>

 <Property Key="First">Frank</Property>

 <Property Key="Last">Further</Property>

 </Item>

 <Item>

 <Property Key="role">Support</Property>

 <Property Key="First">Loby</Property>

 <Property Key="Last">Matise</Property>

 </Item>

 <Item>

 <Property Key="role">Support</Property>

 <Property Key="First">Susi</Property>

 <Property Key="Last">Sanna</Property>

 </Item>

</KeyValueList>

Let's suppose that you need to extract a list of all unique role names that occur in this XML file. This can be
achieved with a mapping like the one below:

In the mapping above, the following happens:

· Each Property element from the source XML file is processed by a filter.
· The connection to the filter's bool input ensures that only Property elements where the Key attribute

is equal to "role" are supplied to the target component. The string "role" is provided by a constant. Note
that the filter's output still produces duplicates at this stage (since there are two "Support" properties
that meet the filter's condition).

· The sequence produced by the filter is processed by the distinct-values function, which excludes

any duplicate values.

As a result, the mapping output is as follows (excluding the XML and schema declarations):

<items>

 <item>Manager</item>

568 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 <item>Programmer</item>

 <item>Support</item>

</items>

6.7.9.2 exists

Returns true if the connected node exists; false otherwise. Since it returns a Boolean value, this function is
typically used with filters , to filter out only records which have (or perhaps do not have) a child element or
attribute.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

node The node to be tested for existence.

Examples
The following mapping illustrates how to filter data with the help of the exists function. This mapping is called

PersonListsForAllBranchOffices.mfd and it can be found in the
<Documents>\Altova\MapForce2024\MapForceExamples\ directory.

414

© 2018-2024 Altova GmbH

Function Library Reference 569Functions

Altova MapForce 2024 Professional Edition

PersonListsForAllBranchOffices.mfd

In the source file BranchOffices.xml, there are three Office elements. Notably, one of the offices does not
have any Contact child elements. The goal of the mapping is many-fold:

a) for each office, extract a list of contacts that exist in that office
b) for each office, create a separate XML file with the same name as the office
c) do not generate the XML file if the office has no contacts.

To achieve these goals, a filter was added to the mapping. The filter passes on to the target only those Office
items where at least one Contact item exists. This Boolean condition is provided by the exists function. If the

function's result is true, then the name of the office is concatenated with the string .xml in order to produce the

target file name. For more information about generating file names from the mapping, see Processing Multiple
Input or Output Files Dynamically .

Another example is the following mapping:
<Documents>\Altova\MapForce2024\MapForceExamples\HasMarketingExpenses.mfd. Here, if an
expense-item exists in the source XML, then the hasExpenses attribute is set to true in the target XML file.

751

570 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

HasMarketingExpenses.mfd

See also Example: Exception When Node Does Not Exist .

6.7.9.3 first-items

Returns the first N items of the input sequence, where N is supplied by the count parameter.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

nodes/rows This input must receive a connection from a mapping item that provides a
sequence of zero or more values. For example, the connection may
originate from a source XML item, a CSV field, a database record, and so
on.

count Optional parameter. Specifies how many items should be retrieved from the
input sequence. The default value is 1.

438

767

© 2018-2024 Altova GmbH

Function Library Reference 571Functions

Altova MapForce 2024 Professional Edition

Example
The following mock-up mapping generates a sequence of 10 values. The sequence is processed by the first-

items function and the result is written to a target XML file.

Because the count argument has no value, the default value of 1 applies. As a result, only the first value from
the sequence is generated in the mapping output:

<items>

 <item>1</item>

</items>

For a more realistic example, see the FindHighestTemperatures.mfd mapping discussed in Supplying
Parameters to the Mapping .

6.7.9.4 generate-sequence

Creates a sequence of integers using the "from" and "to" parameters as the boundaries.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

from Optional parameter. Specifies the integer that the sequence should start
with (lower boundary). The default value is 1.

to Mandatory parameter. Specifies the integer that the sequence should end
with (upper boundary).

352

572 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.9.5 group-adjacent

The group-adjacent function groups the items connected to the nodes/rows input by the key connected to

the key input. Note that this function places items that share the same key into separate groups if they are not
adjacent. If multiple consecutive (adjacent) items share the same key, they are placed into the same group.

For example, in the abstract transformation illustrated below, the grouping key is "Department". The left side of
the diagram shows the input data while the right side shows the output data after grouping. The following takes
place when the transformation runs:

· Initially, the first key, "Administration", creates a new group.
· The next key is different, so a second group is created, "Marketing".
· The third key is also different, so another group is created, "Engineering".
· The fourth key is the same as the third; therefore, this record is placed in the already existing group.
· Finally, the fifth key is different from the fourth, and this creates the last group.

As illustrated below, "Michelle Butler" and "Fred Landis" were grouped together because they have the same
key and are adjacent. However, "Vernon Callaby" and "Frank Further" are in separate groups because they are
not adjacent, even though they have the same key.

Languages
Built-in, C++, C#, Java, XSLT 2.0, XSLT 3.0.

© 2018-2024 Altova GmbH

Function Library Reference 573Functions

Altova MapForce 2024 Professional Edition

Parameters

Name Description

nodes/rows This input must receive a connection from a mapping item that provides a
sequence of zero or more values. For example, the connection may
originate from a source XML item, a CSV field, a database record, and so
on.

key The key by which to group items.

Example
Let's assume that your source data is an XML file with the following content (note that, in the code listing
below, the namespace and XML declarations were removed for simplicity).

<company>

 <person department="Administration" name="Vernon Callaby"/>

 <person department="Marketing" name="Susi Sanna"/>

 <person department="Engineering" name="Michelle Butler"/>

 <person department="Engineering" name="Fred Landis"/>

 <person department="Administration" name="Frank Further"/>

</company>

The business requirement is to group person records by department, provided they are adjacent. To achieve
this, the following mapping invokes the group-adjacent function, and supplies department as key.

The mapping result is as follows:

<groups>

 <group>

 <record key="Administration" value="Vernon Callaby"/>

 </group>

 <group>

 <record key="Marketing" value="Susi Sanna"/>

 </group>

 <group>

 <record key="Engineering" value="Michelle Butler"/>

 <record key="Engineering" value="Fred Landis"/>

767

574 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 </group>

 <group>

 <record key="Administration" value="Frank Further"/>

 </group>

</groups>

This example, together with other grouping examples, is part of the following mapping file:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\GroupingFunctions.mfd. Remember

to click the Preview button applicable to the function you want to preview, before clicking the Output
pane.

6.7.9.6 group-by

The group-by function creates groups of records according to some grouping key that you specify.

For example, in the abstract transformation illustrated below, the grouping key is "Department". Since there are
three unique departments in total, applying the group-by function would create three groups:

Languages
Built-in, C++, C#, Java, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

nodes/rows This input must receive a connection from a mapping item that provides a
sequence of zero or more values. For example, the connection may
originate from a source XML item, a CSV field, a database record, and so

767

© 2018-2024 Altova GmbH

Function Library Reference 575Functions

Altova MapForce 2024 Professional Edition

Name Description

on.

key The key by which to group items.

Example 1
Let's assume that your source data is an XML file with the following content (note that, in the code listing
below, the namespace and XML declarations were removed for simplicity).

<company>

 <person department="Administration" name="Vernon Callaby"/>

 <person department="Marketing" name="Susi Sanna"/>

 <person department="Engineering" name="Michelle Butler"/>

 <person department="Engineering" name="Fred Landis"/>

 <person department="Administration" name="Frank Further"/>

</company>

The business requirement is to group person records by department. To achieve this, the following mapping
invokes the group-by function, and supplies department as key.

The mapping result is as follows:

<groups>

 <group>

 <record key="Administration" value="Vernon Callaby"/>

 <record key="Administration" value="Frank Further"/>

 </group>

 <group>

 <record key="Marketing" value="Susi Sanna"/>

 </group>

 <group>

 <record key="Engineering" value="Michelle Butler"/>

 <record key="Engineering" value="Fred Landis"/>

 </group>

</groups>

This example, together with other grouping examples, is part of the following mapping file:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\GroupingFunctions.mfd. Remember

576 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

to click the Preview button applicable to the function you want to preview, before clicking the Output
pane.

Example 2
This example shows you how to group records with the help of the group-by function, and also illustrates how

to aggregate data. This example is accompanied by a demo mapping available at the following path:
<Documents>\Altova\MapForce2024\MapForceExamples\GroupTemperaturesByYear.mfd. This
mapping reads data from an XML file that contains a log of monthly temperatures, as illustrated in the code
listing below:

<Temperatures>

 <data temp="-3.6" month="2006-01" />

 <data temp="-0.7" month="2006-02" />

 <data temp="7.5" month="2006-03" />

 <data temp="12.4" month="2006-04" />

 <data temp="16.2" month="2006-05" />

 <data temp="19" month="2006-06" />

 <data temp="22.7" month="2006-07" />

 <data temp="23.2" month="2006-08" />

 <data temp="18.7" month="2006-09" />

 <data temp="11.2" month="2006-10" />

 <data temp="9.1" month="2006-11" />

 <data temp="0.8" month="2006-12" />

 <data temp="-3.2" month="2007-01" />

 <data temp="-0.3" month="2007-02" />

 <data temp="6.5" month="2007-03" />

 <data temp="10.6" month="2007-04" />

 <data temp="19" month="2007-05" />

 <data temp="20.3" month="2007-06" />

 <data temp="22.3" month="2007-07" />

 <data temp="20.7" month="2007-08" />

 <data temp="19.2" month="2007-09" />

 <data temp="12.9" month="2007-10" />

 <data temp="8.1" month="2007-11" />

 <data temp="1.9" month="2007-12" />

</Temperatures>

The business requirement of this mapping is two-fold:

1. Group temperatures of each year together.
2. Find out the minimum, maximum, and the average temperature of each year.

To achieve the first goal, we use the group-by function. To achieve the second goal, we use the min ,

max , and avg aggregation functions.

522

521 519

© 2018-2024 Altova GmbH

Function Library Reference 577Functions

Altova MapForce 2024 Professional Edition

GroupTemperaturesByYear.mfd

The way MapForce executes a mapping (and the recommended approach to start reading one) is by looking at
the topmost item of the target component. In this example, an YearlyStats item will be created for each group
returned by the group-by function. The group-by function takes as first argument all data items from the

source and groups them by whatever is connected to the key input. Since the requirement is to group
temperatures by year, the year must be obtained first. To achieve this, the substring-before function

extracts the year part from the month attribute of each data element. Namely, it takes as argument the value
of month and returns the part before the first occurrence of substr. As illustrated above, in this example, substr
is set to the dash character; therefore, if given the value "2006-01", the function will return "2006".

Finally, the values of MinimumTemp, MaximumTemp, and AverageTemp are obtained by connecting these
items with the respective aggregate functions: min, max, and avg. All three functions take as input the

sequence of temperatures read from the source component. These functions do not need a parent-context
argument, because they already work in the context of each group. In other words, there is a parent connection
—from data to YearlyStats— which provides the context for each aggregation function to work on.

To preview the mapping output, click the Output pane. Notice that the number of groups coincides with the
number of years obtained by reading the source file, for example:

<Temperatures>

 <YearlyStats Year="2006">

 <MinimumTemp>-3.6</MinimumTemp>

 <MaximumTemp>23.2</MaximumTemp>

 <AverageTemp>11.375</AverageTemp>

 </YearlyStats>

 <YearlyStats Year="2007">

 <MinimumTemp>-3.2</MinimumTemp>

 <MaximumTemp>22.3</MaximumTemp>

 <AverageTemp>11.5</AverageTemp>

602

578 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 </YearlyStats>

</Temperatures>

Note: For simplicity, the code listings above contain less data than the actual input and output used by the
demo mapping.

6.7.9.7 group-ending-with

The group-ending-with function takes a Boolean condition as argument. If the Boolean condition is true, a

new group is created, ending with the record that satisfies the condition.

In the example below, the condition is that "Key" must be equal to "trailing". This condition is true for the third
and fifth records, so two groups are created as a result:

Note: One additional group is created if records exist after the last one that satisfies the condition. For
example, if there were more "line" records after the last "trailing" record, these would all be placed into
a new group.

Languages
Built-in, C++, C#, Java, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

nodes/rows This input must receive a connection from a mapping item that provides a
sequence of zero or more values. For example, the connection may
originate from a source XML item, a CSV field, a database record, and so
on.

bool Provides the Boolean condition that starts a new group when true.

767

© 2018-2024 Altova GmbH

Function Library Reference 579Functions

Altova MapForce 2024 Professional Edition

Example
Let's assume that your source data is an XML file with the following content (note that, in the code listing
below, the namespace and XML declarations were removed for simplicity).

<records>

 <record key="line" value="A"/>

 <record key="line" value="B"/>

 <record key="trailing" value="Total 1"/>

 <record key="line" value="C"/>

 <record key="trailing" value="Total 2"/>

</records>

The business requirement is to create groups for each "trailing" record. Each group must also include any "line"
records that precede the "trailing" record. To achieve this, the following mapping invokes the group-ending-

with function. In the mapping below, whenever the key name is equal to "trailing", the argument supplied to

bool becomes true, and a new group is created.

The mapping result is as follows:

<groups>

 <group>

 <record key="line" value="A"/>

 <record key="line" value="B"/>

 <record key="trailing" value="Total 1"/>

 </group>

 <group>

 <record key="line" value="C"/>

 <record key="trailing" value="Total 2"/>

 </group>

</groups>

This example, together with other grouping examples, is part of the following mapping file:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\GroupingFunctions.mfd. Remember

to click the Preview button applicable to the function you want to preview, before clicking the Output
pane.

580 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.9.8 group-into-blocks

The group-into-blocks function creates equal groups that contain exactly N items, where N is the value you

supply to the block-size argument. Note that the last group may contain N items or less, depending on the
number of items in the source.

In the example below, block-size is 2. Since there are five items in total, each group contains exactly two
items, except for the last one.

Languages
Built-in, C++, C#, Java, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

nodes/rows This input must receive a connection from a mapping item that provides a
sequence of zero or more values. For example, the connection may
originate from a source XML item, a CSV field, a database record, and so
on.

block-size Specifies the size of each group

Example
Let's assume that your source data is an XML file with the following content (note that, in the code listing
below, the namespace and XML declarations were removed for simplicity).

767

© 2018-2024 Altova GmbH

Function Library Reference 581Functions

Altova MapForce 2024 Professional Edition

<company>

 <person department="Administration" name="Vernon Callaby"/>

 <person department="Marketing" name="Susi Sanna"/>

 <person department="Engineering" name="Michelle Butler"/>

 <person department="Engineering" name="Fred Landis"/>

 <person department="Administration" name="Frank Further"/>

</company>

The business requirement is to group person records into blocks of two items each. To achieve this, the
following mapping invokes the group-into-blocks function, and supplies the integer value "2" as block-size.

The mapping result is as follows:

<groups>

 <group>

 <record key="Administration" value="Vernon Callaby"/>

 <record key="Marketing" value="Susi Sanna"/>

 </group>

 <group>

 <record key="Engineering" value="Michelle Butler"/>

 <record key="Engineering" value="Fred Landis"/>

 </group>

 <group>

 <record key="Administration" value="Frank Further"/>

 </group>

</groups>

Note that the last group contains only one item, since the total number of items (5) cannot be divided evenly by
2.

This example, together with other grouping examples, is part of the following mapping file:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\GroupingFunctions.mfd. Remember

to click the Preview button applicable to the function you want to preview, before clicking the Output
pane.

6.7.9.9 group-starting-with

The group-starting-with function takes a Boolean condition as argument. If the Boolean condition is true, a

new group is created, starting with the record that satisfies the condition.

582 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

In the example below, the condition is that "Key" must be equal to "heading". This condition is true for the first
and fourth records, so two groups are created as a result:

Note: One additional group is created if records exist before the first one that satisfies the condition. For
example, if there were more "line" records before the first "heading" record, these would all be placed
into a new group.

Languages
Built-in, C++, C#, Java, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

nodes/rows This input must receive a connection from a mapping item that provides a
sequence of zero or more values. For example, the connection may
originate from a source XML item, a CSV field, a database record, and so
on.

bool Provides the Boolean condition that starts a new group when true.

Example
Let's assume that your source data is an XML file with the following content (note that, in the code listing
below, the namespace and XML declarations were removed for simplicity).

<records>

 <record key="heading" value="Intro"/>

 <record key="line" value="A"/>

 <record key="line" value="B"/>

 <record key="heading" value="Body"/>

767

© 2018-2024 Altova GmbH

Function Library Reference 583Functions

Altova MapForce 2024 Professional Edition

 <record key="line" value="C"/>

</records>

The business requirement is to create groups for each "heading" record. Each group must also include any
"line" records that follow the "heading" record. To achieve this, the following mapping invokes the group-

starting-with function. In the mapping below, whenever the key name is equal to "heading", the argument

supplied to bool becomes true, and a new group is created.

The mapping result is as follows:

<groups>

 <group>

 <record key="heading" value="Intro"/>

 <record key="line" value="A"/>

 <record key="line" value="B"/>

 </group>

 <group>

 <record key="heading" value="Body"/>

 <record key="line" value="C"/>

 </group>

</groups>

This example, together with other grouping examples, is part of the following mapping file:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\GroupingFunctions.mfd. Remember

to click the Preview button applicable to the function you want to preview, before clicking the Output
pane.

6.7.9.10 item-at

Returns an item from the sequence of nodes/rows supplied as argument, at the position supplied by the
position argument. The first item is at position 1.

584 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

nodes/rows This input must receive a connection from a mapping item that provides a
sequence of zero or more values. For example, the connection may
originate from a source XML item, a CSV field, a database record, and so
on.

position This integer specifies which item from the sequence of items is to be
returned.

Example
The following mock-up mapping generates a sequence of 10 values. The sequence is processed by the item-

at function and the result is written to a target XML file.

Because the position argument is set to 3, only the third value from the sequence is passed on to the target.
Consequently, the mapping output is as follows (excluding the XML and schema declarations):

<items>

 <item>3</item>

</items>

6.7.9.11 items-from-till

Returns a sequence of nodes/rows using the "from" and "till" parameters as the boundaries. The first item is at
position 1.

767

© 2018-2024 Altova GmbH

Function Library Reference 585Functions

Altova MapForce 2024 Professional Edition

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

nodes/rows This input must receive a connection from a mapping item that provides a
sequence of zero or more values. For example, the connection may
originate from a source XML item, a CSV field, a database record, and so
on.

from This integer specifies the starting position from which items must be
retrieved.

till This integer specifies the position up to which items must be retrieved.

Example
The following mock-up mapping generates a sequence of 10 values. The sequence is processed by the items-

from-till function and the result is written to a target XML file.

Because the from and till arguments are set to 3 and 5, respectively, only the subset of values from 3 through
5 are passed on to the target. Consequently, the mapping output is as follows (excluding the XML and schema
declarations):

<items>

 <item>3</item>

 <item>4</item>

 <item>5</item>

</items>

767

586 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.9.12 last-items

Returns the last N items of the input sequence, where N is supplied by the count parameter. The first item is
at position "1".

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

nodes/rows This input must receive a connection from a mapping item that provides a
sequence of zero or more values. For example, the connection may
originate from a source XML item, a CSV field, a database record, and so
on.

count Optional parameter. Specifies how many items should be retrieved from the
input sequence. The default value is 1.

Example
The following mock-up mapping generates a sequence of 10 values. The sequence is processed by the last-

items function and the result is written to a target XML file.

Because the count argument is set to 3, only the last three values from the sequence are passed on to the
target. Consequently, the mapping output is as follows (excluding the XML and schema declarations):

<items>

 <item>8</item>

 <item>9</item>

 <item>10</item>

</items>

767

© 2018-2024 Altova GmbH

Function Library Reference 587Functions

Altova MapForce 2024 Professional Edition

6.7.9.13 not-exists

Returns false if the connected node exists; true otherwise. This function is the opposite of exists function,
but, otherwise, it has the same use.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

node The node to be tested for non-existence.

6.7.9.14 position

Returns the position of an item within the sequence of items currently being processed. This can be used, for
example, to auto-number items sequentially.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

node This input must receive a connection from a mapping item that provides a
sequence of zero or more values. For example, the connection may originate
from a source XML item, a CSV field, a database record, and so on.

Example
The following mapping illustrates using the position function in order to generate unique identification values in

data generated by the mapping. This mapping is accompanied by a mapping design file that is available at the
following path:
<Documents>\Altova\MapForce2024\MapForceExamples\ContactsFromBranchOffices.mfd.

568

767

588 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

ContactsFromBranchOffices.mfd

In the mapping above, the source XML file contains three branch offices. A branch office may contain an
arbitrary number of Contact child items. The goals of the mapping are as follows:

· Extract all Contact items from the source XML file and write them to the target XML file.
· Each contact must be assigned a unique identification number (the ID item in the target XML).
· The ID of each contact must take the form CXX-YYYYY, where X identifies the office number, and Y

identifies the contact number. If the office number is less than two characters, it must be left-padded
with zeros. Likewise, if the contact number takes less than five characters, it must be left-padded with
zeros. Consequently, a valid identification number of the first contact from the first office should look
like C01-00001.

To achieve the mapping goals, several MapForce functions have been used, including the position function.

The upper position function gets the position of each office. The lower one gets the position of each contact,

in the context of each office.

When using the position function, it is important to consider the current mapping context . More

specifically, when the mapping runs, the initial mapping context is established from the root item of the target
component to the source item connected to it (even indirectly via functions). In this example, the upper
position function processes the sequence of all offices and it initially generates the value 1, corresponding to

the first office in the sequence. The lower position function generates sequential numbers corresponding to

the contact's position in the context of that office (1, 2, 3, and so on). Note that this "inner" sequence will be
reset (and thus start from 1 again) when the next office gets processed. Both pad-string-left functions

apply padding to the generated numbers, according to the requirements stated previously. The concat function
operates in the context of each contact (because of the parent connection from the source to the target
Contact). It joins all the computed values and returns the unique identification number of each contact.

The output generated from the mapping above is shown below (note that some of the records were removed for
readability):

<Contacts>

 <Contact>

 <ID>C01-00001</ID>

 <First>Vernon</First>

 <Last>Callaby</Last>

 </Contact>

768

© 2018-2024 Altova GmbH

Function Library Reference 589Functions

Altova MapForce 2024 Professional Edition

 <Contact>

 <ID>C01-00002</ID>

 <First>Frank</First>

 <Last>Further</Last>

 </Contact>

 <!-- ... -->

 <Contact>

 <ID>C02-00001</ID>

 <First>Steve</First>

 <Last>Meier</Last>

 </Contact>

 <Contact>

 <ID>C02-00002</ID>

 <First>Theo</First>

 <Last>Bone</Last>

 </Contact>

 <!-- ... -->

</Contacts>

There may also be cases where you need to get the position of items resulting after applying a filter . Note
that the filter component is not a sequence function, and it cannot be used directly in conjunction with the
position function to find the position of filtered items. Indirectly, this is possible by adding a variable

component to the mapping. For example, the mapping below is a simplified version of the previous one. Its
mapping design file is available at the following path:
<Documents>\Altova\MapForce2024\MapForceExamples\PositionInFilteredSequence.mfd.

The result of variables in MapForce are always sequences. Therefore, in the mapping above, the position

function iterates through the sequence created by the variable and returns the position of each item in that
sequence. This mapping is discussed in more detail in Example: Filtering and Numbering Nodes .

6.7.9.15 replicate-item

Repeats every item in the input sequence the number of times specified in the count argument. If you connect
a single item to the node/row input, the function returns N items, where N is the value of the count argument.
If you connect a sequence of items to the node/row input, the function repeats each individual item in the

414

366

375

590 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

sequence count times, processing one item at a time. For example, if count is 2, then the sequence 1,2,3

produces 1,1,2,2,3,3. It is also possible to supply a different count value for each item in the input

sequence, as illustrated in the example below.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

node/row This input must receive a connection from a mapping item that provides a
sequence of zero or more values. For example, the connection may originate
from a source XML item, a CSV field, a database record, and so on.

count Specifies the number of times to replicate each item or sequence connected to
node/row.

Example
Let's assume that you have a source XML file with the following structure:

<SourceList>

 <person>

 <name>Michelle</name>

 <count>2</count>

 </person>

 <person>

 <name>Ted</name>

 <count>4</count>

 </person>

 <person>

 <name>Ann</name>

 <count>3</count>

 </person>

</SourceList>

With the help of the replicate-item function, you can repeat each person name a different number of times in

a target component. To achieve this, connect the count node of each person to the count input of the
replicate-item function:

767

© 2018-2024 Altova GmbH

Function Library Reference 591Functions

Altova MapForce 2024 Professional Edition

The output is as follows:

<TargetLists>

 <TargetList>

 <TargetString>Michelle</TargetString>

 <TargetString>Michelle</TargetString>

 </TargetList>

 <TargetList>

 <TargetString>Ted</TargetString>

 <TargetString>Ted</TargetString>

 <TargetString>Ted</TargetString>

 <TargetString>Ted</TargetString>

 </TargetList>

 <TargetList>

 <TargetString>Ann</TargetString>

 <TargetString>Ann</TargetString>

 <TargetString>Ann</TargetString>

 </TargetList>

</TargetLists>

6.7.9.16 replicate-sequence

Repeats all items in the input sequence the number of times specified in the count argument. For example, if
count is 2, then the sequence 1,2,3 produces 1,2,3,1,2,3.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

592 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Parameters

Name Description

node/rows This input must receive a connection from a mapping item that provides a
sequence of zero or more values. For example, the connection may originate
from a source XML item, a CSV field, a database record, and so on.

count Specifies the number of times to replicate the connected sequence.

Example
The following mock-up mapping generates the sequence 1,2,3. The sequence is processed by the

replicate-sequence function and the result is written to a target XML file.

Because the count argument is set to 2, the sequence is replicated twice and then passed on to the target.
Consequently, the mapping output is as follows (excluding the XML and schema declarations):

<items>

 <item>1</item>

 <item>2</item>

 <item>3</item>

 <item>1</item>

 <item>2</item>

 <item>3</item>

</items>

6.7.9.17 set-empty

Returns an empty sequence.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

767

© 2018-2024 Altova GmbH

Function Library Reference 593Functions

Altova MapForce 2024 Professional Edition

6.7.9.18 skip-first-items

Skips the first N items of the input sequence, where N is supplied by the count argument, and returns the rest
of the sequence.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

node/rows This input must receive a connection from a mapping item that provides a
sequence of zero or more values. For example, the connection may originate
from a source XML item, a CSV field, a database record, and so on.

count Optional argument. Specifies the number of items to skip. The default value is 1.

Example
The following mock-up mapping generates the sequence 1,2,3. The sequence is processed by the skip-

first-items function and the result is written to a target XML file.

Because the count argument is set to 2, the first two items are skipped and the remaining items are passed
on to the target. Consequently, the mapping output is as follows (excluding the XML and schema declarations):

<items>

 <item>3</item>

</items>

767

594 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.9.19 substitute-missing

This function is a convenient combination of exists function and if-else condition . If the item connected to
the node input exists, its content will be copied to the target. Otherwise, the content of the item connected to
the replace-with input will be copied to the target.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

node This input must receive a connection from a mapping item that provides a
sequence of zero or more values. For example, the connection may originate
from a source XML item, a CSV field, a database record, and so on.

replace-with This input must receive a connection from a mapping item that provides the
replacement value.

6.7.10 core | string functions

The string functions allow you to manipulate string data so as to extract parts of strings, test for sub-strings,
retrieve information from strings, split strings, and others.

6.7.10.1 char-from-code

Returns the character representation of the decimal Unicode value (code) supplied as argument. Tip: To find
the Unicode decimal code of a character, you can use the code-from-char function.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

568 418

767

596

© 2018-2024 Altova GmbH

Function Library Reference 595Functions

Altova MapForce 2024 Professional Edition

Parameters

Name Description

code The Unicode value, as a decimal number.

Example 1
According to the charts available on the Unicode website (https://www.unicode.org/charts/), the exclamation
mark character has the hexadecimal value of 0021. The corresponding value in decimal format is 33. Therefore,

supplying 33 as argument to the char-from-code function will return the ! character.

Example 2 (Professional and Enterprise editions)
This example shows how to replace special characters in a database with space characters. Consider an
SQLite database consisting of a table "Lines" which has two columns: "ID" and "Description".

The goal is to extract each description to a CSV file (one description per line); therefore, a mapping to achieve
this goal could look as follows:

However, because each "Description" row in Access contains multiple lines separated by CR/LF characters,
the mapping output includes line breaks also, which is not the intended result:

http://unicode.org

596 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

To overcome this problem, we are going to add to the mapping the char-from-code and replace functions

from the MapForce built-in library. Every description must be processed so that, whenever the characters above
are encountered, they should be replaced by a space character.

In the Unicode chart (http://www.unicode.org/charts/), the LF and CR characters correspond to hex 0A | dec
10 and hex 0D | dec 13 characters, respectively. Therefore, the mapping has to be modified to convert the
decimal Unicode values 13 and 10 to a string, so as to allow further processing by the replace function.

If you preview the mapping now, notice that the CR/LF characters within each database field have been
replaced by a space.

6.7.10.2 code-from-char

Returns the decimal Unicode value (code) of the character supplied as argument. If the string supplied as
argument has multiple characters, then the code of the first character is returned.

http://www.unicode.org/charts/

© 2018-2024 Altova GmbH

Function Library Reference 597Functions

Altova MapForce 2024 Professional Edition

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

char The input string value.

Example
If the input char is the $ (dollar sign) character, the function returns 36 (which is the decimal Unicode value for

this character).

6.7.10.3 concat

Concatenates (appends) two or more values into a single result string. All input values are automatically
converted to type "string". By default, this function has only two parameters, but you can add more. Click Add
parameter () or Delete parameter () to add or remove parameters.

Note: All the inputs to the concat function must have a value. If any of the inputs does not have a value, the
function is not called and an error occurs. Be aware that an empty string is a valid input value; however,
an empty sequence (such as the result of the set-empty function) is not a valid value and the function

will fail as a result. To prevent this from happening, you can first process values with the substitute-
missing function and then supply the result as input to the concat function.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

value1 The first input value.

value2 The second input value.

valueN The N input value.

594

598 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Example
In the mapping illustrated below, the concat function joins the first name, the constant " ", and the last name.

The returning value is then written to the FullName target item. The mapping of this function is available at the
following path: <Documents>\Altova\MapForce2024\MapForceExamples\HasMarketingExpenses.mfd.

HasMarketingExpenses.mfd

6.7.10.4 contains

Returns Boolean true if the string value supplied as argument contains the sub-string supplied as argument.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

value The input value (that is, the "haystack").

substring The sub-string to look for (that is, the "needle").

© 2018-2024 Altova GmbH

Function Library Reference 599Functions

Altova MapForce 2024 Professional Edition

Example
If the input value is "category" and substring is "cat", the function returns true.

6.7.10.5 normalize-space

The normalize-space function (see screenshot below) removes leading and trailing spaces of a string and

replaces internal whitespaces with a single whitespace character. Whitespace includes space (U+0020), tab
(U+0009), carriage return (U+000D), and line feed (U+000A) characters. For details about whitespaces, see the
XML Recommendation.

About non-break ing spaces
The left-trim, right-trim, and normalize-space functions do not remove non-breaking spaces. One of the

possible solutions could be to replace the non-breaking space character, whose decimal representation is 160,
with the space character, whose decimal representation is 32. The mapping below shows that after the non-
breaking space has been replaced, the trimmed SomeValue value will be mapped to the target.

If your source component is an Excel file, you can remove extra spaces in Excel using a combination of TRIM,
CLEAN, and SUBSTITUTE functions. For details, see Removing Spaces and Nonprinting Characters from Text.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

string The input string to normalize.

Example
If the input string is " The quick brown fox ", the function returns "The quick brown fox".

https://www.w3.org/TR/xml/#sec-white-space:~:text=1.0%22%20standalone%3D%27yes%27%3F%3E-,2.10%20White%20Space%20Handling,-In%20editing%20XML
https://support.microsoft.com/en-us/office/top-ten-ways-to-clean-your-data-2844b620-677c-47a7-ac3e-c2e157d1db19?ns=excel&version=21&ui=en-us&rs=en-us&ad=us

600 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.10.6 starts-with

Returns Boolean true if the string supplied as argument starts with the sub-string supplied as argument; false
otherwise.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

string The input string.

substr The sub-string to check for.

Example
If the input string is category and substr is cat, the function returns true.

6.7.10.7 string-length

Returns the number of characters in the string supplied as argument.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

string The input string.

© 2018-2024 Altova GmbH

Function Library Reference 601Functions

Altova MapForce 2024 Professional Edition

Example
If the input string is car, the function returns 3. If the input string is an empty string, the function returns 0.

6.7.10.8 substring

Returns the portion of the string specified by the start and length parameters.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

string The input string.

start Specifies the starting position (index) from which the sub-string should be
retrieved. The first index is 1.

length Optional. Specifies the number of characters to retrieve. If the length parameter
is not specified, the result is a fragment starting from start until the end of the
string.

Example
If the input string is MapForce, start is 1, and length is 3, the function returns Map. If the input string is

MapForce, start is 4, and length is not provided, the function returns Force.

6.7.10.9 substring-after

Returns the portion of the string that occurs after the first occurrence of substr. If substr does not occur in
string, the function returns an empty string.

602 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

string The input string.

substr The sub-string. Any characters after the first occurrence of substr are the result
of the function.

Example
If the input string is MapForce, and substr is Map, the function returns Force. If the input string is 2020/01/04

and substr is /, the function returns 01/04.

6.7.10.10 substring-before

Returns the portion of the string that occurs before the first occurrence of substr. If substr does not occur in
string, the function returns an empty string.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

string The input string.

substr The sub-string. Any characters before the first occurrence of substr are the
result of the function.

Example
If the input string is MapForce, and substr is Force, the function returns Map. If the input string is 2020/01/04

and substr is /, the function returns 2020.

© 2018-2024 Altova GmbH

Function Library Reference 603Functions

Altova MapForce 2024 Professional Edition

6.7.10.11 tokenize

Splits the input string into a sequence of strings using the delimiter supplied as argument.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

input The input string.

delimiter The delimiter to use.

Example
If the input string is A,B,C and the delimiter is , then the function returns a sequence of three strings: A, B, and

C.

In the mock-up mapping illustrated above, the function's result is a sequence of strings. According to the
general mapping rules , for each item in the source sequence, a new item is created in the target
component. Consequently, the mapping output looks as follows:

<items>

 <item>A</item>

 <item>B</item>

 <item>C</item>

</items>

For a more elaborate example, see the tokenizeString1.mfd mapping available in the
<Documents>\Altova\MapForce2024\MapForceExamples\ folder.

767

604 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

tokenizeString1.mfd

A fragment from the source XML file is shown below. The Tool element has two attributes: Name and Code.
The Tool element data consists of comma-delimited text.

<?xml version="1.0" encoding="UTF-8"?>
<AltovaTools xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="AltovaTools.xsd">

 <Version>2010</Version>

 <Tool Name="XMLSpy" Code="XS">XML editor, XSLT editor, XSLT debugger, XQuery editor,

XQuery debugger, XML Schema / DTD editor, WSDL editor, SOAP debugger</Tool>

 <Tool Name="MapForce" Code="MF">Data integration, XML mapping, database mapping, text

conversion, EDI translator, Excel mapping, XBRL mapping, Web services</Tool>

 <Tool Name="StyleVision" Code="SV">Stylesheet designer, electronic forms, XSLT design,

XSL:FO design, database reporting, XBRL rendering</Tool>

 <Tool Name="UModel" Code="UM">UML modeling tool, code generation, reverse engineering,

UML, BPMN, SysML, project documentation, XMI interchange</Tool>

 <Tool Name="DatabaseSpy" Code="DS">Multi-database tool, SQL auto-completion, graphical

database design, table browser, content editor, database comparison tool</Tool>

 <!-- ... -->

</AltovaTools>

The mapping does the following:

· The tokenize function receives data from the Tool source item and uses the comma , delimiter to

split that data into separate chunks. The first chunk is "XML editor", the second one is "XSLT editor",
and so on.

· For each chuck resulting from the tokenize function, a new row is generated in the target. This

happens thanks to the connection between the function's result and the Rows item in the target
component.

· The result of the tokenize function is also mapped to the left-trim function, which removes the

leading white space of each chunk.
· The result of the left-trim function (each chunk) is written to the Feature item of the target

component.
· The target component output file has been defined as a CSV file (AltovaToolFeatures.csv) with the

field delimiter being a semicolon (double click component to see settings).

© 2018-2024 Altova GmbH

Function Library Reference 605Functions

Altova MapForce 2024 Professional Edition

The result of the mapping is that, for each chunk created by the tokenize function, a new row is created in the

target CSV file. A fragment of the mapping output looks as follows:

Tool;Feature
XMLSpy;XML editor
XMLSpy;XSLT editor
XMLSpy;XSLT debugger
XMLSpy;XQuery editor
XMLSpy;XQuery debugger
XMLSpy;XML Schema / DTD editor
XMLSpy;WSDL editor
XMLSpy;SOAP debugger
MapForce;Data integration
MapForce;XML mapping
MapForce;database mapping
MapForce;text conversion
MapForce;EDI translator
MapForce;Excel mapping

6.7.10.12 tokenize-by-length

Splits the input string into a sequence of strings. The size of each resulting string is determined by the length
parameter.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

input The input string.

length Determines the length of each string in the generated sequence of strings.

Example
If the input string is ABCDEF and the length is 2, then the function returns a sequence of three strings: AB, CD,

and EF.

606 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

In the mock-up mapping illustrated above, the function's result is a sequence of strings. According to the
general mapping rules , for each item in the source sequence, a new item is created in the target
component. Consequently, the mapping output looks as follows:

<items>

 <item>AB</item>

 <item>CD</item>

 <item>EF</item>

</items>

For a more elaborate example, see the tokenizeString2.mfd mapping available in the
<Documents>\Altova\MapForce2024\MapForceExamples\ folder.

tokenizeString2.mfd

The XML source file is shown below, and is the same as the one used in the previous example. The MissionKit
element has two attributes: Edition and ToolCodes, but no MissionKit element content. Note that some of the
XML content not relevant to this example has been removed.

<?xml version="1.0" encoding="UTF-8"?>
<AltovaTools xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="AltovaTools.xsd">

 <Version>2010</Version>

 <Tool Name="XMLSpy" Code="XS"><!--...--></Tool>

 <Tool Name="MapForce" Code="MF"><!--...--></Tool>

767

© 2018-2024 Altova GmbH

Function Library Reference 607Functions

Altova MapForce 2024 Professional Edition

 <Tool Name="StyleVision" Code="SV"><!--...--></Tool>

 <Tool Name="UModel" Code="UM"><!--...--></Tool>

 <Tool Name="DatabaseSpy" Code="DS"><!--...--></Tool>

 <Tool Name="DiffDog" Code="DD"><!--...--></Tool>

 <Tool Name="SchemaAgent" Code="SA"><!--...--></Tool>

 <Tool Name="SemanticWorks" Code="SW"><!--...--></Tool>

 <Tool Name="Authentic" Code="AU"><!--...--></Tool>

 <MissionKit Edition="Enterprise Software Architects" ToolCodes="XSMFSVUMDSDDSASW"/>

 <MissionKit Edition="Professional Software Architects" ToolCodes="XSMFSVUMDS"/>

 <MissionKit Edition="Enterprise XML Developers" ToolCodes="XSMFSVDDSASW"/>

 <MissionKit Edition="Professional XML Developers" ToolCodes="XSMFSV"/>

</AltovaTools>

The aim of the mapping is to generate a list showing which Altova tools are part of the respective MissionKit
editions.

How the mapping works:

· The SelectMissionKit input component acts as a parameter to the mapping; it receives its default
value from a constant, in this case "Enterprise XML Developers".

· The equal function compares the edition supplied as parameter with the Edition item from the source

XML file and passes on the result to the bool parameter of the ToolCodes filter.
· The node/row input of the ToolCodes filter is supplied by the ToolCodes item of the source file. The

value for the "Enterprise XML Developers" edition is: XSMFSVDDSASW.

· The XSMFSVDDSASW value is passed to the on-true parameter, and further to the input parameter of the

tokenize-by-length function.

· The tokenize-by-length function splits the value XSMFSVDDSASW into multiple chunks of two

characters each. The length parameter is 2; therefore 6 chunks are created as a result.
· Each chunk is compared to the 2-character Code value from the source file (of which there are 9 items

in total). The result of the comparison (true/false) is passed on to the bool parameter of the filter. Note
that all chunks produced by the tokenize-by-length function are passed on to the node/row

parameter of the filter.
· The exists functions now checks for existing/non-existing nodes passed on to it by the on-true

parameter of the filter component. Existing nodes are those where there is a match between the
ToolCodes chunk and the Code value. Non-existing nodes are those where there was no ToolCodes
chunk to match a Code value.

· Each bool result of the exists function is passed on to the if-else component, which generates a "Y"

in the target if the node exists, or an "N" if the node does not exist.

The result of the mapping is as follows:

Tool;MissionKit for Enterprise XML Developers

XMLSpy;Y

MapForce;Y

StyleVision;Y

UModel;N

DatabaseSpy;N

DiffDog;Y

SchemaAgent;Y

608 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

SemanticWorks;Y

Authentic;N

6.7.10.13 tokenize-regexp

Splits the input string into a sequence of strings. Any substring that matches the regular expression pattern
supplied as argument defines the separator. The matched (separator) strings are not included in the result
returned by the function.

Note: When generating C++, C#, or Java code, the advanced features of the regular expression syntax might
differ slightly. See the regex documentation of each language for more information.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

input The input string.

pattern Provides a regular expression pattern. Any substring that matches the pattern
will be treated as delimiter. For more information, see Regular expressions .

flags Optional parameter. Provides the regular expression flags to be used. For
example, the flag "i" instructs the mapping process to operate in case-
insensitive mode.

Example
The goal of the mapping illustrated below is to split the string a , b c,d into a sequence of strings, where

each alphabetic character is an item in the sequence. Any redundant whitespace or commas must be
removed.

512

514

© 2018-2024 Altova GmbH

Function Library Reference 609Functions

Altova MapForce 2024 Professional Edition

To achieve this goal, the regular expression pattern [,]+ was supplied as parameter to the tokenize-regexp

function. This pattern has the following meaning:

· It matches any of the characters inside the character class [,]. Therefore, a split will occur whenever

a comma or a space is encountered in the input string.
· The quantifier + specifies that one or more occurrences of the preceding character class are to be

matched. Without this quantifier, each occurrence of space or comma would create a separate item in
the resulting sequence of strings, which is not the intended result.

The mapping output is as follows:

<items>

 <item>a</item>

 <item>b</item>

 <item>c</item>

 <item>d</item>

</items>

6.7.10.14 translate

Performs a character by character replacement. It looks in the value for characters contained in string1, and
replaces each character with the one in the same position in the string2. When there are no corresponding
characters in string2, the character is removed.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Name Description

value The input string.

string1 Provides a list of search characters. The position of each character inside the
string is important.

string2 Provides a list of replacement characters. The position of each replacement
character must correspond to the one in string1.

610 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Example
Let's suppose you want to convert the string [12,3] to (12.3). Namely, the square brackets must be replaced

by round brackets, and any comma must be replaced by the dot character. To achieve this, you can call the
translate function as follows:

In the mapping above, the first constant supplies the input string to be processed. The second and the third
constant provide a list of characters as string1 and string2, respectively.

string1 [,]

string2 (.)

Notice that both string1 and string2 have the same number of characters. For each character in string1, the
equivalent character at the same position from string2 will be used as a replacement. Consequently, the
following replacements will take place:

· Each [will be replaced by a (

· Each , will be replaced by a .

· Each] will be replaced by a)

The mapping output is as follows:

(12.3)

This function can also be used to strip certain characters selectively from a string. To achieve this, set the
string1 parameter to the characters you want to remove, and string2 to an empty string. For example, the
mapping below removes all digits from the string 38ab8a7a65xkh3.

The mapping output is as follows:

abaaxkh

© 2018-2024 Altova GmbH

Function Library Reference 611Functions

Altova MapForce 2024 Professional Edition

6.7.11 db

The db library contains functions that allow you to define the mapping results when encountering null fields in
databases.

6.7.11.1 is-not-null

Returns false if the field is null; true otherwise.

Languages
Built-in, C++, C#, Java.

Parameters

Name Description

field The database field.

6.7.11.2 is-null

Returns true if the field is null; false otherwise.

Languages
Built-in, C++, C#, Java.

Parameters

Name Description

field The database field.

612 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.11.3 set-null

Sets a database field to null. This function will also overwrite a default value with null. If connected to something
that is not a database field, it will behave like an empty sequence. Note the following:

· Connecting set-null to a different function will usually result in the other function not being called at

all. Connecting set-null to a sequence function such as count will call the function with an empty

sequence.
· Connecting set-null to filters and if-else conditions works as expected; fields are set to null. For

filters, this means the "node/row" input.
· Using set-null as an input for a simpleType element will not create that element in the target

component.

Languages
Built-in, C++, C#, Java.

6.7.11.4 substitute-null

Returns the field itself if it is not null; otherwise, replace-with is returned.

Languages
Built-in, C++, C#, Java.

Parameters

Name Description

field The database field.

replace-with The replacement value.

Example
The mapping below shows an example of the substitute-null function in use. This mapping is called DB-

ApplicationList.mfd and is available in the <Documents>\Altova\MapForce2024\MapForceExamples\
folder.

© 2018-2024 Altova GmbH

Function Library Reference 613Functions

Altova MapForce 2024 Professional Edition

The mapping reads data from an SQLite database which contains an "Applications" table.

The first function checks if the Category field is null in the "Applications" table. Since this field is null for the
Notepad application, the substitute value "Misc" is mapped to the Category item of the target text file.

The second function checks if the Description field is null. Again, this field is null for the Notepad application,
so the substitute value "No description" is mapped to the Description item of the target file.

6.7.12 lang | datetime functions

The date and time functions from the lang library can be used to manipulate dates, times, and durations.
Unlike the date and time functions from the core library, these functions are available only when selecting Built-
in, Java, C#, or C++ languages.

614 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.12.1 age

Returns the number of full years elapsed between the birth date supplied as argument and now.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

birthdate xs:date Mandatory. Provides the birth date as an xs:date value.

now xs:date Optional parameter. The default is the current system date. If a
value is mapped to the now argument, the function returns the
difference between the birth date and now, in full years.

6.7.12.2 convert-to-utc

Converts the time value supplied as argument to UTC (Coordinated Universal Time). The function takes the
timezone component (for example, "+5:00") into account.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

time xs:dateTime Provides the xs:dateTime value to be converted.

Example
If the input value is 2001-12-17T09:30:02+05:00, the function's result is 2001-12-17T04:30:02.

© 2018-2024 Altova GmbH

Function Library Reference 615Functions

Altova MapForce 2024 Professional Edition

If the input value is 2001-12-17T09:30:02Z, the function's result is 2001-12-17T09:30:02. In this case, no

conversion has taken place, because the trailing "Z" already defines this time to be "Zero" (or "Zulu") time,
which is the same as UTC.

6.7.12.3 date-from-datetime

Returns the date part from the xs:dateTime value supplied as argument. The time part is set to zero. The
timezone is not changed.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

datetime xs:dateTime Provides the xs:dateTime value to be processed.

Example
If the input value is 2001-12-17T09:30:02+05:00, the function's result is 2001-12-17+05:00.

6.7.12.4 datetime-add

Returns an xs:dateTime value obtained by adding a duration (the second argument) to a datetime (the first
argument).

Languages
Built-in, C++, C#, Java.

616 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Parameters

Name Type Description

datetime xs:dateTime Provides the xs:dateTime value to be used as input.

duration xs:duration Provides the xs:duration value.

 An example duration is P1Y2M3DT04H05M59S, where:

· "P" is the period designator, and is mandatory;
· The rest of the characters denote, in this order: 1 Year, 2

Months, 3 Days, T (Time designator), 04 Hours, 05
Minutes, 59 Seconds.

If the minus character appears before the "P" designator, this
indicates a negative duration, for example: -P1D.

Example
Let's assume that the input datetime value is 2001-12-17T09:30:02+05:00. If the duration is P10D (10

days), the function's result is 2001-12-27T09:30:02+05:00.

To obtain yesterday's date, connect the now function to the datetime input. In the mapping below, the period -

P1D means "minus 1 day", so the mapping returns yesterday's date.

6.7.12.5 datetime-diff

Returns the duration obtained by subtracting datetime2 (second argument) from datetime1 (first argument).
The result can be mapped to a string or duration data type.

Languages
Built-in, C++, C#, Java.

© 2018-2024 Altova GmbH

Function Library Reference 617Functions

Altova MapForce 2024 Professional Edition

Parameters

Name Type Description

datetime1 xs:dateTime Provides the first xs:dateTime value.

datetime2 xs:duration Provides the second xs:dateTime value.

Example
In the mapping illustrated below, the datetime-diff function subtracts the flight departure datetime 2001-12-

17T09:30:02+05:00 from the arrival datetime 2001-12-17T19:30:02+05:00. Note that the arrival datetime is

the greater value, so it is connected to the first input of the function.

The mapping output is the difference between the two (a period of 10 hours):

PT10H

6.7.12.6 datetime-from-date-and-time

Returns an xs:dateTime value built from an xs:date value (first argument) and an xs:time value (second
argument). The result can be mapped to a string or xs:dateTime data type.

Languages
Built-in, C++, C#, Java.

618 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Parameters

Name Type Description

datevalue xs:date Provides a value of type xs:date

timevalue xs:time Provides a value of type xs:time

Example
If the first argument is 2012-06-29 and the second argument is 11:59:55, the function returns 2012-06-

29T11:59:55.

6.7.12.7 datetime-from-parts

Returns a value of type xs:dateTime built from any combination of the following parts as arguments: year,
month, day, hour, minute, second, millisecond, and timezone. This function automatically normalizes the
supplied parameters. For example, 32nd of January will automatically be changed to 1st of February.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

year xs:int Provides the year.

month xs:int Provides the month.

day xs:int Provides the day of the month.

hour xs:int Optional. Provides the hour.

minute xs:int Optional. Provides the minute.

second xs:int Optional. Provides the second.

© 2018-2024 Altova GmbH

Function Library Reference 619Functions

Altova MapForce 2024 Professional Edition

Name Type Description

millisecond xs:decimal Optional. Provides the millisecond.

timezone xs:int Optional. Provides the timezone, in minutes. This value can be
negative.

Example
The following mapping constructs an xs:dateTime value from parts that are supplied by constants.

The mapping output is 2020-04-17T08:58:54.333-01:00.

6.7.12.8 day-from-datetime

Returns the day, as an integer value, from the xs:dateTime value supplied as argument.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

datetime xs:dateTime Provides the input value of type xs:dateTime.

620 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Example
If datetime is 2001-12-17T10:30:03+01:00, then the function returns 17.

6.7.12.9 day-from-duration

Returns the day, as an integer value, from the xs:duration value supplied as argument.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

duration xs:duration Provides the input value of type xs:duration.

Example
If duration is P1Y2M3DT10H30M, then the day-from-duration function returns 3.

6.7.12.10 duration-add

Returns the duration obtained by adding two durations.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

duration1 xs:duration Provides the first input value of type xs:duration.

© 2018-2024 Altova GmbH

Function Library Reference 621Functions

Altova MapForce 2024 Professional Edition

Name Type Description

duration2 xs:duration Provides the second input value of type xs:duration.

Example
If the first duration is P0Y0M3DT03H0M (3 days and 3 hours) and the second duration is P0Y0M3DT01H0M (3 days

and 1 hour), then the function returns P6DT4H (6 days and 4 hours).

6.7.12.11 duration-from-parts

Returns a value of type xs:duration calculated by combining the following parts supplied as arguments: year,
month, day, hour, minute, second, millisecond, negative.

 An example duration is P1Y2M3DT04H05M59S, where:

· "P" is the period designator, and is mandatory;
· The rest of the characters denote, in this order: 1 Year, 2 Months, 3 Days, T (Time designator), 04

Hours, 05 Minutes, 59 Seconds.

If the minus character appears before the "P" designator, this indicates a negative duration, for example: -P1D.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

year xs:int Provides the year.

month xs:int Provides the month.

day xs:int Provides the day of the month.

hour xs:int Optional. Provides the hour.

622 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Type Description

minute xs:int Optional. Provides the minute.

second xs:int Optional. Provides the second.

millisecond xs:decimal Optional. Provides the millisecond.

negative xs:boolean Optional. Must be true for a negative duration; false otherwise.

Example
The following mapping generates a negative duration of 1 year, 4 months, 17 days, 8 hours, 58 minutes, and
54.333 seconds.

The mapping output is -P1Y4M17DT8H58M54.333S.

6.7.12.12 duration-subtract

Returns the xs:duration value obtained by subtracting duration2 from duration1.

 An example duration is P1Y2M3DT04H05M59S, where:

· "P" is the period designator, and is mandatory;
· The rest of the characters denote, in this order: 1 Year, 2 Months, 3 Days, T (Time designator), 04

Hours, 05 Minutes, 59 Seconds.

If the minus character appears before the "P" designator, this indicates a negative duration, for example: -P1D.

© 2018-2024 Altova GmbH

Function Library Reference 623Functions

Altova MapForce 2024 Professional Edition

Languages
Built-in, C++, C#, Java.

Example
If duration1 is P0Y0M0DT05H07M (5 hours and 7 minutes) and duration2 is PT1H (1 hour), the function returns

PT4H7M (4 hours and 7 minutes).

6.7.12.13 hour-from-datetime

Returns the hour, as an integer value, from the xs:dateTime value supplied as argument.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

datetime xs:dateTime Provides the input value of type xs:dateTime.

Example
If datetime is 2001-12-17T09:30:02+05:00, then the function returns 9.

6.7.12.14 hour-from-duration

Returns the hour, as an integer value, from the xs:duration value supplied as argument.

Languages
Built-in, C++, C#, Java.

624 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Parameters

Name Type Description

duration xs:duration Provides the input value of type xs:duration.

Example
If duration is P0Y0M0DT05H07M, the function returns 5.

6.7.12.15 leapyear

Returns Boolean true if the year of the xs:dateTime value supplied as argument is a leap year; false
otherwise.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

datetime xs:dateTime Provides the input value of type xs:dateTime.

Example
If datetime is 2020-04-17T09:30:02+02:00, the function returns true, since the year 2020 is a leap year.

6.7.12.16 millisecond-from-datetime

Returns the milliseconds, as an xs:decimal value, from the xs:dateTime value supplied as argument.

Languages
Built-in, C++, C#, Java.

© 2018-2024 Altova GmbH

Function Library Reference 625Functions

Altova MapForce 2024 Professional Edition

Parameters

Name Type Description

datetime xs:dateTime Provides the input value of type xs:dateTime.

Example
If datetime is 2001-12-17T09:30:02.544+05:00, the function returns 544.

6.7.12.17 millisecond-from-duration

Returns the milliseconds, as an xs:decimal value, from the xs:duration value supplied as argument.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

duration xs:duration Provides the input value of type xs:duration.

Example
If duration is P0Y0M0DT05H07M02.227S, the function returns 227.

6.7.12.18 minute-from-datetime

Returns the minutes, as an integer value, from the xs:dateTime value supplied as argument.

Languages
Built-in, C++, C#, Java.

626 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Parameters

Name Type Description

datetime xs:dateTime Provides the input value of type xs:dateTime.

Example
If datetime is 2001-12-17T09:30:02.544+05:00, the function returns 30.

6.7.12.19 minute-from-duration

Returns the minutes, as an integer value, from the xs:duration value supplied as argument.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

duration xs:duration Provides the input value of type xs:duration.

Example
If duration is P0Y0M0DT05H07M02.227S, the function returns 7.

6.7.12.20 month-from-datetime

Returns the month, as an integer value, from the xs:dateTime value supplied as argument.

Languages
Built-in, C++, C#, Java.

© 2018-2024 Altova GmbH

Function Library Reference 627Functions

Altova MapForce 2024 Professional Edition

Parameters

Name Type Description

datetime xs:dateTime Provides the input value of type xs:dateTime.

Example
If datetime is 2001-12-17T09:30:02.544+05:00, the function returns 12.

6.7.12.21 month-from-duration

Returns the month, as an integer value, from the xs:duration value supplied as argument.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

duration xs:duration Provides the input value of type xs:duration.

Example
If duration is P0Y04M0DT05H07M02.227S, the function returns 4.

6.7.12.22 now

Returns the current date and time (including timezone), as an xs:dateTime value.

Languages
Built-in, C++, C#, Java.

628 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Example
The following mapping outputs the current date and time. The output changes each time when the mapping
runs.

An example output would be 2020-04-17T11:42:34.684+02:00.

For an example on how to extract yesterday's date, see the core | lang | datetime-add function.

6.7.12.23 remove-timezone

Removes the timezone component from the time (of type xs:dateTime) input parameter.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

time xs:dateTime Provides the input value of type xs:dateTime.

Example
If time is 2001-12-17T09:30:02+05:00, the function returns 2001-12-17T09:30:02.

6.7.12.24 second-from-datetime

Returns the seconds, as an integer value, from the xs:dateTime value supplied as argument.

Languages
Built-in, C++, C#, Java.

615

© 2018-2024 Altova GmbH

Function Library Reference 629Functions

Altova MapForce 2024 Professional Edition

Parameters

Name Type Description

datetime xs:dateTime Provides the input value of type xs:dateTime.

Example
If datetime is 2001-12-17T09:30:02.544+05:00, the function returns 2.

6.7.12.25 second-from-duration

Returns the seconds, as an integer value, from the xs:duration value supplied as argument.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

duration xs:duration Provides the input value of type xs:duration.

Example
If duration is P0Y04M0DT05H07M02.227S, the function returns 2.

6.7.12.26 time-from-datetime

Returns the time component, as an xs:time value, from the xs:dateTime value supplied as argument.

Languages
Built-in, C++, C#, Java.

630 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Parameters

Name Type Description

datetime xs:dateTime Provides the input value of type xs:dateTime.

Example
If datetime is 2001-12-17T09:30:02+05:00, the function returns 09:30:02+05:00.

6.7.12.27 timezone

Returns the timezone offset, in minutes, from the xs:dateTime value supplied as argument. Returns 0 for UTC.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

datetime xs:dateTime Provides the input value of type xs:dateTime.

Example
If datetime is 2001-12-17T09:30:02.544+05:00, the function returns 300.

6.7.12.28 weekday

Returns the day of the week from the xs:dateTime value supplied as argument. The function will return value 1
for Monday, value 2 for Tuesday, and so on.

Languages
Built-in, C++, C#, Java.

© 2018-2024 Altova GmbH

Function Library Reference 631Functions

Altova MapForce 2024 Professional Edition

Parameters

Name Type Description

datetime xs:dateTime Provides the input value of type xs:dateTime.

6.7.12.29 weeknumber

Returns the week number within the year from the xs:dateTime value supplied as argument. The function will
return value 1 for the first week of the year, value 2 for the second week, and so on.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

datetime xs:dateTime Provides the input value of type xs:dateTime.

6.7.12.30 year-from-datetime

Returns the year, as an integer value, from the xs:dateTime value supplied as argument.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

datetime xs:dateTime Provides the input value of type xs:dateTime.

632 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Example
If datetime is 2001-12-17T09:30:02.544+05:00, the function returns 2001.

6.7.12.31 year-from-duration

Returns the year, as an integer value, from the xs:duration value supplied as argument.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

duration xs:duration Provides the input value of type xs:duration.

Example
If duration is P01Y04M0DT05H07M02.227S, the function returns 1.

6.7.13 lang | file functions

MapForce provides the ability to read BLOB (binary large object) data from binary files into a mapping, and then
consume it without changing the internal structure of the binary data (raw). For example, you can save binary
data to a database BLOB field, to a field of type xs:base64Binary in an XML file, or send it to a Web service*.

* Web service calls are supported in MapForce Enterprise Edition only.

You can also create mappings that read binary data from some source (such as a BLOB field in a database, a
field of type xs:base64Binary in an XML file, or a Web service) and then write binary files to the disk. The list
below illustrates some of the possible scenarios in which binary files might be useful:

· Extract binary content encoded as base-64 data from an XML file and save it to the disk (for example,
as a PDF file)

· Process image files stored on the disk and send them as base-64 encoded binary content to a Web
service

· Extract BLOB content from a database table and save it as image files to the disk (one image file for
each row in the database table)

· Read image files from the disk and save them to a database table as BLOB data fields.

© 2018-2024 Altova GmbH

Function Library Reference 633Functions

Altova MapForce 2024 Professional Edition

Note: Mapping data to or from binary files requires BUILT-IN as a transformation language. You can
preview the mapping in MapForce (and save the output files, if any) or choose to execute it with
MapForce Server (licensed separately) on a different computer or platform. It is not supported to
generate an executable C#, C++, or Java program from mappings that read or write binary files.

Read from and write to binary files
As such, there is no component kind associated with binary files in MapForce, like it is the case, for example,
with XML, text, or JSON files. Instead, to help you accomplish goals such as the ones above, the following
MapForce built-in functions are available:

· read-binary-file
· write-binary-file

6.7.13.1 read-binary-file

This function returns the content of the specified file as a BLOB (binary large object) of type xs:base64Binary.
Note that even though the data type is called "base64Binary", the internal representation is just a BLOB. Only
when you map the function's result to an XML node of type xs:base64Binary will it actually be base64-
encoded. You could also map the function's result to xs:hexBinary, to a database blob, or to a binary field in a
Protocol Buffers structure.

To read a binary file into a mapping, supply its path as input to the filepath argument. If the filepath is relative,
then MapForce will look for the file in the same directory as the mapping. The must-exist argument is optional;
if the file cannot be opened and this parameter is true, the mapping throws an error. If the file cannot be opened
and this parameter is false, an empty binary is returned.

Languages
Built-in.

Parameters

Name Type Description

filepath xs:string The file path.

must-exist xs:boolean Optional parameter. If the file
cannot be opened and this
parameter is true, the mapping
throws an error. If the file cannot
be opened and this parameter is
false, an empty binary is returned.

The default value is true.

22

633

635

634 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Example
The mapping illustrated below reads data from an image file and writes it to a database table. The target
database is SQLite. Notice that the data type of the picture database field is BLOB.

To extract binary content from the file, the read-binary-file function was used. In this example, the first
argument, filepath, is supplied by a constant. Note that, because the path is relative, MapForce will look for
the image file in the same directory as the mapping.

The mapping populates the following fields in the target database:

· id - In this example, the database component is configured so that id is database-generated rather
than being supplied by the mapping. For more information, see Inserting Data into a Table .

· title - This value is provided by a simple input component with the same name. Note that a design-
time execution value is set ("product1") in order to make it possible to preview the mapping. For more
information, see Supplying Parameters to the Mapping .

271

352

© 2018-2024 Altova GmbH

Function Library Reference 635Functions

Altova MapForce 2024 Professional Edition

· picture - This field receives the direct output of the read-binary-file function.

Because the target component is a database, previewing the mapping generates a pseudo-SQL script that you
can review, but does not send any changes to the database. To run the actual script against the database,
select the menu command Output | Run SQL-Script.

6.7.13.2 write-binary-file

This function writes binary content to the specified file path and returns the path of the written file. If a binary file
is the only desired output, connect the function's result to a simple output component. Because this
function writes a file whenever its output is used in the mapping, it is recommended to connect the function's
result directly to a target component, without using other processing in between.

To write binary files, supply their path as input to the filepath argument. If filepath is relative, then MapForce
will generate the file in the same directory as the mapping. The content argument must be connected to the
actual binary content (for example, a BLOB field in a database).

When you preview the mapping in MapForce, the function generates temporary files by default, instead of
writing files directly to the disk. To save the temporary files to disk, first click the Output pane, and then click

the Save generated output or Save all generated outputs toolbar button, as applicable.

To configure MapForce to write output directly to final files instead of temporary, select the Tools | Options
menu command, click General, and then select the Write directly to final output files option. Be aware that
this option overwrites any existing files with the same name.

The function always returns the final (not temporary) file name, even when the final file is not saved to the disk

363

636 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

yet (that is the case when you preview the mapping and the Write directly to final output files option is
disabled).

Note that it is not supported for a mapping to read back its own output file.

Languages
Built-In

Parameters

Name Type Description

filepath xs:string The input file path.

content xs:base64Binary The binary content of type
xs:base64Binary.

Example
The mapping illustrated below reads BLOB values from a SQLite database and writes image files to the disk.
The database has a table called products, which has the following columns (fields):

· id (integer, the unique permanent serial number of the record)
· title (text, the title of the product)
· description (text, the product's description)
· picture (blob, the product's image)

For the scope of this example, only the id and picture fields are relevant.

The goal of the mapping is to extract all pictures from the products table and write them as files to the disk. As
illustrated above, the write-binary-file function is used for that purpose. The first argument, filepath,

receives the file path for each image. The path must be unique to avoid overriding any files, so it is generated by
concatenating the unique database id of each record with the word "image" and then adding the ".png" file
extension (it is assumed that all pictures are in PNG format). Note that the path is relative, so the files will be
written to the same directory as the mapping.

© 2018-2024 Altova GmbH

Function Library Reference 637Functions

Altova MapForce 2024 Professional Edition

The second argument, content, receives the binary content stored in the database.

The count function returns a count of all generated files, and combines this number with the string "file(s)
written". This provides a report as to how many files were actually generated by the mapping. In this example,
the database contains only two product records, so the mapping output reflects this:

As stated previously, this function generates temporary files when the mapping runs in preview execution. To
preview each individual file, use the arrow buttons to navigate to the record of interest, click the Open with
button, and select an image editor.

To save all files, click the Save generated output or Save all generated outputs toolbar button, as
applicable.

6.7.14 lang | generator functions

The generator functions from the lang library are functions that generate values (currently, create-guid is the

only such function).

6.7.14.1 create-guid

Creates a globally unique identifier (GUID), as a hex-encoded string. This function can be used to generate
unique values, directly from the mapping, for database fields or other component types. See also the function
format-guid-string .656

638 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Languages
Built-in, C++, C#, Java.

6.7.15 lang | logical functions

Logical functions from the lang library include functions that evaluate miscellaneous value types using Boolean
logic.

6.7.15.1 logical-xor

Returns true if value1 is different from value2; false otherwise.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

value1 xs:boolean The first input value.

value2 xs:boolean The second input value.

6.7.15.2 negative

Returns true if the input value is negative (less than zero); false otherwise.

Languages
Built-in, C++, C#, Java.

© 2018-2024 Altova GmbH

Function Library Reference 639Functions

Altova MapForce 2024 Professional Edition

Parameters

Name Type Description

value xs:decimal The input value.

6.7.15.3 numeric

Returns true if the input value is a number or a string that can be parsed as a number; false otherwise.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

value xs:decimal The input value.

Example
If the input value is the string "4.33", the function returns true. If the input value is the string "4.33 USD", the

function returns false.

6.7.15.4 positive

Returns true if the input value is positive (equal to or greater than zero); false otherwise.

Languages
Built-in, C++, C#, Java.

640 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Parameters

Name Type Description

value xs:decimal The input value.

6.7.16 lang | math functions

The math functions from the lang library can be used to perform various mathematical operations in the
mapping.

6.7.16.1 abs

Returns the absolute value of the numeric value supplied as argument. If the argument is not negative, the
argument is returned. If the argument is negative, the negation of the argument is returned.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

value xs:decimal The input value.

6.7.16.2 acos

Returns the arc cosine of value, in the range of -pi/2 through pi/2.

Languages
Built-in, C++, C#, Java.

© 2018-2024 Altova GmbH

Function Library Reference 641Functions

Altova MapForce 2024 Professional Edition

Parameters

Name Type Description

value xs:double The input value.

6.7.16.3 asin

Returns the arc sine of value, in the range of -pi/2 through pi/2.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

value xs:double The input value.

6.7.16.4 atan

Returns the arc tangent of value, in the range of -pi/2 through pi/2.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

value xs:double The input value.

642 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.16.5 cos

Returns the trigonometric cosine of the angle given by value. The unit of value is radian.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

value xs:double The input value.

6.7.16.6 degrees

Converts an angle measured in radians to an approximately equivalent angle measured in degrees.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

value xs:double The input value.

6.7.16.7 divide-integer

Returns the integer result of dividing value1 by value2.

© 2018-2024 Altova GmbH

Function Library Reference 643Functions

Altova MapForce 2024 Professional Edition

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

value1 xs:decimal The first input value.

value2 xs:decimal The second input value.

Example
If the first value is 15 and the second value is 2, the function returns 7.

6.7.16.8 exp

Returns Euler's number e raised to the power of value.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

value xs:double The input value.

6.7.16.9 log

Returns the natural logarithm (base e) of value.

Languages
Built-in, C++, C#, Java.

644 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Parameters

Name Type Description

value xs:double The input value.

6.7.16.10 log10

Returns the decimal logarithm (base 10) of value.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

value xs:double The input value.

6.7.16.11 max

Returns the numeric value of the largest value supplied as argument. By default, this function has only two
parameters, but you can add more. Click Add parameter () or Delete parameter () to add or remove
parameters, see also Add or Delete Function Arguments .

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

value1 xs:decimal The first input value.

443

© 2018-2024 Altova GmbH

Function Library Reference 645Functions

Altova MapForce 2024 Professional Edition

Name Type Description

value2 xs:decimal The second input value.

valueN xs:decimal The nth input value.

6.7.16.12 min

Returns the numeric value of the smallest value supplied as argument. By default, this function has only two
parameters, but you can add more. Click Add parameter () or Delete parameter () to add or remove
parameters, see also Add or Delete Function Arguments .

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

value1 xs:decimal The first input value.

value2 xs:decimal The second input value.

valueN xs:decimal The nth input value.

6.7.16.13 pi

Returns the value of mathematical constant pi.

Languages
Built-in, C++, C#, Java.

443

646 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.16.14 pow

Returns the value of a raised to the power of b.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

a xs:double Supplies value a (the base).

b xs:double Supplies value b (the power).

6.7.16.15 radians

Converts an angle measured in degrees to an approximately equivalent angle measured in radians.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

value xs:double The input value.

6.7.16.16 random

Returns a value with a positive sign, greater than or equal to 0.0 and less than 1.0. Returned values are chosen
pseudorandomly with (approximately) uniform distribution from that range.

© 2018-2024 Altova GmbH

Function Library Reference 647Functions

Altova MapForce 2024 Professional Edition

Languages
Built-in, C++, C#, Java.

6.7.16.17 sin

Returns the sine of value.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

value xs:double The input value.

6.7.16.18 sqrt

Returns the correctly rounded positive square root of value.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

value xs:double The input value.

648 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.16.19 tan

Returns the tangent of value.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

value xs:double The input value.

6.7.16.20 unary-minus

Returns the negation of the signed input value.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

value xs:decimal The input value.

Example
If the input value is 3, the function returns -3. If the input value is -3, the function returns 3.

6.7.17 lang | QName functions

The QName functions from the lang library convert Qualified Name (QName) values to strings, and vice versa.
Unlike the functions from the core library, these functions are available only in the Built-in, Java, C#, or C++
languages.

© 2018-2024 Altova GmbH

Function Library Reference 649Functions

Altova MapForce 2024 Professional Edition

6.7.17.1 QName-as-string

Returns the string representation of the QName value supplied as argument.

Languages
Built-in, C++, C#, Java.

Parameters

Name Description

QName The input xs:QName value.

6.7.17.2 string-as-QName

Converts the string representation of a QName back to a QName.

Languages
Built-in, C++, C#, Java.

Name Description

string The input string value.

6.7.18 lang | string functions

The string functions from the lang library enable you to process strings (e.g., trim, pad, replace, convert strings
to upper- or lower- case).

650 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.18.1 capitalize

Returns the input string value, where the first letter of each word is capitalized.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

value xs:string The input value.

Example
If the input value is the quick brown fox, the function returns The Quick Brown Fox.

6.7.18.2 charset-decode

The charset-decode function takes as input binary data encoded as Base64 text. It decodes data according

to the specified character set (for example, "utf-8") and returns the resulting string value. If you need to encode
binary data as Base64 text, use the charset-encode function.

Languages
Built-in.

Parameters

Name Type Description

binary-data xs:base64Binary The binary data as Base64 text.

encoding xs:string The character set used for
encoding (for example, "utf-8").

652

© 2018-2024 Altova GmbH

Function Library Reference 651Functions

Altova MapForce 2024 Professional Edition

Name Type Description

error-abort xs:boolean Optional argument that specifies
how processing should continue
when errors are encountered. Valid
values:

· true - End processing
with an exception on the
invalid character.

· false - Continue
processing, and replace
invalid characters with the

replacement character .

The default value is true.

Example
Let's suppose that you would like to decode binary data originating from the following source XML file. Notice
that the message element contains binary data encoded as Base64 text.

<?xml version="1.0" encoding="UTF-8"?>
<message xsi:noNamespaceSchemaLocation="message.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">TG9yZW0gaXBzdW0=</message>

The data type of the message element is xs:base64Binary, as illustrated by the schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="message" type="xs:base64Binary"/>

</xs:schema>

A mapping that decodes the message above looks as follows:

The mapping in this example outputs the text "Lorem ipsum".

A mapping can also process text or XML files encoded as Base64 data, with the help of a MapForce
serialization component. For example, the mapping illustrated below has an input parameter which expects
Base64 text data. Assuming that the Base64 data was created from an XML file as shown in the charset-
encode example, you can recreate the original XML file as shown in the mapping below:

652

652 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

In this mapping, the error-abort argument gets a false value, which was produced with the help of the boolean

built-in function. This ensures that processing will continue even if invalid characters are encountered. The
string result of the function is then passed to an XML parsing component which converts it to an XML file. Note
that, in order for XML parsing to be possible, you must have the XSD schema file. For more information, see
Parsing and Serializing Strings .

6.7.18.3 charset-encode

The charset-encode function takes as input string data and encodes it as Base64 text. Data is encoded in the

specified character set (for example, "utf-8") and returned as xs:base64Binary type. If you need to decode
binary data previously encoded as Base64 text, use the charset-decode function.

Languages
Built-in.

Parameters

Name Type Description

string-data xs:string The string data to be encoded.

encoding xs:string The character set used for
encoding (for example, "utf-8").

substitute xs:string Optional argument that specifies a
replacement character when
invalid characters are encountered.
This argument is applicable if you
use a non-Unicode encoding. For

758

650

© 2018-2024 Altova GmbH

Function Library Reference 653Functions

Altova MapForce 2024 Professional Edition

Name Type Description

Unicode encodings, the

replacement character is .

Example
Let's suppose that you would like to encode the text "Lorem ipsum" as Base64 data, using the UTF-8
character set, and write it to a target XML file. The target XML file has a message element of
xs:base64Binary type, as illustrated by the schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="message" type="xs:base64Binary"/>

</xs:schema>

A mapping that performs the Base64 encoding looks as follows:

This mapping produces XML output like the one below (the schema references and XML declaration were
skipped):

<message>TG9yZW0gaXBzdW0=</message>

You can also encode text or XML files as Base64, with the help of a MapForce serialization component. For
example, the mapping illustrated below serializes a source XML file to a string. The resulting string is then
supplied as argument to the charset-encode function. Finally, the function result is returned as mapping

output, with the help of a simple output component, see Returning String Values from a Mapping . For more
information about serialization, see Parsing and Serializing Strings .

362

758

654 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.18.4 count-substring

Returns an integer value expressing the number of times that substr occurs in string.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

string xs:string The input string.

substr xs:string The sub-string to test for.

Example
The following mapping returns 2. This is the number of times that the pipe separator occurs within the input
string id|name|email.

6.7.18.5 empty

Returns true if the input string value is empty; false otherwise.

Languages
Built-in, C++, C#, Java.

© 2018-2024 Altova GmbH

Function Library Reference 655Functions

Altova MapForce 2024 Professional Edition

Parameters

Name Type Description

value xs:string The input value.

6.7.18.6 find-substring

Returns the position of the first occurrence of substr within string. By default, the function starts the search
from the first character, which has position (index) 1, but you can optionally specify a specific starting index. If
substr cannot be found, then the function returns 0.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

string xs:string The input string.

substr xs:string The sub-string to search for.

startindex xs:int Optional. Specifies the starting
position (index) of the search. If
this parameter is not specified, the
search starts at position 1.

Example
The following mapping outputs 3, which is the position of the first occurrence of the pipe character in the input
string id|name|email.

656 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

If you specify 4 as starting index, then the function starts searching from the fourth character. Consequently,
the mapping below outputs 8, which is the first occurrence of the pipe character after searching from the fourth
character onwards.

6.7.18.7 format-guid-string

Returns a correctly formatted globally unique identifier (GUID) string, typically for use in database fields. See
also the create-guid function.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

unformatted_guid xs:string The input HEX-encoded string to
be formatted.

6.7.18.8 left

Returns a string containing the first number characters of the input string.

Languages
Built-in, C++, C#, Java.

637

© 2018-2024 Altova GmbH

Function Library Reference 657Functions

Altova MapForce 2024 Professional Edition

Parameters

Name Type Description

string xs:string The input string.

number xs:int Specifies how many characters to
return, starting from the beginning
of the string.

Example
If the input string is This is a sentence and number is 4, the function returns This.

6.7.18.9 left-trim

The left-trim function (see screenshot below) removes leading whitespace characters of a string.

Whitespace includes space (U+0020), tab (U+0009), carriage return (U+000D), and line feed (U+000A)
characters. For details about whitespaces, see the XML Recommendation.

About non-break ing spaces
The left-trim, right-trim, and normalize-space functions do not remove non-breaking spaces. One of the

possible solutions could be to replace the non-breaking space character, whose decimal representation is 160,
with the space character, whose decimal representation is 32. The mapping below shows that after the non-
breaking space has been replaced, the trimmed SomeValue value will be mapped to the target.

If your source component is an Excel file, you can remove extra spaces in Excel using a combination of TRIM,
CLEAN, and SUBSTITUTE functions. For details, see Removing Spaces and Nonprinting Characters from Text.

Languages
Built-in, C++, C#, Java.

https://www.w3.org/TR/xml/#sec-white-space:~:text=1.0%22%20standalone%3D%27yes%27%3F%3E-,2.10%20White%20Space%20Handling,-In%20editing%20XML
https://support.microsoft.com/en-us/office/top-ten-ways-to-clean-your-data-2844b620-677c-47a7-ac3e-c2e157d1db19?ns=excel&version=21&ui=en-us&rs=en-us&ad=us

658 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Parameters

Name Type Description

string xs:string The input string.

6.7.18.10 lowercase

Converts the input string to lowercase. For Unicode characters, the corresponding lower-case characters
(defined by the Unicode consortium) are used.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

string xs:string The input string.

6.7.18.11 match-pattern

Returns Boolean true if the input string matches the regular expression defined by pattern; false otherwise.
See also Regular expressions .

Note: When generating C++, C#, or Java code, the advanced features of the regular expression syntax might
differ slightly. See the regex documentation of each language for more information.

Languages
Built-in, C++, C#, Java.

512

© 2018-2024 Altova GmbH

Function Library Reference 659Functions

Altova MapForce 2024 Professional Edition

Parameters

Name Type Description

string xs:string The input string.

pattern xs:string The regular expression to match.

Example
The following mapping validates various person titles. Specifically, the mapping will output true for any of the
following titles: Mr, Mrs, Mx, Ms, Miss.

If the input string is other than any of the titles listed above, the mapping outputs false.

6.7.18.12 pad-string-left

Returns a string which is padded to the left by a single specific character, up to a required length. The desired
string length and the padding character are supplied as arguments.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

string xs:string Specifies the input string.

desired-length xs:int Defines the desired length of the
string after padding.

padding-char xs:string Defines the character to use as
padding character.

660 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.18.13 pad-string-right

Returns a string which is padded to the right by a single specific character, up to a required length. The desired
string length and the padding character are supplied as arguments.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

string xs:string Specifies the input string.

desired-length xs:int Defines the desired length of the
string after padding.

padding-char xs:string Defines the character to use as
padding character.

6.7.18.14 repeat-string

Repeats the string supplied as argument n times. The count argument specifies the number of times to repeat
the string.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

string xs:string The input string.

© 2018-2024 Altova GmbH

Function Library Reference 661Functions

Altova MapForce 2024 Professional Edition

Name Type Description

count xs:int The number of times to repeat the
string.

6.7.18.15 replace

Result is a new string where each instance of oldstring, in the input string value, is replaced by newstring.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

value xs:string The input value.

oldstring xs:string The old string to be replaced.

newstring xs:string The new string to act as
replacement.

Example
See Replacing Special Characters .

6.7.18.16 reversefind-substring

Returns the position of the last occurrence of substr within string. By default, the function starts the search
from the first character, which has position (index) 1, and ends the search at the last character, but you can
optionally specify an ending index. If substr cannot be found, then the function returns 0.

594

662 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

string xs:string The input string.

substr xs:string The sub-string to search for.

endindex xs:int Optional. Specifies the ending
position (index) of the search. If
this parameter is not specified, the
search ends after the last
character in string.

Example
The following mapping outputs 8, which is the position of the last occurrence of the pipe character in the input
string id|name|email.

If you specify 4 as ending index, then the function searches up to the fourth character. Consequently, the
mapping below outputs 3.

6.7.18.17 right

Returns a string containing the last number characters of the input string.

© 2018-2024 Altova GmbH

Function Library Reference 663Functions

Altova MapForce 2024 Professional Edition

Languages
Built-in, C++, C#, Java.

Example
If the input string is The brown red fox and number is 3, the function returns fox.

6.7.18.18 right-trim

The right-trim function (see screenshot below) removes trailing whitespace characters of a string.

Whitespace includes space (U+0020), tab (U+0009), carriage return (U+000D), and line feed (U+000A)
characters. For details about whitespaces, see the XML Recommendation.

About non-break ing spaces
The left-trim, right-trim, and normalize-space functions do not remove non-breaking spaces. One of the

possible solutions could be to replace the non-breaking space character, whose decimal representation is 160,
with the space character, whose decimal representation is 32. The mapping below shows that after the non-
breaking space has been replaced, the trimmed SomeValue value will be mapped to the target.

If your source component is an Excel file, you can remove extra spaces in Excel using a combination of TRIM,
CLEAN, and SUBSTITUTE functions. For details, see Removing Spaces and Nonprinting Characters from Text.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

string xs:string The input string.

https://www.w3.org/TR/xml/#sec-white-space:~:text=1.0%22%20standalone%3D%27yes%27%3F%3E-,2.10%20White%20Space%20Handling,-In%20editing%20XML
https://support.microsoft.com/en-us/office/top-ten-ways-to-clean-your-data-2844b620-677c-47a7-ac3e-c2e157d1db19?ns=excel&version=21&ui=en-us&rs=en-us&ad=us

664 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.18.19 sleep

The sleep function (screenshot below) delays the transmission of data for N seconds. Passing a sequence

through the function will delay each item of the sequence for a specified time. The sleep function is compatible

with the following transformation languages: Java, C#, C++, and Built-In. Code generation is supported in Java,
C#, and C++. For more information about code generation, see Code Generator .

Parameters

Name Type Description

data any node or atomic type The data input parameter accepts
any value (e.g., string).

delay-seconds xs:double The delay-seconds input
parameter delays the transmission
of data for N seconds. Fractional
seconds are also acceptable.

data any node or atomic type The data output parameter
receives data from the input and
passes this data on to a target
node.

Example
For a possible use-case scenario, in which the sleep function is used, see the following mapping:

MapForceExamples\SentimentAnalysis.mfd. An extract of this mapping is illustrated below. To be able to

test the mapping, you will need your organization's login credentials.

Since OpenAI imposes rate limits on the API requests you can make, you may run into a Too Many Requests
error. The sleep function enables you to bypass the rate limits by configuring a delay.

In the response structure of the web service call below, the content node receives data as a result of the
request sent to the OpenAI API. Before each web service call, there is a delay for 3 seconds, and then the
value of the content node is mapped to the sentiment column of the CustomerFeedback database.

894

© 2018-2024 Altova GmbH

Function Library Reference 665Functions

Altova MapForce 2024 Professional Edition

For more information about this example and AI functionality in MapForce, see the following articles:

· Data Integration with AI
· AI-Based Support Request Sentiment Analysis Using MapForce and GPT-4
· AI-Based Database Image Classification with Altova MapForce

6.7.18.20 string-compare

The string-compare function (see screenshot below) returns the result of a character by character comparison

of two input strings: string1 and string2. The comparison is based on the ASCII codes. Both string1 and
string2 are of type xs:string. The function is case-sensitive. If the strings are equal, the result is 0. If
string1 is less than string2, the result is -1. If string1 is greater than string2, the result is 1.

Example:

string1: hi
string2: Hit

The string-compare function compares the strings character by character. The comparison stops after the

function has detected that the first character of string1 and the first character of string2 are different. The
result is based on the comparison of the first character of each string. Since h is represented as a bigger ASCII

https://www.altova.com/mapforce/ai-data-integration
https://www.altova.com/blog/ai-based-sentiment-analysis/
https://www.altova.com/blog/ai-based-data-mapping/

666 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

code number (104 in the decimal system) than H (72 in the decimal system), string1 is greater than string2,
and the result of the string comparison is 1. If the first character of string1 and the first character of string2
were the same, the function would proceed to analyze the second character and so on.

For simple string comparison with a boolean result, see core | logical functions | equal .

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

string1 xs:string The first input string.

string2 xs:string The second input string.

6.7.18.21 string-compare-ignore-case

The string-compare-ignore-case function (see screenshot below) returns the result of a character by

character comparison of two input strings: string1 and string2. Both string1 and string2 are of type
xs:string. The function ignores case. The comparison is based on the ASCII codes. If the strings are equal,
the result is 0. If string1 is less than string2, the result is -1. If string1 is greater than string2, the result
is 1.

Example:

string1: hi
string2: Hit

The string-compare-ignore-case function compares the strings character by character. Even though h is

represented as a bigger ASCII code number than H, these two characters are treated as equal in this function.
The second character in both strings is the same. However, string2 has a third character, whereas string1
does not. The third character in string1 has an empty value. The t value in string2 is greater than the empty
value in string1. Therefore, string1 is less than string2, and the result equals -1.

Languages
Built-in, C++, C#, Java.

547

© 2018-2024 Altova GmbH

Function Library Reference 667Functions

Altova MapForce 2024 Professional Edition

Parameters

Name Type Description

string1 xs:string The first input string.

string2 xs:string The second input string.

6.7.18.22 uppercase

Converts the input string to uppercase. For Unicode characters, the corresponding upper-case characters
(defined by the Unicode consortium) are used.

Languages
Built-in, C++, C#, Java.

Parameters

Name Type Description

string xs:string The input string.

6.7.19 xpath2 | accessors

Functions from the xpath2 | accessors sub-library retrieve information about XML nodes or items. These
functions are available when either the XSLT2 or XQuery languages are selected.

6.7.19.1 base-uri

The base-uri function takes a node as input, and returns the URI of the XML resource containing the node.

The output is of type xs:string.

668 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

node mf:node The input node.

6.7.19.2 node-name

The node-name function takes a node as its input argument and returns its QName. When the QName is

represented as a string, it takes the form of prefix:localname if the node has a prefix, or localname if the
node has no prefix. To obtain the namespace URI of a node, use the namespace-uri-from-QName function.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

node mf:node The input node.

6.7.19.3 string

The string function works like the xs:string constructor: it converts its argument to xs:string.

When the input argument is a value of an atomic type (for example xs:decimal), this atomic value is converted
to a value of xs:string type. If the input argument is a node, the string value of the node is extracted. (The
string value of a node is a concatenation of the values of the node's descendant nodes.)

Languages
XQuery, XSLT 2.0, XSLT 3.0.

565

© 2018-2024 Altova GmbH

Function Library Reference 669Functions

Altova MapForce 2024 Professional Edition

Parameters

Name Type Description

item mf:item The input value.

6.7.20 xpath2 | anyURI functions

The xpath2 | anyURI sub-library contains the resolve-uri function. This function is available when either the

XSLT2 or XQuery languages are selected.

6.7.20.1 resolve-uri

The resolve-uri function takes a relative URI as its first argument and resolves it against the base URI in the

second argument. The result is of data type xs:string. The function's implementation treats both inputs as
strings; no checks are performed as to whether the resources identified by these URIs actually exist.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

relative xs:string The relative URI to be resolved
against the base.

base xs:string The base URI.

Example
In the mapping illustrated below, the first argument provides the relative URI MyFile.html, and the second

argument provides the base URI file:///C:/Dir/. The resolved URI will be a concatenation of both, so

file:///C:/Dir/MyFile.html.

670 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.21 xpath2 | boolean functions

The Boolean functions true and false take no argument and return the boolean constant values true and

false, respectively. They can be used where a constant boolean value is required.

6.7.21.1 false

Returns the Boolean value false.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

6.7.21.2 true

Returns the Boolean value true.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

6.7.22 xpath2 | constructors

The functions in the "constructors" sub-library of the XPath 2.0 library construct specific data types from the
input text. The following table lists the available constructor functions.

xs:ENTITY xs:double xs:nonPositiveInteger

xs:ID xs:duration xs:normalizedString

xs:IDREF xs:float xs:positiveInteger

xs:NCName xs:gDay xs:short

xs:NMTOKEN xs:gMonth xs:string

xs:Name xs:gMonthDay xs:time

© 2018-2024 Altova GmbH

Function Library Reference 671Functions

Altova MapForce 2024 Professional Edition

xs:QName xs:gYear xs:token

xs:anyURI xs:gYearMonth xs:unsignedByte

xs:base64Binary xs:hexBinary xs:unsignedInt

xs:boolean xs:int xs:unsignedLong

xs:byte xs:integer xs:unsignedShort

xs:date xs:language xs:untypedAtomic

xs:dateTime xs:long xs:yearMonthDuration

xs:dayTimeDuration xs:negativeInteger

xs:decimal xs:nonNegativeInteger

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Example
Typically, the lexical format of the input text must be the one expected of the data type to be constructed.
Otherwise, the transformation will not be successful. For example, to construct an xs:dateTime value using
the xs:dateTime constructor function, the input text must have the lexical format of the xs:dateTime data

type, which is YYYY-MM-DDTHH:mm:ss.

In the mapping illustrated above, a string constant ("2020-04-28T00:00:00") has been used to provide the

input argument of the function. The input could also have been obtained from an item in the source document.
The xs:dateTime function returns the value 2020-04-28T00:00:00 of type xs:dateTime.

To view the expected data type of a mapping item (including the data type of function arguments), move the
mouse cursor over the respective input or output connector.

6.7.23 xpath2 | context functions

The context functions from the xpath2 library provide miscellaneous information about the current date and
time, the default collation used by the processor, the size of the current sequence, and the position of the

672 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

current node.

6.7.23.1 current-date

Returns the current date (xs:date) from the system clock.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

6.7.23.2 current-dateTime

Returns the current date and time (xs:dateTime) from the system clock.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

6.7.23.3 current-time

Returns the current time (xs:time) from the system clock.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

6.7.23.4 default-collation

The default-collation function takes no argument and returns the default collation, that is, the collation that

is used when no collation is specified for a function where one can be specified.

Comparisons, including for the max-string and min-string functions, are based on the default collation.

© 2018-2024 Altova GmbH

Function Library Reference 673Functions

Altova MapForce 2024 Professional Edition

Languages
XQuery, XSLT 2.0, XSLT 3.0.

6.7.23.5 implicit-timezone

Returns the value of the "implicit timezone" property from the evaluation context.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

6.7.23.6 last

Returns the number of items in the sequence of items currently being processed. Importantly, the sequence of
items is determined by the current mapping context , as described in the example below.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Example
Let's suppose that you have the following source XML file:

<Articles>

 <Article>

 <Name>T-Shirt</Name>

 <SinglePrice>25</SinglePrice>

 </Article>

 <Article>

 <Name>Socks</Name>

 <SinglePrice>2.30</SinglePrice>

768

674 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 </Article>

 <Article>

 <Name>Jacket</Name>

 <SinglePrice>57.50</SinglePrice>

 </Article>

</Articles>

Your goal is to copy data to an XML file with a different schema. Also, the count of all items must be saved to
the target XML file. This can be achieved by a mapping like the one below:

In the example above, the last function returns the position of the last node in the current parent context and

populates the count attribute with value 3.

<items count="3">

 <item>T-Shirt</item>

 <item>Pants</item>

 <item>Jacket</item>

</items>

Note that value 3 is the position of the last item (and thus the count of all items) in the mapping context created
by the connection between Article and items. If this connection did not exist, items would still be copied to the
target, but the last function would return value 1 incorrectly, because it would have no parent context to

iterate over. (More precisely, it would use the default implicit context created between the root items of both
components, which produces a sequence of 1 item, not 3 as expected).

It is generally advisable to use the count function from the core library instead of the last function,

because the former has a parent-context argument, which enables you to alter the mapping context explicitly.

6.7.24 xpath2 | durations, date and time functions

The duration, date and time functions from the xpath2 library enable you to adjust the time zone in date and
time values, extract particular components from date, time, and duration values, and subtract date and time
values.

Adjusting the time zone
To adjust the time zone in date and time values, the following functions are available:

· adjust-date-to-timezone

773

520

© 2018-2024 Altova GmbH

Function Library Reference 675Functions

Altova MapForce 2024 Professional Edition

· adjust-date-to-timezone (with timezone argument)
· adjust-dateTime-to-timezone

· adjust-dateTime-to-timezone (with timezone argument)
· adjust-time-to-timezone

· adjust-time-to-timezone (with timezone argument)

Each of these related functions takes an xs:date, xs:time, or xs:dateTime value as the first argument and
adjusts the input by adding, removing, or modifying the time zone component depending on the value of the
second argument (if one is present).

The following situations are possible when the first argument contains no time zone (for example, the date
2020-01 or the time 14:00:00).

· If the timezone argument is present, the result will contain the time zone specified in the second
argument. The time zone in the second argument is added.

· If the timezone argument is absent, the result will contain the implicit timezone, which is the system's
time zone. The system's time zone is added.

· If the timezone argument is empty, the result will contain no time zone.

The following situations are possible when the first argument contains a time zone (for example, the date 2020-
01-01+01:00 or the time 14:00:00+01:00).

· If the timezone argument is present, the result will contain the time zone specified in the second
argument. The original time zone is replaced by the timezone in the second argument.

· If the timezone argument is absent, the result will contain the implicit time zone, which is the
system's time zone. The original time zone is replaced by the system's time zone.

· If the timezone argument is empty, the result will contain no time zone.

Extracting components of dates and times
To extract numeric values such as hours, minutes, days, months, and so on from date and time values, the
following functions are available:

· day-from-date

· day-from-dateTime

· hours-from-dateTime

· hours-from-time

· minutes-from-dateTime

· minutes-from-time

· month-from-date

· month-from-dateTime

· seconds-from-dateTime

· seconds-from-time

· timezone-from-date

· timezone-from-dateTime

· timezone-from-time

· year-from-date

· year-from-dateTime

Each of these functions extracts a particular component from xs:date, xs:time, xs:dateTime, and
xs:duration values. The result will be either xs:integer or xs:decimal.

676 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Extracting components of durations
To extract time components from durations, the following functions are available:

· days-from-duration

· hours-from-duration

· minutes-from-duration

· months-from-duration

· seconds-from-duration

· years-from-duration

The duration must be specified either as xs:yearMonthDuration (for extracting years and months) or
xs:dayTimeDuration (for extracting days, hours, minutes, and seconds). All functions returns a result of type
xs:integer, with the exception of the seconds-from-duration function, which returns xs:decimal.

Subtracting date and time values
To subtract date and time values, the following functions are available:

· subtract-dateTimes

· subtract-dates

· subtract-times

Each of the subtraction functions enables you to subtract one time value from another and return a duration
value.

6.7.24.1 adjust-date-to-timezone

Adjusts an xs:date value to the implicit time zone in the evaluation context (the system's time zone).

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

date xs:date The input value of type xs:date.

Example
The following mapping constructs an xs:date from a string and supplies it as argument to the adjust-date-

to-timezone function.

© 2018-2024 Altova GmbH

Function Library Reference 677Functions

Altova MapForce 2024 Professional Edition

XSLT 2.0 mapping

If the mapping runs on a computer where the system time zone is +02:00, the function adjusts the date value
to include the system's time zone. Consequently, the mapping output is 2020-04-30+02:00.

6.7.24.2 adjust-date-to-timezone

Adjusts an xs:date value to a specific time zone, or to no time zone at all. If the timezone argument is an
empty sequence, the function returns an xs:date without a time zone. Otherwise, it returns an xs:date with a
time zone.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

date xs:date The input value of type xs:date.

timezone xs:dayTimeDuration The time zone expressed as an
xs:dayTimeDuration value. The
value can be negative. For
example, a time zone value of -5
hours can be expressed as -PT5H.

Example
The following mapping constructs both parameters to the adjust-date-to-timezone function from strings,

using the corresponding XPath 2 constructor functions. The goal of the mapping is to adjust the time zone
to -5 hours. This time zone can be expressed as -PT5H.

670

678 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

XSLT 2.0 mapping

The function adjusts the date value to the time zone supplied as argument. Consequently, the mapping output
is 2020-04-30-05:00.

6.7.24.3 adjust-dateTime-to-timezone

Adjusts an xs:dateTime value to the implicit time zone in the evaluation context (the system's time zone).

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

dateTime xs:dateTime The input value of type
xs:dateTime.

6.7.24.4 adjust-dateTime-to-timezone

Adjusts an xs:dateTime value to a specific time zone, or to no time zone at all. If the timezone argument is
an empty sequence, the function returns an xs:dateTime without a time zone. Otherwise, it returns an
xs:dateTime with a time zone.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

© 2018-2024 Altova GmbH

Function Library Reference 679Functions

Altova MapForce 2024 Professional Edition

Parameters

Name Type Description

dateTime xs:dateTime The input value of type
xs:dateTime.

timezone xs:dayTimeDuration The time zone expressed as an
xs:dayTimeDuration value. The
value can be negative. For
example, a time zone value of -5
hours can be expressed as -PT5H.

6.7.24.5 adjust-time-to-timezone

Adjusts an xs:time value to the implicit time zone in the evaluation context (the system's time zone).

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

time xs:time The input value of type xs:time.

6.7.24.6 adjust-time-to-timezone

Adjusts an xs:time value to a specific time zone, or to no time zone at all. If the timezone argument is an
empty sequence, the function returns an xs:time without a time zone. Otherwise, it returns an xs:time with a
time zone.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

680 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Parameters

Name Type Description

time xs:time The input value of type xs:time.

timezone xs:dayTimeDuration The time zone expressed as an
xs:dayTimeDuration value. The
value can be negative. For
example, a time zone value of -5
hours can be expressed as -PT5H.

6.7.24.7 day-from-date

Returns an xs:integer representing the day part of the xs:date value supplied as argument.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

date xs:date The input value of type xs:date.

Example
The following mapping converts a string to xs:date using the xs:date constructor function. The day-from-

date, month-from-date, and year-from-date functions each extract the respective part of the date and write

it to a separate item in the target XML file.

© 2018-2024 Altova GmbH

Function Library Reference 681Functions

Altova MapForce 2024 Professional Edition

XQuery 1.0 mapping

The mapping output is as follows:

<rows>

 <row>

 <col1>30</col1>

 <col2>4</col2>

 <col3>2020</col3>

 </row>

</rows>

6.7.24.8 day-from-dateTime

Returns an xs:integer representing the day part of the xs:dateTime value supplied as argument.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

dateTime xs:dateTime The input value of type
xs:dateTime.

6.7.24.9 days-from-duration

Returns an xs:integer representing the "days" component of the canonical representation of the duration
value supplied as argument.

682 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

duration xs:duration The input value of type
xs:duration.

Example
The mapping illustrated below constructs the xs:dayTimeDuration of P2DT1H (2 days and 1 hours) and

supplies it as input to the days-from-duration function. The result is 2.

XSLT 2.0 mapping

Note: If the duration is P1DT24H (1 day and 24 hours), the function returns 2, not 1. This is because the

canonical representation of P1DT24H is actually P2D (2 days).

6.7.24.10 hours-from-dateTime

Returns an xs:integer representing the hours part of the xs:dateTime value supplied as argument.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

dateTime xs:dateTime The input value of type
xs:dateTime.

6.7.24.11 hours-from-duration

Returns an xs:integer representing the hours component of the canonical representation of the duration value
supplied as argument.

© 2018-2024 Altova GmbH

Function Library Reference 683Functions

Altova MapForce 2024 Professional Edition

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

duration xs:duration The input value of type
xs:duration.

Example
If the duration is PT1H60M (1 hour and 60 minutes), the function returns 2, not 1. This is because the canonical

representation of PT1H60M is actually PT2H (2 hours).

6.7.24.12 hours-from-time

Returns an xs:integer representing the hours part of the xs:time value supplied as argument.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

time xs:time The input value of type xs:time.

6.7.24.13 minutes-from-dateTime

Returns an xs:integer representing the minutes part of the xs:dateTime supplied as argument.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

dateTime xs:dateTime The input value of type
xs:dateTime.

684 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.24.14 minutes-from-duration

Returns an xs:integer representing the minutes component of the canonical representation of the duration
supplied as argument.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

duration xs:duration The input value of type
xs:duration.

Example
If the duration is PT1M60S (1 minute and 60 seconds), the function returns 2, not 1. This is because the

canonical representation of PT1M60S is actually PT2M (2 minutes).

6.7.24.15 minutes-from-time

Returns an xs:integer representing the minutes part of the xs:time value supplied as argument.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

time xs:time The input value of type xs:time.

6.7.24.16 month-from-date

Returns an xs:integer representing the month part of the xs:date value supplied as argument.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

© 2018-2024 Altova GmbH

Function Library Reference 685Functions

Altova MapForce 2024 Professional Edition

Parameters

Name Type Description

date xs:date The input value of type xs:date.

6.7.24.17 month-from-dateTime

Returns an xs:integer representing the month part of the xs:dateTime value supplied as argument.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

dateTime xs:dateTime The input value of type
xs:dateTime.

6.7.24.18 months-from-duration

Returns an xs:integer representing the months component in the canonical representation of the duration
value supplied as argument.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

duration xs:duration The input value of type
xs:duration.

6.7.24.19 seconds-from-dateTime

Returns an xs:integer representing the seconds component in the localized value of dateTime.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

686 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Parameters

Name Type Description

dateTime xs:dateTime

6.7.24.20 seconds-from-duration

Returns an xs:integer representing the seconds component in the canonical representation of the duration
value supplied as argument.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

duration xs:duration The input value of type
xs:duration.

6.7.24.21 seconds-from-time

Returns an xs:integer representing the seconds part of the xs:time value supplied as argument.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

time xs:time The input value of type xs:time.

6.7.24.22 subtract-dateTimes

Returns the xs:dayTimeDuration that corresponds to the difference between the normalized value of
dateTime1 and the normalized value of dateTime2.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

© 2018-2024 Altova GmbH

Function Library Reference 687Functions

Altova MapForce 2024 Professional Edition

Parameters

Name Type Description

dateTime1 xs:dateTime The first input value.

dateTime2 xs:dateTime The second input value.

6.7.24.23 subtract-dates

Returns the xs:dayTimeDuration that corresponds to the difference between the normalized value of date1
and the normalized value of date2.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

date1 xs:date The first input value.

date2 xs:date The second input value.

Example
The mapping illustrated below subtracts two dates (2020-10-22 minus 2020-09-22). The result is the value P30D

of type xs:dayTimeDuration., which represents a duration of 30 days.

6.7.24.24 subtract-times

Returns the xs:dayTimeDuration that corresponds to the difference between the normalized value of time1
and the normalized value of time2.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

688 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Parameters

Name Type Description

time1 xs:time The first input value.

time2 xs:time The second input value.

6.7.24.25 timezone-from-date

Returns the timezone component of the date supplied as argument. The result is an xs:dayTimeDuration that
indicates deviation from UTC; its value may range from +14:00 to -14:00 hours, both inclusive.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

date xs:date The input value of type xs:date.

6.7.24.26 timezone-from-dateTime

Returns the timezone component of the xs:dateTime value supplied as argument. The result is an
xs:dayTimeDuration that indicates deviation from UTC; its value may range from +14:00 to -14:00 hours, both
inclusive.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

dateTime xs:dateTime The input value of type
xs:dateTime.

6.7.24.27 timezone-from-time

Returns the timezone component of the xs:time value supplied as argument. The result is an
xs:dayTimeDuration that indicates deviation from UTC; its value may range from +14:00 to -14:00 hours, both
inclusive.

© 2018-2024 Altova GmbH

Function Library Reference 689Functions

Altova MapForce 2024 Professional Edition

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

time xs:time The input value of type xs:time.

6.7.24.28 year-from-date

Returns an xs:integer representing the year part of the xs:date value supplied as argument.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

date xs:date The input value of type xs:date.

6.7.24.29 year-from-dateTime

Returns an xs:integer representing the year part of the xs:dateTime value supplied as argument.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

dateTime xs:dateTime The input value of type
xs:dateTime.

6.7.24.30 years-from-duration

Returns an xs:integer representing the years component in the canonical lexical representation of the
duration value supplied as argument.

690 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

duration xs:duration The input value of type
xs:duration.

6.7.25 xpath2 | node functions

The node functions from the xpath2 library provide information about nodes (items) on a mapping component.

The lang function takes a string argument that identifies a language code (such as "en"). The function returns

true or false depending on whether the context node has an xml:lang attribute with a value that matches the
argument of the function.

The local-name, name, and namespace-uri functions, return, respectively, the local name, name, and

namespace URI of the input node. For example, for the node altova:Products, the local name is Products,

the name is altova:Products, and the namespace URI is the URI of the namespace to which the altova: prefix

is bound (see the example given for the local-name function). Each of these three functions has two

variants:

· With no argument: the function is then applied to the context node (for an example of a context node,
see the example given for the lang function).

· With an argument that must be a node: the function is applied to the connected node.

The number function takes a node as input, atomizes the node (that is, extracts its contents), and converts the

value to a decimal and returns the converted value. There are two variants of the number function:

· With no argument: the function is then applied to the context node (for an example of a context node,
see the example given for the lang function).

· With an argument that must be a node: the function is applied to the connected node.

6.7.25.1 lang

Returns true if the context node has an xml:lang attribute with a value that either matches exactly the
testlang argument, or is a subset of it. Otherwise, the function returns false.

692

690

690

© 2018-2024 Altova GmbH

Function Library Reference 691Functions

Altova MapForce 2024 Professional Edition

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

testlang xs:string The language code to check, for
example, "en".

Example
The following XML contains para elements with different values for the xml:lang attribute.

<page>

 <para xml:lang="en">Good day!</para>

 <para xml:lang="fr">Bonjour!</para>

 <para xml:lang="de-AT">Grüss Gott!</para>

 <para xml:lang="de-DE">Guten Tag!</para>

 <para xml:lang="de-CH">Grüezi!</para>

</page>

The mapping illustrated below filters only the German paragraphs, regardless of the country variant, with the
help of the lang function.

XSLT 2.0 mapping

In the mapping above, for each para in the source, an item is created in the target, conditionally. The condition
is provided by a filter which passes on to the target only those nodes where the lang function returns true.

That is, only those nodes that have the xml:lang attribute set to "de" (or a subset of "de") will satisfy the filter's
condition. Consequently, the mapping output is as follows:

<items>

 <item>Grüss Gott!</item>

 <item>Guten Tag!</item>

692 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 <item>Grüezi!</item>

</items>

Note that the lang function operates in the context of each para, because of the parent connection between

para and item, see also The Mapping Context .

6.7.25.2 local-name

Returns the local part of the name of the context node as an xs:string. This is a parameterless variant of the
local-name function where the context node is determined by the connections in your mapping. To specify a

node explicitly, use the local-name function that takes an input node as parameter.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

6.7.25.3 local-name

Returns the local part of the name of node as an xs:string.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

node node() The input node.

Example
In the following XML file, the name of the p:product element is a prefixed qualified name (QName). The prefix
"p" is mapped to the namespace "http://mycompany.com".

<?xml version="1.0" encoding="UTF-8"?>
<doc xmlns:p="http://mycompany.com" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

768

692

© 2018-2024 Altova GmbH

Function Library Reference 693Functions

Altova MapForce 2024 Professional Edition

 xsi:noNamespaceSchemaLocation="source.xsd">

 <p:product/>

</doc>

The following mapping extracts the local name, the name, and the namespace URI of the node and writes
these values to a target file:

XSLT 2.0 mapping

The mapping output is displayed below. Each col item lists the result of the local-name, name, and

namespace-uri functions, respectively.

<rows>

 <row>

 <col1>product</col1>

 <col2>p:product</col2>

 <col3>http://mycompany.com</col3>

 </row>

</rows>

6.7.25.4 name

Returns the name of the context node. This is a parameterless variant of the name function where the context

node is determined by the connections in your mapping. To specify a node explicitly, use the name function

that takes an input node as parameter.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

694

694 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.25.5 name

Returns the name of a node.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

node node() The input node.

Example
See the example given for the local-name function.

6.7.25.6 namespace-uri

Returns the namespace URI of the QName of the context node, as an xs:string. This is a parameterless
variant of the namespace-uri function where the context node is determined by the connections in your

mapping. To specify a node explicitly, use the namespace-uri function that takes an input node as

parameter.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

6.7.25.7 namespace-uri

Returns the namespace URI of the QName of node, as an xs:string.

692

694

© 2018-2024 Altova GmbH

Function Library Reference 695Functions

Altova MapForce 2024 Professional Edition

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

node node() The input node.

Example
See the example given for the local-name function.

6.7.25.8 number

Returns the value of the context node, converted to an xs:double. This is a parameterless variant of the
number function where the context node is determined by the connections in your mapping. To specify a node

explicitly, use the number function that takes an input node as parameter.

The only types that can be converted to numbers are Booleans, numeric strings, and other numeric types. Non-
numeric input values (such as a non-numeric string) result in NaN (Not a Number).

Languages
XQuery, XSLT 2.0, XSLT 3.0.

6.7.25.9 number

Returns the value of node, converted to an xs:double. The only types that can be converted to numbers are
Booleans, numeric strings, and other numeric types. Non-numeric input values (such as a non-numeric string)
result in NaN (Not a Number).

Languages
XQuery, XSLT 2.0, XSLT 3.0.

692

695

696 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Parameters

Name Type Description

node mf:atomic The input node.

Example
The following XML contains items of type string:

<items>

 <item>1</item>

 <item>2</item>

 <item>Jingle Bells</item>

</items>

The mapping illustrated below attempts to convert all these strings to numeric values and write them to a target
XML file. Notice that the data type of item in the target XML component is xs:integer while the source item
is of xs:string data type. If the conversion is not successful, the item must be skipped and not copied to the
target file.

XSLT 2.0 mapping

To achieve the mapping goal, a filter was used. The equal function checks if the result of the conversion is

"NaN". If this is false, this indicates a successful conversion, so the item is copied to the target. The output of
the mapping is as follows:

<items>

 <item>1</item>

 <item>2</item>

</items>

6.7.26 xpath2 | numeric functions

The numeric functions of the xpath2 library include the abs and round-half-to-even functions.

© 2018-2024 Altova GmbH

Function Library Reference 697Functions

Altova MapForce 2024 Professional Edition

6.7.26.1 abs

Returns the absolute value of the argument. For example, if the input argument is -2 or 2, the function returns 2.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

value xs:decimal The input value.

6.7.26.2 round-half-to-even

The round-half-to-even function rounds the supplied number (first argument) to the degree of precision

(number of decimal places) supplied in the optional second argument. For example, if the first argument is
2.141567 and the second argument is 3, then the first argument (the number) is rounded to three decimal
places, so the result will be 2.142. If no precision (second argument) is supplied, the number is rounded to zero
decimal places, that is, to an integer.

The "even" in the name of the function refers to the rounding to an even number when a digit in the supplied
number is midway between two values. For example, round-half-to-even(3.475, 2) would return 3.48.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

value xs:decimal Mandatory argument which
provides the input value to be
rounded.

698 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Type Description

precision xs:integer Optional argument which specifies
the number of decimal places to
round to. The default value is 0.

6.7.27 xpath2 | string functions

The string functions of the xpath2 library enable you to process strings (this includes comparing strings,
converting strings to upper or lower case, extracting substrings from strings, and others).

6.7.27.1 codepoints-to-string

Creates a string from a sequence of Unicode code points. This function is the opposite of the string-to-

codepoints function.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

codepoints ZeroOrMore xs:integer This input must be connected to a
sequence of items of integer type,
where each integer specifies a
Unicode code point.

Example
The following XML contains multiple item elements that store each Unicode code point values.

<items>

 <item>77</item>

 <item>97</item>

 <item>112</item>

 <item>70</item>

 <item>111</item>

 <item>114</item>

 <item>99</item>

706

© 2018-2024 Altova GmbH

Function Library Reference 699Functions

Altova MapForce 2024 Professional Edition

 <item>101</item>

</items>

The mapping illustrated below supplies the sequence of items as argument to the codepoint-to-string

function.

XSLT 2.0 mapping

The mapping output is MapForce.

6.7.27.2 compare

The compare function takes two strings as arguments and compares them for equality and alphabetically. If

string1 is alphabetically less than string2 (for example the two string are "A" and "B"), then the function
returns -1. If the two strings are equal (for example, "A" and "A"), the function returns 0. If string1 is greater
than string2 (for example, "B" and "A"), then the function returns 1.

This variant of the function uses the default collation, which is Unicode. Another variant of this function
exists where you can supply the collation as argument.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

string1 xs:string The first input string.

string2 xs:string The second input string.

700

700 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.27.3 compare

The compare function takes two strings as arguments and compares them for equality and alphabetically, using

the collation supplied as argument. If string1 is alphabetically less than string2 (for example the two string are
"A" and "B"), then the function returns -1. If the two strings are equal (for example, "A" and "A"), the function
returns 0. If string1 is greater than string2 (for example, "B" and "A"), then the function returns 1.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

string1 xs:string The first input string.

string2 xs:string The second input string.

collation xs:string Specifies the collation to use for
string comparison. This input may
originate from the output of the
default-collation function

or it may be a collation such as
http://www.w3.org/2005/xpath
-functions/collation/html-

ascii-case-insensitive.

Example
The following mapping compares the strings "A" and "a" using the case insensitive collation
http://www.w3.org/2005/xpath-functions/collation/html-ascii-case-insensitive, which is supplied
by a constant.

XSLT 2.0 Mapping

672

© 2018-2024 Altova GmbH

Function Library Reference 701Functions

Altova MapForce 2024 Professional Edition

The result of the mapping above is 0, meaning that both strings are treated as equal. However, if you replace
the collation with the one provided by the default-collation function, the collation changes to the default

Unicode code point collation, and the mapping result becomes -1 ("A" is alphabetically less than "a").

6.7.27.4 ends-with

Returns true if string ends with substr; false otherwise. The returned value is of type xs:boolean.

This variant of the function uses the default collation, which is Unicode. Another variant of this function
exists where you can supply the collation as argument.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

string xs:string The input string (that is, the
"haystack").

substr xs:string The substring (that is, the
"needle").

702

702 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.27.5 ends-with

Returns true if string ends with substr; false otherwise. The returned value is of type xs:boolean.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

string xs:string The input string (that is, the
"haystack").

substr xs:string The substring (that is, the
"needle").

collation xs:string Specifies the collation to use for
string comparison. This input may
originate from the output of the
default-collation function

or it may be a collation such as
http://www.w3.org/2005/xpath
-functions/collation/html-

ascii-case-insensitive.

6.7.27.6 lower-case

Returns the value of string after translating every character to its lower-case correspondent.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

672

© 2018-2024 Altova GmbH

Function Library Reference 703Functions

Altova MapForce 2024 Professional Edition

Parameters

Name Type Description

string xs:string The input value.

6.7.27.7 matches

The matches function tests whether a supplied string (the first argument) matches a regular expression (the

second argument). The syntax of regular expressions must be that defined for the pattern facet of XML
Schema. The function returns true if the string matches the regular expression, false otherwise.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

input xs:string The input string.

pattern xs:string The regular expression to match, see Regular Expressions .

flags xs:string Optional argument that influences the matching. This argument may
supply any combination of the following flags: i, m, s, x. Multiple flags
can be used, for example, imx. If no flag is used, the default values of
all four flags are used. The four flags are as follows:

i Use case-insensitive mode. The default is case-sensitive.

m Use multi-line mode, in which the input string is considered
to have multiple lines, each separated by a newline
character (x0a). The meta characters ^ and $ indicate the

beginning and end of each line. The default is string mode,
in which the string starts and ends with the meta characters
^ and $.

s Use dot-all mode. The default is not-dot-all mode, in which
the meta character . matches all characters except the

newline character (x0a). In dot-all mode, the dot also
matches the newline character.

512

704 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Type Description

x Ignore whitespace. By default, whitespace characters are
not ignored.

6.7.27.8 normalize-unicode

Returns the value of string normalized according to the rules of the normalization form specified (the second
argument). For more information about Unicode normalization, see §2.2 of https://www.w3.org/TR/charmod-
norm/.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

string xs:string The string value to be normalized.

normalizationForm xs:string Optional argument which supplies
the normalization form. The default
is Unicode Normalization Form C
(NFC).

The normalization forms NFC,
NFD, NFKC, and NFKD are
supported.

6.7.27.9 replace

This function takes an input string, a regular expression, and a replacement string as arguments. It replaces all
matches of the regular expression in the input string with the replacement string. If the regular expression
matches two overlapping strings in the input string, only the first match is replaced.

https://www.w3.org/TR/charmod-norm/#x2-2-unicode-normalization
https://www.w3.org/TR/charmod-norm/#x2-2-unicode-normalization

© 2018-2024 Altova GmbH

Function Library Reference 705Functions

Altova MapForce 2024 Professional Edition

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

input xs:string The input string.

pattern xs:string The regular expression to match,
see Regular Expressions .

replacement xs:string The replacement string.

flags xs:string Optional argument that influences
the matching. This argument is
used in the same way as the flags
argument of the matches

function.

6.7.27.10 starts-with

Returns true if string starts with substr; false otherwise. The returned value is of type xs:boolean. String
comparison takes place according to the specified collation.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

512

703

706 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Parameters

Name Type Description

string xs:string The input string (that is, the
"haystack").

substr xs:string The substring (that is, the
"needle").

collation xs:string Specifies the collation to use for
string comparison. This input may
originate from the output of the
default-collation function

or it may be a collation such as
http://www.w3.org/2005/xpath
-functions/collation/html-

ascii-case-insensitive.

Example
The following mapping returns the value true, because the input string "MapForce" begins with the substring

"Map", assuming that the default Unicode collation is used.

6.7.27.11 string-to-codepoints

Returns the sequence of Unicode code points (integer values) that constitute the string supplied as argument.
This function is the opposite of the codepoints-to-string function.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

672

698

© 2018-2024 Altova GmbH

Function Library Reference 707Functions

Altova MapForce 2024 Professional Edition

Parameters

Name Type Description

input xs:string The input string

6.7.27.12 substring-after

Returns the part of string arg1 that occurs after the string arg2.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

arg1 xs:string The input string (that is, the
"haystack").

arg2 xs:string The substring (that is, the
"needle").

collation xs:string Specifies the collation to use for
string comparison. This input may
originate from the output of the
default-collation function

or it may be a collation such as
http://www.w3.org/2005/xpath
-functions/collation/html-

ascii-case-insensitive.

Example
If arg1 is "MapForce", arg2 is "Map", and collation is default-collation , the function returns "Force".

672

672

708 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.27.13 substring-before

Returns the part of string arg1 that occurs before the string arg2.

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

arg1 xs:string The input string (that is, the
"haystack").

arg2 xs:string The substring (that is, the
"needle").

collation xs:string Specifies the collation to use for
string comparison. This input may
originate from the output of the
default-collation function

or it may be a collation such as
http://www.w3.org/2005/xpath
-functions/collation/html-

ascii-case-insensitive.

Example
If arg1 is "MapForce", arg2 is "Force", and collation is default-collation , the function returns "Map".

6.7.27.14 upper-case

Returns the value of string after translating every character to its upper-case correspondent.

672

672

© 2018-2024 Altova GmbH

Function Library Reference 709Functions

Altova MapForce 2024 Professional Edition

Languages
XQuery, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

string xs:string The input string.

6.7.28 xpath3 | external information functions

The external information functions of the xpath3 library enable you to obtain information about the XSLT
execution environment or retrieve data from external resources.

6.7.28.1 available-environment-variables

Returns a list of environment variable names that are suitable for passing to the environment-variable

function, as a (possibly empty) sequence of strings.

Languages
XSLT 3.0.

6.7.28.2 environment-variable

Returns the value of a system environment variable, if it exists. The return type is xs:string.

Languages
XSLT 3.0.

710 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Parameters

Name Type Description

name xs:string The name of the environment
variable.

6.7.28.3 unparsed-text

Reads an external resource (for example, a file) and returns a string representation of the resource.

Languages
XSLT 3.0.

Parameters

Name Type Description

href xs:string A string in the form of a URI
reference.

encoding xs:string Optional argument. Specifies the
name of the encoding, for example
"UTF-8", "UTF-16". If the encoding
cannot be determined
automatically, then UTF-8 is
assumed.

6.7.28.4 unparsed-text-available

Determines whether a call to unparsed-text with particular arguments would succeed. The return type is

xs:boolean.

© 2018-2024 Altova GmbH

Function Library Reference 711Functions

Altova MapForce 2024 Professional Edition

Languages
XSLT 3.0.

Parameters

Name Type Description

href xs:string A string in the form of a URI
reference.

encoding xs:string Optional argument. Specifies the
name of the encoding, for example
"UTF-8", "UTF-16". If the encoding
cannot be determined
automatically, then UTF-8 is
assumed.

6.7.28.5 unparsed-text-lines

Reads an external resource (for example, a file) and returns its contents as a sequence of strings, one for each
line of text in the string representation of the resource.

Languages
XSLT 3.0.

Parameters

Name Type Description

href xs:string A string in the form of a URI
reference.

encoding xs:string Optional argument. Specifies the
name of the encoding, for example
"UTF-8", "UTF-16". If the encoding
cannot be determined
automatically, then UTF-8 is
assumed.

712 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.29 xpath3 | formatting functions

The formatting functions available of the xpath3 library are used to format date, time and integer values.

6.7.29.1 format-date

Returns a string containing an xs:date value formatted for display.

Languages
XSLT 3.0.

Parameters

Name Type Description

value xs:date The input xs:date value to be
formatted. Mandatory parameter.

picture xs:string Mandatory parameter.

See section 9.8.4.1 of the "XPath
and XQuery Functions and
Operators 3.1" W3C
Recommendation
(https://www.w3.org/TR/xpath-
functions-31).

language xs:string Optional parameter.

See section 9.8.4.8 of the "XPath
and XQuery Functions and
Operators 3.1" W3C
Recommendation
(https://www.w3.org/TR/xpath-
functions-31).

calendar xs:string Same as above.

place xs:string Same as above.

https://www.w3.org/TR/xpath-functions-31
https://www.w3.org/TR/xpath-functions-31
https://www.w3.org/TR/xpath-functions-31
https://www.w3.org/TR/xpath-functions-31

© 2018-2024 Altova GmbH

Function Library Reference 713Functions

Altova MapForce 2024 Professional Edition

6.7.29.2 format-dateTime

Returns a string containing an xs:dateTime value formatted for display.

Languages
XSLT 3.0.

Parameters

Name Type Description

value xs:dateTime The input xs:dateTime value to be
formatted.

picture xs:string Mandatory parameter.

See section 9.8.4.1 of the "XPath
and XQuery Functions and
Operators 3.1" W3C
Recommendation
(https://www.w3.org/TR/xpath-
functions-31).

language xs:string Optional parameter.

See section 9.8.4.8 of the "XPath
and XQuery Functions and
Operators 3.1" W3C
Recommendation
(https://www.w3.org/TR/xpath-
functions-31).

calendar xs:string Same as above.

place xs:string Same as above.

https://www.w3.org/TR/xpath-functions-31
https://www.w3.org/TR/xpath-functions-31
https://www.w3.org/TR/xpath-functions-31
https://www.w3.org/TR/xpath-functions-31

714 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.29.3 format-integer

Formats an integer according to a given picture string, using the conventions of a given natural language if
specified.

Languages
XSLT 3.0.

Parameters

Name Type Description

value xs:integer The input integer value to be
formatted.

picture xs:string Mandatory parameter.

See section 4.6.1 of the "XPath
and XQuery Functions and
Operators 3.1" W3C
Recommendation
(https://www.w3.org/TR/xpath-
functions-31).

language xs:string Optional parameter.

Specifies the natural language
according to which the value
should be formatted. If specified,
this value must be either an empty
string or any value that would be
allowed for the xml:lang attribute
according to the "Extensible
Markup Language (XML) 1.0 W3C
Recommendation
(https://www.w3.org/TR/xml).

https://www.w3.org/TR/xpath-functions-31
https://www.w3.org/TR/xpath-functions-31
https://www.w3.org/TR/xml

© 2018-2024 Altova GmbH

Function Library Reference 715Functions

Altova MapForce 2024 Professional Edition

6.7.29.4 format-time

Returns a string containing an xs:time value formatted for display.

Languages
XSLT 3.0.

Parameters

Name Type Description

value xs:time The input xs:time value to be
formatted.

picture xs:string Mandatory parameter.

See section 9.8.4.1 of the "XPath
and XQuery Functions and
Operators 3.1" W3C
Recommendation
(https://www.w3.org/TR/xpath-
functions-31).

language xs:string Optional parameter.

See section 9.8.4.8 of the "XPath
and XQuery Functions and
Operators 3.1" W3C
Recommendation
(https://www.w3.org/TR/xpath-
functions-31).

calendar xs:string Same as above.

place xs:string Same as above.

https://www.w3.org/TR/xpath-functions-31
https://www.w3.org/TR/xpath-functions-31
https://www.w3.org/TR/xpath-functions-31
https://www.w3.org/TR/xpath-functions-31

716 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.30 xpath3 | math functions

The math functions of the xpath3 library are used to perform trigonometric and other mathematical
calculations.

6.7.30.1 acos

Returns the arc cosine of an angle, in the range of 0 through pi.

Languages
XSLT 3.0.

Parameters

Name Type Description

value xs:double The input value.

6.7.30.2 asin

Returns the arc sine of an angle, in the range of -pi/2 through pi/2.

Languages
XSLT 3.0.

Parameters

Name Type Description

value xs:double The input value.

© 2018-2024 Altova GmbH

Function Library Reference 717Functions

Altova MapForce 2024 Professional Edition

6.7.30.3 atan

Returns the arc tangent of an angle, in the range of -pi/2 through pi/2.

Languages
XSLT 3.0.

Parameters

Name Type Description

value xs:double The input value.

6.7.30.4 atan2

Returns the angle in radians subtended at the origin by the point on a plane with coordinates (x, y) and the
positive x-axis.

Languages
XSLT 3.0.

Parameters

Name Type Description

y xs:double The x coordinate.

x xs:double The y coordinate.

718 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.30.5 cos

Returns the trigonometric cosine of the angle given by value. The unit of value is radian.

Languages
XSLT 3.0.

Parameters

Name Type Description

value xs:double The input value.

6.7.30.6 exp

Returns Euler's number e raised to the power of the value.

Languages
XSLT 3.0.

Parameters

Name Type Description

value xs:double The input value.

6.7.30.7 exp10

Returns 10 raised to the power of the value.

© 2018-2024 Altova GmbH

Function Library Reference 719Functions

Altova MapForce 2024 Professional Edition

Languages
XSLT 3.0.

Parameters

Name Type Description

value xs:double The input value.

6.7.30.8 log

Returns the natural logarithm (base e) of a value.

Languages
XSLT 3.0.

Parameters

Name Type Description

value xs:double The input value.

6.7.30.9 log10

Returns the decimal logarithm (base 10) of a value.

Languages
XSLT 3.0.

Parameters

Name Type Description

value xs:double The input value.

720 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.30.10 pi

Returns an approximation to the mathematical constant pi.

Languages
XSLT 3.0.

6.7.30.11 pow

Returns the value of a raised to the power of b.

Languages
XSLT 3.0.

Parameters

Name Type Description

a xs:double The input value a.

b xs:double The input value b.

6.7.30.12 sin

Returns the trigonometric sine of the angle given by value. The unit of value is radian.

Languages
XSLT 3.0.

© 2018-2024 Altova GmbH

Function Library Reference 721Functions

Altova MapForce 2024 Professional Edition

Parameters

Name Type Description

value xs:double The input value.

6.7.30.13 sqrt

Returns the non-negative square root of the argument.

Languages
XSLT 3.0.

Parameters

Name Type Description

value xs:double The input value.

6.7.30.14 tan

Returns the trigonometric tangent of the angle given by value. The unit of value is radian.

Languages
XSLT 3.0.

Parameters

Name Type Description

value xs:double The input value.

722 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6.7.31 xpath3 | URI functions

The URI functions in the xpath3 library perform encoding, escaping, and conversion of values intended for use
in URIs.

6.7.31.1 encode-for-uri

Encodes reserved characters in a string that is intended to be used in the path segment of a URI. For further
information about this function, see section 6.2 of the "XPath and XQuery Functions and Operators 3.1" W3C
Recommendation (https://www.w3.org/TR/xpath-functions-31).

Languages
XSLT 3.0.

Parameters

Name Type Description

uri-part xs:string The input URI value to encode.

6.7.31.2 escape-html-uri

Escapes a URI in the same way that HTML user agents handle attribute values expected to contain URIs. For
further information about this function, see section 6.4 of the "XPath and XQuery Functions and Operators 3.1"
W3C Recommendation (https://www.w3.org/TR/xpath-functions-31).

Languages
XSLT 3.0.

Parameters

Name Type Description

uri xs:string The input URI value to escape.

https://www.w3.org/TR/xpath-functions-31
https://www.w3.org/TR/xpath-functions-31

© 2018-2024 Altova GmbH

Function Library Reference 723Functions

Altova MapForce 2024 Professional Edition

6.7.31.3 iri-to-uri

Converts a string containing an IRI (Internationalized Resource Identifier) into a URI (Uniform Resource
Identifier). For further information about this function, see section 6.3 of the "XPath and XQuery Functions and
Operators 3.1" W3C Recommendation (https://www.w3.org/TR/xpath-functions-31).

Languages
XSLT 3.0.

Parameters

Name Type Description

iri xs:string The input IRI value.

6.7.32 xslt | xpath functions

The functions in this sub-group are XPath 1.0 functions that retrieve information about mapping items (or
nodes). Most of these functions take a node as argument and return information about that node. The last and

position functions operate in the current mapping context , which is determined by the connections on

your mapping.

Note: Additional XPath 1.0 functions can be found in the core library.

6.7.32.1 lang

Returns true if the context node has an xml:lang attribute with a value that either matches exactly the string
argument, or is a subset of it. Otherwise, the function returns false.

Languages
XSLT 1.0.

768

https://www.w3.org/TR/xpath-functions-31

724 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Parameters

Name Type Description

string xs:string The language code to check, for
example, "en".

Example
See the example given for the lang function of the xpath2 library.

6.7.32.2 last

Returns the position number of the last node in the processed node list.

Languages
XSLT 1.0.

Example
See the example given for the last function of the xpath2 library.

6.7.32.3 local-name

Returns the local part of the name of the node supplied as argument.

Languages
XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

node node() The input node.

690

673

© 2018-2024 Altova GmbH

Function Library Reference 725Functions

Altova MapForce 2024 Professional Edition

Example
See the example given for the local-name function of the xpath2 library.

6.7.32.4 name

Returns the name of the node supplied as argument.

Languages
XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

node node() The input node.

Example
See the example given for the local-name function of the xpath2 library.

6.7.32.5 namespace-uri

Returns the namespace URI of the node supplied as argument.

Languages
XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

node node() The input node.

692

692

726 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Example
See the example given for the local-name function of the xpath2 library.

6.7.32.6 position

Returns the position of the current node in the node set that is being processed.

Languages
XSLT 1.0.

6.7.33 xslt | xslt functions

The functions in this group are miscellaneous XSLT 1.0 functions.

6.7.33.1 current

The current function takes no argument and returns the current node.

Languages
XSLT 1.0.

6.7.33.2 document

Accesses nodes from an external XML document. The result is output to a node in the output document.

692

© 2018-2024 Altova GmbH

Function Library Reference 727Functions

Altova MapForce 2024 Professional Edition

Languages
XSLT 1.0.

Parameters

Name Type Description

uri xs:string Mandatory. Specifies the path to
the XML document. The XML
document must be valid and
parseable.

nodeset node() Optional. Specifies a node, the
base URI of which is used to
resolve the URI supplied as the
first argument if it is relative.

6.7.33.3 element-available

The element-available function tests whether an element, entered as the only string argument of the

function, is supported by the XSLT processor. The argument string is evaluated as a QName. Therefore, XSLT
elements must have an xsl: prefix and XML Schema elements must have an xs: prefix—since these are the
prefixes declared for these namespaces in the underlying XSLT that will be generated for the mapping. The
function returns a Boolean.

Languages
XSLT 1.0.

Parameters

Name Type Description

element xs:string The element name.

6.7.33.4 function-available

The function-available function is similar to the element-available function and tests whether the

function name supplied as the function's argument is supported by the XSLT processor. The input string is
evaluated as a QName. The function returns a Boolean.

728 Functions Function Library Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Languages
XSLT 1.0.

Parameters

Name Type Description

function xs:string The function name.

6.7.33.5 generate-id

The generate-id function generates a unique string that identifies the first node in the node set identified by

the optional input argument. If no argument is supplied, the ID is generated on the context node. The result can
be directed to any node in the output document.

Languages
XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

nodeset node() Optional argument that supplies
the input node.

6.7.33.6 system-property

The system-property function returns properties of the XSLT processor (the system). Three system

properties, all in the XSLT namespace, are mandatory for XSLT processors. These are xsl:version,
xsl:vendor, and xsl:vendor-url. The input string is evaluated as a QName and so must have the xsl:
prefix, since this is the prefix associated with the XSLT namespace in the underlying XSLT stylesheet.

© 2018-2024 Altova GmbH

Function Library Reference 729Functions

Altova MapForce 2024 Professional Edition

Languages
XSLT 1.0, XSLT 2.0, XSLT 3.0.

Parameters

Name Type Description

string xs:string Specifies the property name,
which can be any of the following:
xsl:version, xsl:vendor,
xsl:vendor-url.

6.7.33.7 unparsed-entity-uri

If you are using a DTD, you can declare an unparsed entity in it. This unparsed entity (for example, an image)
will have a URI that locates the unparsed entity. The input string of the function must match the name of the
unparsed entity that has been declared in the DTD. The function then returns the URI of the unparsed entity,
which can then be directed to a node in the output document, for example, to an href node.

Languages
XSLT 1.0.

Parameters

Name Type Description

string xs:string The name of the unparsed entity
whose URI should be retrieved.

730 Advanced Mapping Procedures

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

7 Advanced Mapping Procedures

Altova website: Data integration tool

This section describes advanced mapping scenarios and includes the following topics:

· Mapping Node Names
· Mapping Rules and Strategies
· Processing Multiple Input or Output Files
· Parsing and Serializing Strings
· StyleVision Output Panes
· Generating Mapping Documentation

731

766

751

758

833

787

https://www.altova.com/mapforce

© 2018-2024 Altova GmbH

Map Node Names 731Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

7.1 Map Node Names

Most of the time when you create a mapping with MapForce, the goal is to read values from a source and write
values to a target. However, there might be cases when you want to access not only the node values from the
source, but also the node names. For example, you might want to create a mapping which reads the element
or attribute names (not values) from a source XML and converts them to element or attribute values (not names)
in a target XML.

Consider the following example: you have an XML file that contains a list of products. Each product has the
following format:

 <product>

 <id>1</id>

 <color>red</color>

 <size>10</size>

 </product>

Your goal is to convert information about each product into name-value pairs, for example:

 <product>

 <attribute name="id" value="1" />

 <attribute name="color" value="red" />

 <attribute name="size" value="10" />

 </product>

For such scenarios, you would need access to the node name from the mapping. With dynamic access to
node names, you can perform data conversions such as the one above.

Note: You can also perform the transformation above by using the node-name and static-node-name

core library functions. However, in this case, you need to know exactly what element names you
expect from the source, and you need to connect every single such element manually to the target.
Also, these functions might not be sufficient, for example, when you need to filter or group nodes by
name, or when you need to manipulate the data type of the node from the mapping.

Accessing node names dynamically is possible not only when you need to read node names, but also when
you need to write them. In a standard mapping, the name of attributes or elements in a target is always known
before the mapping runs; it comes from the underlying schema of the component. With dynamic node names,
however, you can create new attributes or elements whose name is not known before the mapping runs.
Specifically, the name of the attribute or element is supplied by the mapping itself, from any source supported
by MapForce.

For dynamic access to a node's children elements or attributes to be possible, the node must actually
have children elements or attributes, and it must not be the XML root node.

Dynamic node names are supported when you map to or from the following component types:

· XML
· CSV/FLF*

561 563

732 Advanced Mapping Procedures Map Node Names

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

* Requires MapForce Professional or Enterprise Edition.

Note: In case of CSV/FLF, dynamic access implies access to "fields" instead of "nodes", since CSV/FLF
structures do not have "nodes".

When the mapping target is a CSV or FLF (fixed-length field) file, the fields must be defined in the
component settings (and it is not possible to change the name, order, or number of the target fields).
Unlike XML, the format of text files is fixed, so only the actual field value can be manipulated, not the field
name, number or order.

Dynamic node names are supported in any of the following mapping languages: Built-In*, XSLT 2.0, XSLT 3.0,
XQuery*, C#*, C++*, Java*.

* These languages require MapForce Professional or Enterprise Edition.

For information about how dynamic node names work, see Getting Access to Node Names . For a step-by-
step mapping example, see Example: Map Element Names to Attribute Values .

7.1.1 Get Access to Node Names

When a node in an XML component (or a field in a CSV/FLF component) has children nodes, you can get both
the name and value of each child node directly on the mapping. This technique is called "dynamic node
names". "Dynamic" refers to the fact that processing takes place "on the fly", during mapping runtime, and not
based on the static schema information which is known before the mapping runs. This topic provides details on
how to enable dynamic access to node names and what you can do with it.

When you read data from a source, "dynamic node names" means that you can do the following:

· Get a list of all children nodes (or attributes) of a node, as a sequence. In MapForce, "sequence" is a
list of zero or more items which you can connect to a target and create as many items in the target as
there are items in the source. So, for example, if a node has five attributes in the source, you could
create five new elements in the target, each corresponding to an attribute.

· Read not only the children node values (as a standard mapping does), but also their names.

When you write data to a target, "dynamic node names" means that you can do the following:

· Create new nodes using names supplied by the mapping (so-called "dynamic" names), as opposed to
names supplied by the component settings (so-called "static" names).

To illustrate dynamic node names, this topic makes use of the following XML schema:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\Products.xsd. This schema is
accompanied by a sample instance document, Products.xml. To add both the schema and the instance file to
the mapping area, select the Insert | XML Schema/File menu command and browse for
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\Products.xml. When prompted to
select a root element, choose products.

To enable dynamic node names for the product node, right-click it and select one of the following context
menu commands:

732

743

© 2018-2024 Altova GmbH

Map Node Names 733Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

· Show Attributes with Dynamic Name, if you want to get access to the node's attributes
· Show Child Elements with Dynamic Name, if you want to get access to the node's child elements

Fig. 1 Enabling dynamic node names (for child elements)

Note: The commands above are available only for nodes that have children nodes. Also, the commands are
not available for root nodes.

When you switch a node into dynamic mode, a dialog box such as the one below appears. For the purpose of
this topic, set the options as shown below; these options are further discussed in Accessing Nodes of Specific
Type .740

734 Advanced Mapping Procedures Map Node Names

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Fig. 2 "Dynamically Named Children Settings" dialog box

Fig. 3 illustrates how the component looks when dynamic node names are enabled for the product node.
Notice how the appearance of the component has now significantly changed.

© 2018-2024 Altova GmbH

Map Node Names 735Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

Fig.3 Enabled dynamic node names (for elements)

To switch the component back to standard mode, right-click the product node, and disable the option Show
Child Elements with Dynamic Name from the context menu.

The image below shows how the same component looks when dynamic access to attributes of a node is
enabled. The component was obtained by right-clicking the product element, and selecting Show Attributes
with Dynamic Name from the context menu.

Fig. 4 Enabled dynamic node names (for attributes)

To switch the component back to standard mode, right-click the product node, and disable the option Show
Attributes with Dynamic Name from the context menu.

As illustrated in Fig. 3 and Fig. 4, the component changes appearance when any node (in this case, product)
is switched into "dynamic node name" mode. The new appearance opens possibilities for the following actions:

· Read or write a list of all children elements or attributes of a node. These are provided by the
element() or attribute() item, respectively.

736 Advanced Mapping Procedures Map Node Names

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· Read or write the name of each child element or attribute. The name is provided by the node-name()
and local-name() items.

· In case of elements, read or write the value of each child element, as specific data type. This value is
provided by the type cast node (in this case, the text() item). Note that only elements can have type
cast nodes. Attributes are treated always as "string" type.

· Group or filter child elements by name. For an example, see Example: Group and Filter Nodes by
Name .

The node types that you can work with in "dynamic node name" mode are described below.

element()
This node has different behaviour in a source component compared to a target component. In a source
component, it supplies the child elements of the node, as a sequence. In Fig.3, element() provides a list
(sequence) of all children elements of product. For example, the sequence created from the following XML
would contain three items (since there are three child elements of product):

 <product>

 <id>1</id>

 <color>red</color>

 <size>10</size>

 </product>

Note that the actual name and type of each item in the sequence is provided by the node-name() node and the
type cast node, respectively (discussed below). To understand this, imagine that you need to transform data
from a source XML into a target XML as follows:

Fig. 6 Mapping XML element names to attribute values (requirement)

The mapping which would achieve this goal looks as follows:

747

© 2018-2024 Altova GmbH

Map Node Names 737Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

Fig. 7 Mapping XML element names to attribute values (in MapForce)

The role of element() here is to supply the sequence of child elements of product, while node-name() and
text() supply the actual name and value of each item in the sequence. This mapping is accompanied by a
tutorial sample and is discussed in more detail in Example: Map Element Names to Attribute Values .

In a target component, element() does not create anything by itself, which is an exception to the basic rule of
mapping "for each item in the source, create one target item". The actual elements are created by the type
cast nodes (using the value of node-name()) and by name test nodes (using their own name).

attribute()
As shown in Fig. 4, this item enables access to all attributes of the node, at mapping runtime. In a source
component, it supplies the attributes of the connected source node, as a sequence. For example, in the
following XML, the sequence would contain two items (since product has two attributes):

 <product id="1" color="red" />

Note that the attribute() node supplies only the value of each attribute in the sequence, always as string
type. The name of each attribute is supplied by the node-name() node.

In a target component, this node processes a connected sequence and creates an attribute value for each item
in the sequence. The attribute name is supplied by the node-name(). For example, imagine that you need to
transform data from a source XML into a target XML as follows:

743

738 Advanced Mapping Procedures Map Node Names

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Fig. 8 Mapping attribute values to attribute names (requirement)

The mapping which would achieve this goal looks as follows:

Fig. 9 Mapping attribute values to attribute names (in MapForce)

Note: This transformation is also possible without enabling dynamic access to a node's attributes. Here it
just illustrates how attribute() works in a target component.

If you want to reconstruct this mapping, it uses the same XML components as the ConvertProducts.mfd
mapping available in the <Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\ folder. The
only difference is that the target has now become the source, and the source has become the target. As input
data for the source component, you will need an XML instance that actually contains attribute values, for
example:

<?xml version="1.0" encoding="UTF-8"?>
<products>

 <product>

 <attribute name="id" value="1"/>

 <attribute name="color" value="red"/>

 <attribute name="size" value="big"/>

© 2018-2024 Altova GmbH

Map Node Names 739Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

 </product>

</products>

Note that, in the code listing above, the namespace and schema declaration have been omitted, for simplicity.

node-name()
In a source component, node-name() supplies the name of each child element of element(), or the name of
each attribute of attribute(), respectively. By default, the supplied name is of type xs:QName. To get the
name as string, use the local-name() node (see Fig. 3), or use the function QName-as-string .

In a target component, node-name() writes the name of each element or attribute contained in element() or
attribute().

local-name()
This node works in the same way as node-name(), with the difference that the type is xs:string instead of
xs:QName.

Type cast node
In a source component, the type cast node supplies the value of each child element contained in element().
The name and structure of this node depends on the type selected from the "Dynamically Named Children
Settings" dialog box (Fig. 2).

To change the type of the node, click the Change Selection () button and select a type from the list of
available types, including a schema wildcard (xs:any). For more information, see Accessing nodes of specific
type .

In a target component, the type cast node writes the value of each child element contained in element(), as

specific data type. Again, the desired data type can be selected by clicking the Change Selection ()
button.

Name test nodes
In a source component, name test nodes provide a way to group or filter child elements from a source instance
by name. You may need to filter child elements by name in order to ensure that the mapping accesses the
instance data using the correct type (see Accessing Nodes of Specific Type). For an example, see
Example: Group and Filter Nodes by Name .

In general, the name test nodes work almost like normal element nodes for reading and writing values and
subtree structures. However, because the mapping semantics is different when dynamic access is enabled,
there are some limitations. For example, you cannot concatenate the value of two name test nodes.

On the target side, name test nodes create as many elements in the output as there are items in the
connected source sequence. Their name overrides the value mapped to node-name().

If necessary, you can hide the name test nodes from the component. To do this, click the Change Selection (

) button next to the element() node. Then, in the "Dynamically Named Children Settings" dialog box (Fig.
2), clear the Show name test nodes... check box.

649

740

740

747

740 Advanced Mapping Procedures Map Node Names

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

7.1.2 Get Access to Nodes of Specific Type

As mentioned in the previous section, Getting Access to Node Names , you can get access to all child
elements of a node by right-clicking the node and selecting the Show Child Elements with Dynamic Name
context menu command. At mapping runtime, this causes the name of each child element to be accessible
through the node-name() node, while the value—through a special type cast node. In the image below, the
type cast node is the text() node.

Importantly, the data type of each child element is not known before the mapping runtime. Besides, it may be
different for each child element. For example, a product node in the XML instance file may have a child
element id of type xs:integer and a child element size of type xs:string. To let you access the node
content of a specific type, the dialog box shown below opens every time when you enable dynamic access to a
node's child elements. You can also open this dialog box at any time later, by clicking the Change Selection

() button next to the element() node.

732

© 2018-2024 Altova GmbH

Map Node Names 741Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

"Dynamically Named Children Settings" dialog box

To access the content of each child element at mapping runtime, you have several options:

1. Access the content as string. To do this, select the text() check box on the dialog box above. In this
case, a text() node is created on the component when you close the dialog box. This option is
suitable if the content is of simple type (xs:int, xs:string, etc.) and is illustrated in the Example:
Map Element Names to Attribute Values . Note that a text() node is displayed only if a child node of
the current node can contain text.

2. Access the content as a particular complex type allowed by the schema. When custom complex
types defined globally are allowed by the schema for the selected node, they are also available in the
dialog box above, and you can select the check box next to them. In the image above, there are no
complex types defined globally by the schema, so none are available for selection.

3. Access the content as any type. This may be useful in advanced mapping scenarios (see "Accessing
deeper structures" below). To do this, select the check box next to xs:anyType.

Be aware that, at mapping runtime, MapForce (through the type cast node) has no information as to what
the actual type of the instance node is. Therefore, your mapping must access the node content using the
correct type. For example, if you expect that the node of a source XML instance may have children nodes
of various complex types, do the following:
 a) Set the type cast node to be of the complex type that you need to match (see item 2 in the list above).

743

742 Advanced Mapping Procedures Map Node Names

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 b) Add a filter to read from the instance only the complex type that you need to match. This technique is
illustrated in Example: Group and Filter Nodes by Name .

Accessing deeper structures
It is possible to access nodes at deeper levels in the schema than the immediate children of a node. It is useful
for advanced mapping scenarios. In simple mappings such as Example: Map Element Names to Attribute
Values , you don't need this technique because the mapping accesses only the immediate children of an
XML node. However, if you need to access deeper structures dynamically, such as "grandchildren", "great-
grandchildren", and so on, this is possible as shown below.

1. Create a new mapping.
2. On the Insert menu, click Insert XML Schema/File and browse for the XML instance file (in this

example, the Articles.xml file from the
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\ folder).

3. Right-click the Articles node and select the Show Child Elements with Dynamic Name context
command.

4. Select xs:anyType from the "Dynamically Named Children Settings" dialog box.
5. Right-click the xs:anyType node and select again the Show Child Elements with Dynamic Name

context command.
6. Select text() from the "Dynamically Named Children Settings" dialog box.

In the component above, notice there are two element() nodes. The second element() node provides
dynamic access to grandchildren of the <Articles> node in the Articles.xml instance.

<?xml version="1.0" encoding="UTF-8"?>
<Articles xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="Articles.xsd">

747

743

© 2018-2024 Altova GmbH

Map Node Names 743Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

 <Article>

 <Number>1</Number>

 <Name>T-Shirt</Name>

 <SinglePrice>25</SinglePrice>

 </Article>

 <Article>

 <Number>2</Number>

 <Name>Socks</Name>

 <SinglePrice>2.30</SinglePrice>

 </Article>

 <Article>

 <Number>3</Number>

 <Name>Pants</Name>

 <SinglePrice>34</SinglePrice>

 </Article>

 <Article>

 <Number>4</Number>

 <Name>Jacket</Name>

 <SinglePrice>57.50</SinglePrice>

 </Article>

</Articles>

Articles.xml

For example, to get "grandchildren" element names (Number, Name, SinglePrice), you would draw a
connection from the local-name() node under the second element() node to a target item. Likewise, to get
"grandchildren" element values (1, T-Shirt, 25), you would draw a connection from the text() node.

Although not applicable to this example, in real-life situations, you can further enable dynamic node names for
any subsequent xs:anyType node, so as to reach even deeper levels.

Note the following:

· The button allows you to select any derived type from the current schema and display it in a
separate node. This may only be useful if you need to map to or from derived schema types (see
Derived XML Schema Types).

· The Change Selection () button next to an element() node opens the "Dynamically Named
Children Settings" dialog box discussed in this topic.

· The Change Selection () button next to xs:anyAttribute allows you to select any attribute

defined globally in the schema. Likewise, the Change Selection () button next to xs:any element
allows you to select any element defined globally in the schema. This works in the same way as
mapping to or from schema wildcards (see also Wildcards - xs:any / xs:anyAttribute). If using this
option, make sure that the selected attribute or element can actually exist at that particular level
according to the schema.

7.1.3 Example: Map Element Names to Attribute Values

This example shows you how to map element names from an XML document to attribute values in a target XML
document. The example is accompanied by a sample mapping, which is available at the following path:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\ConvertProducts.mfd.

121

129

744 Advanced Mapping Procedures Map Node Names

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

To understand what the example does, let's assume you have an XML file that contains a list of products. Each
product has the following format:

 <product>

 <id>1</id>

 <color>red</color>

 <size>10</size>

 </product>

Your goal is to convert information about each product into name-value pairs, for example:

 <product>

 <attribute name="id" value="1" />

 <attribute name="color" value="red" />

 <attribute name="size" value="10" />

 </product>

To perform a data mapping such as the one above with minimum effort, this example uses a MapForce feature
known as "dynamic access to node names". "Dynamic" means that, when the mapping runs, it can read the
node names (not just values) and use these names as values. You can create the required mapping in a few
simple steps, as shown below.

Step 1: Add the source XML component to the mapping
· On the Insert menu, click XML Schema/File, and browse for the following file:

<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\Products.xml. This XML file
points to the Products.xsd schema located in the same folder.

Step 2: Add the target XML component to the mapping
· On the Insert menu, click XML Schema/File, and browse for the following schema file:

<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\ProductValuePairs.xsd.
When prompted to supply an instance file, click Skip. When prompted to select a root element, select
products as root element.

At this stage, the mapping should look as follows:

© 2018-2024 Altova GmbH

Map Node Names 745Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

Step 3: Enable dynamic access to child nodes
1. Right-click the product node on the source component, and select Show Child Elements with

Dynamic Name from the context menu.
2. In the dialog box which opens, select text() as type. Leave other options as is.

Notice that a text() node has been added on the source component. This node will supply the content of each
child item to the mapping (in this case, the value of "id", "color", and "size").

746 Advanced Mapping Procedures Map Node Names

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Step 4: Draw the mapping connections
Finally, draw the mapping connections A, B, C, D as illustrated below. Optionally, double-click each
connection, starting from the top one, and enter the text "A", "B", "C", and "D", respectively, into the
Description box.

ConvertProducts.mfd

In the mapping illustrated above, connection A creates, for each product in the source, a product in the target.
So far, this is a standard MapForce connection that does not address the node names in any way. The
connection B, however, creates, for each encountered child element of product, a new element in the target
called attribute.

Connection B is a crucial connection in the mapping. To reiterate the goal of this connection, it carries a
sequence of child elements of product from the source to the target. It does not carry the actual names or
values. Therefore, it must be understood as follows: if the source element() has N child elements, create
N instances of that item in the target. In this particular case, product in the source has three children
elements (id, color and size). This means that each product in the target will have three child elements
with the name attribute.

Although not illustrated in this example, the same rule is used to map child elements of attribute(): if the
source attribute() item has N child attributes, create N instances of that item in the target.

Next, connection C copies the actual name of each child element of product to the target (literally, "id",
"color", and "size").

Finally, connection D copies the value of each child element of product, as string type, to the target.

To preview the mapping output, click the Output pane and observe the generated XML. As expected, the output
contains several products whose data is stored as name-value pairs, which was the intended goal of this
mapping.

<?xml version="1.0" encoding="UTF-8"?>

© 2018-2024 Altova GmbH

Map Node Names 747Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

<products xsi:noNamespaceSchemaLocation="ProductValuePairs.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <product>

 <attribute name="id" value="1"/>

 <attribute name="color" value="red"/>

 <attribute name="size" value="10"/>

 </product>

 <product>

 <attribute name="id" value="2"/>

 <attribute name="color" value="blue"/>

 <attribute name="size" value="20"/>

 </product>

 <product>

 <attribute name="id" value="3"/>

 <attribute name="color" value="green"/>

 <attribute name="size" value="30"/>

 </product>

</products>

Generated mapping output

7.1.4 Example: Group and Filter Nodes by Name

This example shows you how to design a mapping that reads key-value pairs from an XML property list (or XML
plist) and writes them to a CSV file. (XML property lists represent a way of storing macOS and iOS object
information in XML format, see
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/UnderstandXMLPlist/U
nderstandXMLPlist.html.) The example is accompanied by a mapping sample which is available at the following
path: <Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\ReadPropertyList.mfd.

The code listing below represents the source XML file.

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/UnderstandXMLPlist/UnderstandXMLPlist.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/UnderstandXMLPlist/UnderstandXMLPlist.html

748 Advanced Mapping Procedures Map Node Names

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist SYSTEM "https://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

 <dict>

 <key>First Name</key>

 <string>William</string>

 <key>Last Name</key>

 <string>Shakespeare</string>

 <key>Birthdate</key>

 <integer>1564</integer>

 <key>Profession</key>

 <string>Playwright</string>

 <key>Lines</key>

 <array>

 <string>It is a tale told by an idiot,</string>

 <string>Full of sound and fury, signifying nothing.</string>

 </array>

 </dict>

</plist>

The goal of the mapping is to create a new line in the CSV file from certain key-value pairs found under <dict>
node in the property list file. Specifically, the mapping must filter only <key> - <string> pairs. Other key-value

pairs (for example, <key> - <integer>) must be ignored. In the CSV file, the line must store the name of the

property, separated from the value of the property by a comma. In other words, the output must look as follows:

First Name,William
Last Name,Shakespeare
Profession,Playwright

To achieve this goal, the mapping uses dynamic access to all children nodes of the dict node. Secondly, the
mapping uses the group-starting-with function to group the key-value pairs retrieved from the XML file.
Finally, the mapping uses a filter to filter only those nodes where the node name is "string".

The following steps show how the required mapping can be created.

Step 1: Add the source XML component to the mapping
1. Set the mapping transformation language to BUILT-IN .
2. On the Insert menu, click XML Schema/File, and browse for the following file:

<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\plist.xml. This XML file points
to the plist.dtd schema located in the same folder.

Step 2: Add the target CSV component to the mapping
1. On the Insert menu, click Text File. When prompted, select the Use simple processing for

standard CSV... option.
2. Add a CSV field to the component, by clicking Append field.
3. Double-click the name of each field, and enter "Key" as name of the first field, and "Value" as name of

the second field. The "Key" field will store the name of the property, while the "Value" field will store the
property value. For more information about CSV components, see CSV and Text Files .

581

22

329

© 2018-2024 Altova GmbH

Map Node Names 749Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

Step 3: Add the filter and functions
1. Drag the equal , exists and group-starting-with functions from the Libraries window into

the mapping. For general information about functions, see Functions .
2. To add the filter, click the Insert menu, and then click Filter: Nodes/Rows. For general information

about filters, see Filters and Conditions .
3. On the Insert menu, click Constant, and then enter the text "string".
4. In the source component, right-click the dict node and select Show Child Elements with Dynamic

Name from the context menu. On the "Dynamically Named Children Settings" dialog box, make sure
that the check box Show name test nodes to filter or create elements by fixed node name is
selected.

5. Draw the connections as shown below.

547 568 581

441

414

750 Advanced Mapping Procedures Map Node Names

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

ReadPropertyList.mfd

The mapping explained
The element() item on the source component provides all children of the dict node, as a sequence, to the
group-starting-with function. The group-starting-with function creates a new group whenever a node

with the name key is encountered. The exists function checks for this condition and returns the result as

Boolean true/false to the grouping function.

For each group, the filter checks if the name of the current node is equal to "string", with the help of the equal

function. The name itself is read from the local-name(), which supplies the node's name as a string.

The connections to the target component have the following role:

· Only when the filter condition is true, a new row is created in the target CSV.
· Key (property name) is taken from the value of the key element in the source.
· Value (property value) is taken from the string name test node.

© 2018-2024 Altova GmbH

Batch-Process Files 751Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

7.2 Batch-Process Files

You can configure MapForce to process multiple files (for example, all files in a directory) when the mapping
runs. Using this feature, you can solve tasks such as:

· Supply to the mapping a list of input files to be processed
· Generate as mapping output a list of files instead of a single output file
· Generate a mapping application where both the input and output file names are defined at runtime
· Convert a set of files to another format
· Split a large file (or database) into smaller parts
· Merge multiple files into one large file (or load them into a database)

You can configure a MapForce component to process multiple files in one of the following ways:

· Supply the path to the required input or output file(s) using wildcard characters instead of a fixed file
name, in the component settings (see Changing the Component Settings). Namely, you can enter
the wildcards * and ? in the Component Settings dialog box, so that MapForce resolves the
corresponding path when the mapping runs.

· Connect to the root node of a component a sequence which supplies the path dynamically (for
example, the result of the replace-fileext function). When the mapping runs, MapForce will read

dynamically all the input files or generate dynamically all the output files.

Depending on what you want to achieve, you can use either one or both of these approaches on the same
mapping. However, it is not meaningful to use both approaches at the same time on the same component. To

instruct MapForce which approach you want to use for a particular component, click the File () or

File/String () button available next to the root node of a component. This button enables you to
specify the following behavior:

Use File Names from Component Settings If the component should process one or several instance
files, this option instructs MapForce to process the file
name(s) defined in the Component Settings dialog box.

If you select this option, the root node does not have an
input connector, as it is not meaningful.

If you did not specify yet any input or output files in the
Component Settings dialog box, the name of the root node
is File: (default). Otherwise, the root node displays the
name of the input file, followed by a semi-colon (;),
followed by the name of the output file.

43

752 Advanced Mapping Procedures Batch-Process Files

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

If the name of the input is the same with that of the output
file, it is displayed as name of the root node.

Note that you can select either this option or the Use
Dynamic File Names Supplied by Mapping option.

Use Dynamic File Names Supplied by Mapping This option instructs MapForce to process the file name(s)
that you define on the mapping area, by connecting values
to the root node of the component.

If you select this option, the root node gets an input
connector to which you can connect values that supply
dynamically the file names to be processed during
mapping execution. If you have defined file names in the
Component Settings dialog box as well, those values are
ignored.

When this option is selected, the name of the root node is
displayed as File: <dynamic>.

This option is mutually exclusive with the Use File Names
from Component Settings option.

Parse Strings to XML, Parse Strings to JSON,
Parse Strings to CSV, Parse Strings to FLF,
Parse Strings to EDI

When switched on, this option enables the component to
accept a string value as input to the root node, and convert
it to an XML, JSON, CSV, FLF, or EDI structure,
respectively. For more information, see Parsing and
Serializing Strings .

Serialize XML to Strings, Serialize JSON to
Strings, Serialize CSV to Strings, Serialize
FLF to Strings, Serialize EDI to Strings

When switched on, this option enables the component to
accept a structure as input, and convert it to string. The
input structure can be XML, JSON, CSV, Fixed-length
Field, or EDI, respectively. For more information, see
Parsing and Serializing Strings .

758

758

© 2018-2024 Altova GmbH

Batch-Process Files 753Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

Multiple input or output files can be defined for the following components:

· XML files
· Text files (CSV*, FLF* files and FlexText** files)
· EDI documents**
· Excel spreadsheets**
· XBRL documents**
· JSON files**
· Protocol Buffers files**

* Requires MapForce Professional Edition
** Requires MapForce Enterprise Edition

The following table illustrates support for dynamic input and output file and wildcards in MapForce languages.

Target
language

Dynamic input file
name

Wildcard support for
input file name

Dynamic output file name

XSLT 1.0 * Not supported by XSLT 1.0 Not supported by XSLT 1.0

XSLT 2.0 * *(1) *

XSLT 3.0 * *(1) *

XQuery * *(1) Not supported by XQuery

C++ * * *

C# * * *

Java * * *

BUILT-IN * * *

Legend:

* Supported

(1) XSLT 2.0, XSLT 3.0, and XQuery use the fn:collection function. The implementation in the Altova

XSLT 2.0, XSLT 3.0, and XQuery engines resolves wildcards. Other engines may behave differently.

7.2.1 Example: Split One XML File into Many

This example shows you how to generate dynamically multiple XML files from a single source XML file. The
accompanying mapping for this example is available at the following path:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\Tut-ExpReport-dyn.mfd.

The source XML file (available in the same folder as the mapping) consists of the expense report for a person
called "Fred Landis" and contains five expense items of different types. The aim of the example is to generate a
separate XML file for each of the expense items listed below.

754 Advanced Mapping Procedures Batch-Process Files

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

mf-ExpReport.xml (as shown in XMLSpy Grid view)

As the type attribute defines the specific expense item type, this is the item we will use to split up the source
file. To achieve the goal of this example, do the following:

1. Insert a concat function (you can drag it from the core | string functions library of the Libraries pane).

2. Insert a constant (on the Insert menu, click Constant) and enter ".xml" as its value.
3. Insert the auto-number function (you can drag it from the core | generator functions library of the

Libraries pane).

4. Click the File () or File/String () button of the target component and select Use
Dynamic File Names Supplied by Mapping.

5. Create the connections as shown below and then click the Output pane to see the result of the
mapping.

© 2018-2024 Altova GmbH

Batch-Process Files 755Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

Tut-ExpReport-dyn.mfd (MapForce Basic Edition)

Note that the resulting output files are named dynamically as follows:

· The type attribute supplies the first part of the file name (for example, "Travel").
· The auto-number function supplies the sequential number of the file (for example, "Travel1",

"Travel2", and so on).
· The constant supplies the file extension, which is ".xml", thus "Travel1.xml" is the file name of the

first file.

7.2.2 Example: Split Database Table into Many XML Files

This example shows you how to generate dynamically multiple XML files, one for each record of a database
table. The accompanying mapping for this example is available at the following path:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\PersonDB-dyn.mfd.

756 Advanced Mapping Procedures Batch-Process Files

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The source database file (available in the same folder as the mapping) includes a Person table which contains
21 records. The aim of the example is to generate a separate XML file for each record in the Person table.

As the "PrimaryKey" field uniquely identifies each person in the table, this is the item we will use to split up the
source database into separate files. To achieve the goal of this example, do the following:

1. Insert a concat function (you can drag it from the core | string functions library of the Libraries pane).

2. Insert a constant (on the Insert menu, click Constant) and enter ".xml" as its value.

3. Click the File () or File/String () button of the target component and select Use
Dynamic File Names Supplied by Mapping.

4. Create the connections as shown below and then click the Output pane to see the result of the
mapping.

PersonDB-dyn.mfd (MapForce Professional Edition)

Note that the resulting output files are named dynamically as follows:

© 2018-2024 Altova GmbH

Batch-Process Files 757Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

· The PrimaryKey field supplies the first part of the file name (for example, "1").
· The constant supplies the file extension (".xml"), thus "1.xml" is the file name of the first file.

758 Advanced Mapping Procedures Parse and Serialize Strings

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

7.3 Parse and Serialize Strings

String parsing and serialization is an advanced mapping technique that enables you to configure the component
to either parse data from a string, or serialize data to a string. This technique can be regarded as an alternative
to reading data from (or writing data to) files. MapForce components which parse strings or serialize data to
strings can be useful in a variety of situations, for example:

· You need to insert structures such as XML into database fields.
· You need to convert XML fragments stored in database fields into standalone XML files.
· You have legacy data stored as text (for example, fixed-length content in a single database field), and

you would like to convert this data into a fully sortable, field-based structure

String parsing and serialization is available for the following MapForce component types:

· Text (CSV, fixed-length field text)
· XML schema files

For all component types above, string parsing and serialization is supported in the BUILT-IN target language. In
addition, parsing strings to JSON or serializing JSON from strings is supported in BUILT-IN, C#, and Java.

7.3.1 About the Parse/Serialize Component

A Parse/Serialize component in MapForce is a hybrid component which is neither a source nor a target
component. Given the role they play in the mapping design, such components must be placed in between other
source and target components.

You can use a "Parse/Serialize String" component for string parsing when, for some reason, you need to
convert a string that has structure (for example, some XML stored as string in a database) into another format.
Parsing data from the source string to the "Parse/Serialize" component means that the source string is turned
into a MapForce structure, and, thus, you get access to any element or attribute of the source XML stored as
string.

© 2018-2024 Altova GmbH

Parse and Serialize Strings 759Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

Generic "Parse String" component

The diagram above illustrates the typical structure of a MapForce component which parses a string. Note that
the "Parse/Serialize String" component is placed in between the source and target of the mapping. What this
component does is accept some string structure as input, by means of a single MapForce connector which is
connected to its top String node. The output structure can be any of the data targets supported by MapForce.

When you serialize data from a component to string, the reverse happens. Specifically, the entire structure of
the MapForce component becomes a string structure which you can further manipulate as necessary. For
example, this enables you to write an XML file (or XML fragment) to a database field or to a single cell of an
Excel spreadsheet.

Generic "Serialize to String" component

The diagram above illustrates a generic MapForce "Serialize to String" component. What this component does
is accept as input any data source supported by MapForce (by means of standard MapForce connectors). The
output structure is a string which you can pass further by means of a single MapForce connector drawn from

760 Advanced Mapping Procedures Parse and Serialize Strings

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

the top String node of the component to a target component item (for example, a spreadsheet cell). For an
example, see Example: Serialize to String (XML to Database) .

You can designate a component for string parsing or serialization at any time from the mapping window. To do

so, click the File/String () button adjacent to the root node, and then select the desired option.

Changing the component mode

Note: A "Parse/Serialize String" component cannot read data from a string and write to a string
simultaneously. Therefore, the root node can have either an incoming connector or an outgoing
connector (not both). An error will be generated if you attempt to use the same component for both
operations.

When you designate a component for string parsing or serialization, the appearance of component changes as
follows:

· The component gets the parse or serialize prefix in the title.
· The title bar has yellow background color, similar to function components.
· The top node begins with the String: prefix and is identified by the icon.
· If the component parses a string, the output connector from the root node is not meaningful and thus it

is not available.
· If the component serializes to a string, the input connector to the root node is not meaningful and thus

it is not available.

When a component is in "Parse/Serialize String" mode, you can change its settings in a similar way as if it
were in a file-based mode (see Changing the Component Settings). Note that not all component settings are
available when a component is in either "Parse" or "Serialize" mode.

7.3.2 Example: Serialize to String (XML to Database)

This example walks you through the steps required to create a mapping design which serializes data to a
string. The example is accompanied by a sample file. If you want to look at the sample file before starting this
example, you can open it from the following path:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\SerializeToString.mfd.

760

43

© 2018-2024 Altova GmbH

Parse and Serialize Strings 761Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

Let's assume you have an XML file (and its related schema) which consists of multiple <Person> elements.
Each <Person> element describes a person's first name, last name, job title, phone extension, and email
address, as follows:

<Person>

 <First>Joe</First>

 <Last>Firstbread</Last>

 <Title>Marketing Manager Europe</Title>

 <PhoneExt>621</PhoneExt>

 <Email>j.firstbread@nanonull.com</Email>

</Person>

Your goal is to extract each <Person> element from the XML file and insert it literally (including XML tags) as a
new database record in the PEOPLE table of a SQLite database. The PEOPLE table contains only two columns:
ID and PERSON. Its full definition is as follows:

CREATE TABLE PEOPLE (ID INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, PERSON TEXT);

After the mapping is executed, the expected result is that the PEOPLE table will have the same number of rows
as the number of <Person> elements in the XML file.

To achieve the goal, do the following:

1. Add to the mapping area the source XML component (use the Insert | XML Schema/File menu
command). The sample file is available at:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\MFCompany.xml.

2. Duplicate (copy-paste) the XML component.

3. On the duplicated XML component, click , and then select Serialize XML to Strings.

4. Right-click the duplicated component and select Change Root Element from the context menu. Then
change the root element to <Person>.

762 Advanced Mapping Procedures Parse and Serialize Strings

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

In general, you can change the root element to any element that has a global (not local)
declaration in the XML schema. Any elements that are not defined globally in your schema are not
listed in the "Select Root Element" dialog box.

5. Double-click the component and clear the Write XML Declaration check box. This prevents the XML
declaration from being written for each <Person> element.

© 2018-2024 Altova GmbH

Parse and Serialize Strings 763Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

6. Add to the mapping area the target SQLite database component, from the following path:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\\dbserialize.db. (To add the
database component, use the Insert | Database menu command, see also Connecting to a
Database). When prompted to insert a database object, select the PEOPLE table.152

764 Advanced Mapping Procedures Parse and Serialize Strings

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

7. Link the components as shown below. On the left side of the mapping, the <Person> element maps to
the serialization component. On the right side of the mapping, the serialized string value is inserted
into the PERSON column of the PEOPLE database table. Finally, the connector drawn from <Person> to
the PEOPLE table instructs MapForce to create a new record for each <Person> element encountered.

8. Click the A:In button on the database component, and do the following:
a. Select the Delete all records option. At mapping runtime, this will delete any existing records

from the database before new ones are inserted.
b. Select the DB-generated option next to the ID column. This ensures that the ID of the record will

be generated by the database. Note that the DB-generated option appears only if the column
supports this option. For columns that are not an identity or auto-incremented field, the max+1
option is available instead—this option will check what is the maximum value already existing in
that column, and insert the next available integer, incremented by 1.

© 2018-2024 Altova GmbH

Parse and Serialize Strings 765Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

You have now created a mapping design which serializes data to string. If you click the Output pane, the
preview SQL query indicates that separate records will be inserted into the database for each <Person>
element in the XML file, which was the goal of this mapping.

766 Advanced Mapping Procedures Mapping Rules and Strategies

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

7.4 Mapping Rules and Strategies

In general, MapForce maps data in an intuitive way, but you may come across situations where the output
contains too many or too few items. This chapter is meant to help you avoid situations when the mapping
produces undesired output due to incorrect connections or mapping context.

Mapping rules
In order to be valid, a mapping must include at least one source and at least one target component. A source
component is one that reads data, typically from a file or database. A target component is one that writes data,
typically to a file or database. If you attempt to save a mapping where the above is not true, an error appears in
the Message window: "A mapping requires at least two connected structures, for a example, a schema or a
database structure".

To create a data mapping, you draw mapping connections between items in the source and target components.

All mapping connections that you draw make together a mapping algorithm. At mapping runtime, MapForce
evaluates the algorithm and processes data based on it. The integrity and the efficiency of the mapping
algorithm depends primarily on the connections. You can also tweak some settings at mapping level, at
component level, or even at connection level, but, essentially, the mapping connections determine how
your data is processed.

Keep in mind the following rules when creating connections:

1. When you draw a connection from a source item, the mapping reads data associated with that item
from the source file or database. The data may have zero, one, or multiple occurrences (in other words,
it may be a sequence, as further described below). For example, if the mapping reads data from an
XML file containing books, the source XML file may contain zero, one, or multiple book elements. In
the mapping below, notice that the book item appears only once on the mapping component, even
though the source (instance) file may contain multiple book elements, or none.

2. When you draw a connection to a target item, the mapping generates instance data of that kind. If the
source item contains simple content (for example, string or integer) and if the target item accepts
simple content, MapForce copies the content to the target item and, if necessary, converts the data
type. Zero, one, or multiple values can be generated, depending on the incoming source data, see the
next bullet.

77

43 53

© 2018-2024 Altova GmbH

Mapping Rules and Strategies 767Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

3. For each (instance) item in the source, one (instance) item is created in the target. This is the
general mapping rule in MapForce. Taking the mapping above as example, if the source XML
contains three book elements, then three publication elements will be created on the target side.
Note that there are also a few special cases, see Sequences .

4. Each connection creates a current mapping context. The context determines which data is available at
the current moment, for the current target node. The context, therefore, determines which source items
are actually copied from the source to the target component. By drawing or omitting a connection, you
may inadvertently change the current context and thus affect the output of the mapping. For example,
your mapping might unnecessarily call a database or a Web service multiple times in the same
mapping execution. This concept is further described below, see The mapping context .

7.4.1 Sequences

As mentioned before, the general mapping rule is "for each item in the source, create one in the target". Here,
"item" means one of the following:

· a single instance node of the input file or database
· a sequence of zero to multiple instance nodes of the input file or database

During mapping execution, if a sequence reaches a target item, this creates a loop that generates as many
target nodes as there are source nodes. There are some exceptions to this rule, however:

· If the target item is an XML root element, it is created once and only once. If you connect a sequence
to it, the result might not be schema valid. If attributes of the root element are also connected, the XML
serialization will fail at mapping runtime. Therefore, avoid connecting a sequence to the root XML
element.

· If the target item accepts only one value, it is created only once. Examples of items that accept only
one value: XML attributes, database fields, simple output components. For example, the mapping
below generates a sequence of three integers (1, 2, 3) with the help of the generate-sequence

function. Nevertheless, the output will contain only one integer, because the target is a simple output
component that accepts a single value. The other two values are ignored.

· If the source schema specifies that a specific item occurs only once, but the instance file contains
many, MapForce may extract the first item from the source (which must exist according to the
schema) and create only one item in the target. To disable this behavior, clear the check box Enable
input processing optimizations based on min/maxOccurs from the component settings, see also
XML Component Settings .

If the sequence is empty, nothing is generated on the target side. For example, if the target is an XML
document and the source sequence is empty, no XML elements would be created in the target at all.

Functions work in a similar way: if they get a sequence as input, then they are called as many times as (and
produce as many results as) there are items in the sequence.

If a function gets an empty sequence as input, it returns an empty result as well, and consequently

767

768

117

768 Advanced Mapping Procedures Mapping Rules and Strategies

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

produces no output at all.

However, there are some categories of functions that, by virtue of their design, return a value even if they get an
empty sequence as input:

· exists, not-exists, substitute-missing

· is-null, is-not-null, substitute-null (these three functions are aliases of the previous three)

· aggregate functions (sum, count, and so on)

· user-defined functions that accept sequences and are regular (not inlined) functions

If you need to replace an empty value, add the substitute-missing function to the mapping and replace the

empty value with a substitute value of choice. Alternatively, you can achieve the same result by using Defaults
and Node Functions .

Functions may have multiple inputs. If a sequence is connected to each input, this produces a Cartesian
product of all inputs, which is typically not the desired outcome. To avoid this, connect only one sequence to a
function with multiple parameters; all other parameters must be connected to "singular" items from parents or
other components.

7.4.2 The Mapping Context

Mapping components are hierarchical structures that may contain many levels of depth. On the other hand, a
mapping may have multiple source and target components, plus any intermediary components such as
functions, filters, value-maps, and so on. This adds complexity to the mapping algorithm, especially when
multiple unrelated components are connected. To make it possible to execute the mapping in portions, one
step at a time, a current context must be established for each connection.

We could also say that multiple "current contexts" are established for the duration of the mapping execution,
since the current context changes with each processed connection.

MapForce always establishes the current context starting from the target root item (node). This is where the
mapping execution actually begins. The connection to the target root item is traced back to all source items
that are directly or indirectly connected to it, including via functions or other intermediary components. All the
source items and results produced by functions are added to the current context.

After it finishes processing the target node, MapForce works down the hierarchy. Namely, it processes all
mapped items of the target component from top to bottom. For each new item, a new context is established
that initially contains all items of the parent context. Thus, all mapped sibling items in a target component are
independent of each other, but have access to all source data of their parent items.

Let's see how the above applies in practice, based on an example mapping, PersonListByBranchOffice.mfd.
You can find this mapping in the <Documents>\Altova\MapForce2024\MapForceExamples\ directory.

449

© 2018-2024 Altova GmbH

Mapping Rules and Strategies 769Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

In the mapping above, both the source and the target component are XML. The source XML file contains two
Office elements.

As mentioned previously, the mapping execution always begins from the target root node (PersonList, in this
example). By tracing back the connection (via the filter and the function) to a source item, you can conclude
that the source item is Office. (The other connection path leads to an input parameter and its purpose is further
explained below).

Had there been a straightforward connection between Office and PersonList, then, according to the general
mapping rule, the mapping would have created as many PersonList instance items as there are Office items
in the source file. However, this does not happen here, because there is a filter in between. The filter supplies to
the target component only data that satisfies the Boolean condition connected to the bool input of the filter.
The equal function returns true if the office name is equal to "Nanonull, Inc.". This condition is satisfied only

once, because there is only one such office name in the source XML file.

Consequently, the connection between Office and PersonList defines a single office as the context for the
entire target document. This means that all descendants of the PersonList item have access to data of the
office "Nanonull, Inc." office, and no other office exists in the current context.

The next connection is between Contact and Person. According to the general mapping rule, it will create one
target Person for each source Contact. On each iteration, this connection establishes a new current context;
therefore, the child connections (first to First, last to Last) supply data from the source to the target item in the
context of each Person.

If you left out the connection between Contact and Person, then the mapping would create only one Person
with multiple First, Last, and Details nodes. In such cases, MapForce issues a warning and a suggestion in
the Messages window, for example:

770 Advanced Mapping Procedures Mapping Rules and Strategies

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Finally, the mapping includes a user-defined function, LookupPerson. The user-defined function is also

executed in the context of each Person, because of the parent connection between Contact and Person.
Specifically, each time when a new Person item is created on the target side, the function is called to populate
the Details element of the person. This function takes three input parameters. The first one (OfficeName) is
set to read data from the input parameter of the mapping. The source data for this parameter could as well be
provided by the Name source item, without changing in any way the mapping output. In either case, the source
value is the same and it is taken from a parent context. Internally, the look-up function concatenates the values
received as arguments and produces a single value. For more information about how the LookupPerson

function works, see the Example: Look-up and Concatenation .

7.4.2.1 Databases

To improve efficiency and decrease usage of hardware or network resources, you will typically want to avoid
calling the same database multiple times in the same mapping unnecessarily. There may still be situations
where you simply cannot avoid calling a database multiple times because of the nature of the mapping, but
here are some general considerations:

· If you need only one database call, avoid placing the database component in a parent context that
would demand calling the database multiple times. This could happen, for example, if you add a
database component inside a user-defined function that receives a sequence of values as input and
thus gets called for each item in the sequence, see also User-Defined Functions below. Variables
are typically helpful to gather data into the same context before you pass it on to the target
component.

· If you need to aggregate values from a database (for example, to count the number of records using the
count function), it is recommended to connect the output of the aggregate function to a variable where

compute-when=once. This prevents repetitive calls to the database, as described in the Example:
Counting Database Table Rows .

· Try to extract all database data in one call (for example, a SQL-SELECT statement, or a stored
procedure), as opposed to adding the same database component multiple times on the mapping.

· If you need to extract data from multiple tables or views from the same database, it's advisable to use
either a Join component (in SQL mode), or a SQL-SELECT statement. The latter is more convenient if
you prefer to write the SQL SELECT statement yourself. If you need to join database data to some
non-database data, or data from different databases, use non-SQL joins. To optimize execution of non-
SQL joins in data-intensive mappings, run mappings with MapForce Server Advanced Edition.

· If you need to filter data from a database, it's more efficient to use a SQL-WHERE component instead
of a standard filter, since the former component is optimized for working with databases specifically, in
the grammar of the respective database.

476

771

374

© 2018-2024 Altova GmbH

Mapping Rules and Strategies 771Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

7.4.2.2 User-Defined Functions

User-defined functions (UDFs) are custom functions embedded into the mapping, where you define the inputs,
outputs, and processing logic. Each user-defined function may contain the same component kinds as a main
mapping, including Web services and databases.

By default, if a UDF contains a database or a Web service component, and if the input data to the UDF is
a sequence of multiple values, then each input value will call the UDF and consequently will result in a
database or Web service call.

The behavior above may be acceptable for those mappings where you really need the UDF to be called as
many times as there are input values and there is simply no other alternative way.

If you do not want the above to happen, you can configure the UDF so that it is called only once even if gets a
sequence of values as input. You will typically want to do this for those UDFs that operate on a set of values
before they can return (such as functions that calculate averages or totals).

Configuring a UDF to accept multiple input values in the same function call is possible if the UDF is of type
"regular", not "inlined". (For details, see the User-Defined Functions chapter.) With regular functions, you
can specify that the input parameter is a sequence by selecting the Input is a sequence check box. This
check box is visible on the component settings, after you double-click the title bar of an input parameter. The
check box affects how often the function is called, as follows:

· When input data is connected to a sequence parameter, the user-defined function is called only once
and the complete sequence is passed into the user-defined function.

· When input data is connected to a non-sequence parameter, the user-defined function is called once
for each single item in the sequence.

For an example, open the following demo mapping:
<Documents>\Altova\MapForce2024\MapForceExamples\InputIsSequence.mfd.

464

772 Advanced Mapping Procedures Mapping Rules and Strategies

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The mapping above illustrates a typical case of a UDF that operates on a set of values and thus requires all the
input values in one call. Specifically, the Calculate user-defined function returns the minimum, maximum and

average temperatures, taking as input data from a source XML file. The expected mapping output is as follows:

<Temperatures>

 <YearlyStats Year="2008">

 <MinimumTemp>-0.5</MinimumTemp>

 <MaximumTemp>24</MaximumTemp>

 <AverageTemp>11.6</AverageTemp>

 </YearlyStats>

</Temperatures>

As usual, the mapping execution begins with the top item of the target component (YearlyStats, in this
example). To populate this node, the mapping attempts to obtain source data from the UDF, which in its turn,
triggers the filter. The filter's role in this mapping is to pass onto the UDF only temperatures from year 2008.

The check box Input is sequence was selected for the input parameter of the UDF (To view this check box,
double-click the title bar of the Calculate function to enter the function's mapping; then double-click the title

bar of the input parameter). As mentioned before, the Input is sequence option causes the complete
sequence of values to be supplied as input to the function and the function is called only once.

Had the Input is sequence check box not been selected, the UDF would have been called for each value in
the source. As a result, the minimum, maximum and average would be calculated for each single value
individually and incorrect output would be produced.

By applying the same logic in more complex UDFs that include database or Web service calls, it may be
possible to optimize the execution and avoid unnecessary calls to the database or Web service. Nevertheless,
be aware that the Input is sequence check box does not control what happens to the sequence of values after

© 2018-2024 Altova GmbH

Mapping Rules and Strategies 773Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

it enters the function. In other words, there is nothing to prevent you from connecting the incoming sequence of
values to the input of a Web service and thus call it multiple times. Consider the following example:

The UDF illustrated above receives a sequence of values from the external mapping. Specifically, the data
supplied to the input parameter originates from a database. The input parameter has the option Input is
sequence selected, so the entire sequence is supplied to the function in one call. The function is supposed to
add up multiple quantity values and post the result to a Web service. Exactly one Web service call is
expected. However, the Web service will be incorrectly called multiple times when the mapping runs. The
reason is that the Request input of the Web service receives a sequence of values, not a single value.

To fix this problem, connect the Request input of the Web service to the result of the sum function. The function

produces one single value, so the Web service will also be called once:

Normally, aggregate functions like sum, count, etc produce a single value. Nevertheless, if there is a parent

connection that allows it, they may produce a sequence of values as well, as described further in the
Example: Changing the Parent Context .

7.4.2.3 Example: Changing the Parent Context

Some mapping components have an optional parent-context item.

The parent-context argument is an optional argument in some MapForce core aggregation functions (e.g.,
min, max, avg, count). In a source component which has multiple hierarchical sequences, the parent context

determines the set of nodes on which the function should operate.

773

774 Advanced Mapping Procedures Mapping Rules and Strategies

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

With the help of this item you can influence the mapping context in which that component should operate and
consequently change the mapping output. The components that have an optional parent-context are:
aggregate functions, variables, and Join components.

For a demo of how changing the parent context is useful, open the following mapping:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\ParentContext.mfd.

In the source XML of the mapping above, there is a single Company node which contains two Office nodes.
Each Office node contains multiple Department nodes, and each Department contains multiple Person
nodes. If you open the XML file in an XML editor, you can see that the distribution of people by office and
department is as follows:

Office Department Number of people

Nanonull, Inc. Administration 3

Marketing 2

Engineering 6

IT & Technical Support 4

Nanonull Partners, Inc. Administration 2

© 2018-2024 Altova GmbH

Mapping Rules and Strategies 775Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

Office Department Number of people

Marketing 1

IT & Technical Support 3

The mapping counts all people in all departments. For this purpose, it uses the count function from the core

library. If you click the Output pane to preview the mapping, you will notice that it produces a single value, 21,
which corresponds to the total number of people in the source XML file.

The mapping works as follows:

· As usual, the mapping execution starts from the top node of the target component (rows, in this
example). There is no incoming connection to rows. As a result, an implicit mapping context is
established between Company (top item of the source component) and rows (top item of the target
component).

· The function's result is a single value, because there is only one company in the source file.
· To populate the col1 target item, MapForce executes the count function in the implicit parent context

mentioned above, so it will count all Person nodes from all offices and from all departments.

The parent-context argument of the function lets you change the mapping context. This enables you, for
example, to count the number of people in each department. To do this, draw two more connections as shown
below:

In the mapping above, connection A changes the parent context of the count function to Department. As a

result, the function will count the number of people in each department. Very importantly, the function will now
return a sequence of results instead of a single result, because multiple departments exist in the source. This
is the reason why connection B exists: for each item in the resulting sequence it creates a new row in the

776 Advanced Mapping Procedures Mapping Rules and Strategies

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

target file. The mapping output has now changed accordingly (notice the numbers correspond exactly to the
count of people in each department):

<rows>

 <row>

 <col1>3</col1>

 </row>

 <row>

 <col1>2</col1>

 </row>

 <row>

 <col1>6</col1>

 </row>

 <row>

 <col1>4</col1>

 </row>

 <row>

 <col1>2</col1>

 </row>

 <row>

 <col1>1</col1>

 </row>

 <row>

 <col1>3</col1>

 </row>

</rows>

Given that the current mapping creates a row for each department, you can optionally copy the office name and
the department name as well into the target file, by drawing connections C and D:

© 2018-2024 Altova GmbH

Mapping Rules and Strategies 777Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

This way, the output will display not only the count of people but also the corresponding office and department
name.

If you would like to count the number of people in each office, connect the parent context of count function to

the Office item in the source.

778 Advanced Mapping Procedures Mapping Rules and Strategies

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

With the connections shown above, the count function returns one result for each office. There are two offices

in the source file, so the function will now return two sequences. Consequently, there will be two rows in the
output, where each row is the number of people in that office:

<rows>

 <row>

 <col1>15</col1>

 <col2>Nanonull, Inc.</col2>

 </row>

 <row>

 <col1>6</col1>

 <col2>Nanonull Partners, Inc.</col2>

 </row>

</rows>

7.4.3 Priority context

Priority context is a way to influence the order in which input parameters of a function are evaluated. Setting a
priority context may be necessary if your mapping joins data from two unrelated sources.

To understand how priority context works, recall that, when a mapping runs, the connection to an input item
may carry a sequence of multiple values. For functions with two input parameters, this means that MapForce
must create two loops, one of which must be processed first. The loop that is processed first is the "outer"
loop. For example, the equal function receives two parameters: a and b. If both a and b get a sequence of

values, then MapForce processes as follows:

© 2018-2024 Altova GmbH

Mapping Rules and Strategies 779Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

· For each occurrence of a
o For each occurrence of b

§ Is a equal to b?

As you can see from above, each b is evaluated in the context of each a. Priority context lets you alter the
processing logic so that each a is evaluated in the context of each b. In other words, it lets you swap the inner
loop with the outer loop, for example:

· For each occurrence of b
o For each occurrence of a

§ Is a equal to b?

Let's now examine a mapping where priority context affects the mapping output. In the mapping below, the
concat function has two input parameters. Each input parameter is a sequence that was generated with the

help of the generate-sequence function. The first sequence is "1,2" and the second sequence is "3,4".

First, let's run the mapping without setting a priority context. The concat function starts evaluating the top

sequence first, so it combines values in the following order:

· 1 with 3
· 1 with 4
· 2 with 3
· 2 with 4

This is reflected in the mapping output as well:

<data>

 <value>13</value>

 <value>14</value>

 <value>23</value>

 <value>24</value>

</data>

If you right-click the second input parameter and select Priority Context from the context menu, it will become
the priority context. As illustrated below, the priority context input is encircled.

780 Advanced Mapping Procedures Mapping Rules and Strategies

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

This time, the second input parameter will be evaluated first. The `concat` function will still concatenate the
same values, but this time it will process the sequence `3,4` first. Consequently, the output becomes:

<data>

 <value>13</value>

 <value>23</value>

 <value>14</value>

 <value>24</value>

</data>

So far, you have seen only the theoretical part behind priority context. For a more practical scenario, see
Example: Filter with priority context .

7.4.3.1 Example: Filter with priority context

When a function is connected to a filter, priority context affects not only the function itself, but also the
evaluation of the filter. The mapping below illustrates a typical case when it's required to set a priority context in
order to get the correct output. You can find this mapping at the following path:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\FilterWithPriority.mfd.

Note: This mapping uses XML components, but the same logic as described below applies for all other
component types in MapForce, including EDI, JSON, and so on. For databases, it's advisable to
perform filtering using SQL WHERE components rather than standard filters.

780

419

© 2018-2024 Altova GmbH

Mapping Rules and Strategies 781Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

The aim of the mapping above is to copy data from Articles.xml into a new XML file with a different schema,
articledata.xml. At the same time, the mapping should look up the details of each article in the
Products.xml file and join them to the respective article record. Note that each record in Articles.xml has a
Number and each record in Products.xml has an id. If these two values are equal, then all the other values
(Name, SinglePrice, color, size) should be copied to the same row in the target.

This goal has been accomplished by adding a filter. Each filter requires a Boolean condition as input; only
those nodes/rows that satisfy the condition will be copied over to the target. For this purpose, there is an equal

function on the mapping. The equal function checks if the article number and product ID are equal in both

sources. The result is then supplied as input to the filter. If true, then the Article item is copied to the target.

Notice that a priority context has been defined on the second input parameter of the second equal function. In

this mapping, the priority context makes a big difference, and not setting it will result in incorrect mapping
output.

Initial mapping: No priority context
Here is the mapping logic without priority context:

· According to the general mapping rule, for each Article that satisfies the filter condition, a new row is
created in the target. The connection between Article and row (via the function and filter) takes care of
this part.

· The filter checks the condition for each article. To do this, it iterates through all products, and brings
multiple products in the current context.

· To populate the id on the target side, MapForce follows the general rule (for each item in the source,
create an item in the target). However, as explained above, all products from Products.xml are in the
current context. There is no connection between product to anywhere else in the target so as to read
the id of a specific product only. As a consequence, multiple id elements will be created for each
Article in the target. The same happens with color and size.

782 Advanced Mapping Procedures Mapping Rules and Strategies

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

To summarize: items from Products.xml have the filter's context (which must iterate through each product);
therefore, the id, color, and size values will be copied to each target row as many times as there are products
in the source file, and generate incorrect output like the one below:

<rows>

 <row>

 <id>1</id>

 <id>2</id>

 <id>3</id>

 <name>T-Shirt</name>

 <color>red</color>

 <color>blue</color>

 <color>green</color>

 <size>10</size>

 <size>20</size>

 <size>30</size>

 <price>25</price>

 </row>

</rows>

Solution A: Use priority context
The problem above was solved by adding a priority context to the function that computes the filter's Boolean
condition.

Specifically, if the second input parameter of the equal function is designated as priority context, the sequence

incoming from Products.xml is prioritized. This translates to the following mapping logic:

· For each product, populate input b of the equal function (in other words, prioritize b). At this stage, the

details of the current product are in context.
· For each article, populate input a of the equal function and check if the filter condition is true. If yes,

then put the article details as well into the current context.
· Next, copy the article and product details from the current context to the respective items in the target.

The mapping logic above produces correct output, for example:

<rows>

 <row>

 <id>1</id>

 <name>T-Shirt</name>

 <color>red</color>

 <size>10</size>

 <price>25</price>

 </row>

</rows>

Solution B: Use a variable
As an alternative solution, you could bring each article and product that matches the filter's condition into the
same context with the help of an intermediate variable. Variables are suitable for scenarios like this one

© 2018-2024 Altova GmbH

Mapping Rules and Strategies 783Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

because they let you store data temporarily on the mapping, and thus help you change the context as
necessary.

For scenarios like this one, you can add to the mapping a variable that has the same schema as the target
component. On the Insert menu, click Variable, and supply the articledata.xsd schema as structure when
prompted.

In the mapping above, the following happens:

· Priority context is not used any longer. There is a variable instead, which has the same structure as
the target component.

· As usual, the mapping execution starts from the target root node. Before populating the target, the
mapping collects data into the variable.

· The variable is computed in the context of each product. This happens because there is a connection
from product to the compute-when input of the variable.

· The filter condition is thus checked in the context of each product. Only if the condition is true will the
variable's structure be populated and passed on to the target.

7.4.4 Multiple target components

A mapping may have multiple source and target components. When there are multiple target components, you

can preview only one component output at a time in MapForce, the one that you indicate by clicking the
 Preview button. In other execution environments (MapForce Server or generated code), all of the target
components will be executed sequentially, and the respective output of each component will be produced.

By default, target components are processed from top to bottom and from left to right. If necessary, you can
influence this order by changing the position of target components in the mapping window. The point of
reference is each component's top left corner. Note the following:

· If two components have the same vertical position, then the leftmost takes precedence.
· If two components have the same horizontal position, then the highest takes precedence.
· In the unlikely event that components have the exact same position, then an unique internal

component ID is automatically used, which guarantees a well-defined order but which cannot be
changed.

784 Advanced Mapping Procedures Mapping Rules and Strategies

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

For an example of how this works, open the following demo mapping:
<Documents>\Altova\MapForce2024\MapForceExamples\Tutorial\GroupingFunctions.mfd. This
mapping consists of multiple source and multiple target components; only a fragment is shown below.

According to the rules, the default processing order of this mapping in MapForce Server and in generated code
is from top to bottom. You can check that this is the case by generating XSLT 2.0 code, for example.

1. On the File menu, click Generate code in | XSLT 2.0.
2. When prompted, select a target directory for the generated code.

After generation, the target directory includes several XSLT files and a DoTransform.bat file. The latter can be
executed by RaptorXML Server (requires a separate license). The DoTransform.bat file processes
components in the same order as they were defined on the mapping, from top to bottom. This can be verified by
looking at the --output parameter of each transformation.

RaptorXML xslt --xslt-version=2 --input="records.xml" --output="group-by.xml" --xml-
validation-error-as-warning=true %* "MappingMapTogroups.xslt"
IF ERRORLEVEL 1 EXIT/B %ERRORLEVEL%
RaptorXML xslt --xslt-version=2 --input="records.xml" --output="group-adjacent.xml" --
xml-validation-error-as-warning=true %* "MappingMapTogroups2.xslt"
IF ERRORLEVEL 1 EXIT/B %ERRORLEVEL%
RaptorXML xslt --xslt-version=2 --input="records.xml" --output="group-into-blocks.xml" --
xml-validation-error-as-warning=true %* "MappingMapTogroups3.xslt"
IF ERRORLEVEL 1 EXIT/B %ERRORLEVEL%
RaptorXML xslt --xslt-version=2 --input="records-v2.xml" --output="group-starting-
with.xml" --xml-validation-error-as-warning=true %* "MappingMapTogroups4.xslt"
IF ERRORLEVEL 1 EXIT/B %ERRORLEVEL%
RaptorXML xslt --xslt-version=2 --input="records-v3.xml" --output="group_ending_with.xml"
--xml-validation-error-as-warning=true %* "MappingMapTogroups5.xslt"
IF ERRORLEVEL 1 EXIT/B %ERRORLEVEL%

© 2018-2024 Altova GmbH

Mapping Rules and Strategies 785Advanced Mapping Procedures

Altova MapForce 2024 Professional Edition

The last transformation produces an output file called group-ending-with.xml. Let's now move this target
component on the mapping to the very top:

If you now generate the XSLT 2.0 code again, the processing order changes accordingly:

RaptorXML xslt --xslt-version=2 --input="records-v3.xml" --output="group_ending_with.xml"
--xml-validation-error-as-warning=true %* "MappingMapTogroups.xslt"
IF ERRORLEVEL 1 EXIT/B %ERRORLEVEL%
RaptorXML xslt --xslt-version=2 --input="records.xml" --output="group-by.xml" --xml-
validation-error-as-warning=true %* "MappingMapTogroups2.xslt"
IF ERRORLEVEL 1 EXIT/B %ERRORLEVEL%
RaptorXML xslt --xslt-version=2 --input="records.xml" --output="group-adjacent.xml" --
xml-validation-error-as-warning=true %* "MappingMapTogroups3.xslt"
IF ERRORLEVEL 1 EXIT/B %ERRORLEVEL%
RaptorXML xslt --xslt-version=2 --input="records.xml" --output="group-into-blocks.xml" --
xml-validation-error-as-warning=true %* "MappingMapTogroups4.xslt"
IF ERRORLEVEL 1 EXIT/B %ERRORLEVEL%
RaptorXML xslt --xslt-version=2 --input="records-v2.xml" --output="group-starting-
with.xml" --xml-validation-error-as-warning=true %* "MappingMapTogroups5.xslt"
IF ERRORLEVEL 1 EXIT/B %ERRORLEVEL%

In the code listing above, the first call now produces group-ending-with.xml.

You can change the processing order in a similar way in other code languages and in compiled
MapForceServer execution files (.mfx).

Chained mappings
The same processing sequence as described above is followed for chained mappings. The chained mapping
group is taken as one unit, however. Repositioning the intermediate or final target component of a single
chained mapping has no effect on the processing sequence. Only if multiple "chains" or multiple target
components exist in a mapping does the position of the final target components of each group determine which
is processed first.

786 Advanced Mapping Procedures Mapping Rules and Strategies

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· If two final target components have the same vertical position, then the leftmost takes precedence.
· If two final target components have the same horizontal position, then the highest takes precedence.
· In the unlikely event that components have the exact same position, then an unique internal

component ID is automatically used, which guarantees a well-defined order but which cannot be
changed.

© 2018-2024 Altova GmbH

 787Mapping Documentation

Altova MapForce 2024 Professional Edition

8 Mapping Documentation

You can generate detailed documentation about any mapping in HTML, Microsoft Word (.doc), or RTF format. If
StyleVision is installed, you can additionally generate documentation in PDF format.

Prerequisites
· Microsoft Word 2000 or later must be installed if you would like to generate documentation in

Microsoft Word format.
· StyleVision must be installed if you would like to generate documentation in PDF format or

customize the design of the generated documentation.

By default, documentation is generated with a fixed design, where you can configure basic options such as the
components to include, the depth of displayed paths, and other settings. If StyleVision is installed, you can
additionally benefit from several included StyleVision Power Stylesheets (SPS) files, or even create your own
design in StyleVision.

To generate mapping documentation:

1. On the File menu, click Generate Documentation. This opens the "Generate documentation" dialog
box.

788 Mapping Documentation

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

2. Select the required settings and click OK.

The settings you can configure are described below.

Documentation Design
· Select "Use fixed design..." to use the built-in documentation template.
· Select "Use user-defined..." to use a predefined StyleVision Power Stylesheet created in StyleVision.

The SPS files are available in the ...\Documents\Altova\MapForce2024\Documentation\MapForce\
folder. For details, see Predefined StyleVision Power Stylesheets .

· Click Browse to browse for a predefined SPS file.
· Click Edit to launch StyleVision and open the selected SPS in a StyleVision window.

Output Format
· Select one of the following output formats: HTML, Microsoft Word, RTF, or PDF. Microsoft Word

documents are created with the .doc file extension when generated using a fixed design, and with a
.docx file extension when generated using a StyleVision SPS. The PDF output format requires
StyleVision and is available only if you selected a StyleVision SPS.

· Select Split output to multiple files if you would like to generate multiple documentation files, one
file for each individual component such as input or output component. If using a fixed design, links
between multiple documents are created automatically.

790

© 2018-2024 Altova GmbH

 789Mapping Documentation

Altova MapForce 2024 Professional Edition

· If the Show result file after generation option is selected, MapForce will open the generated files in
the default browser or application, as applicable.

Path length limit
Use these options to define the maximum path length to be shown for input or output items or connections. For
example, with the default length 3, an item path would be shown as .../ShortPO/LineItems/LineItem.

Include
Select here the specific components that should be included in the generated documentation.

Details
Use these options to customize the level of detail in the generated documentation. The Library Names option
inserts the "core" prefix for functions.

790 Mapping Documentation Predefined StyleVision Power Stylesheets

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

8.1 Predefined StyleVision Power Stylesheets

When StyleVision is installed on your computer, you can generate mapping documentation by selecting one of
the predefined StyleVision Power Stylesheet (SPS) files as template, instead of the built-in fixed design. The
following predefined SPS stylesheets are available:

· FunctionCallGraph.sps - shows the call graph of the main mapping and any user-defined functions.
· FunctionsUsedBy.sps - shows which functions are used directly or indirectly in the mapping.
· ImpactAnalysis.sps - lists every source and target node, and the route taken via various functions to

the target node.
· OverallDocumentation.sps - shows all nodes, connections, functions, and target nodes. This

template outputs the maximum detail and is identical to the built-in "fixed design" output.

You can select the required stylesheet each time before generating documentation, as shown below. The files
are located in the ...\MapForce2024\Documentation\MapForce folder.

The examples below illustrate output produced by each of these stylesheets. The examples were generated
from one of the demo mappings installed with MapForce, PersonListByBranchOffice.mfd. Although these
examples illustrate HTML output specifically, the layout is similar with other formats. For information about
creating or customizing SPS files, see Custom Stylesheets .795

© 2018-2024 Altova GmbH

Predefined StyleVision Power Stylesheets 791Mapping Documentation

Altova MapForce 2024 Professional Edition

Stylesheet "FunctionCallGraph.sps"

792 Mapping Documentation Predefined StyleVision Power Stylesheets

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Stylesheet "FunctionsUsedBy.sps"

© 2018-2024 Altova GmbH

Predefined StyleVision Power Stylesheets 793Mapping Documentation

Altova MapForce 2024 Professional Edition

Stylesheet "ImpactAnalysis.sps"

794 Mapping Documentation Predefined StyleVision Power Stylesheets

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Stylesheet "OverallDocumentation.sps"

© 2018-2024 Altova GmbH

Custom Stylesheets 795Mapping Documentation

Altova MapForce 2024 Professional Edition

8.2 Custom Stylesheets

In addition to the built-in fixed design, you can create custom stylesheets for the generated mapping
documentation with StyleVision (https://www.altova.com/stylevision). You can also change any of the
predefined stylesheets , for example, by adjusting the fonts and other styles.

A custom design is a StyleVision Power StyleSheet (SPS). The advantage of using an SPS for generating
mapping documentation is that you have complete control over the design of the documentation.

To create a custom SPS file, the following is required:

1. The XML Schema that provides the structure of the generated MapForce documentation. This schema
is called MapForceDocumentation.xsd and is delivered with your MapForce installation package. It
is stored in the ...\Documents\Altova\MapForce2024\Documentation\MapForce folder. Note that
the MapForceDocumentation.xsd includes the Documentation.xsd file located in the folder above
it.

2. Some sample data to test and preview the custom design. You can use the following XML file as
sample data : ...
\Documents\Altova\MapForce2024\Documentation\MapForce\SampleData\PersonListByBranch
Office.xml.

The files mentioned above must be referenced in the Design Overview window in StyleVision, for example:

In StyleVision, you create a design by dragging nodes from the Schema Tree window onto the design area and
assigning styles and properties to them.

790

https://www.altova.com/stylevision

796 Mapping Documentation Custom Stylesheets

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

You can also add additional components such as links and images to the SPS design. To preview the design
in a specific format, click any of the following tabs: HTML, RTF, PDF, or Word 2007+. For more details, refer
to StyleVision documentation (https://www.altova.com/documentation).

https://www.altova.com/documentation

© 2018-2024 Altova GmbH

 797Debugger

Altova MapForce 2024 Professional Edition

9 Debugger

MapForce includes a mapping debugger available for the MapForce BUILT-IN transformation language. The
mapping debugger helps you achieve the following goals:

· View and analyze the values produced by the mapping at each individual connector level.
· Highlight on the mapping the context (set of nodes) responsible for producing a particular value.
· Execute a mapping step-by-step, in order to see how MapForce processes or computes each value in

real time, and preview the mapping output as it is being generated.
· Set milestones (breakpoints) at which the mapping execution should stop and display the value(s)

currently being processed.
· View the history of values processed by a connector since mapping execution began up until the

current execution position.

The mapping debugger is available when the transformation language of the mapping is BUILT-IN. If you start
debugging a mapping designed for a different language, you will be prompted to change the mapping language
to BUILT-IN. You can also convert a mapping to BUILT-IN by selecting the menu command Output | Built-in
Execution Engine. In either case, the conversion to BUILT-IN will be successful if the mapping does not
include components that are not available in the BUILT-IN language (for example, XSLT functions).

The MapForce debugger is unlike a traditional debugger in that it does not traverse your program code line by
line (since you do not write any code with MapForce). Instead, the debugger exposes the results of MapForce-
generated code produced from the mappings you design. More specifically, the debugger logs values that are
passed from and to mapping components through their input and output connectors. The logged values are then
available for your analysis directly on the mapping or through dedicated windows.

The following sections highlight various ways in which you can use the mapping debugger.

Debugger settings are available in the Options dialog box. The list of available debugging commands is
available in Debug .

Debug with breakpoints
When you need to stop the debugging execution at a particular place in the mapping, you can set breakpoints,
similar to how you would do that in a traditional development environment. The difference is that breakpoints are
added not to a line of code, but to an input or output connector of a mapping component. You can also add
conditions to breakpoints (this can be useful if you want to stop the execution only if the set condition is
satisfied).

You can define breakpoints on the desired connectors and execute the mapping up to the first encountered
breakpoint, then go to the next one, and so on. This way you can analyze the mapping context and values

1042

1033

798 Debugger

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

associated with chosen connectors. You can also speed up or slow down the execution by means of the Step
Into, Step Out, Step Over, and Minimal Step commands provided by the debugger. These commands
enable you to skip portions of the mapping, or, on the contrary, execute portions of the mapping in a more
granular way if necessary.

Debug step-by-step
You can debug a mapping step-by-step, and analyze the mapping context and values associated with each
step. This scenario is similar to the previous one, in that you can speed up or slow down execution using the
Step Into, Step Out, Step Over, and Minimal Step commands.

Analyze the log of values
You can configure MapForce to remember the log of all values (trace history) that were processed by all
connectors while you debug a mapping. Keeping the full trace history may not be suitable for mappings that are
data-intensive, so this option can be disabled if necessary. When the option is enabled, you can analyze the
full log of values processed by each connector up until the current execution position. You can also instruct
MapForce to recreate the mapping context associated with any particular value, which would help you
understand why that value was produced.

Set the context to a value related to the current execution position
When the debugger is at a particular execution position on the mapping, it is possible to analyze the context of
a past value relative to the current execution position (this can be compared to stepping slightly back in time):

© 2018-2024 Altova GmbH

 799Debugger

Altova MapForce 2024 Professional Edition

A context is meant to explain why a value is computed; in other words, it describes how a particular value on
the mapping came to be generated. The context is normally the current execution position, although it can also
be a context in the recent past that MapForce enables you to set. When the context is set to a particular
value, MapForce highlights directly on the mapping the nodes that are relevant to it, provides tips next to
mapping connectors, and exposes additional information in debugger-related windows (the Values, Context,
and Breakpoints windows).

After you have inspected a mapping context that is not the same as the current execution position, you can
reset the context back to the current execution position:

Limitations
· When MapForce executes a mapping, it may internally optimize code (for example, by caching data,

or by calculating intermediate results at arbitrary points). This may cause certain connectors (and thus
breakpoints) to be unreachable for debugging, in which case MapForce displays a notification. Note
that the MapForce code optimizations (and, consequently, the behavior exposed by the debugger) may
be different from one MapForce release to the other, even though the mapping output is the same for a
given mapping.

· The debugger can debug the output generation for one target component at a time. If there are multiple
target components on the mapping, you will need to select which one should be executed by the
debugger.

· Currently, debugging is not supported for the database table actions (such as "Insert All", "Update If",
etc.) of database components.

· Breakpoints cannot be added on any of the following entities: constants, the core | position

function, descendent items of "Copy-all" connections, parameters of "inline" user-defined functions.

800 Debugger Debugger Preparation

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

9.1 Debugger Preparation

Debugging preparation is primarily required for big data mappings that are likely to need a lot of system
memory to execute. This is the case of mappings that either process very big input or output files, or
repeatedly iterate through large collections of data.

To make debugging faster and reduce memory requirements, it is recommended to do the following before you
start debugging:

· If the mapping is complex, remove or disconnect parts of the mapping that need not be debugged.
· If the mapping uses big input files, replace them with files of smaller size.
· Ensure that the Keep full trace history option is disabled (see Debugger Settings)

Also, to ensure you are debugging the right output, check the following if applicable:

· If the mapping has multiple target components, select the target component to be debugged by

clicking the Preview button ().

· If the mapping is chained , release the Pass-Through () button on the intermediary component.
Debugging Pass-Through components is currently not supported.

Optionally, if you want the debugger to stop at some important connectors whose value you want to analyze,
add breakpoints to these connectors (see Adding and Removing Breakpoints).

1042

99

804

© 2018-2024 Altova GmbH

About the Debug Mode 801Debugger

Altova MapForce 2024 Professional Edition

9.2 About the Debug Mode

When you start debugging (by pressing F5, or F11, or Ctrl + F11), MapForce executes the mapping in debug
mode.

While MapForce is in debug mode, the mapping is read-only. Although you can move components
on the mapping area, most commands are not available. This includes commands such as
mapping validation and deployment, code generation, documenting mappings, adding new
components to the mapping area or reloading existing ones, and others.

The debug mode enables you to analyze the context responsible for producing a particular value. This
information is available directly on the mapping, as well as in the Values, Context, and Breakpoints windows.
By default, these windows are displayed when you start debugging and are hidden when you stop debugging.

MapForce is in debug mode (and the mapping is read-only) until you stop debugging, by pressing Shift + F5

(or by clicking the Stop debugging toolbar button).

The following image illustrates a sample mapping (SimpleTotal.mfd, from the
<Documents>\Altova\MapForce2024\MapForceExamples\ directory) that is debugged in steps (by pressing
F11 to advance a step).

The MapForce development environment in debug mode

The visual clues and other information provided by MapForce while in debug mode are described below.

802 Debugger About the Debug Mode

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The mapping pane
While debugging, the mapping pane displays additional information:

· Data overlays (see below) show the current value and related values near their connectors.
· The current context (shown as a structure in the Context window) is highlighted as follows:

o Connectors in the context are striped magenta ().

o Connectors in ambiguous context are dotted magenta ().

o Connections in the context are striped magenta.

o Connections in ambiguous context are striped magenta but lighter.

· The current execution location is displayed with a green connector icon ().

Data overlays
The values processed by each connector are displayed as data overlays (small rectangles) near their
corresponding connector. A currently selected data overlay is displayed with thick red border. Values changed
from the last step are displayed in dark red. For nodes with simple content, the data overlay combines two
values - the node name and the value. If the node name has been iterated multiple times before the current
execution position, the index of the current iteration is indicated by the number in square brackets.

Data overlays have the following behavior:

· Pointing the mouse to a data overlay brings it temporarily to the foreground, clicking it does it
permanently. Clicking also selects the corresponding connector.

· Data overlays can be moved by dragging.
· Data overlays move when a component is moved. Therefore, if the data overlays appear stacked

because the components are too close to each other, drag the components around the mapping area
to make more space, and the data overlays will move together with the component.

· Clicking a data overlay shows its value in the Values window.
· Clicking a connector also selects its data overlay.

Breakpoints
Breakpoints are designated milestones at which the mapping should break during execution in debug mode.
This term may be already familiar to you by analogy with other integrated development environments. Unlike
other development environments where you add breakpoints to a line of code, a breakpoint in MapForce can be
added to an input or output connector (small triangle to the left or right of the connection). On the mapping
pane, breakpoints are represented as red circles. Any defined breakpoints are also displayed in the
Breakpoints window. See also Adding and Removing Breakpoints .

Current debugger position

The green triangle () indicates the position of the debugger. This position is either an input or an output
connector of any given component.

The value currently being processed is also displayed in the Values window, on the Context tab.

The set of connections and/or connectors colored in striped magenta indicate the current mapping context. The
same information is also displayed as a hierarchical structure in the Context window (see Using the Context
Window).

804

808

© 2018-2024 Altova GmbH

About the Debug Mode 803Debugger

Altova MapForce 2024 Professional Edition

When you set manually the context of a value, the current debugger position is in a position in the past relative
to the most current execution position. To help you distinguish between the most current execution position
and the one in the past, the "current position" connector may appear with the following colors in the debugger
interface.

Green is "the present"; it indicates the current execution position (see Viewing the Current
Value of a Connector).

Yellow is "the past"; it indicates that you are looking at some connector in the past, relative to
the current execution position. This may happen after you set a context manually (see Setting
the Context to a Value).

Values window
The Values window provides information about the values processed by the mapping. It enables you to see
what the mapping processes at the current execution position, or in a particular context that you can set
yourself. See also Using the Values Window .

Context window
The Context window provides a hierarchical view of the set of nodes and functions that are relevant for the
current debugger position. See also Using the Context Window .

Breakpoints window
The Breakpoints window displays the list of debugging breakpoints created since MapForce was started. If you
have defined breakpoints on multiple mappings, all of them appear in the Breakpoints window. See also Using
the Breakpoints Window .

813

816

806

808

810

804 Debugger Adding and Removing Breakpoints

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

9.3 Adding and Removing Breakpoints

Breakpoints are designated milestones at which the mapping should break during execution in debug mode.
Any breakpoints you create are stored globally for all mappings and are displayed in the Breakpoints window.
Breakpoints are valid until you either explicitly delete them, or close MapForce.

Note: Breakpoints cannot be added on any of the following entities: constants, the core | position

function, descendent items of "Copy-all" connections, parameters of "inline" user-defined functions.

Breakpoints can be simple or conditional. Simple breakpoints stop the mapping execution unconditionally.
Conditional breakpoints stop the mapping execution only when the condition assigned to them is satisfied.
Conditions take the form of MapForce built-in library functions to which you supply custom values. In other
words, if the condition returns true, the breakpoint will stop the mapping execution.

To create a simple breakpoint, do one of the following:

· Right-click an input or output connector (the small triangles to the left or right of a component), and
select Debugger Breakpoint.

· Click an input or output connector, and then press F9.

To create a conditional breakpoint:

1. Right-click a connector, and select Breakpoint properties.

2. Click to select both the Breakpoint and Condition check boxes.

© 2018-2024 Altova GmbH

Adding and Removing Breakpoints 805Debugger

Altova MapForce 2024 Professional Edition

3. Select the required function from the list, and enter the function value (if applicable). For example, in
the example above, the breakpoint will stop the mapping execution if the value passing through it is
greater than 2.

If the data type of the connector where you add the conditional breakpoint does not match the
type(s) expected by the function, MapForce will attempt to convert the data type automatically. If
automatic conversion is not possible, mapping execution will fail. To avoid this, make sure to use
compatible data types. For example, the function core.starts-with expects a string value, so

the breakpoint's connector must have the same type.

Removing breakpoints
To remove a breakpoint, right-click the connector on which the breakpoint exists, and select Debugger
Breakpoint. Alternatively, click the input or output connector on which the breakpoint exists, and then press
F9.

You can also remove breakpoints from the Breakpoints window (see Using the Breakpoints Window).

Unreachable breakpoints
There may be cases when MapForce displays a "Breakpoints cannot be reached" message:

This indicates that breakpoints cannot be reached by the debugger, because of one of the following reasons:

· A breakpoint has been defined on a connector that does not take part in the mapping.
· The breakpoint cannot be reached by MapForce because of execution optimizations (see

Limitations).

Click Continue to advance to the next defined breakpoint (or go to the end of debugging execution). Click Step
to start debugging in steps.

You can disable notifications about unreachable breakpoint encountered by the debugger, either by clicking
Don't show this message again, or as follows:

1. On the Tools menu, click Options.
2. Click Messages.
3. Click to clear the Inform about unreachable breakpoints check box.

810

799

806 Debugger Using the Values Window

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

9.4 Using the Values Window

The Values window displays information about the values processed by the mapping when in debug mode. The
information displayed in the Values window depends on the current debugger position, and on the user interface
elements that you clicked. The Values window contains the following tabs:

The "Context" tab
The Context tab displays the value currently being processed (the same value whose context is shown in the
Context window). This is either the value at the current execution position of the debugger, or the value of a
connector processed in the past. MapForce helps you distinguish between the two using colors:

Green is "the present"; it indicates the current execution position (see Viewing the Current
Value of a Connector).

Yellow is "the past"; it indicates that you are looking at some connector in the past, relative to
the current execution position. This may happen after you set a context manually (see Setting
the Context to a Value).

The "Related" tab
The Related tab displays values that are related to (or represent the "near past" of) the currently processed
value. Normally, you do need to explicitly click this tab; MapForce switches to it automatically when you click
the data overlay of a connector that is related to the current execution position of the debugger. See Stepping
back into Recent Past .

The "Sequence" tab
When present, the Sequence tab enables you to get access to the values of a connector that processes a
sequence. This tab is visible only when a connector has processed a sequence of items (for example, an
aggregate function such as sum or count does that). When you click the data overlay of a connector that

processed a sequence of items, the Values window displays an entry in the format "n items", where n is the
number of items processed by the connector. To get access to each value, double-click this entry (or right-click
it, and select Expand Sequence from the context menu).

The values are then displayed in the Sequence tab.

813

816

814

© 2018-2024 Altova GmbH

Using the Values Window 807Debugger

Altova MapForce 2024 Professional Edition

The "History" tab
The History tab displays values have been processed by a particular node since debugging started and up to
the current execution position. See Viewing the History of Values Processed by a Connector .815

808 Debugger Using the Context Window

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

9.5 Using the Context Window

While MapForce is in debug mode, the Context window displays a structure of connectors that are relevant to
the current position of the debugger. In other words, it provides the mapping context responsible for producing
the current mapping value.

MapForce builds the current context as follows:

1. Start with the root node of the target structure.
2. Descend to the current target node.
3. From the current target node, move left inside the mapping through any components that lead to the

current position. These components may be filter or sort components, built-in or user-defined functions,
variables, and so on.

The Context window serves both as informational and as a navigational aid. To select a particular node in the
mapping directly from the current context, right-click the node in the Context window, and click Select in
mapping. This might be especially useful when the mapping is large, so as to avoid extensive scrolling.

The Context window may display the following special icons and notation:

Icon Description

Represents the mapping to which the context belongs. This can be either the main
mapping or the mapping of a user-defined function.

Represents a connector. The target nodes processed so far have their position displayed
in square brackets.

© 2018-2024 Altova GmbH

Using the Context Window 809Debugger

Altova MapForce 2024 Professional Edition

Icon Description

Represents the current connector (the most recent execution position). This is the source
of the current value in the Values window.

In some rare situations, it is possible that a computed value is used for multiple
connectors. In this case, multiple green icons may appear.

Represents the current connector when the debugger is at some position in the past
relative to the most recent execution post. This may happen after you set the context to a
value (see Setting the Context to a Value).

In addition to the icons above, the Context window includes the standard icons of any component types that
are present in the mapping.

Context window and user-defined functions
If the current context includes any user-defined functions, they are displayed in the Context window as well.
Note that if the current context is for computing an input value of a user-defined function, the context is
determined as follows:

1. From the target to the output connector of the user-defined function to the input connector of the user-
defined function

2. From there further to the left.

Note: A user-defined function may occur multiple times in the context. This happens either because several
function calls are chained or because the user-defined function is defined as recursive.

816

810 Debugger Using the Breakpoints Window

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

9.6 Using the Breakpoints Window

The Breakpoints window enables you to view and manage breakpoints globally. By default, the Breakpoints
window is displayed when MapForce is in debug mode. If you want to make the Breakpoints window visible at
all times, select the menu command View | Debug Windows | Breakpoints when MapForce is not in debug
mode.

The Breakpoints window displays all breakpoints created since you started MapForce, grouped by the mapping
file to which they belong. While MapForce is open, any breakpoints associated with any mapping are
"remembered" by MapForce and displayed in the Breakpoints window, even if you closed the mapping file in
the meanwhile. The mapping that is currently being debugged is represented with standard text color in the
Breakpoints window, while other mappings (the ones that are closed or not active) are grayed out.

You can quickly open any mapping by double-clicking it (or any of its breakpoints) in the Breakpoints window.

Note: Once you close or restart MapForce, all breakpoints are removed.

Information about breakpoints is displayed as a grid with the following columns:

Column Description

Name The name of the node where the breakpoint belongs.

Parent The name of the mapping component where the breakpoint belongs.

Trace value The value that passes through the connector on which the breakpoint is. The trace
value is displayed during debugging execution.

Condition If the breakpoint is conditional, this column displays the condition of the breakpoint.

Breakpoints may be associated with any of the following icons.

Icon Description

Active breakpoint. Denotes a breakpoint from the mapping that is currently being
debugged.

Inactive breakpoint. Denotes a breakpoint from a mapping that is open, but is not currently
being debugged.

© 2018-2024 Altova GmbH

Using the Breakpoints Window 811Debugger

Altova MapForce 2024 Professional Edition

Icon Description

Inaccessible breakpoint. Denotes a breakpoint that cannot be reached by the debugger.

Conditional breakpoint. Denotes a breakpoint with a condition attached to it.

To view or change the properties of a breakpoint:

· Right-click it, and select Breakpoint Properties from the context menu.

To delete a breakpoint:

· Right-click the breakpoint you want to delete, and then select Delete Breakpoint from the context
menu.

· Click a breakpoint, and then press Delete.

The context command Delete All Breakpoints removes all breakpoints displayed in the Breakpoints window,
regardless of the mapping where they belong.

See also: Adding and Removing Breakpoints 804

812 Debugger Previewing Partially Generated Output

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

9.7 Previewing Partially Generated Output

When you are debugging in steps or using breakpoints, you can view the mapping output generated up to the
current debugger position. Previewing partially generated output is supported by XML, flat text, and EDI target
components.

By default, when you press F5 (without having defined any breakpoints), MapForce executes the entire
mapping in debug mode, and then switches to the Output pane, displaying the final generated output. However,
if you have defined breakpoints, or if you are debugging in steps (F11, or Ctrl + F11), the debugger execution
stops while the mapping output is still being generated. Even if the mapping output is partially written at this
stage, you can still click to the Output pane, and preview it.

Limitations
· The currently computed target node is not always displayed in the Output pane. For example, XML

attributes are collected internally and written at once.
· If the output produces multiple files, only the currently written file can be displayed; switching to

another output file is disabled.

© 2018-2024 Altova GmbH

Viewing the Current Value of a Connector 813Debugger

Altova MapForce 2024 Professional Edition

9.8 Viewing the Current Value of a Connector

When the current execution position of the debugger () is on a particular connector (either because you are
debugging in steps, or because there is a breakpoint defined on the connector), the current value processed by
the connector is displayed in the Context tab of the Values window. This is the value that is about to be written
to the output, that is, "the present". It is also the value whose context is displayed in the Context window (see
Using the Context Window).

To understand this case, open the PreserveFormatting.mfd sample from the
<Documents>\Altova\MapForce2024\MapForceExamples\ directory. Click the input connector of the
Number node on the target component, and press F9 to add a breakpoint on it.

Then press F5 to start debugging and observe the results.

As shown in the image, the current debugger position (and the breakpoint) is on the Number node of the
target component. The Values window indicates that this node processes the value "1" (this value is also
highlighted with a thick red border on the mapping).

808

814 Debugger Stepping back into Recent Past

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

9.9 Stepping back into Recent Past

When you click a data overlay (small rectangular box) next to a mapping connector, the Values window
displays the name and, optionally, the value associated with the selected connector. The focus now is no
longer on the current debugger position, but on the selected data overlay. You can consider this view as
stepping slightly back in the debugging history. This is the "near" past, since the mapping displays data
overlays only for the last few connectors related to the current debugger position. When you click such a
"related" data overlay, the Values window switches automatically to the Related tab.

For an illustration of this scenario, open the mapping PreserveFormatting.mfd from the
<Documents>\Altova\MapForce2024\MapForceExamples\ directory.

After opening the mapping, click the connector next to the Number node on the target component, and press F9
to add a breakpoint on it. Press F5 to start debugging, and then click the data overlay (small rectangular box)
next to the Number node of the source component.

Because a connector is typically iterated multiple times for the lifetime of a mapping, the current index of the
iteration is displayed enclosed with square brackets: <Number>[1]. Also, because the connector carries a
value, its value is also represented after the equal sign: <Number>[1]=1. The same value is displayed on a
new row in the Values window, as shown below.

If you need additional information about a particular value, remember that you can recreate the context that
produced it (see Setting the Context to a Value).816

© 2018-2024 Altova GmbH

Viewing the History of Values Processed by a Connector 815Debugger

Altova MapForce 2024 Professional Edition

9.10 Viewing the History of Values Processed by a
Connector

If the option Keep full trace history is enabled (see Debugger Settings), you can view the history of all
values that were processed by that connector (up to the current execution position).

The history is displayed when you click a connector, and then click the History tab of the Values window. Note
that this operation is meaningful only for connectors that have processed values since the beginning of mapping
execution until the current debugger position.

To illustrate this case, let's debug a mapping from begging till end without using any breakpoints, and then
watch the history of all values that were processed by a particular connector. First, open the mapping
PreserveFormatting.mfd from the <Documents>\Altova\MapForce2024\MapForceExamples\ directory. If
it is already open, make sure to do the following:

· Clear any breakpoints, if such exist (see Adding and Removing Breakpoints)
· Stop debugging if it is currently in progress, by pressing Shift + F5.

When ready, press F5 start a new debugging operation. When you press F5, MapForce executes the mapping
in debug mode, and switches to the Output pane. Click the Mapping pane to go back to the main mapping
window, and then click the result node of the format-number function (highlighted in red in the image below).
Finally, click the History tab of the Values window, and notice the displayed values.

As shown in the image above, this particular node (result) has processed four values in total. If you need
additional information about a particular value, remember that you can recreate the context that produced it
(see Setting the Context to a Value).

1042

804

816

816 Debugger Setting the Context to a Value

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

9.11 Setting the Context to a Value

Setting the context to a value is an action that can be compared to stepping into the past, in order to view more
details about the mapping context that produced that value. You can set the context to any value displayed in
the Values window (in the Related tab, Sequence tab, or History tab). If you have enabled the Keep full
trace history option (see Debugger Settings), the History tab displays all values processed by the
currently selected connector; therefore, in this case, you can additionally set the context to any value in the
past for that connector.

To set the context to a value, do one of the following:

· Right-click the value, and select Set Context from the context menu.
· Double-click the value.

When you set the context to a value, MapForce highlights the mapping area so as to recreate the situation that
produced that value, and populates the Values window and the Context window according to the selected
context. For a legend to visual clues used on the mapping area while in a context, see About the Debug
Mode . For information about the context itself, see Using the Context Window .

The connector of a manually-set context is yellow (), which indicates that you are no longer at the most
recent execution position. To switch back to the most recent execution position (when applicable), click the
Reset to Current button on the Context tab of the Values window.

1042

801 808

© 2018-2024 Altova GmbH

 817Automation with Altova Products

Altova MapForce 2024 Professional Edition

10 Automation with Altova Products

Mappings designed with MapForce can be executed in a server environment (including Linux and macOS
servers), and with server-level performance, by the following Altova transformation engines (licensed separately):

· RaptorXML Server. Running a mapping with this engine is suitable if the transformation language of the
mapping is XSLT 1.0, XSLT 2.0, XSLT 3.0, or XQuery. See Automation with RaptorXML Server .

· MapForce Server (or MapForce Server Advanced Edition). This engine is suitable for any mapping
where the transformation language is BUILT-IN*. The BUILT-IN language supports the most mapping
features in MapForce, while MapForce Server (and, in particular, MapForce Server Advanced Edition)
provides best performance for running a mapping. See Automation with MapForce Server .

* The BUILT-IN transformation language requires MapForce Professional or Enterprise Edition.

In addition to this, MapForce provides the ability to automate generation of XSLT, XQuery, C#, C++, and Java
code from the command line interface. This includes the ability to compile server execution files (.mfx) intended
for MapForce Server execution. For more information, see MapForce Command Line Interface .

818

819

837

818 Automation with Altova Products Automation with RaptorXML Server

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

10.1 Automation with RaptorXML Server

RaptorXML Server (hereafter also called RaptorXML for short) is Altova's third-generation, super-fast XML and
XBRL processor. It is optimized for the latest standards and parallel computing environments. Designed to be
highly cross-platform capable, the engine takes advantage of today's ubiquitous multi-core computers to deliver
lightning-fast processing of XML and XBRL data.

RaptorXML is available in two editions which can be downloaded from the Altova download page
(https://www.altova.com/download-trial-server.html):

· RaptorXML Server is a very fast XML processing engine with support for XML, XML Schema, XSLT,
XPath, XQuery, and more.

· RaptorXML+XBRL Server supports all the features of RaptorXML Server with the additional capability of
processing and validating the XBRL family of standards.

If you generate code in XSLT or in XQuery, MapForce creates a batch file called DoTransform.bat which is
placed in the output folder that you choose upon generation. Executing the batch file calls RaptorXML Server
and executes the XSLT (or XQuery) transformation on the server.

If you intend to execute or automate MapForce mappings for other outputs on a server, see Automation with
MapForce Server .

Note: You can also preview the XSLT and XQuery code using the built-in engine.

819

68

https://www.altova.com/download-trial-server.html

© 2018-2024 Altova GmbH

Automation with MapForce Server 819Automation with Altova Products

Altova MapForce 2024 Professional Edition

10.2 Automation with MapForce Server

MapForce Server is an enterprise server software solution for Windows, Linux and macOS operating systems.
The role of MapForce Server is to execute mappings in a server environment (including on non-Windows
platforms) and with server-level performance. Any MapForce mapping where the target execution language is
BUILT-IN qualifies for server execution (see also Selecting a Transformation Language). MapForce Server
can operate either standalone (invoked from command line or API), or under the management of FlowForce
Server.

If MapForce Server is used as a standalone product then the MapForce mapping has to be compiled and
copied to the machine where MapForce Server runs. The mapping is then run using the MapForce Server
command line command run. You can also run the mapping by invoking the run method of the MapForce
Server API. For further information, see Compiling Mappings to MapForce Server Execution Files .

If MapForce Server runs under FlowForce Server management, the mapping can be deployed to a target
machine through an HTTP (or SSL/HTTPS) connection directly from MapForce. On the server, the mapping can
then be executed as a triggered or scheduled job, or through a Web service call defined from the FlowForce
Server administration interface. For further information, see Deploying Mappings to FlowForce Server .

There are two editions of MapForce Server:

· MapForce Server
· MapForce Server Advanced Edition

MapForce Server Advanced Edition provides the same features as MapForce Server, and additionally includes
optimization features for mappings which qualify for optimization. This is the case of mappings which join or
filter large amounts of data, and where it is possible to apply join optimization so as to increase the execution
speed. Unlike MapForce Server, MapForce Server Advanced Edition can execute mappings where node
functions are present, see Defaults and Node Functions .

Limitations:

· XML digital signatures are not supported
· ADO, ADO.NET, and ODBC database connections are supported only on Windows (for other operating

systems, see Preparing Mappings for Server Execution).

For more information about MapForce Server, refer to its accompanying documentation
(https://www.altova.com/documentation).

21

825

828

449

820

https://www.altova.com/documentation

820 Automation with Altova Products Preparing Mappings for Server Execution

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

10.3 Preparing Mappings for Server Execution

A mapping designed and previewed with MapForce may refer to resources which are outside of the current
machine and operating system (such as databases). In addition to this, in MapForce, all mapping paths follow
Windows-style conventions by default. Thirdly, the machine where MapForce Server runs might not support the
same database connections as the machine where the mapping was designed. For this reason, running
mappings in a server environment typically requires some preparation, especially if the target machine is not
the same as the source machine.

Note: The term "source machine" refers to the computer where the MapForce is installed and the term
"target machine" refers to the computer where MapForce Server or FlowForce Server is installed. In the
most simple scenario, this is the same computer. In a more advanced scenario, MapForce runs on a
Windows machine whereas MapForce Server or FlowForce Server runs on a Linux or macOS machine.

As best practice, always make sure that the mapping validates successfully in MapForce before deploying it to
FlowForce Server or compiling it to a MapForce Server execution file (see Validating Mappings).

If MapForce Server runs standalone (without FlowForce Server), the required licenses are as follows:

· On the source machine, MapForce Enterprise or Professional edition is required to design the mapping
and compile it to a server execution file (.mfx), see Compiling Mappings to MapForce Server Execution
Files .

· On the target machine, MapForce Server or MapForce Server Advanced Edition is required to run the
mapping.

If MapForce Server runs under FlowForce Server management, the following requirements apply:

· On the source machine, MapForce Enterprise or Professional edition is required to design the mapping
and deploy it to a target machine, see Deploying Mappings to FlowForce Server .

· Both MapForce Server and FlowForce Server must be licensed on the target machine. The role of
MapForce Server is to run the mapping; the role of FlowForce is to make the mapping available as a
job which benefits from features such as scheduled or on demand execution, execution as a Web
service, error handling, conditional processing, email notifications, and others.

· FlowForce Server must be up and running at the configured network address and port. Namely, the
"FlowForce Web Server" service must be started and configured to accept connections from HTTP
clients (or HTTPS if configured) and must not be blocked by the firewall. The "FlowForce Server"
service must also be started and running at the designated address and port.

· You have a FlowForce Server user account with permissions to one of the containers (by default,
the /public container is accessible to any authenticated user).

General considerations

· If you intend to run the mapping on a target machine with standalone MapForce Server, all input files
referenced by the mapping must be copied to the target machine as well. If MapForce Server runs
under FlowForce Server management, there is no need to copy files manually. In this case, the
instance and schema files are included in the package deployed to the target machine, see Deploying
Mappings to FlowForce Server .

· If the mapping includes database components which require specific database drivers, such drivers
must be installed on the target machine as well. For example, if your mapping reads data from a
Microsoft Access database, then Microsoft Access or Microsoft Access Runtime

66

825

860

860

© 2018-2024 Altova GmbH

Preparing Mappings for Server Execution 821Automation with Altova Products

Altova MapForce 2024 Professional Edition

(https://www.microsoft.com/en-us/download/details.aspx?id=50040) must be installed on the target
machine as well.

· When you deploy a mapping to non-Windows platforms, ADO, ADO.NET and ODBC database
connections are automatically changed to JDBC. Native SQLite and native PostgreSQL connections
are preserved as such and require no additional configuration. See also "Database connections" below.

· If the mapping contains custom function calls (for example, to .dll or .class files), such dependencies
are not deployed together with the mapping, since they are not known before runtime. In this case,
copy them manually to the target machine. The path of the .dll or .class file on the server must be the
same as in the "Manage Libraries" window in MapForce, for example:

· Some mappings read multiple input files using a wildcard path (see Processing Multiple Input or Output
Files Dynamically). In this case, the input file names are not known before runtime and so they are
not deployed. For the mapping to execute successfully, the input files must exist on the target
machine.

· If the mapping output path includes directories, those directories must exist on the target machine.
Otherwise, an error will be generated when you execute the mapping. This behavior is unlike
MapForce, where non-existing directories are generated automatically if the option Generate output
to temporary files is enabled (see Changing the MapForce Options).

· If the mapping calls a Web service that requires HTTPS authentication with a client certificate, the
certificate must be transferred to the target machine as well.

· If the mapping connects to file-based databases such as Microsoft Access and SQLite, the database
file must be manually transferred to the target machine or saved to a shared directory which is
accessible to both the source and the target machine and referenced from there, see "File-based
databases" below.

Making paths portable
If you intend to run the mapping on a server, ensure that the mapping follows the applicable path conventions
and uses a supported database connection.

To make paths portable to non-Windows operating systems, use relative instead of absolute paths when
designing the mapping in MapForce:

1. Open the desired mapping design file (.mfd) with MapForce on Windows.
2. On the File menu, select Mapping Settings, and clear the Make paths absolute in generated

code check box if it is selected.
3. For each mapping component, open the Properties dialog box (by double-clicking the component's

751

1040

https://www.microsoft.com/en-us/download/details.aspx?id=50040

822 Automation with Altova Products Preparing Mappings for Server Execution

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

title bar, for example), and change all file paths from absolute to relative. Also, select the Save all file
paths relative to MFD file check box. For convenience, you can copy all input files and schemas into
the same folder as the mapping itself, and reference them just by the file name.

For more information about dealing with relative and absolute paths while designing mappings, , see Using
Relative and Absolute Paths .

Importantly, both MapForce Server and FlowForce Server support a so-called "working directory" against which
all relative paths will be resolved, see also Paths in Various Execution Environments . The working directory
is specified at mapping runtime, as follows:

· In FlowForce Server, by editing the "Working-directory" parameter of any job.
· In MapForce Server API, through the WorkingDirectory property of the COM and .NET API, or

through the setWorkingDirectory method of the Java API.
· In MapForce Server command line, the working directory is the current directory of the command shell.

Database connections
Be aware that ADO, ADO.NET, and ODBC connections are not supported on Linux and macOS machines.
Therefore, if the target machine is Linux or macOS, such connections are converted to JDBC when you deploy
the mapping to FlowForce or when you compile the mapping to a MapForce Server execution file. In this case,
you have the following options before deploying the mapping or compiling it to a server execution file:

· In MapForce, create a JDBC connection to the database (see Setting up a JDBC Connection)
· In MapForce, fill the JDBC database connection details in the "JDBC-specific Settings" section of the

database component (see Database Component Settings).

If the mapping uses a native connection to a PostgreSQL or SQLite database, the native connection is
preserved and no JDBC conversion takes place, see Database mappings in various execution environments .
If the mapping connects to a file-based database, such as Microsoft Access and SQLite, additional
configuration is required, see "File-based databases" below.

Running mappings with JDBC connections requires that the Java Runtime Environment or Java Development Kit
be installed on the server machine. This may be either Oracle JDK or an open source build such as Oracle
OpenJDK.

· The JAVA_HOME environment variable must point to the JDK installation directory.
· On Windows, a Java Virtual Machine path found in the Windows registry will take priority over the

JAVA_HOME variable.
· The JDK platform (64-bit, 32-bit) must be the same as that of MapForce Server. Otherwise, you

may get an error with the reason: "JVM is inaccessible".

To set up a JDBC connection on Linux or macOS:

1. Download the JDBC driver supplied by the database vendor and install it on the operating system.
Make sure to select the 32-bit version if your operating system runs on 32-bit, and the 64-bit version if
your operating system runs on 64-bit.

2. Set the environment variables to the location where the JDBC driver is installed. Typically, you will need
to set the CLASSPATH variable, and possibly a few others. To find out which specific environment
variables must be configured, check the documentation supplied with the JDBC driver.

45

48

174

241

150

© 2018-2024 Altova GmbH

Preparing Mappings for Server Execution 823Automation with Altova Products

Altova MapForce 2024 Professional Edition

Note: On macOS, the system expects any installed JDBC libraries to be in the /Library/Java/Extensions
directory. Therefore, it is recommended that you unpack the JDBC driver to this location; otherwise,
you will need to configure the system to look for the JDBC library at the path where you installed the
JDBC driver.

Oracle Instant Client connections on macOS
These instructions are applicable if you connect to an Oracle database through the Oracle Database Instant
Client, on macOS. Prerequisites:

· Java 8.0 or later must be installed. If the Mac machine runs a Java version prior to Java 8, you can also
connect through the JDBC Thin for All Platforms library, and disregard the instructions below.

· Oracle Instant Client must be installed. You can download the Oracle Instant Client from the Oracle
official download page. Note that there are several Instant Client packages available on the Oracle
download page. Make sure to select a package with Oracle Call Interface (OCI) support, (for example,
Instant Client Basic). Also, make sure to select the 32-bit version if your operating system runs on 32-
bit, and the 64-bit version if your operating system runs on 64-bit.

Once you have downloaded and unpacked the Oracle Instant Client, edit the property list (.plist) file shipped
with the installer so that the following environment variables point to the location of the corresponding driver
paths, for example:

Variable Sample Value

CLASSPATH /opt/oracle/instantclient_11_2/ojdbc6.jar:/opt/oracle/instantclien
t_11_2/ojdbc5.jar

TNS_ADMIN /opt/oracle/NETWORK_ADMIN

ORACLE_HOME /opt/oracle/instantclient_11_2

DYLD_LIBRARY_PATH /opt/oracle/instantclient_11_2

PATH $PATH:/opt/oracle/instantclient_11_2

Note: Edit the sample values above to fit the paths where Oracle Instant Client files are installed on your
operating system.

File-based databases
File-based databases such as Microsoft Access and SQLite are not included in the package deployed to
FlowForce Server or in the compiled MapForce Server execution file. Therefore, if the source and target
machine are not the same, take the following steps:

1. In MapForce, right-click the mapping and clear the check box Make paths absolute in generated
code (see Changing the Mapping Settings).

2. Right-click the database component on the mapping and add a connection to the database file using a
relative path, see Setting the Path to File-Based Databases . A simple way to avoid path-related
issues is to save the mapping design (.mfd file) in the same directory as the database file and to refer
to the latter from the mapping just by file name (thus using a relative path).

3. Copy the database file to a directory on the target machine (let's call it "working directory"). Keep this
directory in mind since it will be required to run the mapping on the server, as shown below.

77

45

824 Automation with Altova Products Preparing Mappings for Server Execution

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

To run such mappings on the server, do one of the following:

· If the mapping will be run by MapForce Server under FlowForce Server control, configure the FlowForce
Server job to point to the working directory created previously. The database file must reside in the
working directory.

· If the mapping will be run by standalone MapForce Server at the command line, change the current
directory to the working directory (for example, cd path\to\working\directory) before calling the
run command of MapForce Server.

· If the mapping will be run by the MapForce Server API, set the working directory programmatically
before running the mapping. To facilitate this, the property WorkingDirectory is available for the
MapForce Server object in the COM and .NET API. In the Java API, the method setWorkingDirectory
is available.

If both the source and the target machines are Windows machines running on the local network, an alternative
approach is to configure the mapping to read the database file from a common shared directory, as follows:

1. Store the database file in a common shared directory which is accessible by both the source and the
target machine.

2. Right-click the database component on the mapping and add a connection to the database file using
an absolute path (see Setting the Path to File-Based Databases).

Global Resources
If a mapping includes references to Global Resources instead of direct paths or database connections, you will
be able to use Global Resources on the server side as well. When you compile a mapping to a MapForce
Server execution file (.mfx), the references to Global Resources will be kept intact, so that you can provide
these on the server side, at mapping runtime. When deploying a mapping to FlowForce Server, you can
optionally choose whether it should use resources on the server.

For mappings (or mapping functions, in case of FlowForce Server) to run successfully, the actual file, folder, or
database connection details that you supply as Global Resources must be compatible with the server
environment. For example, files and folders paths must use the Linux convention for paths if the mapping will
run on a Linux server. Likewise, Global Resources defined as database connections must be possible on the
server machine.

For further information, see Global Resources in MapForce Server and Global Resources in FlowForce
Server ..

45

859

859

© 2018-2024 Altova GmbH

Compiling Mappings to MapForce Server Execution Files 825Automation with Altova Products

Altova MapForce 2024 Professional Edition

10.4 Compiling Mappings to MapForce Server Execution
Files

When the target language of a mapping created in MapForce is set to BUILT-IN, it can be executed not only by
MapForce, but also by MapForce Server (see About MapForce Server). There are two ways to execute a
mapping with MapForce Server:

· If MapForce Server runs in standalone mode (that is, no FlowForce Server is installed), the mapping
must be compiled to a server execution file (.mfx), as shown below. You can then run the .mfx file at
the command line, using the command run. You can also run the mapping by invoking the run method
of the MapForce Server API. For further information, see the MapForce Server documentation
(https://www.altova.com/documentation).

· If MapForce Server runs under FlowForce Server management, you can deploy the mapping to a
machine where both MapForce Server and FlowForce Server run. For more information about this
scenario, see Deploying Mappings to FlowForce Server .

Prerequisites
See Preparing Mappings for Server Execution .

To compile a mapping to a MapForce Server Execution (.mfx) file:

1. Open a mapping in MapForce (for example, myMapping.mfd).
2. On the File menu, click Compile to MapForce Server Execution File.
3. Select the folder you want to place the .mfx file in and change the file name if necessary.
4. Click Save. The MapForce Server Execution file myMapping.mfx is generated in the selected folder.

To compile a mapping to a MapForce Server Execution (.mfx) file, using the command line:

· Run MapForce at the command line, and specify the mapping file and the /COMPILE command line

option.

For example, the following command compiles the mapping C:
\Users\altova\Documents\Altova\MapForce2024\MapForceExamples\SimpleTotal.mfd to a MapForce
Server execution file that will be created in the target output directory C:\Users\altova\Desktop.

"C:\Program Files (x86)\Altova\MapForce2024\MapForce.exe" "C:
\Users\altova\Documents\Altova\MapForce2024\MapForceExamples\SimpleTotal.mfd" /COMPILE
"C:\Users\altova\Desktop"

See also the MapForce Command Line Interface .

What's included in the .mfx file
The .mfx file includes the following data:

· The mapping algorithm, which includes all user-defined functions (UDFs) imported from other
mappings.

819

828

820

837

https://www.altova.com/documentation

826 Automation with Altova Products Compiling Mappings to MapForce Server Execution Files

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· Input and output file names referenced from components. Paths are absolute or relative depending on
the mapping settings, see Paths in Various Execution Environments .

· If the mapping contains XML components, information about the XML schema needed to execute the
mapping is encoded into the mapping algorithm.

· The database connection details, if the mapping includes database connections. Passwords are
encrypted.

The input instance files (XML, CSV, Text) that are used by the mapping are not included in the compiled .mfx
file. The same is true for file-based databases such as Access or SQLite. For details, see Preparing Mappings
for Server Execution .

Compiling mappings for a specific MapForce Server version
If your MapForce Server has an older version than MapForce, the former might not be able to execute .mfx files
created with a newer version of MapForce, since new features will likely have been added in the meanwhile. In
such cases, you can compile the .mfx file for a specific version of MapForce Server, as follows:

1. On the Tools menu, click Options, and then click Generation.
2. Under Server Execution File, next to Generate for MapForce Server version, select the required

MapForce Server version from the drop-down list.

Once you have a newer MapForce Server version, remember to change this option accordingly. If you have no
particular reason to compile for a specific version of MapForce Server, select the "most current" option (this is
the default option). When this option is selected, the .mfx file is compiled for the most recent version of
MapForce Server and could benefit from latest features and improvements which might otherwise not be
available in previous versions.

To specify a target MapForce Server version at the command line, run the /COMPILE command with
the /MFXVERSION switch, for example:

"C:\Program Files (x86)\Altova\MapForce2024\MapForce.exe" /COMPILE /MFXVERSION:2024

See also the MapForce Command Line Interface .

Other options
Compilation of MapForce Server Execution Files is also affected by the following options:

Convert all ADO and ODBC
Database Connections to
JDBC

If the option is enabled, ADO, ADO.NET, and ODBC database connections
are transformed to JDBC using the JDBC driver and the database URL defined

48

820

837

© 2018-2024 Altova GmbH

Compiling Mappings to MapForce Server Execution Files 827Automation with Altova Products

Altova MapForce 2024 Professional Edition

in the Database Component Settings dialog box (see Database Component
Settings).

The JDBC connection will be used implicitly if the target machine is a Linux or
macOS server.

Ignore Digital Signatures
(unsupported by MapForce
Server)

This option is applicable only to MapForce Enterprise. It is enabled by default.
If the mapping uses XML digital signatures, it skips the digital signature
information, since MapForce Server does not support XML digital signatures.

To view or change these options:

· On the Tools menu, click Options, and then click Generation.

These options are also available from the command line interface. See also the MapForce Command Line
Interface .

241

837

828 Automation with Altova Products Deploying Mappings to FlowForce Server

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

10.5 Deploying Mappings to FlowForce Server

Deploying a mapping to FlowForce Server means that MapForce organizes the resources used by the specific
mapping into an object and passes it through HTTP (or HTTPS if configured) to the machine where FlowForce
Server runs. MapForce mappings are typically deployed to FlowForce Server in order to automate their
execution by means of FlowForce Server jobs. Once a mapping is deployed, you can create a full-featured
FlowForce Server job from it, and benefit from all job-specific functionality (for example, define custom triggering
conditions for the job, expose it as a Web service, and so on).

Note: The term "source machine" refers to the computer where the MapForce is installed and the term
"target machine" refers to the computer where FlowForce Server is installed. In the most simple
scenario, this is the same computer. In a more advanced scenario, MapForce runs on a Windows
machine whereas FlowForce Server runs on a Linux or macOS machine.

The package deployed to FlowForce includes the following:

· The mapping itself. After deployment, the mapping becomes available in the FlowForce Server
administration interface as a mapping function (.mapping), at the path you specify. Any source
components become input arguments, and any target components become output arguments of this
function.

· All kinds of input instance files (XML, CSV, Text) that are used by the mapping.

Prerequisites
See Preparing Mappings for Server Execution .

Deploying the mapping to FlowForce Server
1. Run MapForce and ensure that the transformation language is set to Built-In.
2. In the File menu, click Deploy to FlowForce Server. The Deploy Mapping dialog box opens (see

below).

820

© 2018-2024 Altova GmbH

Deploying Mappings to FlowForce Server 829Automation with Altova Products

Altova MapForce 2024 Professional Edition

3. Enter your deployment settings (as described below) and click OK. If you select the Open web browser
to create new job check box, the FlowForce Server administration interface opens in the browser, and
you can start creating a FlowForce Server job immediately.

The table below lists the mapping-deployment settings available in the Deploy Mapping dialog box.

Setting Description

Server, Port, Use SSL Enter the server host name (or IP address) and port of FlowForce Server.
These could be localhost and 8082 if FlowForce Server is running on the
same machine at the default port. When in doubt, log on to FlowForce
Server Web administration interface and check the I.P. address and port
displayed in the Web browser's address bar.

If you encounter connectivity errors, ensure that the machine on which
FlowForce Server runs is configured to allow incoming connections on the
designated address and port.

830 Automation with Altova Products Deploying Mappings to FlowForce Server

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Setting Description

To deploy the mapping through a SSL-encrypted connection, select the
Use SSL check box. This assumes that FlowForce Server is already
configured to accept SSL connections. For more information, refer to
FlowForce Server documentation (https://www.altova.com/documentation).

User and Password The user name and password to be entered depends on the value of the
Login drop-down list (see next option). If the Login drop-down list is set to
<Default> or Directly, enter your FlowForce Server user name and
password. Otherwise, enter your domain user name and password, and
select the domain name from the Login drop-down list.

Login If Directory Service integration is enabled in FlowForce Server, select the
domain name from this drop-down list, and enter your domain credentials
in the User and Password fields (see previous option).

Use Resources, Resource Path Select the Use Resources check box if the mapping function should use
Resources after it is deployed to the server. If you select the check
box, you must also enter the path of the respective resource on the server
in the Resource Path text box. To select the resource, click the Ellipsis
button.

If there are no resources on the server yet to choose from, click Deploy
Global Resources and deploy the required Global Resource to the server.
For more information, see Deploying Global Resources to FlowForce
Server .

If you do not select the Use Resources check box, any Global Resources
will be resolved, based on the currently selected configuration. On the
server, the mapping function will no longer require Global Resources, but
will use the resolved value instead.

Path Click Browse, and select the path where the mapping function should be
saved in the FlowForce Server container hierarchy. By default, the path is
set to the /public container of FlowForce Server.

From the dialog box, you can also create new containers or delete
existing containers and mappings, provided that you have the required
FlowForce Server permissions and privileges.

Save mapping before deploying This option is available if you are deploying an unsaved mapping. Select
this check box to save the mapping before deployment.

Attach MFD files for later
retrieval

This option enables you to deploy the MFD file together with its dependent
input files (e.g., source XML file(s)), except for structure-defining files (e.g.,
XSD schemas). When you open the deployed mapping in FlowForce

841

860

https://www.altova.com/documentation

© 2018-2024 Altova GmbH

Deploying Mappings to FlowForce Server 831Automation with Altova Products

Altova MapForce 2024 Professional Edition

Setting Description

Server, the Deployed Files section will list all the files that you can
download.

Open browser to create new job If you select this check box, the FlowForce Server Web administration
interface opens in the browser after deployment, and you can start
creating a FlowForce Server job immediately.

Troubleshooting
The following table lists problems that you might encounter when deploying a mapping, and their solution.

Problem Solution

Deploying the mapping returns the following error:

I/O operation on file ... failed.
I/O Error 28: Failed to connect to
<server> port 8082. Timed out
System error 10060: A connection attempt
failed because the connected party did
not properly respond after a period of
time, or established connection failed
because connected host has failed to
respond.

Make sure that, on the target machine, the FlowForce
Web Server service is running and configured to listen
for connections on the specified port (8082, by default).
Also, make sure that the firewall does not block
incoming connections through this port.

The FlowForce Server service must be running as well
in order for the deployment to be possible.

Deploying the mapping returns the following error:

I/O operation on file ... failed.
I/O Error 413: Payload Too Large

This error may occur if an input file of the deployed
mapping exceeds the maximum size limit of HTTP
requests allowed by FlowForce Server (roughly 100
MB). You can increase the limit by setting the
max_request_body_size option (in bytes) in the
flowforceweb.ini and flowforce.ini files. For details,
see the FlowForce Server documentation.

Selecting the server version (Windows only)
If the server where you deploy the mapping has multiple versions of MapForce Server running under FlowForce
Server management (applicable to Windows servers only), then you are additionally prompted to specify the
version of MapForce Server with which you want this mapping to be executed.

832 Automation with Altova Products Deploying Mappings to FlowForce Server

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Note: The dialog box appears when the FlowForce Server installation directory contains .tool files for each
MapForce Server version which runs under FlowForce Server management. By default, a MapForce
Server .tool file is added automatically to this directory when you install MapForce Server as part of
FlowForce Server installation. The path where the .tool files are stored in FlowForce is: C:\Program
Files\Altova\FlowForceServer2024\tools. If you have additional versions of MapForce Server which
you want to run under FlowForce Server management, their .tool files may need to be copied manually
to the directory above. The .tool file of MapForce Server can be found at: C:\Program
Files\Altova\MapForceServer2024\etc.

© 2018-2024 Altova GmbH

StyleVision Output Panes 833Automation with Altova Products

Altova MapForce 2024 Professional Edition

10.6 StyleVision Output Panes

In mappings where the target component is XML , it is possible to preview and save the mapping output as
HTML, RTF, PDF, Word 2007+, and Text documents if Altova StyleVision is installed on your computer. If you
are using StyleVision Enterprise Edition, charts will also be rendered in these previews. When a mapping
supports preview in any of these formats, additional panes become available next to the Output pane (see
screenshot below).

Important

· When StyleVision Professional is installed, it is possible to preview HTML, RTF, and Text outputs.
· With StyleVision Enterprise, it is possible to preview HTML, RTF, PDF, Word 2007+, and Text

outputs.
· Previewing the mapping output as PDF requires Java, Acrobat Reader, and FOP (Formatting Objects

Processor) version 0.93 or 1.0. FOP is installed together with StyleVision unless you opted not to
install it when installing StyleVision.

· In the 64-bit edition of MapForce, the Word 2007+ and RTF previews are opened as non-embedded
applications.

· If your mapping contains components that act both as sources and targets (pass-through
components), the StyleVision preview will be possible only for those components where the Preview

button of the component has been activated. For more information about such mappings, see
Chained Mapping .

To preview your mapping data in the StyleVision output panes, the following is required:

· Altova StyleVision must be installed on your computer either as a standalone installation or as part of
Altova MissionKit.

· The target component must have a StyleVision Power Stylesheet (SPS) file associated with it. The
stylesheet file can be created or edited with StyleVision. You cannot edit or change the stylesheet in
MapForce directly, but you can open it via MapForce in StyleVision. Once the stylesheet is ready, you
can assign it to a target MapForce component, as shown below.

StyleVision output panes configuration
The instructions below will help you set up StyleVision output panes.

Assign a StyleVision Power Stylesheet to a target component
To assign an SPS file to a target component, take the following steps:

1. In StyleVision, create the required stylesheet file. Make sure to use the same XML schema as a
source as that of the MapForce component.

2. In MapForce, right-click the target XML component and select Properties.
3. In the Component Settings dialog box, next to StyleVision Power Stylesheet file, browse for the

stylesheet file created previously (see screenshot below).

99

https://www.altova.com/stylevision

834 Automation with Altova Products StyleVision Output Panes

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Note: The path to the StyleVision Power Stylesheet file can be absolute or relative. For details, see Relative
and Absolute Paths .

Save the StyleVision-generated output
You can save the StyleVision-generated output to a file in a similar way as saving the result of any other

mapping: Click the toolbar button (Save generated output) or go to the Output menu and click Save
Output File.

Automate generation of different formats with Altova products
If you need your mapping to generate HTML, PDF, RTF, Word 2007+, and Text files automatically (either on
the same or on a different computer or even platform), you can use MapForce Server or StyleVision Server.
These are separately licensed server products that extend the functionality of MapForce and StyleVision,
respectively. In this scenario, each application plays its own specific role:

· MapForce enables you to design a mapping (.mfd) which defines the data transformation inputs and

outputs (for example, database to XML)
· MapForceServer runs the executable mapping (.mfx) from the command line or an API (on the same or

a different operating system)
· StyleVision enables you to design the stylesheet (.sps) required to transform the mapping output to

HTML, PDF, RTF, Word 2007+, and Text files.
· StyleVision Server runs the .sps stylesheet which transforms the mapping output to a desired format.

This happens in the command line or from an API (on the same or a different operating system).
· Both StyleVision Server and MapForce Server can optionally run under the management of FlowForce

Server (licensed separately). In this scenario, MapForce mappings and StyleVision transformations
can run as scheduled, triggered, or on-demand jobs. This means that these MapForce mappings and
StyleVision transformations can be fully automated.

Examples
The example below (MapForceExamples\CompletePO.mfd) shows the output in the StyleVision output pane

called HTML. This mapping produces a purchase order in XML format. Right-click the target component, select
Properties, and notice that it has a .sps file assigned to it.

If you click the HTML pane, you will see the following output:

45

https://www.altova.com/mapforce-server
https://www.altova.com/stylevision-server
https://www.altova.com/flowforceserver
https://www.altova.com/flowforceserver

© 2018-2024 Altova GmbH

StyleVision Output Panes 835Automation with Altova Products

Altova MapForce 2024 Professional Edition

836 Automation with Altova Products StyleVision Output Panes

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Another example is Tutorial\YearlySales.mfd. The stylesheet assigned to this mapping was designed in

StyleVision in such a way that it is possible to control the type of the chart by changing the value of the
ChartType element. This makes it possible to change the chart type directly from the mapping: You can
change the default value of the constant to any value from 1 to 7. If you place the mouse cursor over the value-
map component, you will see the possible values (see screenshot below).

The default value of the constant is 2, which generates a 3D pie chart in the output. To display other chart
types, change this value to any other allowed value and click the Output pane to see the changes.

© 2018-2024 Altova GmbH

MapForce Command Line Interface 837Automation with Altova Products

Altova MapForce 2024 Professional Edition

10.7 MapForce Command Line Interface

The general syntax of a MapForce command at the command line is as follows:

MapForce.exe <filename> [/{target} [[<outputdir>] [/options]]]

For more information about each parameter of the command, see the list below.

Command line syntax
The following notation is used to indicate command line syntax:

Notation Description

Text without brackets or braces Items you must type as shown

<Text inside angle brackets> Placeholder for which you must supply a value

[Text inside square brackets] Optional items

{Text inside braces} Set of required items; choose one

Vertical bar (|) Separator for mutually exclusive items; choose one

Ellipsis (...) Items that can be repeated

<filename>

The mapping design (.mfd) or mapping project (.mfp) (Professional and Enterprise editions) from which

code is to be generated. To generate code for the whole project, set the target /GENERATE (see /{target}
below) and enter the project path as <filename> (e.g., MapForceExamples.mfp).

/{target}

Specifies the target language or environment for which code is to be generated. The following code
generation targets are supported:

· /XSLT
· /XSLT2
· /XSLT3

· The /COMPILE[:compileoptions] command compiles a mapping to a MapForce Server
execution file (.mfx). You can also supply the following options separated by a comma:

o The JDBC option transforms all database connections to JDBC using the JDBC driver and the
database URL defined in the Database Component Settings dialog box.

o The NOXMLSIGNATURES option suppresses the generation of digital signatures in the MapForce
Server Execution file. Note that digital signatures are not supported by MapForce Server.

· The /GENERATE command generates project code for all mappings in the project file, using the
current folder settings (see Managing Project Folders). If you select this target, make sure to
supply a MapForce project (.mfp) as <filename>.

· /XQuery
· /JAVA

241

82

838 Automation with Altova Products MapForce Command Line Interface

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· The /CS command generates C# code. This command allows setting the following code
generation options:

/CS[:{VS2013|VS2015|VS2017|VS2019|VS2022|DOTNETCORE31|DOTNET50|DOTNET60}]

If no Visual Studio version is specified, code will be generated using the Visual Studio version
defined in the code generation options.

· The /CPP command generates C++ code. This command allows setting the following code
generation options:

/CPP[:{VS2013|VS2015|VS2017|VS2019|VS2022|DOTNETCORE31|DOTNET50|DOTNET60},
{MSXML|XERCES3},{LIB|DLL},{MFC|NoMFC}]

The first group of options specifies the development environment (e.g., VS2022 stands for Visual
Studio 2022).

The second group of options specifies the XML library targeted by the generated code. The
following values are valid:

o MSXML (generates code for MSXML 6.0)

o XERCES3 (generates code for Xerces 3)

The third group of options specifies whether static or dynamic libraries should be generated. Valid
values include the following:

o LIB (generates static LIB libraries)

o DLL (generates DLL libraries)

The fourth group of options specifies whether code should be generated with or without MFC
support. Valid values include the following:

o MFC (enables MFC support)

o NoMFC (disables MFC support)

If the options above are not specified, code will be generated using the Visual Studio version
defined in the code generation options.

<outputdir>

Optional parameter which specifies the output directory. If an output path is not supplied, the current
working directory will be used. Note that any relative file paths are relative to the current working directory.

When the target is /GENERATE and the <outputdir> parameter is not set, the code generation language
and the output path of each mapping are supplied by the settings defined for each folder inside the project
(see Managing Project Folders).

When the target is /GENERATE and the <outputdir> parameter is set, the <outputdir> value supplied at
the command line takes precedence over the output directory defined at the root project level. It does not
take precedence, however, over the code generation settings defined at each folder inside the project.

/options

82

© 2018-2024 Altova GmbH

MapForce Command Line Interface 839Automation with Altova Products

Altova MapForce 2024 Professional Edition

The /options are not mutually exclusive. One or more of the following options can be set:

· The /GLOBALRESOURCEFILE <filename> option is applicable if the mapping uses Global
Resources to resolve an input or output file, folder paths, or databases. For more information, see
Altova Global Resources . The /GLOBALRESOURCEFILE option specifies the path to a Global
Resource XML file. Note that, if /GLOBALRESOURCEFILE is set, then /GLOBALRESOURCECONFIG
must also be set.

· The /GLOBALRESOURCECONFIG <config> option specifies the name of the Global Resource
configuration (see also the previous option). If /GLOBALRESOURCEFILE is set,
then /GLOBALRESOURCECONFIG must also be set.

· The /LOG <logfilename> option generates a log file at the specified path. The <logfilename>
path can be an absolute path. If a full path is supplied, the directory must exist for the log file to
be generated. If you specify only the file name, the file will be placed in the current directory of the
Windows command prompt.

· The [/MFXVERSION[:<version>] option is applicable if the target is /COMPILE. This option
compiles the MapForce Server Execution (.mfx) file for a particular version of MapForce Server.
You can supply any version of MapForce Server, starting with 2013r2 onwards. See also
Compiling mappings for a specific MapForce Server version .

· The /LIBRARY <libname> (...) option is used together with a code generation target language
to specify additional function libraries. This option can be specified more than once to load
multiple libraries. See also Managing Function Libraries .

Notes
· Relative paths are relative to the working directory, which is the current directory of the application

calling MapForce. This applies to the path of the .mfd filename, .mfp filename, output directory, log

filename, and global resource filename.
· Do not use the end backslash and closing quote at the command line (e.g., "C:\My directory\").

These two characters are interpreted by the command line parser as a literal double quotation mark. It
is recommended to avoid using spaces and quotes. If spaces occur in the command line and you need
the quotes, use the double backslash (e.g., "c:\My Directory\\").

Examples
1) To start MapForce and open the mapping <filename>.mfd, use the following command:

MapForce.exe <filename>.mfd

2) To generate XSLT 2.0 code and create a log file with the name <logfilename>, use the following command:

MapForce.exe <filename>.mfd /XSLT2 <outputdir> /LOG <logfilename>

3) To generate XSLT 2.0 code taking into account the global resource configuration <grconfigname> from the
global resource file <grfilename>, use the following command:

Mapforce.exe <filename>.mfd /XSLT2 <outputdir> /GLOBALRESOURCEFILE
<grfilename> /GLOBALRESOURCECONFIG <grconfigname>

841

826

445

840 Automation with Altova Products MapForce Command Line Interface

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Examples for Professional and Enterprise editions
1) To generate a C# application for Visual Studio 2022 and output a log file, use the following command:

MapForce.exe <filename>.mfd /CS:VS2022 <outputdir> /LOG <logfilename>

2) To generate a C++ application using the code generation settings defined in Tools | Options and output a
log file, use the following command:

MapForce.exe <filename>.mfd /CPP <outputdir> /LOG <logfilename>

3) To generate a C++ application for Visual Studio 2022, MSXML, with static libraries, MFC support, and no log
file, use the following command:

MapForce.exe <filename>.mfd /CPP:VS2022,MSXML,LIB,MFC

4) To generate a C++ application for Visual Studio 2022, Xerces, with dynamic libraries, no MFC support, and a
log file, use the following command:

MapForce.exe <filename>.mfd /CPP:VS2022,XERCES,DLL,NoMFC <outputdir> /LOG
<logfilename>

5) To generate a Java application and output a log file, use the following command:

MapForce.exe <filename>.mfd /JAVA <outputdir> /LOG <logfilename>

6) To generate code for all mappings in the project, using the language and output directory defined in the folder
settings (of each folder inside the project), use the following command:

MapForce.exe <filename>.mfp /GENERATE /LOG <logfilename>

7) To generate Java code for all mappings in the project file, use the following command:

MapForce.exe <filename>.mfp /JAVA /LOG <logfilename>

Note that the code generation language defined in the folder settings are ignored, and Java is used for all
mappings.

8) To supply input and output files at the command line for a previously compiled Java mapping, use the
following command:

java -jar <mappingfile>.jar /InputFileName <inputfilename> /OutputFileName
<outputfilename>

The /InputFileName and /OutputFileName parameters are the names of special input components in the
MapForce mapping that allow you to use parameters in command line execution (see Supplying Parameters to
the Mapping).

9) To compile a mapping to a MapForce Server execution file for MapForce Server version 2024 and suppress
XML signatures, use the following command:

MapForce.exe <filename>.mfd /COMPILE:NOXMLSIGNATURES
<outputdir> /MFXVERSION:2024 /LOG <logfilename>

352

© 2018-2024 Altova GmbH

 841Altova Global Resources

Altova MapForce 2024 Professional Edition

11 Altova Global Resources

Altova Global Resources are aliases for file, folder, and database resources. Each alias can have multiple
configurations, and each configuration maps to a single resource. Therefore, when you use a global resource,
you can switch between its configurations. For example, you could create a database resource with two
configurations: development and production. Depending on your goals, you can switch between these
configurations. In MapForce, you can retrieve data from the development or production database by choosing
the desired configuration from the drop-down list before previewing the mapping.

Global resources can be used across different Altova applications (see subsection below).

Global resources in other Altova products
When stored as global resources, files, folders, and database connection details become reusable across
multiple Altova applications. For example, if you often need to open the same file in multiple Altova desktop
applications, you can define this file as a global resource. If you need to change the file path, you will need to
change it only in one place. Currently, global resources can be defined and used in the following Altova
products:

· Altova Authentic
· DatabaseSpy
· MobileTogether Designer
· MapForce
· StyleVision
· XMLSpy
· FlowForce Server
· MapForce Server
· RaptorXML Server/RaptorXML+XBRL Server

In this section
This section explains how to create and configure different types of global resources. The section is organized
into the following topics:

· Global Resource Setup Part 1
· Global Resource Setup Part 2
· XML Files as Global Resources
· Folders as Global Resources
· Databases as Global Resources
· Transformation Results as Global Resources
· Global Resources in Execution Environments

842

844

848

850

852

854

858

https://www.altova.com/authentic
https://www.altova.com/databasespy
https://www.altova.com/mobiletogether
https://www.altova.com/mapforce
https://www.altova.com/stylevision
https://www.altova.com/xmlspy-xml-editor
https://www.altova.com/flowforceserver
https://www.altova.com/mapforce-server
https://www.altova.com/raptorxml

842 Altova Global Resources Global Resource Setup Part 1

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

11.1 Global Resource Setup Part 1

The global resource setup consists of two parts: (i) creating a global resource in the Manage Global
Resources dialog box (see below) and (ii) defining the properties of this global resource in the Global
Resource dialog. The second part is discussed in the next topic .

Altova Global Resources are defined in the Manage Global Resources dialog, which can be accessed in two
ways:

· Click the menu command Tools | Global Resources.
· Click the Manage Global Resources icon in the Global Resources toolbar (screenshot below).

Global Resources Definitions file
Information about global resources is stored in an XML file called the Global Resources Definitions file. This file
is created when the first global resource is defined in the Manage Global Resources dialog box (screenshot
below) and saved.

When you open the Manage Global Resources dialog box for the first time, the default location and name of
the Global Resources Definitions file is specified in the Definitions text box (see screenshot above):

C:\Users\<username>\Documents\Altova\GlobalResources.xml

This file is set as the default Global Resources Definitions file for all Altova applications. A global resource can
be saved from any Altova application to this file and will immediately be available to all other Altova applications
as a global resource. To define and save a global resource to the Global Resources Definitions file, add the
global resource in the Manage Global Resources dialog and click OK to save.

844

© 2018-2024 Altova GmbH

Global Resource Setup Part 1 843Altova Global Resources

Altova MapForce 2024 Professional Edition

To select an already existing Global Resources Definitions file to be the active definitions file of a particular
Altova application, browse for it via the Browse button of the Definitions text box (see screenshot above).

The Manage Global Resources dialog box also allows you to edit and delete existing global resources.

Notes:

· You can give any name to the Global Resources Definitions file and save it to any location
accessible to your Altova applications. All you need to do in each application, is specify this file as
the Global Resources Definitions file for that application (in the Definitions text box). The resources
become global across Altova products when you use a single definitions file across all Altova
products.

· You can also create multiple Global Resources Definitions files. However, only one of these can be
active at any time in a given Altova application, and only the definitions contained in this file will be
available to the application. The availability of resources can therefore be restricted or made to
overlap across products as required.

844 Altova Global Resources Global Resource Setup Part 2

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

11.2 Global Resource Setup Part 2

The second part of the global resource setup consists in defining properties of a global resource in the Global
Resource dialog box. The properties depend on the type of a global resource (see subsections below). You
can access the Global Resource dialog box by clicking the Add button in the Manage Global Resources
dialog box .

To find out more about setting up different types of global resources, see the following examples: XML Files as
Global Resources , Folders as Global Resources , Databases as Global Resources .

Files
The file-specific properties are shown in the Global Resource dialog box below. The setup has three major
parts: (i) the name of the file, (ii) the location of this file, and (iii) the list of configurations defined for this file
alias.

The settings Result of MapForce Transformation and Result of StyleVision Transformation are discussed in
Transformation Results as Global Resources .

Folders
The folder-specific properties are shown in the Global Resource dialog box below. The setup has three major
parts: (i) the name of the folder, (ii) the location of this folder, and (iii) the list of configurations defined for this
folder alias.

842

848 850 852

854

© 2018-2024 Altova GmbH

Global Resource Setup Part 2 845Altova Global Resources

Altova MapForce 2024 Professional Edition

Databases
When you add a database connection as a global resource, a connection wizard guides you through the steps
required to set up the connection. For more information, see Start Database Connection Wizard . Once you
complete the wizard, the database connection parameters are displayed in the Global Resource dialog box
(see screenshot below).

154

846 Altova Global Resources Global Resource Setup Part 2

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

In the Global Resource dialog box, it is possible to edit some of the database connection parameters. The
parameters are grouped into two categories: database parameters and MapForce-specific execution
parameters (see below).
Database
These parameters are shared among Altova applications. In MapForce, they are used at design time, that is,
when the mapping is loaded, or when you click the Output pane in MapForce to preview the mapping.

MapForce-specific execution parameters
These parameters are applicable when you generate program code or compile a mapping to MapForce Server
execution file (.mfx). They are used at mapping runtime as follows:

· In generated C++, C#, or Java program code.
· If you compile the mapping to a MapForce Server execution file, and automatic JDBC conversion takes

place. For more information about automatic JDBC conversion, see Database mappings in various
execution environments .

If a mapping uses a Global Resource to connect to a database, the database connection details in the Global
Resource dialog box take precedence over those defined in the mapping. The Component Settings dialog box
informs you that the connectivity parameters are defined as a Global Resource. To change the database

150

© 2018-2024 Altova GmbH

Global Resource Setup Part 2 847Altova Global Resources

Altova MapForce 2024 Professional Edition

component to connect to the database directly (without using Global Resources), click Change, and follow the
wizard steps to reconnect to the database.

Global Resource dialog icons

Add Configuration: Pops up the Add Configuration dialog in which you enter the name of the
configuration to be added.

Add Configuration as Copy: Pops up the Add Configuration dialog in which you can enter the name of
the configuration to be created as a copy of the selected configuration.

Delete: Deletes the selected configuration.

Open: Browse for the file to be created as the global resource.

Open: Browse for the folder to be created as the global resource.

Global resource setup: General procedures
The broad procedure of creating and configuring global resources is described below:

1. Click the toolbar button (Manage Global Resource). Alternatively, go to the Tools menu and click
Global Resources.

2. Click Add and select the resource type you wish to create (file, folder, database). The Global
Resource dialog box will appear.

3. Enter a descriptive name in the Resource alias text box (e.g., InputFile).
4. Setting up the default configuration depends on the type of the global resource: (i) For a file or folder,

browse for the file or folder to which this resource should point by default; (ii) for a database
connection, click Choose Database and follow the Database Connection Wizard to connect to the
database (see Connecting to a Database). This database connection will be used by default when
you run the mapping.

5. If you need an additional configuration (e.g., an additional output folder), click the button in the
Global Resource dialog box, enter the name of this configuration, and specify the path to this
configuration.

6. Repeat the previous step for each additional configuration required.

Note: Database connections are supported as global resources only in MapForce Professional and
Enterprise editions.

152

848 Altova Global Resources XML Files as Global Resources

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

11.3 XML Files as Global Resources

This topic explains how to use XML files as global resources. There are situations in which you may need to
change an input XML file multiple times per day. For example, every morning you need to run a particular
mapping and generate a report by using one XML file as a mapping input, and every evening the same report
must be generated from another XML file. Instead of editing the mapping multiple times per day (or keeping
multiple copies of it), you could configure the mapping to read from a file defined as a global resource (the so-
called file alias). In this example, our file alias will have two configurations:

1. The Default configuration will supply a morning XML file as a mapping input.
2. The EveningReports configuration will supply an evening XML file as a mapping input.

To create and configure the file alias, take the steps below.

Step 1: Create a global resource
First, we need to create a file alias. Follow the instructions below:

1. Click the toolbar button (Manage Global Resource). Alternatively, go to the Tools menu and click
Global Resources.

2. Click Add | File and enter a name in the Resource alias text box. In this example, we call our default
configuration MorningReports.

3. Click the Browse button near the text field The Resource will point to this file and select
Tutorial\mf-ExpReport.xml.

4. Click in the Configurations section and name the second configuration EveningReports.
5. Click Browse and select Tutorial\mf-ExpReport2.xml.

Step 2: Use the global resource in the mapping
Now we can use the newly created global resource in our mapping. To make the mapping read data from the
global resource, take the steps below:

1. Open the Tutorial\Tut-ExpReport.mfd mapping.

2. Double-click the header of the source component to open the Component Settings dialog box.
3. Next to Input XML file, click Browse, then click Global Resources and select the file alias

MorningReports. Click Open.
4. Open the Component Settings dialog box again: The input XML file path has now become

altova://file_resource/MorningReports, which indicates that the path uses a global resource.

Step 3: Run the mapping with the desired configuration
You can now switch between the input XML files before running the mapping:

· To use mf-ExpReport.xml as an input, select the menu item Tools | Active Configuration | Default.

· To use mf-ExpReport2.xml as an input, select the menu item Tools | Active Configuration |

EveningReports.

Alternatively, select the required configuration from the Global Resources drop-down list in the toolbar (see
screenshot below).

© 2018-2024 Altova GmbH

XML Files as Global Resources 849Altova Global Resources

Altova MapForce 2024 Professional Edition

To preview the mapping result with either configuration, click the Output pane.

850 Altova Global Resources Folders as Global Resources

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

11.4 Folders as Global Resources

This topic explains how to use folders as global resources. There are situations in which you may need to
generate the same output in different directories. To make this possible, we will create a folder alias with two
configurations:

1. The Default configuration will generate the output in C:\Test.

2. The Production configuration will generate the output in C:\Production.

To create and configure the folder alias, take the steps below.

Step 1: Create a global resource
First, we need to create a folder alias. Follow the instructions below:

1. Click the toolbar button (Manage Global Resource). Alternatively, go to the Tools menu and click
Global Resources.

2. Click Add | Folder and enter a name in the Resource alias text box. In this example, we call our
default configuration OutputDirectory.

3. Click the Browse button near the text field Settings for configuration "Default" and select C:\Test.

Make sure this folder already exists on your operating system.

4. Click and enter a name of the second configuration. In this example, we call our second
configuration ProductionDirectory.

5. Click Browse and select the C:\Production folder. Make sure that this folder already exists on your

operating system.

Step 2: Use the global resource in the mapping
The next step is to make the mapping use the folder alias we have just created. Take the steps below:

1. Open the Tutorial\Tut-ExpReport.mfd mapping.

2. Double-click the header of the target component to open the Component Settings dialog box.
3. Click Global Resources and then click Save.
4. Save the output XML file as Output.xml. The output XML file path has now become

altova://folder_resource/OutputDirectory/Output.xml, which indicates that the path is defined

as a global resource.

Step 3: Run the mapping with the desired configuration
You can now switch between the output folders before running the mapping:

· To use C:\Test as the output directory, select the menu item Tools | Active Configuration | Default.

· To use C:\Production as the output directory, select the menu item Tools | Active Configuration |

ProductionDirectory.

By default, the mapping output is written as a temporary file unless you explicitly configure MapForce to write
output to permanent files. To configure MapForce so that it generates permanent files, do the following:

1. Go to the Tools menu and click Options.
2. In the General section, select the option Write directly to final output files.

© 2018-2024 Altova GmbH

Folders as Global Resources 851Altova Global Resources

Altova MapForce 2024 Professional Edition

852 Altova Global Resources Databases as Global Resources

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

11.5 Databases as Global Resources

This topic explains how to use databases as global resources. There are situations in which you may need to
map data from databases with the same structure but different data. Using a database resource will allow you
to switch between databases without editing your mapping. To achieve this, we need to create a database alias
with two configurations:

1. The Default configuration will point to the DevelopmentDatabase:
MapForceExamples\Altova.sqlite.

2. The ReleaseDatabase configuration will point to Tutorial\Altova.sqlite.

To create and configure the database alias, take the steps below.

Step 1: Create a global resource
The fist step is to create a database alias. Take the steps bellow:

1. Click the toolbar button (Manage Global Resource). Alternatively, go to the Tools menu and click
Global Resources.

2. Click Add | Database and enter a descriptive name in the Resource alias text box. In this example,
we call the default configuration DevelopmentDatabase.

3. Click Choose Database, select SQLite, and browse for MapForceExamples\Altova.sqlite.

4. Click and name the second configuration ReleaseDatabase.
5. Click Choose Database, select SQLite, and browse for Tutorial\Altova.sqlite.

Step 2: Use the global resource in the mapping
The next step is to configure the mapping so that it can use the database alias:

1. Open the Tutorial\PersonDB.mfd mapping.

2. Double-click the database component to open the Component Settings dialog box. Click Change.
3. Select Global Resources in the Select a Database dialog box and select the DevelopmentDatabase

alias. Click Connect.
4. When you are prompted to select database objects, leave the default selection as is and click OK.

The connectivity parameters can be changed by clicking the toolbar button.

Step 3: Run the mapping with the desired configuration
You can now easily switch between the databases before running the mapping:

· To use the DevelopmentDatabase configuration, select the menu item Tools | Active Configuration |
Default.

· To use the ReleaseDatabase configuration, select the menu item Tools | Active Configuration |
ReleaseDatabase.

Alternatively, select the required configuration from the Global Resources drop-down list (see screenshot
below).

© 2018-2024 Altova GmbH

Databases as Global Resources 853Altova Global Resources

Altova MapForce 2024 Professional Edition

When you switch between configurations, the Configuration switch dialog box informs you that the resource
has been modified. Click Reload.

Note: The databases used in this example contain the same data. Therefore, there are no differences in the
generated output.

854 Altova Global Resources Transformation Results as Global Resources

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

11.6 Transformation Results as Global Resources

You can use the result of a MapForce mapping or StyleVision transformation as a global resource. This topic
shows how to create a global resource from the transformation result and use this global resource across
different Altova applications.

In order to make a mapping output available as a global resource, the transformation language of the mapping
must be set to Built-In, or the mapping must contain only components which are supported by the Built-In
language.

Important:

· The workflows mentioned above are meaningful between Altova desktop applications installed on
the same computer.

· It is not possible to use the result of MapForce and StyleVision transformations as global
resources in Altova server products and in MapForce Basic Edition.

The example below shows how to use the result of a MapForce transformation as a global resource.

Example: Result of MapForce Transformation
This example illustrates how to create a workflow between Altova MapForce and Altova XMLSpy. More
specifically, the example shows how to create a global resource from a MapForce mapping, trigger the
execution of this mapping in XMLSpy, and view the outputs in XMLSpy, which were generated by MapForce.

Step 1: Create a global resource
You can take this step using MapForce or XMLSpy.

1. Click the toolbar button (Manage Global Resource). Alternatively, go to the Tools menu and click
Global Resources.

2. Click Add | File and enter a descriptive name in the Resource alias text box. In this example, we call
our default configuration MappingResult.

3. Select the option Result of MapForce Transformation.
4. Click Browse and select the mapping Tutorial\Tut-ExpReport-multi.mfd. As shown below, this

mapping has one input and two outputs.

https://www.altova.com/xmlspy-xml-editor

© 2018-2024 Altova GmbH

Transformation Results as Global Resources 855Altova Global Resources

Altova MapForce 2024 Professional Edition

The screenshot below illustrates the two outputs listed in the Global Resource dialog box. We will generate
each output file separately in the C:\temp folder (see Step 2 below).

856 Altova Global Resources Transformation Results as Global Resources

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Step 2: Generate output files
At this stage, we would like to generate each of the two output files (see screenshot above) in the C:\temp

folder and change the file names. To achieve this, we will create a configuration for each output. Take the steps
below:

1. In the Outputs section of the Global Resource dialog box, click Browse next to the first output and
enter C:\temp\file1.xml as a destination file name. This is the default configuration which will

produce the first output file.

2. Click under Configurations and enter a name for the new configuration (in this example, Output2).
In the Outputs section, click the radio button near the second file (SecondXML.xml).

3. In the Outputs section, click Browse next to the second output and enter C:\temp\file2.xml as a

destination file name. This is the second configuration which produces the second output file.
4. Click OK.

Step 3: Use the global resource
The instructions below show how to use the global resource we created in the previous step.

Default configuration
To use the default configuration in XMLSpy, take the steps below.

1. Run XMLSpy.

© 2018-2024 Altova GmbH

Transformation Results as Global Resources 857Altova Global Resources

Altova MapForce 2024 Professional Edition

2. Go to the Tools menu and click Global Resources.
3. In the Files section, click the MappingResult global resource and then click View (see screenshot

below). This executes the mapping, produces the default output (file1.xml) and loads it into the main

pane of XMLSpy. The file is saved as C:\temp\file1.xml.

Second configuration
To trigger the mapping execution with the second configuration, do the following:

1. Go to the Tools menu in XMLSpy and click Active Configuration | Output2.
2. Click Reload when prompted.

As a result, the second output file is loaded into the main window of XMLSpy. The file is saved as C:

\temp\file2.xml.

858 Altova Global Resources Global Resources in Execution Environments

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

11.7 Global Resources in Execution Environments

This subsection explains how to work with global resources in different execution environments. The subsection
is organized into the following topics:

· Global Resources in Generated Code
· Global Resources in MapForce Server
· Global Resources in FlowForce Server

11.7.1 Global Resources in Generated Code

This topic explains how global resources are used in generated code. For more information, see the
subsections below.

Global Resources in XSLT, XSLT 2, XQuery
When you generate XSLT or XSLT2 code and the mapping uses global resources, this does not affect the
generated XSLT stylesheet in any way. With or without global resources, you can flexibly specify the input and
output files when you run the XSLT stylesheet in your XSLT processor. The same applies to generated XQuery
code.

An exception is the DoTransform.bat file generated for RaptorXML execution. Global resources used by the

mapping will be resolved in actual paths in DoTransform.bat. The configuration which is currently selected

from the global resources drop-down list will be taken into account. For information about supplying global
resources to RaptorXML, see the RaptorXML documentation.

Global Resources in C++, C#, Java
When you generate C#, C++, or Java program code, global resources used by the mapping will be resolved.
For example, a file or folder alias defined as a global resource will be converted to a file or folder path. If a
particular global resource configuration is selected from the global resources drop-down list, the code will be
generated for the selected configuration. The Messages window shows information about how exactly a global
resource was resolved (see screenshot below).

To generate code for a particular global resource configuration, select it from the global resources drop-down
list before generating code. Alternatively, if you generate code from the command line, supply the
GLOBALRESOURCEFILE and GLOBALRESOURCECONFIG parameters at the command line. For details, see

MapForce Command Line Interface .

It is not possible to switch or refer to global resources from generated code. Instead, you can modify the code
to change the input or output file path.

Note: In C# or Java, you can change the path and the data type of input or output.

858

859

859

837

https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/index.html

© 2018-2024 Altova GmbH

Global Resources in Execution Environments 859Altova Global Resources

Altova MapForce 2024 Professional Edition

11.7.2 Global Resources in MapForce Server

When you compile a mapping to a MapForce Server execution file (.mfx), any global resource references used

by the mapping are preserved, not resolved. This means that you will need to provide these references on the
server side in order to run the mapping successfully. In MapForce Server, the following is required to run a .mfx

file which uses global resources:

1. The Global Resources Definitions file. On the machine where MapForce is installed, the file is called
GlobalResources.xml. You can find this file in the Documents\Altova folder. You can copy this file to

the machine where MapForce Server runs and create multiple such files if necessary. See also Global
Resources Setup Part 1 .

2. The Global Resource configuration name. Each Global Resource has a default configuration. You can
also create additional configurations. For more information, see Global Resources Setup Part 2 .

In MapForce, the Global Resource Definitions file and the Global Resource configuration name are set or
changed from the graphical user interface. In MapForce Server, these are specified at mapping runtime (see
below).

· If you run the mapping through the command line interface, set the options --globalresourceconfig

and --globalresourcefile after the run command, for example:

C:\Program Files (x86)\Altova\MapForceServer2024\bin\MapForceServer.exe run
SomeMapping.mfx --globalresourcefile="C:
\Users\me\Documents\Altova\GlobalResources.xml" --globalresourceconfig="Default"

· If you run the mapping through the MapForce Server API, call the method SetOptions twice before

calling the Run method. The first call is required to supply the Global Resource Definitions file path as

an option, and the second call is required to supply the Global Resource configuration name.

For more information, see the MapForce Server documentation.

11.7.3 Global Resources in FlowForce Server

In FlowForce Server, global resources are not stored in one XML file as in desktop applications. In FlowForce,
each resource is a reusable object that may contain file or folder paths or database connection details.
Resources can be copied, exported, and imported, and are subject to the same user access mechanism as
other FlowForce Server objects. This means that any FlowForce user can use any resource in their mapping
functions if they have the required permissions.

Once you have created a mapping with global resources in MapForce, you can deploy it to FlowForce Server.
At deployment time, if you want your mapping to use global resources, select the Use Resources check box
in the deployment dialog box. If you do not select the check box, any global resources used by the mapping
will be resolved, based on the currently selected configuration. If you have selected the check box, the mapping
function will require resources in FlowForce Server as well. The screenshot below is an example of a mapping
function deployed to FlowForce that requires resources to run. Notice that the first parameter gets the default
file path from a resource.

842

844

https://www.altova.com/documentation

860 Altova Global Resources Global Resources in Execution Environments

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

In FlowForce Server, it is the mapping function that uses the global resources, not the job. The mapping
function reads the path of the first input file from the resource. This means that all jobs using this function will
use the same path unless you override the path from the job configuration page.

You can also deploy global resources to FlowForce Server as standalone objects. This means there is no need
to deploy a mapping first in order to be able to deploy a global resource. For more information, see Deploying
Resources to FlowForce Server below.

For information about consuming resources in FlowForce Server, see the FlowForce Server documentation.

Deploying resources to FlowForce Server
You can deploy global resources created with MapForce to FlowForce Server. Upon deployment, you must
choose the configuration with which the resource should be deployed to the server. If you need all
configurations of the same global resource on the server, you can deploy this global resource multiple times
and select the desired configuration each time upon deployment. You can also change the name of each global
resource on the server and choose the destination container on the server.

You can deploy global resources to FlowForce Server at the same time when you deploy the mapping or
separately. To deploy global resources to FlowForce Server, take the steps below:

1. Run MapForce.

2. Click the Manage Global Resources toolbar button. Alternatively, go to the Tools menu and click
Global Resources.

3. Click Deploy To Server. This opens the Deploy Global Resource Configuration dialog box (see
screenshot below).

https://www.altova.com/documentation.html

© 2018-2024 Altova GmbH

Global Resources in Execution Environments 861Altova Global Resources

Altova MapForce 2024 Professional Edition

4. Enter the connection details to FlowForce Server (server, port, user, password, login method). These
parameters are the same as the ones required when you deploy mappings to FlowForce Server .

5. Select a configuration from the Configuration list. This list includes all configurations from the current
Global Resources Definitions file . Note that only one global resource configuration can be deployed
at a time. You can deploy the same resource multiple times, with a different name, if you need all the
configurations on the server.

6. Select a target path where the resource should be saved on the server. Click Browse to select a target
FlowForce container or create a new one if required.

7. Click OK.

You can see information about deploying the global resource to FlowForce Server in the Messages window.

Note: Global resources that run other Altova applications are not supported in a server environment. For more
information, see Transformation Results as Global Resource .

828

842

854

862 Catalogs in MapForce

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

12 Catalogs in MapForce

MapForce supports a subset of the OASIS XML catalogs mechanism. The catalog mechanism enables
MapForce to retrieve commonly used schemas (as well as other files) from local user folders. This increases
the overall processing speed, enables users to work offline (that is, not connected to a network), and improves
the portability of documents (because URIs would then need to be changed only in the catalog files.)

The catalog mechanism in MapForce works as outlined in this section:

· How Catalogs Work
· Catalog Structure in MapForce
· Customizing Your Catalogs
· Environment Variables

For more information on catalogs, see the XML Catalogs specification.

863

865

867

869

http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

© 2018-2024 Altova GmbH

How Catalogs Work 863Catalogs in MapForce

Altova MapForce 2024 Professional Edition

12.1 How Catalogs Work

Catalogs can be used to redirect both DTDs and XML Schemas. While the concept behind the mechanisms of
both cases is the same, the details are different and are explained below.

DTDs
Catalogs are commonly used to redirect a call to a DTD to a local URI. This is achieved by mapping, in the
catalog file, public or system identifiers to the required local URI. So when the DOCTYPE declaration in an XML

file is read, its public or system identifier locates the required local resource via the catalog file mapping.

For popular schemas, the PUBLIC identifier is usually pre-defined, thus requiring only that the URI in the catalog

file map the PUBLIC identifier to the correct local copy. When the XML document is parsed, the PUBLIC

identifier in it is read. If this identifier is found in a catalog file, then the corresponding URL in the catalog file will
be looked up and the schema will be read from this location. So, for example, if the following SVG file is
opened in MapForce:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg width="20" height="20" xml:space="preserve">

 <g style="fill:red; stroke:#000000">

 <rect x="0" y="0" width="15" height="15"/>

 <rect x="5" y="5" width="15" height="15"/>

 </g>

</svg>

The catalog is searched for the PUBLIC identifier of this SVG file. Let's say the catalog file contains the

following entry:

<catalog>

 ...
 <public publicId="-//W3C//DTD SVG 1.1//EN" uri="schemas/svg/svg11.dtd"/>

 ...
</catalog>

In this case, there is a match for the PUBLIC identifier. As a result, the lookup for the SVG DTD is redirected to

the URL schemas/svg/svg11.dtd (which is relative to the catalog file). This is a local file that will be used as

the DTD for the SVG file. If there is no mapping for the Public ID in the catalog, then the URL in the XML

document will be used (in the SVG fie example above, this is the Internet URL:
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd).

XML Schemas
In MapForce, you can also use catalogs with XML Schemas. In the XML instance file, the reference to the
schema will occur in the xsi:schemaLocation attribute of the XML document's top-level element. For example,

xsi:schemaLocation="http://www.xmlspy.com/schemas/orgchart OrgChart.xsd"

The value of the xsi:schemaLocation attribute has two parts: a namespace part (green above) and a URI part

864 Catalogs in MapForce How Catalogs Work

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

(highlighted). The namespace part is used in the catalog to map to the alternative resource. For example, the
following catalog entry redirects the schema reference above to a schema at an alternative location.

<uri name="http://www.xmlspy.com/schemas/orgchart" uri="C:\MySchemas\OrgChart.xsd"/>

Normally, the URI part of the xsi:schemaLocation attribute's value is a path to the actual schema location.

However, if the schema is referenced via a catalog, the URI part need not point to an actual XML Schema but
must exist so that the lexical validity of the xsi:schemaLocation attribute is maintained. A value of foo, for

example, would be sufficient for the URI part of the attribute's value to be valid.

© 2018-2024 Altova GmbH

Catalog Structure in MapForce 865Catalogs in MapForce

Altova MapForce 2024 Professional Edition

12.2 Catalog Structure in MapForce

When MapForce starts, it loads a file called RootCatalog.xml (structure shown in listing below), which

contains a list of catalog files that will be looked up. You can modify this file and enter as many catalog files to
look up as you like, each of which is referenced in a nextCatalog element. These catalog files are looked up

and the URIs in them are resolved according to their mappings.

Listing of RootCatalog.xml
<?xml version="1.0" encoding="UTF-8"?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog"

 xmlns:spy="http://www.altova.com/catalog_ext"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:oasis:names:tc:entity:xmlns:xml:catalog Catalog.xsd">
 <nextCatalog catalog="%PersonalFolder%/Altova/%AppAndVersionName%/CustomCatalog.xml"/>

 <!-- Include all catalogs under common schemas folder on the first directory level -->

 <nextCatalog spy:recurseFrom="%CommonSchemasFolder%" catalog="catalog.xml"

spy:depth="1"/>
 <nextCatalog spy:recurseFrom="%ApplicationWritableDataFolder%/pkgs/.cache"

catalog="remapping.xml" spy:depth="0"/>

 <nextCatalog catalog="CoreCatalog.xml"/>

</catalog>

The listing above references a custom catalog (named CustomCatalog.xml) and a set of catalogs that locate

commonly used schemas (such as W3C XML Schemas and the SVG schema).

· CustomCatalog.xml is located in your Personal Folder (located via the variable %PersonalFolder%). It

is a skeleton file in which you can create your own mappings. You can add mappings to
CustomCatalog.xml for any schema you require that is not addressed by the catalog files in the

Common Schemas Folder. Do this by using the supported elements of the OASIS catalog mechanism
(see next section).

· The Common Schemas Folder (located via the variable %CommonSchemasFolder%) contains a set of

commonly used schemas. Inside each of these schema folders is a catalog.xml file that maps public

and/or system identifiers to URIs that point to locally saved copies of the respective schemas.
· CoreCatalog.xml is located in the MapForce application folder, and is used to locate schemas and

stylesheets used by MapForce-specific processes, such as StyleVision Power Stylesheets which are
stylesheets used to generate Altova's Authentic View of XML documents.

Location variables
The variables that are used in RootCatalog.xml (listing above) have the following values:

%PersonalFolder%
Personal folder of the current user, for example C:
\Users\<name>\Documents

%CommonSchemasFolder% C:\ProgramData\Altova\Common2024\Schemas

%
ApplicationWritableDataFolde
r% C:\ProgramData\Altova

Location of catalog files and schemas
Note the locations of the various catalog files.

866 Catalogs in MapForce Catalog Structure in MapForce

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· RootCatalog.xml and CoreCatalog.xml are in the MapForce application folder.

· CustomCatalog.xml is located in your MyDocuments\Altova\MapForce folder.

· The catalog.xml files are each in a specific schema folder, these schema folders being inside the

Common Schemas Folder.

© 2018-2024 Altova GmbH

Customizing Your Catalogs 867Catalogs in MapForce

Altova MapForce 2024 Professional Edition

12.3 Customizing Your Catalogs

When creating entries in CustomCatalog.xml (or any other catalog file that is to be read by MapForce), use

only the following elements of the OASIS catalog specification. Each of the elements below is listed with an
explanation of their attribute values. For a more detailed explanation, see the XML Catalogs specification. Note
that each element can take the xml:base attribute, which is used to specify the base URI of that element.

· <public publicId="PublicID of Resource" uri="URL of local file"/>

· <system systemId="SystemID of Resource" uri="URL of local file"/>

· <uri name="filename" uri="URL of file identified by filename"/>

· <rewriteURI uriStartString="StartString of URI to rewrite" rewritePrefix="String to

replace StartString"/>
· <rewriteSystem systemIdStartString="StartString of SystemID"

rewritePrefix="Replacement string to locate resource locally"/>

Note the following points:

· In cases where there is no public identifier, as with most stylesheets, the system identifier can be
directly mapped to a URL via the system element.

· A URI can be mapped to another URI using the uri element.
· The rewriteURI and rewriteSystem elements enable the rewriting of the starting part of a URI or

system identifier, respectively. This allows the start of a filepath to be replaced and consequently
enables the targeting of another directory. For more information on these elements, see the XML
Catalogs specification.

From release 2014 onwards, MapForce adheres closely to the XML Catalogs specification (OASIS Standard
V1.1, 7 October 2005) specification. This specification strictly separates external-identifier look-ups (those with
a Public ID or System ID) from URI look-ups (URIs that are not Public IDs or System IDs). Namespace URIs
must therefore be considered simply URIs—not Public IDs or System IDs—and must be used as URI look-ups
rather than external-identifier look-ups. In MapForce versions prior to version 2014, schema namespace URIs
were translated through <public> mappings. From version 2014 onwards, <uri> mappings have to be used.

Prior to v2014: <public publicID="http://www.MyMapping.com/ref"

uri="file:///C:/MyDocs/Catalog/test.xsd"/>

V-2014 onwards: <uri name="http://www.MyMapping.com/ref"

uri="file:///C:/MyDocs/Catalog/test.xsd"/>

How MapForce finds a referenced schema
A schema is referenced in an XML document via the xsi:scemaLocation attribute (shown below). The value of

the xsi:schemaLocation attribute has two parts: a namespace part (green) and a URI part (highlighted).

xsi:schemaLocation="http://www.xmlspy.com/schemas/orgchart OrgChart.xsd"

Given below are the steps, followed sequentially by MapForce, to find a referenced schema. The schema is
loaded at the first successful step.

1. Look up the catalog for the URI part of the xsi:schemaLocation value. If a mapping is found, including

in rewriteURI mappings, use the resulting URI for schema loading.

2. Look up the catalog for the namespace part of the xsi:schemaLocation value. If a mapping is found,

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

868 Catalogs in MapForce Customizing Your Catalogs

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

including in rewriteURI mappings, use the resulting URI for schema loading.

3. Use the URI part of the xsi:schemaLocation value for schema loading.

XML Schema specifications
XML Schema specification information is built into MapForce and the validity of XML Schema (.xsd) documents
is checked against this internal information. In an XML Schema document, therefore, no references should be
made to any schema that defines the XML Schema specification.

The catalog.xml file in the %AltovaCommonSchemasFolder%\Schemas\schema folder contains references to

DTDs that implement older XML Schema specifications. You should not validate your XML Schema documents
against these schemas. The referenced files are included solely to provide MapForce with entry helper info for
editing purposes should you wish to create documents according to these older recommendations.

© 2018-2024 Altova GmbH

Environment Variables 869Catalogs in MapForce

Altova MapForce 2024 Professional Edition

12.4 Environment Variables

Shell environment variables can be used in the nextCatalog element to specify the path to various system
locations (see RootCatalog.xml listing above). The following shell environment variables are supported:

%PersonalFolder%
Full path to the Personal folder of the current user, for example C:
\Users\<name>\Documents

%CommonSchemasFolder
% C:\ProgramData\Altova\Common2024\Schemas

%
ApplicationWritableD
ataFolder% C:\ProgramData\Altova

%AltovaCommonFolder% C:\Program Files\Altova\Common2024

%DesktopFolder% Full path to the Desktop folder of the current user.

%ProgramMenuFolder% Full path to the Program Menu folder of the current user.

%StartMenuFolder% Full path to Start Menu folder of the current user.

%StartUpFolder% Full path to Start Up folder of the current user.

%TemplateFolder% Full path to the Template folder of the current user.

%AdminToolsFolder%

Full path to the file system directory that stores administrative tools of the current
user.

%AppDataFolder% Full path to the Application Data folder of the current user.

%CommonAppDataFolder
% Full path to the file directory containing application data of all users.

%FavoritesFolder% Full path of the Favorites folder of the current user.

%PersonalFolder% Full path to the Personal folder of the current user.

%SendToFolder% Full path to the SendTo folder of the current user.

%FontsFolder% Full path to the System Fonts folder.

%ProgramFilesFolder% Full path to the Program Files folder of the current user.

%CommonFilesFolder% Full path to the Common Files folder of the current user.

%WindowsFolder% Full path to the Windows folder of the current user.

%SystemFolder% Full path to the System folder of the current user.

%LocalAppDataFolder%

Full path to the file system directory that serves as the data repository for local
(nonroaming) applications.

%MyPicturesFolder% Full path to the MyPictures folder.

870 MapForce Plug-in for Visual Studio

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

13 MapForce Plug-in for Visual Studio

You can integrate MapForce 2024 into the Microsoft Visual Studio versions 2012/2013/2015/2017/2019/2022.
This integration helps combine the mapping capabilities of MapForce with the development environment of
Visual Studio. When the MapForce plug-in is enabled, you can create mappings and mapping projects directly
in Visual Studio (see screenshot below).

Installation
To install the MapForce Plug-in for Visual Studio, take the steps below:

1. Install Microsoft Visual Studio 2012/2013/2015/2017/2019/2022. Note that from Visual Studio 2022
onwards, Visual Studio is being made available only as a 64-bit application.

2. Install MapForce (Enterprise or Professional Edition). If you have installed Visual Studio 2022+, then
you must install the 64-bit version of MapForce.

3. Download and run the MapForce integration package for Microsoft Visual Studio. This package is
available on the MapForce (Enterprise and Professional Editions) download page at www.altova.com.

https://www.altova.com

© 2018-2024 Altova GmbH

 871MapForce Plug-in for Visual Studio

Altova MapForce 2024 Professional Edition

Once the integration package has been installed, you will be able to use MapForce in the Visual Studio
environment.

Important

You must use the integration package corresponding to your MapForce version (current version is 2024).
The integration package is not edition-specific and can therefore be used for both Enterprise and
Professional editions.

Information about menus and functions
When the MapForce plug-in for Visual Studio is enabled, you can access different MapForce menus and
functions (see below). You can customize MapForce menus and toolbars from the Tools | Customize menu of
Visual Studio.

Note: In Visual Studio 2019 and later, MapForce functionality can be accessed in the Extensions menu of
Visual Studio. In earlier versions of Visual Studio, MapForce features are available in the top-level
menus of Visual Studio.

Themes

You can select MapForce themes in the MapForce menu of Visual Studio. The options are Classic,
Light, and Dark themes.

Create and open files/projects

When the MapForce plug-in for Visual Studio is enabled, you can create, open, and work with mappings
and mapping projects directly in Visual Studio. To create a new mapping design file in Visual Studio, use
the File | New menu command. To create a new project, use the File | New Project menu command. To
open existing mapping files or projects, you can use the following Visual Studio menus: File | Open | File
or File | Open | Project/Solution. Then you can look for the MapForce-related file types.

Global Resources

MapForce Global Resources are available in the MapForce | Manage Global Resources menu of
Visual Studio. In Visual Studio 2019 onwards, the corresponding menu is Extensions | MapForce |
Manage Global Resources.

Debugging

After you have opened a mapping file, the mapping debugging commands become available in the Debug
menu and in the Debug toolbar. In Visual Studio 2019 onwards, the corresponding menu is
Extensions | MapForce | Debug.

MapForce options

MapForce options are available in the Tools | MapForce Options menu of Visual Studio.

 Mapping pane customization

When you open a mapping in the main pane of Visual Studio, the View | MapForce menu becomes
available. It includes the same options as the View menu of the standalone version of MapForce.

841

1033

872 MapForce Plug-in for Visual Studio

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Libraries window

If the MapForce Libraries window is not visible in Visual Studio, you can enable it from the View |
MapForce | Libraries Window menu (this menu becomes available in Visual Studio when a mapping file
is open). Once the Libraries window is enabled, you can dock it to a particular position in the interface.

Help and Support

The MapForce menus Help, Support Center, Check for Updates and About are available in the Help |
MapForce Help menu of Visual Studio.

© 2018-2024 Altova GmbH

 873MapForce Plug-in for Eclipse

Altova MapForce 2024 Professional Edition

14 MapForce Plug-in for Eclipse

Eclipse is an open source framework that integrates different types of applications delivered in form of plug-ins.
You can integrate MapForce Enterprise and Professional Edition into Eclipse versions 2024-03 (4.31), 2023-12
(4.30), 2023-09 (4.29), 2023-06 (4.28) and access MapForce functionality directly from Eclipse.

MapForce Enterprise Edition plug-in for Eclipse

The following topics provide help on installing and using the MapForce plug-in for Eclipse.

· Installing the MapForce Plug-in for Eclipse
· The MapForce Perspective
· Accessing Common Menus and Functions
· Working with Mapping and Projects
· Extending MapForce Plug-in for Eclipse

874

876

879

883

893

874 MapForce Plug-in for Eclipse Installing the MapForce Plug-in for Eclipse

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

14.1 Installing the MapForce Plug-in for Eclipse

Prerequisites

· Eclipse 2024-03 (4.31), 2023-12 (4.30), 2023-09 (4.29), 2023-06 (4.28) (http://www.eclipse.org), 64-bit.
· A Java Runtime Environment (JRE) or Java Development Kit (JDK) for the 64-bit platform.
· MapForce Enterprise or Professional Edition 64-bit.

Note: All the prerequisites listed above must have the 64-bit platform. Integration with older Eclipse 32-bit
platforms is no longer supported, although it may still work.

After the prerequisites listed above are in place, you can install the MapForce Integration Package (64-bit) to
integrate MapForce in Eclipse. The integration can be carried out either during the installation of the Integration
Package or manually from Eclipse after the Integration Package has been installed. The MapForce Integration
Package is available for download at https://www.altova.com/components/download.

Note: Eclipse must be closed while you install or uninstall the MapForce Integration Package.

Integrate MapForce during installation of the Integration Package
You can integrate MapForce in Eclipse during the installation of the MapForce Integration Package. Do this as
follows:

1. Run the MapForce Integration Package to start the installation wizard.
2. Go through the initial steps of the installation with eth wizard.
3. In the Integration step, select Let this wizard integrate Altova MapForce plug-in into Eclipse, and

browse for the directory where the Eclipse executable (eclipse.exe) is located.
4. Click Next and complete the installation.

The MapForce perspective and menus will be available in Eclipse the next time you start it.

Integrate MapForce in Eclipse manually
After you have installed the MapForce Integration Package, you can manually integrate MapForce in Eclipse as
follows:

1. In Eclipse, select the menu command Help | Install New Software.
2. In the Install dialog box, click Add.

http://www.eclipse.org/
https://www.altova.com/components/download

© 2018-2024 Altova GmbH

Installing the MapForce Plug-in for Eclipse 875MapForce Plug-in for Eclipse

Altova MapForce 2024 Professional Edition

3. In the Add Repository dialog box, click Local. Browse for the folder C:\Program
Files\Altova\Common2024\eclipse\UpdateSite, and select it. Provide a name for the site (such as
"Altova").

4. Repeat the steps 2-3 above, this time selecting the folder C:\Program Files\Altova\<%
APPNAMESHORT%>\eclipse\UpdateSite and providing a name such as "Altova MapForce".

5. On the Install dialog box, select Only Local Sites. Next, select the "Altova category" folder and click
Next.

6. Review the items to be installed and click Next to proceed.
7. To accept the license agreement, select the respective check box.
8. Click Finish to complete the installation.

Note: If there are problems with the plug-in (missing icons, for example), start Eclipse from the command line
with the -clean flag.

876 MapForce Plug-in for Eclipse The MapForce Perspective

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

14.2 The MapForce Perspective

In Eclipse, a perspective is a GUI view that is configured with the functionality of a specific application. After
MapForce has been integrated in Eclipse, a new perspective, named MapForce, becomes available in Eclipse.
This perspective is a GUI that resembles the MapForce GUI and includes a number of its components.

When a file having a filetype associated with MapForce is opened (.mfd), this file can be edited in the
MapForce perspective. Similarly, a file of another filetype can be opened in another perspective in Eclipse.
Additionally, for any active file, you can switch the perspective (see below), thus allowing you to edit or process
that file in another environment.

There are therefore two main advantage of perspectives:

1. Being able to quickly change the working environment of the active file, and
2. Being able to switch between files without having to open a new development environment (the

associated environment is available in a perspective)

Working with the MapForce perspective involves the following key procedures, which are described further
below:

· Switching to the MapForce perspective.
· Setting preferences for the MapForce perspective.
· Customizing the MapForce perspective.

Switch to the MapForce perspective
In Eclipse, select the command Window | Perspective | Open Perspective | Other. In the dialog that
appears (screenshot below), select MapForce, and click Open.

© 2018-2024 Altova GmbH

The MapForce Perspective 877MapForce Plug-in for Eclipse

Altova MapForce 2024 Professional Edition

The empty window or the active document will now have the MapForce perspective. This is how the user
switches the perspective via the menu. To access a perspective faster from another perspective, you can set
the required perspective to be listed in the Open Perspective submenu, above the Other item. This setting is
in the customization dialog (see further below).

Perspectives can also be switched when a file is opened or made active. The perspective of the application
associated with a file's filetype will be automatically opened when that file is opened for the first time. Before
the perspective is switched, a dialog appears asking whether you wish to have the default perspective
automatically associated with this filetype. Check the Do Not Ask Again option if you wish to associate the
perspective with the filetype without having to be prompted each time a file of this filetype is opened and then
click OK.

Preferences for the MapForce perspective
To access the Preferences of a perspective, select the command Window | Preferences. In the list of
perspectives in the left pane, select MapForce, then select the required preferences. Finish by clicking OK.

The preferences of a perspective include:

· To automatically switch to the MapForce perspective when a file of an associated filetype is opened
(see above)

· Options for including or excluding individual MapForce toolbars
· Access to MapForce options.

878 MapForce Plug-in for Eclipse The MapForce Perspective

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Customize the MapForce perspective
The customization options enable you to determine what shortcuts and commands are included in the
perspective. To access the Customize Perspective dialog of a perspective, make that perspective the active
perspective and select the command Window | Perspective | Customize Perspective.

· In the Toolbar Visibility and Menu Visibility tabs, you can specify which toolbars and menus are to be
displayed.

· In the Action Set Availability tab, you can add action sets to their parent menus and to the toolbar. If
you wish to enable an action group, check its check box.

· In the Shortcuts tab of the Customize Perspective dialog, you can set shortcuts for submenus. Select
the required submenu in the Submenus combo box. Then select a shortcut category, and check the
shortcuts you wish to include for the perspective.

Click Apply and Close to complete the customization and for the changes to take effect.

Overview of the MapForce perspective
By default, the MapForce perspective in Eclipse is organized as follows:

· The mapping design window is available as an Eclipse editor. It has the same tabs and functionality as
in the standalone edition of MapForce.

· The Libraries window is available as an Eclipse view, to the left of the main mapping editor. If this view
is not visible, switch to the MapForce perspective, and then select the menu command Window |
Show View | Libraries. The Libraries view enables you to work with predefined or custom-defined
functions and function libraries.

· The Messages pane is available as an Eclipse view, under the main mapping editor. If the Message
view is not visible, switch to the MapForce perspective, and then select the menu command Window |
Show View | Messages. The messages view displays validation messages, errors, and warnings.

· The Overview pane is available as an Eclipse view. If the Overview view is not visible, switch to the
MapForce perspective, and then select the menu command Window | Show View | Overview. This
view enables you to quickly navigate to a particular region on the mapping design area when it is very
big.

© 2018-2024 Altova GmbH

Accessing Common Menus and Functions 879MapForce Plug-in for Eclipse

Altova MapForce 2024 Professional Edition

14.3 Accessing Common Menus and Functions

In Eclipse, you can access most MapForce functionality from the same menus as in the standalone version,
except for some Eclipse-specific variations which are listed below. This is the default setup; however, you can
further customize the interface preferences from Eclipse, if desired (see The MapForce Perspective).

Note: In Eclipse, some MapForce menu groups or commands are disabled (or not available) if the context is
not relevant. For example, the Insert menu becomes available only when a mapping design file (.mfd)
is active in Eclipse.

For information about the MapForce standard menus, see Menu Reference .

General MapForce commands
In the standalone edition of MapForce, the commands applicable to mapping design files (such as Validate,
Deploy to FlowForce Server, Generate Code, and others) are available in the File menu. In Eclipse, these
commands are available in the MapForce menu, or in the MapForce toolbar. Note that the commands for
opening or saving files (including MapForce project files) are available in the File menu of Eclipse.

MapForce themes can be selected in the MapForce menu.

The MapForce toolbar in Eclipse

The toolbar button opens the MapForce help file.

The toolbar button displays commands specific to MapForce files. When you expand this button, the
available commands depend on the kind of file currently active in the Eclipse editor. For example, the
commands specific to mapping design (.mfd) files are available when such a file is active (in focus) in the
Eclipse editor.

Global Resources
To access or manage Global Resources, do one of the following:

· Click to expand the MapForce toolbar button, and then click Global Resources.
· On the MapForce menu, click Global Resources.

MapForce Projects
In the standard edition of MapForce, the Project menu contains various commands applicable to mapping
project (.mfp) files. In Eclipse, these commands exist as follows:

· The commands to open or save a project are available from the Eclipse File menu.
· Other project-specific commands are available as context commands. To display the context

commands, create or open a MapForce project (.mfp) file in Eclipse, and then right-click the project.

876

1018

880 MapForce Plug-in for Eclipse Accessing Common Menus and Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Note that, in addition to standard MapForce projects (.mfp), in Eclipse you can also create projects of type
"MapForce/Eclipse". Such projects have a dual nature, and can be configured for automatic build and
generation of MapForce code. See Working with Mappings and Projects .

MapForce Options
MapForce options are available from the Window | Preferences menu. On the Preferences dialog box, select
MapForce, and then click Open MapForce Options Dialog.

883

© 2018-2024 Altova GmbH

Accessing Common Menus and Functions 881MapForce Plug-in for Eclipse

Altova MapForce 2024 Professional Edition

Preferences dialog box

Libraries window
In Eclipse, the MapForce Libraries window is available as a view. This view is by default located to the left of the
main editor window. (All MapForce-related views become visible in the Eclipse interface when the MapForce
perspective is switched on, see also The MapForce Perspective).

MapForce plug-in version
To see the currently installed version of the MapForce Plug-in for Eclipse, select the Eclipse menu option Help
| About Eclipse. Then select the MapForce icon.

876

882 MapForce Plug-in for Eclipse Accessing Common Menus and Functions

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Help and Support
MapForce Help, Support Center, Check for Updates and About menus are available in the Help | MapForce
Help menu of Eclipse.

© 2018-2024 Altova GmbH

Working with Mappings and Projects 883MapForce Plug-in for Eclipse

Altova MapForce 2024 Professional Edition

14.4 Working with Mappings and Projects

When MapForce plug-in for Eclipse is installed, you can create from Eclipse the same mappings and mapping
project types as in the standalone edition of MapForce, from within an Eclipse project. To design, test,
compile, and deploy mappings, and to generate mapping code, you can either create a new Eclipse project or
use an existing Eclipse project (for example, a Java project to which you want to add MapForce mappings).

In addition to this, you can work with all your mappings within a special project type that becomes available in
Eclipse after you install the MapForce plug-in—the MapForce/Eclipse Project. Unless you choose to
customize it, a MapForce/Eclipse project is by default assigned both a Java Builder and a MapForce Code
Generation builder. Additionally, it has two Eclipse natures: MapForce nature and the JDT (Java Development
tools) nature. As a result, a MapForce/Eclipse project behaves as follows when you save or change any of its
resources (such as a mapping design file):

· If the Project > Build automatically menu option is enabled, the mapping code is generated
automatically. When one or more MapForce project files exist in the MapForce/Eclipse project, the
code generation language and output target folders are determined by the settings in each project file.
Otherwise, Eclipse prompts you to choose a location.

· Any errors and output messages are shown in the Messages and Problems views.

This section contains the following topics:

· Creating a MapForce/Eclipse Project
· Creating New Mappings
· Importing Existing Mappings into an Eclipse Project
· Configuring Automatic Build and Generation of MapForce Code

14.4.1 Creating a MapForce/Eclipse Project

To create a MapForce/Eclipse project, take the steps below:

1. On the File menu, click New | Other.
2. Select the MapForce/Eclipse Project category.

883

885

887

890

884 MapForce Plug-in for Eclipse Working with Mappings and Projects

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

3. Click Next.

© 2018-2024 Altova GmbH

Working with Mappings and Projects 885MapForce Plug-in for Eclipse

Altova MapForce 2024 Professional Edition

4. Enter a project name and choose a location where to save the project. Leave the add MapForce
builder to project and use JDT builder options as is.

5. Click Finish.

14.4.2 Creating New Mappings

You can create the following MapForce file types within an Eclipse project:

· MapForce mappings
· MapForce project files
· MapForce Web Service projects (available in MapForce Enterprise Edition)

To create any of these file types within an Eclipse project:

1. Create a new Eclipse project or open an existing one.
2. On the File menu, click New, and then click Other.

886 MapForce Plug-in for Eclipse Working with Mappings and Projects

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

3. Select the required file type from the wizard dialog box, and then click Next.

© 2018-2024 Altova GmbH

Working with Mappings and Projects 887MapForce Plug-in for Eclipse

Altova MapForce 2024 Professional Edition

4. Select a parent folder in your existing project, and then click Finish.

14.4.3 Importing Existing Mappings into an Eclipse Project

To import MapForce mappings and their dependent files into an existing Eclipse project:

1. Open the project into which you want to import the files.
2. On the File menu, click Import.

888 MapForce Plug-in for Eclipse Working with Mappings and Projects

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

3. Select File System, and then click Next.

© 2018-2024 Altova GmbH

Working with Mappings and Projects 889MapForce Plug-in for Eclipse

Altova MapForce 2024 Professional Edition

4. Next to From directory, browse for the location of the files you want to import, and then select the
required files.

5. Next to Into folder, click Browse, and select the project into which you are adding the files (in this
example, MapForceEclipseProject1).

890 MapForce Plug-in for Eclipse Working with Mappings and Projects

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

6. Click OK, and then click Finish.

14.4.4 Configuring Automatic Build and Generation of MapForce
Code

Automatic MapForce code building and generation is enabled by default in any MapForce/Eclipse project (see
Creating a MapForce/Eclipse Project). If you want to enable automatic build and generation of MapForce
code in an existing project which is not of type MapForce/Eclipse, you can do this by manually adding to it the
MapForce Code Generation builder and the MapForce nature.

To add the MapForce Code Generation builder to a project:

· Add to the Eclipse .project file the lines highlighted below:

 <buildSpec>

 <buildCommand>

883

© 2018-2024 Altova GmbH

Working with Mappings and Projects 891MapForce Plug-in for Eclipse

Altova MapForce 2024 Professional Edition

 <name>org.eclipse.jdt.core.javabuilder</name>

 <arguments>

 </arguments>

 </buildCommand>

 <buildCommand>

 <name>com.altova.mapforceeclipseplugin.MapForceBuilder</name>
 <arguments>
 </arguments>
 </buildCommand>
 </buildSpec>

To add the MapForce nature to a project:

· Add to the Eclipse .project file the lines highlighted below:

 <natures>

 <nature>org.eclipse.jdt.core.javanature</nature>

 <nature>com.altova.mapforceeclipseplugin.MapForceNature</nature>

 </natures>

Tip: You can quickly open the .project file from the Navigator view of Eclipse (To enable this view, select
the menu command Window | Show View | Navigator).

To switch automatic MapForce code generation on/off:

· On the Project menu, click Build automatically.

To disable the MapForce Code Generation builder:

1. On the Project menu, click Properties.
2. Click Builders.

892 MapForce Plug-in for Eclipse Working with Mappings and Projects

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

3. Click to clear the MapForce Code Generation check box.

© 2018-2024 Altova GmbH

Extending MapForce Plug-in for Eclipse 893MapForce Plug-in for Eclipse

Altova MapForce 2024 Professional Edition

14.5 Extending MapForce Plug-in for Eclipse

The MapForce plug-in for Eclipse provides an Eclipse extension point with the ID
com.altova.mapforceeclipseplugin.MapForceAPI. You can use this extension point to adapt, or extend the
functionality of the MapForce plug-in. The extension point gives you access to the COM-Interface of the
MapForce control and the MapForce API .

The MapForce Eclipse installation package contains a simple example of a plug-in that uses this extension
point. It checks for any file open events of any new MapForce mappings, and sets the zoom level of the
mapping view to 70%.

The JavaDoc documentation of the extension point is available in the MapForce plug-in installation directory (C:
\Program Files\Altova\MapForce2024\eclipse\docs\).

Before you install and run the sample MapForce plug-in, ensure that the following prerequisites are met:

· You are using 64-bit Java, 64-bit Eclipse, 64-bit MapForce and 64-bit MapForce Integration Package.
· The JDT (Java Development Tools) plug-in is installed.
· The Eclipse PDE (plug-in development environment) is installed.

To import the sample MapForce plug-in project into your workspace:

1. Start Eclipse.
2. On the File menu, click Import.
3. Select General | Existing projects into Workspace, and click Next.
4. Click the Browse... button next to the "'Select root directory" field and choose the sample project

directory e.g. C:\Program Files\Altova\MapForce2024\eclipse\workspace\MapForceExtension.
5. Select the Copy projects into workspace option, and then click Finish. A new project named

"MapForceExtension" has been created in your workspace.

To run the sample extension plug-in:

1. Switch to the Java perspective.
2. In the Run menu, click Run Configurations.
3. Right click Eclipse Application and select New. (If you cannot see "Eclipse application" in the list,

the Eclipse Plug-In Development Tools are not installed in your Eclipse environment. To install Eclipse
Plug-in Development Tools, click Install New Software in the Help menu. and install "Eclipse Plugin
Development Tools" from "The Eclipse Project Updates" download site.)

4. Enter a name for your new configuration (in this example, SampleMapForcePlugin), and then click
Apply.

5. Check that the MapForceClient workspace plug-in is selected in the 'Plug-ins' tab.
6. Click Run. A new Eclipse Workbench opens.
7. Open any MapForce mapping in the new Workbench. It will now open with a zoom level of 70%.

1059

894 Code Generator

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

15 Code Generator

Code Generator is a MapForce built-in feature which enables you to generate code from mapping files. The
result is a fully-featured and complete application which performs the mapping operation for you. After you have
generated the code, you can execute the mapping by running the application directly as generated. You can
also import the generated code into your own application and extend the code with your own functionality.

Support information
The table below summarizes support information about C++, C#, and Java.

Target Language C++ C# Java

Development
environments

Microsoft Visual Studio
2013, 2015, 2017, 2019,
2022

Microsoft Visual Studio
2013, 2015, 2017, 2019,
2022

Target frameworks:

· .NET Framework
· .NET Core 3.1
· .NET 5.0
· .NET 6.0
· .NET 8.0

Java SE JDK 8, 11, 17, 21
(including OpenJDK)
Eclipse 4.4 or later
Apache Ant (build.xml file)

XML DOM
implementations

MSXML 6.0
Apache Xerces 3

System.Xml JAXP

Database API ADO ADO.NET JDBC

Note: The MapForce-generated code can be considered thread-safe only if the underlying third-party XML
DOM and database API libraries are. Although the thread safety of the generated code cannot be
realistically proven or guaranteed, it is likely that multiple concurrent instances of the mapping code
will run successfully in most cases.

C++
You can configure whether the C++ generated output should use MSXML 6.0 or Apache Xerces 3. MapForce
generates complete project (.vcproj) and solution (.sln) files for all supported versions of Visual Studio (see

table above). The generated code optionally supports MFC.

Note the following prerequisites:

· To compile the generated C++ code, Windows SDK must be installed on your computer.
· To use Xerces 3 for C++, you will need to install and build it using the instructions on the Apache

Xerces page. Make sure to add the XERCES3 environment variable that points to the directory where
Xerces is installed (e.g., C:\xerces-c-3.2.2). Also, the PATH environment variable must include the
path where the Xerces binaries are (e.g., %XERCES3%\bin).

· When you build C++ code for Visual Studio and use a Xerces library precompiled for Visual C++, you
will need to change the compiler setting in all the projects of the solution. Follow the steps below:

a) Select all projects in the Solution Explorer.
b) Click Properties in the Project menu.

https://xerces.apache.org/
https://xerces.apache.org/

© 2018-2024 Altova GmbH

 895Code Generator

Altova MapForce 2024 Professional Edition

c) Click Configuration Properties | C/C++ | Language.
d) In the list of configurations, select All Configurations.
e) Change Treat wchar_t as Built-in Type to No (/Zc:wchar_t-).

C#
The generated C# code can be used from any .NET capable programming language, such as VB.NET,
Managed C++, or J#. Project files can be generated for all supported versions of Visual Studio (see table
above).

Java
The generated Java output is written against the Java API for XML Processing (JAXP) and includes an Ant build
file and project files for supported versions of Java and Eclipse (see table above).

Generate, build, run, integrate code
For instructions on how to generate, build, and run code, see Generate, Build, and Run Code . For details
about integrating MapForce-generated code into your custom code, see Integrate Generated Code .

Code-generation templates
The generated code is built via a template that is written in a template language called SPL (Spy
Programming Language). You can customize the template used for code-generation. This can be useful, for
example, when you want to customize your code in accordance with your company's writing conventions or
replace specific libraries in the generated code.

Examples
For examples illustrating code generation capabilities, see Example: Book Library and Example: Purchase
Order .

896

902

999

924

948

896 Code Generator Generate, Build, and Run Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

15.1 Generate, Build, and Run Code

This topic explains how to generate code from a mapping and a project, build the generated code, and run it.
There are situations in which you might need to modify your generated C#/C++/Java code to integrate it into
your custom code. For details, see Integrate Generated Code .

Generate code from a mapping
To generate code from a mapping design (.mfd), follow the instructions below:

1. Select the relevant code-generation options in the Generation section of the Options dialog (applicable
to C# and C++) and in the Mapping Settings . For details about the code-generation settings in the
Options dialog, see Generation .

2. Click File | Generate code in and select the relevant transformation language. Alternatively, you can
select File | Generate Code in Selected Language. In this case, code will be generated in the
language selected in the toolbar.

3. Select a destination directory for the generated files and then click OK to confirm. MapForce generates
the code and displays the result of the operation in the Messages window .

Generate code from a project (Professional and Enterprise editions)
You can generate code from a mapping project (.mfp) that consists of multiple mapping design files (.mfd).

Note that all mapping design files in the project must qualify for generation, which means that all their
components must be supported in the selected transformation language (see Supported features in generated
code).

To generate code from a mapping project, follow the instructions below.

1. Open the relevant mapping project, for which you wish to generate code.
2. Right-click the project name in the Project window and then select Properties from the context menu.

Alternatively, click the project name and select the Project | Properties menu item.
3. Review and change the project settings if required. In particular, ensure that the target language and

the output directory are set correctly. Then click OK.
4. Click Generate Code for Entire Project in the Project menu.

Irrespective of the language selected in the Project Properties dialog, you can always choose to generate
project code in a different language, by selecting the menu command Project | Generate Code in |
<language>.

The progress and result of the code generation process is displayed in the Messages window. By default, the
name of the generated application is the same as the project name. If the project name contains spaces, these
are converted to underscores in the generated code. By default, code is generated in the same directory as the
MapForce project, in the output sub-directory.

You can change the output directory and/or the name of the project in the Project Properties dialog. If your
MapForce project contains folders, you can configure the code generation settings for each individual folder:
Right-click a folder of interest and select Properties from the context menu. Otherwise, all project folders
inherit the settings defined at top level. For more information about projects and project-related settings and
procedures, see Projects .

902

77

1043

28

1305

79

© 2018-2024 Altova GmbH

Generate, Build, and Run Code 897Code Generator

Altova MapForce 2024 Professional Edition

Language-specific information
This subsection describes the peculiarities of generating code in different transformation languages. This
subsection goes on to explain how to build the generated C++, C#, and Java code and run the application. You
can also generate code in XSLT 1-3 and XQuery. For details, see Code Generation .

C++ and C# code
Generating, building, and running C++ and C# code follow the same logic. The broad procedures are outlined in
the subsections below.

After you have generated C++ or C# code, the solution will include the following components:

· Solution (.sln) and project (.vcxproj for C++ and .csproj for C#) files that can be opened in Visual

Studio
· Several Altova-signed libraries required by the mapping (all prefixed with Altova)
· The main mapping project (called Mapping by default), which includes the mapping application and its

dependent files

Note that you can change the default name of the main mapping project in the Mapping Settings dialog box.

After you have generated the C++/C# code, the next steps would be to build the code and run the application.
There are two major approaches to building the generated code: (i) in Visual Studio and (ii) at the command line
(see details below). Note that, to build C# code, you must have the relevant SDK and a compatible Visual
Studio version installed. For the download package for your operating system and platform, refer to the
Microsoft website.

Build generated code in Visual Studio
To build the generated C++/C# code, follow the instructions below:

1. Open the generated solution (.sln) file in Visual Studio. By default, the name of the solution file is

Mapping.sln, and it is located in the Mapping subdirectory relative to the directory with the generated

code.
2. Select the required build configuration (e.g., Debug). Note about C++ code: only Unicode builds

support the full Unicode character set in XML and other files. The non-Unicode builds work with the
local codepage of your Windows installation.

3. Click Build Solution in the Build menu.

As a result of building the code, a command-line application called Mapping.exe and its related files will be

created. The mapping application will be located in one of the subdirectories relative to the .sln file. The name

of the subdirectory depends on the selected build configuration: e.g., Debug (C++), bin\Debug (C#).

Build generated code at command line
To build the generated code at the command line, switch to the directory with the generated code and run the
following command:

devenv Mapping.sln /Build "Debug|AnyCPU" /Project Mapping

This command calls Visual Studio and specifies the name of the solution file to build (Mapping.sln in our

case), the desired configuration (Debug and any CPU in our case), and the name of the project the solution file

70

77

https://dotnet.microsoft.com/en-us/download

898 Code Generator Generate, Build, and Run Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

belongs to (Mapping). As a result of building the code, a command-line application called Mapping.exe and its

related files will be created. The mapping application will be located in one of the subdirectories relative to the
.sln file. The name of the subdirectory depends on the selected build configuration: e.g., Debug (C++),

bin\Debug (C#).

Notes about building C# code
Besides calling Visual Studio, you can also call .NET to build the generated C# code. Follow the instructions
below:

1. Make sure to select the correct platform to target in the Generation section of the Options dialog
(Tools menu). For details, see Generation .

2. If you target .NET/.NET Core, configure the PATH and DOTNET_ROOT environment variables so that
they point to the location where .NET/.NET Core is installed. This will prevent possible problems with
CLI commands.

3. Open a command prompt and switch to the directory with the generated code.
4. Run the following command:

dotnet build Mapping\Mapping.sln --configuration Release

This command calls .NET to build the solution file called Mapping.sln with the Release configuration
and creates an executable called Mapping.exe and its related files at the destination folder. The name

of the destination folder depends on the selected configuration and the .NET version used. In our
example, the executable will be saved in the bin\Release\net8.0 folder.

Run application
After you have built the code in Visual Studio directly or at the command line, you can proceed to run the
application. To run the application, double-click Mapping.exe or call the executable from the command line.

After you have run the executable, the result of the mapping transformation will be output to the destination
folder (by default, this is the folder where the executable is stored).

If you build the generated code on Linux, the generated executable will be called Mapping, without any
extension. To run the executable, you may need to use the following command:

./Mapping

Java code
After you have generated Java code, the Java project will include the following components:

· Several Altova-signed Java packages required by the mapping (all prefixed with com.altova)
· The com.mapforce package including the mapping application and its dependent files, among which

the two most important files that specify the entry points of the application are the following:
o The Java mapping application as a dialog application (MappingApplication.java)

o The Java mapping application as a console application (MappingConsole.java)

· The build.xml file which you can execute with Apache Ant to compile the project and generate JAR
files

The default names of the mapping application and its dependent files in the com.mapforce package are
prefixed with Mapping. You can change this and other settings in the Mapping Settings dialog box.

1043

77

© 2018-2024 Altova GmbH

Generate, Build, and Run Code 899Code Generator

Altova MapForce 2024 Professional Edition

After you have generated Java code, the next steps would be to build and run the code. There are two major
approaches to building the generated code and running the application: (i) in Eclipse and (ii) at the command
line, using Apache Ant. The broad procedures are described in the subsections below.

Build generated code and run application in Eclipse
This approach makes use of the Eclipse workflow. Note the following prerequisites:

· Java Development Kit (JDK), Eclipse, and Apache Ant must be installed on your system. Eclipse
typically includes a bundled version of Ant, but you can also install Ant separately.

· To run Eclipse with OpenJDK, you need to set the PATH environment variable so that it includes the
path to the JDK bin directory (e.g., C:\Java\jdk-11.0.1\bin).

· The JAVA_HOME environment variable must point to the location of JDK.
· The ANT_HOME environment variable must point to the location of Apache Ant.

After you have generated Java code, the next step is to import the generated Java code into Eclipse. Follow the
steps below:

1. In the File menu, click Import and select General | Existing Projects into Workspace.
2. Click Next.
3. Provide the path to the generated code and click Finish. The Java project created by MapForce is now

available in the Package Explorer view. If you cannot see the Package Explorer view, use the menu
command Window | Show View | Package Explorer.

Note that, by default, code is built automatically each time a change is detected. You can also disable this
functionality and build code when necessary (see the Eclipse documentation for details).

After you have imported and built your code, the next step is to run the application. This topic discusses some
of the possible approaches to running an application.

Approach 1: Run project as an application
This method allows you to run your Java project as a GUI application. Take the steps below:

1. In the Package Explorer view of Eclipse, right-click the MappingApplication.java file in the

com.mapforce package.

2. Select Run As | Java application from the context menu.
3. In the MapForce application window that pops up, click Start to execute the mapping.

Approach 2: Run project as a console application
This method enables you run your Java project as a console (command-line) application. Take the steps below:

1. In the Package Explorer view of Eclipse, right-click the MappingConsole.java file in the

com.mapforce package.

2. Select Run As | Java application from the context menu.

As a result of running the application, irrespective of the approach selected, the Java application will execute
the mapping transformation and generate output file(s) at the destination folder.

Build generated code and run application at command line

900 Code Generator Generate, Build, and Run Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

To be able to build and run your generated code at the command line, you must have the following components
installed and environment variables set:

· Java Development Kit (JDK) and Apache Ant must be installed on your system.
· The location of the Ant bin directory (e.g., C:\apache-ant-1.10.5\bin) should be added to the PATH

environment variable. This will enable you to conveniently run Ant without having to type the full path to
the executable at the command line.

· The JAVA_HOME environment variable must point to the location of JDK.
· The ANT_HOME environment variable must point to the location of Apache Ant.

To build the generated code with Apache Ant, follow the instructions below:

1. Open a command prompt and switch to the directory where the generated code, including the build file
(build.xml), is stored.

2. Run the following command:

ant jar

This command will build the generated code and create a JAR file (called Mapping.jar by default). The

purpose of the JAR file is to package Java .class files and their related metadata and resources. In

our case, the JAR archive is intended to be used as an executable Java program; therefore, the
archive's manifest file includes the entry point of the application (by default,
com.mapforce.MappingConsole).

To run the Java application, run the following command in the directory where the JAR archive is located:

java com.mapforce.MappingConsole Mapping.jar

This command starts the Java Virtual Machine, launches the main class called
com.mapforce.MappingConsole, which refers to the entry point of the Java application, and executes the
program contained in the JAR file called Mapping.jar. As a result, the Java application will execute the

mapping transformation and generate output file(s) at the destination folder. If you want to launch the
application as a GUI application, pass the following value for the main class argument:
com.mapforce.MappingApplication. This will open a pop-up window, in which you will be able to start the
mapping transformation.

Preventing possible out-of-memory issues
Complex mappings with large schemas can produce a large amount of code, which might cause a
java.lang.OutofMemory exception during compilation in Ant. To prevent possible out-of-memory issues, take
the steps below:

1. Add the ANT_OPTS environment variable, which sets specific Ant options such as the memory to be
allocated to the compiler, and set its value as follows: -server -Xmx512m -Xms512m.

2. To make sure that the compiler and the generated code run in the same process as Ant, change the
fork attribute in build.xml to false.

You may need to customize the values depending on the amount of memory in your machine and the size of
the project you are working with. For more details, see your Java VM documentation.

© 2018-2024 Altova GmbH

Generate, Build, and Run Code 901Code Generator

Altova MapForce 2024 Professional Edition

When you run the ant jar command, you may get an error message similar to "[...] archive contains
more than 65535 entities". To prevent this, it is recommended to use Ant 1.9 or later and to add
zip64mode="as-needed" to the <jar> element in build.xml.

Preventing possible issues with JDBC connections
If you have generated Java code from a mapping that connects to a database through JDBC, you may need to
add the JDBC driver as a classpath entry to the current configuration. Otherwise, running the application could
result in an error. For details, see Databases .151

902 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

15.2 Integrate Generated Code

Even though the result of code generation is a complete and fully-functioning application, you may need to
adapt MapForce-generated code to be able to integrate it into your custom code. Some typical code-
modification scenarios include the following:

· Modifying source and target files for the mapping application
· Defining custom error-handling code
· Changing the data type of the mapping input in C#- and Java-generated code (for example, from string

to stream)
· Generating schema wrapper libraries that you can integrate in your custom application in order to read,

modify, or write XML documents programmatically

15.2.1 Modify Input/Output, Define Error Handling

This topic explains how to modify source and target files and define error handling for the mapping application in
Java, C#, and C++ code. To illustrate these procedures, we use the MapForceExamples\CompletePO.mfd

sample mapping. The mapping consists of three source components (ShortPO.xml, Customers.xml, and

Articles.xml) and one target component (CompletePO.xml).

In the generated code, these sources and targets will translate to three input and one output parameters
supplied to the Run method which executes the mapping. Note the following basic points about code

generation:

· The number of sources and targets in the mapping design corresponds to the number of mapping
parameters to the Run method in the generated code.

· If you change the number of sources or targets of the mapping, then you will need to re-generate the
code accordingly.

· If you make changes to the generated code and then re-generate the code at the same location, all
changes will be overwritten.

Java
This example uses Eclipse as a Java IDE. To begin, generate Java code from the
MapForceExamples\CompletePO.mfd sample mapping and then import the project into Eclipse. For information

about generating Java code and importing it into Eclipse, see Generate, Build, and Run Code .

To edit the generated Java console application, locate the main method of your generated application in the

Project Explorer of Eclipse (screenshot below). By default, this method is located in the MappingConsole class
of the com.mapforce package. Otherwise, it is in the MappingConsole class of your custom defined package.

902

902

905

911

898

© 2018-2024 Altova GmbH

Integrate Generated Code 903Code Generator

Altova MapForce 2024 Professional Edition

To edit the generated Java dialog application, locate the place in the code where the run method is invoked

from your generated application. By default, the run method is invoked from the class called

MappingFrame.java of the com.mapforce package (screenshot above).

Modify sources and targets
The code listing below illustrates an extract from the main method in the generated Java console application.

The paths to the sources and targets are shown below and are defined as parameters to the run method. If you

need to change the sources and/or targets, change the values of the parameters shown below.

com.altova.io.Input Customers2Source =
com.altova.io.StreamInput.createInput("C:/Users/<UserName>/Documents/Altova/MapForce2024/
MapForceExamples/Customers.xml");

com.altova.io.Input Articles2Source =
com.altova.io.StreamInput.createInput("C:/Users/<UserName>/Documents/Altova/MapForce2024/
MapForceExamples/Articles.xml");

com.altova.io.Input ShortPO2Source =
com.altova.io.StreamInput.createInput("C:/Users/<UserName>/Documents/Altova/MapForce2024/
MapForceExamples/ShortPO.xml");

com.altova.io.Output CompletePO2Target = new
com.altova.io.FileOutput("CompletePO.xml");

Define custom error handling
If you need to add your custom error-handling code, modify the catch statement in the main method (console

application) or in MappingFrame.java (GUI application).

C#
This example uses Microsoft Visual Studio as a C# IDE. To begin, generate C# code from the
MapForceExamples\CompletePO.mfd sample mapping and then open the solution in Visual Studio. For

information about generating code and importing it into Visual Studio, see Generate, Build, and Run Code .

To edit the generated C# application, navigate to the Main method of your generated application in the Solution

Explorer of Visual Studio (screenshot below). By default, the solution file is called Mapping.sln and is located

in the Mapping subdirectory relative to the directory where you saved the generated code.

897

904 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Modify sources and targets
The code listing below illustrates an extract from the Main method in the generated C# application. The paths

to the sources and targets are shown below and are defined as parameters to the Run method. If you need to

change the sources and/or targets, change the values of the parameters shown below.

Altova.IO.Input Customers2Source =
Altova.IO.StreamInput.createInput("C:/Users/<UserName>/Documents/Altova/MapForce2024/MapF
orceExamples/Customers.xml");

Altova.IO.Input Articles2Source =
Altova.IO.StreamInput.createInput("C:/Users/<UserName>/Documents/Altova/MapForce2024/MapF
orceExamples/Articles.xml");

Altova.IO.Input ShortPO2Source =
Altova.IO.StreamInput.createInput("C:/Users/<UserName>/Documents/Altova/MapForce2024/MapF
orceExamples/ShortPO.xml");

Altova.IO.Output CompletePO2Target = new
Altova.IO.FileOutput("CompletePO.xml");

Define custom error handling
If you need to add your custom error-handling code, modify the catch statement in the Main method.

C++
This example uses Microsoft Visual Studio as a C++ IDE. To begin, generate C++ code from the
MapForceExamples\CompletePO.mfd sample mapping and then open the solution in Visual Studio. For

information about generating code and importing it into Visual Studio, see Generate, Build, and Run Code .

To edit the generated C++ application, navigate to the _tmain method of your generated application in the

Solution Explorer of Visual Studio (screenshot below). By default, the solution file is called Mapping.sln and is

located in the Mapping subdirectory relative to the directory where you saved the generated code.

897

© 2018-2024 Altova GmbH

Integrate Generated Code 905Code Generator

Altova MapForce 2024 Professional Edition

Modify sources and targets
The code listing below illustrates an extract from the _tmain method in the generated C++ application. The

paths to the sources and targets are shown below and are defined as parameters to the Run method. If you

need to change the sources and/or targets, change the values of the parameters shown below.

MappingMapToCompletePO MappingMapToCompletePOObject;

MappingMapToCompletePOObject.Run(

_T("C:/Users/<UserName>/Documents/Altova/MapForce2024/MapForceExamples/Customers.xml"),

_T("C:/Users/<UserName>/Documents/Altova/MapForce2024/MapForceExamples/Articles.xml"),

_T("C:/Users/<UserName>/Documents/Altova/MapForce2024/MapForceExamples/ShortPO.xml"),

_T("CompletePO.xml"));

Define custom error handling
If you need to add your custom error-handling code, modify the catch statement in the _tmain method.

15.2.2 Change Data Type of Input/Output

MapForce-generated code can be integrated, or adapted to your specific application, even though the result of
code generation is a complete and fully-functioning application. After generating Java or C# code with
MapForce, you can optionally change the data type of the mapping input or output by editing the generated
code. More specifically, you can use as mapping parameters objects of types other than those generated by
default. For example, instead of having the mapping read the input from a file on the disk, you can provide a
string or a stream object as input. Note that this feature is specific to code generated in C# or Java only.

The object types supported as input or output are listed in the first column of the table below. Each subsequent
column specifies data formats where that specific type is supported. For a more precise definition of each type,
see the "Type definitions" section below.

896

906 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

XML JSON* Microsoft
Excel*

EDI
(includes
X12, HL7)*

FlexText* CSV/Text

Files Yes Yes Yes Yes Yes Yes

Streams Yes Yes Yes Yes Yes Yes

Strings Yes Yes – Yes Yes Yes

Reader/Writ
er

Yes Yes – Yes Yes Yes

DOM
documents

Yes – – – – –

* Formats supported only in MapForce Enterprise Edition

To change the data type of the mapping input or output:

1. Generate C# or Java code from a mapping.
2. In the generated code, find the call to the run method (in Java) or Run method (in C#), as follows:

a. If using C#, open the MappingConsole.cs file.
b. If using Java, open the MappingConsole.java (the console program) or the MappingFrame.java

file (the GUI program).

Note: The name of the file may be different if you have changed the application name in the mapping
settings . For example, if you changed it to "MyApp", then name of the generated file becomes
MyAppConsole.js and MyAppConsole.java, and MyAppFrame.java, respectively.

3. Create an instance of the required type (see the "Type definitions" section).
4. Supply the declared objects as parameters to the run method (in Java) or Run method (in C#), as

shown in the examples below.

The run method is the most important method of generated mapping classes. It has one parameter for each

static source or input component in the mapping, and a final parameter for the output component. If your
mapping contains components that process multiple files dynamically , the respective parameters do not
appear in generated code, because in this case the file names are processed dynamically inside the mapping.

Type definitions
In C#, the types that you can provide as parameters to the Run method are classes defined in the Altova.IO

namespace. The base classes are Altova.IO.Input and Altova.IO.Output, respectively.

C# types

Files Altova.IO.FileInput(string filename)
Altova.IO.FileOutput(string filename)

Streams Altova.IO.StreamInput(System.IO.Stream stream)
Altova.IO.StreamOutput(System.IO.Stream stream)

77

751

© 2018-2024 Altova GmbH

Integrate Generated Code 907Code Generator

Altova MapForce 2024 Professional Edition

Strings Altova.IO.StringInput(string content)
Altova.IO.StringOutput(System.Text.StringBuilder sbuilder)

Reader/Writer Altova.IO.ReaderInput(System.IO.TextReader reader)
Altova.IO.WriterOutput(System.IO.TextWriter writer)

DOM documents Altova.IO.DocumentInput(System.Xml.XmlDocument document)
Altova.IO.DocumentOutput(System.Xml.XmlDocument document)

In Java, the types that you can provide as parameters to the run method are classes defined in the

com.altova.io package. The base classes are com.altova.io.Input and com.altova.io.Output,
respectively.

Java types

Files com.altova.io.FileInput(String filename)
com.altova.io.FileOutput(String filename)

Streams com.altova.io.StreamInput(java.io.InputStream stream)
com.altova.io.StreamOutput(String filename)

Strings com.altova.io.StringInput(String content)
com.altova.io.StringOutput()

Reader/Writer com.altova.io.ReaderInput(java.io.Reader reader)
com.altova.io.WriterOutput(java.io.Writer writer)

DOM documents com.altova.io.DocumentInput(org.w3c.dom.Document document)
com.altova.io.DocumentOutput(org.w3c.dom.Document document)

Example
To illustrate changing the input and output programmatically, we will use the ConvertProducts.mfd mapping
as a model. After installing MapForce and running it at least once, you can find this mapping in the following
directory: C:\Users\<username>\Documents\Altova\MapForce2024\MapForceExamples\Tutorials.

ConvertProducts.mfd

908 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

As illustrated above, the mapping converts data from a source XML document to another XML document. Our
goals are as follows:

1. Generate Java and C# program code from this mapping.
2. Change the data type of the source component to a string type.
3. Change the data type of the target component to a string writer type.

To generate the program code, open the ConvertProducts.mfd mapping and run the File | Generate code in
| C# (or Java) command. For the scope of this example, we will assume that the mapping settings of
ConvertProducts.mfd are the default ones.

This example uses the following target directories for the generated code (feel free to change the path if
necessary):

· C:\codegen\cs\ConvertProducts, for C#
· C:\codegen\java\ConvertProducts, for Java

Having generated the program code, open the MappingConsole.cs (in C#) or MappingConsole.java (in Java)
and find the following lines:

C#

Altova.IO.Input Products2Source = Altova.IO.StreamInput.createInput("Products.xml");
Altova.IO.Output ProductValuePairs2Target = new

Altova.IO.FileOutput("ProductValuePairs.xml");

Java

com.altova.io.Input Products2Source =
com.altova.io.StreamInput.createInput("Products.xml");
com.altova.io.Output ProductValuePairs2Target = new

com.altova.io.FileOutput("ProductValuePairs.xml");

Comment out the lines above and change the code as follows:

C#

//Altova.IO.Input Products2Source = Altova.IO.StreamInput.createInput("Products.xml");

© 2018-2024 Altova GmbH

Integrate Generated Code 909Code Generator

Altova MapForce 2024 Professional Edition

//Altova.IO.Output ProductValuePairs2Target = new
Altova.IO.FileOutput("ProductValuePairs.xml");

Altova.IO.Input Products2Source = new Altova.IO.StringInput("<?xml version=\"1.0\"

encoding=\"UTF-8\"?>\r\n" +
 "<products
xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"
xsi:noNamespaceSchemaLocation=\"products.xsd\">\r\n" +
 " <product>\r\n" +
 " <id>100</id>\r\n" +
 " <color>blue</color>\r\n" +
 " <size>XXL</size>\r\n" +
 " </product>\r\n" +
 "</products>\r\n");

System.IO.StringWriter writer = new System.IO.StringWriter(new

System.Text.StringBuilder());
Altova.IO.Output ProductValuePairs2Target = new Altova.IO.WriterOutput(writer);

try

{
 MappingMapToProductValuePairsObject.Run(Products2Source, ProductValuePairs2Target);

 // Print out the writer object
 Console.Write(writer.ToString());
}
finally

{
 Products2Source.Close();
 ProductValuePairs2Target.Close();
}

Java

//com.altova.io.Input Products2Source =

com.altova.io.StreamInput.createInput("Products.xml");

//com.altova.io.Output ProductValuePairs2Target = new

com.altova.io.FileOutput("ProductValuePairs.xml");

com.altova.io.Input Products2Source = new com.altova.io.StringInput("<?xml

version=\"1.0\" encoding=\"UTF-8\"?>\r\n" +
 "<products xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"
xsi:noNamespaceSchemaLocation=\"products.xsd\">\r\n" +
 " <product>\r\n" +
 " <id>100</id>\r\n" +
 " <color>blue</color>\r\n" +
 " <size>XXL</size>\r\n" +
 " </product>\r\n" +
 "</products>\r\n");

java.io.StringWriter writer = new java.io.StringWriter();

com.altova.io.Output ProductValuePairs2Target = new com.altova.io.WriterOutput(writer);

910 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

try {

 MappingMapToProductValuePairsObject.run(Products2Source, ProductValuePairs2Target);

 // Print out the writer object

 System.out.print(writer.toString());

 } finally {

 (Products2Source).close();
 ProductValuePairs2Target.close();
}

In the C# and Java code listings above, the following happens:

· The two original lines that provide the input and output to the run method were commented out.

Consequently, the mapping application no longer reads data from Products.xml. In fact, we did not
even need to copy this file to the program's working directory.

· The type Products2Source has been declared as a StringInput that provides the content of the input
XML file to be processed.

· The type ProductValuePairs2Target has been declared as a WriterOutput type that takes a string
writer as argument.

· After the mapping completes running, the contents of the string writer is printed out to the console.

Usage guidelines for streams and Reader/Writer objects
When using binary streams or Reader/Writer objects as input or output to the mapping, note the following:

· Binary stream objects and Reader/Writer objects are expected to be opened and ready to use before
calling the run method.

· By default, the run method closes the stream when finished. To prevent this behavior, insert (or

uncomment) the following line before calling the run method:

C#

MappingMapToSomething.CloseObjectsAfterRun = false;

Java

MappingMapToSomething.setCloseObjectsAfterRun(false);

Note: Make sure to change MappingMapToSomething to the name of the mapping object as applicable to
your generated code.

Usage guidelines for strings
In Java, the constructor of StringOutput does not take an argument. The string content produced by the
mapping can be accessed by calling the getString() method, for example:

Java

com.altova.io.Input Products2Source =
com.altova.io.StreamInput.createInput("Products.xml");

© 2018-2024 Altova GmbH

Integrate Generated Code 911Code Generator

Altova MapForce 2024 Professional Edition

com.altova.io.StringOutput ProductValuePairs2Target = new com.altova.io.StringOutput();

try {

 // Run the mapping

 MappingMapToProductValuePairsObject.run(Products2Source, ProductValuePairs2Target);
 // Get the string object

 String str = ProductValuePairs2Target.getString().toString();
}

In C#, the constructor of StringOutput takes a parameter of type StringBuilder which you need to declare
beforehand. If the StringBuilder object already contains data, the mapping output will be appended to it.

C#

Altova.IO.Input Products2Source = Altova.IO.StreamInput.createInput("Products.xml");
System.Text.StringBuilder sb = new System.Text.StringBuilder();

Altova.IO.Output ProductValuePairs2Target = new Altova.IO.StringOutput(sb);

try

{
 // Run the mapping
 MappingMapToProductValuePairsObject.Run(Products2Source, ProductValuePairs2Target);
 // Get the string output
 String str = sb.ToString();
}

To run these code listings, you can use the same generated project as in the previous example. Make sure,
however, to copy the file Products.xml from C:
\Users\<username>\Documents\Altova\MapForce2024\MapForceExamples\Tutorials\ to your program's
working directory, since the mapping code reads data from this file.

Usage guidelines for DOM documents
When using DOM documents as mapping input or output, note the following:

· The document instance supplied as parameter to the DocumentOutput constructor must be empty.
· After calling run, the DOM Document generated by the constructor of DocumentOutput already

contains the mapping output, and you can manipulate the document as necessary.

15.2.3 Generate Code from XML Schemas or DTDs

When you generate code from a mapping, MapForce generates a complete application that executes all steps
of the mapping automatically. Optionally, you can generate libraries for all the XML schemas used in the
mapping. These allow your code to easily create or read XML instances that are used or created by the
mapping code.

To generate libraries for all the XML schemas used in the mapping, select the Generate Wrapper Classes
check box from the code generator options . Next time when you generate code, MapForce will create not
only the mapping application, but also wrapper classes for all schemas used in the mapping, as follows:

1043

912 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

C++ or C# Java Purpose

Altova com.altova Base library containing common runtime support, identical
for every schema.

AltovaXML com.altova.xml Base library containing runtime support for XML, identical
for every schema.

[YourSchema] com.YourSchema A library containing declarations generated from the input
schema, named as the schema file or DTD. This library is
a DOM (W3C Document Object Model) wrapper that allows
you to read, modify and create XML documents easily and
safely. All data is held inside the DOM, and there are
methods for extracting data from the DOM, and to update
and create data into the DOM.

The generated C++ code supports either Microsoft MSXML
or Apache Xerces 3. The syntax for using the generated
code is generally similar for both DOM implementations,
except for a few slight differences (for example, Xerces
supports more overloaded functions).

The generated C# code uses the .NET standard
System.XML library as the underlying DOM
implementation.

The generated Java code uses JAXP (Java API for XML
Processing) as the underlying DOM interface.

While prototyping an application from a frequently changing XML schema, you may need to frequently
generate code to the same directory, so that the schema changes are immediately reflected in the code.
Note that the generated test application and the Altova libraries are overwritten every time when you
generate code into the same target directory. Therefore, do not add code to the generated test application.
Instead, integrate the Altova libraries into your project (see Integrating Schema Wrapper Libraries).

In addition to the base libraries listed above, some supporting libraries are also generated. The supporting
libraries are used by the Altova base libraries and are not meant for custom integrations, since they are subject
to change.

Name generation and namespaces
MapForce generates classes corresponding to all declared elements or complex types which redefine any
complex type in your XML Schema, preserving the class derivation as defined by extensions of complex types
in your XML Schema. In the case of complex schemas which import schema components from multiple
namespaces, MapForce preserves this information by generating the appropriate C# or C++ namespaces or
Java packages.

Generally, the code generator tries to preserve the names for generated namespaces, classes and members
from the original XML Schema. Characters that are not valid in identifiers in the target language are replaced by
a "_". Names that would collide with other names or reserved words are made unique by appending a number.
Name generation can be influenced by changing the default settings in the SPL template.

921

999

© 2018-2024 Altova GmbH

Integrate Generated Code 913Code Generator

Altova MapForce 2024 Professional Edition

The namespaces from the XML Schema are converted to packages in Java or namespaces in C# or C++ code,
using the namespace prefix from the schema as code namespace. The complete library is enclosed in a
package or namespace derived from the schema file name, so you can use multiple generated libraries in one
program without name conflicts.

Data Types
XML Schema has a more elaborate data type model than Java, C# or C++. Code Generator converts the built-in
XML Schema types to language-specific primitive types, or to classes delivered with the Altova library. Complex
types and derived types defined in the schema are converted to classes in the generated library. Enumeration
facets from simple types are converted to symbolic constants.

The mapping of simple types can be configured in the SPL template, see SPL Reference .

If your XML instance files use schema types related to time and duration, these are converted to Altova native
classes in the generated code. For information about the Altova library classes, see:

· Reference to Generated Classes (C++)
· Reference to Generated Classes (C#)
· Reference to Generated Classes (Java)

For information about type conversion and other details applicable to each language, see:

· About Schema Wrapper Libraries (C++)
· About Schema Wrapper Libraries (C#)
· About Schema Wrapper Libraries (Java)

Memory management
A DOM tree is comprised of nodes, which are always owned by a specific DOM document - even if the node is
not currently part of the document's content. All generated classes are references to the DOM nodes they
represent, not values. This means that assigning an instance of a generated class does not copy the value, it
only creates an additional reference to the same data.

XML Schema support
The following XML Schema constructs are translated into code:

a) XML namespaces

b) Simple types:

· Built-in XML schema types
· Simple types derived by extension
· Simple types derived by restriction
· Facets
· Enumerations
· Patterns

c) Complex types:

· Built-in anyType node

999

955

970

985

914

917

919

914 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· User-defined complex types
· Derived by extension: Mapped to derived classes
· Derived by restriction
· Complex content
· Simple content
· Mixed content

The following advanced XML Schema features are not supported (or not fully supported) in generated wrapper
classes:

· Wildcards: xs:any and xs:anyAttribute
· Content models (sequence, choice, all). Top-level compositor is available in SPL , but is not

enforced by generated classes.
· Default and fixed values for attributes. These are available in SPL , but are not set or enforced by

generated classes.
· The attributes xsi:type, abstract types. When you need to write the xsi:type attribute, use the

SetXsiType() method of the generated classes.
· Union types: not all combinations are supported.
· Substitution groups are partially supported (resolved like "choice").
· Attribute nillable="true" and xsi:nil
· Uniqueness constraints
· Identity constraints (key and keyref)

15.2.3.1 About Schema Wrapper Libraries (C++)

Character Types
The generated C++ code can be compiled with or without Unicode support. Depending on this setting, the
types string_type and tstring will both be defined as std::string or std::wstring, consisting of narrow
or wide characters. To use Unicode characters in your XML file that are not representable with the current 8-bit
character set, Unicode support must be enabled. Pay special attention to the _T() macros. This macro
ensures that string constants are stored correctly, whether you're compiling for Unicode or non-Unicode
programs.

Data Types
The default mapping of XML Schema types to C++ data types is:

XML Schema C++ Remarks

xs:string string_type string_type is defined as std::string or
std:wstring

xs:boolean bool

xs:decimal double C++ does not have a decimal type, so
double is used.

xs:float, xs:double double

999

999

© 2018-2024 Altova GmbH

Integrate Generated Code 915Code Generator

Altova MapForce 2024 Professional Edition

XML Schema C++ Remarks

xs:integer __int64 xs:integer has unlimited range, mapped
to __int64 for efficiency reasons.

xs:nonNegativeInteger unsigned __int64 see above

xs:int int

xs:unsignedInt unsigned int

xs:dateTime, date, time,
gYearMonth, gYear, gMonthDay,
gDay, gMonth

altova::DateTime

xs:duration altova::Duration

xs:hexBinary and
xs:base64Binary

std::vector<unsigned
char>

Encoding and decoding of binary data is
done automatically.

xs:anySimpleType string_type

All XML Schema types not contained in this list are derived types, and mapped to the same C++ type as their
respective base type.

Generated Classes
For each type in the schema, a class is generated that contains a member for each attribute and element of
the type. The members are named the same as the attributes or elements in the original schema (in case of
possible collisions, a number is appended). For simple types, assignment and conversion operators are
generated. For simple types with enumeration facets, the methods GetEnumerationValue() and
SetEnumerationValue(int) can be used together with generated constants for each enumeration value. In
addition, the method StaticInfo() allows accessing schema information as one of the following types:

altova::meta::SimpleType

altova::meta::ComplexType

Classes generated from complex types include the method SetXsiType(), which enables you to set the
xsi:type attribute of the type. This method is useful when you want to create XML instance elements of a
derived type.

In addition to the classes for the types declared in the XML Schema, a document class (identified with "CDoc"
below) is generated. It contains all possible root elements as members, and various other methods. For more
information about the class, see [YourSchema]::[CDoc] .

Note: The actual class name depends on the name of the .xsd schema.

For each member attribute or element of a schema type, a new class is generated. For more information about
such classes, see:

[YourSchema]::MemberAttribute
[YourSchema]::MemberElement

Note: The actual class names depend on the name of the schema attribute or element.

955

958

964

962

965

968

969

916 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

See also Example: Using the Schema Wrapper Libraries .

Error Handling
Errors are reported by exceptions. The following exception classes are defined in the namespace altova:

Class Base Class Description

Error std::logic_error Internal program logic error
(independent of input data).

Exception std::runtime_error Base class for runtime errors.

InvalidArgumentsException Exception A method was called with invalid
argument values.

ConversionException Exception Exception thrown when a type
conversion fails.

StringParseException ConversionException A value in the lexical space cannot
be converted to value space.

ValueNotRepresentableExcept
ion

ConversionException A value in the value space cannot be
converted to lexical space.

OutOfRangeException ConversionException A source value cannot be
represented in target domain.

InvalidOperationException Exception An operation was attempted that is
not valid in the given context.

DataSourceUnavailableExcept
ion

Exception A problem occurred while loading an
XML instance.

DataTargetUnavailableExcept
ion

Exception A problem occurred while saving an
XML instance.

All exception classes contain a message text and a pointer to a possible inner exception.

Method Purpose

string_type message() Returns a textual description of the exception.

std::exception inner() Returns the exception that caused this exception, if
available, or NULL.

Accessing schema information
The generated library allows accessing static schema information via the following classes. All methods are
declared as const. The methods that return one of the metadata classes return a NULL object if the respective
property does not exist.

924

© 2018-2024 Altova GmbH

Integrate Generated Code 917Code Generator

Altova MapForce 2024 Professional Edition

altova::meta::Attribute
altova::meta::ComplexType
altova::meta::Element
altova::meta::SimpleType

15.2.3.2 About Schema Wrapper Libraries (C#)

The default mapping of XML Schema types to C# data types is as follows.

XML Schema C# Remarks

xs:string string

xs:boolean bool

xs:decimal decimal xs:decimal has unlimited range and
precision, mapped to decimal for
efficiency reasons.

xs:float, xs:double double

xs:long long

xs:unsignedLong ulong

xs:int int

xs:unsignedInt uint

xs:dateTime, date, time,
gYearMonth, gYear, gMonthDay,
gDay, gMonth

Altova.Types.DateTime

xs:duration Altova.Types.Duration

xs:hexBinary and
xs:base64Binary

byte[] Encoding and decoding of binary data
is done automatically.

xs:anySimpleType string

All XML Schema types not contained in this list are derived types, and mapped to the same C# type as their
respective base type.

Generated Classes
For each type in the schema, a class is generated that contains a member for each attribute and element of
the type. The members are named the same as the attributes or elements in the original schema (in case of
possible collisions, a number is appended). For simple types, assignment and conversion operators are
generated. For simple types with enumeration facets, the methods GetEnumerationValue() and
SetEnumerationValue(int) can be used together with generated constants for each enumeration value. In
addition, the method StaticInfo() allows accessing schema information as one of the following types:

Altova.Xml.Meta.SimpleType

962

962

963

964

970

975

979

918 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Altova.Xml.Meta.ComplexType

Classes generated from complex types include the method SetXsiType(), which enables you to set the
xsi:type attribute of the type. This method is useful when you want to create XML instance elements of a
derived type.

In addition to the classes for the types declared in the XML Schema, a document class (identified with "Doc"
below) is generated. It contains all possible root elements as members, and various other methods. For more
information about the class, see [YourSchema].[Doc] .

Note: The actual class name depends on the name of the .xsd schema.

For each member attribute or element of a schema type, a new class is generated. For more information about
such classes, see:

[YourSchemaType].MemberAttribute
[YourSchemaType].MemberElement

Note: The actual class names depend on the name of the schema attribute or element.

Error Handling
Errors are reported by exceptions. The following exception classes are defined in the namespace Altova:

Class Base Class Description

ConversionException Exception Exception thrown when a type conversion
fails

StringParseException ConversionException A value in the lexical space cannot be
converted to value space.

DataSourceUnavailableException System.Exception A problem occurred while loading an XML
instance.

DataTargetUnavailableException System.Exception A problem occurred while saving an XML
instance.

In addition, the following .NET exceptions are commonly used:

Class Description

System.Exception Base class for runtime errors

System.ArgumentException A method was called with invalid argument values, or a type
conversion failed.

System.FormatException A value in the lexical space cannot be converted to value
space.

System.InvalidCastException A value cannot be converted to another type.

System.OverflowException A source value cannot be represented in target domain.

978

980

983

983

© 2018-2024 Altova GmbH

Integrate Generated Code 919Code Generator

Altova MapForce 2024 Professional Edition

Accessing schema information
The generated library allows accessing static schema information via the following classes:

Altova.Xml.Meta.Attribute
Altova.Xml.Meta.ComplexType
Altova.Xml.Meta.Element
Altova.Xml.Meta.SimpleType

The properties that return one of the metadata classes return null if the respective property does not exist.

15.2.3.3 About Schema Wrapper Libraries (Java)

The default mapping of XML Schema types to Java data types is as follows:

XML Schema Java Remarks

xs:string String

xs:boolean boolean

xs:decimal java.math.BigDecimal

xs:float, xs:double double

xs:integer java.math.BigInteger

xs:long long

xs:unsignedLong java.math.BigInteger Java does not have unsigned types.

xs:int int

xs:unsignedInt long Java does not have unsigned types.

xs:dateTime, date, time,
gYearMonth, gYear, gMonthDay,
gDay, gMonth

com.altova.types.DateTim
e

xs:duration com.altova.types.Duratio
n

xs:hexBinary and xs:base64Binary byte[] Encoding and decoding of binary
data is done automatically.

xs:anySimpleType string

All XML Schema types not contained in this list are derived types, and mapped to the same Java type as their
respective base type.

977

978

979

979

985

989

920 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Generated Classes
For each type in the schema, a class is generated that contains a member for each attribute and element of
the type. The members are named the same as the attributes or elements in the original schema (in case of
possible collisions, a number is appended). For simple types, assignment and conversion operators are
generated. For simple types with enumeration facets, the methods GetEnumerationValue() and
SetEnumerationValue(int) can be used together with generated constants for each enumeration value. In
addition, the method StaticInfo() allows accessing schema information as one of the following types:

com.altova.xml.meta.SimpleType
com.altova.xml.meta.ComplexType

Classes generated from complex types include the method SetXsiType(), which enables you to set the
xsi:type attribute of the type. This method is useful when you want to create XML instance elements of a
derived type.

In addition to the classes for the types declared in the XML Schema, a document class (identified with "Doc"
below) is generated. It contains all possible root elements as members, and various other methods. For more
information about the class, see com.[YourSchema].[Doc] .

Note: The actual class name depends on the name of the .xsd schema.

For each member attribute or element of a schema type, a new class is generated. For more information about
such classes, see:

com.[YourSchema].[YourSchemaType].MemberAttribute
com.[YourSchema].[YourSchemaType].MemberElement

Note: The actual class names depend on the name of the schema attribute or element.

Error Handling
Errors are reported by exceptions. The following exception classes are defined in the namespace com.altova:

Class Base Class Description

SourceInstanceUnvailableException Exception A problem occurred while loading
an XML instance.

TargetInstanceUnavailableException Exception A problem occurred while saving
an XML instance.

In addition, the following Java exceptions are commonly used:

Class Description

java.lang.Error Internal program logic error (independent of input data)

java.lang.Exception Base class for runtime errors

994

993

995

998

998

© 2018-2024 Altova GmbH

Integrate Generated Code 921Code Generator

Altova MapForce 2024 Professional Edition

Class Description

java.lang.IllegalArgumentsException A method was called with invalid argument values, or a type
conversion failed.

java.lang.ArithmeticException Exception thrown when a numeric type conversion fails.

Accessing schema information
The generated library allows accessing static schema information via the following classes:

com.altova.xml.meta.Attribute
com.altova.xml.meta.ComplexType
com.altova.xml.meta.Element
com.altova.xml.meta.SimpleType

The properties that return one of the metadata classes return null if the respective property does not exist.

15.2.3.4 Integrate Schema Wrapper Libraries

To use the Altova libraries in your custom project, refer to the libraries from your project or include them in your
project, as shown below for each language.

C#
To integrate the Altova libraries into an existing C# project:

1. After MapForce generates code from a schema (for example, YourSchema.xsd), build the generated
YourSchema.sln solution in Visual Studio. This solution is in a project folder with the same name as
the schema.

2. Right-click your existing project in Visual Studio, and select Add Reference.
3. On the Browse tab, browse for the following libraries: Altova.dll, AltovaXML.dll, and

YourSchema.dll located in the output directory of the generated projects (for example, bin\Debug).

993

993

994

994

922 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

C++
The easiest way to integrate the libraries into an existing C++ project is to add the generated project files to
your solution. For example, let's assume that you generated code from a schema called Library.xsd and
selected c:\codegen\cpp\library as target directory. The generated libraries in this case are available at:

· c:\codegen\cpp\library\Altova.vcxproj
· c:\codegen\cpp\library\AltovaXML\AltovaXML.vcxproj
· c:\codegen\cpp\library\Library.vcxproj

First, open the generated c:\codegen\cpp\library\Library.sln solution and build it in Visual Studio.

Next, open your existing Visual Studio solution (in Visual Studio 2010, in this example), right-click it, select
Add | Existing Project, and add the project files listed above, one by one. Be patient while Visual Studio
parses the files. Next, right-click your project and select Properties. In the Property Pages dialog box, select
Common Properties | Framework and References, and then click Add New Reference. Next, select and
add each of the following projects: Altova, AltovaXML, and Library.

© 2018-2024 Altova GmbH

Integrate Generated Code 923Code Generator

Altova MapForce 2024 Professional Edition

See also the MSDN documentation for using functionality from a custom library, as applicable to your version of
Visual Studio, for example:

· If you chose to generate static libraries, see https://msdn.microsoft.com/en-
us/library/ms235627(v=vs.100).aspx

· If you chose to generate dynamic libraries, see https://msdn.microsoft.com/en-
us/library/ms235636(v=vs.100).aspx

The option to generate static or dynamic libraries is available in the code generation options (see
Generation).

Java
One of the ways to integrate the Altova packages into your Java project is to copy the com directory of the
generated code to the directory which stores the source packages of your Java project (for example, C:
\Workspace\MyJavaProject\src). For example, let's assume that you generated code in c:
\codegen\java\library. The generated Altova classes in this case are available at c:
\codegen\java\library\com.

After copying the libraries, refresh the project. To refresh the project in Eclipse, select it in the Package
Explorer, and press F5. To refresh the project in NetBeans IDE 8.0, select the menu command Source | Scan
for External Changes.

Once you perform the copy operation, the Altova packages are available in the Package Explorer (in case of
Eclipse), or under "Source Packages" in the Projects pane (in case of NetBeans IDE).

1043

https://msdn.microsoft.com/en-us/library/ms235627(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/ms235627(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/ms235636(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/ms235636(v=vs.100).aspx

924 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Altova packages in Eclipse 4.4

Altova packages in NetBeans IDE 8.0.2

15.2.3.5 Example: Book Library

This example illustrates how to use the generated schema wrapper libraries in order to write or read
programmatically XML documents conformant to the schema. Before using the sample code, take some time
to understand the structure of the schema below.

The schema used in this example describes a library of books. The complete definition of the schema is shown
below. Save this code listing as Library.xsd if you want to get the same results as this example. You will

need this schema to generate the code libraries used in this example.

© 2018-2024 Altova GmbH

Integrate Generated Code 925Code Generator

Altova MapForce 2024 Professional Edition

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns="http://www.nanonull.com/LibrarySample"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.nanonull.com/LibrarySample" elementFormDefault="qualified"

attributeFormDefault="unqualified">

 <xs:element name="Library">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Book" type="BookType" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="LastUpdated" type="xs:dateTime"/>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="BookType">

 <xs:sequence>

 <xs:element name="Title" type="xs:string"/>

 <xs:element name="Author" type="xs:string" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="ID" type="xs:integer" use="required"/>

 <xs:attribute name="Format" type="BookFormatType" use="required"/>

 </xs:complexType>

 <xs:complexType name="DictionaryType">

 <xs:complexContent>

 <xs:extension base="BookType">

 <xs:sequence>

 <xs:element name="FromLang" type="xs:string"/>

 <xs:element name="ToLang" type="xs:string"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:simpleType name="BookFormatType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Hardcover"/>

 <xs:enumeration value="Paperback"/>

 <xs:enumeration value="Audiobook"/>

 <xs:enumeration value="E-book"/>

 </xs:restriction>

 </xs:simpleType>

</xs:schema>

Library is a root element of a complexType which can be graphically represented as follows in the schema
view of XMLSpy:

926 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

As shown above, the library has a LastUpdated attribute (defined as xs:dateTime), and stores a sequence of
books. Each book is an xs:complexType and has two attributes: an ID (defined as xs:integer), and a
Format. The format of any book can be hardcover, paperback, audiobook, or e-book. In the schema, Format is
defined as xs:simpleType which uses an enumeration of the above-mentioned values.

Each book also has a Title element (defined as xs:string), as well as one or several Author elements
(defined as xs:string).

The library may also contain books that are dictionaries. Dictionaries have the type DictionaryType, which is
derived by extension from the BookType. In other words, a dictionary inherits all attributes and elements of a
Book, plus two additional elements: FromLang and ToLang, as illustrated below.

The FromLang and ToLang elements store the source and destination language of the dictionary.

© 2018-2024 Altova GmbH

Integrate Generated Code 927Code Generator

Altova MapForce 2024 Professional Edition

An XML instance file valid according to the schema above could therefore look as shown in the listing below
(provided that it is in the same directory as the schema file):

<?xml version="1.0" encoding="utf-8"?>
<Library xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.nanonull.com/LibrarySample"

xsi:schemaLocation="http://www.nanonull.com/LibrarySample Library.xsd" LastUpdated="2016-

02-03T17:10:08.4977404">

 <Book ID="1" Format="E-book">

 <Title>The XMLSpy Handbook</Title>

 <Author>Altova</Author>

 </Book>

 <Book ID="2" Format="Paperback" xmlns:n1="http://www.nanonull.com/LibrarySample"

xsi:type="n1:DictionaryType">

 <Title>English-German Dictionary</Title>

 <Author>John Doe</Author>

 <FromLang>English</FromLang>

 <ToLang>German</ToLang>

 </Book>

</Library>

The next topics illustrate how to read from such a file programmatically, or write to such a file
programmatically. To begin, generate the schema wrapper code from the schema above, using the steps
described in Generating Code from XML Schemas or DTD .

15.2.3.5.1 Reading and Writing XML Documents (C++)

After you generate code from the example schema , a test C++ application is created, along with several
supporting Altova libraries.

About the generated C++ libraries
The central class of the generated code is the CDoc class, which represents the XML document. Such a class
is generated for every schema and its name depends on the schema file name. As shown in the diagram, this
class provides methods for loading documents from files, binary streams, or strings (or saving documents to
files, streams, strings). For a description of all members exposed by this class, see the class reference
([YourSchema]::[CDoc]).

911

924

965

928 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The Library field of the CDoc class represents the actual root of the document. Library is an element in the
XML file, so in the C++ code it has a template class as type (MemberElement). The template class exposes
methods and properties for interacting with the Library element. In general, each attribute and each element of
a type in the schema is typed in the generated code with the MemberAttribute and MemberElement template
classes, respectively. For more information, see [YourSchema]::MemberAttribute and
[YourSchema]::MemberElement class reference.

The class CLibraryType is generated from the LibraryType complex type in the schema. Notice that the
CLibraryType class contains two fields: Book and LastUpdated. According to the logic already mentioned
above, these correspond to the Book element and LastUpdated attribute in the schema, and enable you to
manipulate programmatically (append, remove, etc) elements and attributes in the instance XML document.

The DictionaryType is a complex type derived from BookType in the schema, so this relationship is also
reflected in the generated classes. As illustrated in the diagram, the class CDictionaryType inherits the
CBookType class.

968

969

© 2018-2024 Altova GmbH

Integrate Generated Code 929Code Generator

Altova MapForce 2024 Professional Edition

If your XML schema defines simple types as enumerations, the enumerated values become available as enum
values in the generated code. In the schema used in this example, a book format can be hardcover, paperback,
e-book, and so on. Therefore, in the generated code, these values would be available through an enum that is a
member of the CBookFormatType class.

Writing an XML document
1. Open the LibraryTest.sln solution in Visual Studio generated from the Library schema mentioned

earlier in this example.

While prototyping an application from a frequently changing XML schema, you may need to frequently
generate code to the same directory, so that the schema changes are immediately reflected in the code.
Note that the generated test application and the Altova libraries are overwritten every time when you
generate code into the same target directory. Therefore, do not add code to the generated test application.
Instead, integrate the Altova libraries into your project (see Integrating Schema Wrapper Libraries).

2. In Solution Explorer, open the LibraryTest.cpp file, and edit the Example() method as shown below.

#include <ctime> // required to get current time

using namespace Doc; // required to work with Altova libraries

void Example()

{

921

930 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 // Create a new, empty XML document

 CDoc libDoc = CDoc::CreateDocument();

 // Create the root element <Library> and add it to the document

 CLibraryType lib = libDoc.Library.append();

 // Get current time and set the "LastUpdated" attribute using Altova classes

 time_t t = time(NULL);
 struct tm * now = localtime(& t);

 altova::DateTime dt = altova::DateTime(now->tm_year + 1900, now->tm_mon + 1, now-
>tm_mday, now->tm_hour, now->tm_min, now->tm_sec);
 lib.LastUpdated = dt;

 // Create a new <Book> and add it to the library

 CBookType book = lib.Book.append();

 // Set the "ID" attribute of the book

 book.ID = 1;

 // Set the "Format" attribute of the <Book> using an enumeration constant

 book.Format.SetEnumerationValue(CBookFormatType::k_Paperback);

 // Add the <Title> and <Author> elements, and set values

 book.Title.append() = _T("The XML Spy Handbook");
 book.Author.append() = _T("Altova");

 // Append a dictionary (book of derived type) and populate its attributes and elements

 CDictionaryType dictionary = CDictionaryType(lib.Book.append().GetNode());
 dictionary.ID = 2;
 dictionary.Format.SetEnumerationValue(CBookFormatType::k_E_book);
 dictionary.Title.append() = _T("English-German Dictionary");
 dictionary.Author.append() = _T("John Doe");
 dictionary.FromLang.append() = _T("English");
 dictionary.ToLang.append() = _T("German");

 // Since dictionary a derived type, set the xsi:type attribute of the book element

 dictionary.SetXsiType();

 // Optionally, set the schema location

 libDoc.SetSchemaLocation(_T("Library.xsd"));

 // Save the XML document to a file with default encoding (UTF-8),

 // "true" causes the file to be pretty-printed.

 libDoc.SaveToFile(_T("GeneratedLibrary.xml"), true);

 // Destroy the document

 libDoc.DestroyDocument();
}

3. Press F5 to start debugging. If the code was executed successfully, a GeneratedLibrary.xml file is
created in the solution output directory.

© 2018-2024 Altova GmbH

Integrate Generated Code 931Code Generator

Altova MapForce 2024 Professional Edition

Reading an XML document
1. Open the LibraryTest.sln solution in Visual Studio.
2. Save the code below as Library1.xml to a directory that can be read by the program code (for

example, the same directory as LibraryTest.sln).

<?xml version="1.0" encoding="utf-8"?>
<Library xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.nanonull.com/LibrarySample"

xsi:schemaLocation="http://www.nanonull.com/LibrarySample Library.xsd" LastUpdated="2016-

02-03T17:10:08.4977404">

 <Book ID="1" Format="E-book">

 <Title>The XMLSpy Handbook</Title>

 <Author>Altova</Author>

 </Book>

 <Book ID="2" Format="Paperback" xmlns:n1="http://www.nanonull.com/LibrarySample"

xsi:type="n1:DictionaryType">

 <Title>English-German Dictionary</Title>

 <Author>John Doe</Author>

 <FromLang>English</FromLang>

 <ToLang>German</ToLang>

 </Book>

</Library>

3. In Solution Explorer, open the LibraryTest.cpp file, and edit the Example() method as shown below.

using namespace Doc;

void Example()

{
 // Load XML document

 CDoc libDoc = CDoc::LoadFromFile(_T("Library1.xml"));

 // Get the first (and only) root element <Library>

 CLibraryType lib = libDoc.Library.first();

 // Check whether an element exists:

 if (!lib.Book.exists())

 {
 tcout << "This library is empty." << std::endl;
 return;

 }

 // iteration: for each <Book>...

 for (Iterator<CBookType> itBook = lib.Book.all(); itBook; ++itBook)

 {
 // output values of ISBN attribute and (first and only) title element

 tcout << "ID: " << itBook->ID << std::endl;
 tcout << "Title: " << tstring(itBook->Title.first()) << std::endl;

 // read and compare an enumeration value

 if (itBook->Format.GetEnumerationValue() == CBookFormatType::k_Paperback)

932 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 tcout << "This is a paperback book." << std::endl;

 // for each <Author>...

 for (CBookType::Author::iterator itAuthor = itBook->Author.all(); itAuthor; +

+itAuthor)
 tcout << "Author: " << tstring(itAuthor) << std::endl;

 // alternative: use count and index

 for (unsigned int j = 0; j < itBook->Author.count(); ++j)

 tcout << "Author: " << tstring(itBook->Author[j]) << std::endl;
 }

 // Destroy the document

 libDoc.DestroyDocument();
}

4. Press F5 to start debugging.

15.2.3.5.2 Reading and Writing XML Documents (C#)

After you generate code from the example schema , a test C# application is created, along with several
supporting Altova libraries.

About the generated C# libraries
The central class of the generated code is the Doc2 class, which represents the XML document. Such a class
is generated for every schema and its name depends on the schema file name. Note that this class is called
Doc2 to avoid a possible conflict with the namespace name. As shown in the diagram, this class provides
methods for loading documents from files, binary streams, or strings (or saving documents to files, streams,
strings). For a description of this class, see the class reference ([YourSchema].[Doc]).

924

980

© 2018-2024 Altova GmbH

Integrate Generated Code 933Code Generator

Altova MapForce 2024 Professional Edition

The Library member of the Doc2 class represents the actual root of the document.

According to the code generation rules mentioned in About Schema Wrapper Libraries (C#) , member
classes are generated for each attribute and for each element of a type. In the generated code, the name of
such member classes is prefixed with MemberAttribute_ and MemberElement_, respectively. Examples of
such classes are MemberAttribute_ID and MemberElement_Author, generated from the Author element and
ID attribute of a book, respectively (in the diagram below, they are classes nested under BookType). Such
classes enable you to manipulate programmatically the corresponding elements and attributes in the instance
XML document (for example, append, remove, set value, etc). For more information, see the
[YourSchemaType].MemberAttribute and [YourSchemaType].MemberElement class reference.

Since the DictionaryType is a complex type derived from BookType in the schema, this relationship is also
reflected in the generated classes. As illustrated in the diagram below, the class DictionaryType inherits the
BookType class.

917

983 983

934 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

If your XML schema defines simple types as enumerations, the enumerated values become available as Enum
values in the generated code. In the schema used in this example, a book format can be hardcover, paperback,
e-book, and so on. Therefore, in the generated code, these values would be available through an Enum that is a
member of the BookFormatType class.

Writing an XML document
1. Open the LibraryTest.sln solution in Visual Studio generated from the Library schema mentioned

earlier in this example.

While prototyping an application from a frequently changing XML schema, you may need to frequently
generate code to the same directory, so that the schema changes are immediately reflected in the code.
Note that the generated test application and the Altova libraries are overwritten every time when you
generate code into the same target directory. Therefore, do not add code to the generated test application.
Instead, integrate the Altova libraries into your project (see Integrating Schema Wrapper Libraries).

2. In Solution Explorer, open the LibraryTest.cs file, and edit the Example() method as shown below.

921

© 2018-2024 Altova GmbH

Integrate Generated Code 935Code Generator

Altova MapForce 2024 Professional Edition

protected static void Example()

{
 // Create a new XML document

 Doc2 doc = Doc2.CreateDocument();
 // Append the root element

 LibraryType root = doc.Library.Append();

 // Create the generation date using Altova DateTime class

 Altova.Types.DateTime dt = new Altova.Types.DateTime(System.DateTime.Now);

 // Append the date to the root

 root.LastUpdated.Value = dt;

 // Add a new book

 BookType book = root.Book.Append();
 // Set the value of the ID attribute

 book.ID.Value = 1;
 // Set the format of the book (enumeration)

 book.Format.EnumerationValue = BookFormatType.EnumValues.eHardcover;
 // Set the Title and Author elements

 book.Title.Append().Value = "The XMLSpy Handbook";
 book.Author.Append().Value = "Altova";

 // Append a dictionary (book of derived type) and populate its attributes and

elements

 DictionaryType dictionary = new DictionaryType(root.Book.Append().Node);

 dictionary.ID.Value = 2;
 dictionary.Title.Append().Value = "English-German Dictionary";
 dictionary.Format.EnumerationValue = BookFormatType.EnumValues.eE_book;
 dictionary.Author.Append().Value = "John Doe";
 dictionary.FromLang.Append().Value = "English";
 dictionary.ToLang.Append().Value = "German";
 // Since it's a derived type, make sure to set the xsi:type attribute of the

book element

 dictionary.SetXsiType();

 // Optionally, set the schema location (adjust the path if

 // your schema is not in the same folder as the generated instance file)

 doc.SetSchemaLocation("Library.xsd");

 // Save the XML document with the "pretty print" option enabled

 doc.SaveToFile("GeneratedLibrary.xml", true);

}

3. Press F5 to start debugging. If the code was executed successfully, a GeneratedLibrary.xml file is
created in the solution output directory (typically, bin/Debug).

Reading an XML document
1. Open the LibraryTest.sln solution in Visual Studio.
2. Save the code below as Library.xml to the output directory of the project (by default, bin/Debug).

This is the file that will be read by the program code.

<?xml version="1.0" encoding="utf-8"?>

936 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

<Library xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.nanonull.com/LibrarySample"

xsi:schemaLocation="http://www.nanonull.com/LibrarySample Library.xsd" LastUpdated="2016-

02-03T17:10:08.4977404">

 <Book ID="1" Format="E-book">

 <Title>The XMLSpy Handbook</Title>

 <Author>Altova</Author>

 </Book>

 <Book ID="2" Format="Paperback" xmlns:n1="http://www.nanonull.com/LibrarySample"

xsi:type="n1:DictionaryType">

 <Title>English-German Dictionary</Title>

 <Author>John Doe</Author>

 <FromLang>English</FromLang>

 <ToLang>German</ToLang>

 </Book>

</Library>

3. In Solution Explorer, open the LibraryTest.cs file, and edit the Example() method as shown below.

protected static void Example()

{
 // Load the XML file

 Doc2 doc = Doc2.LoadFromFile("Library.xml");
 // Get the root element

 LibraryType root = doc.Library.First;

 // Read the library generation date

 Altova.Types.DateTime dt = root.LastUpdated.Value;
 string dt_as_string = dt.ToString(DateTimeFormat.W3_dateTime);

 Console.WriteLine("The library generation date is: " + dt_as_string);

 // Iteration: for each <Book>...

 foreach (BookType book in root.Book)

 {
 // Output values of ID attribute and (first and only) title element

 Console.WriteLine("ID: " + book.ID.Value);
 Console.WriteLine("Title: " + book.Title.First.Value);

 // Read and compare an enumeration value

 if (book.Format.EnumerationValue == BookFormatType.EnumValues.ePaperback)

 Console.WriteLine("This is a paperback book.");

 // Iteration: for each <Author>

 foreach (xs.stringType author in book.Author)

 Console.WriteLine("Author: " + author.Value);

 // Determine if this book is of derived type

 if (book.Node.Attributes.GetNamedItem("xsi:type") != null)

 {
 // Find the value of the xsi:type attribute

 string xsiTypeValue =

book.Node.Attributes.GetNamedItem("xsi:type").Value;

© 2018-2024 Altova GmbH

Integrate Generated Code 937Code Generator

Altova MapForce 2024 Professional Edition

 // Get the namespace URI and the lookup prefix of this namespace

 string namespaceUri = book.Node.NamespaceURI;

 string prefix = book.Node.GetPrefixOfNamespace(namespaceUri);

 // if this book has DictionaryType

 if (namespaceUri == "http://www.nanonull.com/LibrarySample" &&

xsiTypeValue.Equals(prefix + ":DictionaryType"))
 {
 // output additional fields

 DictionaryType dictionary = new DictionaryType(book.Node);

 Console.WriteLine("Language from: " +
dictionary.FromLang.First.Value);
 Console.WriteLine("Language to: " + dictionary.ToLang.First.Value);
 }
 else

 {
 throw new Exception("Unexpected book type");

 }
 }
 }

 Console.ReadLine();
}

4. Press F5 to start debugging. If the code was executed successfully, Library.xml will be read by the
program code, and its contents displayed as console output.

Reading and writing elements and attributes
Values of attributes and elements can be accessed using the Value property of the generated member element
or attribute class, for example:

// Output values of ID attribute and (first and only) title element

Console.WriteLine("ID: " + book.ID.Value);
Console.WriteLine("Title: " + book.Title.First.Value);

To get the value of the Title element in this particular example, we also used the First() method, since this is
the first (and only) Title element of a book. For cases when you need to pick a specific element from a list by
index, use the At() method.

The class generated for each member element of a type implements the standard
System.Collections.IEnumerable interface. This makes it possible to loop through multiple elements of the
same type. In this particular example, you can loop through all books of a Library object as follows:

// Iteration: for each <Book>...

foreach (BookType book in root.Book)

{
 // your code here...

}

938 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

To add a new element, use the Append() method. For example, the following code appends the root element to
the document:

// Append the root element to the library

LibraryType root = doc.Library.Append();

You can set the value of an attribute (like ID in this example) as follows:

// Set the value of the ID attribute

book.ID.Value = 1;

Reading and writing enumeration values
If your XML schema defines simple types as enumerations, the enumerated values become available as Enum
values in the generated code. In the schema used in this example, a book format can be hardcover, paperback,
e-book, and so on. Therefore, in the generated code, these values would be available through an Enum:

To assign enumeration values to an object, use code such as the one below:

// Set the format of the book (enumeration)

book.Format.EnumerationValue = BookFormatType.EnumValues.eHardcover;

You can read such enumeration values from XML instance documents as follows:

// Read and compare an enumeration value

if (book.Format.EnumerationValue == BookFormatType.EnumValues.ePaperback)

Console.WriteLine("This is a paperback book.");

When an "if" condition is not enough, create a switch to determine each enumeration value and process it as
required.

Working with xs:dateTime and xs:duration types
If the schema from which you generated code uses time and duration types such as xs:dateTime, or
xs:duration, these are converted to Altova native classes in generated code. Therefore, to write a date or
duration value to the XML document, do the following:

© 2018-2024 Altova GmbH

Integrate Generated Code 939Code Generator

Altova MapForce 2024 Professional Edition

1. Construct an Altova.Types.DateTime or Altova.Types.Duration object (either from
System.DateTime, or by using parts such as hours and minutes, see Altova.Types.DateTime
and Altova.Types.Duration for more information).

2. Set the object as value of the required element or attribute, for example:

// Create the library generation date using Altova DateTime class

Altova.Types.DateTime dt = new Altova.Types.DateTime(System.DateTime.Now);

// Append the date to the root

root.LastUpdated.Value = dt;

To read a date or duration from an XML document, do the following:

1. Declare the element value (or attribute) as Altova.Types.DateTime or
Altova.Types.Duration object.

2. Format the required element or attribute, for example:

// Read the library generation date

Altova.Types.DateTime dt = root.LastUpdated.Value;
string dt_as_string = dt.ToString(DateTimeFormat.W3_dateTime);

Console.WriteLine("The library generation date is: " + dt_as_string);

For more information, see Altova.Types.DateTime and Altova.Types.Duration class reference.

Working with derived types
If your XML schema defines derived types, you can preserve type derivation in XML documents that you create
or load programmatically. Taking the schema used in this example, the following code listing illustrates how to
create a new book of derived type DictionaryType:

// Append a dictionary (book of derived type) and populate its attributes and elements

DictionaryType dictionary = new DictionaryType(root.Book.Append().Node);

dictionary.ID.Value = 2;
dictionary.Title.Append().Value = "English-German Dictionary";
dictionary.Author.Append().Value = "John Doe";
dictionary.FromLanguage.Append().Value = "English";
dictionary.ToLanguage.Append().Value = "German";

// Since it's a derived type, make sure to set the xsi:type attribute of the book element

dictionary.SetXsiType();

Note that it is important to set the xsi:type attribute of the newly created book. This ensures that the book
type will be interpreted correctly by the schema when the XML document is validated.

When you load data from an XML document, the following code listing shows how to identify a book of derived
type DictionaryType in the loaded XML instance. First, the code finds the value of the xsi:type attribute of
the book node. If the namespace URI of this node is http://www.nanonull.com/LibrarySample, and if the
URI lookup prefix and type matches the value of the xsi:type attribute, then this is a dictionary:

 // Determine if this book is of derived type

 if (book.Node.Attributes.GetNamedItem("xsi:type") != null)

970 975

970

975

970

975

970 975

940 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 {
 // Find the value of the xsi:type attribute

 string xsiTypeValue = book.Node.Attributes.GetNamedItem("xsi:type").Value;

 // Get the namespace URI and the lookup prefix of this namespace

 string namespaceUri = book.Node.NamespaceURI;

 string prefix = book.Node.GetPrefixOfNamespace(namespaceUri);

 // if this book has DictionaryType

 if (namespaceUri == "http://www.nanonull.com/LibrarySample" &&

xsiTypeValue.Equals(prefix + ":DictionaryType"))
 {
 // output additional fields

 DictionaryType dictionary = new DictionaryType(book.Node);

 Console.WriteLine("Language from: " + dictionary.FromLang.First.Value);
 Console.WriteLine("Language to: " + dictionary.ToLang.First.Value);
 }
 else

 {
 throw new Exception("Unexpected book type");

 }
 }

15.2.3.5.3 Reading and Writing XML Documents (Java)

After you generate code from the example schema , a test Java project is created, along with several
supporting Altova libraries.

About the generated Java libraries
The central class of the generated code is the Doc2 class, which represents the XML document. Such a class
is generated for every schema and its name depends on the schema file name. Note that this class is called
Doc2 to avoid a possible conflict with the namespace name. As shown in the diagram, this class provides
methods for loading documents from files, binary streams, or strings (or saving documents to files, streams,
strings). For a description of this class, see the com.[YourSchema].[Doc] class reference.

924

995

© 2018-2024 Altova GmbH

Integrate Generated Code 941Code Generator

Altova MapForce 2024 Professional Edition

The Library member of the Doc2 class represents the actual root of the document.

According to the code generation rules mentioned in About Generated Java Code , member classes are
generated for each attribute and for each element of a type. In the generated code, the name of such member
classes is prefixed with MemberAttribute_ and MemberElement_, respectively. In the diagram below,
examples of such classes are MemberAttribute_ID and MemberElement_Author, generated from the Author
element and ID attribute of a book, respectively. Such classes enable you to manipulate programmatically the
corresponding elements and attributes in the instance XML document (for example, append, remove, set value,
etc). For more information, see the com.[YourSchema].[YourSchemaType].MemberAttribute and com.
[YourSchema].[YourSchemaType].MemberElement class reference.

Since the DictionaryType is a complex type derived from BookType in the schema, this relationship is also
reflected in the generated classes. As illustrated in the diagram below, the class DictionaryType inherits the
BookType class.

919

998

998

942 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

If your XML schema defines simple types as enumerations, the enumerated values become available as Enum
values in the generated code. In the schema used in this example, a book format can be hardcover, paperback,
e-book, and so on. Therefore, in the generated code, these values would be available through an Enum that is a
member of the BookFormatType class.

Writing an XML document
1. On the File menu of Eclipse, click Import, select Existing Projects into Workspace, and click

Next.
2. Next to Select root directory, click Browse, select the directory to which you generated the Java

code, and then click Finish.
3. In the Eclipse Package Explorer, expand the com.LibraryTest package and open the

LibraryTest.java file.

While prototyping an application from a frequently changing XML schema, you may need to frequently
generate code to the same directory, so that the schema changes are immediately reflected in the code.
Note that the generated test application and the Altova libraries are overwritten every time when you
generate code into the same target directory. Therefore, do not add code to the generated test application.
Instead, integrate the Altova libraries into your project (see Integrating Schema Wrapper Libraries).

4. Edit the Example() method as shown below.

protected static void example() throws Exception {

 // create a new, empty XML document

921

© 2018-2024 Altova GmbH

Integrate Generated Code 943Code Generator

Altova MapForce 2024 Professional Edition

 Doc2 libDoc = Doc2.createDocument();

 // create the root element <Library> and add it to the document

 LibraryType lib = libDoc.Library.append();

 // set the "LastUpdated" attribute

 com.altova.types.DateTime dt = new com.altova.types.DateTime(DateTime.now());

 lib.LastUpdated.setValue(dt);

 // create a new <Book> and populate its elements and attributes

 BookType book = lib.Book.append();
 book.ID.setValue(java.math.BigInteger.valueOf(1));
 book.Format.setEnumerationValue(BookFormatType.EPAPERBACK);
 book.Title.append().setValue("The XML Spy Handbook");
 book.Author.append().setValue("Altova");

 // create a dictionary (book of derived type) and populate its elements and

attributes

 DictionaryType dict = new DictionaryType(lib.Book.append().getNode());

 dict.ID.setValue(java.math.BigInteger.valueOf(2));
 dict.Title.append().setValue("English-German Dictionary");
 dict.Format.setEnumerationValue(BookFormatType.EE_BOOK);
 dict.Author.append().setValue("John Doe");
 dict.FromLang.append().setValue("English");
 dict.ToLang.append().setValue("German");
 dict.setXsiType();

 // set the schema location (this is optional)

 libDoc.setSchemaLocation("Library.xsd");

 // save the XML document to a file with default encoding (UTF-8). "true" causes the

file to be pretty-printed.

 libDoc.saveToFile("Library1.xml", true);

 }

5. Build the Java project and run it. If the code is executed successfully, a Library1.xml file is created in
the project directory.

Reading an XML document
1. On the File menu of Eclipse, click Import, select Existing Projects into Workspace, and click

Next.
2. Next to Select root directory, click Browse, select the directory to which you generated the Java

code, and then click Finish.
3. Save the code below as Library1.xml to a local directory (you will need to refer to the path of the

Library1.xml file from the sample code below).

<?xml version="1.0" encoding="utf-8"?>
<Library xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.nanonull.com/LibrarySample"

xsi:schemaLocation="http://www.nanonull.com/LibrarySample Library.xsd" LastUpdated="2016-

02-03T17:10:08.4977404">

944 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 <Book ID="1" Format="E-book">

 <Title>The XMLSpy Handbook</Title>

 <Author>Altova</Author>

 </Book>

 <Book ID="2" Format="Paperback" xmlns:n1="http://www.nanonull.com/LibrarySample"

xsi:type="n1:DictionaryType">

 <Title>English-German Dictionary</Title>

 <Author>John Doe</Author>

 <FromLang>English</FromLang>

 <ToLang>German</ToLang>

 </Book>

</Library>

4. In the Eclipse Package Explorer, expand the com.LibraryTest package and open the
LibraryTest.java file.

5. Edit the Example() method as shown below.

protected static void example() throws Exception {

 // load XML document from a path, make sure to adjust the path as necessary

 Doc2 libDoc = Doc2.loadFromFile("Library1.xml");

 // get the first (and only) root element <Library>

 LibraryType lib = libDoc.Library.first();

 // check whether an element exists:

 if (!lib.Book.exists()) {

 System.out.println("This library is empty.");
 return;

 }

 // read a DateTime schema type

 com.altova.types.DateTime dt = lib.LastUpdated.getValue();
 System.out.println("The library was last updated on: " + dt.toDateString());

 // iteration: for each <Book>...

 for (java.util.Iterator itBook = lib.Book.iterator(); itBook.hasNext();) {

 BookType book = (BookType) itBook.next();
 // output values of ID attribute and (first and only) title element

 System.out.println("ID: " + book.ID.getValue());
 System.out.println("Title: " + book.Title.first().getValue());

 // read and compare an enumeration value

 if (book.Format.getEnumerationValue() == BookFormatType.EPAPERBACK)

 System.out.println("This is a paperback book.");

 // for each <Author>...

 for (java.util.Iterator itAuthor = book.Author.iterator(); itAuthor

 .hasNext();)
 System.out.println("Author: " + ((com.Doc.xs.stringType)
itAuthor.next()).getValue());

 // find the derived type of this book

© 2018-2024 Altova GmbH

Integrate Generated Code 945Code Generator

Altova MapForce 2024 Professional Edition

 // by looking at the value of the xsi:type attribute, using DOM

 org.w3c.dom.Node bookNode = book.getNode();
 if (bookNode.getAttributes().getNamedItem("xsi:type") != null) {

 // Get the value of the xsi:type attribute

 String xsiTypeValue =
bookNode.getAttributes().getNamedItem("xsi:type").getNodeValue();

 // Get the namespace URI and lookup prefix of this namespace

 String namespaceUri = bookNode.getNamespaceURI();
 String lookupPrefix = bookNode.lookupPrefix(namespaceUri);

 // If xsi:type matches the namespace URI and type of the book node

 if (namespaceUri == "http://www.nanonull.com/LibrarySample"

 && (xsiTypeValue.equals(lookupPrefix + ":DictionaryType"))) {
 // ...then this is a book of derived type (dictionary)

 DictionaryType dictionary = new DictionaryType(book.getNode());

 // output the value of the "FromLang" and "ToLang" elements

 System.out.println("From language: " +
dictionary.FromLang.first().getValue());
 System.out.println("To language: " + dictionary.ToLang.first().getValue());
 }
 else

 {
 // throw an error

 throw new java.lang.Error("This book has an unknown type.");

 }
 }
 }
 }

6. Build the Java project and run it. If the code is executed successfully, Library1.xml will be read by the
program code, and its contents displayed in the Console view.

Reading and writing elements and attributes
Values of attributes and elements can be accessed using the getValue() method of the generated member
element or attribute class, for example:

// output values of ID attribute and (first and only) title element

System.out.println("ID: " + book.ID.getValue());
System.out.println("Title: " + book.Title.first().getValue());

To get the value of the Title element in this particular example, we also used the first() method, since this is
the first (and only) Title element of a book. For cases when you need to pick a specific element from a list by
index, use the at() method.

To iterate through multiple elements, use either index-based iteration or java.util.Iterator. For example,
you can iterate through the books of a library as follows:

// index-based iteration

for (int j = 0; j < lib.Book.count(); ++j) {

946 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 // your code here

}

// alternative iteration using java.util.Iterator

for (java.util.Iterator itBook = lib.Book.iterator(); itBook.hasNext();) {

 // your code here

 }

To add a new element, use the append() method. For example, the following code appends an empty root
Library element to the document:

// create the root element <Library> and add it to the document

LibraryType lib = libDoc.Library.append();

Once an element is appended, you can set the value of any of its elements or an attributes by using the
setValue() method.

// set the value of the Title element

book.Title.append().setValue("The XML Spy Handbook");
// set the value of the ID attribute

book.ID.setValue(java.math.BigInteger.valueOf(1));

Reading and writing enumeration values
If your XML schema defines simple types as enumerations, the enumerated values become available as Enum
values in the generated code. In the schema used in this example, a book format can be hardcover, paperback,
e-book, and so on. Therefore, in the generated code, these values would be available through an Enum (see the
BookFormatType class diagram above). To assign enumeration values to an object, use code such as the one
below:

// set an enumeration value

book.Format.setEnumerationValue(BookFormatType.EPAPERBACK);

You can read such enumeration values from XML instance documents as follows:

// read an enumeration value

if (book.Format.getEnumerationValue() == BookFormatType.EPAPERBACK)

 System.out.println("This is a paperback book."

When an "if" condition is not enough, create a switch to determine each enumeration value and process it as
required.

Working with xs:dateTime and xs:duration types
If the schema from which you generated code uses time and duration types such as xs:dateTime, or
xs:duration, these are converted to Altova native classes in generated code. Therefore, to write a date or
duration value to the XML document, do the following:

1. Construct a com.altova.types.DateTime or com.altova.types.Duration object.985 989

© 2018-2024 Altova GmbH

Integrate Generated Code 947Code Generator

Altova MapForce 2024 Professional Edition

2. Set the object as value of the required element or attribute, for example:

// set the value of an attribute of DateTime type

com.altova.types.DateTime dt = new com.altova.types.DateTime(DateTime.now());

lib.LastUpdated.setValue(dt);

To read a date or duration from an XML document:

1. Declare the element value (or attribute) as com.altova.types.DateTime or
com.altova.types.Duration object.

2. Format the required element or attribute, for example:

// read a DateTime type

com.altova.types.DateTime dt = lib.LastUpdated.getValue();
 System.out.println("The library was last updated on: " + dt.toDateString());

For more information, see com.altova.types.DateTime and com.altova.types.Duration class
reference.

Working with derived types
If your XML schema defines derived types, you can preserve type derivation in XML documents that you create
or load programmatically. Taking the schema used in this example, the following code listing illustrates how to
create a new book of derived type DictionaryType:

// create a dictionary (book of derived type) and populate its elements and attributes

DictionaryType dict = new DictionaryType(lib.Book.append().getNode());

dict.ID.setValue(java.math.BigInteger.valueOf(2));
dict.Title.append().setValue("English-German Dictionary");
dict.Format.setEnumerationValue(BookFormatType.EE_BOOK);
dict.Author.append().setValue("John Doe");
dict.FromLang.append().setValue("English");
dict.ToLang.append().setValue("German");
dict.setXsiType();

Note that it is important to set the xsi:type attribute of the newly created book. This ensures that the book
type will be interpreted correctly by the schema when the XML document is validated.

When you load data from an XML document, the following code listing shows how to identify a book of derived
type DictionaryType in the loaded XML instance. First, the code finds the value of the xsi:type attribute of
the book node. If the namespace URI of this node is http://www.nanonull.com/LibrarySample, and if the
URI lookup prefix and type matches the value of the xsi:type attribute, then this is a dictionary:

 // find the derived type of this book

 // by looking at the value of the xsi:type attribute, using DOM

 org.w3c.dom.Node bookNode = book.getNode();
 if (bookNode.getAttributes().getNamedItem("xsi:type") != null) {

 // Get the value of the xsi:type attribute

 String xsiTypeValue =
bookNode.getAttributes().getNamedItem("xsi:type").getNodeValue();

985

989

985 989

948 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 // Get the namespace URI and lookup prefix of the book node

 String namespaceUri = bookNode.getNamespaceURI();
 String lookupPrefix = bookNode.lookupPrefix(namespaceUri);

 // If xsi:type matches the namespace URI and type of the book node

 if (namespaceUri == "http://www.nanonull.com/LibrarySample"

 && (xsiTypeValue.equals(lookupPrefix + ":DictionaryType"))) {
 // ...then this is a book of derived type (dictionary)

 DictionaryType dictionary = new DictionaryType(book.getNode());

 // output the value of the "FromLang" and "ToLang" elements

 System.out.println("From language: " +
dictionary.FromLang.first().getValue());
 System.out.println("To language: " +
dictionary.ToLang.first().getValue());
 }
 else

 {
 // throw an error

 throw new java.lang.Error("This book has an unknown type.");

 }
 }

15.2.3.6 Example: Purchase Order

This example illustrates how to work with program code generated from a "main" XML schema that imports
other schemas. Each of the imported schema has a different target namespace. The goal here is to create
programmatically an XML document where all elements are prefixed according to their namespace. More
specifically, the XML document created from your C++, C#, or Java code should look like the one below:

<?xml version="1.0" encoding="utf-8"?>
<p:Purchase xsi:schemaLocation="http://NamespaceTest.com/Purchase Main.xsd"

 xmlns:p="http://NamespaceTest.com/Purchase"

 xmlns:o="http://NamespaceTest.com/OrderTypes"

 xmlns:c="http://NamespaceTest.com/CustomerTypes"

 xmlns:cmn="http://NamespaceTest.com/CommonTypes"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <p:OrderDetail>

 <o:Item>

 <o:ProductName>Lawnmower</o:ProductName>

 <o:Quantity>1</o:Quantity>

 <o:UnitPrice>148.42</o:UnitPrice>

 </o:Item>

 </p:OrderDetail>

 <p:PaymentMethod>VISA</p:PaymentMethod>

 <p:CustomerDetails>

 <c:Name>Alice Smith</c:Name>

 <c:DeliveryAddress>

 <cmn:Line1>123 Maple Street</cmn:Line1>

 <cmn:Line2>Mill Valley</cmn:Line2>

© 2018-2024 Altova GmbH

Integrate Generated Code 949Code Generator

Altova MapForce 2024 Professional Edition

 </c:DeliveryAddress>

 <c:BillingAddress>

 <cmn:Line1>8 Oak Avenue</cmn:Line1>

 <cmn:Line2>Old Town</cmn:Line2>

 </c:BillingAddress>

 </p:CustomerDetails>

</p:Purchase>

The main schema used in this example is called Main.xsd. As illustrated in the code listing below, it imports
three other schemas: CommonTypes.xsd, CustomerTypes.xsd, and OrderTypes.xsd. To get the same
results as in this example, save all the code listings below to files, and use the same file names as above.
Notice that the schema maps each of the prefixes ord, pur, cmn, and cust to some namespace (Order types,

Purchase types, Common types, and Customer types, respectively). This means that, in the generated code,
the classes corresponding to Orders, Purchases, Customers, and so on, will be available under their respective
namespace.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://NamespaceTest.com/Purchase"

 xmlns:ord="http://NamespaceTest.com/OrderTypes"

 xmlns:pur="http://NamespaceTest.com/Purchase"

 xmlns:cmn="http://NamespaceTest.com/CommonTypes"

 xmlns:cust="http://NamespaceTest.com/CustomerTypes"

 elementFormDefault="qualified">

 <xs:import schemaLocation="CommonTypes.xsd"

namespace="http://NamespaceTest.com/CommonTypes" />

 <xs:import schemaLocation="CustomerTypes.xsd"

namespace="http://NamespaceTest.com/CustomerTypes" />

 <xs:import schemaLocation="OrderTypes.xsd"

namespace="http://NamespaceTest.com/OrderTypes" />

 <xs:element name="Purchase">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="OrderDetail" type="ord:OrderType" />

 <xs:element name="PaymentMethod" type="cmn:PaymentMethodType" />

 <xs:element ref="pur:CustomerDetails" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="CustomerDetails" type="cust:CustomerType" />

</xs:schema>

Main.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://NamespaceTest.com/CommonTypes"

 elementFormDefault="qualified">

 <xs:complexType name="AddressType">

 <xs:sequence>

 <xs:element name="Line1" type="xs:string"/>

950 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 <xs:element name="Line2" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="PriceType">

 <xs:restriction base="xs:decimal">

 <xs:fractionDigits value="2"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="PaymentMethodType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="VISA"/>

 <xs:enumeration value="MasterCard"/>

 <xs:enumeration value="Cash"/>

 <xs:enumeration value="AMEX"/>

 </xs:restriction>

 </xs:simpleType>

</xs:schema>

CommonTypes.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://NamespaceTest.com/CustomerTypes"

 xmlns:cmn="http://NamespaceTest.com/CommonTypes"

 elementFormDefault="qualified">

 <xs:import schemaLocation="CommonTypes.xsd"

namespace="http://NamespaceTest.com/CommonTypes" />

 <xs:complexType name="CustomerType">

 <xs:sequence>

 <xs:element name="Name" type="xs:string" />

 <xs:element name="DeliveryAddress" type="cmn:AddressType" />

 <xs:element name="BillingAddress" type="cmn:AddressType" />

 </xs:sequence>

 </xs:complexType>

</xs:schema>

CustomerTypes.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://NamespaceTest.com/OrderTypes"

 xmlns:cmn="http://NamespaceTest.com/CommonTypes"

 elementFormDefault="qualified">

 <xs:import schemaLocation="CommonTypes.xsd"

namespace="http://NamespaceTest.com/CommonTypes" />

 <xs:complexType name="OrderType">

 <xs:sequence>

 <xs:element maxOccurs="unbounded" name="Item">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="ProductName" type="xs:string" />

© 2018-2024 Altova GmbH

Integrate Generated Code 951Code Generator

Altova MapForce 2024 Professional Edition

 <xs:element name="Quantity" type="xs:int" />

 <xs:element name="UnitPrice" type="cmn:PriceType" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

OrderTypes.xsd

To complete this example, take the following steps:

1. Save all schemas from the code listings above to files on the disk, making sure that you preserve the
indicated file names.

2. Generate the schema wrapper code from the Main.xsd schema above, using the steps described in
Generating Code from XML Schemas or DTD . After completing this step, you should have
generated a compilable program in the language of your choice (C++, C#, or Java).

3. Add code to your C++, C#, or Java program from one the following example code listings, as required:

· XML Namespaces and Prefixes (C++)
· XML Namespaces and Prefixes (C#)
· XML Namespaces and Prefixes (Java)

15.2.3.6.1 XML Namespaces and Prefixes (C++)

After you generate code from the example schema , a test C++ application is created, along with several
supporting Altova libraries. Recall that the example schema (Main.xsd) has multiple namespace declarations.
Consequently, the generated code includes namespaces that correspond to namespace aliases (prefixes) from
the schema, namely: Main::ord, Main::pur, Main::cmn, and Main::cust.

In general, in order to control XML namespaces and prefixes with the help of the schema wrapper libraries, you
have the following methods at your disposal:

· DeclareAllNamespacesFromSchema() . Call this method if you want to declare the same
namespaces in your XML instance as in the schema. Otherwise, if you need different namespaces as
in this example, then DeclareNamespace() should be used. The method

DeclareAllNamespacesFromSchema() is not used in this example because we specifically want to

create XML elements with prefixes that are slightly different from those declared in the schema.
· DeclareNamespace() . Call this method to create or override the existing namespace prefix attribute

on an element. The element must already be created using either the append() or

appendWithPrefix() methods, as further illustrated below.

· appendWithPrefix(). Use this method to append an instance element with a specific prefix. To
create the XML instance illustrated in this example, it was sufficient to call this method for the root
element only. All other elements were appended using just append() , and their prefixes were added
automatically based on their namespaces, according to the rules above.

The code listing below shows you how to create an XML document with multiple namespace declarations and
prefixed element names. Specifically, it generates a Purchase Order instance as illustrated in the Example:
Purchase Order . Importantly, for illustrative purposes, some prefixes are overridden in the XML instance
(that is, they are not exactly the same as the ones declared in the schema).

911

951

952

954

948

965

967

969

969

948

952 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

void Example()

{
 // Create the XML document and append the root element

 Main::pur::CMain doc = Main::pur::CMain::CreateDocument();
 Main::pur::CPurchaseType purchase = doc.Purchase.appendWithPrefix(_T("p"));

 // Set schema location

 doc.SetSchemaLocation(_T("Main.xsd"));

 // Declare namespaces on root element

 purchase.DeclareNamespace(_T("o"), _T("http://NamespaceTest.com/OrderTypes"));
 purchase.DeclareNamespace(_T("c"), _T("http://NamespaceTest.com/CustomerTypes"));
 purchase.DeclareNamespace(_T("cmn"), _T("http://NamespaceTest.com/CommonTypes"));

 // Append the OrderDetail element

 Main::ord::COrderType order = purchase.OrderDetail.append();
 Main::ord::CItemType item = order.Item.append();
 item.ProductName.append() = _T("Lawnmower");
 item.Quantity.append() = 1;
 item.UnitPrice.append() = 148.42;

 // Append the PaymentMethod element

 Main::cmn::CPaymentMethodTypeType paymentMethod = purchase.PaymentMethod.append();
 paymentMethod.SetEnumerationValue(Main::cmn::CPaymentMethodTypeType::k_VISA);

 // Append the CustomerDetails element

 Main::cust::CCustomerType customer = purchase.CustomerDetails.append();
 customer.Name.append() = _T("Alice Smith");
 Main::cmn::CAddressType deliveryAddress = customer.DeliveryAddress.append();
 deliveryAddress.Line1.append() = _T("123 Maple Street");
 deliveryAddress.Line2.append() = _T("Mill Valley");
 Main::cmn::CAddressType billingAddress = customer.BillingAddress.append();
 billingAddress.Line1.append() = _T("8 Oak Avenue");
 billingAddress.Line2.append() = _T("Old Town");

 // Save to file and release object from memory

 doc.SaveToFile(_T("Main1.xml"), true);

 doc.DestroyDocument();
}

15.2.3.6.2 XML Namespaces and Prefixes (C#)

After you generate code from the example schema , a test C# application is created, along with several
supporting Altova libraries. Recall that the example schema (Main.xsd) has multiple namespace declarations.
Consequently, the generated code includes namespaces that correspond to namespace aliases (prefixes) from
the schema, namely: Main.ord, Main.pur, Main.cmn, and Main.cust.

In general, in order to control XML namespaces and prefixes with the help of the schema wrapper libraries, you
have the following methods at your disposal:

948

© 2018-2024 Altova GmbH

Integrate Generated Code 953Code Generator

Altova MapForce 2024 Professional Edition

· DeclareAllNamespacesFromSchema() . Call this method if you want to declare the same
namespaces in your XML instance as in the schema. Otherwise, if you need different namespaces as
in this example, then DeclareNamespace() should be used. The method

DeclareAllNamespacesFromSchema() is not used in this example because we specifically want to

create XML elements with prefixes that are slightly different from those declared in the schema.
· DeclareNamespace() . Call this method to create or override the existing namespace prefix attribute

on an element. The element must already be created using either the Append() or

AppendWithPrefix() methods, as further illustrated below.

· AppendWithPrefix(). Use this method to append an instance element with a specific prefix. To
create the XML instance illustrated in this example, it was sufficient to call this method for the root
element only. All other elements were appended using just Append() , and their prefixes were added
automatically based on their namespaces, according to the rules above.

The code listing below shows you how to create an XML document with multiple namespace declarations and
prefixed element names. Specifically, it generates a Purchase Order instance as illustrated in the Example:
Purchase Order . Importantly, for illustrative purposes, some prefixes are overridden in the XML instance
(that is, they are not exactly the same as the ones declared in the schema).

protected static void Example()

{
 // Create the XML document and append the root element
 pur.Main2 doc = pur.Main2.CreateDocument();
 pur.PurchaseType purchase = doc.Purchase.AppendWithPrefix("p");

 // Set schema location
 doc.SetSchemaLocation(@"Main.xsd");

 // Declare namespaces on root element
 purchase.DeclareNamespace("o", "http://NamespaceTest.com/OrderTypes");
 purchase.DeclareNamespace("c", "http://NamespaceTest.com/CustomerTypes");
 purchase.DeclareNamespace("cmn", "http://NamespaceTest.com/CommonTypes");

 // Append the OrderDetail element
 ord.OrderType order = purchase.OrderDetail.Append();
 ord.ItemType item = order.Item.Append();
 item.ProductName.Append().Value = "Lawnmower";
 item.Quantity.Append().Value = 1;
 item.UnitPrice.Append().Value = 148.42M;

 // Append the PaymentMethod element
 cmn.PaymentMethodTypeType paymentMethod = purchase.PaymentMethod.Append();
 paymentMethod.EnumerationValue = cmn.PaymentMethodTypeType.EnumValues.eVISA;

 // Append the CustomerDetails element
 cust.CustomerType customer = purchase.CustomerDetails.Append();
 customer.Name.Append().Value = "Alice Smith";
 cmn.AddressType deliveryAddress = customer.DeliveryAddress.Append();
 deliveryAddress.Line1.Append().Value = "123 Maple Street";
 deliveryAddress.Line2.Append().Value = "Mill Valley";
 cmn.AddressType billingAddress = customer.BillingAddress.Append();
 billingAddress.Line1.Append().Value = "8 Oak Avenue";
 billingAddress.Line2.Append().Value = "Old Town";

 // Save to file

980

982

983

983

948

954 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 doc.SaveToFile("PurchaseOrder.xml", true);

}

15.2.3.6.3 XML Namespaces and Prefixes (Java)

After you generate code from the example schema , a test Java application is created, along with several
supporting Altova libraries. Recall that the example schema (Main.xsd) has multiple namespace declarations.
Consequently, the generated code includes namespaces that correspond to namespace aliases (prefixes) from
the schema, namely: com.Main.ord, com.Main.pur, com.Main.cmn, and com.Main.cust.

In general, in order to control XML namespaces and prefixes with the help of the schema wrapper libraries, you
have the following methods at your disposal:

· declareAllNamespacesFromSchema() . Call this method if you want to declare the same
namespaces in your XML instance as in the schema. Otherwise, if you need different namespaces as
in this example, then declareNamespace() should be used. The method

declareAllNamespacesFromSchema() is not used in this example because we specifically want to

create XML elements with prefixes that are slightly different from those declared in the schema.
· declareNamespace() . Call this method to create or override the existing namespace prefix attribute

on an element. The element must already be created using either the append() or

appendWithPrefix() methods, as further illustrated below.

· appendWithPrefix(). Use this method to append an instance element with a specific prefix. To
create the XML instance illustrated in this example, it was sufficient to call this method for the root
element only. All other elements were appended using just append() , and their prefixes were added
automatically based on their namespaces, according to the rules above.

The code listing below shows you how to create an XML document with multiple namespace declarations and
prefixed element names. Specifically, it generates a Purchase Order instance as illustrated in the Example:
Purchase Order . Importantly, for illustrative purposes, some prefixes are overridden in the XML instance
(that is, they are not exactly the same as the ones declared in the schema).

protected static void example() throws Exception {

 // Create the XML document and append the root element

 com.Main.pur.Main2 doc = com.Main.pur.Main2.createDocument();
 com.Main.pur.PurchaseType purchase = doc.Purchase.appendWithPrefix("p");

 // Set schema location

 doc.setSchemaLocation("Main.xsd");

 // Declare namespaces on root element

 purchase.declareNamespace("o", "http://NamespaceTest.com/OrderTypes");
 purchase.declareNamespace("c", "http://NamespaceTest.com/CustomerTypes");
 purchase.declareNamespace("cmn", "http://NamespaceTest.com/CommonTypes");

 // Append the OrderDetail element

 com.Main.ord.OrderType order = purchase.OrderDetail.append();
 com.Main.ord.ItemType item = order.Item.append();
 item.ProductName.append().setValue("Lawnmower");
 item.Quantity.append().setValue(1);
 java.math.BigDecimal price = new java.math.BigDecimal("148.42");

948

995

997

998

998

948

© 2018-2024 Altova GmbH

Integrate Generated Code 955Code Generator

Altova MapForce 2024 Professional Edition

 item.UnitPrice.append().setValue(price);

 // Append the PaymentMethod element

 com.Main.cmn.PaymentMethodTypeType paymentMethod = purchase.PaymentMethod.append();
 paymentMethod.setEnumerationValue(com.Main.cmn.PaymentMethodTypeType.EVISA);

 // Append the CustomerDetails element

 com.Main.cust.CustomerType customer = purchase.CustomerDetails.append();
 customer.Name.append().setValue("Alice Smith");
 com.Main.cmn.AddressType deliveryAddress = customer.DeliveryAddress.append();
 deliveryAddress.Line1.append().setValue("123 Maple Street");
 deliveryAddress.Line2.append().setValue("Mill Valley");
 com.Main.cmn.AddressType billingAddress = customer.BillingAddress.append();
 billingAddress.Line1.append().setValue("8 Oak Avenue");
 billingAddress.Line2.append().setValue("Old Town");

 // Save to file

 doc.saveToFile("PurchaseOrder.xml", true);

}

15.2.4 Generated Classes (C++)

This chapter includes a description of C++ classes generated with MapForce from a DTD or XML schema (see
Generating Code from XML Schemas or DTDs). You can integrate these classes into your code to read,
modify, and write XML documents.

Note: The generated code does include other supporting classes, which are not listed here and are subject to
modification.

15.2.4.1 altova::DateTime

This class enables you to process XML attributes or elements that have date and time types, such as
xs:dateTime.

Constructors

Name Description

DateTime() Initializes a new instance of the DateTime class to 12:00:00
midnight, January 1, 0001.

DateTime(__int64 value, short
timezone)

Initializes a new instance of the DateTime class. The value
parameter represents the number of ticks (100-nanosecond intervals)
that have elapsed since 12:00:00 midnight, January 1, 0001.

DateTime(int year, unsigned
char month, unsigned char day,
unsigned char hour, unsigned
char minute, double second)

Initializes a new instance of the DateTime class to the year, month,
day, hour, minute, and second supplied as argument.

911

956 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Description

DateTime(int year, unsigned
char month, unsigned char day,
unsigned char hour, unsigned
char minute, double second,
short timezone)

Initializes a new instance of the DateTime class to the year, month,
day, hour, minute, second and timezone supplied as argument. The
timezone is expressed in minutes and can be positive or negative.
For example, the timezone "UTC-01:00" is expressed as "-60".

Methods

Name Description

unsigned char Day() const Returns the day of month of the current DateTime object. The return
values range from 1 through 31.

int DayOfYear() const Returns the day of year of the current DateTime object. The return
values range from 1 through 366.

bool HasTimezone() const Returns Boolean true if the current DateTime object has a timezone
defined; false otherwise.

unsigned char Hour() const Returns the hour of the current DateTime object. The return values
range from 0 through 23.

static bool IsLeapYear(int
year)

Returns Boolean true if the year of the DateTime class is a leap
year; false otherwise.

unsigned char Minute() const Returns the minute of the current DateTime object. The return values
range from 0 through 59.

unsigned char Month() const Returns the month of the current DateTime object. The return values
range from 1 through 12.

__int64 NormalizedValue() const Returns the value of the DateTime object expressed as the
Coordinated Universal Time (UTC).

double Second() const Returns the second of the current DateTime object. The return
values range from 0 through 59.

void SetTimezone(short tz) Sets the timezone of the current DateTime object to the timezone
value supplied as argument. The tz argument is expressed in
minutes and can be positive or negative.

short Timezone() const Returns the timezone, in minutes, of the current DateTime object.
Before using this method, make sure that the object actually has a
timezone, by calling the HasTimezone() method.

__int64 Value() const Returns the value of the DateTime object, expressed in the number
of ticks (100-nanosecond intervals) that have elapsed since 12:00:00
midnight, January 1, 0001.

int Weekday() const Returns the day of week of the current DateTime object, as an
integer. Values range from 0 through 6, where 0 is Monday (ISO-

© 2018-2024 Altova GmbH

Integrate Generated Code 957Code Generator

Altova MapForce 2024 Professional Edition

Name Description

8601).

int Weeknumber() const Returns the number of week in the year of the current DateTime
object. The return values are according to ISO-8601.

int WeekOfMonth() const Returns the number of week in the month of the current DateTime
object. The return values are according to ISO-8601.

int Year() const Returns the year of the current DateTime object.

Example

void Example()

{
 // initialize a new DateTime instance to 12:00:00 midnight, January 1st, 0001

 altova::DateTime dt1 = altova::DateTime();

 // initialize a new DateTime instance using the year, month, day, hour, minute, and

second

 altova::DateTime dt2 = altova::DateTime(2015, 11, 10, 9, 8, 7);

 // initialize a new DateTime instance using the year, month, day, hour, minute,

second, and UTC +01:00 timezone

 altova::DateTime dt = altova::DateTime(2015, 11, 22, 13, 53, 7, 60);

 // Get the value of this DateTime object

 std::cout << "The number of ticks of the DateTime object is: " << dt.Value() <<
std::endl;

 // Get the year

 cout << "The year is: " << dt.Year() << endl;
 // Get the month

 cout << "The month is: " << (int)dt.Month() << endl;

 // Get the day of the month

 cout << "The day of the month is: " << (int) dt.Day() << endl;

 // Get the day of the year

 cout << "The day of the year is: " << dt.DayOfYear() << endl;
 // Get the hour

 cout << "The hour is: " << (int) dt.Hour() << endl;

 // Get the minute

 cout << "The minute is: " << (int) dt.Minute() << endl;

 // Get the second

 cout << "The second is: " << dt.Second() << endl;
 // Get the weekday

 cout << "The weekday is: " << dt.Weekday() << endl;
 // Get the week number

 cout << "The week of year is: " << dt.Weeknumber() << endl;
 // Get the week in month

 cout << "The week of month is: " << dt.WeekOfMonth() << endl;

 // Check whether a DateTime instance has a timezone

958 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 if (dt.HasTimezone() == TRUE)

 {
 // output the value of the Timezone

 cout << "The timezone is: " << dt.Timezone() << endl;
 }
 else

 {
 cout << "No timezone has been defined." << endl;
 }

 // Construct a DateTime object with a timezone UTC+01:00 (Vienna)

 altova::DateTime vienna_dt = DateTime(2015, 11, 23, 14, 30, 59, +60);
 // Output the result in readable format

 cout << "The Vienna time: "
 << (int) vienna_dt.Month()

 << "-" << (int) vienna_dt.Day()

 << " " << (int) vienna_dt.Hour()

 << ":" << (int) vienna_dt.Minute()

 << ":" << (int) vienna_dt.Second()

 << endl;

 // Convert the value to UTC time

 DateTime utc_dt = DateTime(vienna_dt.NormalizedValue());
 // Output the result in readable format

 cout << "The UTC time: "
 << (int) utc_dt.Month()

 << "-" << (int) utc_dt.Day()

 << " " << (int) utc_dt.Hour()

 << ":" << (int) utc_dt.Minute()

 << ":" << (int) utc_dt.Second()

 << endl;

 // Check if a year is a leap year

 int year = 2016;

 if(altova::DateTime::IsLeapYear(year))

 { cout << year << " is a leap year" << endl; }
 else

 { cout << year << " is not a leap year" << endl; }
}

15.2.4.2 altova::Duration

This class enables you to process XML attributes or elements of type xs:duration.

Constructors

Name Description

Duration() Initializes a new instance of the Duration class to an empty value.

© 2018-2024 Altova GmbH

Integrate Generated Code 959Code Generator

Altova MapForce 2024 Professional Edition

Name Description

Duration(const DayTimeDuration&
dt)

Initializes a new instance of the Duration class to a duration defined
by the dt argument (see altova::DayTimeDuration).

Duration(const
YearMonthDuration& ym)

Initializes a new instance of the Duration class to the duration
defined by the ym argument (see altova::YearMonthDuration).

Duration(const
YearMonthDuration& ym, const
DayTimeDuration& dt)

Initializes a new instance of the Duration class to the duration
defined by both the dt and the ym arguments (see
altova::YearMonthDuration and altova::DayTimeDuration).

Methods

Name Description

int Days() const Returns the number of days in the current Duration instance.

DayTimeDuration DayTime() const Returns the day and time duration in the current Duration instance,
expressed as a DayTimeDuration object (see
altova::DayTimeDuration).

int Hours() const Returns the number of hours in the current Duration instance.

bool IsNegative() const Returns Boolean true if the current Duration instance is negative.

bool IsPositive() const Returns Boolean true if the current Duration instance is positive.

int Minutes() const Returns the number of minutes in the current Duration instance.

int Months() const Returns the number of months in the current Duration instance.

double Seconds() const Returns the number of seconds in the current Duration instance.

YearMonthDuration YearMonth()
const

Returns the year and month duration in the current Duration
instance, expressed as a YearMonthDuration object (see
altova::YearMonthDuration).

int Years() const Returns the number of years in the current Duration instance.

Example
The following code listing illustrates creating a new Duration object, as well as reading values from it.

void ExampleDuration()

{
 // Create an empty Duration object

 altova::Duration empty_duration = altova::Duration();

 // Create a Duration object using an existing duration value

 altova::Duration duration1 = altova::Duration(empty_duration);

 // Create a YearMonth duration of six years and five months

960

961

961 960

960

961

960 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 altova::YearMonthDuration yrduration = altova::YearMonthDuration(6, 5);

 // Create a DayTime duration of four days, three hours, two minutes, and one second

 altova::DayTimeDuration dtduration = altova::DayTimeDuration(4, 3, 2, 1);

 // Create a Duration object by combining the two previously created durations

 altova::Duration duration = altova::Duration(yrduration, dtduration);

 // Get the number of years in this Duration instance

 cout << "Years: " << duration.Years() << endl;

 // Get the number of months in this Duration instance

 cout << "Months: " << duration.Months() << endl;

 // Get the number of days in this Duration instance

 cout << "Days: " << duration.Days() << endl;

 // Get the number of hours in this Duration instance

 cout << "Hours: " << duration.Hours() << endl;

 // Get the number of hours in this Duration instance

 cout << "Minutes: " << duration.Minutes() << endl;

 // Get the number of seconds in this Duration instance

 cout << "Seconds: " << duration.Seconds() << endl;
}

15.2.4.3 altova::DayTimeDuration

This class enables you to process XML schema duration types that consist of a day and time part.

Constructors

Name Description

DayTimeDuration() Initializes a new instance of the DayTimeDuration class to an
empty value.

DayTimeDuration(int days, int
hours, int minutes, double
seconds)

Initializes a new instance of the DayTimeDuration class to the
number of days, hours, minutes, and seconds supplied as
arguments.

explicit
DayTimeDuration(__int64 value)

Initializes a new instance of the DayTimeDuration class to a
duration that consists of as many ticks (100-nanosecond intervals)
as supplied in the value argument.

Methods

Name Description

© 2018-2024 Altova GmbH

Integrate Generated Code 961Code Generator

Altova MapForce 2024 Professional Edition

int Days() const Returns the number of days in the current DayTimeDuration
instance.

int Hours() const Returns the number of hours in the current DayTimeDuration
instance.

bool IsNegative() const Returns Boolean true if the current DayTimeDuration instance is
negative.

bool IsPositive() const Returns Boolean true if the current DayTimeDuration instance is
positive.

int Minutes() const Returns the number of minutes in the current DayTimeDuration
instance.

double Seconds() const Returns the number of seconds in the current DayTimeDuration
instance.

__int64 Value() const Returns the value (in ticks) of the current DayTimeDuration
instance.

15.2.4.4 altova::YearMonthDuration

This class enables you to process XML schema duration types that consist of a year and month part.

Constructors

Name Description

YearMonthDuration() Initializes a new instance of the YearMonthDuration class to an
empty value.

YearMonthDuration(int years,
int months)

Initializes a new instance of the YearMonthDuration class to the
number of years and months supplied in the years and months
arguments.

explicit YearMonthDuration(int
value)

Initializes a new instance of the YearMonthDuration class to a
duration that consists of as many ticks (100-nanosecond intervals)
as supplied in the value argument.

Methods

Name Description

bool IsNegative() const Returns Boolean true if the current YearMonthDuration instance is
negative.

bool IsPositive() const Returns Boolean true if the current YearMonthDuration instance is
positive.

962 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Description

int Months() const Returns the number of months in the current YearMonthDuration
instance.

int Value() const Returns the value (in ticks) of the current YearMonthDuration
instance.

int Years() Returns the number of years in the current YearMonthDuration
instance.

15.2.4.5 altova::meta::Attribute

This class enables you to access schema information about classes generated from attributes. Note that this
class is not meant to provide dynamic information about particular instances of an attribute in an XML
document. Instead, it enables you to obtain programmatically information about a particular attribute defined in
the XML schema.

Methods

Name Description

SimpleType GetDataType() Returns the type of the attribute content.

string_type GetLocalName() Returns the local name of the attribute.

string_type GetNamespaceURI() Returns the namespace URI of the attribute.

bool IsRequired() Returns true if the attribute is required.

Operators

Name Description

bool operator() Returns true if this is not the NULL Attribute.

bool operator!() Returns true if this is the NULL Attribute.

15.2.4.6 altova::meta::ComplexType

This class enables you to access schema information about classes generated from complex types. Note that
this class is not meant to provide dynamic information about particular instances of a complex type in an XML
document. Instead, it enables you to obtain programmatically information about a particular complex type
defined in the XML schema.

© 2018-2024 Altova GmbH

Integrate Generated Code 963Code Generator

Altova MapForce 2024 Professional Edition

Methods

Name Description

Attribute FindAttribute(const
char_type* localName, const
char_type* namespaceURI)

Finds the attribute with the specified local name and namespace
URI.

Element FindElement(const
char_type* localName, const
char_type* namespaceURI)

Finds the element with the specified local name and namespace
URI.

std::vector<Attribute>
GetAttributes()

Returns a list of all attributes.

ComplexType GetBaseType() Returns the base type of this type.

SimpleType GetContentType() Returns the simple type of the content.

std::vector<Element>
GetElements()

Returns a list of all elements.

string_type GetLocalName() Returns the local name of the type.

string_type GetNamespaceURI() Returns the namespace URI of the type.

Operators

Name Description

bool operator() Returns true if this is not the NULL ComplexType.

bool operator!() Returns true if this is the NULL ComplexType.

15.2.4.7 altova::meta::Element

This class enables you to access information about classes generated from schema elements. Note that this
class is not meant to provide dynamic information about particular instances of an element in an XML
document. Instead, it enables you to obtain programmatically information about a particular element defined in
the XML schema.

Methods

Name Description

ComplexType GetDataType() Returns the type of the element. Note that this is always a complex
type even if declared as simple in the original schema. Use
GetContentType() of the returned object to get the simple content
type.

964 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Description

string_type GetLocalName() Returns the local name of the element.

unsigned int GetMaxOccurs() Returns the maxOccurs value defined in the schema.

unsigned int GetMinOccurs() Returns the minOccurs value defined in the schema.

string_type GetNamespaceURI() Returns the namespace URI of the element.

Operators

Name Description

bool operator() Returns true if this is not the NULL Element.

bool operator!() Returns true if this is the NULL Element.

15.2.4.8 altova::meta::SimpleType

This class enables you to access schema information about classes generated from simple types. Note that
this class is not meant to provide dynamic information about particular instances of simple types in an XML
document. Instead, it enables you to obtain programmatically information about a particular simple type defined
in the XML schema.

Methods

Name Description

SimpleType GetBaseType() Returns the base type of this type.

std::vector<string_type>
GetEnumerations()

Returns a list of all enumeration facets.

unsigned int
GetFractionDigits()

Returns the value of this facet.

unsigned int GetLength() Returns the value of this facet.

string_type GetLocalName() Returns the local name of the type.

string_type GetMaxExclusive() Returns the value of this facet.

string_type GetMaxInclusive() Returns the value of this facet.

unsigned int GetMaxLength() Returns the value of this facet.

string_type GetMinExclusive() Returns the value of this facet.

string_type GetMinInclusive() Returns the value of this facet.

unsigned int GetMinLength() Returns the value of this facet.

© 2018-2024 Altova GmbH

Integrate Generated Code 965Code Generator

Altova MapForce 2024 Professional Edition

Name Description

string_type GetNamespaceURI() Returns the namespace URI of the type.

std::vector<string_type>
GetPatterns()

Returns a list of all pattern facets.

unsigned int GetTotalDigits() Returns the value of this facet.

WhitespaceType GetWhitespace() Returns the value of the whitespace facet, which is one of:
· Whitespace_Unknown
· Whitespace_Preserve
· Whitespace_Replace
· Whitespace_Collapse

Operators

Name Description

bool operator() Returns true if this is not the NULL SimpleType.

bool operator!() Returns true if this is the NULL SimpleType.

15.2.4.9 [YourSchema]::[CDoc]

When code is generated from an XML Schema, the generated code provides a document class with the same
name as the schema. This class contains all possible root elements as members, as well as the following
methods. Note that, in the method names below, "CDoc" stands for the name of the generated document class
itself.

Methods

Name Description

static CDoc CreateDocument() Creates a new, empty XML document. Must be released using
DestroyDocument().

static void
DeclareAllNamespacesFromSchema(Ele
mentType& node)

Declares all namespaces from the XML Schema on the element
supplied as argument (typically, the XML root element). Calling
this method is useful if your schema has multiple namespace
declarations, each mapped to a prefix, and you would like to
declare all of them on the element supplied as argument.

void DestroyDocument() Destroys a document. All references to the document and its
nodes are invalidated. This must be called when you finish
working with a document.

static CDoc LoadFromBinary(const
std:vector<unsigned char>& xml)

Loads an XML document from a byte array.

966 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Description

static CDoc LoadFromFile(const
string_type& fileName)

Loads an XML document from a file.

static CDoc LoadFromString(const
string_type& xml)

Loads an XML document from a string.

std::vector<unsigned char>
SaveToBinary(bool prettyPrint)

Saves an XML document to a byte array. When set to true, the
prettyPrint argument re-formats the XML document for better
readability.

std::vector<unsigned char>
SaveToBinary(bool prettyPrint,
const string_type & encoding)

Saves an XML document to a byte array, with optional "pretty-
print" formatting, with the specified encoding.

std::vector<unsigned char>
SaveToBinary(bool prettyPrint,
const string_type & encoding, bool
bBigEndian, bool bBOM)

Saves an XML document to a byte array, with optional "pretty-
print" formatting, with the specified encoding. Byte order and
Unicode byte-order mark can be specified for Unicode encodings.

void SaveToFile(const string_type
& fileName, bool prettyPrint)

Saves an XML document to a file, with optional "pretty-print"
formatting.

void SaveToFile(const string_type
& fileName, bool omitXmlDecl)

Saves an XML document to a file. If the omitXmlDecl argument
is set to true, the XML declaration will not be written.

void SaveToFile(const string_type
& fileName, bool omitXmlDecl,
const string_type & encoding)

Saves an XML document to a file with the specified encoding. If
the omitXmlDecl argument is set to true, the XML declaration
will not be written.

void SaveToFile(const string_type
& fileName, bool prettyPrint, bool
omitXmlDecl, const string_type &
encoding, bool bBigEndian, bool
bBOM)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding. Byte order and Unicode
byte-order mark can be specified for Unicode encodings.

void SaveToFile(const string_type
& fileName, bool prettyPrint, bool
omitXmlDecl, const string_type &
encoding, bool bBigEndian, bool
bBOM, const string_type & lineend)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding and the specified line end.
Byte order and Unicode byte-order mark can be specified for
Unicode encodings.

This method is only available if you generated the code for the
Xerces3 XML library (see Generation).

void SaveToFile(const string_type&
fileName, bool prettyPrint, bool
omitXmlDecl, const string_type &
encoding, const string_type &
lineend)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding and the specified line
end.

This method is only available if you generated the code for the
Xerces3 XML library (see Generation).

void SaveToFile(const string_type
& fileName, bool prettyPrint,
const string_type & encoding)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding.

1043

1043

© 2018-2024 Altova GmbH

Integrate Generated Code 967Code Generator

Altova MapForce 2024 Professional Edition

Name Description

void SaveToFile(const string_type&
fileName, bool prettyPrint, const
string_type & encoding, bool
bBigEndian, bool bBOM)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding. Byte order and Unicode
byte-order mark can be specified for Unicode encodings.

void SaveToFile(const string_type&
fileName, bool prettyPrint, const
string_type & encoding, bool
bBigEndian, bool bBOM, const
string_type & lineend)

Saves an XML document to a file with the specified encoding and
the specified line end. Byte order and Unicode byte-order mark
can be specified for Unicode encodings.

This method is only available if you generated the code for the
Xerces3 XML library (see Generation).

void SaveToFile(const string_type&
fileName, bool prettyPrint, const
string_type & encoding, const
string_type & lineend)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding and the specified line
end.

This method is only available if you generated the code for the
Xerces3 XML library (see Generation).

string_type SaveToString(bool
prettyPrint)

Saves an XML document to a string, with optional "pretty-print"
formatting.

string_type SaveToString(bool
prettyPrint, bool omitXmlDecl)

Saves an XML document to a string, with optional "pretty-print"
formatting. If the omitXmlDecl argument is set to true, the XML
declaration will not be written.

void SetDTDLocation(const
string_type & dtdLocation)

Adds a DOCTYPE declaration with the specified system ID. A
root element must already exist. This method is not supported for
MSXML, since it is not possible to add a DOCTYPE declaration
to a document in memory.

void SetSchemaLocation(const
string_type & schemaLocation)

Adds an xsi:schemaLocation or
xsi:noNamespaceSchemaLocation attribute to the root element.
A root element must already exist.

15.2.4.10 [YourSchema]::[ElementType]

This class provides methods for manipulating XML elements from your schema. Methods of this class can be
called on elements, not on the XML document itself. Note that, in order to call methods of this class, you don't
need to instantiate the class directly. Any element created using the append() or appendWithPrefix()

methods is of [ElementType] type.

Methods

Name Description

void DeclareNamespace(const
string_type prefix, const
string_type nsURI)

This method takes two arguments that are both of string type:
the prefix and the namespace URI that you want to use. The
prefix supplied as argument will be mapped to the namespace

1043

1043

968 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Description

URI value supplied as argument. If the prefix supplied as
argument is empty, the method creates or overrides the default
namespace declaration in the element.

For example, let's assume that the XML document has an XML
element called "purchase". If you call

purchase.DeclareNamespace(_T("ord"),
_T("http://OrderTypes"));

then the XML document becomes

<purchase xmlns:ord="http://OrderTypes" />

Another example, if you call:

purchase.DeclareNamespace(_T(""),
_T("http://OrderTypes"));

then the XML document becomes

<purchase xmlns="http://OrderTypes" />

Note: The declared namespace is used when appending
subsequent child elements or attributes, according to the
following rules:

1. If the child namespace is the default, then use empty
prefix.

2. If the child namespace is equal to the parent one, then
use the parent prefix.

3. Otherwise, search for nearest prefix from parent to top,
using the lookup algorithm described in section "B.2:
Namespace Prefix Lookup" at
https://www.w3.org/TR/2002/WD-DOM-Level-3-Core-
20021022/namespaces-algorithms.html.

4. If there is no prefix for element namespace found, then
use empty prefix.

15.2.4.11 [YourSchema]::MemberAttribute

When code is generated from an XML schema, a class such as this one is created for each member attribute
of a type.

https://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/namespaces-algorithms.html
https://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/namespaces-algorithms.html

© 2018-2024 Altova GmbH

Integrate Generated Code 969Code Generator

Altova MapForce 2024 Professional Edition

Methods

Name Description

bool exists() Returns true if the attribute exists.

int GetEnumerationValue() Generated for enumeration types only. Returns one of the
constants generated for the possible values, or "Invalid" if the
value does not match any of the enumerated values in the
schema.

altova::meta::Attribute info() Returns an object for querying schema information (see
altova::meta::Attribute).

void remove() Removes the attribute from its parent element.

void SetEnumerationValue(int) Generated for enumeration types only. Pass one of the constants
generated for the possible values to this method to set the value.

15.2.4.12 [YourSchema]::MemberElement

When code is generated from an XML schema, a class such as this one is created for each member element
of a type. In the descriptions below, "MemberType" stands for the name of the member element itself.

Methods

Name Description

Iterator<MemberType> all() Returns an object for iterating instances of the member element.

MemberType append() Creates a new element and appends it to its parent.

MemberType
appendWithPrefix(string_type
prefix)

Creates a new element having the prefix supplied as argument,
and appends it to its parent. For an example, see Example:
Purchase Order .

unsigned int count() Returns the count of elements.

int GetEnumerationValue() Generated for enumeration types only. Returns one of the
constants generated for the possible values, or Invalid if the
value does not match any of the enumerated values in the
schema.

bool exists() Returns true if at least one element exists.

MemberType first() Returns the first instance of the member element.

MemberType operator[](unsigned int
index)

Returns the member element specified by the index.

962

948

970 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Description

altova::meta::Element info() Returns an object for querying schema information (see
altova::meta::Element).

MemberType last() Returns the last instance of the member element.

void remove() Deletes all occurrences of the element from its parent.

void removeAt(unsigned int index) Deletes the occurrence of the element specified by the index.

void SetEnumerationValue(int) Generated for enumeration types only. Pass one of the constants
generated for the possible values to this method to set the value.

15.2.5 Generated Classes (C#)

This chapter includes a description of C# classes generated with MapForce from a DTD or XML schema (see
Generating Code from XML Schemas or DTDs). You can integrate these classes into your code to read,
modify, and write XML documents.

Note: The generated code does include other supporting classes, which are not listed here and are subject to
modification.

15.2.5.1 Altova.Types.DateTime

This class enables you to process XML attributes or elements that have date and time types, such as
xs:dateTime.

Constructors

Name Description

DateTime(DateTime obj) Initializes a new instance of the DateTime class to the DateTime
object supplied as argument.

DateTime(System.DateTime
newvalue)

Initializes a new instance of the DateTime class to the
System.DateTime object supplied as argument.

DateTime(int year, int month,
int day, int hour, int
minute, double second, int
offsetTZ)

Initializes a new instance of the DateTime class to the year,
month, day, hour, minute, second, and timezone offset supplied
as arguments.

DateTime(int year, int month,
int day, int hour, int
minute, double second)

Initializes a new instance of the DateTime class to the year,
month, day, hour, minute, and second supplied as arguments.

DateTime(int year, int month,
int day)

Initializes a new instance of the DateTime class to the year,
month and day supplied as arguments.

963

911

© 2018-2024 Altova GmbH

Integrate Generated Code 971Code Generator

Altova MapForce 2024 Professional Edition

Properties

Name Description

bool HasTimezone Gets a Boolean value which indicates if the DateTime has a
timezone.

static DateTime Now Gets a DateTime object that is set to the current date and time
on this computer.

short TimezoneOffset Gets or sets the timezone offset, in minutes, of the DateTime
object.

System.DateTime Value Gets or sets the value of the DateTime object as a
System.DateTime value.

Methods

Name Description

int CompareTo(object obj) The DateTime class implements the IComparable interface. This
method compares the current instance of DateTime to another
object and returns an integer that indicates whether the current
instance precedes, follows, or occurs in the same position in the
sort order as the other object. See also
https://msdn.microsoft.com/en-
us/library/system.icomparable.compareto(v=vs.110).aspx

override bool Equals(object
obj)

Returns true if the specified object is equal to the current object;
false otherwise.

System.DateTime
GetDateTime(bool correctTZ)

Returns a System.DateTime object from the current
Altova.Types.DateTime instance. The correctTZ Boolean
argument specifies whether the time of the returned object must
be adjusted according to the timezone of the current
Altova.Types.DateTime instance.

override int GetHashCode() Returns the hash code of the current instance.

int GetWeekOfMonth() Returns the number of the week in month as an integer.

static DateTime Parse(string
s)

Creates a DateTime object from the string supplied as argument.
For example, the following sample string values would be
converted successfully to a DateTime object:

2015-01-01T23:23:23
2015-01-01
2015-11
23:23:23

An exception is raised if the string cannot be converted to a
DateTime object.

https://msdn.microsoft.com/en-us/library/system.icomparable.compareto(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.icomparable.compareto(v=vs.110).aspx

972 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Description

Note that this method is static and can only be called on the
Altova.Types.DateTime class itself, not on an instance of the
class.

static DateTime Parse(string
s, DateTimeFormat format)

Creates a DateTime object from a string, using the format
supplied as argument. For the list of possible formats, see
Altova.Types.DateTimeFormat .

An exception is raised if the string cannot be converted to a
DateTime object.

Note that this method is static and can only be called on the
Altova.Types.DateTime class itself, not on an instance of the
class.

override string ToString() Converts the DateTime object to a string.

string
ToString(DateTimeFormat
format)

Converts the DateTime object to a string, using the format
supplied as argument. For the list of possible formats, see
Altova.Types.DateTimeFormat .

Operators

Name Description

!= Determines if DateTime a is not equal to DateTime b.

< Determines if DateTime a is less than DateTime b.

<= Determines if DateTime a is less than or equal to DateTime b.

== Determines if DateTime a is equal to DateTime b.

> Determines if DateTime a is greater than DateTime b.

>= Determines if DateTime a is greater than or equal to DateTime b.

Examples
Before using the following code listings in your program, ensure the Altova types are imported:

using Altova.Types;

The following code listing illustrates various ways to create DateTime objects:

protected static void DateTimeExample1()

{
 // Create a DateTime object from the current system time

973

973

© 2018-2024 Altova GmbH

Integrate Generated Code 973Code Generator

Altova MapForce 2024 Professional Edition

 Altova.Types.DateTime dt = new Altova.Types.DateTime(System.DateTime.Now);

 Console.WriteLine("The current time is: " + dt.ToString());

 // Create an Altova DateTime object from parts (no timezone)

 Altova.Types.DateTime dt1 = new Altova.Types.DateTime(2015, 10, 12, 10, 50, 33);

 Console.WriteLine("My custom time is : " + dt1.ToString());

 // Create an Altova DateTime object from parts (with UTC+60 minutes timezone)

 Altova.Types.DateTime dt2 = new Altova.Types.DateTime(2015, 10, 12, 10, 50, 33, 60);

 Console.WriteLine("My custom time with timezone is : " + dt2.ToString());

 // Create an Altova DateTime object by parsing a string

 Altova.Types.DateTime dt3 = Altova.Types.DateTime.Parse("2015-01-01T23:23:23");
 Console.WriteLine("Time created from string: " + dt3.ToString());

 // Create an Altova DateTime object by parsing a string formatted as schema date

 Altova.Types.DateTime dt4 = Altova.Types.DateTime.Parse("2015-01-01",
DateTimeFormat.W3_date);
 Console.WriteLine("Time created from string formatted as schema date: " +
dt4.ToString());
}

The following code listing illustrates various ways to format DateTime objects:

protected static void DateTimeExample2()

{
 // Create a DateTime object from the current system time

 Altova.Types.DateTime dt = new Altova.Types.DateTime(System.DateTime.Now);

 // Output the unformatted DateTime

 Console.WriteLine("Unformatted time: " + dt.ToString());

 // Output this DateTime formatted using various formats

 Console.WriteLine("S_DateTime: " + dt.ToString(DateTimeFormat.S_DateTime));
 Console.WriteLine("S_Days: " + dt.ToString(DateTimeFormat.S_Days));
 Console.WriteLine("S_Seconds: " + dt.ToString(DateTimeFormat.S_Seconds));
 Console.WriteLine("W3_date: " + dt.ToString(DateTimeFormat.W3_date));
 Console.WriteLine("W3_dateTime: " + dt.ToString(DateTimeFormat.W3_dateTime));
 Console.WriteLine("W3_gDay: " + dt.ToString(DateTimeFormat.W3_gDay));
 Console.WriteLine("W3_gMonth: " + dt.ToString(DateTimeFormat.W3_gMonth));
 Console.WriteLine("W3_gMonthDay: " + dt.ToString(DateTimeFormat.W3_gMonthDay));
 Console.WriteLine("W3_gYear: " + dt.ToString(DateTimeFormat.W3_gYear));
 Console.WriteLine("W3_gYearMonth: " + dt.ToString(DateTimeFormat.W3_gYearMonth));
 Console.WriteLine("W3_time: " + dt.ToString(DateTimeFormat.W3_time));
}

15.2.5.2 Altova.Types.DateTimeFormat

The DateTimeFormat enum type has the following constant values:

974 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Value Description Example

S_DateTime Formats the value as standard
dateTime, with a precision of a ten-
millionth of a second, including
timezone.

2015-11-12 12:19:03.9019132+01:00

S_Days Formats the value as number of days
elapsed since the UNIX epoch.

735913.6318973451087962962963

S_Seconds Formats the value as number of
seconds elapsed since the UNIX
epoch, with a precision of a ten-
millionth of a second.

63582937678.0769062

W3_date Formats the value as schema date. 2015-11-12

W3_dateTime Formats the value as schema
dateTime.

2015-11-12T15:12:14.5194251

W3_gDay Formats the value as schema gDay. ---12

(assuming that the date is 12th of the
month)

W3_gMonth Formats the value as schema gMonth. --11

(assuming that the month is November)

W3_gMonthDay Formats the value as schema
gMonthDay.

--11-12

(assuming that the date is 12th of
November)

W3_gYear Formats the value as schema gYear. 2015

(assuming that the year is 2015)

W3_gYearMonth Formats the value as schema
gYearMonth.

2015-11

(assuming that the year is 2015 and the
month is November)

W3_time Formats the value as schema time,
with a precision of a ten-millionth of a
second.

15:19:07.5582719

© 2018-2024 Altova GmbH

Integrate Generated Code 975Code Generator

Altova MapForce 2024 Professional Edition

15.2.5.3 Altova.Types.Duration

This class enables you to process XML attributes or elements of type xs:duration.

Constructors

Name Description

Duration(Duration obj) Initializes a new instance of the Duration class to the Duration object
supplied as argument.

Duration(System.TimeSpa
n newvalue)

Initializes a new instance of the Duration class to the System.TimeSpan
object supplied as argument.

Duration(long ticks) Initializes a new instance of the Duration class to the number of ticks
supplied as argument.

Duration(int newyears,
int newmonths, int
days, int hours, int
minutes, int seconds,
double partseconds,
bool bnegative)

Initializes a new instance of the Duration class to a duration built from
parts supplied as arguments.

Properties

Name Description

int Months Gets or sets the number of months of the current instance of Duration.

System.TimeSpan Value Gets or sets the value (as System.TimeSpan) of the current instance of
Duration.

int Years Gets or sets the number of years of the current instance of Duration.

Methods

Name Description

override bool
Equals(object other)

Returns true if the specified object is equal to the current object; false
otherwise.

override int
GetHashCode()

Returns the hash code of the current instance.

bool IsNegative() Returns true if the current instance of Duration represents a negative
duration.

static Duration
Parse(string s,
ParseType pt)

Returns an Altova.Types.Duration object parsed from the string
supplied as argument, using the parse type supplied as argument. Valid
parse type values:

976 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Description

DURATION Parse duration assuming that year, month, day, as well
as time duration parts exist.

YEARMONT
H

Parse duration assuming that only year and month parts
exist.

DAYTIME Parse duration assuming that only the day and time
parts exist.

Note that this method is static and can only be called on the class itself,
not on an instance of the class.

override string
ToString()

Converts the current Duration instance to string. For example, a time
span of 3 hours, 4 minutes, and 5 seconds would be converted to
"PT3H4M5S".

string
ToYearMonthString()

Converts the current Duration instance to string, using the "Year and
Month" parse type.

Operators

Name Description

!= Determines if Duration a is not equal to Duration b.

== Determines if Duration a is equal to Duration b.

Examples
Before using the following code listings in your program, ensure the Altova types are imported:

using Altova.Types;

The following code listing illustrates various ways to create Duration objects:

protected static void DurationExample1()

{
 // Create a new time span of 3 hours, 4 minutes, and 5 seconds

 System.TimeSpan ts = new TimeSpan(3, 4, 5);

 // Create a Duration from the time span

 Duration dr = new Duration(ts);

 // The output is: PT3H4M5S

 Console.WriteLine("Duration created from TimeSpan: " + dr.ToString());

 // Create a negative Altova.Types.Duration from 6 years, 5 months, 4 days, 3 hours,

 // 2 minutes, 1 second, and .33 of a second

 Duration dr1 = new Duration(6, 5, 4, 3, 2, 1, .33, true);

 // The output is: -P6Y5M4DT3H2M1.33S

© 2018-2024 Altova GmbH

Integrate Generated Code 977Code Generator

Altova MapForce 2024 Professional Edition

 Console.WriteLine("Duration created from parts: " + dr1.ToString());

 // Create a Duration from a string using the DAYTIME parse type

 Duration dr2 = Altova.Types.Duration.Parse("-P4DT3H2M1S", Duration.ParseType.DAYTIME);
 // The output is -P4DT3H2M1S

 Console.WriteLine("Duration created from string: " + dr2.ToString());

 // Create a duration from ticks

 Duration dr3 = new Duration(System.DateTime.UtcNow.Ticks);

 // Output the result

 Console.WriteLine("Duration created from ticks: " + dr3.ToString());
}

The following code listing illustrates getting values from Duration objects:

protected static void DurationExample2()

{
 // Create a negative Altova.Types.Duration from 6 years, 5 months, 4 days, 3 hours,

 // 2 minutes, 1 second, and .33 of a second

 Duration dr = new Duration(6, 5, 4, 3, 2, 1, .33, true);

 // The output is: -P6Y5M4DT3H2M1.33S

 Console.WriteLine("The complete duration is: " + dr.ToString());

 // Get only the year and month part as string

 string dr1 = dr.ToYearMonthString();

 Console.WriteLine("The YEARMONTH part is: " + dr1);

 // Get the number of years in duration

 Console.WriteLine("Years: " + dr.Years);

 // Get the number of months in duration

 Console.WriteLine("Months: " + dr.Months);
}

15.2.5.4 Altova.Xml.Meta.Attribute

This class enables you to access schema information about classes generated from attributes. Note that this
class is not meant to provide dynamic information about particular instances of an attribute in an XML
document. Instead, it enables you to obtain programmatically information about a particular attribute defined in
the XML schema.

Properties

Name Description

SimpleType DataType Returns the type of the attribute content.

string LocalName Returns the local name of the attribute.

string NamespaceURI Returns the namespace URI of the attribute.

978 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Description

XmlQualifiedName
QualifiedName

Returns the qualified name of the attribute.

bool Required() Returns true if the attribute is required.

15.2.5.5 Altova.Xml.Meta.ComplexType

This class enables you to access schema information about classes generated from complex types. Note that
this class is not meant to provide dynamic information about particular instances of a complex type in an XML
document. Instead, it enables you to obtain programmatically information about a particular complex type
defined in the XML schema.

Properties

Name Description

Attribute[] Attributes Returns a list of all attributes.

ComplexType BaseType Returns the base type of this type or null if no base type exists.

SimpleType ContentType Returns the simple type of the content.

Element[] Elements Returns a list of all elements.

string LocalName Returns the local name of the type.

string NamespaceURI Returns the namespace URI of the type.

XmlQualifiedName
QualifiedName

Returns the qualified name of this type.

Methods

Name Description

ComplexType BaseType Returns the base type of this type.

bool Equals(obj) Checks if two info objects refer to the same type, based on
qualified name comparison. Returns true if the type has the same
qualified name.

Attribute
FindAttribute(string
localName, string
namespaceURI)

Finds the attribute with the specified local name and namespace
URI.

Element FindElement(string
localName, string
namespaceURI)

Finds the element with the specified local name and namespace
URI.

© 2018-2024 Altova GmbH

Integrate Generated Code 979Code Generator

Altova MapForce 2024 Professional Edition

15.2.5.6 Altova.Xml.Meta.Element

This class enables you to access information about classes generated from schema elements. Note that this
class is not meant to provide dynamic information about particular instances of an element in an XML
document. Instead, it enables you to obtain programmatically information about a particular element defined in
the XML schema.

Properties

Name Description

ComplexType DataType Returns the type of the element. Note that this is always a
complex type even if declared as simple in the original schema.
Use the ContentType property of the returned object to get the
simple content type.

string LocalName Returns the local name of the element.

int MaxOccurs Returns the maxOccurs value defined in the schema.

int MinOccurs Returns the minOccurs value defined in the schema.

string NamespaceURI Returns the namespace URI of the element.

XmlQualifiedName
QualifiedName

Returns the qualified name of the element.

15.2.5.7 Altova.Xml.Meta.SimpleType

This class enables you to access schema information about classes generated from simple types. Note that
this class is not meant to provide dynamic information about particular instances of simple types in an XML
document. Instead, it enables you to obtain programmatically information about a particular simple type defined
in the XML schema.

Properties

Name Description

SimpleType BaseType Returns the base type of this type.

string[] Enumerations Returns a list of all enumeration facets.

int FractionDigits Returns the value of this facet.

int Length Returns the value of this facet.

string LocalName Returns the local name of the type.

string MaxExclusive Returns the value of this facet.

string MaxInclusive Returns the value of this facet.

980 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Description

int MaxLength Returns the value of this facet.

string MinExclusive Returns the value of this facet.

string MinInclusive Returns the value of this facet.

int MinLength Returns the value of this facet.

string NamespaceURI Returns the namespace URI of the type.

string[] Patterns Returns the pattern facets, or null if no patterns are specified.

XmlQualifiedName
QualifiedName

Returns the qualified name of this type.

int TotalDigits Returns the value of this facet.

WhitespaceType Whitespace Returns the whitespace normalization facet.

15.2.5.8 [YourSchema].[Doc]

When code is generated from an XML Schema, the generated code provides a document class with the same
name as the schema. This class contains all possible root elements as members, as well as the members
listed below. Note that, in the method names below, "Doc" stands for the name of the generated document
class itself.

Methods

Name Description

static Doc CreateDocument() Creates a new, empty XML document.

static Doc

CreateDocument(string

encoding)

Creates a new, empty XML document, with encoding of type
"encoding".

static void

DeclareAllNamespacesFromSchem
a(Altova.Xml.ElementType

node)

Declares all namespaces from the XML Schema on the element
supplied as argument (typically, the XML root element). Calling
this method is useful if your schema has multiple namespace
declarations, each mapped to a prefix, and you would like to
declare all of them on the element supplied as argument.

static Doc

LoadFromBinary(byte[] binary)
Loads an XML document from a byte array.

static Doc

LoadFromFile(string filename)
Loads an XML document from a file.

static Doc

LoadFromString(string

xmlstring)

Loads an XML document from a string.

© 2018-2024 Altova GmbH

Integrate Generated Code 981Code Generator

Altova MapForce 2024 Professional Edition

Name Description

byte[] SaveToBinary(bool

prettyPrint)
Saves an XML document to a byte array, with optional "pretty-
print" formatting.

byte[] SaveToBinary(bool

prettyPrint, string encoding)
Saves an XML document to a byte array, with optional "pretty-
print" formatting, with the specified encoding.

byte[] SaveToBinary(bool

prettyPrint, string encoding,

bool bBigEndian, bool bBOM)

Saves an XML document to a byte array, with optional "pretty-
print" formatting, with the specified encoding, byte order, and
BOM (Byte Order Mark).

void SaveToFile(string

fileName, bool prettyPrint)
Saves an XML document to a file, with optional "pretty-print"
formatting.

void SaveToFile(string

fileName, bool prettyPrint,

bool omitXmlDecl)

Saves an XML document to a file, with optional "pretty-print"
formatting. When omitXmlDecl is true, the XML declaration will
not be written.

void SaveToFile(string

fileName, bool prettyPrint,

bool omitXmlDecl, string

encoding)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding. When omitXmlDecl is
true, the XML declaration will not be written.

void SaveToFile(string

fileName, bool prettyPrint,

string encoding, string

lineend)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding, and line ending
character(s).

void SaveToFile(string

fileName, bool prettyPrint,

bool omitXmlDecl, string

encoding, string lineend)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding, and line ending
character(s). When omitXmlDecl is true, the XML declaration will
not be written.

void SaveToFile(string

fileName, bool prettyPrint,

bool omitXmlDecl, string

encoding, bool bBigEndian,

bool bBOM, string lineend)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding, byte order, BOM (Byte
Order Mark), and line ending character(s). When omitXmlDecl is
true, the XML declaration will not be written.

void

SaveToFileWithLineEnd(string

fileName, bool prettyPrint,

bool omitXmlDecl, string

lineend)

Saves an XML document to a file, with optional "pretty-print"
formatting, and line ending character(s). When omitXmlDecl is
true, the XML declaration will not be written.

string SaveToString(bool

prettyPrint)
Saves an XML document to a file, with optional "pretty-print"
formatting.

string SaveToString(bool

prettyPrint, bool

omitXmlDecl)

Saves an XML document to a file, with optional "pretty-print"
formatting. When omitXmlDecl is true, the XML declaration will
not be written.

982 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Description

void SetDTDLocation(string

dtdLocation)
Adds a DOCTYPE declaration with the specified system ID. A
root element must already exist.

void SetSchemaLocation(string

schemaLocation)
Adds an xsi:schemaLocation or
xsi:noNamespaceSchemaLocation attribute to the root element.
A root element must already exist.

15.2.5.9 [YourSchema].[ElementType]

This class provides methods for manipulating XML elements from your schema. Methods of this class can be
called on elements, not on the XML document itself. Note that, in order to call methods of this class, you don't
need to instantiate the class directly. Any element created using the Append() or AppendWithPrefix()

methods is of [ElementType] type.

Methods

Name Description

void DeclareNamespace(string
prefix, string nsURI)

This method takes two arguments that are both of string type:
the prefix and the namespace URI that you want to use. The
prefix supplied as argument will be mapped to the namespace
URI value supplied as argument. If the prefix supplied as
argument is empty, the method creates or overrides the default
namespace declaration in the element.

For example, let's assume that the XML document has an XML
element called "purchase". If you call

purchase.DeclareNamespace("ord",
"http://OrderTypes");

then the XML document becomes

<purchase xmlns:ord="http://OrderTypes" />

Another example, if you call:

purchase.DeclareNamespace("", "http://OrderTypes");

then the XML document becomes

<purchase xmlns="http://OrderTypes" />

Note: The declared namespace is used when appending
subsequent child elements or attributes, according to the

© 2018-2024 Altova GmbH

Integrate Generated Code 983Code Generator

Altova MapForce 2024 Professional Edition

Name Description

following rules:

1. If the child namespace is the default, then use empty
prefix.

2. If the child namespace is equal to the parent one, then
use the parent prefix.

3. Otherwise, search for nearest prefix from parent to top,
using the lookup algorithm described in section "B.2:
Namespace Prefix Lookup" at
https://www.w3.org/TR/2002/WD-DOM-Level-3-Core-
20021022/namespaces-algorithms.html.

4. If there is no prefix for element namespace found, then
use empty prefix.

15.2.5.10 [YourSchemaType].MemberAttribute

When code is generated from an XML schema, a class is created for each member attribute of a type. In the
descriptions below, "AttributeType" stands for the type of the member attribute itself.

Methods

Name Description

bool Exists() Returns true if the attribute exists.

void Remove() Removes the attribute from its parent element.

Properties

Name Description

int EnumerationValue Generated for enumeration types only. Sets or gets the
attribute value using one of the constants generated for the
possible values. Returns Invalid if the value does not
match any of the enumerated values in the schema.

Altova.Xml.Meta.Attribute Info Returns an object for querying schema information (see
Altova.Xml.Meta.Attribute).

AttributeType Value Sets or gets the attribute value.

15.2.5.11 [YourSchemaType].MemberElement

When code is generated from an XML schema, a class with the following members is created for each member
element of a type. The class implements the standard System.Collections.IEnumerable interface, so it can
be used with the foreach statement.

977

https://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/namespaces-algorithms.html
https://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/namespaces-algorithms.html

984 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

In the descriptions below, "MemberType" stands for the type of the member element itself.

Methods

Name Description

MemberType Append() Creates a new element and appends it to its parent.

MemberType AppendWithPrefix(string
prefix)

Creates a new element having the prefix supplied as
argument, and appends it to its parent. For an example,
see Example: Purchase Order .

MemberType At(int index) Returns the member element specified by the index.

System.Collections.IEnumerator
GetEnumerator()

Returns an object for iterating instances of the member
element.

void Remove() Deletes all occurrences of the element from its parent.

void RemoveAt(int index) Deletes the occurrence of the element specified by the
index.

Properties

Name Description

int Count Returns the count of elements.

int EnumerationValue Generated for enumeration types only. Sets or gets the
element value using one of the constants generated for the
possible values. Returns Invalid if the value does not
match any of the enumerated values in the schema.

bool Exists Returns true if at least one element exists.

MemberType First Returns the first instance of the member element.

Altova.Xml.Meta.Element Info Returns an object for querying schema information (see
Altova.Xml.Meta.Element).

MemberType Last Returns the last instance of the member element.

MemberType this[int index] Returns the member element specified by the index.

MemberType Value Sets or gets the element content (only generated if element
can have mixed or simple content).

948

979

© 2018-2024 Altova GmbH

Integrate Generated Code 985Code Generator

Altova MapForce 2024 Professional Edition

15.2.6 Generated Classes (Java)

This chapter includes a description of Java classes generated with MapForce from a DTD or XML schema (see
Generating Code from XML Schemas or DTDs). You can integrate these classes into your code to read,
modify, and write XML documents.

Note: The generated code does include other supporting classes, which are not listed here and are subject to
modification.

15.2.6.1 com.altova.types.DateTime

This class enables you to process XML attributes or elements that have date and time types, such as
xs:dateTime.

Constructors

Name Description

public DateTime() Initializes a new instance of the DateTime class to an empty
value.

public DateTime(DateTime

newvalue)
Initializes a new instance of the DateTime class to the DateTime
value supplied as argument.

public DateTime(int newyear,

int newmonth, int newday, int

newhour, int newminute, int

newsecond, double

newpartsecond, int

newoffsetTZ)

Initializes a new instance of the DateTime class to the year,
month, day, hour, minute, second, the fractional part of the
second, and timezone supplied as arguments. The fractional part
of the second newpartsecond must be between 0 and 1. The
timezone offset newoffsetTZ can be either positive or negative and
is expressed in minutes.

public DateTime(int newyear,

int newmonth, int newday, int

newhour, int newminute, int

newsecond, double

newpartsecond)

Initializes a new instance of the DateTime class to the year,
month, day, hour, minute, second, and the fractional part of a
second supplied as arguments.

public DateTime(int newyear,

int newmonth, int newday)
Initializes a new instance of the DateTime class to the year,
month, and day supplied as arguments.

public DateTime(Calendar

newvalue)
Initializes a new instance of the DateTime class to the
java.util.Calendar value supplied as argument.

Methods

Name Description

static DateTime now() Returns the current time as a DateTime object.

911

986 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Description

static DateTime parse(String

s)
Returns a DateTime object parsed from the string value supplied
as argument. For example, the following sample string values
would be converted successfully to a DateTime object:

2015-11-24T12:54:47.969+01:00
2015-11-24T12:54:47
2015-11-24

int getDay() Returns the day of the current DateTime instance.

int getHour() Returns the hour of the current DateTime instance.

int getMillisecond() Returns the millisecond of the current DateTime instance, as an
integer value.

int getMinute() Returns the minute of the current DateTime instance.

int getMonth() Returns the month of the current DateTime instance.

double getPartSecond() Returns the fractional part of the second of the current DateTime
instance, as a double value. The return value is greater than
zero and smaller than one, for example:

0.313

int getSecond() Returns the second of the current DateTime instance.

int getTimezoneOffset() Returns the timezone offset, in minutes, of the current DateTime
instance. For example, the timezone "UTC-01:00" would be
returned as:

-60

Calendar getValue() Returns the current DateTime instance as a
java.util.Calendar value.

int getWeekday() Returns the day in week of the current DateTime instance.
Values range from 0 through 6, where 0 is Monday (ISO-8601).

int getYear() Returns the year of the current DateTime instance.

int hasTimezone() Returns information about the timezone of the current DateTime
instance. Possible return values are:

CalendarBase.TZ_MISSING A timezone offset is not defined.

CalendarBase.TZ_UTC The timezone is UTC.

CalendarBase.TZ_OFFSET A timezone offset has been
defined.

void setDay(int nDay) Sets the day of the current DateTime instance to the value
supplied as argument.

© 2018-2024 Altova GmbH

Integrate Generated Code 987Code Generator

Altova MapForce 2024 Professional Edition

Name Description

void setHasTimezone(int

nHasTZ)
Sets the timezone information of the current DateTime instance
to the value supplied as argument. This method can be used to
strip the timezone information or set the timezone to UTC
(Coordinated Universal Time). Valid values for the nHasTZ
argument:

CalendarBase.TZ_MISSIN
G

Set the timezone offset to
undefined.

CalendarBase.TZ_UTC Set the timezone to UTC.

CalendarBase.TZ_OFFSET If the current object has a
timezone offset, leave it
unchanged.

void setHour(int nHour) Sets the hour of the current DateTime instance to the value
supplied as argument.

void setMinute(int nMinute) Sets the minute of the current DateTime instance to the value
supplied as argument.

void setMonth(int nMonth) Sets the month of the current DateTime instance to the value
supplied as argument.

void setPartSecond(double

nPartSecond)
Sets the fractional part of the second of the current DateTime
instance to the value supplied as argument.

void setSecond(int nSecond) Sets the second of the current DateTime instance to the value
supplied as argument.

void setTimezoneOffset(int

nOffsetTZ)
Sets the timezone offset of the current DateTime instance to the
value supplied as argument. The value nOffsetTZ must be an
integer (positive or negative) and must be expressed in minutes.

void setYear(int nYear) Sets the year of the current DateTime instance to the value
supplied as argument.

String toString() Returns the string representation of the current DateTime
instance, for example:

2015-11-24T15:50:56.968+01:00

Examples
Before using the following code listings in your program, ensure the Altova types are imported:

import com.altova.types.*;

The following code listing illustrates various ways to create DateTime objects:

988 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

protected static void DateTimeExample1()

{
 // Initialize a new instance of the DateTime class to the current time

 DateTime dt = new DateTime(DateTime.now());

 System.out.println("DateTime created from current date and time: " + dt.toString());

 // Initialize a new instance of the DateTime class by supplying the parts

 DateTime dt1 = new DateTime(2015, 11, 23, 14, 30, 24, .459);

 System.out.println("DateTime from parts (no timezone): " + dt1.toString());

 // Initialize a new instance of the DateTime class by supplying the parts

 DateTime dt2 = new DateTime(2015, 11, 24, 14, 30, 24, .459, -60);

 System.out.println("DateTime from parts (with negative timezone): " + dt2.toString());

 // Initialize a new instance of the DateTime class by parsing a string value

 DateTime dt3 = DateTime.parse("2015-11-24T12:54:47.969+01:00");

 System.out.println("DateTime parsed from string: " + dt3.toString());
}

The following code listing illustrates getting values from DateTime objects:

protected static void DateTimeExample2()

 {
 // Initialize a new instance of the DateTime class to the current time

 DateTime dt = new DateTime(DateTime.now());

 // Output the formatted year, month, and day of this DateTime instance

 String str1 = String.format("Year: %d; Month: %d; Day: %d;", dt.getYear(),
dt.getMonth(), dt.getDay());
 System.out.println(str1);

 // Output the formatted hour, minute, and second of this DateTime instance

 String str2 = String.format("Hour: %d; Minute: %d; Second: %d;", dt.getHour(),
dt.getMinute(), dt.getSecond());
 System.out.println(str2);

 // Return the timezone (in minutes) of this DateTime instance

 System.out.println("Timezone: " + dt.getTimezoneOffset());

 // Get the DateTime as a java.util.Calendar value

 java.util.Calendar dt_java = dt.getValue();
 System.out.println("" + dt_java.toString());

 // Return the day of week of this DateTime instance

 System.out.println("Weekday: " + dt.getWeekday());

 // Check whether the DateTime instance has a timezone defined

 switch(dt.hasTimezone())

 {
 case CalendarBase.TZ_MISSING:

 System.out.println("No timezone.");
 break;

 case CalendarBase.TZ_UTC:

© 2018-2024 Altova GmbH

Integrate Generated Code 989Code Generator

Altova MapForce 2024 Professional Edition

 System.out.println("The timezone is UTC.");
 break;

 case CalendarBase.TZ_OFFSET:

 System.out.println("This object has a timezone.");
 break;

 default:

 System.out.println("Unable to determine whether a timezone is defined.");
 break;

 }
 }

The following code listing illustrates changing the timezone offset of a DateTime object:

protected static void DateTimeExample3()

{
 // Create a new DateTime object with timezone -0100 UTC

 DateTime dt = new DateTime(2015, 11, 24, 14, 30, 24, .459, -60);

 // Output the value before the change

 System.out.println("Before: " + dt.toString());
 // Change the offset to +0100 UTC

 dt.setTimezoneOffset(60);
 // Output the value after the change

 System.out.println("After: " + dt.toString());
}

15.2.6.2 com.altova.types.Duration

This class enables you to process XML attributes or elements of type xs:duration.

Constructors

Name Description

Duration(Duration newvalue) Initializes a new instance of the Duration class to the Duration
object supplied as argument.

Duration(int newyear, int

newmonth, int newday, int

newhour, int newminute, int

newsecond, double

newpartsecond, boolean

newisnegative)

Initializes a new instance of the Duration class to a duration
built from parts supplied as arguments.

Methods

Name Description

static Duration

getFromDayTime(int newday,
Returns a Duration object created from the number of days,
hours, minutes, seconds, and fractional second parts supplied as

990 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Description

int newhour, int newminute,

int newsecond, double

newpartsecond)

argument.

static Duration

getFromYearMonth(int

newyear, int newmonth)

Returns a Duration object created from the number of years and
months supplied as argument.

static Duration parse(String

s)
Returns a Duration object created from the string supplied as
argument. For example, the string -P1Y1M1DT1H1M1.333S can
be used to create a negative duration of one year, one month,
one day, one hour, one minute, one second, and 0.333 fractional
parts of a second. To create a negative duration, append the
minus sign (-) to the string.

static Duration parse(String

s, ParseType pt)
Returns a Duration object created from the string supplied as
argument, using a specific parse format. The parse format can be
any of the following:

ParseType.DAYTIME May be used when the string s
consists of any of the following:
days, hours, minutes, seconds,
fractional second parts, for example
-P4DT4H4M4.774S.

ParseType.DURATION May be used when the string s
consists of any of the following:
years, months, days, hours,
minutes, seconds, fractional second
parts, for example
P1Y1M1DT1H1M1.333S.

ParseType.YEARMON
TH

May be used when the string s
consists of any of the following:
years, months. For example:
P3Y2M.

int getDay() Returns the number of days in the current Duration instance.

long getDayTimeValue() Returns the day and time value (in milliseconds) of the current
Duration instance. Years and months are ignored.

int getHour() Returns the number of hours in the current Duration instance.

int getMillisecond() Returns the number of milliseconds in the current Duration
instance.

int getMinute() Returns the number of minutes in the current Duration instance.

int getMonth() Returns the number of months in the current Duration instance.

double getPartSecond() Returns the number of fractional second parts in the current
Duration instance.

© 2018-2024 Altova GmbH

Integrate Generated Code 991Code Generator

Altova MapForce 2024 Professional Edition

Name Description

int getSecond() Returns the number of seconds in the current Duration
instance.

int getYear() Returns the number of years in the current Duration instance.

int getYearMonthValue() Returns the year and month value (in months) of the current
Duration instance. Days, hours, seconds, and milliseconds are
ignored.

boolean isNegative() Returns Boolean true if the current Duration instance is
negative.

void setDayTimeValue(long l) Sets the duration to the number of milliseconds supplied as
argument, affecting only the day and time part of the duration.

void setNegative(boolean

isnegative)
Converts the current Duration instance to a negative duration.

void setYearMonthValue(int

l)
Sets the duration to the number of months supplied as argument.
Only the years and months part of the duration is affected.

String toString() Returns the string representation of the current Duration
instance, for example:

-P4DT4H4M4.774S

String toYearMonthString() Returns the string representation of the YearMonth part of the
current Duration instance, for example:

P1Y2M

Examples
Before using the following code listings in your program, ensure the Altova types are imported:

import com.altova.types.*;

import com.altova.types.Duration.ParseType;

The following code listing illustrates various ways to create Duration objects:

protected static void ExampleDuration()

{
 // Create a negative duration of 1 year, 1 month, 1 day, 1 hour, 1 minute, 1 second,

 // and 0.333 fractional second parts

 Duration dr = new Duration(1, 1, 1, 1, 1, 1, .333, true);

 // Create a duration from an existing Duration object

 Duration dr1 = new Duration(dr);

 // Create a duration of 4 days, 4 hours, 4 minutes, 4 seconds, .774 fractional second

992 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

parts

 Duration dr2 = Duration.getFromDayTime(4, 4, 4, 4, .774);

 // Create a duration of 3 years and 2 months

 Duration dr3 = Duration.getFromYearMonth(3, 2);

 // Create a duration from a string

 Duration dr4 = Duration.parse("-P4DT4H4M4.774S");

 // Create a duration from a string, using specific parse formats

 Duration dr5 = Duration.parse("-P1Y1M1DT1H1M1.333S", ParseType.DURATION);
 Duration dr6 = Duration.parse("P3Y2M", ParseType.YEARMONTH);
 Duration dr7 = Duration.parse("-P4DT4H4M4.774S", ParseType.DAYTIME);
}

The following code listing illustrates getting and setting the value of Duration objects:

protected static void DurationExample2()

{
 // Create a duration of 1 year, 2 month, 3 days, 4 hours, 5 minutes, 6 seconds,

 // and 333 milliseconds

 Duration dr = new Duration(1, 2, 3, 4, 5, 6, .333, false);

 // Output the number of days in this duration

 System.out.println(dr.getDay());

 // Create a positive duration of one year and 333 milliseconds

 Duration dr1 = new Duration(1, 0, 0, 0, 0, 0, .333, false);

 // Output the day and time value in milliseconds

 System.out.println(dr1.getDayTimeValue());

 // Create a positive duration of 1 year, 1 month, 1 day, 1 hour, 1 minute, 1 second,

 // and 333 milliseconds

 Duration dr2 = new Duration(1, 1, 1, 1, 1, 1, .333, false);

 // Output the year and month value in months

 System.out.println(dr2.getYearMonthValue());

 // Create a positive duration of 1 year and 1 month

 Duration dr3 = new Duration(1, 1, 0, 0, 0, 0, 0, false);

 // Output the value

 System.out.println("The duration is now: " + dr3.toString());
 // Set the DayTime part of duration to 1000 milliseconds

 dr3.setDayTimeValue(1000);
 // Output the value

 System.out.println("The duration is now: " + dr3.toString());
 // Set the YearMonth part of duration to 1 month

 dr3.setYearMonthValue(1);
 // Output the value

 System.out.println("The duration is now: " + dr3.toString());
 // Output the year and month part of the duration

 System.out.println("The YearMonth part of the duration is: " +
dr3.toYearMonthString());
}

© 2018-2024 Altova GmbH

Integrate Generated Code 993Code Generator

Altova MapForce 2024 Professional Edition

15.2.6.3 com.altova.xml.meta.Attribute

This class enables you to access schema information about classes generated from attributes. Note that this
class is not meant to provide dynamic information about particular instances of an attribute in an XML
document. Instead, it enables you to obtain programmatically information about a particular attribute defined in
the XML schema.

Methods

Name Description

SimpleType getDataType() Returns the type of the attribute content.

String getLocalName() Returns the local name of the attribute.

String getNamespaceURI() Returns the namespace URI of the attribute.

boolean isRequired() Returns true if the attribute is required.

15.2.6.4 com.altova.xml.meta.ComplexType

This class enables you to access schema information about classes generated from complex types. Note that
this class is not meant to provide dynamic information about particular instances of a complex type in an XML
document. Instead, it enables you to obtain programmatically information about a particular complex type
defined in the XML schema.

Methods

Name Description

Attribute
findAttribute(String
localName, String
namespaceURI)

Finds the attribute with the specified local name and namespace
URI.

Element findElement(String
localName, String
namespaceURI)

Finds the element with the specified local name and namespace
URI.

Attribute[] GetAttributes() Returns a list of all attributes.

ComplexType getBaseType() Returns the base type of this type.

SimpleType getContentType() Returns the simple type of the content.

Element[] GetElements() Returns a list of all elements.

String getLocalName() Returns the local name of the type.

String getNamespaceURI() Returns the namespace URI of the type.

994 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

15.2.6.5 com.altova.xml.meta.Element

This class enables you to access information about classes generated from schema elements. Note that this
class is not meant to provide dynamic information about particular instances of an element in an XML
document. Instead, it enables you to obtain programmatically information about a particular element defined in
the XML schema.

Methods

Name Description

ComplexType getDataType() Returns the type of the element. Note that this is always a
complex type even if declared as simple in the original schema.
Use getContentType() of the returned object to get the simple
content type.

String getLocalName() Returns the local name of the element.

int getMaxOccurs() Returns the maxOccurs value defined in the schema.

int getMinOccurs() Returns the minOccurs value defined in the schema.

String getNamespaceURI() Returns the namespace URI of the element.

15.2.6.6 com.altova.xml.meta.SimpleType

This class enables you to access schema information about classes generated from simple types. Note that
this class is not meant to provide dynamic information about particular instances of simple types in an XML
document. Instead, it enables you to obtain programmatically information about a particular simple type defined
in the XML schema.

Methods

Name Description

SimpleType getBaseType() Returns the base type of this type.

String[] getEnumerations() Returns an array of all enumeration facets.

int getFractionDigits() Returns the value of this facet.

int getLength() Returns the value of this facet.

String getLocalName() Returns the local name of the type.

String getMaxExclusive() Returns the value of this facet.

String getMaxInclusive() Returns the value of this facet.

int getMaxLength() Returns the value of this facet.

© 2018-2024 Altova GmbH

Integrate Generated Code 995Code Generator

Altova MapForce 2024 Professional Edition

Name Description

String getMinExclusive() Returns the value of this facet.

String getMinInclusive() Returns the value of this facet.

int getMinLength() Returns the value of this facet.

String getNamespaceURI() Returns the namespace URI of the type.

String[] getPatterns() Returns an array of all pattern facets.

int getTotalDigits() Returns the value of this facet.

int getWhitespace() Returns the value of the whitespace facet, which is one of:
com.altova.typeinfo.WhitespaceType.Whitespace_Unknown
com.altova.typeinfo.WhitespaceType.Whitespace_Preserv
e
com.altova.typeinfo.WhitespaceType.Whitespace_Replace
com.altova.typeinfo.WhitespaceType.Whitespace_Collaps
e

15.2.6.7 com.[YourSchema].[Doc]

When code is generated from an XML Schema, the generated code provides a document class with the same
name as the schema. This class contains all possible root elements as members, as well as the members
listed below. Note that, in the method names below, "Doc" stands for the name of the generated document
class itself.

Methods

Name Description

static Doc createDocument() Creates a new, empty XML document.

static void
declareAllNamespacesFromSchem
a(com.altova.xml.ElementType
node)

Declares all namespaces from the XML Schema on the element
supplied as argument (typically, the XML root element). Calling
this method is useful if your schema has multiple namespace
declarations, each mapped to a prefix, and you would like to
declare all of them on the element supplied as argument.

static Doc
loadFromBinary(byte[] xml)

Loads an XML document from a byte array.

static Doc
loadFromFile(String fileName)

Loads an XML document from a file.

static Doc
loadFromString(String xml)

Loads an XML document from a string.

byte[] saveToBinary(boolean
prettyPrint)

Saves an XML document to a byte array, with optional "pretty-
print" formatting.

996 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Description

byte[] saveToBinary(boolean
prettyPrint, String encoding)

Saves an XML document to a byte array, with optional "pretty-
print" formatting, with the specified encoding.

byte[] saveToBinary(boolean
prettyPrint, String encoding,
boolean bigEndian, boolean
writeBOM)

Saves an XML document to a byte array, with optional "pretty-
print" formatting, with the specified encoding. Byte order and
Unicode byte-order mark can be specified for Unicode encodings.

void saveToFile(String
fileName, boolean
prettyPrint)

Saves an XML document to a file, with optional "pretty-print"
formatting.

void saveToFile(String
fileName, boolean
prettyPrint, boolean
omitXmlDecl)

Saves an XML document to a file, with optional "pretty-print"
formatting, with UTF-8 encoding. When omitXmlDecl is true, the
XML declaration will not be written.

void saveToFile(String
fileName, boolean
prettyPrint, boolean
omitXmlDecl, String encoding)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding. When omitXmlDecl is
true, the XML declaration will not be written.

void saveToFile(String
fileName, boolean
prettyPrint, boolean
omitXmlDecl, String encoding,
boolean bBigEndian, boolean
bBOM)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding. When omitXmlDecl is
true, the XML declaration will not be written. Byte order and
Unicode byte-order mark can be specified for Unicode encodings.

void saveToFile(String
fileName, boolean
prettyPrint, String encoding)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding.

void saveToFile(String
fileName, boolean
prettyPrint, String encoding,
boolean bBigEndian, boolean
bBOM)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding. Byte order and Unicode
byte-order mark can be specified for Unicode encodings.

String saveToString(boolean
prettyPrint)

Saves an XML document to a string, with optional "pretty-print"
formatting.

String saveToString(boolean
prettyPrint, boolean
omitXmlDecl)

Saves an XML document to a string, with optional "pretty-print"
formatting. When omitXmlDecl is true, the XML declaration will
not be written.

void setSchemaLocation(String
schemaLocation)

Adds an xsi:schemaLocation or
xsi:noNamespaceSchemaLocation attribute to the root element.
A root element must already exist.

© 2018-2024 Altova GmbH

Integrate Generated Code 997Code Generator

Altova MapForce 2024 Professional Edition

15.2.6.8 com.[YourSchema].[ElementType]

This class provides methods for manipulating XML elements from your schema. Methods of this class can be
called on elements, not on the XML document itself. Note that, in order to call methods of this class, you don't
need to instantiate the class directly. Any element created using the append() or appendWithPrefix()

methods is of [ElementType] type.

Methods

Name Description

void declareNamespace(String
prefix, String nsURI)

This method takes two arguments that are both of string
type: the prefix and the namespace URI that you want to
use. The prefix supplied as argument will be mapped to the
namespace URI value supplied as argument. If the prefix
supplied as argument is empty, the method creates or
overrides the default namespace declaration in the
element.

For example, let's assume that the XML document has an
XML element called "purchase". If you call

purchase.declareNamespace("ord",
"http://OrderTypes");

then the XML document becomes

<purchase xmlns:ord="http://OrderTypes" />

Another example, if you call:

purchase.declareNamespace("",
"http://OrderTypes");

then the XML document becomes

<purchase xmlns="http://OrderTypes" />

Note: The declared namespace is used when appending
subsequent child elements or attributes, according
to the following rules:

1. If the child namespace is the default, then use
empty prefix.

2. If the child namespace is equal to the parent one,
then use the parent prefix.

3. Otherwise, search for nearest prefix from parent to

998 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Description

top, using the lookup algorithm described in
section "B.2: Namespace Prefix Lookup" at
https://www.w3.org/TR/2002/WD-DOM-Level-3-
Core-20021022/namespaces-algorithms.html.

4. If there is no prefix for element namespace found,
then use empty prefix.

15.2.6.9 com.[YourSchema].[YourSchemaType].MemberAttribute

When code is generated from an XML schema, a class is created for each member attribute of a type. In the
descriptions below, "AttributeType" stands for the type of the member attribute itself.

Methods

Name Description

boolean exists() Returns true if the attribute exists.

int getEnumerationValue() Generated for enumeration types only. Returns one of the
constants generated for the possible values, or Invalid if
the value does not match any of the enumerated values in
the schema.

com.altova.xml.meta.Attribute
getInfo()

Returns an object for querying schema information (see
com.altova.xml.meta.Attribute).

AttributeType getValue() Gets the attribute value.

void remove() Removes the attribute from its parent element.

void setEnumerationValue(int) Generated for enumeration types only. Pass one of the
constants generated for the possible values to this method
to set the value.

void setValue(AttributeType value) Sets the attribute value.

15.2.6.10 com.[YourSchema].[YourSchemaType].MemberElement

When code is generated from an XML schema, a class with the following members is created for each member
element of a type. In the descriptions below, "MemberType" stands for the type of the member element itself.

Methods

Name Description

MemberType append() Creates a new element and appends it to its parent.

993

https://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/namespaces-algorithms.html
https://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/namespaces-algorithms.html

© 2018-2024 Altova GmbH

Integrate Generated Code 999Code Generator

Altova MapForce 2024 Professional Edition

Name Description

MemberType appendWithPrefix(String
prefix)

Creates a new element having the prefix supplied as
argument, and appends it to its parent. For an example,
see Example: Purchase Order .

MemberType at(int index) Returns the instance of the member element at the
specified index.

int count() Returns the count of elements.

boolean exists() Returns true if at least one element exists.

MemberType first() Returns the first instance of the member element.

int getEnumerationValue() Generated for enumeration types only. Returns one of the
constants generated for the possible values, or Invalid if
the value does not match any of the enumerated values in
the schema.

com.altova.xml.meta.Element
getInfo()

Returns an object for querying schema information (see
com.altova.xml.meta.Element).

MemberType getValue() Gets the element content (only generated if element can
have simple or mixed content).

java.util.Iterator iterator() Returns an object for iterating instances of the member
element.

MemberType last() Returns the last instance of the member element.

void remove() Deletes all occurrences of the element from its parent.

void removeAt(int index) Deletes the occurrence of the element specified by the
index.

void setEnumerationValue(int

index)
Generated for enumeration types only. Pass one of the
constants generated for the possible values to this method
to set the value.

void setValue(MemberType value) Sets the element content (only generated if element can
have simple or mixed content).

15.2.7 SPL Reference

This section gives you an overview of SPL (Spy Programming Language), code generator's template language.
It is assumed that you have prior programming experience, and are familiar with operators, functions, variables
and classes, as well as the basics of object-oriented programming - which is used heavily in SPL.

The templates used by MapForce are supplied in the applications's spl folder. You can use these files as a

guide to developing your own templates.

948

994

1000 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

How code generator works
Code is generated on the basis of the template files (.spl files) and the object model provided by MapForce.

The template files contain the code of the target programming language combined with SPL instructions for
creating files, reading information from the object model, and performing calculations.

The template file is interpreted by the code generator and outputs the source-code files of the target language/s
(that is, the non-compiled code files) and any other relevant project file or template-dependent file. The source
code can then be compiled into an executable file that accesses the XML data described by the schema file.

SPL files have access to a wide variety of information that is collated from the source schemas. Note that an
SPL file is not tied to a specific schema, but allows access to all schemas. So, make sure you write your SPL
files generically and avoid structures which apply to specific schemas.

Note about method names
When you customize code generation using the supplied SPL files, it might be necessary to reserve names to
avoid collisions with other symbols. Follow the instructions below:

1. Navigate to the program installation directory, for example, C:\Program
Files\Altova\MapForce2024.

2. In the spl subdirectory, locate the directory corresponding to the programming language, for

example, ..\spl\java.

3. Open the settings.spl file and insert a new line into the reserve section, for example, reserve

"myReservedWord".

4. Regenerate the program code.

Example: Creating a new file in SPL
This is a very basic SPL file. It creates a file named test.cpp, and places the include statement within it. The

close command completes the template.

[create "test.cpp"]
#include "stdafx.h"
[close]

15.2.7.1 Basic SPL structure

An SPL file contains literal text to output, interspersed with code generator instructions.

Code generator instructions are enclosed in square brackets '[' and ']'. Multiple statements can be included in a
bracket pair. Additional statements have to be separated by a new line or a colon ':'.

Valid examples are:

[$x = 42
$x = $x + 1]

© 2018-2024 Altova GmbH

Integrate Generated Code 1001Code Generator

Altova MapForce 2024 Professional Edition

or

[$x = 42: $x = $x + 1]

Adding text to files
Text not enclosed by [and], is written directly to the current output file. If there is no current output file, the
text is ignored (see Using files how to create an output file).

To output literal square brackets, escape them with a backslash: \[and \]; to output a backslash use \\.

Comments
Comments inside an instruction block always begin with a ' character, and terminate on the next line, or at a
block close character].

15.2.7.2 Declarations

The following statements are evaluated while parsing the SPL template file. They are not affected by flow
control statements like conditions, loops or subroutines, and are always evaluated exactly once.

These keywords, like all keywords in SPL, are not case sensitive.

Remember that all of these declarations must be inside a block delimited by square brackets.

map ... to ...

map mapname key to value [, key to value]...

This statement adds information to a map. See below for specific uses.

map schemanativetype schematype to typespec

The specified built-in XML Schema type will be mapped to the specified native type or class, using the specified
formatter. This setting applies only to code generation for version 2007r3 and higher. Typespec is a native type
or class name, followed by a comma, followed by the formatter class instance.

Example:

map schemanativetype "double" to "double,Altova::DoubleFormatter"

map type ... to ...

1005

1002 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

map type schematype to classname

The specified built-in XML Schema type will be mapped to the specified class. This setting applies only to code
generation for version 2007 or lower.

Example:

map type "float" to "CSchemaFloat"

default ... is ...

default setting is value

This statement allows you to affect how class and member names are derived from the XML Schema. Note that
the setting names are case sensitive.

Example:

default "InvalidCharReplacement" is "_"

Setting name Explanation

ValidFirstCharSet Allowed characters for starting an identifier

ValidCharSet Allowed characters for other characters in an identifier

InvalidCharReplacement The character that will replace all characters in names that are not in the
ValidCharSet

AnonTypePrefix Prefix for names of anonymous types*

AnonTypeSuffix Suffix for names of anonymous types*

ClassNamePrefix Prefix for generated class names

ClassNameSuffix Suffix for generated class names

EnumerationPrefix Prefix for symbolic constants declared for enumeration values

EnumerationUpperCase "on" to convert the enumeration constant names to upper case

FallbackName If a name consists only of characters that are not in ValidCharSet, use this
one

* Names of anonymous types are built from AnonTypePrefix + element name + AnonTypeSuffix

© 2018-2024 Altova GmbH

Integrate Generated Code 1003Code Generator

Altova MapForce 2024 Professional Edition

reserve

reserve word

Adds the specified word to the list of reserved words. This ensures that it will never be generated as a class or
member name.

Example:

reserve "while"

include
includes the specified file as SPL source. This allows you to split your template into multiple files for easier
editing and handling.

include filename

Example:

include "Module.cpp"

15.2.7.3 Variables

Any non-trivial SPL file will require variables. Some variables are predefined by the code generator, and new
variables may be created simply by assigning values to them.

The $ character is used when declaring or using a variable, a variable name is always prefixed by $. Variable
names are case sensitive.

Variables types:

· integer - also used as boolean, where 0 is false and everything else is true
· string
· object - provided by MapForce
· iterator - see foreach statement

Variable types are declared by first assignment:

[$x = 0]

x is now an integer.

1004

1009

1004 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

[$x = "teststring"]

x is now treated as a string.

Strings
String constants are always enclosed in double quotes, like in the example above. \n and \t inside double
quotes are interpreted as newline and tab, \" is a literal double quote, and \\ is a backslash. String constants
can also span multiple lines.

String concatenation uses the & character:

[$BasePath = $outputpath & "/" & $JavaPackageDir]

Objects
Objects represent the information contained in the XML schemas, database structures, text files and
mappings. Objects have properties, which can be accessed using the . operator. It is not possible to create
new objects in SPL (they are predefined by the code generator, derived from the input mapping), but it is
possible to assign objects to variables.

Example:

class [=$class.Name]

This example outputs the word "class", followed by a space and the value of the Name property of the $class
object.

15.2.7.4 Predefined variables

After a Schema file is analyzed by the code generator, the objects in the table below exist in the Template
Engine.

Name Type Description

$schematype integer 1 for DTD, 2 for XML Schema

$TheLibrary Library The library derived from the XML Schema or DTD

$module string Name of the source Schema without extension

$outputpath string The output path specified by the user, or the default output
path

For C++ generation only:

Name Type Description

$domtype integer 1 for MSXML, 2 for Xerces

1013

© 2018-2024 Altova GmbH

Integrate Generated Code 1005Code Generator

Altova MapForce 2024 Professional Edition

Name Type Description

$libtype integer 1 for static LIB, 2 for DLL

$mfc boolean True if MFC support is enabled

$VSVersion integer Specifies the Visual Studio version. Valid values:

0 No Visual Studio project

2010 Visual Studio 2010

2013 Visual Studio 2013

2015 Visual Studio 2015

2017 Visual Studio 2017

2019 Visual Studio 2019

For C# generation only:

Name Type Description

$VSVersion integer Specifies the Visual Studio version. Valid values:

0 No Visual Studio project

2010 Visual Studio 2010

2013 Visual Studio 2013

2015 Visual Studio 2015

2017 Visual Studio 2017

2019 Visual Studio 2019

15.2.7.5 Creating output files

These statements are used to create output files from the code generation. Remember that all of these
statements must be inside a block delimited by square brackets.

create

create filename

creates a new file. The file has to be closed with the close statement. All following output is written to the
specified file.

1006 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Example:

[create $outputpath & "/" & $JavaPackageDir & "/" & $application.Name & ".java"]

package [=$JavaPackageName];

public class [=$application.Name]Application {
...
}
[close]

close

closes the current output file.

=$variable

writes the value of the specified variable to the current output file.

Example:

[$x = 20+3]
The result of your calculation is [=$x] - so have a nice day!

The file output will be:

The result of your calculation is 23 - so have a nice day!

write

write string

writes the string to the current output file.

Example:

[write "C" & $name]

This can also be written as:

© 2018-2024 Altova GmbH

Integrate Generated Code 1007Code Generator

Altova MapForce 2024 Professional Edition

C[=$name]

filecopy ... to ...

filecopy source to target

copies the source file to the target file, without any interpretation.

Example:

filecopy "java/mapforce/mapforce.png" to $outputpath & "/" & $JavaPackageDir &
"/mapforce.png"

15.2.7.6 Operators

Operators in SPL work like in most other programming languages.

List of SPL operators in descending precedence order:

. Access object property
() Expression grouping
true boolean constant "true"
false boolean constant "false"

& String concatenation

- Sign for negative number
not Logical negation

* Multiply
/ Divide
% Modulo

+ Add
- Subtract

<= Less than or equal
< Less than
>= Greater than or equal
> Greater than

= Equal
<> Not equal

and Logical conjunction (with short circuit evaluation)
or Logical disjunction (with short circuit evaluation)

1008 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

= Assignment

15.2.7.7 Conditions

SPL allows you to use standard "if" statements. The syntax is as follows:

if condition

statements
else

statements
endif

or, without else:

if condition

statements
endif

Note: There are no round brackets enclosing the condition.

As in any other programming language, conditions are constructed with logical and comparison operators .

Example:

[if $namespace.ContainsPublicClasses and $namespace.Prefix <> ""]
whatever you want ['inserts whatever you want, in the resulting file]

[endif]

Switch
SPL also contains a multiple choice statement.

Syntax:

switch $variable

case X:

statements
case Y:

case Z:

statements
default:

statements
endswitch

The case labels must be constants or variables.

The switch statement in SPL does not fall through the cases (as in C), so there is no need for a "break"
statement.

1007

© 2018-2024 Altova GmbH

Integrate Generated Code 1009Code Generator

Altova MapForce 2024 Professional Edition

15.2.7.8 Collections and foreach

Collections and iterators
 A collection contains multiple objects - like a ordinary array. Iterators solve the problem of storing and
incrementing array indexes when accessing objects.

Syntax:

foreach iterator in collection

statements
next

Example:

[foreach $class in $classes

if not $class.IsInternal

] class [=$class.Name];
[endif

next]

Example 2:

[foreach $i in 1 To 3

 Write "// Step " & $i & "\n"

 ‘ Do some work
next]

In the first line:

$classes is the global object of all generated types. It is a collection of single class objects.

Foreach steps through all the items in $classes, and executes the code following the instruction, up to the
next statement, for each of them.

In each iteration, $class is assigned to the next class object. You simply work with the class object instead of
using, classes[i]->Name(), as you would in C++.

All collection iterators have the following additional properties:

Index The current index, starting with 0

IsFirst true if the current object is the first of the collection (index is 0)

IsLast true if the current object is the last of the collection

Current The current object (this is implicit if not specified and can be left out)

Example:

1004

1010 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

[foreach $enum in $facet.Enumeration

if not $enum.IsFirst

], [
endif

]"[=$enum.Value]"[
next]

15.2.7.9 Subroutines

Code generator supports subroutines in the form of procedures or functions.

Features:

· By-value and by-reference passing of values
· Local/global parameters (local within subroutines)
· Local variables
· Recursive invocation (subroutines may call themselves)

15.2.7.9.1 Subroutine declaration

Subroutines

Syntax example:

Sub SimpleSub()

... lines of code
 EndSub

· Sub is the keyword that denotes the procedure.
· SimpleSub is the name assigned to the subroutine.
· Round parenthesis can contain a parameter list.
· The code block of a subroutine starts immediately after the closing parameter parenthesis.
· EndSub denotes the end of the code block.

Note: Recursive or cascaded subroutine declaration is not permitted, i.e. a subroutine may not contain
another subroutine.

Parameters
Parameters can also be passed by procedures using the following syntax:

· All parameters must be variables
· Variables must be prefixed by the $ character
· Local variables are defined in a subroutine
· Global variables are declared explicitly, outside of subroutines
· Multiple parameters are separated by the comma character "," within round parentheses
· Parameters can pass values

© 2018-2024 Altova GmbH

Integrate Generated Code 1011Code Generator

Altova MapForce 2024 Professional Edition

Parameters - passing values
Parameters can be passed in two ways, by value and by reference, using the keywords ByVal and ByRef
respectively.

Syntax:

' define sub CompleteSub()
[Sub CompleteSub($param, ByVal $paramByValue, ByRef $paramByRef)
] ...

· ByVal specifies that the parameter is passed by value. Note that most objects can only be passed by
reference.

· ByRef specifies that the parameter is passed by reference. This is the default if neither ByVal nor
ByRef is specified.

Function return values
To return a value from a subroutine, use the return statement. Such a function can be called from within an
expression.

Example:

' define a function
[Sub MakeQualifiedName(ByVal $namespacePrefix, ByVal $localName)
if $namespacePrefix = ""
 return $localName
else
 return $namespacePrefix & ":" & $localName
endif
EndSub
]

15.2.7.9.2 Subroutine invocation

Use call to invoke a subroutine, followed by the procedure name and parameters, if any.

Call SimpleSub()

or

Call CompleteSub("FirstParameter", $ParamByValue, $ParamByRef)

Function invocation
To invoke a function (any subroutine that contains a return statement), simply use its name inside an
expression. Do not use the call statement to call functions. Example:

1012 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

$QName = MakeQualifiedName($namespace, "entry")

15.2.7.9.3 Subroutine example

The following example shows subroutine declaration and invocation.

[create $outputpath & $module & "output.txt"

' define sub SimpleSub()
Sub SimpleSub()
]SimpleSub() called
[endsub

' execute sub SimpleSub()
Call SimpleSub()

$ParamByValue = "Original Value"
]ParamByValue = [=$ParamByValue]
[$ParamByRef = "Original Value"
]ParamByRef = [=$ParamByRef]

' define sub CompleteSub()
[Sub CompleteSub($param, ByVal $paramByValue, ByRef $paramByRef)
]CompleteSub called.

param = [=$param]

paramByValue = [=$paramByValue]

paramByRef = [=$paramByRef]
[$ParamByRef = "Local Variable"
$paramByValue = "new value"
$paramByRef = "new value"
] Set values inside Sub
[$ParamByRef = "Local Variable"
$paramByValue = "new value"
$paramByRef = "new value"
]CompleteSub finished.
[endsub

' run sub CompleteSub()
Call CompleteSub("FirstParameter", $ParamByValue, $ParamByRef)
]
ParamByValue=[=$ParamByValue]
ParamByRef=[=$ParamByRef]
[
Close
]

© 2018-2024 Altova GmbH

Integrate Generated Code 1013Code Generator

Altova MapForce 2024 Professional Edition

15.2.7.10 Built in Types

The section describes the properties of the built-in types used in the predefined variables which describe the
parsed schema.

15.2.7.10.1 Library

This object represents the whole library generated from the XML Schema or DTD.

Property Type Description

SchemaNamespaces Namespace
collection

Namespaces in this library

SchemaFilename string Name of the XSD or DTD file this library is derived from

SchemaType integer 1 for DTD, 2 for XML Schema

Guid string A globally unique ID

CodeName string Generated library name (derived from schema file name)

15.2.7.10.2 Namespace

One namespace object per XML Schema namespace is generated. Schema components that are not in any
namespace are contained in a special namespace object with an empty NamespaceURI. Note that for DTD,
namespaces are also derived from attributes whose names begin with "xmlns".

Property Type Description

CodeName string Name for generated code (derived from prefix)

LocalName string Namespace prefix

NamespaceURI string Namespace URI

Types Type
collection

All types contained in this namespace

Library Library Library containing this namespace

15.2.7.10.3 Type

This object represents a complex or simple type. It is used to generate a class in the target language. There is
one additional type per library that represents the document, which has all possible root elements as members.

Anonymous types have an empty LocalName.

1004

1013

1013

1013

1014 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Property Type Description

CodeName string Name for generated code (derived from local
name or parent declaration)

LocalName string Original name in the schema

Namespace Namespace Namespace containing this type

Attributes Member
collection

Attributes contained in this type*

Elements Member
collection

Child elements contained in this type

IsSimpleType boolean True for simple types, false for complex types

IsDerived boolean True if this type is derived from another type,
which is also represented by a Type object

IsDerivedByExtension boolean True if this type is derived by extension

IsDerivedByRestriction boolean True if this type is derived by restriction

IsDerivedByUnion boolean True if this type is derived by union

IsDerivedByList boolean True if this type is derived by list

BaseType Type The base type of this type (if IsDerived is true)

IsDocumentRootType boolean True if this type represents the document itself

Library Library Library containing this type

IsFinal boolean True if declared as final in the schema

IsMixed boolean True if this type can have mixed content

IsAbstract boolean True if this type is declared as abstract

IsGlobal boolean True if this type is declared globally in the
schema

IsAnonymous boolean True if this type is declared locally in an element

For simple types only:

Property Type Description

IsNativeBound boolean True if native type binding exists

NativeBinding NativeBinding Native binding for this type

Facets Facets Facets of this type

1013

1015

1015

1013

1016

1016

© 2018-2024 Altova GmbH

Integrate Generated Code 1015Code Generator

Altova MapForce 2024 Professional Edition

Property Type Description

Whitespace string Shortcut to the Whitespace facet

* Complex types with text content (these are types with mixed content and complexType with simpleContent)
have an additional unnamed attribute member that represents the text content.

15.2.7.10.4 Member

This object represents an attribute or element in the XML Schema. It is used to create class members of types.

Property Type Description

CodeName string Name for generated code (derived from local
name or parent declaration)

LocalName string Original name in the schema. Empty for the
special member representing text content of
complex types.

NamespaceURI string The namespace URI of this Element/Attribute
within XML instance documents/streams.

DeclaringType Type Type originally declaring the member (equal to
ContainingType for non-inherited members)

ContainingType Type Type where this is a member of

DataType Type Data type of this member's content

Library Library Library containing this member's DataType

IsAttribute boolean True for attributes, false for elements

IsOptional boolean True if minOccurs = 0 or optional attribute

IsRequired boolean True if minOccurs > 0 or required attribute

IsFixed boolean True for fixed attributes, value is in Default
property

IsDefault boolean True for attributes with default value, value is in
Default property

IsNillable boolean True for nillable elements

IsUseQualified boolean True if NamespaceURI is not empty

MinOccurs integer minOccurs, as in schema. 1 for required
attributes

MaxOccurs integer maxOccurs, as in schema. 0 for prohibited
attributes, -1 for unbounded

1013

1013

1013

1013

1016 Code Generator Integrate Generated Code

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Property Type Description

Default string Default value

15.2.7.10.5 NativeBinding

This object represents the binding of a simple type to a native type in the target programming language, as
specified by the "schemanativetype" map.

Property Type Description

ValueType string Native type

ValueHandler string Formatter class instance

15.2.7.10.6 Facets

This object represents all facets of a simple type. Inherited facets are merged with the explicitly declared
facets. If a Length facet is in effect, MinLength and MaxLength are set to the same value.

Property Type Description

DeclaringType Type Type facets are declared on

Whitespace string "preserve", "collapse" or "replace"

MinLength integer Facet value

MaxLength integer Facet value

MinInclusive integer Facet value

MinExclusive integer Facet value

MaxInclusive integer Facet value

MaxExclusive integer Facet value

TotalDigits integer Facet value

FractionDigits integer Facet value

List Facet collection All facets as list

Facet
This object represents a single facet with its computed value effective for a specific type.

© 2018-2024 Altova GmbH

Integrate Generated Code 1017Code Generator

Altova MapForce 2024 Professional Edition

Property Type Description

LocalName string Facet name

NamespaceURI string Facet namespace

FacetType string one of "normalization", "lexicalspace",
"valuespace-length", "valuespace-enum" or
"valuespace-range"

DeclaringType Type Type this facet is declared on

FacetCheckerName string Name of facet checker (from schemafacet map)

FacetValue string or integer Actual value of this facet

1013

1018 Menu Commands

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

16 Menu Commands

This section describes the MapForce menu commands. The following menu commands are available:

· File
· Edit
· Insert
· Project
· Component
· Connection
· Function
· Output
· Debug
· View
· Tools
· Window
· Help

1019

1021

1022

1025

1027

1029

1030

1031

1033

1034

1036

1053

1054

© 2018-2024 Altova GmbH

File 1019Menu Commands

Altova MapForce 2024 Professional Edition

16.1 File

This topic lists all the menu commands available in the File menu.

New

Creates a new mapping document. In Professional and Enterprise editions, you can also create a
mapping project (.mfp). For details, see Projects .

Open

Opens the previously saved mapping design (.mfd). In Professional and Enterprise editions, you can also
open a mapping project (.mfp). For details, see Projects .

Save/Save As/Save All

The Save option saves the currently active mapping with its current name. The Save As option allows you
to save the currently open mapping with a different name. The Save All command saves all currently open
mapping files.

Reload

Reloading the currently active mapping reverts your last changes.

Close/Close All

The Close command closes the currently active mapping. The Close All command closes all currently
open mappings. You are asked if you want to save any of the unsaved files.

Print/Print Preview/Print Setup

The Print command opens the Print dialog box (see below) that enables you to print out your mapping.
Use current retains the currently defined zoom factor of the mapping. Use optimal scales the mapping to
fit the page size. You can also specify the zoom factor numerically. Component scrollbars are not printed.
You can also specify if you want to allow graphics to be split over several pages or not.

79

79

1020 Menu Commands File

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The Preview command opens the same Print dialog box with the same settings as described above. The
Print Setup command opens the Print Setup dialog box in which you can select a printer and configure
paper settings.

Validate Mapping

The Validate Mapping command checks whether all mappings are valid and displays relevant
information messages, warnings, and errors. For details, see Validation .

Mapping Settings

Opens the Mapping Settings dialog box where you can define document-specific settings.

Open Credentials Manager (Enterprise Edition)

Opens Credentials Manager that allows you to manage credentials required in mappings that perform
basic HTTP authentication or OAuth 2.0 authorization.

Generate Code in Selected Language/Generate Code in

The Generate Code in Selected Language command generates code in language selected in the
toolbar. The Generate Code in <language> command enables you to generate code in XSLT 1-3 (all
editions), XQuery, Java, C#, and C++ (Professional and Enterprise editions). Selecting either command
opens the Browse for Folder dialog box in which you need to select the location of the generated files.
The names of the generated files are defined in the Mapping Settings dialog box.

For more information about the available transformation languages, see Transformation Languages . For
more information about generating code, see Code Generation .

Compile to MapForce Server Execution File (Professional and Enterprise editions)

Generates a file that can be executed by MapForce Server to run the mapping transformation. For details,
see Compiling a MapForce mapping .

Deploy to FlowForce Server (Professional and Enterprise editions)

Deploys the currently active mapping to FlowForce Server. For details, see Deploying a MapForce
mapping .

Generate Documentation (Professional and Enterprise editions)

Generates documentation of your mapping projects in great detail in various output formats. For more
information, see Generating Mapping Documentation .

Recent files

Displays the list of the most recently opened files.

Exit

Exits the application. You are asked if you want to save any unsaved files.

66

77

77

21

68

825

828

787

© 2018-2024 Altova GmbH

Edit 1021Menu Commands

Altova MapForce 2024 Professional Edition

16.2 Edit

This topic lists all the menu commands available in the Edit menu. Most of the commands in this menu
become active when you view the result of a mapping in the Output pane or preview code, for example, in the
XSLT pane.

Undo

MapForce has an unlimited number of undo steps that you can use to retrace your mapping steps. You

can also use the toolbar command to undo actions.

Redo

The redo command allows you to redo previously undone actions. You can step backward and forward

through the undo history using both these commands. You can also use the toolbar command to
redo actions.

Find

Allows you to search for specific text in any of the XQuery (Professional and Enterprise editions), XSLT,

XSLT2, XSLT3, and Output panes. You can also do a search using the toolbar command.

Find Next

Searches for the next occurrence of the same search string. You can also search for the next occurrence

using the toolbar button.

Find Previous

Searches for the previous occurrence of the same search string. Searching for the previous occurrence is

also possible with the toolbar command.

Cut/Copy/Paste/Delete

The standard windows Edit commands that allow you to cut, copy, paste, and delete any components or
functions visible in the mapping window.

Select all

Selects all components in the Mapping pane or the text/code in the XQuery (Professional and
Enterprise editions), XSLT, XSLT2, XSLT3, and Output panes.

1022 Menu Commands Insert

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

16.3 Insert

This topic lists all the menu commands available in the Insert menu.

XML Schema/File

Adds an XML schema or instance file to the mapping. If you select an XML file without a schema
reference, MapForce can generate a matching XML schema . If you select an XML schema file, you are
prompted to include an XML instance file which supplies the data for preview. You can also add an

XML/XSD file via the toolbar command.

Database (Professional and Enterprise editions)

Adds a database component. See Databases . You can also add a database component via the
toolbar command. In MapForce Enterprise Edition, you can also add NoSQL databases as components.

EDI (Enterprise Edition)

Adds an EDI document. You can also add an EDI component via the toolbar command.

Text File (Professional and Enterprise editions)

Adds a flat file document such as CSV or a fixed-length text file. For details, see CSV and Text Files .

You can also add a text file via the toolbar command. MapForce Enterprise Edition also allows you
to process text files with FlexText.

Web Service Function (Enterprise Edition)

Adds a call to a Web service. You can also add a Web service via the toolbar button.

Excel 2007+ File (Enterprise Edition)

Adds a Microsoft Excel 2007+ (.xlsx) file. If you do not have Excel 2007+ installed on your machine,

you can still map to or from Excel 2007+ files. In this case, you cannot preview the result in the Output

pane, but you can still save the result. You can also add an Excel file via the toolbar command.

XBRL Document (Enterprise Edition)

Adds an XBRL instance or taxonomy document. You can also add an XBRL component via the
toolbar command.

JSON Schema/File (Enterprise Edition)

Adds a JSON schema or file. You can also add a JSON component via the toolbar command.

Protocol Buffers File (Enterprise Edition)

116

149

329

© 2018-2024 Altova GmbH

Insert 1023Menu Commands

Altova MapForce 2024 Professional Edition

Adds a binary file encoded in Protocol Buffers format. You can also add a file in Protocol Buffers format via

the toolbar command.

Insert PDF Document (Enterprise Edition)

Adds a PDF document. You can also insert a PDF document via the toolbar.

Insert Input

Simple-Input components can be used as input parameters that are relevant to the entire mapping or only
in the context of user-defined functions. For more information, see Simple Input and Parameters in

UDFs . You can also insert a Simple-Input component using the toolbar command.

Insert Output

Simple-Output components can be used as output components in mappings and as output parameters of
user-defined functions. For more information, see Simple Output and Parameters in UDFs . You can

also insert a Simple-Output component using the toolbar command.

Constant

Inserts a constant which supplies fixed data to an input connector. You can select the following types of

data: String, Number and All other. You can also insert a constant using the toolbar command.

Variable

Inserts a variable , which is equivalent to a regular (non-inline) user-defined function. A variable is a
special type of components used to store an intermediate mapping result for further processing. You can

also add a variable using the toolbar command.

Join (Professional and Enterprise editions)

The Join component allows you to join data in SQL and non-SQL modes. You can also add a Join

component using the toolbar command. For details, see Joining Data .

Sort: Nodes/Rows

Inserts a component which allows you to sort nodes (see Sort Nodes/Rows). You can also add a Sort

component using the toolbar command.

Filter: Nodes/Rows

Inserts a Filter component that can filter data from any other component structure supported by
MapForce, including databases. For more information, see Filters and Conditions . You can also add a

filter using the toolbar command.

SQL/NoSQL-WHERE/ORDER (Professional and Enterprise editions)

Inserts a component which allows you to filter database data conditionally. For more information, see

352

470

362 470

366

379

408

414

1024 Menu Commands Insert

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

SQL/NoSQL-WHERE/ORDER Component . You can also access the SQL/NoSQL-WHERE/ORDER

component via the toolbar command.

Value-Map

Inserts a component that transforms an input value to an output value using a lookup table. This is useful
when you need to map a set of values to another set of values (e.g., month numbers to month names).

For more information, see Value-Maps . You can also insert a Value-Map using the toolbar
command.

IF-Else Condition

Inserts an If-Else Condition that is suitable for scenarios where you need to process a simple value
conditionally. For more information, see Filters and Conditions . You can also add an If-Else Condition

using the toolbar command.

Exception (Professional and Enterprise editions)

The exception component allows you to interrupt a mapping process when a specific condition is met.

You can also add an Exception component using the toolbar command. In MapForce Enterprise
Edition, this component also allows you to define Fault messages in WSDL mapping projects. For more
information about Exception components, see Exceptions .

 Comment

This menu command allows you to insert sticky-note-style comments as free-standing components. For

details, see Comments . You can also add a comment by clicking the toolbar command.

419

426

414

437

38

© 2018-2024 Altova GmbH

Project 1025Menu Commands

Altova MapForce 2024 Professional Edition

16.4 Project

MapForce allows you to group your mappings into mapping projects . This topic lists all the menu
commands available in the Project menu.

Reload Project

Reloads the currently active project and switches to the Project window.

Close Project

Closes the currently active project.

Save Project

Saves the currently active project.

Add Files to Project

Allows you to add mappings to the current project.

Add Active File to Project

Adds the currently active file to the currently open project.

Create Folder

This option adds a new folder to the current project. See Project Folders .

Create Web Link

This command enables you to create a link to an external Web resource and add this link to your project.
For details, Projects .

Open Mapping (Enterprise Edition)

Opens the currently highlighted/selected mapping in the Project window.

Create Mapping for Operation (Enterprise Edition)

Creates a mapping file for the currently selected operation of the WSDL project.

Add Mapping File for Operation (Enterprise Edition)

Allows you to add a previously saved mapping file to the currently active WSDL operation.

Insert Web Service (Enterprise Edition)

Allows you to insert a Web Service based on an existing WSDL file.

Open in XMLSpy

Opens the selected WSDL file in Altova XMLSpy.

79

82

79

https://www.altova.com/xmlspy-xml-editor

1026 Menu Commands Project

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Generate Code for Entire Project

Generates code for the entire project currently visible in the Project window. Code is generated in the
selected language for all the .mfd files in each folder.

Generate Code in

Generates project code in the language you select from the context menu.

Properties

Opens a dialog box where you can define project settings .

Recent projects

Displays a list of the recently opened projects.

81

© 2018-2024 Altova GmbH

Component 1027Menu Commands

Altova MapForce 2024 Professional Edition

16.5 Component

This topic lists all the menu commands available in the Component menu.

Change Root Element

Allows you to change the root element of an XML instance document.

Edit Schema Definition in XMLSpy

To be able to edit a schema in Altova XMLSpy, you need to click an XML component and then select the
option Edit Schema Definition in XMLSpy.

Edit FlexText Configuration (Enterprise Edition)

This command enables you to edit a FlexText file.

Add/Remove/Edit Database Objects (Professional and Enterprise editions)

Allows you to add, remove, and change database objects in a database component. See Databases .

Create Mapping to EDI X12 997 (Enterprise Edition)

The X12 997 Functional Acknowledgment reports the status of the EDI interchange. All errors encountered
during processing of the document are reported in it. MapForce can automatically generate a X12 997
document that you will be able to send to the recipient.

Create Mapping to EDI X12 999 (Enterprise Edition)

The X12 999 Implementation Acknowledgment Transaction Set reports HIPAA implementation guide non-
compliance or application errors. MapForce can automatically generate an X12 999 component and
automatically create the necessary mapping connections.

Refresh (Professional and Enterprise editions)

Reloads the structure of the currently active database component.

Add Duplicate Input Before/After

Inserts a copy of the selected item before/after this item. Duplicated input cannot be used as a data
source. For more information, see Duplicate Input .

Remove Duplicate

Removes a duplicated item.

Comment/Processing Instructions

This option enables you to insert comments and processing instructions into XML components.

Write Content as CDATA Section

This command creates a CDATA section that is used to represent parts of a document as character
data which would normally be interpreted as markup.

149

44

127

127

https://www.altova.com/xmlspy-xml-editor

1028 Menu Commands Component

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Database Table Actions (Professional and Enterprise editions)

Allows you to configure database insert, update, and delete actions, and other options for database
records. See Database Table Actions Settings for more information.

Query Database (Professional and Enterprise editions)

Creates a SELECT statement based on the table/field you clicked in the database component. Clicking a
table/field makes this command active, and the SELECT statement is automatically placed into the
Select window.

Align Tree Left

Makes the tree of a component left-justified.

Align Tree Right

Makes the tree of a component right-justified.

Edit Comment

If you have a comment component in your mapping, you can edit it, by clicking on it and then selecting
the Edit Comment command. Alternatively, you can double-click inside the comment component and
edit the text directly in the comment box. For more information about comment components and their
types, see Comment .

Properties

Displays the settings of the currently selected component. See Change Component Settings .

265

38

43

© 2018-2024 Altova GmbH

Connection 1029Menu Commands

Altova MapForce 2024 Professional Edition

16.6 Connection

This topic lists all the menu commands available in the Connection menu.

Auto-Connect Matching Children

Activates/deactivates the Auto Connect Matching Children option. For more information about
connections and their types, see Connections .

Settings for Connect Matching Children

Helps you define matching-children connections. For details, see Matching-Children Connections .

Connect Matching Children

This command allows you to create multiple connections for items with the same names in source and

target components. The settings you define in this dialog box apply if the (Auto connect child items)
toolbar command has been enabled. For more information, see Matching-Children Connections .

Target-Driven (Standard)

Changes the connector type to a standard mapping. For further information, see Target-driven vs. source-
driven connections .

Copy-All (Copy Child Items)

Creates connections for all matching child items. The main benefit of copy-all connections is that they
visually simplify the mapping workspace: One connection, represented by a thick line, is created instead
of multiple connections. For details, see Copy-All Connections .

Source-Driven (Mixed Content)

Changes the connection type to a source-driven connection that enables you to automatically map mixed
content (text and child nodes) in the same order as in the XML source file. For more information, see
Source-Driven Connections .

Properties

Opens the Connection Settings dialog box which allows you to define connection types and annotation
settings. For more information, see Connection Settings .

50

56

56

53

58

54

60

1030 Menu Commands Function

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

16.7 Function

This topic lists all the menu commands available in the Function menu.

Create User-Defined Function

Creates a user-defined function (UDF). You can also create a UDF using the toolbar command.

Create User-Defined Function from Selection

Creates a user-defined function based on the currently selected elements in the mapping window. For

details, see Create UDFs . You can also create a UDF from selection using the toolbar command.

Function Settings

Opens the Edit User-defined Function dialog box that allows you to change a UDF's settings. For
details, see Edit UDFs .

Remove Function

Deletes the currently active user-defined function if you are working in a context which allows this.

Insert Input

Simple-Input components can be used as input parameters that are relevant to the entire mapping or only
in the context of user-defined functions. For more information, see Simple Input and Parameters in

UDFs . You can also insert a Simple-Input component using the toolbar command.

Insert Output

Simple-Output components can be used as output components in mappings and as output parameters of
user-defined functions. For more information, see Simple Output and Parameters in UDFs . You can

also insert a Simple-Output component using the toolbar button.

464

467

468

352

470

362 470

© 2018-2024 Altova GmbH

Output 1031Menu Commands

Altova MapForce 2024 Professional Edition

16.8 Output

This topic lists all the menu commands available in the Output menu.

XSLT 1.0/XSLT 2.0/XSLT 3.0/XQuery/Java/C#/C++/Built-In

Sets the transformation language in which the mapping should be executed. The selection of
transformation languages depends on your MapForce edition. For details, see Transformation
Languages . You can also select a transformation language in the toolbar.

Validate Output File

Validates the output XML file against the referenced schema. See Validation .

Save Output File

Saves the data in the Output pane to a file.

Save All Output Files

Saves all the generated output files of dynamic mappings . See also Tutorial 4 .

Regenerate Output

Reloads the data in the Output pane.

Run SQL/NoSQL-Script (Professional and Enterprise editions)

If an SQL/NoSQL script is currently visible in the Output pane, the script executes the mapping to the
target database, taking the defined table actions into account. To find out more about databases, see
Databases .

Insert/Remove Bookmark

Inserts/removes a bookmark at the cursor position in the Output pane.

Next/Previous Bookmark

Navigates to the next/previous bookmark in the Output pane.

Remove All Bookmarks

Removes all currently defined bookmarks in the Output pane.

Pretty-Print XML Text

Reformats your XML document in the Output pane so that the document has a structured display: Each
child node is offset from its parent by a single tab character. In the Output pane, the Tab size settings
defined in the Text View Settings dialog (Tabs group) take effect.

Text View Settings

Displays the Text View Settings dialog box that allows you to customize text view settings in the
XQuery pane (Professional and Enterprise editions), the Output pane, and the XSLT pane. The dialog

21

66

751 107

149

70

1032 Menu Commands Output

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

also shows the currently defined hotkeys. For more information, see Text View Features .70

© 2018-2024 Altova GmbH

Debug 1033Menu Commands

Altova MapForce 2024 Professional Edition

16.9 Debug

This topic lists all the menu commands available in the Debug menu.

Start Debugging

Starts or continues debugging until a breakpoint is hit or the mapping finishes. You can also start

debugging using the toolbar command. For more information about debugging mode, see Debugger
.

Stop Debugging

Stops debugging. This command exits the debug mode and switches MapForce back to standard mode.

You can also stop debugging using the toolbar command. For more information about debugging
mode, see Debugger .

Step Into

Executes the mapping until a single step is finished anywhere in the mapping. In the mapping debugger, a
step is a logical group of dependent computations which normally produce a single item of a sequence.
Depending on the mapping context, this command roughly says the following: go to the left/go to target

child/go to source parent. You can also access this command using the toolbar button. For more
information about debugging mode, see Debugger .

Step Over

Continues execution until the current step finishes (or finishes again for another item of the sequence) or
an unrelated step finishes. This command steps over computations that are inputs of the current step.

You can also access this command using the toolbar button. For more information about debugging
mode, see Debugger .

Step Out

Continues execution until the result of the current step is consumed or a step is executed that is not an
input or child of the consumption. This command steps out of the current computation. Depending on the
mapping context, this command roughly says the following: go to the right/go to target parent/go to

source child. You can also access this command using the toolbar button. For more information about
debugging mode, see Debugger .

Minimal Step

Continues execution until a value is produced or consumed. This command subdivides a step and will
typically stop twice for each connection: (i) once when its source produces a value and (ii) once when its
target consumes it. MapForce does not necessarily compute values in the order the mapping would
suggest, so production and consumption events do not always follow each other. You can also access

this command using the toolbar button. For more information about debugging mode, see Debugger
.

797

797

797

797

797

797

1034 Menu Commands View

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

16.10 View

This topic lists all the menu commands available in the View menu.

Show Annotations

Displays annotations in the component. You can also enable this option by clicking the toolbar
button. If the Show Types icon is also active, both sets of information are shown in grid form (see
screenshot below). You can also use annotations to label connections. For details, see Connection
Settings .

Show Types

Displays data types in a component. You can also enable this option by clicking the toolbar button.
If the Show Annotations icon is also active, then both sets of information are shown in grid form (see
Show Annotations above).

Show Library in Function Header

Displays the library name in the function's header. You can also enable this option by clicking the
toolbar button.

Show Tips

When you place the cursor over a function's header, you will see a tooltip summarizing what this function
does. With the Show Tips option enabled, you can also see information about datatypes in a
component.

XBRL Display Options (Enterprise Edition)

MapForce enables you to configure the following XBRL settings:

· The label language of XBRL items and their annotations
· The preferred label roles for XBRL item names
· The specific type of label roles of annotations for XBRL items
· Custom XBRL Taxonomy Packages

Show Selected Components Connectors/Connections from Source to Target

These options allow you to highlight connections selectively. To find out how these options work, see
Connections .

Zoom

Opens the Zoom dialog box. You can enter the zoom factor numerically or drag the slider to change the
zoom factor interactively.

61

52

© 2018-2024 Altova GmbH

View 1035Menu Commands

Altova MapForce 2024 Professional Edition

Back/Forward

The Back and Forward commands allow you to switch between the previous and next mappings you
have been working on, relative to the currently open mapping.

Status Bar

Switches on/off the Status Bar visible below the Messages window.

Libraries/Manage Libraries

Click Libraries to switch on/off the Libraries window. Click Manage Libraries to switch on/off the
Manage Libraries window.

Messages

Switches on/off the Messages window . When code is generated, the Messages window is
automatically activated to show the validation result.

Overview

Switches on/off the Overview window . Drag the rectangle to navigate your way through the mapping.

Project Window (Professional and Enterprise editions)

Switches on/off the Project window. To find out more about projects, see Projects .

Debug Windows (Professional and Enterprise editions)

The debug mode enables you to analyze the context in which a particular value is produced. This
information is available directly in the mapping and in the Values, Context, and Breakpoints windows.
For more information, see About Debug Mode .

28

28

79

801

1036 Menu Commands Tools

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

16.11 Tools

This topic lists all the menu commands available in the Tools menu.

Global Resources

Opens the Manage Global Resources dialog box that enables you to add, edit, and delete settings
applicable across multiple Altova applications. For more information, see Altova Global Resources .

Active Configuration

Allows you to select the currently active global resource configuration from a list of configurations. To
create and configure different types of global resources, see Altova Global Resources .

Create Reversed Mapping

Creates a reversed mapping from the currently active mapping, which means the source component
becomes the target component, and the target component becomes the source. Note that only direct
connections between components are retained in the reversed mapping. It is likely that the new mapping
will not be valid or suitable for preview in the Output pane. Therefore, the new mapping would require
manual editing.

The following data is retained:

· Direct connections between components
· Direct connections between components in a chained mapping
· The type of connection : Standard, Mixed-Content, Copy-All
· Pass-through component settings
· Database components (Professional and Enterprise editions)

The following data is not retained:

· Connections via functions, filters, etc.
· User-defined functions
· Web service components (Enterprise Edition)

XBRL Taxonomy Manager (Enterprise Edition)

XBRL Taxonomy Manager is a tool that allows you to install and manage XBRL taxonomies.

XML Schema Manager

XML Schema Manager is an Altova tool that provides a centralized way to install and manage XML
schemas (DTDs for XML and XML Schemas) for use across all Altova's XBRL-enabled applications. For
more information, see Schema Manager .

Customize

This option allows you to customize the MapForce graphical user interface. This includes showing/hiding
toolbars as well as customizing menus and keyboard shortcuts .

Restore Toolbars and Windows

841

841

53

133

1037 1038

© 2018-2024 Altova GmbH

Tools 1037Menu Commands

Altova MapForce 2024 Professional Edition

Resets the toolbars, entry helper windows, docked windows etc. to their defaults. You need to restart
MapForce so that the changes take effect.

Options

Opens the Options dialog box that enables you to change the default MapForce settings. For more
information, see Options .

16.11.1 Customize Menus

You can customize standard MapForce menus and context menus (e.g., to add, change, or remove
commands). You can also revert your changes to the default state (Reset). To customize menus, go to Tools |
Customize and click the Menu tab (see screenshot below).

Default Menu vs. MapForce Design
The Default Menu bar is displayed when no document is open in the main window. The MapForce Design menu
bar is displayed when one or more mappings are open. Each menu bar can be customized separately.
Customization changes made to one menu bar do not affect the other.

To customize a menu bar, select it from the Show Menus For drop-down list. Then click the Commands tab
and drag commands from the Commands list box to the menu bar or into any of the menus.

Delete commands from menus
To delete an entire menu or a command inside a menu, do the following:

1040

1038 Menu Commands Tools

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

1. Select Default Menu or MapForce Design from the Show Menus for drop-down list.
2. With the Customize dialog open, select a toolbar command you want to delete or a command you

want to delete from one of the menus.
3. Drag the toolbar command from the toolbar or the command from the menu. Alternatively, right-click

the toolbar command or menu command and select Delete.

You can reset any menu bar to its default state by selecting it from the Show Menus For drop-down list and
clicking the Reset button.

Customize context menus
Context menus appear when you right-click certain objects in the application's interface. Each of these context
menus can be customized in the following way:

1. Select a context menu from the Select context menu drop-down list. This opens the respective context
menu.

2. Open the Commands tab and drag a command from the Commands list box into the context menu.
3. To delete a command from the context menu, right-click that command and select Delete.

Alternatively, drag the command out of the context menu.

You can reset any context menu to its default state by selecting it in the Select context menu drop-down list
and clicking the Reset button.

Menu shadows
Select the Menu shadows check box to give all menus shadows.

16.11.2 Customize Shortcuts

You can define or change keyboard shortcuts in MapForce as follows: Select the Tools | Customize and click
the Keyboard tab. To assign a new shortcut to a command, take the following steps:

1. Select the Tools | Customize command and click the Keyboard tab (see screenshot below).
2. Click the Category combo box to select the menu name.
3. In the Commands list box, select the command you want to assign a new shortcut to.
4. Type in new shortcut keys in the Press New Shortcut Key text box and click Assign.

© 2018-2024 Altova GmbH

Tools 1039Menu Commands

Altova MapForce 2024 Professional Edition

To clear the entry in the Press New Shortcut Key text box, press any of the control keys: Ctrl, Alt or Shift. To
delete a shortcut, click the shortcut you want to delete in the Current Keys list box and click Remove.

Note: The Set accelerator for does not currently have any function.

Keyboard shortcuts
By default, MapForce provides the following keyboard shortcuts:

F1 Help Menu
F2 Next bookmark (in output window)
F3 Find Next
F10 Activate menu bar
Num + Expand current item node
Num - Collapse item node
Num * Expand all from current item node

CTRL + TAB Switches between open mappings
CTRL + F6 Cycle through open windows
CTRL + F4 Closes the active mapping document

Alt + F4 Closes MapForce
Alt + F, F, 1 Opens the last file
Alt + F, T, 1 Opens the last project

CTRL + N File New
CTRL + O File Open
CTRL + S File Save

1040 Menu Commands Tools

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

CTRL + P File Print

CTRL + A Select All
CTRL + X Cut
CTRL + C Copy
CTRL + V Paste
CTRL + Z Undo
CTRL + Y Redo

Del Delete component (with prompt)
Shift + Del Delete component (no prompt)
CTRL + F Find
F3 Find Next
Shift + F3 Find Previous

Arrow keys
(up / down) Select next item of component
Esc Abandon edits/close dialog box
Return Confirms a selection

Output window hotkeys
CTRL + F2 Insert/Remove Bookmark
F2 Next Bookmark
SHIFT + F2 Previous Bookmark
CTRL + SHIFT + F2 Remove All Bookmarks

Zooming hotkeys
CTRL + mouse wheel forward Zoom In
CTRL + mouse wheel back Zoom Out
CTRL + 0 (Zero) Reset Zoom

16.11.3 Options

You can change general and other preferences in MapForce by selecting the Tools | Options command. The
available options are described below.

General

In the General section, you can define the following options:

· Show logo | Show on start: Shows or hides an image (splash screen) when MapForce starts.

· The Mapping view section allows you to set the following parameters:

o You can enable/disable the gradient background in the Mapping pane (Show gradient

background).
o You can limit the display of annotations to N lines (Limit annotation display). For example, if

you have set this option to 2, and your annotation text contains 3 lines, only the first two
lines of the annotation text will be displayed in the mapping. This setting also applies to
SELECT statements visible in a component.

© 2018-2024 Altova GmbH

Tools 1041Menu Commands

Altova MapForce 2024 Professional Edition

o You can also limit the display of a component's comment to N lines (Limit comment

display). For example, if you have limited the comment display to 1 line, and you comment
contains more than one line, the comment box will display only the first line. Setting the
property to 0 will suppress the display of component comments completely. Note that the
Limit comment display option has no effect on comment components .

· Default encoding for new components.

Encoding name: The default encoding for new XML files can be set by selecting an option from
the dropdown list. If a two- or four-byte encoding is selected as the default encoding (i.e. UTF-16,
UCS-2, or UCS-4), you can also choose between little-endian and big-endian byte-ordering. This
setting can also be changed individually for each component (see Change Component
Settings).

Byte order: When a document with two-byte or four-byte character encoding is saved, the
document can be saved either with little-endian or big-endian byte-ordering. You can also specify
whether a byte order mark should be included.

· Preview Settings: The Use execution timeout option sets an execution timeout when you preview
the mapping result in the Output pane.

· On activating Output pane: You can generate output to temporary files or write the output directly
to an output file (see below).

Generate output to temporary files: This is the default option. If the output file path contains
folders that do not exist yet, MapForce will create these folders. For Professional and Enterprise
editions: If you intend to deploy the mapping to a server for execution, any directories in the path
must exist on the server; otherwise, an execution error will occur. See also Preparing Mappings
for Server Execution .

Write directly to final output files: If the output file path contains folders that do not exist yet, an
error will occur. This option overwrites any existing output files without requesting further
confirmation.

· Display text in steps of N million characters: Specifies the maximum size of the text displayed in
the Output pane when you preview mappings that generate large XML and text files. If the output
text exceeds this value, you will need to click the Load more button to load the next chunk. For
more information, see Preview and validate output .

Editing

In the Editing section, you can define mapping view options:

· Align components on mouse dragging: Specify whether components or functions should be
aligned with other components, while you drag them in the Mapping window. For more
information, see Align Components .

· Smart component deletion: MapForce allows you to keep connections even after deleting some
transformation components . Keeping connections might be particularly useful with multiple
child connections, because you will not have to restore every single child connection manually
after deleting a transformation component. For details, see Keep Connections after Deleting
Components .

36

38

43

820

66

43

36

64

1042 Menu Commands Tools

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Messages

The Messages section allows you to switch on message notifications such as suggesting connecting
ancestor items, informing about the creation of multiple target components, and so on.

Generation (Professional and Enterprise editions)

The Generation section allows you to define settings for program-code generation and MapForce Server
Execution files. For more information, see Code Generation , Generation , and Compiling Mappings
to MapForce Server Execution Files .

Java

You may need to add a custom Java VM path, for example, if you are using a Java virtual machine which
does not have an installer and does not create registry entries (e.g., Oracle's OpenJDK). You might also
want to set this path if you need to override any Java VM path detected automatically by MapForce. For
details, see Java .

XBRL (Enterprise Edition)

MapForce enables you to configure the following general (application-wide) XBRL settings:

· The label language of XBRL items and their annotations
· The preferred label roles for XBRL item names
· The specific type of label roles of annotations for XBRL items
· Custom XBRL Taxonomy Packages

Debugger (Professional and Enterprise editions)

In the Debugger section, you can define the following debugging settings:

· Maximum storage length of values: Defines the string length of values displayed in the Values
window (at least 15 characters). Note that setting the storage length to a high value may deplete
available system memory.

· Keep full trace history: Instructs MapForce to keep the history of all values processed by all
connectors of all components in the mapping for the duration of debugging. If this option is
enabled, all values processed since the beginning of debug execution will be stored in memory
and available for your analysis in the Values window until you stop debugging. It is not
recommended to enable this option if you are debugging data-intensive mappings, since it may
slow down debugging execution and deplete available system memory. If this option is disabled,
MapForce keeps only the most recent trace history for nodes related to the current execution
position.

Database (Professional and Enterprise editions)

In the Database section, you can define database query settings. For details, see Database Query
Settings .

Network Proxy

The Network Proxy section enables you to configure custom proxy settings. These settings affect how the
application connects to the Internet. By default, the application uses the system's proxy settings, so you

68 1043

825

1045

1046

© 2018-2024 Altova GmbH

Tools 1043Menu Commands

Altova MapForce 2024 Professional Edition

should not need to change the proxy settings in most cases. For more details, see Network Proxy .

Help

MapForce provides Help (the user manual) in two formats:

· Online Help, in HTML format, which is available at the Altova website. In order to access the
Online Help you will need Internet access.

· A Help file in PDF format, which is installed on your machine when you install MapForce. It is
named MapForce.pdf and is located in the application folder (in the Program Files folder). If you

do not have Internet access, you can always open this locally saved Help fie.

The Help option (screenshot below) enables you to select which of the two formats is opened when you
click the Help (F1) command in the Help menu.

You can change this option at any time for the new selection to take effect. The links in this section (see
screenshot above) open the respective Help format.

16.11.3.1 Generation

The Generation section of the Options dialog enables you to configure various code-generation and server-
execution settings (see below).

1051

1044 Menu Commands Tools

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The available settings are described below.

C++ Settings

This section define the following compiler settings for the C++ environment:

· The Visual Studio version (2013, 2015, 2017, 2019, 2022)
· The XML library (MSXML, Xerces 3.x)
· Whether static or dynamic libraries must be generated
· Whether code must be generated with or without MFC support

C# Settings

If you need to target a specific platform, select the relevant Microsoft .NET <version> option from the drop-
down list. If you need to target the .NET Framework platform for a specific Visual Studio version, select
the relevant Microsoft Visual Studio <version> option.

Wrapper Classes

Allows you to generate wrapper classes for XML schemas. For details, see Generating Code from XML

© 2018-2024 Altova GmbH

Tools 1045Menu Commands

Altova MapForce 2024 Professional Edition

Schemas or DTDs .

Server Execution File

These options are relevant when you compile mappings to MapForce Server execution files. For more
information, see Compiling Mappings to MapForce Server Execution Files .

16.11.3.2 Java

In the Java section (see screenshot below), you can optionally enter the path to a Java VM (Virtual Machine)
on your file system. Note that adding a custom Java VM path is not always necessary. By default, MapForce
attempts to detect the Java VM path automatically by reading (in this order) the Windows registry and the
JAVA_HOME environment variable. The custom path added in this dialog box will take priority over any other
Java VM path detected automatically.

You may need to add a custom Java VM path, for example, if you are using a Java virtual machine which does
not have an installer and does not create registry entries (e.g., Oracle's OpenJDK). You might also want to set
this path if you need to override, for whatever reason, any Java VM path detected automatically by MapForce.

Note the following:

· The Java VM path is shared between Altova desktop (not server) applications. Consequently, if you
change it in one application, it will automatically apply to all other Altova applications.

· The path must point to the jvm.dll file from the \bin\server or \bin\client directory, relative to the

directory where the JDK was installed.
· The MapForce platform (32-bit, 64-bit) must be the same as that of the JDK.
· After changing the Java VM path, you may need to restart MapForce for the new settings to take

effect.

Changing the Java VM path affects the following areas:

· JDBC connectivity

911

825

1046 Menu Commands Tools

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· Java extension functions for XSLT/XPath

This setting does not affect Java code generation.

16.11.3.3 Database

This section explains how to configure various SQL editing settings. You can access the settings in one of the
following ways:

· By opening the DB Query pane and clicking (Options).
· By selecting Tools | Options | Database and then the relevant section.

In the Database section, you can define general SQL editing settings, encoding and result view options, SQL
generation parameters, and fonts. For details, see the subsections below.

SQL Editor
The SQL Editor section allows you to change general SQL editing settings (see screenshot below). The
available settings are described below.

· General. To see different elements of SQL syntax in distinct colors, enable syntax coloring. Select the
Connect data source on execute check box to connect to the relevant data source automatically
whenever an SQL statement is executed.

· Retrieval. Activating the Show timeout dialog check box allows you to change the timeout settings
when the permissible execution period is exceeded. You can specify the maximum amount of time

© 2018-2024 Altova GmbH

Tools 1047Menu Commands

Altova MapForce 2024 Professional Edition

allowed for SQL execution (Execution timeout) in seconds. You can also define the number of rows
that will be put into a buffer.

· Entry Helpers. To enable auto-completion suggestions as you start typing SQL statements, select the
Automatically open check box (see also Auto-Completion). You can choose when to fill in the entry
helper buffer: when you connect to a data source or when the buffer is used for the first time. Note that
filling the buffer may take some time. Use the Clear Buffer button to reset the buffer.

· Text View Settings: Allows you to define different Text View settings such as margins, tabs, visual
aids, auto-highlighting options, and Text View navigation hotkeys. For more information, see Text View
Features .

Encoding
In the Encoding section, you can specify encoding options for SQL files created or opened with SQL Editor
(see screenshot below).

· Default encoding for new SQL files: Define default encoding for new files so that each new document
includes the same encoding. If a two- or four-byte encoding is selected as the default encoding (e.g.,
UTF-16, UCS-2, or UCS-4), you can also choose between little-endian and big-endian byte ordering for
SQL files. The encoding of existing files is not affected by this setting.

· Open SQL files with unknown encoding as: You can select the encoding with which to open an SQL
file with unknown encoding.

· BOM: Choose whether to create the byte order mark (BOM) character for encoding other than UTF-8 or
whether to keep the detected BOM.

Note: SQL files which have no encoding specification are saved with UTF-8 encoding.

SQL Generation
The Generation section enables you to specify SQL statement generation syntax for various database kinds
(see screenshot below).

240

70

1048 Menu Commands Tools

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

To define the syntax preferences for a specific database, select it from the list and then enable or disable
options to the right. You can also choose to apply the same set of settings to all databases (the Apply to all
databases check box). Note that using common settings for all databases may prevent you from editing data in
Oracle, IBM DB2, and iSeries databases via a JDBC connection.

Result View
You can configure the appearance of the Results tab of the DB Query pane in the Result View section (see
screenshot below).

© 2018-2024 Altova GmbH

Tools 1049Menu Commands

Altova MapForce 2024 Professional Edition

Select the Show grid with alternating colors check box to display rows in Result tabs as a simple grid or a grid
with alternating white and colored rows. The alternating color is configurable. The Display Options group allows
you to define how to display horizontal and vertical grid lines, line numbers, and the Result toolbar.

The Data Editing group allows you to define transaction settings if the cells are to be filled with default values,
and if a hint is to be displayed when data editing is limited.

Text Fonts
In the Text Fonts section, you can configure color and font settings of SQL statements (see screenshot below).
You can choose the common font face, style, size, and syntax coloring of various text types that appear in
SQL Editor. Note that the same font and size are used for all text types. Only the style can be changed for
individual text types. If you access the Text Fonts dialog box from the DB Query pane, you can click the
Reset to Page Defaults button to restore the original settings.

1050 Menu Commands Tools

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

16.11.3.4 Network

The Network section (screenshot below) enables you to configure important network settings.

IP addresses
When host names resolve to more than one address in mixed IPv4/IPv6 networks, selecting this option causes
the IPv6 addresses to be used. If the option is not selected in such environments and IPv4 addresses are
available, then IPv4 addresses are used.

Timeout
· Transfer timeout: If this limit is reached for the transfer of any two consecutive data packages of a

transfer (sent or received), then the entire transfer is aborted. Values can be specified in seconds [s] or
milliseconds [ms], with the default being 40 seconds. If the option is not selected, then there is no time
limit for aborting a transfer.

· Connection phase timeout: This is the time limit within which the connection has to be established,
including the time taken for security handshakes. Values can be specified in seconds [s] or
milliseconds [ms], with the default being 300 seconds. This timeout cannot be disabled.

Certificate
· Verify TLS/SSL server certificate: If selected, then the authenticity of the server's certificate is checked

by verifying the chain of digital signatures until a trusted root certificate is reached. This option is
enabled by default. If this option is not selected, then the communication is insecure, and attacks (for
example, a man-in-the-middle attack) would not be detected. Note that this option does not verify that
the certificate is actually for the server that is communicated with. To enable full security, both the
certificate and the identity must be checked (see next option).

· Verify TLS/SSL server identity: If selected, then the server's certificate is verified to belong to the server
we intend to communicate with. This is done by checking that the server name in the URL is the same
as the name in the certificate. This option is enabled by default. If this option is not selected, then the
server's identify is not checked. Note that this option does not enable verification of the server's
certificate. To enable full security, both the certificate as well as the identity must be checked (see

© 2018-2024 Altova GmbH

Tools 1051Menu Commands

Altova MapForce 2024 Professional Edition

previous option).

16.11.3.5 Network Proxy

The Network Proxy section enables you to configure custom proxy settings. These settings affect how the
application connects to the Internet (for XML validation purposes, for example). By default, the application uses
the system's proxy settings, so you should not need to change the proxy settings in most cases. If necessary,
however, you can set an alternative network proxy by selecting, in the Proxy Configuration combo box, either
Automatic or Manual to configure the settings accordingly.

Note: The network proxy settings are shared among all Altova MissionKit applications. So, if you change the
settings in one application, all MissionKit applications will be affected.

Use system proxy settings
Uses the Internet Explorer (IE) settings configurable via the system proxy settings. It also queries the settings
configured with netsh.exe winhttp.

Automatic proxy configuration
The following options are provided:

· Auto-detect settings: Looks up a WPAD script (http://wpad.LOCALDOMAIN/wpad.dat) via DHCP or

DNS, and uses this script for proxy setup.
· Script URL: Specify an HTTP URL to a proxy-auto-configuration (.pac) script that is to be used for

proxy setup.
· Reload: Resets and reloads the current auto-proxy-configuration. This action requires Windows 8 or

newer, and may need up to 30s to take effect.

Manual proxy configuration
Manually specify the fully qualified host name and port for the proxies of the respective protocols. A supported
scheme may be included in the host name (for example: http://hostname). It is not required that the scheme

is the same as the respective protocol if the proxy supports the scheme.

1052 Menu Commands Tools

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The following options are provided:

· HTTP Proxy: Uses the specified host name and port for the HTTP protocol. If Use this proxy server for
all protocols is selected, then the specified HTTP proxy is used for all protocols.

· SSL Proxy: Uses the specified host name and port for the SSL protocol.
· No Proxy for: A semi-colon (;) separated list of fully qualified host names, domain names, or IP

addresses for hosts that should be used without a proxy. IP addresses may not be truncated and IPv6
addresses have to be enclosed by square brackets (for example:
[2606:2800:220:1:248:1893:25c8:1946]). Domain names must start with a leading dot (for

example: .example.com).

· Do not use the proxy server for local addresses: If checked, adds <local> to the No Proxy for list. If

this option is selected, then the following will not use the proxy: (i) 127.0.0.1, (ii) [::1], (iii) all host

names not containing a dot character (.).

Note: If a proxy server has been set and you want to deploy a mapping to Altova FlowForce Server, you must
select the option Do not use the proxy server for local addresses.

Current proxy settings
Provides a verbose log of the proxy detection. It can be refreshed with the Refresh button to the right of the
Test URL field (for example, when changing the test URL, or when the proxy settings have been changed).

· Test URL: A test URL can be used to see which proxy is used for that specific URL. No I/O is done
with this URL. This field must not be empty if proxy-auto-configuration is used (either through Use
system proxy settings or Authomatic proxy configuration).

https://www.altova.com/flowforceserver

© 2018-2024 Altova GmbH

Window 1053Menu Commands

Altova MapForce 2024 Professional Edition

16.12 Window

This topic lists all the menu commands available in the Window menu.

Cascade

This command rearranges all open document windows so that they are all cascaded (i.e. staggered) on
top of each other.

Tile Horizontal

This command rearranges all open document windows as horizontal tiles, making them all visible at the
same time.

Tile Vertical

This command rearranges all open document windows as vertical tiles, making them all visible at the
same time.

Classic/Light/Dark Theme

MapForce allows you to choose from the following themes: Classic, Light, and Dark . The examples of
these themes are illustrated in the screenshots below. The default option is the Classic theme.

Classic Theme

Light Theme

Dark Theme

1 <MappingName>

Refers to the first open mapping design. If there are more mappings opened at the same time, they will be
listed in the context menu, too.

Windows

This list shows all currently open windows and enables you to quickly switch between them. You can also
use the Ctrl-TAB or CTRL F6 keyboard shortcuts to switch between the open windows.

1054 Menu Commands Help

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

16.13 Help

This topic lists all the menu commands available in the Help menu.

Help (F1)

The Help (F1) command opens the application's Help documentation (its user manual). By default, the
Online Help in HTML format at the Altova website will be opened.

If you do not have Internet access or do not want, for some other reason, to access the Online Help, you
can use the locally stored version of the user manual. The local version is a PDF file named
MapForce.pdf that is stored in the application folder (in the Program Files folder).

If you want to change the default format to open (Online Help or local PDF), do this in the Help section of
the Options dialog (menu command Tools | Options).

Software Activation

License your product
After you download your Altova product software, you can license—or activate—it using either a free
evaluation key or a purchased permanent license key.

· Free evaluation license. When you first start the software after downloading and installing it, the
Software Activation dialog will pop up. In it is a button to request a free evaluation license. Click
it to get your license. When you click this button, your machine-ID will be hashed and sent to
Altova via HTTPS. The license information will be sent back to the machine via an HTTP response.
If the license is created successfully, a dialog to this effect will appear in your Altova application.
On clicking OK in this dialog, the software will be activated for a period of 30 days on this
particular machine.

· Permanent license key. The Software Activation dialog allows you to purchase a permanent
license key. Clicking this button takes you to Altova's online shop, where you can purchase a
permanent license key for your product. Your license will be sent to you by e-mail in the form of a
license file, which contains your license-data.

There are three types of permanent license: installed, concurrent user, and named user. An
installed license unlocks the software on a single computer. If you buy an installed license for N
computers, then the license allows use of the software on up to N computers. A concurrent-user
license for N concurrent users allows N users to run the software concurrently. (The software may
be installed on 10N computers.) A named-user license authorizes a specific user to use the
software on up to 5 different computers. To activate your software, click Upload a New License,
and, in the dialog that appears, enter the path to the license file, and click OK.

Note: For multi-user licenses, each user will be prompted to enter his or her own name.

Your license email and the different ways to license (activate) your Altova product
The license email that you receive from Altova will contain your license file as an attachment.
The license file has a .altova_licenses file extension.

To activate your Altova product, you can do one of the following:

© 2018-2024 Altova GmbH

Help 1055Menu Commands

Altova MapForce 2024 Professional Edition

· Save the license file (.altova_licenses) to a suitable location, double-click the

license file, enter any requested details in the dialog that appears, and finish by
clicking Apply Keys.

· Save the license file (.altova_licenses) to a suitable location. In your Altova

product, select the menu command Help | Software Activation, and then Upload a
New License. Browse for or enter the path to the license file, and click OK.

· Save the license file (.altova_licenses) to any suitable location, and upload it from

this location to the license pool of your Altova LicenseServer. You can then either: (i)
acquire the license from your Altova product via the product's Software Activation
dialog (see below) or (ii) assign the license to the product from Altova LicenseServer.
For more information about licensing via LicenseServer, read the rest of this topic.

You can access the Software Activation dialog (screenshot below) at any time by clicking the Help |
Software Activation command.

Activate your software
You can activate the software by registering the license in the Software Activation dialog or by licensing via
Altova LicenseServer (see details below).

· Registering the license in the Software Activation dialog. In the dialog, click Upload a New
License and browse for the license file. Click OK to confirm the path to the license file and to
confirm any data you entered (your name in the case of multi-user licenses). Finish by clicking
Save.

· Licensing via Altova LicenseServer on your network : To acquire a license via an Altova
LicenseServer on your network, click Use Altova LicenseServer, located at the bottom of the
Software Activation dialog. Select the machine on which the LicenseServer you want to use has
been installed. Note that the auto-discovery of License Servers works by means of a broadcast
sent out on the LAN. As these broadcasts are limited to a subnet, License Server must be on the
same subnet as the client machine for auto-discovery to work. If auto-discovery does not work,
then type in the name of the server. The Altova LicenseServer must have a license for your Altova
product in its license pool. If a license is available in the LicenseServer pool, this is indicated in
the Software Activation dialog (see screenshot below showing the dialog in Altova XMLSpy).
Click Save to acquire the license.

https://www.altova.com/licenseserver
https://www.altova.com/licenseserver

1056 Menu Commands Help

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

After a machine-specific (aka installed) license has been acquired from LicenseServer, it cannot
be returned to LicenseServer for a period of seven days. After that time, you can return the
machine license to LicenseServer (click Return License) so that this license can be acquired
from LicenseServer by another client. (A LicenseServer administrator, however, can unassign an
acquired license at any time via the administrator's Web UI of LicenseServer.) Note that the
returning of licenses applies only to machine-specific licenses, not to concurrent licenses.

Check out license
You can check out a license from the license pool for a period of up to 30 days so that the license
is stored on the product machine. This enables you to work offline, which is useful, for example, if
you wish to work in an environment where there is no access to your Altova LicenseServer (such
as when your Altova product is installed on a laptop and you are traveling). While the license is
checked out, LicenseServer displays the license as being in use, and the license cannot be used
by any other machine. The license automatically reverts to the checked-in state when the check-
out period ends. Alternatively, a checked-out license can be checked in at any time via the Check
in button of the Software Activation dialog.

To check out a license, do the following: (i) In the Software Activation dialog, click Check out
License (see screenshot above); (ii) In the License Check-out dialog that appears, select the
check-out period you want and click Check out. The license will be checked out. After checking
out a license, two things happen: (i) The Software Activation dialog will display the check-out
information, including the time when the check-out period ends; (ii) The Check out License
button in the dialog changes to a Check In button. You can check the license in again at any
time by clicking Check In. Because the license automatically reverts to the checked-in status
after the check-out period elapses, make sure that the check-out period you select adequately
covers the period during which you will be working offline.

© 2018-2024 Altova GmbH

Help 1057Menu Commands

Altova MapForce 2024 Professional Edition

If the license being checked out is a Installed User license or Concurrent User license, then the
license is checked out to the machine and is available to the user who checked out the license. If
the license being checked out is a Named User license, then the license is checked out to the
Windows account of the named user. License check-out will work for virtual machines, but not for
virtual desktop (in a VDI). Note that, when a Named User license is checked out, the data to
identify that license check-out is stored in the user's profile. For license check-out to work, the
user's profile must be stored on the local machine that will be used for offline work. If the user's
profile is stored at a non-local location (such as a file-share), then the checkout will be reported as
invalid when the user tries to start the Altova application.

License check-ins must be to the same major version of the Altova product from which the license
was checked out. So make sure to check in a license before you upgrade your Altova product to
the next major version.

Note: For license check-outs to be possible, the check-out functionality must be enabled on
LicenseServer. If this functionality has not been enabled, you will get an error message to this
effect when you try to check out. In this event, contact your LicenseServer administrator.

Copy Support Code
Click Copy Support Code to copy license details to the clipboard. This is the data that you will
need to provide when requesting support via the online support form.

Altova LicenseServer provides IT administrators with a real-time overview of all Altova licenses on a
network, together with the details of each license as well as client assignments and client usage of
licenses. The advantage of using LicenseServer therefore lies in administrative features it offers for large-
volume Altova license management. Altova LicenseServer is available free of cost from the Altova website.
For more information about Altova LicenseServer and licensing via Altova LicenseServer, see the Altova
LicenseServer documentation.

Order Form

When you are ready to order a licensed version of the software product, you can use either the Purchase
a Permanent License Key button in the Software Activation dialog (see previous section) or the Order
Form command to proceed to the secure Altova Online Shop.

Registration

Opens the Altova Product Registration page in a tab of your browser. Registering your Altova software will
help ensure that you are always kept up to date with the latest product information.

Check for Updates

Checks with the Altova server whether a newer version than yours is currently available and displays a
message accordingly.

Support Center

A link to the Altova Support Center on the Internet. The Support Center provides FAQs, discussion forums
where problems are discussed, and access to Altova's technical support staff.

Download Components and Free Tools

A link to Altova's Component Download Center on the Internet. From here you can download a variety of
companion software to use with Altova products. Such software ranges from XSLT and XSL-FO processors

https://www.altova.com/support
https://www.altova.com/
https://www.altova.com/manual/en/licenseserver/3.14/
https://www.altova.com/manual/en/licenseserver/3.14/

1058 Menu Commands Help

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

to Application Server Platforms. The software available at the Component Download Center is typically free
of charge.

MapForce on the Internet

A link to the Altova website on the Internet. You can learn more about MapForce, related technologies and
products on the Altova website.

MapForce Training

A link to the Online Training page on the Altova website. Here you can select from online courses
conducted by Altova's expert trainers.

About MapForce

Displays the splash window and version number of your product. If you are using the 64-bit version of
MapForce, this is indicated with the suffix (x64) after the application name. There is no suffix for the 32-bit
version.

https://www.altova.com/
https://www.altova.com/
https://www.altova.com/

© 2018-2024 Altova GmbH

 1059The MapForce API

Altova MapForce 2024 Professional Edition

17 The MapForce API

The COM-based API of MapForce enables clients to access the functionality of MapForce from a custom code
or application, and automate a wide range of tasks.

The MapForce COM API follows the common specifications for automation servers as set out by Microsoft.
MapForce is automatically registered as a COM server object during installation. Once the COM server object
is registered, you can invoke it from within applications and scripting languages that have programming support
for COM calls. This makes it possible to access the MapForce API not only from development environments
using .NET, C++ and Visual Basic, but also from scripting languages like JScript and VBScript.

Note the following:

· If you use the MapForce API to create an application that you intend to distribute to other clients,
MapForce must be installed on each client computer. Also, your custom integration code must be
deployed to (or your application installed on) each client computer.

· Certain API methods, such as Document.GenerateOutput, require that the MapForce main window is
visible, or MapForce (running as a COM server) is embedded within a graphical user interface. If you
need to run mappings in a fully unattended manner, across various platforms, consider using MapForce
Server (https://www.altova.com/mapforce-server).

https://www.altova.com/mapforce-server

1060 The MapForce API Accessing the API

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.1 Accessing the API

To access the MapForce COM API, a new instance of the Application object must be created in your
application (or script). Once this object is created, you can interact with MapForce by invoking its methods and
properties as required (for example, create a new document, open an existing document, generate mapping
code, etc).

Prerequisites
To make the MapForce COM object available in your Visual Studio project, add a reference to the MapForce
type library (.tlb) file. The following instructions are applicable to Visual Studio 2013, but are similar in other
Visual Studio versions:

1. On the Project menu, click Add Reference.
2. Click Browse and select the MapForce.tlb file located in the MapForce installation folder.

A sample MapForce API client in C# is available at: C:
\Users\<username>\Documents\Altova\MapForce2024\MapForceExamples\API\C#.

In Java, the MapForce API is available through Java-COM bridge libraries. These libraries are available in the
MapForce installation folder: C:\Program Files (x86)\Altova\MapForce2024\JavaAPI (note this path is valid
when 32-bit MapForce runs on 64-bit Windows, otherwise adjust the path accordingly).

· AltovaAutomation.dll: a JNI wrapper for Altova automation servers
· AltovaAutomation.jar: Java classes to access Altova automation servers
· MapForceAPI.jar: Java classes that wrap the MapForce automation interface
· MapForceAPI_JavaDoc.zip: a Javadoc file containing help documentation for the Java API

To allow access to the MapForce automation server directly from Java code, the libraries above must be in the
Java classpath.

A sample MapForce API client in Java is available at: C:
\Users\<username>\Documents\Altova\MapForce2024\MapForceExamples\API\Java.

In scripting languages such as JScript or VBScript, the MapForce COM object is accessible through the
Microsoft Windows Script Host (see https://msdn.microsoft.com/en-us/library/9bbdkx3k.aspx). Such scripts
can be written with a text editor, and do not need compilation, since they are executed by the Windows Script
Host packaged with Windows. (To check that the Windows Script Host is running, type wscript.exe /? at the
command prompt). Several JScript example files that call the MapForce API are available at: C:
\Users\<username>\Documents\Altova\MapForce2024\MapForceExamples\API\JScript.

Note: For 32-bit MapForce, the registered name, or programmatic identifier (ProgId) of the COM object is
MapForce.Application. For 64-bit MapForce, the name is MapForce_x64.Application. Be aware,
though, that the calling program will access the CLASSES registry entries in its own registry hive, or
group (32-bit or 64-bit). Therefore, if you run scripts using the standard command prompt and Windows
Explorer on 64-bit Windows, the 64-bit registry entries will be accessed, which point to the 64-bit
MapForce. For this reason, if both MapForce 32-bit and 64-bit are installed, special handling is required
in order to call the 32-bit MapForce. For example, assuming that Windows Scripting Host is the calling
program, do the following:

1. Change the current directory to C:\Windows\SysWOW64.

https://msdn.microsoft.com/en-us/library/9bbdkx3k.aspx

© 2018-2024 Altova GmbH

Accessing the API 1061The MapForce API

Altova MapForce 2024 Professional Edition

2. At the command line, type wscript.exe followed by the path to the script that you would like to run, for
example:

wscript.exe "C:\Users\...
\Documents\Altova\MapForce2024\MapForceExamples\API\JScript\start.js"

Guidelines
The following guidelines should be considered in your client code:

· Do not hold references to objects in memory longer than you need them. If a user interacts between
two calls of your client, then there is no guarantee that these references are still valid.

· Be aware that if your client code crashes, instances of MapForce may still remain in the system. For
details on how to avoid error messages, see Error handling .

· Free references explicitly, if using languages such as C++.

Creating the Application object
The syntax to create the starting Application object depends on the programming language, as shown in the
examples below:

C#

// Create a new instance of MapForce via its automation interface.
MapForceLib.Application objMapForce = new MapForceLib.Application();

Java

// Start MapForce as COM server.

com.altova.automation.MapForce.Application objMapForce = new Application();

// COM servers start up invisible so we make it visible

objMapForce.setVisible(true);

JScript

// Access a running instance, or create a new instance of MapForce.

try

{

objMapForce = WScript.GetObject ("", "MapForce.Application");

// unhide application if it is a new instance

objMapForce.Visible = true;

}
catch(err) { WScript.Echo ("Can't access or create MapForce.Application"); }

VBA

' Create a new instance of MapForce.
Dim objMapForce As Application

Set objMapForce = CreateObject("MapForce.Application")

VBScript

1064

1062 The MapForce API Accessing the API

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

' Access a running instance, or create a new instance of MapForce.
Set objMapForce = GetObject("MapForce.Application");

Visual Basic

Dim objMapForce As MapForceLib.Application = New MapForceLib.Application

© 2018-2024 Altova GmbH

The Object Model 1063The MapForce API

Altova MapForce 2024 Professional Edition

17.2 The Object Model

The starting point for every application which uses the MapForce API is the Application object. All other
interfaces are accessed through the Application object as the starting point.

The object model of the MapForce API can be represented as follows (each indentation level indicates a child–parent
relationship with the level directly above):

Application
Options
Project

ProjectItem
Documents

Document
MapForceView
Mapping

Component
Datapoint

Components
Connection

Mappings
ErrorMarkers

ErrorMarker
AppOutputLines

AppOutputLine
AppOutputLines

...
AppOutputLineSymbol

For information about creating an instance the Application object, see Accessing the API . For reference
to the objects exposed by the API, see Object Reference .

1088

1088

1195

1204

1219

1157

1139

1176

1183

1120

1137

1133

1135

1193

1166

1162

1115

1104

1117

1060

1088

1064 The MapForce API Error Handling

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.3 Error Handling

The MapForce API returns errors in two different ways. Every API method returns an HRESULT. This return value
informs the caller about any malfunctions during the execution of the method. If the call was successful, the
return value is equal to S_OK. C/C++ programmers generally use HRESULT to detect errors.

Visual Basic, scripting languages, and other high-level development environments do not give the programmer
access to the returning HRESULT of a COM call. They use the second error-raising mechanism supported by the
MapForce API, the IErrorInfo interface. If an error occurs, the API creates a new object that implements the
IErrorInfo interface. The development environment takes this interface and fills its own error-handling
mechanism with the provided information.

The following text describes how to deal with errors raised from the MapForce API in different development
environments.

Visual Basic
A common way to handle errors in Visual Basic is to define an error handler. This error handler can be set with
the On Error statement. Usually the handler displays an error message and does some cleanup to avoid

spare references and any kind of resource leaks. Visual Basic fills its own Err object with the information from

the IErrorInfo interface.

Sub Validate()

 'place variable declarations here

 'set error handler
 On Error GoTo ErrorHandler

 'if generation fails, program execution continues at ErrorHandler:
 objMapForce.ActiveDocument.GenerateXSLT()

 'additional code comes here

 'exit
 Exit Sub

 ErrorHandler:
 MsgBox("Error: " & (Err.Number - vbObjectError) & Chr(13) &

 "Description: " & Err.Description)

End Sub

JavaScript
The Microsoft implementation of JavaScript (JScript) provides a try-catch mechanism to deal with errors raised
from COM calls. It is very similar to the VisualBasic approach, in that you also declare an error object
containing the necessary information.

© 2018-2024 Altova GmbH

Error Handling 1065The MapForce API

Altova MapForce 2024 Professional Edition

function Generate() {

 // please insert variable declarations here

 try {

 objMapForce.ActiveDocument.GenerateXSLT();
 }
 catch (Error) {

 sError = Error.description;
 nErrorCode = Error.number & 0xffff;
 return false;

 }

 return true;

}

C/C++
C/C++ gives you easy access to the HRESULT of the COM call and to the IErrorInterface.

 HRESULT hr;

 // Call GenerateXSLT() from the MapForce API

 if(FAILED(hr = ipDocument->GenerateXSLT()))

 {
 IErrorInfo *ipErrorInfo = Null;

 if(SUCCEEDED(::GetErrorInfo(0, &ipErrorInfo)))

 {
 BSTR bstrDescr;
 ipErrorInfo->GetDescription(&bstrDescr);

 // handle Error information

 wprintf(L"Error message:\t%s\n",bstrDescr);
 ::SysFreeString(bstrDescr);

 // release Error info

 ipErrorInfo->Release();
 }
 }

1066 The MapForce API Example C# Project

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.4 Example C# Project

After you install MapForce, an example MapForce API client project for C# is available in the directory C:
\Users\<username>\Documents\Altova\MapForce2024\MapForceExamples\API.

To compile and run the example, open the solution .sln file in Visual Studio and run Debug | Start Debugging
or Debug | Start Without Debugging.

Note: If you have a 64-bit operating system and are using a 32-bit installation of MapForce, add the x86
platform in the solution's Configuration Manager and build the sample using this configuration. A new
x86 platform (for the active solution in Visual Studio) can be created in the New Solution Platform
dialog (Build | Configuration Manager | Active solution platform | <New…>).

When you run the example, a Windows form is displayed, containing buttons that invoke basic MapForce
operations:

· Start MapForce
· Create a new mapping design
· Open the CompletePO.mfd file from the ...\MapForceExamples folder (note that you may need to

adjust the path to point to the \MapForceExamples folder on your machine)
· Generate C# code in a temp directory
· Shut down MapForce

Code listing
The listing is commented for ease of understanding. The code essentially consists of a series of handlers for
the buttons in the user interface shown above.

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

© 2018-2024 Altova GmbH

Example C# Project 1067The MapForce API

Altova MapForce 2024 Professional Edition

using System.Linq;

using System.Text;

using System.Windows.Forms;

namespace WindowsFormsApplication2

{
 public partial class Form1 : Form

 {
 public Form1()

 {
 InitializeComponent();
 }

 // An instance of MapForce accessed via its automation interface.

 MapForceLib.Application MapForce;

 // Location of examples installed with MapForce

 String strExamplesFolder;

 private void Form1_Load(object sender, EventArgs e)

 {
 }

 // handler for the "Start MapForce" button

 private void StartMapForce_Click(object sender, EventArgs e)

 {
 if (MapForce == null)

 {
 Cursor.Current = Cursors.WaitCursor;

 // if we have no MapForce instance, we create one a nd make it visible.

 MapForce = new MapForceLib.Application();

 MapForce.Visible = true;

 // locate examples installed with MapForce.

 int majorVersionYear = MapForce.MajorVersion + 1998;

 strExamplesFolder = Environment.GetEnvironmentVariable("USERPROFILE") +
"\\My Documents\\Altova\\MapForce" + Convert.ToString(majorVersionYear) + "\
\MapForceExamples\\";

 Cursor.Current = Cursors.Default;
 }
 else

 {
 // if we have already an MapForce instance running we toggle its

visibility flag.

 MapForce.Visible = !MapForce.Visible;
 }
 }

 // handler for the "Open CompletePO.mfd" button

 private void openCompletePO_Click(object sender, EventArgs e)

 {
 if (MapForce == null)

1068 The MapForce API Example C# Project

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 StartMapForce_Click(null, null);

 // Open one of the sample files installed with the product.

 MapForce.OpenDocument(strExamplesFolder + "CompletePO.mfd");
 }

 // handler for the "Create new mapping" button

 private void newMapping_Click(object sender, EventArgs e)

 {
 if (MapForce == null)

 StartMapForce_Click(null, null);

 // Create a new mapping

 MapForce.NewMapping();
 }

 // handler for the "Shutdown MapForce" button

 // shut-down application instance by explicitly releasing the COM object.

 private void shutdownMapForce_Click(object sender, EventArgs e)

 {
 if (MapForce != null)

 {
 // allow shut-down of MapForce by releasing UI

 MapForce.Visible = false;

 // explicitly release COM object

 try

 {
 while

(System.Runtime.InteropServices.Marshal.ReleaseComObject(MapForce) > 0) ;
 }
 finally

 {
 // avoid later access to this object.

 MapForce = null;

 }
 }
 }

 // handler for button "Generate C# Code"

 private void generateCppCode_Click(object sender, EventArgs e)

 {
 if (MapForce == null)

 listBoxMessages.Items.Add("start MapForce first.");
 // COM errors get returned to C# as exceptions. We use a try/catch block to

handle them.

 try

 {
 MapForceLib.Document doc = MapForce.ActiveDocument;

 listBoxMessages.Items.Add("Active document " + doc.Name);
 doc.GenerateCHashCode();

 }

© 2018-2024 Altova GmbH

Example C# Project 1069The MapForce API

Altova MapForce 2024 Professional Edition

 catch (Exception ex)

 {
 // The COM call was not successful.

 // Probably no application instance has been started or no document is

open.

 MessageBox.Show("COM error: " + ex.Message);
 }
 }

 delegate void addListBoxItem_delegate(string sText);

 // called from the UI thread

 private void addListBoxItem(string sText)

 {
 listBoxMessages.Items.Add(sText);
 }
 // wrapper method to allow to call UI controls methods from a worker thread

 void syncWithUIthread(Control ctrl, addListBoxItem_delegate methodToInvoke,

String sText)
 {
 // Control.Invoke: Executes on the UI thread, but calling thread waits for

completion before continuing.

 // Control.BeginInvoke: Executes on the UI thread, and calling thread doesn't

wait for completion.

 if (ctrl.InvokeRequired)

 ctrl.BeginInvoke(methodToInvoke, new Object[] { sText });

 }

 // event handler for OnDocumentOpened event

 private void handleOnDocumentOpened(MapForceLib.Document i_ipDocument)

 {
 String sText = "";

 if (i_ipDocument.Name.Length > 0)

 sText = "Document " + i_ipDocument.Name + " was opened!";
 else

 sText = "A new mapping was created.";

 // we need to synchronize the calling thread with the UI thread because

 // the COM events are triggered from a working thread

 addListBoxItem_delegate methodToInvoke = new

addListBoxItem_delegate(addListBoxItem);
 // call syncWithUIthread with the following arguments:

 // 1 - listBoxMessages - list box control to display messages from COM events

 // 2 - methodToInvoke - a C# delegate which points to the method which will

be called from the UI thread

 // 3 - sText - the text to be displayed in the list box

 syncWithUIthread(listBoxMessages, methodToInvoke, sText);
 }

 private void checkBoxEventOnOff_CheckedChanged(object sender, EventArgs e)

 {
 if (MapForce != null)

 {

1070 The MapForce API Example C# Project

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 if (checkBoxEventOnOff.Checked)

 MapForce.OnDocumentOpened += new

MapForceLib._IApplicationEvents_OnDocumentOpenedEventHandler(handleOnDocumentOpened);
 else

 MapForce.OnDocumentOpened -= new

MapForceLib._IApplicationEvents_OnDocumentOpenedEventHandler(handleOnDocumentOpened);
 }
 }
 }
}

© 2018-2024 Altova GmbH

Example Java Project 1071The MapForce API

Altova MapForce 2024 Professional Edition

17.5 Example Java Project

After you install MapForce, an example MapForce API client project for Java is available in the directory C:
\Users\<username>\Documents\Altova\MapForce2024\MapForceExamples\API.

You can test the Java example directly from the command line, using the batch file BuildAndRun.bat, or you
can compile and run the example project from within Eclipse. See below for instructions on how to use these
procedures.

File list
The Java examples folder contains all the files required to run the example project. These files are listed below:

AltovaAutomation.dll Java-COM bridge: DLL part

AltovaAutomation.jar Java-COM bridge: Java library part

MapForceAPI.jar Java classes of the MapForce API

RunMapForce.java Java example source code

BuildAndRun.bat Batch file to compile and run example code from the command line prompt.
Expects folder where Java Virtual Machine resides as parameter.

.classpath Eclipse project helper file

.project Eclipse project file

MapForceAPI_JavaDoc.zip Javadoc file containing help documentation for the Java API

What the example does
The example starts up MapForce and performs a few operations, including opening and closing documents.
When done, MapForce stays open. You must close it manually.

Running the example from the command line
To run the example from the command line, open a command prompt window, go to the Java folder of the API
Examples folder (see above for location), and then type:

buildAndRun.bat "<Path-to-the-Java-bin-folder>"

The Java binary folder must be that of a Java Development Kit (JDK) 7 or later installation on your computer.

Press the Return key. The Java source in RunMapForce.java will be compiled and then executed.

Loading the example in Eclipse
Open Eclipse and use the File | Import... | General | Existing Projects into Workspace command to add
the Eclipse project file (.project) located in the Java folder of the API Examples folder (see above for
location). The project RunMapForce will then appear in your Package Explorer or Navigator.

Select the project and then the command Run as | Java Application to execute the example.

Note: You can select a class name or method of the Java API and press F1 to get help for that class or
method.

1072 The MapForce API Example Java Project

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Java source code listing
The Java source code in the example file RunMapForce.java is listed below with comments.

// access general JAVA-COM bridge classes

import java.util.Iterator;

import com.altova.automation.libs.*;

// access XMLSpy Java-COM bridge

import com.altova.automation.MapForce.*;

import com.altova.automation.MapForce.Enums.ENUMProgrammingLanguage;

/**

 * A simple example that starts the COM server and performs a few operations on it.

 * Feel free to extend.

 */

public class RunMapForce

{
 public static void main(String[] args)

 {
 // an instance of the application.

 Application mapforce = null;

 // instead of COM error handling use Java exception mechanism.

 try

 {
 // Start MapForce as COM server.

 mapforce = new Application();

 // COM servers start up invisible so we make it visible

 mapforce.setVisible(true);

 // The following lines attach to the application events using a default

implementation

 // for the events and override one of its methods.

 // If you want to override all document events it is better to derive your

listener class

 // from DocumentEvents and implement all methods of this interface.

 mapforce.addListener(new ApplicationEventsDefaultHandler()

 {
 @Override
 public void onDocumentOpened(Document i_ipDoc) throws AutomationException

 {
 String name = i_ipDoc.getName();

 if (name.length() > 0)

 System.out.println("Document " + name + " was opened.");
 else

 System.out.println("A new mapping was created.");
 }
 });

© 2018-2024 Altova GmbH

Example Java Project 1073The MapForce API

Altova MapForce 2024 Professional Edition

 // Locate samples installed with the product.

 int majorVersionYear = mapforce.getMajorVersion() + 1998;

 String strExamplesFolder = System.getenv("USERPROFILE") + "\\Documents\\Altova\
\MapForce" + Integer.toString(majorVersionYear) + "\\MapForceExamples\\";
 // create a new MapForce mapping and generate c++ code

 Document newDoc = mapforce.newMapping();
 ErrorMarkers err1 = newDoc.generateCodeEx(ENUMProgrammingLanguage.eCpp);
 display(err1);
 // open CompletePO.mfd and generate c++ code

 Document doc = mapforce.openDocument(strExamplesFolder + "CompletePO.mfd");
 ErrorMarkers err2 = doc.generateCodeEx(ENUMProgrammingLanguage.eCpp);
 display(err2);

 doc.close();
 doc = null;

 System.out.println("Watch MapForce!");
 }
 catch (AutomationException e)

 {
 // e.printStackTrace();

 }
 finally

 {
 // Make sure that MapForce can shut down properly.

 if (mapforce != null)

 mapforce.dispose();

 // Since the COM server was made visible and still is visible, it will keep

running

 // and needs to be closed manually.

 System.out.println("Now close MapForce!");
 }
 }

 public static void display(ErrorMarkers err) throws AutomationException

 {
 Iterator<ErrorMarker> itr = err.iterator();

 if (err.getCount() == 0)

 System.out.print("Code generation completed successfully.\n");

 while (itr.hasNext())

 {
 String sError = "";
 Object element = itr.next();
 if (element instanceof ErrorMarker)

 sError = ((ErrorMarker)element).getText();
 System.out.print("Error text: " + sError + "\n");
 }
 }
}

1074 The MapForce API JScript Examples

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.6 JScript Examples

After you install MapForce, several JScript example files are available in the directory C:
\Users\<username>\Documents\Altova\MapForce2024\MapForceExamples\API.

The example files can be run in one of two ways:

· From the command line:
Open a command prompt window and type the name of one of the example scripts (for example,
Start.js). The Windows Scripting Host that is packaged with Windows will execute the script.

· From Windows Explorer:
In Windows Explorer, browse for the JScript file and double-click it. The Windows Scripting Host that is
packaged with Windows will execute the script. After the script is executed, the command console
gets closed automatically.

The following example files are included:

Start.js Start Mapforce registered as an automation server or connect to a running instance.
You can also view this code listing in Start Application .

DocumentAccess.js Shows how to open, iterate and close documents. You can also view this code
listing in Simple Document Access .

GenerateCode.js Shows how to invoke code generation using JScript. You can also view this code
listing in Generate Code .

Readme.txt Provides basic help to run the scripts.

This documentation additionally includes a few extra JScript code listings:

· Example: Code Generation
· Example: Mapping Execution
· Example: Project Support

17.6.1 Start Application

The JScript code listing below starts the application and shuts it down. If an instance of the application is
already running, the running instance will be returned. To run the script, start it from a command prompt window
or from Windows Explorer, see also Accessing the API .

// Initialize application's COM object. This will start a new instance of the application
and
// return its main COM object. Depending on COM settings, a the main COM object of an
already
// running application might be returned.

try { objMapForce = WScript.GetObject("", "MapForce.Application"); }

1074

1075

1076

1078

1080

1083

1060

© 2018-2024 Altova GmbH

JScript Examples 1075The MapForce API

Altova MapForce 2024 Professional Edition

catch(err) {}

if(typeof(objMapForce) == "undefined")

{
 try { objMapForce = WScript.GetObject("", "MapForce_x64.Application") }

 catch(err)

 {
 WScript.Echo("Can't access or create MapForce.Application");
 WScript.Quit();
 }
}

// if newly started, the application will start without its UI visible. Set it to
visible.
objMapForce.Visible = true;

WScript.Echo(objMapForce.Edition + " has successfully started. ");

objMapForce.Visible = false; // will shutdown application if it has no more COM

connections
//objMapForce.Visible = true; // will keep application running with UI visible

17.6.2 Simple Document Access

The JScript listing below shows how to open documents, set a document as the active document, iterate
through the open documents, and close documents.

// Initialize application's COM object. This will start a new instance of the application
and
// return its main COM object. Depending on COM settings, a the main COM object of an
already
// running application might be returned.
try { objMapForce = WScript.GetObject("", "MapForce.Application"); }

catch(err) {}

if(typeof(objMapForce) == "undefined")

{
 try { objMapForce = WScript.GetObject("", "MapForce_x64.Application") }

 catch(err)

 {
 WScript.Echo("Can't access or create MapForce.Application");
 WScript.Quit();
 }
}

// if newly started, the application will start without its UI visible. Set it to
visible.
objMapForce.Visible = true;

// **************************** code snippet for "Simple Document Access"

1076 The MapForce API JScript Examples

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

// Locate examples via USERPROFILE shell variable. The path needs to be adapted to major
release versions.
objWshShell = WScript.CreateObject("WScript.Shell");
majorVersionYear = objMapForce.MajorVersion + 1998
strExampleFolder = objWshShell.ExpandEnvironmentStrings("%USERPROFILE%") + "\\Documents\
\Altova\\MapForce" + majorVersionYear + "\\MapForceExamples\\";

objMapForce.Documents.OpenDocument(strExampleFolder + "CompletePO.mfd");
objMapForce.Documents.OpenDocument(strExampleFolder + "Altova_Hierarchical_DB.mfd");

// **************************** code snippet for "Simple Document Access"

// **************************** code snippet for "Iteration"

// go through all open documents using a JScript Enumerator
for (var iterDocs = new Enumerator(objMapForce.Documents); !iterDocs.atEnd();

iterDocs.moveNext())
{
 objName = iterDocs.item().Name;
 WScript.Echo("Document name: " + objName);
}

// go through all open documents using index-based access to the document collection
for (i = objMapForce.Documents.Count; i > 0; i--)

 objMapForce.Documents.Item(i).Close();

// **************************** code snippet for "Iteration"

//objMapForce.Visible = false; // will shutdown application if it has no more COM
connections
objMapForce.Visible = true; // will keep application running with UI visible

The code listed above is available as a sample file (see JScript Examples). To run the script, start it from a
command prompt window or from Windows Explorer.

17.6.3 Generate Code

The JScript listing below shows how to open documents, set a document as the active document, iterate
through the open documents, and generate C++ code.

// Initialize application's COM object. This will start a new instance of the application
and
// return its main COM object. Depending on COM settings, a the main COM object of an
already
// running application might be returned.
try { objMapForce = WScript.GetObject("", "MapForce.Application"); }

catch(err) {}

1074

© 2018-2024 Altova GmbH

JScript Examples 1077The MapForce API

Altova MapForce 2024 Professional Edition

if(typeof(objMapForce) == "undefined")

{
 try { objMapForce = WScript.GetObject("", "MapForce_x64.Application") }

 catch(err)

 {
 WScript.Echo("Can't access or create MapForce.Application");
 WScript.Quit();
 }
}

// if newly started, the application will start without its UI visible. Set it to
visible.
objMapForce.Visible = true;

// **************************** code snippet for "Simple Document Access"

// Locate examples via USERPROFILE shell variable. The path needs to be adapted to major
release versions.
objWshShell = WScript.CreateObject("WScript.Shell");
majorVersionYear = objMapForce.MajorVersion + 1998
strExampleFolder = objWshShell.ExpandEnvironmentStrings("%USERPROFILE%") + "\\Documents\
\Altova\\MapForce" + majorVersionYear + "\\MapForceExamples\\";

objMapForce.Documents.OpenDocument(strExampleFolder + "CompletePO.mfd");
//objMapForce.Documents.OpenDocument(strExampleFolder + "Altova_Hierarchical_DB.mfd");
objMapForce.Documents.NewDocument();

// **************************** code snippet for "Simple Document Access"

// **************************** code snippet for "Iteration"

objText = "";
// go through all open documents using a JScript Enumerator and generate c++ code
for (var iterDocs = new Enumerator(objMapForce.Documents); !iterDocs.atEnd();

iterDocs.moveNext())
{
 objText += "Generated c++ code result for document " + iterDocs.item().Name + " :\n";
 objErrorMarkers = iterDocs.item().generateCodeEx(1); // ENUMProgrammingLanguage.eCpp =
1

 bSuccess = true;

 for (var iterErrorMarkers = new

Enumerator(objErrorMarkers); !iterErrorMarkers.atEnd(); iterErrorMarkers.moveNext())
 {
 bSuccess = false;

 objText += "\t" + iterErrorMarkers.item().Text + "\n";
 }

 if (bSuccess)

 objText += "\tCode generation completed successfully.\n";

1078 The MapForce API JScript Examples

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 objText += "\n";
}

WScript.Echo(objText);

// go through all open documents using index-based access to the document collection
for (i = objMapForce.Documents.Count; i > 0; i--)

 objMapForce.Documents.Item(i).Close();

// **************************** code snippet for "Iteration"

//objMapForce.Visible = false; // will shutdown application if it has no more COM
connections
objMapForce.Visible = true; // will keep application running with UI visible

The code listed above is available as a sample file (see JScript Examples). To run the script, start it from a
command prompt window or from Windows Explorer.

17.6.4 Generate Code (Alternative)

The following JScript example shows how to load an existing document and generate different kinds of mapping
code for it.

// ------------------- begin JScript example ---------------------
// Generate Code for existing mapping.
// works with Windows scripting host.

// ----------------- helper function ------------------
function Exit(strErrorText)

{
 WScript.Echo(strErrorText);
 WScript.Quit(-1);
}

function ERROR(strText, objErr)

{
 if (objErr != null)

 Exit ("ERROR: (" + (objErr.number & 0xffff) + ")" + objErr.description + " - " +
strText);
 else

 Exit ("ERROR: " + strText);
}
// ---

// ----------------- MAIN ------------------

// ----- create the Shell and FileSystemObject of the windows scripting
try

{
 objWshShell = WScript.CreateObject("WScript.Shell");

1074

© 2018-2024 Altova GmbH

JScript Examples 1079The MapForce API

Altova MapForce 2024 Professional Edition

 objFSO = WScript.CreateObject("Scripting.FileSystemObject");
}
catch(err)

 { Exit("Can't create WScript.Shell object"); }

// ----- open MapForce or access running instance and make it visible
try

{
 objMapForce = WScript.GetObject ("", "MapForce.Application");
 objMapForce.Visible = true; // remove this line to perform background processing

}
catch(err) { WScript.Echo ("Can't access or create MapForce.Application"); }

// ----- open an existing mapping. adapt this to your needs!
objMapForce.OpenDocument(objFSO.GetAbsolutePathName ("Test.mfd"));

// ----- access the mapping to have access to the code generation methods
var objDoc = objMapForce.ActiveDocument;

// ----- set the code generation output properties and call the code generation methods.
// ----- adapt the output directories to your needs
try

{
 // ----- code generation uses some of these options
 var objOptions = objMapForce.Options;

 // ----- generate XSLT -----
 objOptions.XSLTDefaultOutputDirectory = "C:\\test\\TestCOMServer\\XSLT";
 objDoc.GenerateXSLT();

 // ----- generate Java Code -----
 objOptions.CodeDefaultOutputDirectory = "C:\\test\\TestCOMServer\\Java";
 objDoc.GenerateJavaCode();

 // ----- generate CPP Code, use same cpp code options as the last time -----
 objOptions.CodeDefaultOutputDirectory = "C:\\test\\TestCOMServer\\CPP";
 objDoc.GenerateCppCode();

 // ----- generate C# Code, use options C# code options as the last time -----
 objOptions.CodeDefaultOutputDirectory = "C:\\test\\TestCOMServer\\CHash";
 objDoc.GenerateCHashCode();
}
catch (err)

 { ERROR ("while generating XSL or program code", err); }

// hide MapForce to allow it to shut down
objMapForce.Visible = false;

// -------------------- end example ---------------------

1080 The MapForce API JScript Examples

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.6.5 Run a Mapping

The following JScript example shows how to load an existing document with a simple mapping, access its
components, set input- and output-instance file names and execute the mapping.

/*
 This sample file performs the following operations:

 Load existing MapForce mapping document.
 Find source and target component.
 Set input and output instance filenames.
 Execute the transformation.

 Works with Windows scripting host.
*/

// ---- general helpers ------------------------------

function Exit(message)

{
 WScript.Echo(message);
 WScript.Quit(-1);
}

function ERROR(message, err)

{
 if(err != null)

 Exit("ERROR: (" + (err.number & 0xffff) + ") " + err.description + " - " + message
);
 else

 Exit("ERROR: " + message);
}

// ---- MapForce constants -----------------------

var eComponentUsageKind_Unknown = 0;

var eComponentUsageKind_Instance = 1;

var eComponentUsageKind_Input = 2;

var eComponentUsageKind_Output = 3;

// ---- MapForce helpers -----------------------

// Searches in the specified mapping for a component by name and returns it.
// If not found, throws an error.
function FindComponent(mapping, component_name)

{
 var components = mapping.Components;

 for(var i = 0 ; i < components.Count ; ++i)

 {

© 2018-2024 Altova GmbH

JScript Examples 1081The MapForce API

Altova MapForce 2024 Professional Edition

 var component = components.Item(i + 1);

 if(component.Name == component_name)

 return component;

 }
 throw new Error("Cannot find component with name " + component_name);

}

// Browses components in a mapping and returns the first one found acting as
// source component (i.e. having connections on its right side).
function GetFirstSourceComponent(mapping)

{
 var components = mapping.Components;

 for(var i = 0 ; i < components.Count ; ++i)

 {
 var component = components.Item(i + 1);

 if(component.UsageKind == eComponentUsageKind_Instance &&

 component.HasOutgoingConnections)
 {
 return component;

 }
 }
 throw new Error("Cannot find a source component");

}

// Browses components in a mapping and returns the first one found acting as
// target component (i.e. having connections on its left side).
function GetFirstTargetComponent(mapping)

{
 var components = mapping.Components;

 for(var i = 0 ; i < components.Count ; ++i)

 {
 var component = components.Item(i + 1);

 if(component.UsageKind == eComponentUsageKind_Instance &&

 component.HasIncomingConnections)
 {
 return component;

 }
 }
 throw new Error("Cannot find a target component");

}

function IndentTextLines(s)

{
 return "\t" + s.replace(/\n/g, "\n\t");

}

function GetAppoutputLineFullText(oAppoutputLine)

{
 var s = oAppoutputLine.GetLineText();

 var oAppoutputChildLines = oAppoutputLine.ChildLines;

1082 The MapForce API JScript Examples

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 var i;

 for(i = 0 ; i < oAppoutputChildLines.Count ; ++i)

 {
 oAppoutputChildLine = oAppoutputChildLines.Item(i + 1);
 sChilds = GetAppoutputLineFullText(oAppoutputChildLine);
 s += "\n" + IndentTextLines(sChilds);
 }

 return s;

}

// Create a nicely formatted string from AppOutputLines
function GetResultMessagesString(oAppoutputLines)

{
 var s1 = "Transformation result messages:\n";

 var oAppoutputLine;

 var i;

 for(i = 0 ; i < oAppoutputLines.Count ; ++i)

 {
 oAppoutputLine = oAppoutputLines.Item(i + 1);
 s1 += GetAppoutputLineFullText(oAppoutputLine);
 s1 += "\n";
 }

 return s1;

}

// ---- MAIN -------------------------------------

var wshShell;

var fso;

var mapforce;

// create the Shell and FileSystemObject of the windows scripting system
try

{
 wshShell = WScript.CreateObject("WScript.Shell");
 fso = WScript.CreateObject("Scripting.FileSystemObject");
}
catch(err)

 { ERROR("Can't create windows scripting objects", err); }

// open MapForce or access currently running instance
try

{
 mapforce = WScript.GetObject("", "MapForce.Application");
}
catch(err)

 { ERROR("Can't access or create MapForce.Application", err); }

© 2018-2024 Altova GmbH

JScript Examples 1083The MapForce API

Altova MapForce 2024 Professional Edition

try

{
 // Make MapForce UI visible. This is an API requirement for output generation.
 mapforce.Visible = true;

 // open an existing mapping.
 // **** adjust the examples path to your needs ! **************
 var sMapForceExamplesPath = fso.BuildPath(

 wshShell.SpecialFolders("MyDocuments"),
 "Altova\\MapForce2024\\MapForceExamples");
 var sDocFilename = fso.BuildPath(sMapForceExamplesPath, "PersonList.mfd");

 var doc = mapforce.OpenDocument(sDocFilename);

 // Find existing components by name in the main mapping.
 // Note, the names of components may not be unique as a schema component's name
 // is derived from its schema file name.
 var source_component = FindComponent(doc.MainMapping, "Employees");

 var target_component = FindComponent(doc.MainMapping, "PersonList");

 // If you do not know the names of the components for some reason, you could
 // use the following functions instead of FindComponent.
 //var source_component = GetFirstSourceComponent(doc.MainMapping);
 //var target_component = GetFirstTargetComponent(doc.MainMapping);

 // specify the desired input and output files.
 source_component.InputInstanceFile = fso.BuildPath(sMapForceExamplesPath,
"Employees.xml");
 target_component.OutputInstanceFile = fso.BuildPath(sMapForceExamplesPath,
"test_transformation_results.xml");

 // Perform the transformation.
 // You can use doc.GenerateOutput() if you do not need result messages.
 // If you have a mapping with more than one target component and you want
 // to execute the transformation only for one specific target component,
 // call target_component.GenerateOutput() instead.
 var result_messages = doc.GenerateOutputEx();

 var summary_info =

 "Transformation performed from " + source_component.InputInstanceFile + "\n" +
 "to " + target_component.OutputInstanceFile + "\n\n" +
 GetResultMessagesString(result_messages);
 WScript.Echo(summary_info);
}
catch(err)

{
 ERROR("Failure", err);
}

17.6.6 Project Tasks

The following JScript example shows how to use the MapForce API to automate tasks pertaining to MapForce
projects. Before running the example, make sure to edit the variable strSamplePath so that it points to the
following folder of your MapForce installation: C:

\Users\<username>\Documents\Altova\MapForce2024\MapForceExamples.

1084 The MapForce API JScript Examples

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

To successfully run all operations in this example below, you will need the Enterprise edition of MapForce. If
you have the Professional edition, comment out the lines that insert the WebService project.

// //////////// global variables /////////////////
var objMapForce = null;

var objWshShell = null;

var objFSO = null;

// !!! adapt the following path to your needs. !!!
var strSamplePath = "C:\\Users\\<username>\\Documents\\Altova\\MapForce2024\

\MapForceExamples\\";

// /////////////////////// Helpers //////////////////////////////

function Exit(strErrorText)

{
 WScript.Echo(strErrorText);
 WScript.Quit(-1);
}

function ERROR(strText, objErr)

{
 if (objErr != null)

 Exit ("ERROR: (" + (objErr.number & 0xffff) + ")" + objErr.description + " - " +
strText);
 else

 Exit ("ERROR: " + strText);
}

function CreateGlobalObjects ()

{
 // the Shell and FileSystemObject of the windows scripting host often useful
 try

 {
 objWshShell = WScript.CreateObject("WScript.Shell");
 objFSO = WScript.CreateObject("Scripting.FileSystemObject");
 }
 catch(err)

 { Exit("Can't create WScript.Shell object"); }

 // create the MapForce connection
 // if there is a running instance of MapForce (that never had a connection) - use it
 // otherwise, we automatically create a new instance
 try

 {
 objMapForce = WScript.GetObject("", "MapForce.Application");
 }
 catch(err)

 {
 { Exit("Can't access or create MapForce.Application"); }
 }
}

© 2018-2024 Altova GmbH

JScript Examples 1085The MapForce API

Altova MapForce 2024 Professional Edition

// --
// print project tree items and their properties recursively.
// --
function PrintProjectTree(objProjectItemIter, strTab)

{
 while (! objProjectItemIter.atEnd())

 {
 // get current project item
 objItem = objProjectItemIter.item();

 try

 {
 // ----- print common properties
 strGlobalText += strTab + "[" + objItem.Kind + "]" + objItem.Name + "\n";

 // ----- print code generation properties, if available
 try

 {
 if (objItem.CodeGenSettings_UseDefault)

 strGlobalText += strTab + " Use default code generation settings\n";
 else

 strGlobalText += strTab + " code generation language is " +
 objItem.CodeGenSettings_Language +
 " output folder is " +
objItem.CodeGenSettings_OutputFolder + "\n";
 }
 catch(err) {}

 // ----- print WSDL settings, if available
 try

 {
 strGlobalText += strTab + " WSDL File is " + objItem.WSDLFile +
 " Qualified Name is " + objItem.QualifiedName + "\n";
 }
 catch(err) {}

 }
 catch(ex)

 { strGlobalText += strTab + "[" + objItem.Kind + "]\n" }

 // ---- recurse
 PrintProjectTree(new Enumerator(objItem), strTab + ' ');

 objProjectItemIter.moveNext();
 }
}

// --
// Load example project installed with MapForce.
// --
function LoadSampleProject()

{
 // close open project
 objProject = objMapForce.ActiveProject;
 if (objProject != null)

1086 The MapForce API JScript Examples

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 objProject.Close();

 // open sample project and iterate through it.
 objProject = objMapForce.OpenProject(strSamplePath + "MapForceExamples.mfp");
 // dump properties of all project items
 strGlobalText = '';
 PrintProjectTree(new Enumerator (objProject), ' ')

 WScript.Echo(strGlobalText);

 objProject.Close();
}

// --
// Create a new project with some folders, mappings and a
// Web service project.
// --
function CreateNewProject()

{
 try

 {
 // create new project and specify file to store it.
 objProject = objMapForce.NewProject(strSamplePath + "Sample.mfp");

 // create a simple folder structure
 objProject.CreateFolder("New Folder 1");
 objFolder1 = objProject.Item(1);
 objFolder1.CreateFolder("New Folder 2");
 objFolder2 = (new Enumerator(objFolder1)).item(); // an alternative to

Item(0)

 // add two different mappings to folder structure
 objFolder1.AddFile(strSamplePath + "DB_Altova_SQLXML.mfd");
 objMapForce.Documents.OpenDocument(strSamplePath + "InspectionReport.mfd");
 objFolder2.AddActiveFile();

 // override code generation settings for this folder
 objFolder2.CodeGenSettings_UseDefault = false;

 objFolder2.CodeGenSettings_OutputFolder = strSamplePath + "SampleOutput"
 objFolder2.CodeGenSettings_Language = 1; //C++

 // insert Web service project based on a wsdl file from the installed examples
 objProject.InsertWebService(strSamplePath + "TimeService/TimeService.wsdl",
 "{http://www.Nanonull.com/TimeService/}TimeService",
 "TimeServiceSoap",
 true);

 objProject.Save();
 if (! objProject.Saved)

 WScript.Echo("problem occurred when saving project");

 // dump project tree
 strGlobalText = '';
 PrintProjectTree(new Enumerator (objProject), ' ')

 WScript.Echo(strGlobalText);
 }
 catch (err)

© 2018-2024 Altova GmbH

JScript Examples 1087The MapForce API

Altova MapForce 2024 Professional Edition

 { ERROR("while creating new project", err); }
}

// --
// Generate code for a project's sub-tree. Mix default code
// generation parameters and overloaded parameters.
// --
function GenerateCodeForNewProject()

{
 // since the Web service project contains only initial mappings,
 // we generate code only for our custom folder.
 // code generation parameters from project are used for Folder1,
 // whereas Folder2 provides overwritten values.
 objFolder = objProject.Item(1);
 objFolder1.GenerateCode();
}

// /////////////////////// MAIN //////////////////////////////

CreateGlobalObjects();
objMapForce.Visible = true;

LoadSampleProject();
CreateNewProject();
GenerateCodeForNewProject();

// uncomment to shut down application when script ends
// objMapForce.Visible = false;

1088 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7 Object Reference

This section provides reference to the objects of the MapForce COM API. The objects are described in a
generic manner, since the API may be used with virtually any language that supports calling a COM object. For
language-specific examples, see:

· Example C# Project
· Example Java Project
· JScript Examples

The API reference contains two main sections, each describing the interfaces and the enumeration types used
in the API, respectively. The enumeration values contain both the string name and a numeric value. If your
scripting environment does not support enumerations, use the number-values instead.

In .NET, for every interface of the MapForce COM automation interface, a .NET class exists with the same
name. Also, COM types will be converted to the appropriate .NET type. For example, a type such as Long in
the COM API would appear as System.Int32 in .NET.

In Java, note the following syntax variations:

· Classes and class names. For every interface of the MapForce automation interface, a Java class
exists with the name of the interface.

· Method names. Method names on the Java interface are the same as used on the COM interfaces,
but start with a small letter to conform to Java naming conventions. To access COM properties, Java
methods that prefix the property name with get and set can be used. If a property does not support
write-access, no setter method is available. For example, for the Name property of the Document
interface, the Java methods getName and setName are available.

· Enumerations. For every enumeration defined in the automation interface, a Java enumeration is
defined with the same name and values.

· Events and event handlers. For every interface in the automation interface that supports events, a
Java interface with the same name plus 'Event' is available. To simplify the overloading of single events,
a Java class with default implementations for all events is provided. The name of this Java class is the
name of the event interface plus 'DefaultHandler'. For example:

Application // Java class to access the application
ApplicationEvents // Events interface for the application
ApplicationEventsDefaultHandler // Default handler for "ApplicationEvents"

17.7.1 Interfaces

17.7.1.1 Application

The Application interface is the interface to a MapForce application object. It represents the main access
point for the MapForce application itself. This interface is the starting point to do any further operations with
MapForce or to retrieve or create other MapForce related automation objects. For information about creating an
instance the Application object, see Accessing the API .

Properties to navigate the object model:

1066

1071

1074

1060

© 2018-2024 Altova GmbH

Object Reference 1089The MapForce API

Altova MapForce 2024 Professional Edition

· Application
· Parent
· Options
· Project
· Documents

Application status:

· Visible
· Name
· Quit
· Status
· WindowHandle

MapForce designs:

· NewDocument
· OpenDocument
· OpenURL
· ActiveDocument

MapForce projects:

· NewProject
· OpenProject
· ActiveProject

MapForce code generation:

· HighlightSerializedMarker

Global resources:

· GlobalResourceConfig
· GlobalResourceFile

Version information:

· Edition
· IsAPISupported
· MajorVersion
· MinorVersion

Properties

Name Description

ActiveDocument Read-only.
Returns the automation object of the currently active document.
This property returns the same as Documents.ActiveDocument.

ActiveProject Read-only.
Returns the automation object of the currently active project.

1092

1093

1090 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Description

Application Read-only.
Retrieves the application's top-level object.

Documents Read-only.
Returns a collection of all currently open documents.

Edition Read-only.
Returns the edition of the application, e.g. "Altova MapForce
Enterprise Edition" for the enterprise edition.

GlobalResourceConfig Gets or sets the name of the active global resource configuration
file. By default, the file is called GlobalResources.xml.

The configuration file can be renamed and saved to any location.
You can therefore have multiple Global Resources XML files.
However, only one of these Global Resources XML File can be
active, per application, at one time, and only the definitions
contained in this file will be available to the application.

GlobalResourceFile Gets or sets the global resource definition file. By default, the
file is called GlobalResources.xml.

IsAPISupported Read-only.
Returns true if the API is supported in this version of MapForce.

LibraryImports Read-only.
Gets a collection of imported libraries. In the MapForce
graphical user interface, these correspond to entries from the
Manage Libraries window, added at application level.

MajorVersion Read-only.
Gets the major version number of MapForce. The version is
calculated starting from 1998, and is incremented by one every
year. For example, the major version is "18" for the release
2016.

MinorVersion Read-only.
The minor version number of the product, e.g. 2 for 2006 R2
SP1.

Name Read-only.
The name of the application.

Options Read-only.
This property gives access to options that configure the
generation of code.

Parent Read-only.
The parent object according to the object model.

ServicePackVersion Read-only.

1093

1093

1094

1094

1095

1095

1095

1096

1096

1097

1097

1097

1098

© 2018-2024 Altova GmbH

Object Reference 1091The MapForce API

Altova MapForce 2024 Professional Edition

Name Description

The service pack version number of the product, e.g. 1 for 2016
R2 SP1.

Status Read-only.
The status of the application. It is one of the values of the
ENUMApplicationStatus enumeration.

Visible True if MapForce is displayed on the screen (though it might be
covered by other applications or be iconized).

False if MapForce is hidden. The default value for MapForce
when automatically started due to a request from the automation
server Application is false. In all other cases, the property is
initialized to true.

An application instance that is visible is said to be controlled by
the user (and possibly by clients connected via the automation
interface). It will only shut down due to an explicit user request.
To shut down an application instance, set its visibility to false
and clear all references to this instance within your program.
The application instance will shut down automatically when no
further COM clients are holding references to it.

WindowHandle Read-only.
Retrieves the application's Window Handle.

Methods

Name Description

HighlightSerializedMarker Use this method to highlight a location in a mapping file that has
been previously serialized. If the corresponding document has
not already been loaded, it will be loaded first. See
Document.GenerateCodeEx for a method to retrieve a serialized
marker.

NewDocument Creates a new empty document. The newly opened document
becomes the ActiveDocument. This method is a shortened form
of Documents.NewDocument.

NewProject Creates a new empty project. The current project is closed. The
new project is accessible under ActiveProject.

NewWebServiceProject Creates a new empty Web Service project. The new project is
accessible under ActiveProject. This method is available in
MapForce Enterprise Edition only.

OpenDocument Loads a previously saved document file and continues working
on it. The newly opened document becomes the
ActiveDocument. This method is a shorter form of
Documents.OpenDocument.

1098

1098

1099

1099

1100

1100

1101

1101

1092 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Description

OpenProject Opens an existing Mapforce project (*.mfp). The current project
is closed. The newly opened project is accessible under
ActiveProject.

OpenURL Loads a previously saved document file from an URL location.
Allows user name and password to be supplied.

Quit Disconnects from MapForce to allow the application to
shutdown. Calling this method is optional since MapForce
keeps track of all external COM connections and automatically
recognizes a disconnection. For more information on automatic
shutdown see the Visible property.

Events

Name Description

OnDocumentOpened This event is triggered when an existing or new document is
opened. The corresponding close event is
Document.OnDocumentClosed.

OnProjectOpened This event is triggered when an existing or new project is loaded
into the application. The corresponding close event is
Project.OnProjectClosed.

OnShutdown This event is triggered when the application is shutting down.

17.7.1.1.1 Properties

17.7.1.1.1.1 ActiveDocument

Returns the automation object of the currently active document. This property returns the same as
Documents.ActiveDocument.

Signature

ActiveDocument : Document

Errors

Error code Description

1000 The application object is no longer valid.

1001 Invalid address for the return parameter was specified.

1102

1103

1103

1104

1104

1104

© 2018-2024 Altova GmbH

Object Reference 1093The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.1.1.2 ActiveProject

Returns the automation object of the currently active project.

Signature

ActiveProject : Project

Errors

Error code Description

1000 The application object is no longer valid.

1001 Invalid address for the return parameter was specified.

17.7.1.1.1.3 Application

Retrieves the application's top-level object.

Signature

Application : Application

Errors

Error code Description

1000 The application object is no longer valid.

1001 Invalid address for the return parameter was specified.

17.7.1.1.1.4 Documents

Returns a collection of all currently open documents.

Signature

Documents : Documents

1094 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Errors

Error code Description

1000 The application object is no longer valid.

1001 Invalid address for the return parameter was specified.

17.7.1.1.1.5 Edition

Returns the edition of the application, e.g. "Altova MapForce Enterprise Edition" for the enterprise edition.

Signature

Edition : String

Errors

Error code Description

1000 The application object is no longer valid.

1001 Invalid address for the return parameter was specified.

17.7.1.1.1.6 GlobalResourceConfig

Gets or sets the name of the active global resource configuration file. By default, the file is called
GlobalResources.xml.

The configuration file can be renamed and saved to any location. You can therefore have multiple Global
Resources XML files. However, only one of these Global Resources XML File can be active, per application, at
one time, and only the definitions contained in this file will be available to the application.

Signature

GlobalResourceConfig : String

Errors

Error code Description

1000 The application object is no longer valid.

1001 Invalid address for the return parameter was specified.

© 2018-2024 Altova GmbH

Object Reference 1095The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.1.1.7 GlobalResourceFile

Gets or sets the global resource definition file. By default, the file is called GlobalResources.xml.

Signature

GlobalResourceFile : String

Errors

Error code Description

1000 The application object is no longer valid.

1001 Invalid address for the return parameter was specified.

17.7.1.1.1.8 IsAPISupported

Returns true if the API is supported in this version of MapForce.

Signature

IsAPISupported : Boolean

Errors

Error code Description

1001 Invalid address for the return parameter was specified.

17.7.1.1.1.9 LibraryImports

Gets a collection of imported libraries. In the MapForce graphical user interface, these correspond to entries
from the Manage Libraries window, added at application level.

Signature

LibraryImports : LibraryImports

Errors

Error code Description

1200 The object is no longer valid.

1096 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Error code Description

1201 Invalid address for the return parameter was specified.

17.7.1.1.1.10 MajorVersion

Gets the major version number of MapForce. The version is calculated starting from 1998, and is incremented
by one every year. For example, the major version is "18" for the release 2016.

Signature

MajorVersion : Long

Errors

Error code Description

1000 The application object is no longer valid.

1001 Invalid address for the return parameter was specified.

17.7.1.1.1.11 MinorVersion

The minor version number of the product, e.g. 2 for 2006 R2 SP1.

Signature

MinorVersion : Long

Errors

Error code Description

1000 The application object is no longer valid.

1001 Invalid address for the return parameter was specified.

© 2018-2024 Altova GmbH

Object Reference 1097The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.1.1.12 Name

The name of the application.

Signature

Name : String

Errors

Error code Description

1000 The application object is no longer valid.

1001 Invalid address for the return parameter was specified.

17.7.1.1.1.13 Options

This property gives access to options that configure the generation of code.

Signature

Options : Options

Errors

Error code Description

1000 The application object is no longer valid.

1001 Invalid address for the return parameter was specified.

17.7.1.1.1.14 Parent

The parent object according to the object model.

Signature

Parent : Application

1098 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Errors

Error code Description

1000 The application object is no longer valid.

1001 Invalid address for the return parameter was specified.

17.7.1.1.1.15 ServicePackVersion

The service pack version number of the product, e.g. 1 for 2016 R2 SP1.

Signature

ServicePackVersion : Long

Errors

Error code Description

1000 The application object is no longer valid.

1001 Invalid address for the return parameter was specified.

17.7.1.1.1.16 Status

The status of the application. It is one of the values of the ENUMApplicationStatus enumeration.

Signature

Status : ENUMApplicationStatus

Errors

Error code Description

1001 Invalid address for the return parameter was specified.

17.7.1.1.1.17 Visible

True if MapForce is displayed on the screen (though it might be covered by other applications or be iconized).

False if MapForce is hidden. The default value for MapForce when automatically started due to a request from
the automation server Application is false. In all other cases, the property is initialized to true.

1234

© 2018-2024 Altova GmbH

Object Reference 1099The MapForce API

Altova MapForce 2024 Professional Edition

An application instance that is visible is said to be controlled by the user (and possibly by clients connected via
the automation interface). It will only shut down due to an explicit user request. To shut down an application
instance, set its visibility to false and clear all references to this instance within your program. The application
instance will shut down automatically when no further COM clients are holding references to it.

Signature

Visible : Boolean

Errors

Error code Description

1000 The application object is no longer valid.

1001 Invalid address for the return parameter was specified.

17.7.1.1.1.18 WindowHandle

Retrieves the application's Window Handle.

Signature

WindowHandle : Long

Errors

Error code Description

1000 The application object is no longer valid.

1001 Invalid address for the return parameter was specified.

17.7.1.1.2 Methods

17.7.1.1.2.1 HighlightSerializedMarker

Use this method to highlight a location in a mapping file that has been previously serialized. If the
corresponding document has not already been loaded, it will be loaded first. See Document.GenerateCodeEx
for a method to retrieve a serialized marker.

Signature

HighlightSerializedMarker(in i_strSerializedMarker:String) -> Void

1100 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Parameters

Name Type Description

i_strSerializedMarker String The ErrorMarker object to
highlight. Use
ErrorMaker.Serialized to obtain
this value.

Errors

Error code Description

1000 The application object is no longer valid.

1001 Invalid address for the return parameter was specified.

1007 The string passed in i_strSerializedMarker is not recognized as a serialized
MapForce marker.

1008 The marker points to a location that is no longer valid.

17.7.1.1.2.2 NewDocument

Creates a new empty document. The newly opened document becomes the ActiveDocument. This method is a
shortened form of Documents.NewDocument.

Signature

NewDocument() -> Document

Errors

Error code Description

1000 The application object is no longer valid.

1001 Invalid address for the return parameter was specified.

17.7.1.1.2.3 NewProject

Creates a new empty project. The current project is closed. The new project is accessible under
ActiveProject.

© 2018-2024 Altova GmbH

Object Reference 1101The MapForce API

Altova MapForce 2024 Professional Edition

Signature

NewProject() -> Project

Errors

Error code Description

1000 The application object is no longer valid.

1001 Invalid address for the return parameter was specified.

17.7.1.1.2.4 NewWebServiceProject

Creates a new empty Web Service project. The new project is accessible under ActiveProject. This method
is available in MapForce Enterprise Edition only.

Signature

NewWebServiceProject() -> Project

Errors

Error code Description

1004 Error creating new project.

1005 Wrong edition of MapForce.

17.7.1.1.2.5 OpenDocument

Loads a previously saved document file and continues working on it. The newly opened document becomes the
ActiveDocument. This method is a shorter form of Documents.OpenDocument.

Signature

OpenDocument(in i_strFileName:String) -> Document

Parameters

Name Type Description

i_strFileName String The path of the document to open.

1102 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Errors

Error code Description

1000 The application object is no longer valid.

1001 Invalid address for the return parameter was specified.

17.7.1.1.2.6 OpenProject

Opens an existing Mapforce project (*.mfp). The current project is closed. The newly opened project is
accessible under ActiveProject.

Signature

OpenProject(in i_strFileName:String) -> Project

Parameters

Name Type Description

i_strFileName String The path of the project to open.

Errors

Error code Description

1000 The application object is no longer valid.

1001 Invalid address for the return parameter was specified.

1002 The supplied filename is not valid.

© 2018-2024 Altova GmbH

Object Reference 1103The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.1.2.7 OpenURL

Loads a previously saved document file from an URL location. Allows user name and password to be supplied.

Signature

OpenURL(in strURL:String, in strUser:String, in strPassword:String) -> Void

Parameters

Name Type Description

strURL String The URL from which the document
should be loaded.

strUser String The username required to access
the URL.

strPassword String The password required to access
the URL.

Errors

Error code Description

1000 The application object is no longer valid.

1001 Invalid address for the return parameter was specified.

1002 The supplied URL is not valid.

1006 Error while opening the URL file.

17.7.1.1.2.8 Quit

Disconnects from MapForce to allow the application to shutdown. Calling this method is optional since
MapForce keeps track of all external COM connections and automatically recognizes a disconnection. For
more information on automatic shutdown see the Visible property.

Signature

Quit() -> Void

1104 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Errors

Error code Description

1000 The application object is no longer valid.

1001 Invalid address for the return parameter was specified.

17.7.1.1.3 Events

17.7.1.1.3.1 OnDocumentOpened

This event is triggered when an existing or new document is opened. The corresponding close event is
Document.OnDocumentClosed.

Signature

OnDocumentOpened(in i_ipDocument:Document) : Void

17.7.1.1.3.2 OnProjectOpened

This event is triggered when an existing or new project is loaded into the application. The corresponding close
event is Project.OnProjectClosed.

Signature

OnProjectOpened(in i_ipProject:Project) : Void

17.7.1.1.3.3 OnShutdown

This event is triggered when the application is shutting down.

Signature

OnShutdown : Void

17.7.1.2 AppOutputLine

Represents a message line. In contrast to ErrorMarker, its structure is more detailed and can contain a
collection of child lines, therefore forming a tree of message lines.

Properties to navigate the object model:

© 2018-2024 Altova GmbH

Object Reference 1105The MapForce API

Altova MapForce 2024 Professional Edition

· Application
· Parent

Line access:

· GetLineSeverity
· GetLineSymbol
· GetLineText
· GetLineTextEx
· GetLineTextWithChildren
· GetLineTextWithChildrenEx

A single AppOutputLine consists of one or more sub-lines. Sub-line access:

· GetLineCount

A sub-line consists of one or more cells. Cell access:

· GetCellCountInLine
· GetCellIcon
· GetCellSymbol
· GetCellText
· GetCellTextDecoration
· GetIsCellText

Below an AppOutputLine there can be zero, one, or more child lines which themselves are of type
AppOutputLine, which thus form a tree structure.

Child lines access:

· ChildLines

Properties

Name Description

Application Read-only.
Retrieves the application's top-level object.

ChildLines Read-only.
Returns a collection of the current line's direct child lines.

Parent Read-only.
The parent object according to the object model.

Methods

Name Description

GetCellCountInLine Gets the number of cells in the sub-line indicated by nLine in
the current AppOutputLine.

1106

1107

1107

1108

1106 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Description

GetCellIcon Gets the icon of the cell indicated by nCell in the current
AppOutputLine's sub-line indicated by nLine

GetCellSymbol Gets the symbol of the cell indicated by nCell in the current
AppOutputLine's sub-line indicated by nLine

GetCellText Gets the text of the cell indicated by nCell in the current
AppOutputLine's sub-line indicated by nLine

GetCellTextDecoration Gets the decoration of the text cell indicated by nCell in the
current AppOutputLine's sub-line indicated by nLine. It can be
one of the ENUMAppOutputLine_TextDecoration values.

GetIsCellText Returns true if the cell indicated by nCell in the current
AppOutputLine's sub-line indicated by nLine is a text cell.

GetLineCount Gets the number of sub-lines the current line consists of.

GetLineSeverity Gets the severity of the line. It can be one of the
ENUMAppOutputLine_Severity values.

GetLineSymbol Gets the symbol assigned to the whole line.

GetLineText Gets the contents of the line as text.

GetLineTextEx Gets the contents of the line as text using the specified part and
line separators.

GetLineTextWithChildren Gets the contents of the line including all child and descendant
lines as text.

GetLineTextWithChildrenEx Gets the contents of the line including all child and descendant
lines as text using the specified part, line, tab and item
separators.

17.7.1.2.1 Properties

17.7.1.2.1.1 Application

Retrieves the application's top-level object.

Signature

Application : Application

1108

1109

1110

1110

1111

1111

1112

1112

1113

1113

1114

1114

© 2018-2024 Altova GmbH

Object Reference 1107The MapForce API

Altova MapForce 2024 Professional Edition

Errors

Error code Description

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.7.1.2.1.2 ChildLines

Returns a collection of the current line's direct child lines.

Signature

ChildLines : AppOutputLines

Errors

Error code Description

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.7.1.2.1.3 Parent

The parent object according to the object model.

Signature

Parent : AppOutputLines

Errors

Error code Description

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

1108 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.2.2 Methods

17.7.1.2.2.1 GetCellCountInLine

Gets the number of cells in the sub-line indicated by nLine in the current AppOutputLine.

Signature

GetCellCountInLine(in nLine:Long) -> Long

Parameters

Name Type Description

nLine Long Specifies the zero-based index of
the line.

Errors

Error code Description

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.7.1.2.2.2 GetCellIcon (obsolete)

Gets the icon of the cell indicated by nCell in the current AppOutputLine's sub-line indicated by nLine

Signature

GetCellIcon(in nLine:Long, in nCell:Long) -> Long

Parameters

Name Type Description

nLine Long

nCell Long

© 2018-2024 Altova GmbH

Object Reference 1109The MapForce API

Altova MapForce 2024 Professional Edition

Errors

Error code Description

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.7.1.2.2.3 GetCellSymbol

Gets the symbol of the cell indicated by nCell in the current AppOutputLine's sub-line indicated by nLine

Signature

GetCellSymbol(in nLine:Long, in nCell:Long) -> AppOutputLineSymbol

Parameters

Name Type Description

nLine Long Specifies the zero-based index of
the line.

nCell Long Specifies the zero-based index of
the cell.

Errors

Error code Description

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

1110 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.2.2.4 GetCellText

Gets the text of the cell indicated by nCell in the current AppOutputLine's sub-line indicated by nLine

Signature

GetCellText(in nLine:Long, in nCell:Long) -> String

Parameters

Name Type Description

nLine Long Specifies the zero-based index of
the line.

nCell Long Specifies the zero-based index of
the cell.

Errors

Error code Description

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.7.1.2.2.5 GetCellTextDecoration

Gets the decoration of the text cell indicated by nCell in the current AppOutputLine's sub-line indicated by
nLine. It can be one of the ENUMAppOutputLine_TextDecoration values.

Signature

GetCellTextDecoration(in nLine:Long, in nCell:Long) -> Long

Parameters

Name Type Description

nLine Long Specifies the zero-based index of
the line.

nCell Long Specifies the zero-based index of
the cell.

© 2018-2024 Altova GmbH

Object Reference 1111The MapForce API

Altova MapForce 2024 Professional Edition

Errors

Error code Description

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.7.1.2.2.6 GetIsCellText

Returns true if the cell indicated by nCell in the current AppOutputLine's sub-line indicated by nLine is a text
cell.

Signature

GetIsCellText(in nLine:Long, in nCell:Long) -> Boolean

Parameters

Name Type Description

nLine Long Specifies the zero-based index of
the line.

nCell Long Specifies the zero-based index of
the cell.

Errors

Error code Description

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.7.1.2.2.7 GetLineCount

Gets the number of sub-lines the current line consists of.

Signature

GetLineCount() -> Long

1112 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Errors

Error code Description

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.7.1.2.2.8 GetLineSeverity

Gets the severity of the line. It can be one of the ENUMAppOutputLine_Severity values.

Signature

GetLineSeverity() -> Long

Errors

Error code Description

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.7.1.2.2.9 GetLineSymbol

Gets the symbol assigned to the whole line.

Signature

GetLineSymbol() -> AppOutputLineSymbol

Errors

Error code Description

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

© 2018-2024 Altova GmbH

Object Reference 1113The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.2.2.10 GetLineText

Gets the contents of the line as text.

Signature

GetLineText() -> String

Errors

Error code Description

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.7.1.2.2.11 GetLineTextEx

Gets the contents of the line as text using the specified part and line separators.

Signature

GetLineTextEx(in psTextPartSeperator:String, in psLineSeperator:String) -> String

Parameters

Name Type Description

psTextPartSeperator String

psLineSeperator String

Errors

Error code Description

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

1114 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.2.2.12 GetLineTextWithChildren

Gets the contents of the line including all child and descendant lines as text.

Signature

GetLineTextWithChildren() -> String

Errors

Error code Description

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.7.1.2.2.13 GetLineTextWithChildrenEx

Gets the contents of the line including all child and descendant lines as text using the specified part, line, tab
and item separators.

Signature

GetLineTextWithChildrenEx(in psPartSep:String, in psLineSep:String, in psTabSep:String,

in psItemSep:String) -> String

Parameters

Name Type Description

psPartSep String

psLineSep String

psTabSep String

psItemSep String

Errors

Error code Description

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

© 2018-2024 Altova GmbH

Object Reference 1115The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.3 AppOutputLines

Represents a collection of AppOutputLine message lines.

Properties to navigate the object model:

· Application
· Parent

Iterating through the collection:

· Count
· Item

Properties

Name Description

Application Read-only.
Retrieves the application's top-level object.

Count Read-only.
Retrieves the number of lines in the collection.

Item Read-only.
Retrieves the line at index n from the collection. Indices start
with 1.

Parent Read-only.
The parent object according to the object model.

17.7.1.3.1 Properties

17.7.1.3.1.1 Application

Retrieves the application's top-level object.

Signature

Application : Application

Errors

Error code Description

4000 The object is no longer valid.

1115

1116

1116

1117

1116 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Error code Description

4001 Invalid address for the return parameter was specified.

17.7.1.3.1.2 Count

Retrieves the number of lines in the collection.

Signature

Count : Integer

Errors

Error code Description

4000 The object is no longer valid.

4001 Invalid address for the return parameter was specified.

17.7.1.3.1.3 Item

Retrieves the line at index n from the collection. Indices start with 1.

Signature

Item(in n:Integer) : AppOutputLine

Errors

Error code Description

4000 The object is no longer valid.

4001 Invalid address for the return parameter was specified.

© 2018-2024 Altova GmbH

Object Reference 1117The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.3.1.4 Parent

The parent object according to the object model.

Signature

Parent : AppOutputLine

Errors

Error code Description

4000 The object is no longer valid.

4001 Invalid address for the return parameter was specified.

17.7.1.4 AppOutputLineSymbol

An AppOutputLineSymbol represents a link in an AppOutputLine message line which can be clicked in the
MapForce Messages window. It is applied to a cell of an AppOutputLine or to the whole line itself.

Properties to navigate the object model:

· Application
· Parent

Access to AppOutputLineSymbol methods:

· GetSymbolHREF
· GetSymbolID
· IsSymbolHREF

Properties

Name Description

Application Read-only.
Retrieves the application's top-level object.

Parent Read-only.
The parent object according to the object model.

Methods

Name Description

GetSymbolHREF If the symbol is of type URL, returns the URL as a string.

1118

1118

1119

1118 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Description

GetSymbolID Gets the ID of the symbol.

IsSymbolHREF Returns true if the symbol is of kind URL.

17.7.1.4.1 Properties

17.7.1.4.1.1 Application

Retrieves the application's top-level object.

Signature

Application : Application

Errors

Error code Description

4200 The object is no longer valid.

4201 Invalid address for the return parameter was specified.

17.7.1.4.1.2 Parent

The parent object according to the object model.

Signature

Parent : Application

Errors

Error code Description

4200 The object is no longer valid.

4201 Invalid address for the return parameter was specified.

1119

1120

© 2018-2024 Altova GmbH

Object Reference 1119The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.4.2 Methods

17.7.1.4.2.1 GetSymbolHREF

If the symbol is of type URL, returns the URL as a string.

Signature

GetSymbolHREF() -> String

Errors

Error code Description

4200 The object is no longer valid.

4201 Invalid address for the return parameter was specified.

17.7.1.4.2.2 GetSymbolID

Gets the ID of the symbol.

Signature

GetSymbolID() -> Long

Errors

Error code Description

4200 The object is no longer valid.

4201 Invalid address for the return parameter was specified.

1120 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.4.2.3 IsSymbolHREF

Returns true if the symbol is of kind URL.

Signature

IsSymbolHREF() -> Boolean

Errors

Error code Description

4200 The object is no longer valid.

4201 Invalid address for the return parameter was specified.

17.7.1.5 Component

A Component represents a MapForce component.

To navigate the control, use the Application and Parent properties.

Component properties:

· HasIncomingConnections
· HasOutgoingConnections
· CanChangeInputInstanceFile
· CanChangeOutputInstanceFile

· ComponentName.
· ID
· IsParameterInputRequired
· IsParameterSequence
· Name
· Preview
· Schema
· SubType
· Type

Instance related properties:

· InputInstanceFile
· OutputInstanceFile

Datapoints:

· GetRootDatapoint

Execution:

© 2018-2024 Altova GmbH

Object Reference 1121The MapForce API

Altova MapForce 2024 Professional Edition

· GenerateOutput

Properties

Name Description

Application Read-only.
Retrieves the application's top-level object.

CanChangeInputInstanceFile Read-only.
Indicates if the input instance file name can be changed.

Returns false if the component has a filename node and this
node has a connection on its left (input) side, otherwise returns
true. If the component does not have a filename node, false is
returned.

CanChangeOutputInstanceFile Read-only.
Indicates if the output instance file name can be changed.

Returns false if the component has a filename node and this
node has a connection on its left (input) side, otherwise returns
true.
If the component does not have a filename node, false is
returned.

ComponentName Gets or sets the component's name.

HasIncomingConnections Read-only.
Indicates if the component has any incoming connections (on its
left side) not including the filename node. An incoming
connection on the filename node does not have any effect on the
returned value.

HasOutgoingConnections Read-only.
Indicates if the component has any outgoing connections (on its
right side).

ID Read-only.
Retrieves the component ID.

InputInstanceFile Gets or sets the component's input instance file.

IsParameterInputRequired Gets or sets, if the input parameter component requires an
ingoing connection on the function call component of the user-
defined function this input parameter component is in. This
property works only for components, which are input parameter
components.

IsParameterSequence Gets or sets, if the input or output parameter component
supports sequences. This property works only for components,
which are input or output parameter components.

Name Read-only.

1123

1123

1123

1124

1124

1125

1125

1126

1126

1126

1127

1122 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Description

Gets the component's name.

OutputInstanceFile Gets or sets the component's output instance file.

Trying to access the OutputInstanceFile of a component via
the API does not return any data if the "File" connector of the
component has been connected to another item in the mapping.

Parent Read-only.
The parent object according to the object model.

Preview Gets or sets if the component is the current preview component.

This property works only for components, which are target
components in the document's main mapping. Only one target
component in the main mapping can be the preview component
at any time.

When setting this property, it is only possible to set it to true.
This then will also implicitly set the Preview property of all other
components to false.

If there is just a single target component in the main mapping, it
is also the preview component.

Schema Read-only.
Retrieves the component's schema file name.

SubType Read-only.
Retrieves the component's subtype.

Type Read-only.
Retrieves the component's type.

UsageKind Read-only.
Retrieves the component's usage kind.

Methods

Name Description

GenerateOutput Generates the output file(s) defined in the mapping for the
current component only, using a MapForce internal mapping
language. The name(s) of the output file(s) are defined as
property of the current component which is the output item in
the mapping for this generation process.

GetRootDatapoint Gets a root datapoint on the left (input) or right (output) side of a
component. To access children and descendants, the
Datapoint object provides further methods.

1127

1128

1128

1129

1129

1130

1130

1130

1131

© 2018-2024 Altova GmbH

Object Reference 1123The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.5.1 Properties

17.7.1.5.1.1 Application

Retrieves the application's top-level object.

Signature

Application : Application

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.5.1.2 CanChangeInputInstanceFile

Indicates if the input instance file name can be changed.

Returns false if the component has a filename node and this node has a connection on its left (input) side,
otherwise returns true. If the component does not have a filename node, false is returned.

Signature

CanChangeInputInstanceFile : Boolean

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.5.1.3 CanChangeOutputInstanceFile

Indicates if the output instance file name can be changed.

Returns false if the component has a filename node and this node has a connection on its left (input) side,
otherwise returns true.
If the component does not have a filename node, false is returned.

1124 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Signature

CanChangeOutputInstanceFile : Boolean

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.5.1.4 ComponentName

Gets or sets the component's name.

Signature

ComponentName : String

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1246 The component does not support setting its name.

1247 Invalid component name.

17.7.1.5.1.5 HasIncomingConnections

Indicates if the component has any incoming connections (on its left side) not including the filename node. An
incoming connection on the filename node does not have any effect on the returned value.

Signature

HasIncomingConnections : Boolean

© 2018-2024 Altova GmbH

Object Reference 1125The MapForce API

Altova MapForce 2024 Professional Edition

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.5.1.6 HasOutgoingConnections

Indicates if the component has any outgoing connections (on its right side).

Signature

HasOutgoingConnections : Boolean

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.5.1.7 ID

Retrieves the component ID.

Signature

ID : Long

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1126 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.5.1.8 InputInstanceFile

Gets or sets the component's input instance file.

Signature

InputInstanceFile : String

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.5.1.9 IsParameterInputRequired

Gets or sets, if the input parameter component requires an ingoing connection on the function call component
of the user-defined function this input parameter component is in. This property works only for components,
which are input parameter components.

Signature

IsParameterInputRequired : Boolean

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1232 This operation works only for an input parameter component.

1240 Changing the document not allowed. It is read-only.

17.7.1.5.1.10 IsParameterSequence

Gets or sets, if the input or output parameter component supports sequences. This property works only for
components, which are input or output parameter components.

© 2018-2024 Altova GmbH

Object Reference 1127The MapForce API

Altova MapForce 2024 Professional Edition

Signature

IsParameterSequence : Boolean

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1233 This operation works only for an input or output parameter component.

1240 Changing the document not allowed. It is read-only.

17.7.1.5.1.11 Name

Gets the component's name.

Signature

Name : String

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.5.1.12 OutputInstanceFile

Gets or sets the component's output instance file.

Trying to access the OutputInstanceFile of a component via the API does not return any data if the "File"
connector of the component has been connected to another item in the mapping.

Signature

OutputInstanceFile : String

1128 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.5.1.13 Parent

The parent object according to the object model.

Signature

Parent : Mapping

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.5.1.14 Preview

Gets or sets if the component is the current preview component.

This property works only for components, which are target components in the document's main mapping. Only
one target component in the main mapping can be the preview component at any time.

When setting this property, it is only possible to set it to true. This then will also implicitly set the Preview
property of all other components to false.

If there is just a single target component in the main mapping, it is also the preview component.

Signature

Preview : Boolean

Errors

Error code Description

1200 The object is no longer valid.

© 2018-2024 Altova GmbH

Object Reference 1129The MapForce API

Altova MapForce 2024 Professional Edition

Error code Description

1201 Invalid address for the return parameter was specified.

1234 Only a target component in the main mapping can be set as preview component.

1235 A component cannot be set as non-preview component. Set another component as
preview component instead.

17.7.1.5.1.15 Schema

Retrieves the component's schema file name.

Signature

Schema : String

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.5.1.16 SubType

Retrieves the component's subtype.

Signature

SubType : ENUMComponentSubType

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1236

1130 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.5.1.17 Type

Retrieves the component's type.

Signature

Type : ENUMComponentType

17.7.1.5.1.18 UsageKind

Retrieves the component's usage kind.

Signature

UsageKind : ENUMComponentUsageKind

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.5.2 Methods

17.7.1.5.2.1 GenerateOutput

Generates the output file(s) defined in the mapping for the current component only, using a MapForce internal
mapping language. The name(s) of the output file(s) are defined as property of the current component which is
the output item in the mapping for this generation process.

Signature

GenerateOutput(out pbError:Boolean) -> AppOutputLines

Parameters

Name Type Description

pbError Boolean This is an output-only parameter.
You will receive a value only if the
calling language supports output

1237

1237

© 2018-2024 Altova GmbH

Object Reference 1131The MapForce API

Altova MapForce 2024 Professional Edition

Name Type Description

parameters. If not, the value you
pass here will remain unchanged
when the function has finished.

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1248 Generating output is only supported when the graphical user interface is visible.

17.7.1.5.2.2 GetRootDatapoint

Gets a root datapoint on the left (input) or right (output) side of a component. To access children and
descendants, the Datapoint object provides further methods.

Signature

GetRootDatapoint(in side:ENUMComponentDatapointSide , in strNamespace:String, in

strLocalName:String, in strParameterName:String) -> Datapoint

Parameters

Name Type Description

side ENUMComponentDatapointSide The side parameter indicates if an
input, or output, datapoint of a
component is to be retrieved.

strNamespace String The specified namespace and
local name, indicate the specific
name of the node whose
datapoint is to be retrieved. For
components with structural
information such as schema
components, you will have to
provide the namespace together
with the local name, or you can
just pass an empty string for the
namespace.

File-based components like the
schema component contain a
special node on their root, the

1236

1236

1132 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Type Description

filename node. There,
GetRootDatapoint can only find
the filename node. You will have
to pass namespace
"http://www.altova.com/mapfo

rce" and local name
"FileInstance" to retrieve a
datapoint of this node.

strLocalName String See above.

strParameterName String The specified parameter name
should be an empty string unless
the component in question is a
function call component. Since a
user-defined function might
contain input or output
parameters of the same structure,
the function call component
calling this user-defined function
can have more than one root node
with an identical namespace and
local name.

They will then differ only by their
parameter names, which are in
fact the names of the according
parameter components in the
user-defined function mapping
itself.

It is not mandatory to specify the
parameter name, though. In that
case, the method will return the
first root datapoint matching the
specified namespace and local
name.

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1248 Datapoint not found.

© 2018-2024 Altova GmbH

Object Reference 1133The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.6 Components

Represents a collection of Component objects.

To navigate the object model, use the following properties:

· Application
· Parent

To iterate through the collection:

· Count
· Item

Properties

Name Description

Application Read-only.
Retrieves the application's top-level object.

Count Read-only.
Retrieves the number of components in the collection.

Item Read-only.
Retrieves the component at index n from the collection. Indices
start with 1.

Parent Read-only.
The parent object according to the object model.

17.7.1.6.1 Properties

17.7.1.6.1.1 Application

Retrieves the application's top-level object.

Signature

Application : Application

Errors

Error code Description

1200 The object is no longer valid.

1133

1134

1134

1135

1134 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Error code Description

1201 Invalid address for the return parameter was specified.

17.7.1.6.1.2 Count

Retrieves the number of components in the collection.

Signature

Count : Integer

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.6.1.3 Item

Retrieves the component at index n from the collection. Indices start with 1.

Signature

Item(in n:Integer) : Component

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

© 2018-2024 Altova GmbH

Object Reference 1135The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.6.1.4 Parent

The parent object according to the object model.

Signature

Parent : Mapping

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.7 Connection

A Connection object represents a connector between two components.

To navigate the object model, use the following properties:

· Application
· Parent

To get or set the connection's type, use ConnectionType.

Properties

Name Description

Application Read-only.
Retrieves the application's top-level object.

ConnectionType Gets or sets the connection's type.

Parent Read-only.
The parent object according to the object model.

1136

1136

1137

1136 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.7.1 Properties

17.7.1.7.1.1 Application

Retrieves the application's top-level object.

Signature

Application : Application

Errors

Error code Description

2100 The object is no longer valid.

2101 Invalid address for the return parameter was specified.

17.7.1.7.1.2 ConnectionType

Gets or sets the connection's type.

Signature

ConnectionType : ENUMConnectionType

Errors

Error code Description

2100 The object is no longer valid.

2101 Invalid address for the return parameter was specified.

2102 Changing the document is not allowed. It is read-only.

2103 Failed changing connection type.

1237

© 2018-2024 Altova GmbH

Object Reference 1137The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.7.1.3 Parent

The parent object according to the object model.

Signature

Parent : Mapping

Errors

Error code Description

2100 The object is no longer valid.

2101 Invalid address for the return parameter was specified.

17.7.1.8 Datapoint

A Datapoint object represents an input or output icon of a component.

Properties

Name Description

Application Read-only.
Retrieves the application's top-level object.

Parent Read-only.
The parent object according to the object model.

Methods

Name Description

GetChild Scans for a direct child datapoint of the current datapoint, by
namespace and local name.

If a schema component has elements that contain mixed
content, each displays an additional child node, the so-called
text() node. To retrieve a datapoint of a text() node, you will
have to pass an empty string in strNamespace as well as
"#text" in strLocalName and eSearchDatapointElement in
searchFlags.

1138

1138

1138

1138 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.8.1 Properties

17.7.1.8.1.1 Application

Retrieves the application's top-level object.

Signature

Application : Application

Errors

Error code Description

2000 The object is no longer valid.

2001 Invalid address for the return parameter was specified.

17.7.1.8.1.2 Parent

The parent object according to the object model.

Signature

Parent : Component

Errors

Error code Description

2000 The object is no longer valid.

2001 Invalid address for the return parameter was specified.

17.7.1.8.2 Methods

17.7.1.8.2.1 GetChild

Scans for a direct child datapoint of the current datapoint, by namespace and local name.

If a schema component has elements that contain mixed content, each displays an additional child node, the
so-called text() node. To retrieve a datapoint of a text() node, you will have to pass an empty string in
strNamespace as well as "#text" in strLocalName and eSearchDatapointElement in searchFlags.

© 2018-2024 Altova GmbH

Object Reference 1139The MapForce API

Altova MapForce 2024 Professional Edition

Signature

GetChild(in strNamespace:String, in strLocalName:String, in

searchFlags:ENUMSearchDatapointFlags) -> Datapoint

Parameters

Name Type Description

strNamespace String The namespace of the direct child
datapoint.

strLocalName String The name of the direct child
datapoint.

searchFlags ENUMSearchDatapointFlags Search flags can be passed as
combination of values (combined
using binary OR) of the
ENUMSearchDatapointFlags

enumeration.

Errors

Error code Description

2000 The object is no longer valid.

2001 Invalid address for the return parameter was specified.

2002 Datapoint not found.

17.7.1.9 Document

A Document object represents a MapForce document (a loaded MFD file). A document contains a main
mapping and zero or more local user-defined-function mappings.

To navigate the object model, use the following properties:

· Application
· Parent

For file handling, use:

· Activate
· Close
· FullName
· Name
· Path
· Saved

1240

1240

1140 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· Save
· SaveAs

For mapping handling, use:

· MainMapping
· Mappings
· CreateUserDefinedFunction

For component handling, use:

· FindComponentByID

For code generation, use:

· OutputSettings_ApplicationName
· JavaSettings_BasePackageName
· GenerateCHashCode
· GenerateCodeEx
· GenerateCppCode
· GenerateJavaCode
· GenerateXQuery
· GenerateXSLT
· GenerateXSLT2
· GenerateXSLT3
· HighlightSerializedMarker

For mapping execution, use:

· GenerateOutput
· GenerateOutputEx

View access:

· MapForceView

Obsolete:

· OutputSettings_Encoding

Properties

Name Description

Application Read-only.
Retrieves the application's top-level object.

FullName Path and name of the document file.

JavaSettings_BasePackageName Sets or retrieves the base package name used when generating
Java code. In the MapForce graphical user interface, this setting
is available in the Mapping Settings dialog box (right-click the
mapping and select Mapping Settings from the context menu).

1143

1144

1144

© 2018-2024 Altova GmbH

Object Reference 1141The MapForce API

Altova MapForce 2024 Professional Edition

Name Description

LibraryImports Read-only.
Gets a collection of imported libraries. In the MapForce
graphical user interface, these correspond to entries from the
Manage Libraries window, added at document level.

MainMapping Read-only.
Retrieves the main mapping of the document.

MapForceView Read-only.
This property gives access to functionality specific to the
MapForce view.

Mappings Read-only.
Returns a collection of mappings contained in the document.

Name Read-only.
Name of the document file without file path.

OutputSettings_ApplicationName Sets or retrieves the application name available in the Mapping
Settings dialog box (To display this dialog box in MapForce,
right-click the mapping and select Mapping Settings from the
context menu).

OutputSettings_Encoding This property is no longer supported. Mapping output encoding
settings do no longer exist. Components have individual output
encoding settings.

Parent Read-only.
The parent object according to the object model.

Path Read-only.
Path of the document file without name.

Saved Read-only.
True if the document was not modified since the last save
operation, false otherwise.

Methods

Name Description

Activate Makes this document the active document.

Close Closes the document without saving.

CreateUserDefinedFunction Creates a user defined function in the current document.

FindComponentByID Searches in the whole document, also all its mappings, for the
component with the specified id.

GenerateCHashCode Generates C# code that will perform the mapping. Uses the
properties defined in Application.Options to configure code

1144

1145

1145

1146

1146

1146

1147

1147

1147

1148

1148

1149

1149

1150

1150

1142 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Description

generation.

GenerateCodeEx Generates code that will perform the mapping. The parameter
i_nLanguage specifies the target language. The method
returns an object that can be used to enumerate all messages
created by the code generator. These are the same messages
that get displayed in the Messages window of MapForce.

GenerateCppCode Generates C++ code that will perform the mapping. Uses the
properties defined in Application.Options to configure code
generation.

GenerateJavaCode Generates Java code that will perform the mapping. Uses the
properties defined in Application.Options to configure code
generation.

GenerateOutput Generates all output files defined in the mapping using a
MapForce internal mapping language. The names of the output
files are defined as properties of the output items in the
mapping.

Note: This method can only be used when the MapForce
(running as a COM server) main window is visible, or is
embedded with a graphical user interface. If the method is called
while MapForce is not visible, then an error will occur.

GenerateOutputEx Generates all output files defined in the mapping using a
MapForce internal mapping language. The names of the output
files are defined as properties of the output items in the
mapping. This method is identical to GenerateOutput except for
its return value containing the resulting messages, warnings and
errors arranged as trees of AppOutputLines.

Note: This method can only be used when the MapForce
(running as a COM server) main window is visible, or is
embedded with a graphical user interface. If the method is called
while MapForce is not visible, then an error will occur.

GenerateXQuery Generates mapping code as XQuery. Uses the properties
defined in Application.Options to configure code generation.

GenerateXSLT Generates mapping code as XSLT. Uses the properties defined
in Application.Options to configure code generation.

GenerateXSLT2 Generates mapping code as XSLT2. Uses the properties defined
in Application.Options to configure code generation.

GenerateXSLT3 Generates XSLT 3.0 mapping code. Uses the properties defined
in Application.Options to configure code generation.

HighlightSerializedMarker Use this method to highlight a location in a mapping file that has
been previously serialized. If the corresponding document is not

1151

1151

1152

1152

1153

1153

1154

1154

1155

1155

© 2018-2024 Altova GmbH

Object Reference 1143The MapForce API

Altova MapForce 2024 Professional Edition

Name Description

already loaded, it will be loaded first. See GenerateCodeEx for a
method to retrieve a serialized marker.

Save Saves the document to the file defined by Document.FullName.

SaveAs Saves the document to the specified file name, and sets
Document.FullName to this value if the save operation was
successful.

Events

Name Description

OnDocumentClosed This event is triggered when a document is closed. The
document object passed into the event handler should not be
accessed. The corresponding open event is
Application.OnDocumentOpened.

OnModifiedFlagChanged This event is triggered when a document's modification status
changes.

17.7.1.9.1 Properties

17.7.1.9.1.1 Application

Retrieves the application's top-level object.

Signature

Application : Application

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1156

1156

1157

1157

1144 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.9.1.2 FullName

Path and name of the document file.

Signature

FullName : String

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.9.1.3 JavaSettings_BasePackageName

Sets or retrieves the base package name used when generating Java code. In the MapForce graphical user
interface, this setting is available in the Mapping Settings dialog box (right-click the mapping and select
Mapping Settings from the context menu).

Signature

JavaSettings_BasePackageName : String

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.9.1.4 LibraryImports

Gets a collection of imported libraries. In the MapForce graphical user interface, these correspond to entries
from the Manage Libraries window, added at document level.

Signature

LibraryImports : LibraryImports

© 2018-2024 Altova GmbH

Object Reference 1145The MapForce API

Altova MapForce 2024 Professional Edition

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.9.1.5 MainMapping

Retrieves the main mapping of the document.

Signature

MainMapping : Mapping

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.9.1.6 MapForceView

This property gives access to functionality specific to the MapForce view.

Signature

MapForceView : MapForceView

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1146 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.9.1.7 Mappings

Returns a collection of mappings contained in the document.

Signature

Mappings : Mappings

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.9.1.8 Name

Name of the document file without file path.

Signature

Name : String

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.9.1.9 OutputSettings_ApplicationName

Sets or retrieves the application name available in the Mapping Settings dialog box (To display this dialog box
in MapForce, right-click the mapping and select Mapping Settings from the context menu).

Signature

OutputSettings_ApplicationName : String

© 2018-2024 Altova GmbH

Object Reference 1147The MapForce API

Altova MapForce 2024 Professional Edition

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.9.1.10 OutputSettings_Encoding (obsolete)

This property is no longer supported. Mapping output encoding settings do no longer exist. Components have
individual output encoding settings.

Signature

OutputSettings_Encoding : String

17.7.1.9.1.11 Parent

The parent object according to the object model.

Signature

Parent : Documents

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.9.1.12 Path

Path of the document file without name.

Signature

Path : String

1148 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.9.1.13 Saved

True if the document was not modified since the last save operation, false otherwise.

Signature

Saved : Boolean

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.9.2 Methods

17.7.1.9.2.1 Activate

Makes this document the active document.

Signature

Activate() -> Void

Errors

Error code Description

1200 The object is no longer valid.

© 2018-2024 Altova GmbH

Object Reference 1149The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.9.2.2 Close

Closes the document without saving.

Signature

Close() -> Void

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.9.2.3 CreateUserDefinedFunction

Creates a user defined function in the current document.

Signature

CreateUserDefinedFunction(in strFunctionName:String, in strLibraryName:String, in

strSyntax:String, in strDetails:String, in bInlinedUse:Boolean) -> Mapping

Parameters

Name Type Description

strFunctionName String The name of the function.

strLibraryName String The name of the library to which
this function belongs.

strSyntax String A string that describes the syntax
of this function (this is for
information purpose only).

strDetails String A description of this function.

bInlinedUse Boolean Boolean flag that specifies if the
function has inlined use.

1150 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1208 Failed creating user-defined function.

1209 Changing the document not allowed. It is read-only.

17.7.1.9.2.4 FindComponentByID

Searches in the whole document, also all its mappings, for the component with the specified id.

Signature

FindComponentByID(in nID:Unsigned Long) -> Component

Parameters

Name Type Description

nID Unsigned Long The ID of the component to search
for.

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.9.2.5 GenerateCHashCode

Generates C# code that will perform the mapping. Uses the properties defined in Application.Options to
configure code generation.

Signature

GenerateCHashCode() -> Void

© 2018-2024 Altova GmbH

Object Reference 1151The MapForce API

Altova MapForce 2024 Professional Edition

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1205 Error during code generation.

17.7.1.9.2.6 GenerateCodeEx

Generates code that will perform the mapping. The parameter i_nLanguage specifies the target language. The
method returns an object that can be used to enumerate all messages created by the code generator. These
are the same messages that get displayed in the Messages window of MapForce.

Signature

GenerateCodeEx(in i_nLanguage:ENUMProgrammingLanguage) -> ErrorMarkers

Parameters

Name Type Description

i_nLanguage ENUMProgrammingLanguage Specifies the target code
generation language.

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1205 Error during code generation.

17.7.1.9.2.7 GenerateCppCode

Generates C++ code that will perform the mapping. Uses the properties defined in Application.Options to
configure code generation.

Signature

GenerateCppCode() -> Void

1238

1238

1152 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1205 Error during code generation.

17.7.1.9.2.8 GenerateJavaCode

Generates Java code that will perform the mapping. Uses the properties defined in Application.Options to
configure code generation.

Signature

GenerateJavaCode() -> Void

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1205 Error during code generation.

17.7.1.9.2.9 GenerateOutput

Generates all output files defined in the mapping using a MapForce internal mapping language. The names of
the output files are defined as properties of the output items in the mapping.

Note: This method can only be used when the MapForce (running as a COM server) main window is visible, or
is embedded with a graphical user interface. If the method is called while MapForce is not visible, then an error
will occur.

Signature

GenerateOutput() -> Void

© 2018-2024 Altova GmbH

Object Reference 1153The MapForce API

Altova MapForce 2024 Professional Edition

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1206 Error during execution of mapping algorithm.

1210 Generating output is only supported when the graphical user interface is visible.

17.7.1.9.2.10 GenerateOutputEx

Generates all output files defined in the mapping using a MapForce internal mapping language. The names of
the output files are defined as properties of the output items in the mapping. This method is identical to
GenerateOutput except for its return value containing the resulting messages, warnings and errors arranged as
trees of AppOutputLines.

Note: This method can only be used when the MapForce (running as a COM server) main window is visible, or
is embedded with a graphical user interface. If the method is called while MapForce is not visible, then an error
will occur.

Signature

GenerateOutputEx() -> AppOutputLines

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1206 Error during execution of mapping algorithm.

1210 Generating output is only supported when the graphical user interface is visible.

17.7.1.9.2.11 GenerateXQuery

Generates mapping code as XQuery. Uses the properties defined in Application.Options to configure code
generation.

Signature

GenerateXQuery() -> Void

1154 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1204 Error during XSLT/XSLT2/XSLT3/XQuery code generation.

17.7.1.9.2.12 GenerateXSLT

Generates mapping code as XSLT. Uses the properties defined in Application.Options to configure code
generation.

Signature

GenerateXSLT() -> Void

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1204 Error during XSLT/XSLT2/XSLT3/XQuery code generation.

17.7.1.9.2.13 GenerateXSLT2

Generates mapping code as XSLT2. Uses the properties defined in Application.Options to configure code
generation.

Signature

GenerateXSLT2() -> Void

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

© 2018-2024 Altova GmbH

Object Reference 1155The MapForce API

Altova MapForce 2024 Professional Edition

Error code Description

1204 Error during XSLT/XSLT2/XSLT3/XQuery code generation.

17.7.1.9.2.14 GenerateXSLT3

Generates XSLT 3.0 mapping code. Uses the properties defined in Application.Options to configure code
generation.

Signature

GenerateXSLT3() -> Void

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1204 Error during XSLT/XSLT2/XSLT3/XQuery code generation.

17.7.1.9.2.15 HighlightSerializedMarker

Use this method to highlight a location in a mapping file that has been previously serialized. If the
corresponding document is not already loaded, it will be loaded first. See GenerateCodeEx for a method to
retrieve a serialized marker.

Signature

HighlightSerializedMarker(in i_strSerializedMarker:String) -> Void

Parameters

Name Type Description

i_strSerializedMarker String The ErrorMarker object to
highlight. Use
ErrorMaker.Serialized to obtain
this value.

1156 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Errors

Error code Description

1000 The object is no longer valid.

1001 Invalid address for the return parameter was specified.

1007 The string passed in i_strSerializedMarker is not recognized a serialized
MapForce marker.

1008 The marker points to a location that is no longer valid.

17.7.1.9.2.16 Save

Saves the document to the file defined by Document.FullName.

Signature

Save() -> Void

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.9.2.17 SaveAs

Saves the document to the specified file name, and sets Document.FullName to this value if the save operation
was successful.

Signature

SaveAs(in i_strFileName:String) -> Void

Parameters

Name Type Description

i_strFileName String Specifies the path where to save
the document.

© 2018-2024 Altova GmbH

Object Reference 1157The MapForce API

Altova MapForce 2024 Professional Edition

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.9.3 Events

17.7.1.9.3.1 OnDocumentClosed

This event is triggered when a document is closed. The document object passed into the event handler should
not be accessed. The corresponding open event is Application.OnDocumentOpened.

Signature

OnDocumentClosed(in i_ipDocument:Document) : Void

17.7.1.9.3.2 OnModifiedFlagChanged

This event is triggered when a document's modification status changes.

Signature

OnModifiedFlagChanged(in i_bIsModified:Boolean) : Void

17.7.1.10 Documents

Represents a collection of Document objects.

Properties to navigate the object model:

· Application
· Parent

Open and create mappings:

· OpenDocument
· NewDocument

Iterating through the collection:

· Count

1158 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· Item
· ActiveDocument

Properties

Name Description

ActiveDocument Read-only.
Retrieves the active document. If no document is open, null is
returned.

Application Read-only.
Retrieves the application's top-level object.

Count Read-only.
Retrieves the number of documents in the collection.

Item Read-only.
Retrieves the document at index n from the collection. Indices
start with 1.

Parent Read-only.
The parent object according to the object model.

Methods

Name Description

NewDocument Creates a new document, adds it to the end of the collection,
and makes it the active document.

OpenDocument Opens an existing mapping document (*.mfd). Adds the newly
opened document to the end of the collection and makes it the
active document.

17.7.1.10.1 Properties

17.7.1.10.1.1 ActiveDocument

Retrieves the active document. If no document is open, null is returned.

Signature

ActiveDocument : Document

1158

1159

1159

1160

1160

1161

1161

© 2018-2024 Altova GmbH

Object Reference 1159The MapForce API

Altova MapForce 2024 Professional Edition

Errors

Error code Description

1600 The object is no longer valid.

1601 Invalid address for the return parameter was specified.

17.7.1.10.1.2 Application

Retrieves the application's top-level object.

Signature

Application : Application

Errors

Error code Description

1600 The object is no longer valid.

1601 Invalid address for the return parameter was specified.

17.7.1.10.1.3 Count

Retrieves the number of documents in the collection.

Signature

Count : Integer

Errors

Error code Description

1600 The object is no longer valid.

1601 Invalid address for the return parameter was specified.

1160 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.10.1.4 Item

Retrieves the document at index n from the collection. Indices start with 1.

Signature

Item(in n:Integer) : Document

Errors

Error code Description

1600 The object is no longer valid.

1601 Invalid address for the return parameter was specified.

17.7.1.10.1.5 Parent

The parent object according to the object model.

Signature

Parent : Application

Errors

Error code Description

1600 The object is no longer valid.

1601 Invalid address for the return parameter was specified.

© 2018-2024 Altova GmbH

Object Reference 1161The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.10.2 Methods

17.7.1.10.2.1 NewDocument

Creates a new document, adds it to the end of the collection, and makes it the active document.

Signature

NewDocument() -> Document

Errors

Error code Description

1600 The object is no longer valid.

1601 Invalid address for the return parameter was specified.

17.7.1.10.2.2 OpenDocument

Opens an existing mapping document (*.mfd). Adds the newly opened document to the end of the collection
and makes it the active document.

Signature

OpenDocument(in strPath:String) -> Document

Parameters

Name Type Description

strPath String The path of the mapping file.

Errors

Error code Description

1600 The object is no longer valid.

1601 Invalid address for the return parameter was specified.

1162 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.11 ErrorMarker

Represents a simple message line. Unlike AppOutputLine objects, error markers do not have a hierarchical
structure.

Properties to navigate the object model:

· Application
· Parent

Access to message information:

· DocumentFileName
· ErrorLevel
· Highlight
· Serialization
· Text

Properties

Name Description

Application Read-only.
Retrieves the application's top-level object.

DocumentFileName Read-only.
Retrieves the name of the mapping file that the error marker is
associated with.

ErrorLevel Read-only.
Retrieves the severity of the error.

Parent Read-only.
The parent object according to the object model.

Serialization Read-only.
Serialize error marker into a string. Use this string in calls to
Application.HighlightSerializedMarker or
Document.HighlightSerializedMarker to highlight the
marked item in the mapping. The string can be persisted and
used in other instantiations of MapForce or its Control.

Text Read-only.
Retrieves the message text.

Methods

Name Description

Highlight Highlights the item that the error marker is associated with. If
the corresponding document is not open, it will be opened.

1163

1163

1164

1164

1164

1165

1165

© 2018-2024 Altova GmbH

Object Reference 1163The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.11.1 Properties

17.7.1.11.1.1 Application

Retrieves the application's top-level object.

Signature

Application : Application

Errors

Error code Description

1900 The object is no longer valid.

1901 Invalid address for the return parameter was specified.

17.7.1.11.1.2 DocumentFileName

Retrieves the name of the mapping file that the error marker is associated with.

Signature

DocumentFileName : String

Errors

Error code Description

1900 The object is no longer valid.

1901 Invalid address for the return parameter was specified.

1164 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.11.1.3 ErrorLevel

Retrieves the severity of the error.

Signature

ErrorLevel : ENUMCodeGenErrorLevel

Errors

Error code Description

1900 The object is no longer valid.

1901 Invalid address for the return parameter was specified.

17.7.1.11.1.4 Parent

The parent object according to the object model.

Signature

Parent : ErrorMarkers

Errors

Error code Description

1900 The object is no longer valid.

1901 Invalid address for the return parameter was specified.

17.7.1.11.1.5 Serialization

Serialize error marker into a string. Use this string in calls to Application.HighlightSerializedMarker or
Document.HighlightSerializedMarker to highlight the marked item in the mapping. The string can be
persisted and used in other instantiations of MapForce or its Control.

Signature

Serialization : String

1236

© 2018-2024 Altova GmbH

Object Reference 1165The MapForce API

Altova MapForce 2024 Professional Edition

Errors

Error code Description

1900 The object is no longer valid.

1901 Invalid address for the return parameter was specified.

17.7.1.11.1.6 Text

Retrieves the message text.

Signature

Text : String

Errors

Error code Description

1900 The object is no longer valid.

1901 Invalid address for the return parameter was specified.

17.7.1.11.2 Methods

17.7.1.11.2.1 Highlight

Highlights the item that the error marker is associated with. If the corresponding document is not open, it will
be opened.

Signature

Highlight() -> Void

Errors

Error code Description

1900 The object is no longer valid.

1901 Invalid address for the return parameter was specified.

1008 The marker points to a location that is no longer valid.

1166 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.12 ErrorMarkers

Represents a collection of ErrorMarker objects.

Properties to navigate the object model:

· Application
· Parent

Iterating through the collection:

· Count
· Item

Properties

Name Description

Application Read-only.
Retrieves the application's top-level object.

Count Read-only.
Retrieves the number of error markers in the collection.

Item Read-only.
Retrieves the error marker at index n from the collection. Indices
start with 1.

Parent Read-only.
The parent object according to the object model.

17.7.1.12.1 Properties

17.7.1.12.1.1 Application

Retrieves the application's top-level object.

Signature

Application : Application

Errors

Error code Description

1800 The object is no longer valid.

1166

1167

1167

1168

© 2018-2024 Altova GmbH

Object Reference 1167The MapForce API

Altova MapForce 2024 Professional Edition

Error code Description

1801 Invalid address for the return parameter was specified.

17.7.1.12.1.2 Count

Retrieves the number of error markers in the collection.

Signature

Count : Integer

Errors

Error code Description

1800 The object is no longer valid.

1801 Invalid address for the return parameter was specified.

17.7.1.12.1.3 Item

Retrieves the error marker at index n from the collection. Indices start with 1.

Signature

Item(in n:Integer) : ErrorMarker

Errors

Error code Description

1800 The object is no longer valid.

1801 Invalid address for the return parameter was specified.

1168 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.12.1.4 Parent

The parent object according to the object model.

Signature

Parent : Application

Errors

Error code Description

1800 The object is no longer valid.

1801 Invalid address for the return parameter was specified.

17.7.1.13 LibraryImport

A LibraryImport represents an imported library file (an entry from the Manage Libraries window).

Properties

Name Description

Application Read-only.
Retrieves the application's top level object.

Parent Read-only.
Retrieves the parent object, according to the object model.

Path Read-only.
Gets the path of the imported library.

SaveRelativePath When you save the document, this property specifies whether
the library path should be saved as absolute or relative. When
true, the path of the library will be relative to the document.
When false, the library path will be absolute.

Do not rely on this property to determine whether the path is
absolute or relative, since the path may have been changed
(either from the user interface or via API) since the document
was loaded from the .mfd file.

If you set this property (either via API or via user interface), the
"Manage Libraries" window does immediately show the correct
path’s state in the user interface. Internally, however, the Path of
the ImportedLibrary object will not be changed until the
document is saved.

1169

1169

1170

1170

© 2018-2024 Altova GmbH

Object Reference 1169The MapForce API

Altova MapForce 2024 Professional Edition

Name Description

Libraries imported globally cannot be saved with a relative
path. Only libraries imported at document level can.

17.7.1.13.1 Properties

17.7.1.13.1.1 Application

Retrieves the application's top level object.

Signature

Application : Application

Errors

Error code Description

2500 The object is no longer valid.

2501 Invalid address for the return parameter was specified.

17.7.1.13.1.2 Parent

Retrieves the parent object, according to the object model.

Signature

Parent : LibraryImports

Errors

Error code Description

2500 The object is no longer valid.

2501 Invalid address for the return parameter was specified.

1170 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.13.1.3 Path

Gets the path of the imported library.

Signature

Path : String

Errors

Error code Description

2500 The object is no longer valid.

2501 Invalid address for the return parameter was specified.

17.7.1.13.1.4 SaveRelativePath

When you save the document, this property specifies whether the library path should be saved as absolute or
relative. When true, the path of the library will be relative to the document. When false, the library path will be
absolute.

Do not rely on this property to determine whether the path is absolute or relative, since the path may have been
changed (either from the user interface or via API) since the document was loaded from the .mfd file.

If you set this property (either via API or via user interface), the "Manage Libraries" window does immediately
show the correct path’s state in the user interface. Internally, however, the Path of the ImportedLibrary object
will not be changed until the document is saved.

Libraries imported globally cannot be saved with a relative path. Only libraries imported at document level
can.

Signature

SaveRelativePath : Boolean

Errors

Error code Description

2500 The object is no longer valid.

2501 Invalid address for the return parameter was specified.

2502 Global imports cannot be saved with a relative path.

© 2018-2024 Altova GmbH

Object Reference 1171The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.14 LibraryImports

Represents a collection of imported libraries (LibraryImport objects). Use the Application and Parent
properties to navigate the object model. Use the Count and Item properties to iterate through the collection.
You can get this collection as follows:

· Locally (at document level), through the Document.LibraryImports property
· Globally (at application level), through the Application.LibraryImports property.

If you get the LibraryImports collection from the application object, the Parent property of the collection
will be null.

Properties

Name Description

Application Read-only.
Gets the application's top level object.

Count Read-only.
Gets the count of LibraryImport objects in this collection.

Item Read-only.
Retrieves a library entry at index n from this collection. The
index is 1-based.

Parent Read-only.
Gets the parent document for local library imports. If you get the
LibraryImports collection from the application object, the
Parent property of the collection will be null.

Methods

Name Description

Add Adds a new library to this LibraryImports object. The new
library will have the path supplied by the i_strFileName
parameter.

Find Returns a library reference given the path to the library file.

Remove Removes a library reference from the Manage Libraries
window.

1172

1172

1173

1173

1173

1174

1175

1172 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.14.1 Properties

17.7.1.14.1.1 Application

Gets the application's top level object.

Signature

Application : Application

Errors

Error code Description

2400 The object is no longer valid.

2401 Invalid address for the return parameter was specified.

17.7.1.14.1.2 Count

Gets the count of LibraryImport objects in this collection.

Signature

Count : Integer

Errors

Error code Description

2400 The object is no longer valid.

2401 Invalid address for the return parameter was specified.

© 2018-2024 Altova GmbH

Object Reference 1173The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.14.1.3 Item

Retrieves a library entry at index n from this collection. The index is 1-based.

Signature

Item(in n:Integer) : LibraryImport

Errors

Error code Description

2400 The object is no longer valid.

2401 Invalid address for the return parameter was specified.

17.7.1.14.1.4 Parent

Gets the parent document for local library imports. If you get the LibraryImports collection from the
application object, the Parent property of the collection will be null.

Signature

Parent : Document

Errors

Error code Description

2400 The object is no longer valid.

2401 Invalid address for the return parameter was specified.

17.7.1.14.2 Methods

17.7.1.14.2.1 Add

Adds a new library to this LibraryImports object. The new library will have the path supplied by the
i_strFileName parameter.

Signature

Add(in i_strFileName:String) -> LibraryImport

1174 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Parameters

Name Type Description

i_strFileName String Specifies the path of the library
file. This path can be either
absolute or relative to the
mapping, depending on the state
in which it was passed to the
object. When the document is
saved, the path will be made
relative if the
LibraryImport.SaveRelativePa

th flag is true; otherwise, it will be
made absolute.

Errors

Error code Description

2400 The object is no longer valid.

2401 Invalid address for the return parameter was specified.

2402 Adding library file failed.

17.7.1.14.2.2 Find

Returns a library reference given the path to the library file.

Signature

Find(in i_strFileName:String) -> LibraryImport

Parameters

Name Type Description

i_strFileName String The path of the library file to
search for. For locally imported
libraries, you can specify either
the absolute or the relative path to
the library file (unlike the Remove
method, which requires the exact
path).

For globally imported libraries, the
path must always be absolute

© 2018-2024 Altova GmbH

Object Reference 1175The MapForce API

Altova MapForce 2024 Professional Edition

Name Type Description

(since globally imported libraries
cannot have a relative path).

Errors

Error code Description

2400 The object is no longer valid.

2401 Invalid address for the return parameter was specified.

17.7.1.14.2.3 Remove

Removes a library reference from the Manage Libraries window.

Signature

Remove(in i_strFileName:String) -> Void

Parameters

Name Type Description

i_strFileName String The path of the library file to remove.
Note that the path must reflect
exactly the current (most recent)
state of the LibraryImport object.
Remember that the path may be
either relative or absolute, and it may
have changed if you saved the
document, depending on the
LibraryImport.SaveRelativePath

flag. Therefore, if the LibraryImport
object currently contains a relative
path, then you should supply a
relative path as value of this
parameter. Otherwise, the library is
not found and the Remove method
fails.

The above applies only for locally
imported libraries. For globally
imported libraries, the path must
always be absolute (since

1176 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Type Description

globally imported libraries cannot
have a relative path)

Errors

Error code Description

2400 The object is no longer valid.

17.7.1.15 MapForceView

Represents the current view in the MapForce Mapping tab for a document. A document has exactly one
MapForceView which displays the currently active mapping.

Properties to navigate the object model:

· Application
· Parent

View activation and view properties:

· Active
· ShowItemTypes
· ShowLibraryInFunctionHeader
· HighlightMyConnections
· HighlightMyConnectionsRecursivly

Mapping related properties:

· ActiveMapping
· ActiveMappingName

Adding items:

· InsertWSDLCall
· InsertXMLFile
· InsertXMLSchema
· InsertXMLSchemaWithSample

Properties

Name Description

Active Use this property to query if the mapping view is the active view,
or set this view to be the active one.

1178

© 2018-2024 Altova GmbH

Object Reference 1177The MapForce API

Altova MapForce 2024 Professional Edition

Name Description

ActiveMapping Gets or sets the currently active mapping in the document this
MapForceView belongs to.

ActiveMappingName Gets or sets the currently active mapping by name in the
document this MapForceView belongs to.

Application Read-only.
Retrieves the application's top-level object.

HighlightMyConnections This property defines whether connections from the selected
item only should be highlighed.

HighlightMyConnectionsRecursively This property defines if only the connections coming directly or
indirectly from the selected item should be highlighted.

Parent Read-only.
The parent object according to the object model.

ShowItemTypes This property defines if types of items should be shown in the
mapping diagram.

ShowLibraryInFunctionHeader This property defines whether the name of the function library
should be part of function names.

Methods

Name Description

InsertWSDLCall Adds a new WSDL call component to the mapping.

InsertXMLFile MapForceView.InsertXMLFile is obsolete. Use
Mapping.InsertXMLFile instead.

InsertXMLSchema MapForceView.InsertXMLSchema is obsolete. Use
Mapping.InsertXMLSchema instead.

InsertXMLSchemaWithSample MapForceView.InsertXMLSchemaWithSample is obsolete. Use
Mapping.InsertXMLFile instead. Notice,
Mapping.InsertXMLFile does not require a parameter for
passing the root element. The root element is automatically set
as the XML file's root element name.

1178

1179

1179

1179

1180

1180

1181

1181

1182

1182

1183

1183

1178 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.15.1 Properties

17.7.1.15.1.1 Active

Use this property to query if the mapping view is the active view, or set this view to be the active one.

Signature

Active : Boolean

Errors

Error code Description

1300 The object is no longer valid.

1301 Invalid address for the return parameter was specified.

17.7.1.15.1.2 ActiveMapping

Gets or sets the currently active mapping in the document this MapForceView belongs to.

Signature

ActiveMapping : Mapping

Errors

Error code Description

1300 The object is no longer valid.

1301 Invalid address for the return parameter was specified.

© 2018-2024 Altova GmbH

Object Reference 1179The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.15.1.3 ActiveMappingName

Gets or sets the currently active mapping by name in the document this MapForceView belongs to.

Signature

ActiveMappingName : String

Errors

Error code Description

1300 The object is no longer valid.

1301 Invalid address for the return parameter was specified.

17.7.1.15.1.4 Application

Retrieves the application's top-level object.

Signature

Application : Application

Errors

Error code Description

1300 The object is no longer valid.

1301 Invalid address for the return parameter was specified.

17.7.1.15.1.5 HighlightMyConnections

This property defines whether connections from the selected item only should be highlighed.

Signature

HighlightMyConnections : Boolean

1180 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Errors

Error code Description

1300 The object is no longer valid.

1301 Invalid address for the return parameter was specified.

17.7.1.15.1.6 HighlightMyConnectionsRecursively

This property defines if only the connections coming directly or indirectly from the selected item should be
highlighted.

Signature

HighlightMyConnectionsRecursively : Boolean

Errors

Error code Description

1300 The object is no longer valid.

1301 Invalid address for the return parameter was specified.

17.7.1.15.1.7 Parent

The parent object according to the object model.

Signature

Parent : Document

Errors

Error code Description

1300 The object is no longer valid.

1301 Invalid address for the return parameter was specified.

© 2018-2024 Altova GmbH

Object Reference 1181The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.15.1.8 ShowItemTypes

This property defines if types of items should be shown in the mapping diagram.

Signature

ShowItemTypes : Boolean

Errors

Error code Description

1300 The object is no longer valid.

1301 Invalid address for the return parameter was specified.

17.7.1.15.1.9 ShowLibraryInFunctionHeader

This property defines whether the name of the function library should be part of function names.

Signature

ShowLibraryInFunctionHeader : Boolean

Errors

Error code Description

1300 The object is no longer valid.

1301 Invalid address for the return parameter was specified.

1182 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.15.2 Methods

17.7.1.15.2.1 InsertWSDLCall

Adds a new WSDL call component to the mapping.

Signature

InsertWSDLCall(in i_strWSDLFileName:String) -> Void

Parameters

Name Type Description

i_strWSDLFileName String Specifies the path of the WSDL
file to add to the mapping.

Errors

Error code Description

1300 The object is no longer valid.

1301 Invalid address for the return parameter was specified.

17.7.1.15.2.2 InsertXMLFile (obsolete)

MapForceView.InsertXMLFile is obsolete. Use Mapping.InsertXMLFile instead.

Signature

InsertXMLFile(in i_strFileName:String, in i_strXMLRootName:String) -> Void

Parameters

Name Type Description

i_strFileName String

i_strXMLRootName String

© 2018-2024 Altova GmbH

Object Reference 1183The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.15.2.3 InsertXMLSchema (obsolete)

MapForceView.InsertXMLSchema is obsolete. Use Mapping.InsertXMLSchema instead.

Signature

InsertXMLSchema(in i_strSchemaFileName:String, in i_strXMLRootName:String) -> Void

Parameters

Name Type Description

i_strSchemaFileName String

i_strXMLRootName String

17.7.1.15.2.4 InsertXMLSchemaWithSample (obsolete)

MapForceView.InsertXMLSchemaWithSample is obsolete. Use Mapping.InsertXMLFile instead. Notice,
Mapping.InsertXMLFile does not require a parameter for passing the root element. The root element is
automatically set as the XML file's root element name.

Signature

InsertXMLSchemaWithSample(in i_strSchemaFileName:String, in i_strXMLExampleFile:String,

in i_strXMLRootName:String) -> Void

Parameters

Name Type Description

i_strSchemaFileName String

i_strXMLExampleFile String

i_strXMLRootName String

17.7.1.16 Mapping

A Mapping object represents a mapping in a document, either the main mapping, or a local user-defined-
function mapping.

Properties to navigate the object model:

· Application
· Parent

1184 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Mapping properties:

· IsMainMapping
· Name

Components in the mapping:

· Components

Adding items:

· CreateConnection
· InsertFunctionCall
· InsertXMLFile
· InsertXMLSchema
· InsertXMLSchemaInputParameter
· InsertXMLSchemaOutputParameter

Properties

Name Description

Application Read-only.
Retrieves the application's top-level object.

Components Read-only.
Returns a collection of all components in the current mapping.

IsMainMapping Read-only.
Indicates if the current mapping is the main mapping of the
document the mapping is in.

True means it is the main mapping.
False means it is a user-defined function (UDF).

Name Read-only.
The name of the mapping or user defined-function (UDF).

Parent Read-only.
The parent object according to the object model.

Methods

Name Description

CreateConnection Creates a connection between the two supplied datapoints
(DatapointFrom & DatapointTo).

It will fail to do so if the DatapointFrom is not an output-side
datapoint, the DatapointTo is not an input-side datapoint, or a
connection between these two datapoints already exists.

1186

1186

1186

1187

1187

1188

© 2018-2024 Altova GmbH

Object Reference 1185The MapForce API

Altova MapForce 2024 Professional Edition

Name Description

InsertFunctionCall Inserts a function call component into the current mapping.

The specified library and function names indicate the function or
user-defined function to be called.

InsertXMLFile Adds a new XML schema component to the mapping.

The component's internal structure is determined by the schema
referenced in the specified XML file (i_strFileName) or, if the
XML file does not reference a schema file, by the separately
specified schema file (i_strSchemaFileName).

If the XML file has a schema file reference, then the parameter
i_strSchemaFileName is ignored.

The root element of the XML file will be used in the component.

The specified XML file is used as the input sample to evaluate
the mapping.

InsertXMLSchema Adds a new XML schema component to the mapping.

The component's internal structure is determined by the schema
file specified in the first parameter.

The second parameter defines the root element of this schema if
there is more than one candidate.

If the passed root element is an empty string and more
candidates are available, a Select Root Element dialog box will
pop up if MapForce is visible. If MapForce is invisible, no dialog
box will pop up and only an error is returned.

No XML input sample is assigned to this component.

InsertXMLSchemaInputParameter Inserts an XML schema input parameter component into the
current mapping.

The current mapping has to be a user-defined function. Trying to
insert it (the schema input parameter) into the main mapping will
fail.

InsertXMLSchemaOutputParameter Inserts an XML schema output parameter component into the
current mapping.

The current mapping has to be a user-defined function. Trying to
insert it (the schema output paramter) into the main mapping will
fail.

1188

1189

1190

1191

1192

1186 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.16.1 Properties

17.7.1.16.1.1 Application

Retrieves the application's top-level object.

Signature

Application : Application

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.16.1.2 Components

Returns a collection of all components in the current mapping.

Signature

Components : Components

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.16.1.3 IsMainMapping

Indicates if the current mapping is the main mapping of the document the mapping is in.

True means it is the main mapping.
False means it is a user-defined function (UDF).

Signature

IsMainMapping : Boolean

© 2018-2024 Altova GmbH

Object Reference 1187The MapForce API

Altova MapForce 2024 Professional Edition

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.16.1.4 Name

The name of the mapping or user defined-function (UDF).

Signature

Name : String

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.16.1.5 Parent

The parent object according to the object model.

Signature

Parent : Document

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1188 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.16.2 Methods

17.7.1.16.2.1 CreateConnection

Creates a connection between the two supplied datapoints (DatapointFrom & DatapointTo).

It will fail to do so if the DatapointFrom is not an output-side datapoint, the DatapointTo is not an input-side
datapoint, or a connection between these two datapoints already exists.

Signature

CreateConnection(in DatapointFrom:Datapoint, in DatapointTo:Datapoint) -> Connection

Parameters

Name Type Description

DatapointFrom Datapoint The datapoint from which the
connection is to be created.

DatapointTo Datapoint The destination datapoint.

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1240 Changing the document not allowed. It is read-only.

1241 Failed creating the connection.

17.7.1.16.2.2 InsertFunctionCall

Inserts a function call component into the current mapping.

The specified library and function names indicate the function or user-defined function to be called.

Signature

InsertFunctionCall(in strFunctionName:String, in strLibraryName:String) -> Component

© 2018-2024 Altova GmbH

Object Reference 1189The MapForce API

Altova MapForce 2024 Professional Edition

Parameters

Name Type Description

strFunctionName String The name of the function to be
inserted.

strLibraryName String The library name of the function to
be inserted

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1240 Changing the document not allowed. It is read-only.

1242 Failed creating function call component.

17.7.1.16.2.3 InsertXMLFile

Adds a new XML schema component to the mapping.

The component's internal structure is determined by the schema referenced in the specified XML file
(i_strFileName) or, if the XML file does not reference a schema file, by the separately specified schema file
(i_strSchemaFileName).

If the XML file has a schema file reference, then the parameter i_strSchemaFileName is ignored.

The root element of the XML file will be used in the component.

The specified XML file is used as the input sample to evaluate the mapping.

Signature

InsertXMLFile(in i_strFileName:String, in i_strSchemaFileName:String) -> Component

Parameters

Name Type Description

i_strFileName String The path of the instance XML file
to add.

1190 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Type Description

i_strSchemaFileName String The path of the XML Schema
Definition file to add.

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1240 Changing the document not allowed. It is read-only.

1244 Failed creating component.

17.7.1.16.2.4 InsertXMLSchema

Adds a new XML schema component to the mapping.

The component's internal structure is determined by the schema file specified in the first parameter.

The second parameter defines the root element of this schema if there is more than one candidate.

If the passed root element is an empty string and more candidates are available, a Select Root Element
dialog box will pop up if MapForce is visible. If MapForce is invisible, no dialog box will pop up and only an error
is returned.

No XML input sample is assigned to this component.

Signature

InsertXMLSchema(in i_strSchemaFileName:String, in i_strXMLRootName:String) -> Component

Parameters

Name Type Description

i_strSchemaFileName String The path of the XML Schema
Definition file to add.

i_strXMLRootName String The root element of the schema
(applicable when the schema has
more than one root element).

© 2018-2024 Altova GmbH

Object Reference 1191The MapForce API

Altova MapForce 2024 Professional Edition

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1240 Changing the document not allowed. It is read-only.

1244 Failed creating component.

17.7.1.16.2.5 InsertXMLSchemaInputParameter

Inserts an XML schema input parameter component into the current mapping.

The current mapping has to be a user-defined function. Trying to insert it (the schema input parameter) into the
main mapping will fail.

Signature

InsertXMLSchemaInputParameter(in strParamName:String, in strSchemaFileName:String, in

strXMLRootElementName:String) -> Component

Parameters

Name Type Description

strParamName String The name of the input parameter
component to create.

strSchemaFileName String The path of the XML Schema
Definition file to add.

strXMLRootElementName String The root element of the schema
(applicable when the schema has
more than one root element). If the
passed root element is an empty
string and more candidates are
available, a Select Root Element
dialog will pop up if MapForce is
visible. If MapForce is invisible, no
dialog box will pop up and only an
error is returned.

1192 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1240 Changing the document not allowed. It is read-only.

1243 Failed creating parameter component.

1245 This operation is not supported for the main mapping.

17.7.1.16.2.6 InsertXMLSchemaOutputParameter

Inserts an XML schema output parameter component into the current mapping.

The current mapping has to be a user-defined function. Trying to insert it (the schema output paramter) into the
main mapping will fail.

Signature

InsertXMLSchemaOutputParameter(in strParamName:String, in strSchemaFileName:String, in

strXMLRootElementName:String) -> Component

Parameters

Name Type Description

strParamName String The name of the output parameter
component to create.

strSchemaFileName String The path of the XML Schema
Definition file to add.

strXMLRootElementName String The root element of the schema
(applicable when the schema has
more than one root element). If the
passed root element is an empty
string and more candidates are
available, a Select Root Element
dialog will pop up if MapForce is
visible. If MapForce is invisible, no
dialog box will pop up and only an
error is returned.

© 2018-2024 Altova GmbH

Object Reference 1193The MapForce API

Altova MapForce 2024 Professional Edition

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

1240 Changing the document not allowed. It is read-only.

1243 Failed creating parameter component.

1245 This operation is not supported for the main mapping.

17.7.1.17 Mappings

Represents a collection of Mapping objects.

Properties to navigate the object model:

· Application
· Parent

Iterating through the collection:

· Count
· Item

Properties

Name Description

Application Read-only.
Retrieves the application's top-level object.

Count Read-only.
Retrieves the number of mappings in the collection.

Item Read-only.
Retrieves the mapping at index n from the collection. Indices
start with 1.

Parent Read-only.
The parent object according to the object model.

1194

1194

1195

1195

1194 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.17.1 Properties

17.7.1.17.1.1 Application

Retrieves the application's top-level object.

Signature

Application : Application

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.17.1.2 Count

Retrieves the number of mappings in the collection.

Signature

Count : Integer

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

© 2018-2024 Altova GmbH

Object Reference 1195The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.17.1.3 Item

Retrieves the mapping at index n from the collection. Indices start with 1.

Signature

Item(in n:Integer) : Mapping

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.17.1.4 Parent

The parent object according to the object model.

Signature

Parent : Document

Errors

Error code Description

1200 The object is no longer valid.

1201 Invalid address for the return parameter was specified.

17.7.1.18 Options

This object gives access to all MapForce options available in the Tools | Options dialog.

Properties to navigate the object model:

· Application
· Parent

General options:

· ShowLogoOnPrint
· ShowLogoOnStartup
· UseGradientBackground

1196 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Options for code generation:

· DefaultOutputEncoding
· DefaultOutputByteOrder
· DefaultOutputByteOrderMark
· XSLTDefaultOutputDirectory
· CodeDefaultOutputDirectory
· CPPSettings_DOMType
· CPPSettings_GenerateVC6ProjectFile
· CppSettings_GenerateVSProjectFile
· CPPSettings_LibraryType
· CPPSettings_UseMFC
· CSharpSettings_ProjectType

Properties

Name Description

Application Read-only.
Retrieves the application's top-level object.

CodeDefaultOutputDirectory Specifies the target directory where files generated by
Document.GenerateCppCode, Document.GenerateJavaCode
and Document.GenerateCHashCode are placed.

CPPSettings_DOMType Specifies the DOM type used by Document.GenerateCppCode.

CPPSettings_GenerateVC6ProjectFile Specifies if VisualC++ 6.0 project files should be generated by
Document.GenerateCppCode.

CppSettings_GenerateVSProjectFile Specifies the version of Visual Studio in which project files
should be generated by Document.GenerateCppCode.

CPPSettings_LibraryType Specifies the library type used by Document.GenerateCppCode.

CPPSettings_UseMFC Specifies if MFC support should be used by C++ code
generated by Document.GenerateCppCode.

CSharpSettings_ProjectType Specifies the type of C# project used by
Document.GenerateCHashCode.

DefaultOutputByteOrder Byte order for the file encoding used for output files.

DefaultOutputByteOrderMark Indicates if a byte order mark (BOM), is to be included in the file
encoding of output files.

DefaultOutputEncoding File encoding used for output files.

GenerateWrapperClasses Indicates if wrapper classes are also to be generated when
generating code.

JavaSettings_ApacheAxisVersion This property is obsolete.

Parent Read-only.

1197

1197

1198

1198

1199

1199

1200

1200

1201

1201

1201

1202

1202

1202

© 2018-2024 Altova GmbH

Object Reference 1197The MapForce API

Altova MapForce 2024 Professional Edition

Name Description

The parent object according to the object model.

ShowLogoOnPrint Show or hide the MapForce logo on printed outputs.

ShowLogoOnStartup Show or hide the MapForce logo on application startup.

UseGradientBackground Set or retrieve the background color mode for a mapping
window.

XSLTDefaultOutputDirectory Specifies the target directory where files generated by
Document.GenerateXSLT are placed.

17.7.1.18.1 Properties

17.7.1.18.1.1 Application

Retrieves the application's top-level object.

Signature

Application : Application

Errors

Error code Description

1400 The object is no longer valid.

1401 Invalid address for the return parameter was specified.

17.7.1.18.1.2 CodeDefaultOutputDirectory

Specifies the target directory where files generated by Document.GenerateCppCode,
Document.GenerateJavaCode and Document.GenerateCHashCode are placed.

Signature

CodeDefaultOutputDirectory : String

Errors

Error code Description

1400 The object is no longer valid.

1203

1203

1204

1204

1198 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Error code Description

1401 Invalid address for the return parameter was specified.

17.7.1.18.1.3 CPPSettings_DOMType

Specifies the DOM type used by Document.GenerateCppCode.

Signature

CPPSettings_DOMType : ENUMDOMType

Errors

Error code Description

1400 The object is no longer valid.

1401 Invalid address for the return parameter was specified.

1402 The parameter value is out of range.

1403 The parameter value is not available anymore.

17.7.1.18.1.4 CPPSettings_GenerateVC6ProjectFile (obsolete)

Specifies if VisualC++ 6.0 project files should be generated by Document.GenerateCppCode.

Signature

CPPSettings_GenerateVC6ProjectFile : Boolean

Errors

Error code Description

1400 The object is no longer valid.

1401 Invalid address for the return parameter was specified.

1402 The parameter value is out of range.

1403 The parameter value is not available anymore.

1238

© 2018-2024 Altova GmbH

Object Reference 1199The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.18.1.5 CppSettings_GenerateVSProjectFile

Specifies the version of Visual Studio in which project files should be generated by
Document.GenerateCppCode.

Signature

CppSettings_GenerateVSProjectFile : ENUMProjectType

Errors

Error code Description

1400 The object is no longer valid.

1401 Invalid address for the return parameter was specified.

1402 The parameter value is out of range.

1403 The parameter value is not available anymore.

17.7.1.18.1.6 CPPSettings_LibraryType

Specifies the library type used by Document.GenerateCppCode.

Signature

CPPSettings_LibraryType : ENUMLibType

Errors

Error code Description

1400 The object is no longer valid.

1401 Invalid address for the return parameter was specified.

1239

1238

1200 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.18.1.7 CPPSettings_UseMFC

Specifies if MFC support should be used by C++ code generated by Document.GenerateCppCode.

Signature

CPPSettings_UseMFC : Boolean

Errors

Error code Description

1400 The object is no longer valid.

1401 Invalid address for the return parameter was specified.

17.7.1.18.1.8 CSharpSettings_ProjectType

Specifies the type of C# project used by Document.GenerateCHashCode.

Signature

CSharpSettings_ProjectType : ENUMProjectType

Errors

Error code Description

1400 The object is no longer valid.

1401 Invalid address for the return parameter was specified.

1402 The parameter value is out of range.

1403 The parameter value is not available anymore.

1239

© 2018-2024 Altova GmbH

Object Reference 1201The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.18.1.9 DefaultOutputByteOrder

Byte order for the file encoding used for output files.

Signature

DefaultOutputByteOrder : String

Errors

Error code Description

1400 The object is no longer valid.

1401 Invalid address for the return parameter was specified.

17.7.1.18.1.10 DefaultOutputByteOrderMark

Indicates if a byte order mark (BOM), is to be included in the file encoding of output files.

Signature

DefaultOutputByteOrderMark : Boolean

Errors

Error code Description

1400 The object is no longer valid.

1401 Invalid address for the return parameter was specified.

17.7.1.18.1.11 DefaultOutputEncoding

File encoding used for output files.

Signature

DefaultOutputEncoding : String

1202 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Errors

Error code Description

1400 The object is no longer valid.

1401 Invalid address for the return parameter was specified.

17.7.1.18.1.12 GenerateWrapperClasses

Indicates if wrapper classes are also to be generated when generating code.

Signature

GenerateWrapperClasses : Boolean

Errors

Error code Description

1400 The object is no longer valid.

1401 Invalid address for the return parameter was specified.

17.7.1.18.1.13 JavaSettings_ApacheAxisVersion (obsolete)

This property is obsolete.

Signature

JavaSettings_ApacheAxisVersion : ENUMApacheAxisVersion

17.7.1.18.1.14 Parent

The parent object according to the object model.

Signature

Parent : Application

1233

© 2018-2024 Altova GmbH

Object Reference 1203The MapForce API

Altova MapForce 2024 Professional Edition

Errors

Error code Description

1400 The object is no longer valid.

1401 Invalid address for the return parameter was specified.

17.7.1.18.1.15 ShowLogoOnPrint

Show or hide the MapForce logo on printed outputs.

Signature

ShowLogoOnPrint : Boolean

Errors

Error code Description

1400 The object is no longer valid.

1401 Invalid address for the return parameter was specified.

17.7.1.18.1.16 ShowLogoOnStartup

Show or hide the MapForce logo on application startup.

Signature

ShowLogoOnStartup : Boolean

Errors

Error code Description

1400 The object is no longer valid.

1401 Invalid address for the return parameter was specified.

1204 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.18.1.17 UseGradientBackground

Set or retrieve the background color mode for a mapping window.

Signature

UseGradientBackground : Boolean

Errors

Error code Description

1400 The object is no longer valid.

1401 Invalid address for the return parameter was specified.

17.7.1.18.1.18 XSLTDefaultOutputDirectory

Specifies the target directory where files generated by Document.GenerateXSLT are placed.

Signature

XSLTDefaultOutputDirectory : String

Errors

Error code Description

1400 The object is no longer valid.

1401 Invalid address for the return parameter was specified.

17.7.1.19 Project

A Project object represents a project and its tree of project items in MapForce.

Properties to navigate the object model:

· Application
· Parent

File handling:

· FullName
· Name
· Path

© 2018-2024 Altova GmbH

Object Reference 1205The MapForce API

Altova MapForce 2024 Professional Edition

· Saved
· Save
· Close

Project tree navigation:

· Count
· Item
· _NewEnum

Project tree manipulation:

· AddActiveFile
· AddFile

· InsertWebService (Enterprise edition only)
· CreateFolder

Code generation:

· Output_Folder
· Output_Language
· Output_TextEncoding
· Java_BasePackageName
· GenerateCode
· GenerateCodeEx
· GenerateCodeIn
· GenerateCodeInEx

For examples of how to use the properties and methods listed above, see Example: Project Tasks . Note
that, in order to perform operations that involve Web services, MapForce Enterprise edition is required.

Properties

Name Description

_NewEnum Read-only.
This property supports language-specific standard enumeration.

Application Read-only.
Retrieves the top-level application object.

Count Read-only.
Retrieves number of children of the project's root item. For
examples, see Item or _NewEnum

FullName Path and name of the project file.

Item Read-only.
Returns the child at n position of the project's root. The index is
1-based (the first index is 1). The largest valid index is Count.
For an alternative, see _NewEnum.

Java_BasePackageName Sets or gets the base package name of the Java packages that
will be generated. This property is used only when generating

1083

1208

1209

1209

1210

1210

1210

1206 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Description

Java code.

Name Read-only.
Name of the project file without file path.

Output_Folder Sets or gets the default output folder used with GenerateCode
and GenerateCodeIn. Project items can overwrite this value in
their CodeGenSettings_OutputFolder property, when
CodeGenSettings_UseDefault is set to false.

Output_Language Sets or gets the default language for code generation when
using GenerateCode. Project items can overwrite this value in
their CodeGenSettings_OutputLanguage property, when
CodeGenSettings_UseDefault is set to false.

Output_TextEncoding Sets or gets the text encoding used when generating XML-
based code.

Parent Read-only.
The parent object according to the object model.

Path Read-only.
Path of the project file without name.

Saved Read-only.
True if the project was not modified since the last Save
operation, false otherwise.

Methods

Name Description

AddActiveFile Adds the currently open document to the mapping folder of the
project's root.

AddFile Adds the specified document to the mapping folder of the
project's root.

Close Closes the project without saving.

CreateFolder Creates a new folder as a child of the project's root item.

GenerateCode Generates code for all project items of the project. The code
language and output location is determined by properties of the
project and project items.

GenerateCodeEx Generates code for all project items of the project. The code
language and output location are determined by properties of the
project and project items. An object that can be used to iterate
through all messages issued by the code generation process is

1211

1211

1212

1212

1212

1213

1213

1214

1214

1215

1215

1216

1216

© 2018-2024 Altova GmbH

Object Reference 1207The MapForce API

Altova MapForce 2024 Professional Edition

Name Description

returned. These messages are the same as those shown in the
Messages window of MapForce.

GenerateCodeIn Generates code for all project items of the project in the
specified language. The output location is determined by
properties of the project and project items.

GenerateCodeInEx Generates code for all project items of the project in the
specified language. The output location is determined by
properties of the project and project items. Returns an object
that can be used to iterate through all messages issued by the
code generation process. These messages are the same as
those shown in the Messages window of MapForce.

InsertWebService Inserts a new Web service project into the project's Web service
folder. If i_bGenerateMappings is true, initial mapping
documents for all ports get generated automatically.

Save Saves the project to the file defined by FullName.

Events

Name Description

OnProjectClosed This event is triggered when the project is closed. The project
object passed into the event handler should not be accessed.
The corresponding open event is
Application.OnProjectOpened.

1216

1217

1218

1219

1219

1208 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.19.1 Properties

17.7.1.19.1.1 _NewEnum

This property supports language-specific standard enumeration.

Signature

_NewEnum : IUnknown

Errors

Error code Description

1500 The object is no longer valid.

Examples

// --
// JScript sample - enumeration of a project's project items.
function AllChildrenOfProjectRoot()
{
 objProject = objMapForce.ActiveProject;
 if (objProject != null)
 {

for (objProjectIter = new Enumerator(objProject); ! objProjectIter.atEnd(); objProjectIt
er.moveNext())
 {
 objProjectItem = objProjectIter.item();

 // do something with project item here
 }
 }
}

// --
// JScript sample - iterate all project items, depth first.
function IterateProjectItemsRec(objProjectItemIter)
{
 while (! objProjectItemIter.atEnd())
 {
 objProjectItem = objProjectItemIter.item();
 // do something with project item here

 IterateProjectItemsRec(new Enumerator(objProjectItem));

 objProjectItemIter.moveNext();
 }

© 2018-2024 Altova GmbH

Object Reference 1209The MapForce API

Altova MapForce 2024 Professional Edition

}
function IterateAllProjectItems()
{
 objProject = objMapForce.ActiveProject;
 if (objProject != null)
 {
 IterateProjectItemsRec(new Enumerator(objProject));
 }
}

17.7.1.19.1.2 Application

Retrieves the top-level application object.

Signature

Application : Application

Errors

Error code Description

1500 The object is no longer valid.

1501 Invalid address for the return parameter was specified.

17.7.1.19.1.3 Count

Retrieves number of children of the project's root item. For examples, see Item or _NewEnum

Signature

Count : Integer

Errors

Error code Description

1500 The object is no longer valid.

1210 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.19.1.4 FullName

Path and name of the project file.

Signature

FullName : String

Errors

Error code Description

1500 The object is no longer valid.

1501 Invalid address for the return parameter was specified.

17.7.1.19.1.5 Item

Returns the child at n position of the project's root. The index is 1-based (the first index is 1). The largest valid
index is Count. For an alternative, see _NewEnum.

Signature

Item(in n:Integer) : ProjectItem

Errors

Error code Description

1500 The object is no longer valid.

Examples

// ---
// JScript code snippet - enumerate children using Count and Item.
for(nItemIndex = 1; nItemIndex <= objProject.Count; nItemIndex++)
{
 objProjectItem = objProject.Item(nItemIndex);
 // do something with project item here
}

17.7.1.19.1.6 Java_BasePackageName

Sets or gets the base package name of the Java packages that will be generated. This property is used only
when generating Java code.

© 2018-2024 Altova GmbH

Object Reference 1211The MapForce API

Altova MapForce 2024 Professional Edition

Signature

Java_BasePackageName : String

Errors

Error code Description

1500 The object is no longer valid.

1501 Invalid package name specified. Invalid address for the return parameter was specified.

17.7.1.19.1.7 Name

Name of the project file without file path.

Signature

Name : String

Errors

Error code Description

1500 The object is no longer valid.

1501 Invalid address for the return parameter was specified.

17.7.1.19.1.8 Output_Folder

Sets or gets the default output folder used with GenerateCode and GenerateCodeIn. Project items can
overwrite this value in their CodeGenSettings_OutputFolder property, when CodeGenSettings_UseDefault is
set to false.

Signature

Output_Folder : String

Errors

Error code Description

1500 The object is no longer valid.

1501 Invalid folder name specified. Invalid address for the return parameter was specified.

1212 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.19.1.9 Output_Language

Sets or gets the default language for code generation when using GenerateCode. Project items can overwrite
this value in their CodeGenSettings_OutputLanguage property, when CodeGenSettings_UseDefault is set to
false.

Signature

Output_Language : ENUMProgrammingLanguage

Errors

Error code Description

1500 The object is no longer valid.

1501 Invalid language specified. Invalid address for the return parameter was specified.

17.7.1.19.1.10 Output_TextEncoding

Sets or gets the text encoding used when generating XML-based code.

Signature

Output_TextEncoding : String

Errors

Error code Description

1500 The object is no longer valid.

1501 Invalid text encoding specified. Invalid address for the return parameter was specified.

17.7.1.19.1.11 Parent

The parent object according to the object model.

Signature

Parent : Application

1238

© 2018-2024 Altova GmbH

Object Reference 1213The MapForce API

Altova MapForce 2024 Professional Edition

Errors

Error code Description

1500 The object is no longer valid.

1501 Invalid address for the return parameter was specified.

17.7.1.19.1.12 Path

Path of the project file without name.

Signature

Path : String

Errors

Error code Description

1500 The object is no longer valid.

1501 Invalid address for the return parameter was specified.

17.7.1.19.1.13 Saved

True if the project was not modified since the last Save operation, false otherwise.

Signature

Saved : Boolean

Errors

Error code Description

1500 The object is no longer valid.

1501 Invalid address for the return parameter was specified.

1214 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.19.2 Methods

17.7.1.19.2.1 AddActiveFile

Adds the currently open document to the mapping folder of the project's root.

Signature

AddActiveFile() -> ProjectItem

Errors

Error code Description

1500 The object is no longer valid.

1501 Invalid address for the return parameter was specified.

1503 No active document is available.

1504 Active documents needs to be given a path name before it can be added to the project.

1705 Mapping could not be assigned to project. Maybe it is already contained in the target
folder.

17.7.1.19.2.2 AddFile

Adds the specified document to the mapping folder of the project's root.

Signature

AddFile(in i_strFileName:String) -> ProjectItem

Parameters

Name Type Description

i_strFileName String Specifies the path of the document
to add.

Errors

Error code Description

1500 The object is no longer valid.

© 2018-2024 Altova GmbH

Object Reference 1215The MapForce API

Altova MapForce 2024 Professional Edition

Error code Description

1501 Invalid address for the return parameter was specified.

1705 Mapping could not be assigned to project. The file does not exist or is not a MapForce
mapping. Maybe the file is already assigned to the target folder.

17.7.1.19.2.3 Close

Closes the project without saving.

Signature

Close() -> Void

Errors

Error code Description

1500 The object is no longer valid.

17.7.1.19.2.4 CreateFolder

Creates a new folder as a child of the project's root item.

Signature

CreateFolder(in i_strFolderName:String) -> ProjectItem

Parameters

Name Type Description

i_strFolderName String The name of the folder to create.

Errors

Error code Description

1500 The object is no longer valid.

1501 Invalid folder name or invalid address for the return parameter was specified.

1216 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.19.2.5 GenerateCode

Generates code for all project items of the project. The code language and output location is determined by
properties of the project and project items.

Signature

GenerateCode() -> Void

Errors

Error code Description

1500 The object is no longer valid.

1706 Error during code generation.

17.7.1.19.2.6 GenerateCodeEx

Generates code for all project items of the project. The code language and output location are determined by
properties of the project and project items. An object that can be used to iterate through all messages issued
by the code generation process is returned. These messages are the same as those shown in the Messages
window of MapForce.

Signature

GenerateCodeEx() -> ErrorMarkers

Errors

Error code Description

1500 The object is no longer valid.

1501 Invalid address for the return parameter was specified.

1706 Error during code generation.

17.7.1.19.2.7 GenerateCodeIn

Generates code for all project items of the project in the specified language. The output location is determined
by properties of the project and project items.

© 2018-2024 Altova GmbH

Object Reference 1217The MapForce API

Altova MapForce 2024 Professional Edition

Signature

GenerateCodeIn(in i_nLanguage:ENUMProgrammingLanguage) -> Void

Parameters

Name Type Description

i_nLanguage ENUMProgrammingLanguage Specifies the programming
language in which code should be
generated.

Errors

Error code Description

1500 The object is no longer valid.

1706 Error during code generation.

17.7.1.19.2.8 GenerateCodeInEx

Generates code for all project items of the project in the specified language. The output location is determined
by properties of the project and project items. Returns an object that can be used to iterate through all
messages issued by the code generation process. These messages are the same as those shown in the
Messages window of MapForce.

Signature

GenerateCodeInEx(in i_nLanguage:ENUMProgrammingLanguage) -> ErrorMarkers

Parameters

Name Type Description

i_nLanguage ENUMProgrammingLanguage Specifies the programming
language in which code should be
generated.

Errors

Error code Description

1500 The object is no longer valid.

1501 Invalid address for the return parameter was specified.

1238

1238

1238

1238

1218 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Error code Description

1706 Error during code generation.

17.7.1.19.2.9 InsertWebService

Inserts a new Web service project into the project's Web service folder. If i_bGenerateMappings is true, initial
mapping documents for all ports get generated automatically.

Signature

InsertWebService(in i_strWSDLFile:String, in i_strService:String, in i_strPort:String, in

i_bGenerateMappings:Boolean) -> ProjectItem

Parameters

Name Type Description

i_strWSDLFile String Specifies the path of the WSDL
file to add.

i_strService String Specifies the name of the Web
service to add.

i_strPort String Specifies the port of the Web
service to add.

i_bGenerateMappings Boolean If this parameter is true, initial
mapping documents for all ports
get generated automatically.

Errors

Error code Description

1500 The object is no longer valid.

1501 WSDL file can not be found or is invalid. Service or port names are invalid. Invalid
address for the return parameter was specified.

1503 Operation not supported by current edition.

© 2018-2024 Altova GmbH

Object Reference 1219The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.19.2.10 Save

Saves the project to the file defined by FullName.

Signature

Save() -> Void

Errors

Error code Description

1500 The object is no longer valid.

1502 Can't save to file.

17.7.1.19.3 Events

17.7.1.19.3.1 OnProjectClosed

This event is triggered when the project is closed. The project object passed into the event handler should not
be accessed. The corresponding open event is Application.OnProjectOpened.

Signature

OnProjectClosed(in i_ipProject:Project) : Void

17.7.1.20 ProjectItem

A ProjectItem object represents one item in a project tree.

Properties to navigate the object model:

· Application
· Parent

Project tree navigation:

· Count
· Item
· _NewEnum

Project item properties:

· Kind

1220 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· Name

· WSDLFile (only available to Web service project items)
· QualifiedName (only available to Web service project items)

Project tree manipulation:

· AddActiveFile (only available to folder items)
· AddFile (only available to folder items)
· CreateFolder (only available to folder items)
· CreateMappingForProject (only available to Web service operations)
· Remove

Document access:

· Open (only available to mapping items and Web service operations)

Code-generation:

· CodeGenSettings_UseDefault
· CodeGenSettings_OutputFolder
· CodeGenSettings_Language
· GenerateCode
· GenerateCodeEx
· GenerateCodeIn
· GenerateCodeInEx

For examples of how to use the properties and methods listed above, see Example: Project Tasks . For
operations with Web services, the MapForce Enterprise edition is required.

Properties

Name Description

_NewEnum Read-only.
This property supports language specific standard enumeration.
For examples, see Project.Item or Project._NewEnum.

Application Read-only.
Retrieves the top-level application object.

CodeGenSettings_Language Gets or sets the language to be used with GenerateCode or
Project.GenerateCode. This property is consulted only if
CodeGenSettings_UseDefault is set to false.

CodeGenSettings_OutputFolder Gets or sets the output directory to be used with GenerateCode,
GenerateCodeIn, Project.GenerateCode or
Project.GenerateCodeIn. This property is consulted only if
CodeGenSettings_UseDefault is set to false.

CodeGenSettings_UseDefault Gets or sets whether output directory and code language are
used as defined by either (a) the parent folders, or (b) the project
root. This property is used with calls to GenerateCode,
GenerateCodeIn, Project.GenerateCode and

1083

1223

1223

1224

1224

1224

© 2018-2024 Altova GmbH

Object Reference 1221The MapForce API

Altova MapForce 2024 Professional Edition

Name Description

Project.GenerateCodeIn. If this property is set to false, the
values of CodeGenSettings_OutputFolder and
CodeGenSettings_Language are used to generate code for this
project item.

Count Read-only.
Retrieves the number of children of this project item. See also
Item. For examples, see Project.Item or Project._NewEnum.

Item Read-only.
Returns the child at n position of this project item. The index is
1-based (the first index is 1). The largest valid index is
ProjectItem.Count. For an alternative, see
ProjectItem._NewEnum. For examples, see Project.Item or
Project._NewEnum.

Kind Read-only.
Retrieves the kind of the project item. Availability of some
properties and the applicability of certain methods is restricted
to specific kinds of project items. The description of all methods
and properties contains information about these restrictions.

Name Retrieves or sets the name of a project item. The name of most
items is read-only. Exceptions are user-created folders, the
names of which can be altered after creation.

Parent Read-only.
Retrieves the project that this item is a child of. Has the same
effect as Application.ActiveProject.

QualifiedName Read-only.
Retrieves the qualified name of a Web service item.

WSDLFile Read-only.
Retrieves the file name of the WSDL file defining the Web
service that hosts the current project item.

Methods

Name Description

AddActiveFile Adds the currently active document to this project item if it is a
valid child. Otherwise, the document is added to the Mapping
Folder of the project's root.

AddFile Adds the specified document to this project item if it is a valid
child. Otherwise, the document is added to the Mapping Folder
of the project's root.

CreateFolder Creates a new folder as a child of this project item.

1225

1225

1225

1226

1226

1227

1227

1228

1228

1229

1222 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Name Description

CreateMappingForProject Creates an initial mapping document for a Web service operation
and saves it to i_strFileName. When using
Project.InsertWebService you can set the
i_bGenerateMappings flag to let MapForce automatically
generate initial mappings for all ports.

GenerateCode Generates code for this project item and its children. The code
language and output location is determined by
CodeGenSettings_UseDefault, CodeGenSettings_Language
and CodeGenSettings_OutputFolder. Children of this project
item can have their own property settings related to code-
generation.

GenerateCodeEx Generates code for this project item and its children. The code
language and output location are determined by
CodeGenSettings_UseDefault, CodeGenSettings_Language
and CodeGenSettings_OutputFolder. Children of this project
item can have their own property settings related to code-
generation.

GenerateCodeIn Generates code for the project item and its children in the
specified language. The output location is determined by
CodeGenSettings_UseDefault and
CodeGenSettings_OutputFolder. Children of this project item
can have their own property settings related to code-generation.

GenerateCodeInEx Generates code for the project item and its children in the
specified language. The output location is determined by
CodeGenSettings_UseDefault and
CodeGenSettings_OutputFolder. Children of this project item
can have their own property settings related to code-generation.

An object that can be used to iterate through all messages
issued by the code generation process is returned. These
messages are the same as those shown in the Messages
window of MapForce.

Open Opens the project item as a document or makes the
corresponding document the active one, if it is already open. The
project item must be a MapForce mapping or, for Enterprise
edition only, Web service operation.

Remove Remove this project item and all its children from the project
tree.

Events

Name Description

OnModifiedFlagChanged Occurs when the ProjectItem's modification status changes.

1229

1230

1230

1231

1231

1232

1233

1233

© 2018-2024 Altova GmbH

Object Reference 1223The MapForce API

Altova MapForce 2024 Professional Edition

Name Description

OnProjectClosed This event is triggered when the project is closed. The project
object passed into the event handler should not be accessed.
The corresponding open event is
Application.OnProjectOpened.

17.7.1.20.1 Properties

17.7.1.20.1.1 _NewEnum

This property supports language specific standard enumeration. For examples, see Project.Item or
Project._NewEnum.

Signature

_NewEnum : IUnknown

Errors

Error code Description

1700 The object is no longer valid.

17.7.1.20.1.2 Application

Retrieves the top-level application object.

Signature

Application : Application

Errors

Error code Description

1700 The object is no longer valid.

1701 Invalid address for the return parameter was specified.

1233

1224 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.20.1.3 CodeGenSettings_Language

Gets or sets the language to be used with GenerateCode or Project.GenerateCode. This property is
consulted only if CodeGenSettings_UseDefault is set to false.

Signature

CodeGenSettings_Language : ENUMProgrammingLanguage

Errors

Error code Description

1700 The object is no longer valid.

1701 Invalid language or invalid address for the return parameter was specified.

17.7.1.20.1.4 CodeGenSettings_OutputFolder

Gets or sets the output directory to be used with GenerateCode, GenerateCodeIn, Project.GenerateCode or
Project.GenerateCodeIn. This property is consulted only if CodeGenSettings_UseDefault is set to false.

Signature

CodeGenSettings_OutputFolder : String

Errors

Error code Description

1700 The object is no longer valid.

1701 An invalid output folder or an invalid address for the return parameter was specified.

17.7.1.20.1.5 CodeGenSettings_UseDefault

Gets or sets whether output directory and code language are used as defined by either (a) the parent folders, or
(b) the project root. This property is used with calls to GenerateCode, GenerateCodeIn,
Project.GenerateCode and Project.GenerateCodeIn. If this property is set to false, the values of
CodeGenSettings_OutputFolder and CodeGenSettings_Language are used to generate code for this project
item.

Signature

CodeGenSettings_UseDefault : Boolean

1238

© 2018-2024 Altova GmbH

Object Reference 1225The MapForce API

Altova MapForce 2024 Professional Edition

Errors

Error code Description

1700 The object is no longer valid.

1701 Invalid address for the return parameter was specified.

17.7.1.20.1.6 Count

Retrieves the number of children of this project item. See also Item. For examples, see Project.Item or
Project._NewEnum.

Signature

Count : Integer

Errors

Error code Description

1700 The object is no longer valid.

17.7.1.20.1.7 Item

Returns the child at n position of this project item. The index is 1-based (the first index is 1). The largest valid
index is ProjectItem.Count. For an alternative, see ProjectItem._NewEnum. For examples, see
Project.Item or Project._NewEnum.

Signature

Item(in n:Integer) : ProjectItem

Errors

Error code Description

1700 The object is no longer valid.

17.7.1.20.1.8 Kind

Retrieves the kind of the project item. Availability of some properties and the applicability of certain methods is
restricted to specific kinds of project items. The description of all methods and properties contains information
about these restrictions.

1226 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Signature

Kind : ENUMProjectItemType

Errors

Error code Description

1700 The object is no longer valid.

1701 Invalid address for the return parameter was specified.

17.7.1.20.1.9 Name

Retrieves or sets the name of a project item. The name of most items is read-only. Exceptions are user-created
folders, the names of which can be altered after creation.

Signature

Name : String

Errors

Error code Description

1700 The object is no longer valid.

1701 Invalid address for the return parameter was specified.

1702 Project item does not allow to alter its name.

17.7.1.20.1.10 Parent

Retrieves the project that this item is a child of. Has the same effect as Application.ActiveProject.

Signature

Parent : Project

Errors

Error code Description

1700 The object is no longer valid.

1239

© 2018-2024 Altova GmbH

Object Reference 1227The MapForce API

Altova MapForce 2024 Professional Edition

Error code Description

1701 Invalid address for the return parameter was specified.

17.7.1.20.1.11 QualifiedName

Retrieves the qualified name of a Web service item.

Signature

QualifiedName : String

Errors

Error code Description

1700 The object is no longer valid.

1701 Invalid address for the return parameter was specified.

1702 The project item is not a part of a Web service.

17.7.1.20.1.12 WSDLFile

Retrieves the file name of the WSDL file defining the Web service that hosts the current project item.

Signature

WSDLFile : String

Errors

Error code Description

1700 The object is no longer valid.

1701 Invalid address for the return parameter was specified.

1702 The project item is not a part of a Web service.

1228 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

17.7.1.20.2 Methods

17.7.1.20.2.1 AddActiveFile

Adds the currently active document to this project item if it is a valid child. Otherwise, the document is added
to the Mapping Folder of the project's root.

Signature

AddActiveFile() -> ProjectItem

Errors

Error code Description

1700 The object is no longer valid.

1701 The file name is empty. Invalid address for the return parameter was specified.

1703 No active document is available.

1704 Active documents needs to be given a path name before it can be added to the project.

1705 Mapping could not be assigned to project. The file does not exist or is not a MapForce
mapping. Maybe the file is already assigned to the target folder.

17.7.1.20.2.2 AddFile

Adds the specified document to this project item if it is a valid child. Otherwise, the document is added to the
Mapping Folder of the project's root.

Signature

AddFile(in i_strFilePath:String) -> ProjectItem

Parameters

Name Type Description

i_strFilePath String The path of the document to add.

Errors

Error code Description

1700 The object is no longer valid.

© 2018-2024 Altova GmbH

Object Reference 1229The MapForce API

Altova MapForce 2024 Professional Edition

Error code Description

1701 The file name is empty. Invalid address for the return parameter was specified.

1705 Mapping could not be assigned to project. The file does not exist or is not a MapForce
mapping. Maybe the file is already assigned to the target folder.

17.7.1.20.2.3 CreateFolder

Creates a new folder as a child of this project item.

Signature

CreateFolder(in i_strFolderName:String) -> ProjectItem

Parameters

Name Type Description

i_strFolderName String The name of the folder to create.

Errors

Error code Description

1700 The object is no longer valid.

1701 Invalid folder name or invalid address for the return parameter was specified.

1702 The project item does not support children.

17.7.1.20.2.4 CreateMappingForProject

Creates an initial mapping document for a Web service operation and saves it to i_strFileName. When using
Project.InsertWebService you can set the i_bGenerateMappings flag to let MapForce automatically
generate initial mappings for all ports.

Signature

CreateMappingForProject(in i_strFileName:String) -> ProjectItem

1230 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Parameters

Name Type Description

i_strFileName String Specifies the path where the
mapping should be saved.

Errors

Error code Description

1700 The object is no longer valid.

1701 Invalid address for the return parameter was specified.

1707 Cannot create new mapping. The project item does not support auto-creation of initial
mappings or a mapping already exists.

1708 Operation not supported in current edition.

17.7.1.20.2.5 GenerateCode

Generates code for this project item and its children. The code language and output location is determined by
CodeGenSettings_UseDefault, CodeGenSettings_Language and CodeGenSettings_OutputFolder. Children
of this project item can have their own property settings related to code-generation.

Signature

GenerateCode() -> Void

Errors

Error code Description

1700 The object is no longer valid.

1706 Error during code generation.

17.7.1.20.2.6 GenerateCodeEx

Generates code for this project item and its children. The code language and output location are determined by
CodeGenSettings_UseDefault, CodeGenSettings_Language and CodeGenSettings_OutputFolder. Children
of this project item can have their own property settings related to code-generation.

© 2018-2024 Altova GmbH

Object Reference 1231The MapForce API

Altova MapForce 2024 Professional Edition

Signature

GenerateCodeEx() -> ErrorMarkers

Errors

Error code Description

1700 The object is no longer valid.

1701 Invalid address for the return parameter was specified.

1706 Error during code generation.

17.7.1.20.2.7 GenerateCodeIn

Generates code for the project item and its children in the specified language. The output location is
determined by CodeGenSettings_UseDefault and CodeGenSettings_OutputFolder. Children of this project
item can have their own property settings related to code-generation.

Signature

GenerateCodeIn(in i_nLanguage:ENUMProgrammingLanguage) -> Void

Parameters

Name Type Description

i_nLanguage ENUMProgrammingLanguage Specifies the programming
language for code generation.

Errors

Error code Description

1700 The object is no longer valid.

1701 Invalid language specified.

1706 Error during code generation.

17.7.1.20.2.8 GenerateCodeInEx

Generates code for the project item and its children in the specified language. The output location is
determined by CodeGenSettings_UseDefault and CodeGenSettings_OutputFolder. Children of this project
item can have their own property settings related to code-generation.

1238

1238

1232 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

An object that can be used to iterate through all messages issued by the code generation process is returned.
These messages are the same as those shown in the Messages window of MapForce.

Signature

GenerateCodeInEx(in i_nLanguage:ENUMProgrammingLanguage) -> ErrorMarkers

Parameters

Name Type Description

i_nLanguage ENUMProgrammingLanguage Specifies the programming
language for code generation.

Errors

Error code Description

1700 The object is no longer valid.

1701 Invalid language specified or invalid address for the return parameter was specified.

1706 Error during code generation.

17.7.1.20.2.9 Open

Opens the project item as a document or makes the corresponding document the active one, if it is already
open. The project item must be a MapForce mapping or, for Enterprise edition only, Web service operation.

Signature

Open() -> Document

Errors

Error code Description

1700 The object is no longer valid.

1701 Invalid address for the return parameter was specified.

1702 The project item does not refer to a MapForce mapping file.

1708 Operation not supported in current edition.

1238

1238

© 2018-2024 Altova GmbH

Object Reference 1233The MapForce API

Altova MapForce 2024 Professional Edition

17.7.1.20.2.10 Remove

Remove this project item and all its children from the project tree.

Signature

Remove() -> Void

Errors

Error code Description

1700 The object is no longer valid.

17.7.1.20.3 Events

17.7.1.20.3.1 OnModifiedFlagChanged

Occurs when the ProjectItem's modification status changes.

Signature

OnModifiedFlagChanged(in i_bIsModified:Boolean) : Void

17.7.1.20.3.2 OnProjectClosed

This event is triggered when the project is closed. The project object passed into the event handler should not
be accessed. The corresponding open event is Application.OnProjectOpened.

Signature

OnProjectClosed(in i_ipProject:Project) : Void

17.7.2 Enumerations

17.7.2.1 ENUMApacheAxisVersion (obsolete)

This enumeration type is obsolete.

1234 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Members

eApacheAxisVersion_Axis = 1

eApacheAxisVersion_Axis2 = 2

17.7.2.2 ENUMApplicationStatus

Enumeration values to indicate the status of the application.

Members

eApplicationRunning = 0

eApplicationAfterLicenseCheck = 1

eApplicationBeforeLicenseCheck = 2

eApplicationConcurrentLicenseCheckFailed = 3

eApplicationProcessingCommandLine = 4

17.7.2.3 ENUMAppOutputLine_Severity

Enumeration values to identify the severity of an AppOutputLine.

Members

eSeverity_Undefined = -1

eSeverity_Info = 0

eSeverity_Warning = 1

eSeverity_Error = 2

eSeverity_CriticalError = 3

eSeverity_Success = 4

eSeverity_Summary = 5

eSeverity_Progress = 6

eSeverity_DataEdit = 7

eSeverity_ParserInfo = 8

eSeverity_PossibleInconsistencyWarning = 9

eSeverity_Message = 10

© 2018-2024 Altova GmbH

Object Reference 1235The MapForce API

Altova MapForce 2024 Professional Edition

eSeverity_Document = 11

eSeverity_Rest = 12

eSeverity_NoSelect = 13

eSeverity_Select = 14

eSeverity_Autoinsertion = 15

eSeverity_GlobalResources_DefaultWarning = 16

eSeverity_XPath_Styles_Changed = 17

eSeverity_XPath_Styles_Unchanged = 18

eSeverity_XPath_Styles_Skipped = 19

eSeverity_XPath_ComboBox_Values_Changed = 20

eSeverity_XPath_ComboBox_Values_Unchanged = 21

eSeverity_XPath_ComboBox_Values_Skipped = 22

eSeverity_XPath_Assertions_Changed = 23

eSeverity_XPath_Assertions_Unchanged = 24

eSeverity_XPath_Assertions_Skipped = 25

17.7.2.4 ENUMAppOutputLine_TextDecoration

Enumeration values for the different kinds of text decoration of an AppOutputLine.

Members

eTextDecorationDefault = 0

eTextDecorationBold = 1

eTextDecorationDebugValues = 2

eTextDecorationDB_ObjectName = 3

eTextDecorationDB_ObjectLink = 4

eTextDecorationDB_ObjectKind = 5

eTextDecorationDB_TimeoutValue = 6

eTextDecorationFind_MatchingString = 7

eTextDecorationValidation_Speclink = 8

eTextDecorationValidation_ErrorPosition = 9

1236 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

eTextDecorationValidation_UnkownParam = 10

17.7.2.5 ENUMCodeGenErrorLevel

Enumeration values to identify severity of code generation messages.

Members

eCodeGenErrorLevel_Information = 0

eCodeGenErrorLevel_Warning = 1

eCodeGenErrorLevel_Error = 2

eCodeGenErrorLevel_Undefined = 3

17.7.2.6 ENUMComponentDatapointSide

Enumeration values to indicate the side of a datapoint on its component. See also
Component.GetRootDatapoint.

Members

eDatapointSideInput = 0

eDatapointSideOutput = 1

17.7.2.7 ENUMComponentSubType

Enumeration values to indicate component sub types.

Members

eComponentSubType_None = 0

eComponentSubType_Text_EDI = 1

eComponentSubType_Text_Flex = 2

eComponentSubType_Text_CSVFLF = 3

© 2018-2024 Altova GmbH

Object Reference 1237The MapForce API

Altova MapForce 2024 Professional Edition

17.7.2.8 ENUMComponentType

Enumeration values to indicate component types.

Members

eComponentType_Unknown = 0

eComponentType_XML = 1

eComponentType_DB = 2

eComponentType_Text = 3

eComponentType_Excel = 4

eComponentType_WSDL = 5

eComponentType_XBRL = 6

eComponentType_Input = 7

eComponentType_JSON = 8

17.7.2.9 ENUMComponentUsageKind

Enumeration values to indicate component usage kind.

Members

eComponentUsageKind_Unknown = 0

eComponentUsageKind_Instance = 1

eComponentUsageKind_Input = 2

eComponentUsageKind_Output = 3

eComponentUsageKind_Variable = 4

eComponentUsageKind_String = 5

17.7.2.10 ENUMConnectionType

Enumeration values to indicate the type of a connection. See also Connection.ConnectionType.

Members

eConnectionTypeTargetDriven = 0

1238 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

eConnectionTypeSourceDriven = 1

eConnectionTypeCopyAll = 2

17.7.2.11 ENUMDOMType

Enumeration values to specify the DOM type used by generated C++ mapping code.

NOTE: The value eDOMType_xerces is obsolete. eDOMType_xerces3 indicates Xerces 3.x usage. Obsolete in
this context means that this value is not supported and should not be used.

Members

eDOMType_xerces = 1 (obsolete)

eDOMType_xerces3 = 2

eDOMType_msxml6 = 3

17.7.2.12 ENUMLibType

Enumeration values to specify the library type used by the generated C++ mapping code.

Members

eLibType_static = 0

eLibType_dll = 1

17.7.2.13 ENUMProgrammingLanguage

Enumeration values to select a programming language.

Members

eUndefinedLanguage = -1

eJava = 0

eCpp = 1

eCSharp = 2

eXSLT = 3

eXSLT2 = 4

eXQuery = 5

© 2018-2024 Altova GmbH

Object Reference 1239The MapForce API

Altova MapForce 2024 Professional Edition

eXSLT3 = 6

17.7.2.14 ENUMProjectItemType

Enumeration to identify the different kinds of project items that can be children of Project or folder-like
ProjectItems. See also ProjectItem.Kind.

Members

eProjectItemType_MappingFolder = 0

eProjectItemType_Mapping = 1

eProjectItemType_WebServiceFolder = 2

eProjectItemType_WebServiceRoot = 3

eProjectItemType_WebServiceService = 4

eProjectItemType_WebServicePort = 5

eProjectItemType_WebServiceOperation = 6

eProjectItemType_ExternalFolder = 7

eProjectItemType_LibraryFolder = 8

eProjectItemType_ResourceFolder = 9

eProjectItemType_VirtualFolder = 10

eProjectItemType_Count = 11

eProjectItemType_Invalid = -1

17.7.2.15 ENUMProjectType

Enumeration values to generate C# and C++ code from an XML Schema.

Members

eVisualStudio2010Project = 6

eVisualStudio2013Project = 7

eVisualStudio2015Project = 8

eVisualStudio2017Project = 9

eVisualStudio2019Project = 10

eDotNetCore3_1 = 11

1240 The MapForce API Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

eDotNet5_0 = 12

eVisualStudio2022Project = 13

eDotNet6_0 = 14

eDotNet8_0 = 15

17.7.2.16 ENUMSearchDatapointFlags

Enumeration values used as bit-flags; to be used as combination of flags when searching for a datapoint. See
also
GetChild.

Members

eSearchDatapointElement = 1

eSearchDatapointAttribute = 2

17.7.2.17 ENUMViewMode

Enumeration values to select a MapForce view.

Members

eMapForceView = 0

eXSLView = 1

eOutputView = 2

© 2018-2024 Altova GmbH

 1241ActiveX Integration

Altova MapForce 2024 Professional Edition

18 ActiveX Integration

The MapForce user interface and the functionality described in this section can be integrated into custom
applications that can consume ActiveX controls. ActiveX technology enables a wide variety of languages to be
used for integration, such as C++, C#, and VB.NET. All components are full OLE Controls. Integration into Java
is provided through wrapper classes.

To integrate the ActiveX controls into your custom code, the MapForce Integration Package must be
installed (see https://www.altova.com/components/download). Ensure that you install MapForce first, and
then the MapForce Integration Package. Other prerequisites apply, depending on language and platform
(see Prerequisites).

You can flexibly choose between two different levels of integration: application level and document level.

Integration at application level means embedding the complete interface of MapForce (including its menus,
toolbars, panes, etc) as an ActiveX control into your custom application. For example, in the most simple
scenario, your custom application could consist of only one form that embeds the MapForce graphical user
interface. This approach is easier to implement than integration at document level but may not be suitable if
you need flexibility to configure the MapForce graphical user interface according to your custom requirements.

Integration at document level means embedding MapForce into your own application piece-by-piece. This
includes implementing not only the main MapForce control but also the main document editor window, and,
optionally, any additional windows. This approach provides greater flexibility to configure the GUI, but requires
advanced interaction with ActiveX controls in your language of choice.

The sections Integration at the Application Level and Integration at Document Level describe the key
steps at these respective levels. The ActiveX Integration Examples section provides examples in C# and
Java. Looking through these examples will help you to make the right decisions quickly. The Object
Reference section describes all COM objects that can be used for integration, together with their properties
and methods.

For information about using MapForce as a Visual Studio plug-in, see MapForce in Visual Studio .

1242

1246 1249

1252

1282

870

https://www.altova.com/components/download

1242 ActiveX Integration Prerequisites

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

18.1 Prerequisites

To integrate the MapForce ActiveX control into a custom application, the following must be installed on your
computer:

· MapForce
· The MapForce Integration Package, available for download at

https://www.altova.com/components/download

To integrate the 64-bit ActiveX control, install the 64-bit versions of MapForce and MapForce Integration
Package. For applications developed under Microsoft .NET platform with Visual Studio, both the 32-bit and 64-
bit versions of MapForce and MapForce Integration Package must be installed, as explained below.

Microsoft .NET (C#, VB.NET) with Visual Studio
To integrate the MapForce ActiveX control into a 32-bit application developed under Microsoft .NET, the
following must be installed on your computer:

· Microsoft .NET Framework 4.0 or later
· Visual Studio 2012/2013/2015/2017/2019/2022
· MapForce 32-bit and MapForce Integration Package 32-bit
· The ActiveX controls must be added to the Visual Studio toolbox (see Adding the ActiveX Controls to

the Toolbox).

If you want to integrate the 64-bit ActiveX control, the following prerequisites apply in addition to the ones
above:

· MapForce 32-bit and MapForce Integration Package 32-bit must still be installed (this is required to
provide the 32-bit ActiveX control to the Visual Studio designer, since Visual Studio runs on 32-bit)

· MapForce 64-bit and MapForce Integration Package 64-bit must be installed (provides the actual 64-bit
ActiveX control to your custom application at runtime)

· In Visual Studio, create a 64-bit build configuration and build your application using this configuration.
For an example, see Running the Sample C# Solution .

Java
To integrate the MapForce ActiveX control into Java application using the Eclipse development environment, the
following must be installed on your computer:

· Java Runtime Environment (JRE) or Java Development Kit (JDK) 7 or later
· Eclipse
· MapForce and MapForce Integration Package

Note: To run the 64-bit version of the MapForce ActiveX control, use a 64-bit version of Eclipse, as well as the
64-bit version of MapForce and the MapForce Integration Package.

MapForce integration and deployment on client computers
If you create a .NET application and intend to distribute it to other clients, you will need to install the following
on the client computer(s):

1244

1252

https://www.altova.com/components/download

© 2018-2024 Altova GmbH

Prerequisites 1243ActiveX Integration

Altova MapForce 2024 Professional Edition

· MapForce
· The MapForce Integration Package
· The custom integration code or application.

1244 ActiveX Integration Adding the ActiveX Controls to the Toolbox

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

18.2 Adding the ActiveX Controls to the Toolbox

To use the MapForce ActiveX controls in an application developed with Visual Studio, the controls must first be
added to the Visual Studio Toolbox, as follows:

1. On the Tools menu of Visual Studio, click Choose Toolbox Items.
2. On the COM Components tab, select the check boxes next to the MapForceControl,

MapForceControl Document, and MapForceControl Placeholder.

In case the controls above are not available, follow the steps below:

1. On the COM Components tab, click Browse, and select the MapForceControl.ocx file from the
MapForce installation folder. Remember that the MapForce Integration Package must be installed;
otherwise, this file is not available, see Prerequisites .

2. If prompted to restart Visual Studio with elevated permissions, click Restart under different
credentials.

If the steps above were successful, the MapForce ActiveX controls become available in the Visual Studio
Toolbox.

1242

© 2018-2024 Altova GmbH

Adding the ActiveX Controls to the Toolbox 1245ActiveX Integration

Altova MapForce 2024 Professional Edition

Note: For an application-level integration, only the MapForceControl ActiveX control is used (see Integration
at Application Level). The MapForceControl Document and MapForceControl Placeholder
controls are used for document-level integration (see Integration at Document Level).

1246

1249

1246 ActiveX Integration Integration at Application Level

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

18.3 Integration at Application Level

Integration at application level allows you to embed the complete interface of MapForce into a window of your
application. With this type of integration, you get the whole user interface of MapForce, including all menus,
toolbars, the status bar, document windows, and helper windows. Customization of the application's user
interface is restricted to what MapForce provides. This includes rearrangement and resizing of helper windows
and customization of menus and toolbars.

The only ActiveX control you need to integrate is MapForceControl . Do not instantiate or access
MapForceControlDocument or MapForceControlPlaceHolder ActiveX controls when integrating at
application-level.

If you have any initialization to do or if you want to automate some behaviour of MapForce, use the properties,
methods, and events described for MapForceControl . Consider using MapForceControl.Application
for more complex access to MapForce functionality.

In C# or VB.NET with Visual Studio, the steps to create a basic, one-form application which integrates the
MapForce ActiveX controls at application level are as follows:

1. Check that all prerequisites are met (see Prerequisites).
2. Create a new Visual Studio Windows Forms project with a new empty form.
3. If you have not done that already, add the ActiveX controls to the toolbox (see Adding the ActiveX

Controls to the Toolbox).
4. Drag the MapForceControl from the toolbox onto your new form.
5. Select the MapForceControl on the form, and, in the Properties window, set the IntegrationLevel

property to ICActiveXIntegrationOnApplicationLevel.

1285

1293 1299

1285 1286

1242

1244

© 2018-2024 Altova GmbH

Integration at Application Level 1247ActiveX Integration

Altova MapForce 2024 Professional Edition

6. Create a build platform configuration that matches the platform under which you want to build (x86,
x64). Here is how you can create the build configuration:

a. Right-click the solution in Visual Studio, and select Configuration Manager.
b. Under Active solution platform, select New... and then select the x86 or x64 configuration (in

this example, x86).

1248 ActiveX Integration Integration at Application Level

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

You are now ready to build and run the solution in Visual Studio. Remember to build using the configuration
that matches your target platform (x86, x64).

© 2018-2024 Altova GmbH

Integration at Document Level 1249ActiveX Integration

Altova MapForce 2024 Professional Edition

18.4 Integration at Document Level

Compared to integration at application level, integration at document level is a more complex, yet more flexible
way to embed MapForce functionality into your application by means of ActiveX controls. With this approach,
your code can access selectively the following parts of the MapForce user interface:

· Document editing window
· Project window
· Libraries window
· Overview window
· Messages window

As mentioned in Integration at Application Level , for an ActiveX integration at application level, only one
control is required, namely the MapForceControl. However, for an ActiveX integration at document level,
MapForce functionality is provided by the following ActiveX controls:

· MapForceControl
· MapForceControl Document
· MapForceControl Placeholder

These controls are supplied by the MapForceControl.ocx file available in the application installation folder of
MapForce. When you develop the ActiveX integration with Visual Studio, you will need to add these controls to
the Visual Studio toolbox (see Adding the ActiveX Controls to the Toolbox).

The basic steps to integrate the ActiveX controls at document level into your application are as follows:

1. First, instantiate MapForceControl in your application. Instantiating this control is mandatory; it
enables support for the MapForceControl Document and MapForceControl Placeholder controls
mentioned above. It is important to set the IntegrationLevel property to
ICActiveXIntegrationOnDocumentLevel (or "1"). To hide the control from the user, set its Visible
property to False. Note that, when integrating at document level, do not use the Open method of the
MapForceControl; this might lead to unexpected results. Use the corresponding open methods of
MapForceControl Document and MapForceControl PlaceHolder instead.

2. Create at least one instance of MapForceControl Document in your application. This control supplies
the document editing window of MapForce to your application and can be instantiated multiple times if
necessary. Use the method Open to load any existing file. To access document-related functionality,
use the Path and Save or methods and properties accessible via the property Document. Note that the
control does not support a read-only mode. The value of the property ReadOnly is ignored.

3. Optionally, add to your application the MapForceControl Placeholder control for each additional window
(other than the document window) that must be available to your application. Instances of
MapForceControl PlaceHolder allow you to selectively embed additional windows of MapForce into
your application. The window kind (for example, Project window) is defined by the property
PlaceholderWindowID. Therefore, to set the window kind, set the property PlaceholderWindowID. For
valid window identifiers, see MapForceControlPlaceholderWindow . Use only one MapForceControl
PlaceHolder for each window identifier.

For placeholder controls that select the MapForce project window, additional methods are available.
Use OpenProject to load a MapForce project. Use the property Project and the methods and properties
from the MapForce automation interface to perform any other project related operations.

1246

1285

1293

1299

1244

1287

1302

1250 ActiveX Integration Integration at Document Level

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

For example, in C# or VB.NET with Visual Studio, the steps to create a basic, one-form application which
integrates the MapForce ActiveX controls at document level could be similar to those listed below. Note that
your application may be more complex if necessary; however, the instructions below are important to
understand the minimum requirements for an ActiveX integration at document level.

1. Create a new Visual Studio Windows Forms project with a new empty form.
2. If you have not done that already, add the ActiveX controls to the toolbox (see Adding the ActiveX

Controls to the Toolbox).
3. Drag the MapForceControl from the toolbox onto your new form.
4. Set the IntegrationLevel property of the MapForceControl to ICActiveXIntegrationOnDocumentLevel, and

the Visible property to False. You can do this either from code or from the Properties window.
5. Drag the MapForceControl Document from the toolbox onto the form. This control provides the main

document window of MapForce to your application, so you may need to resize it to a reasonable size
for a document.

6. Optionally, add one or more MapForceControl Placeholder controls to the form (one for each
additional window type that your application needs, for example, the Project window). You will typically
want to place such additional placeholder controls either below or to the right or left of the main
document control, for example:

7. Set the PlaceholderWindowID property of each MapForceControl Placeholder control to a valid window
identifier. For the list of valid values, see MapForceControlPlaceholderWindow .

8. Add commands to your application (at minimum, you will need to open, save and close documents),
as shown below.

1244

1285

1293

1299

1302

© 2018-2024 Altova GmbH

Integration at Document Level 1251ActiveX Integration

Altova MapForce 2024 Professional Edition

Querying MapForce Commands
When you integrate at document level, no MapForce menu or toolbar is available to your application. Instead,
you can retrieve the required commands, view their status, and execute them programmatically, as follows:

· To retrieve all available commands, use the CommandsList property of the MapForceControl.
· To retrieve commands organized according to their menu structure, use the MainMenu property.
· To retrieve commands organized by the toolbar in which they appear, use the Toolbars property.
· To send commands to MapForce, use the Exec method.
· To query if a command is currently enabled or disabled, use the QueryStatus method.

This enables you to flexibly integrate MapForce commands into your application's menus and toolbars.

Your installation of MapForce also provides you with command label images used within MapForce. See the
folder <ApplicationFolder>\Examples\ActiveX\Images of your MapForce installation for icons in GIF format. The
file names correspond to the command names as they are listed in the Command Reference section.

General considerations
To automate the behaviour of MapForce, use the properties, methods, and events described for the
MapForceControl , MapForceControl Document , and MapForceControl Placeholder .

For more complex access to MapForce functionality, consider using the following properties:

· MapForceControl.Application
· MapForceControlDocument.Document
· MapForceControlPlaceHolder.Project

These properties give you access to the MapForce automation interface (MapForceAPI)

Note: To open a document, always use MapForceControlDocument.Open or
MapForceControlDocument.New on the appropriate document control. To open a project, always
use MapForceControlPlaceHolder.OpenProject on a placeholder control embedding a MapForce
project window.

For examples that show how to instantiate and access the necessary controls in different programming
environments, see ActiveX Integration Examples .

1287

1288

1288

1289

1290

1272

1285 1293 1299

1286

1294

1300

1296

1296

1301

1252

1252 ActiveX Integration ActiveX Integration Examples

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

18.5 ActiveX Integration Examples

This section contains examples of MapForce document-level integration using different container environments
and programming languages. Source code for all examples is available in the folder
<ApplicationFolder>\Examples\ActiveX of your MapForce installation.

18.5.1 C#

A basic ActiveX integration example solution for C# and Visual Studio is available in the folder
<ApplicationFolder>\Examples\ActiveX\C#. Before you compile the source code and run the sample,

make sure that all prerequisites are met (see Running the Sample C# Solution).

18.5.1.1 Running the Sample C# Solution

The sample Visual Studio solution available in the folder <ApplicationFolder>\Examples\ActiveX\C#
illustrates how to consume the MapForce ActiveX controls. Before attempting to build and run this solution,
note the following steps:

Step 1: Check the prerequisites
Visual Studio 2010 or later is required to open the sample solution. For the complete list of prerequisites, see
Prerequisites .

Step 2: Copy the sample to a directory where you have write permissions
To avoid running Visual Studio as an Administrator, copy the source code to a directory where you have write
permissions, instead of running it from the default location.

Step 3: Check and set all required control properties
The sample application contains one instance of MapForceControlDocument and several instances of
MapForceControlPlaceHolder controls. Double-check that the following properties of these controls are set
as shown in the table below:

Control name Property Property value

axMapForceControl IntegrationLevel ICActiveXIntegrationOnDocumentLe
vel

axMapForceControlLibrary PlaceholderWindowID 0

axMapForceControlOutput PlaceholderWindowID 2

axMapForceControlPreview PlaceholderWindowID 1

Here is how you can view or set the properties of an ActiveX control:

1252

1242

1293

1299

© 2018-2024 Altova GmbH

ActiveX Integration Examples 1253ActiveX Integration

Altova MapForce 2024 Professional Edition

1. Open the MDIMain.cs form in the designer window.

Note: On 64-bit Windows, it may be necessary to change the build configuration of the Visual Studio solution
to "x86" before opening the designer window. If you need to build the sample as a 64-bit application,
see Prerequisites .

2. Open the Document Outline window of Visual Studio (On the View menu, click Other Windows |
Document Outline).

3. Click an ActiveX control in the Document Outline window, and edit its required property in the
Properties window, for example:

1242

1254 ActiveX Integration ActiveX Integration Examples

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Step 4: Set the build platform
· Create a build platform configuration that matches the platform under which you want to build (x86,

x64). Here is how you can create the build configuration:

a. Right-click the solution in Visual Studio, and select Configuration Manager.
b. Under Active solution platform, select New... and then select the x86 or x64 configuration (in

this example, x86).

You are now ready to build and run the solution in Visual Studio. Remember to build using the configuration
that matches your target platform (x86, x64); otherwise, runtime errors might occur.

© 2018-2024 Altova GmbH

ActiveX Integration Examples 1255ActiveX Integration

Altova MapForce 2024 Professional Edition

On running the sample, the main MDI Frame window is displayed. Use File | Open to open a mapping file (for
example, MarketingExpenses.mfd, which is in the MapForce examples folder). The file is loaded and
displayed in a new document child window:

After you load the document, you can execute commands against the active document using the menu.
Context menus are also available. You can also load additional documents. Save any modifications using the
File | Save command.

18.5.1.2 Retrieving Command Information

The MapForceControl gives access to all commands of MapForce through its CommandsList, MainMenu, and

Toolbars properties. The example project available in the folder

<ApplicationFolder>\Examples\ActiveX\C# uses the MainMenu property to create the MapForce menu

structure dynamically.

The code that gets the menu commands can be found in the MDIMain method in MDIMain.cs file:

1256 ActiveX Integration ActiveX Integration Examples

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

public MDIMain()
{
 // ...

 // Get the MainMenu property of the control and create the menu structure from it.
 MFLib.MapForceCommand objCommand = this.axMapForceControl.MainMenu;
 InsertMenuStructure(mainMenu, objCommand);
}

In the code listing above, mainMenu is the existing static menu of the main MDI Frame window. If you open the

MDIMain.cs form in the Visual Studio Designer, you will notice that this menu contains two menu items: File

and Window.

MDIMain.cs

The method InsertMenuStructure takes as parameters the mainMenu and the objCommand objects (the
former is the existing static menu, while the latter contains the full menu structure retrieved from the MapForce
ActiveX control). The retrieved MapForce menu structure is then merged into the existing static menu. Note that
the menus File, Project, and Window are not added dynamically. This is intentional, because these menus
deal with actively open documents, and they would require code which is beyond the scope of this example.
The basic file management commands (create, open, save, bring into focus) are handled by the existing static
menus File and Window. All other menus are inserted dynamically based on the information taken from the
MainMenu property of the ActiveX control. The new menus are inserted after "File" but before "Window", i.e.
starting at menu index 1.

The method InsertMenuStructure iterates through all top-level menus found in MapForceCommand object and
adds a new menu item for each. Since each top-level menu has its own child menu items, a call to the method
InsertMenuCommand takes place for each encountered child menu item. Furthermore, since each child menu
item can have its own children menu items, and so on, the InsertMenuCommand method recurses into itself
until no more child menu items exist.

The commands added dynamically are instances of the class CustomMenuItem, which is defined in
CustomMenuItem.cs. This class is derived from System.Windows.Forms.MenuItem class and has an
additional member to store the MapForce command ID.

public class CustomMenuItem : System.Windows.Forms.MenuItem
{

public int m_MapForceCmdID;
}

© 2018-2024 Altova GmbH

ActiveX Integration Examples 1257ActiveX Integration

Altova MapForce 2024 Professional Edition

All dynamically added commands (except those that are containers for other commands) get the same event
handler AltovaMenuItem_Click which does the processing of the command:

private void AltovaMenuItem_Click(object sender, EventArgs e)
{
 if(sender.GetType() == System.Type.GetType("MapForceApplication.CustomMenuItem"))
 {
 CustomMenuItem customItem = (CustomMenuItem)sender;
 ProcessCommand(customItem.m_MapForceCmdID);
 }
}

If the command is a container for other commands (that is, if it has child commands), it gets the event handler
AltovaSubMenu_Popup. This handler queries the status of each child command and enables or disables it as

required. This ensures that each command is enabled only when that is meaningful (for example, the File |
Save menu item should be disabled if there is no active document open).

The method ProcessCommand delegates the execution either to the MapForceControl itself or to any active

MapForce document loaded in a MapForceControlDocument control. This is necessary because the

MapForceControl has no way to know which document is currently active in the hosting application.

private void ProcessCommand(int nID)
{
 MapForceDoc docMapForce = GetCurrentMapForceDoc();

 if(docMapForce != null)
 docMapForce.axMapForceControlDoc.Exec(nID);
 else
 axMapForceControl.Exec(nID);
}

18.5.1.3 Handling Events

Because all events in the MapForce library are based on connection points, you can use the C# delegate
mechanism to provide the custom event handlers. You will always find a complete list of events on the property
page of each control of the MapForce library. The image below shows the events of the main MapForceControl:

1258 ActiveX Integration ActiveX Integration Examples

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

As you can see, the example project only overrides the OnFileExternalChange event. The creation of the C#
delegate is done for you by the C# Framework. All you need to do is fill in the empty event handler.

For example, the handler implementation shown below turns off any file reloading and displays a message box
to inform the user that a file loaded by the MapForceControl has been changed from outside:

private void axMapForceControl_OnFileExternalChange(object sender,
AxMapForceControlLib._DMapForceControlEvents_OnFileExternalChangeEvent e)
{

MessageBox.Show("Attention: The file " + e.strPath + " has been changed from
outside\nbut reloading is turned off in the sample application!");

// This turns off any file reloading:
e.varRet = false;

}

© 2018-2024 Altova GmbH

ActiveX Integration Examples 1259ActiveX Integration

Altova MapForce 2024 Professional Edition

18.5.2 Java

MapForce ActiveX components can be accessed from Java code. Java integration is provided by the libraries
listed below. These libraries are available in the folder <ApplicationFolder>\Examples\JavaAPI of your
MapForce installation, after you have installed both MapForce and the MapForce Integration Package (see also
Prerequisites).

· AltovaAutomation.dll: a JNI wrapper for Altova automation servers (in case of the 32-bit installation
of MapForce)

· AltovaAutomation_x64.dll: a JNI wrapper for Altova automation servers (in case of the 64-bit
installation of MapForce)

· AltovaAutomation.jar: Java classes to access Altova automation servers
· MapForceActiveX.jar: Java classes that wrap the MapForce ActiveX interface
· MapForceActiveX_JavaDoc.zip: a Javadoc file containing help documentation for the Java interface

Note: In order to use the Java ActiveX integration, the .dll and .jar files must be included in the Java class
search path.

Example Java project
An example Java project is supplied with your product installation. You can test the Java project and modify
and use it as you like. For more details, see Example Java Project .

Rules for mapping the ActiveX Control names to Java
For the documentation of ActiveX controls, see Object Reference . Note that the object naming conventions
are slightly different in Java compared to other languages. Namely, the rules for mapping between the ActiveX
controls and the Java wrapper are as follows:

Classes and class names
For every component of the MapForce ActiveX interface a Java class exists with the name of the component.

Method names
Method names on the Java interface are the same as used on the COM interfaces but start with a small letter
to conform to Java naming conventions. To access COM properties, Java methods that prefix the property
name with get and set can be used. If a property does not support write-access, no setter method is available.
Example: For the IntegrationLevel property of the MapForceControl, the Java methods
getIntegrationLevel and setIntegrationLevel are available.

Enumerations
For every enumeration defined in the ActiveX interface, a Java enumeration is defined with the same name and
values.

Events and event handlers
For every interface in the automation interface that supports events, a Java interface with the same name plus
'Event' is available. To simplify the overloading of single events, a Java class with default implementations for all
events is provided. The name of this Java class is the name of the event interface plus 'DefaultHandler'. For
example:

MapForceControl: Java class to access the application
MapForceControlEvents: Events interface for the MapForceControl
MapForceControlEventsDefaultHandler: Default handler for MapForceControlEvents

1242

1260

1282

1260 ActiveX Integration ActiveX Integration Examples

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Exceptions to mapping rules
There are some exceptions to the rules listed above. These are listed below:

Interface Changes in Java class

MapForceControlDocument, method New Renamed to newDocument

MapForceControlDocument, method OpenDocument Removed. Use the Open method

MapForceControlDocument, method NewDocument Removed. Use the newDocument
method

MapForceControlDocument, method SaveDocument Removed. Use the Save method

This section
This section shows how some basic MapForce ActiveX functionality can be accessed from Java code. It is
organized into the following sub-sections:

· Example Java Project
· Creating the ActiveX Controls
· Loading Data in the Controls
· Basic Event Handling
· Menus
· UI Update Event Handling
· Creating a MapForce Mapping Table

18.5.2.1 Example Java Project

The MapForce installation package contains an example Java project, located in the ActiveX Examples folder of
the application folder: <ApplicationFolder>\Examples\ActiveX\Java\.

The Java example shows how to integrate the MapForceControl in a common desktop application created with
Java. You can test it directly from the command line using the batch file BuildAndRun.bat, or you can compile
and run the example project from within Eclipse. See below for instructions on how to use these procedures.

File list
The Java examples folder contains all the files required to run the example project. These files are listed below:

.classpath Eclipse project helper file

.project Eclipse project file

AltovaAutomation.dll Java-COM bridge: DLL part (for the 32-bit installation)

AltovaAutomation_x64.dll Java-COM bridge: DLL part (for the 64-bit installation)

1260

1262

1263

1263

1264

1266

1266

© 2018-2024 Altova GmbH

ActiveX Integration Examples 1261ActiveX Integration

Altova MapForce 2024 Professional Edition

AltovaAutomation.jar Java-COM bridge: Java library part

BuildAndRun.bat Batch file to compile and run example code from the command
line prompt. Expects folder where Java Virtual Machine resides
as parameter.

MapForceActiveX.jar Java classes of the MapForce ActiveX control

MapForceActiveX_JavaDoc.zip Javadoc file containing help documentation for the Java API

MapForceContainer.java Java example source code

MapForceContainerEventHandler.java Java example source code

MapForceTable.java Java example source code

What the example does
The example places one MapForce document editor window, the MapForce project window, the MapForce
library window and the MapForce validation window in an AWT frame window. It reads out the main menu
defined for MapForce and creates an AWT menu with the same structure. You can use this menu or the project
window to open and work with files in the document editor.

You can modify the example in any way you like.

The following specific features are described in code listings:

· Creating the ActiveX Controls : Starts MapForce, which is registered as an automation server, or
activates MapForce if it is already running.

· Loading Data in the Controls : Locates one of the example documents installed with MapForce and
opens it.

· Basic Event Handling : Changes the view of all open documents to Text View. The code also shows
how to iterate through open documents.

· Menus : Validates the active document and shows the result in a message box. The code shows
how to use output parameters.

· UI Update Event Handling : Shows how to handle MapForce events.
· Creating a MapForce Mapping Table : Shows how to create a MapForce mapping table and prepare

it for modal activation.

Updating the path to the Examples folder
Before running the provided sample, you may need to edit the MapForceContainer.java file. Namely, check
that the following path refers to the actual folder where the MapForce example files are stored on your operating
system:

// Locate samples installed with the product.
final String strExamplesFolder = System.getenv("USERPROFILE") + "\\Documents\\Altova\
\MapForce2024\\MapForceExamples\\";

Running the example from the command line
To run the example from the command line:

1262

1263

1263

1264

1266

1266

1262 ActiveX Integration ActiveX Integration Examples

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

1. Check that all prerequisites are met (see Prerequisites).
2. Open a command prompt window, change the current directory to the sample Java project folder, and

type:

buildAndRun.bat "<Path-to-the-Java-bin-folder>"

3. Press Enter.

The Java source in MapForceContainer.java will be compiled and then executed.

Compiling and running the example in Eclipse
To import the sample Java project into Eclipse:

1. Check that all prerequisites are met (see Prerequisites).
2. On the File menu, click Import.
3. Select Existing Projects into Workspace, and browse for the Eclipse project file located at

<ApplicationFolder>\Examples\ActiveX\Java\. Since you may not have write-access in this
folder, it is recommended to select the Copy projects into workspace check box on the Import dialog
box.

To run the example application, right-click the project in Package Explorer and select the command Run as |
Java Application.

Help for Java API classes is available through comments in code as well as the Javadoc view of Eclipse. To
enable the Javadoc view in Eclipse, select the menu command Window | Show View | JavaDoc.

18.5.2.2 Creating the ActiveX Controls

The code listing below show how ActiveX controls can be created. The constructors will create the Java wrapper
objects. Adding these Canvas-derived objects to a panel or to a frame will trigger the creation of the wrapped
ActiveX object.

01 /**
02 * MapForce manager control - always needed
03 */
04 public static MapForceControl mapForceControl = null;
05
06 /**
07 * MapForceDocument editing control
08 */
09 public static MapForceControlDocument mapForceDocument = null;
10
11 /**
12 * Tool windows - MapForce place-holder controls
13 */
14 private static MapForceControlPlaceHolder mapForceProjectToolWindow = null;
15 private static MapForceControlPlaceHolder mapForceValidationToolWindow = null;
16 private static MapForceControlPlaceHolder mapForceLibraryToolWindow = null;

1242

1242

© 2018-2024 Altova GmbH

ActiveX Integration Examples 1263ActiveX Integration

Altova MapForce 2024 Professional Edition

17
18 // Create the MapForce ActiveX control; the parameter determines that we want
 // to place document controls and place-holder controls individually.
19 // It gives us full control over the menu, as well.
20 mapForceControl = new MapForceControl(
 ICActiveXIntegrationLevel.ICActiveXIntegrationOnDocumentLevel.getValue(), false);
21
22 mapForceDocument = new MapForceControlDocument();
23 frame.add(mapForceDocument, BorderLayout.CENTER);
24
25
26 // Create a project window and open the sample project in it
27 mapForceProjectToolWindow = new MapForceControlPlaceHolder(
 MapForceControlPlaceholderWindow.MapForceXProjectWindow.getValue(),
 strExamplesFolder + "MapForceExamples.mfp") ;
28 mapForceProjectToolWindow.setPreferredSize(new Dimension(200, 200));

18.5.2.3 Loading Data in the Controls

The code listing below show how data can be loaded in the ActiveX controls.

1 // Locate samples installed with the product.
2 final String strExamplesFolder = System.getenv("USERPROFILE") +
 "\\Documents\\Altova\\MapForce2024\\MapForceExamples\\";
3 mapForceProjectToolWindow = new
MapForceControlPlaceHolder(MapForceControlPlaceholderWindow.MapForceXProjectWindow.getValu
e(), strExamplesFolder + "MapForceExamples.mfp") ;

18.5.2.4 Basic Event Handling

The code listing below shows how basic events can be handled. When calling the MapForceControl’s open
method, or when trying to open a file via the menu or Project tree, the onOpenedOrFocused event is sent to the
attached event handler. The basic handling for this event is opening the file by calling the
MapForceDocumentControl’s open method.

01 // Open the Marketing file when button is pressed
02 btnMarkExp.addActionListener(new ActionListener() {
03 public void actionPerformed(ActionEvent e) {
04 try {
05 // Instruct the Document control to open the file - avoid calling the open
method of MapForceControl (see help)
06 mapForceDocument.open(strExamplesFolder + "MarketingExpenses.mfd");
07 mapForceDocument.requestFocusInWindow();
08 } catch (AutomationException e1) {
09 e1.printStackTrace();
10 }
11 }
12 });

1264 ActiveX Integration ActiveX Integration Examples

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

13 public void onOpenedOrFocused(String i_strFileName, boolean
i_bOpenWithThisControl, boolean i_bFileAlreadyOpened) throws AutomationException
14 {
15 // Handle the New/Open events coming from the Project tree or from the menus
16 if (!i_bFileAlreadyOpened)
17 {
18 // This is basically an SDI interface, so open the file in the already existing
document control
19 try {
20 MapForceContainer.mapForceDocument.open(i_strFileName);
21 MapForceContainer.mapForceDocument.requestFocusInWindow();
22 } catch (Exception e) {
23 e.printStackTrace();
24 }
25 }
26 }

18.5.2.5 Menus

The code listing below shows how menu items can be created. Each MapForceCommand object gets a
corresponding MenuItem object, with the ActionCommand set to the ID of the command. The actions generated
by all menu items are handled by the same function, which can perform specific handlings (like reinterpreting
the closing mechanism) or can delegate the execution to the MapForceControl object by calling its exec
method. The menuMap object that is filled during menu creation is used later (see section UI Update Event
Handling).

01
02 // Load the file menu when the button is pressed
03 btnMenu.addActionListener(new ActionListener() {
04 public void actionPerformed(ActionEvent e) {
05 try {
06 // Create the menubar that will be attached to the frame
07 MenuBar mb = new MenuBar();
08 // Load the main menu's first item - the File menu
09 MapForceCommand xmlSpyMenu =
mapForceControl.getMainMenu().getSubCommands().getItem(0);
10 // Create Java menu items from the Commands objects
11 Menu fileMenu = new Menu();
12 handlerObject.fillMenu(fileMenu, xmlSpyMenu.getSubCommands());
13 fileMenu.setLabel(xmlSpyMenu.getLabel().replace("&", ""));
14 mb.add(fileMenu);
15 frame.setMenuBar(mb);
16 frame.validate();
17 } catch (AutomationException e1) {
18 e1.printStackTrace();
19 }
20 // Disable the button when the action has been performed
21 ((AbstractButton) e.getSource()).setEnabled(false);
22 }
23 }) ;
24 /**

1266

© 2018-2024 Altova GmbH

ActiveX Integration Examples 1265ActiveX Integration

Altova MapForce 2024 Professional Edition

25 * Populates a menu with the commands and submenus contained in an MapForceCommands
object
26 */
27 public void fillMenu(Menu newMenu, MapForceCommands mapForceMenu) throws
AutomationException
28 {
29 // For each command/submenu in the mapForceMenu
30 for (int i = 0 ; i < mapForceMenu.getCount() ; ++i)
31 {
32 MapForceCommand mapForceCommand = mapForceMenu.getItem(i);
33 if (mapForceCommand.getIsSeparator())
34 newMenu.addSeparator();
35 else
36 {
37 MapForceCommands subCommands = mapForceCommand.getSubCommands();
38 // Is it a command (leaf), or a submenu?
39 if (subCommands.isNull() || subCommands.getCount() == 0)
40 {
41 // Command -> add it to the menu, set its ActionCommand to its ID and store it
in the menuMap
42 MenuItem mi = new MenuItem(mapForceCommand.getLabel().replace("&", ""));
43 mi.setActionCommand("" + mapForceCommand.getID());
44 mi.addActionListener(this);
45 newMenu.add(mi);
46 menuMap.put(mapForceCommand.getID(), mi);
47 }
48 else
49 {
50 // Submenu -> create submenu and repeat recursively
51 Menu newSubMenu = new Menu();
52 fillMenu(newSubMenu, subCommands);
53 newSubMenu.setLabel(mapForceCommand.getLabel().replace("&", ""));
54 newMenu.add(newSubMenu);
55 }
56 }
57 }
58 }
59 /**
60 * Action handler for the menu items
61 * Called when the user selects a menu item; the item's action command corresponds to
the command table for MapForce
62 */
63 public void actionPerformed(ActionEvent e)
64 {
65 try
66 {
67 int iCmd = Integer.parseInt(e.getActionCommand());
68 // Handle explicitly the Close commands
69 switch (iCmd)
70 {
71 case 57602: // Close
72 case 34050: // Close All
73 MapForceContainer.initMapForceDocument();
74 break;
75 default:
76 MapForceContainer.mapForceControl.exec(iCmd);

1266 ActiveX Integration ActiveX Integration Examples

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

77 break;
78 }
79 }
80 catch (Exception ex)
81 {
82 ex.printStackTrace();
83 }
84
85 }

18.5.2.6 UI Update Event Handling

The code listing below shows how a UI-Update event handler can be created.

01 /**
02 * Call-back from the MapForceControl.
03 * Called to enable/disable commands
04 */
05 @Override
06 public void onUpdateCmdUI() throws AutomationException
07 {
08 // A command should be enabled if the result of queryStatus contains the Supported
(1) and Enabled (2) flags
09 for (java.util.Map.Entry<Integer, MenuItem> pair : menuMap.entrySet())
10
pair.getValue().setEnabled(MapForceContainer.mapForceControl.queryStatus(pair.getKey())
> 2);
11 }
12 /**
13 * Call-back from the MapForceControl.
14 * Usually called while enabling/disabling commands due to UI updates
15 */
16 @Override
17 public boolean onIsActiveEditor(String i_strFilePath) throws AutomationException
18 {
19 try {
20 return
MapForceContainer.mapForceDocument.getDocument().getFullName().equalsIgnoreCase(i_strFileP
ath);
21 } catch (Exception e) {
22 return false;
23 }
24 }

18.5.2.7 Listing the Properties of a MapForce Mapping

The listing below shows how a Mapping object in MapForce can be loaded as a table and prepared for modal
activation.

© 2018-2024 Altova GmbH

ActiveX Integration Examples 1267ActiveX Integration

Altova MapForce 2024 Professional Edition

01 //access MapForce Java-COM bridge
02 import com.altova.automation.MapForce.*;
03 import com.altova.automation.MapForce.Component;
04 import com.altova.automation.MapForce.Enums.ENUMComponentUsageKind;
05
06 //access AWT and Swing components
07 import java.awt.*;
08 import javax.swing.*;
09 import javax.swing.table.*;
10
11
12 /**
13 * A simple example of a table control loading the structure from a Mapping object.
14 * The class receives an Mapping object, loads its components in a JTable, and prepares
15 * for modal activation.
16 *
17 * Feel free to modify and extend this sample.
18 *
19 * @author Altova GmbH
20 */
21 class MapForceTable extends JDialog
22 {
23 /**
24 * The table control
25 */
26 private JTable myTable;
27
28 /**
29 * Constructor that prepares the modal dialog containing the filled table control
30 * @param mapping The data to be displayed in the table
31 * @param parent Parent frame
32 */
33 public MapForceTable(Mapping mapping, Frame parent)
34 {
35 // Construct the modal dialog
36 super(parent, "MapForce component table", true);
37 // Build up the tree
38 fillTable(mapping);
39 // Arrange controls in the dialog
40 setContentPane(new JScrollPane(myTable));
41 }
42
43 /**
44 * Loads the components of a Mapping object in the table
45 * @param mapping Source data
46 */
47 private void fillTable(Mapping mapping)
48 {
49 try
50 {
51 // count how many Instance components do we have
52 int size = 0;
53 for (Component comp : mapping.getComponents())
54 if (comp.getUsageKind() ==
ENUMComponentUsageKind.eComponentUsageKind_Instance)

1268 ActiveX Integration ActiveX Integration Examples

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

55 ++size;
56
57 // Prepare data
58 final String[] columnNames = { "Component", "Has inputs", "Has outputs", "Input
file", "Output file", "Schema" };
59 final Object[][] data = new Object[size][7] ;
60 int index = 0 ;
61 for (Component comp : mapping.getComponents())
62 if (comp.getUsageKind() ==
ENUMComponentUsageKind.eComponentUsageKind_Instance)
63 {
64 int i = 0;
65 data[index][i++] = comp.getName() ;
66 data[index][i++] = new Boolean(comp.getHasIncomingConnections());
67 data[index][i++] = new Boolean(comp.getHasOutgoingConnections());
68 data[index][i++] = comp.getInputInstanceFile();
69 data[index][i++] = comp.getOutputInstanceFile();
70 data[index++][i] = comp.getSchema() ;
71 }
72
73 // Set up table
74 myTable = new JTable(new AbstractTableModel() {
75 public String getColumnName(int col) { return columnNames[col]; }
76 public int getRowCount() { return data.length; }
77 public int getColumnCount() { return columnNames.length; }
78 public Object getValueAt(int row, int col) { return data[row][col]; }
79 public boolean isCellEditable(int row, int col) { return false; }
80 public Class getColumnClass(int c) { return getValueAt(0, c).getClass(); }

81 });
82
83 // Set width
84 for(index = 0 ; index < columnNames.length ; ++index)
85 myTable.getColumnModel().getColumn(index).setMinWidth(80);
86 myTable.getColumnModel().getColumn(5).setMinWidth(400);
87 }
88 catch (Exception e)
89 {
90 e.printStackTrace();
91 }
92 }
93
94 }

18.5.3 VB.NET

Source code which illustrates integration of MapForceControl into a VB.NET application can be found in the
folder <ApplicationFolder>\Examples\ActiveX\VB.NET of your MapForce installation. The solution consists
of three windows, as follows:

1. MainWindow.vb - the main document window, which also includes a basic application menu.

© 2018-2024 Altova GmbH

ActiveX Integration Examples 1269ActiveX Integration

Altova MapForce 2024 Professional Edition

2. LibraryWindow.vb - the Library window. The contents of this window is populated by a Placeholder

control which has the PlaceholderWindowID property set to 0 (this value instructs the control to

display specifically the Library window).

3. OutputWindow.vb - the Messages (Output) window. The contents of this window is populated by a

Placeholder control which has the PlaceholderWindowID property set to 2 (this value instructs the

control to display specifically the Output window).

1270 ActiveX Integration ActiveX Integration Examples

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Before attempting to build and run this solution, note the following steps:

Step 1: Check the prerequisites
For the list of prerequisites, see Prerequisites .

Step 2: Copy the sample to a directory where you have write permissions
To avoid running Visual Studio as an Administrator, copy the source code to a directory where you have write
permissions, instead of running it from the default location.

Step 3: Set the build platform
Create a build platform configuration that matches the platform under which you want to build (x86, x64). Here
is how you can create the build configuration:

1. Right-click the solution in Visual Studio, and select Configuration Manager.
2. Under Active solution platform, select New... and then select the x86 or x64 configuration (in this

example, x86).

1242

© 2018-2024 Altova GmbH

ActiveX Integration Examples 1271ActiveX Integration

Altova MapForce 2024 Professional Edition

You are now ready to build and run the solution in Visual Studio. Remember to build using the configuration
that matches your target platform (x86, x64); otherwise, runtime errors might occur.

1272 ActiveX Integration Command Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

18.6 Command Reference

This section lists the names and identifiers of all menu commands that are available within MapForce. Every
sub-section lists the commands from the corresponding top-level menu of MapForce. The command tables are
organized as follows:

· The "Menu Item" column shows the command's menu text as it appears in MapForce, to make it
easier for you to identify the functionality behind the command.

· The "Command Name" column specifies the string that can be used to get an icon with the same
name from ActiveX\Images folder of the MapForce installation directory.

· The "ID" column shows the numeric identifier of the column that must be supplied as argument to
methods which execute or query this command.

To execute a command, use the MapForceControl.Exec or the MapForceControlDocument.Exec
methods. To query the status of a command, use the MapForceControl.QueryStatus or
MapForceControlDocument.QueryStatus methods.

Depending on the edition of MapForce you have installed, some of these commands might not be supported.

18.6.1 "File" Menu

The "File" menu has the following commands:

Menu item Command name ID

New... ID_FILE_NEW 57600

Open... ID_FILE_OPEN 57601

Save ID_FILE_SAVE 57603

Save As... ID_FILE_SAVE_AS 57604

Save All ID_FILE_SAVEALL 32377

Reload IDC_FILE_RELOAD 32467

Close ID_WINDOW_CLOSE 32453

Close All ID_WINDOW_CLOSEALL 32454

Print... ID_FILE_PRINT 57607

Print Preview ID_FILE_PRINT_PREVIEW 57609

Print Setup... ID_FILE_PRINT_SETUP 57606

Validate Mapping ID_MAPPING_VALIDATE 32347

Mapping Settings ID_MAPPING_SETTINGS 32396

1289 1295

1290

1296

© 2018-2024 Altova GmbH

Command Reference 1273ActiveX Integration

Altova MapForce 2024 Professional Edition

Menu item Command name ID

Generate Code in Selected Language ID_FILE_GENERATE_SELECTED_CODE 32362

XSLT 1.0 ID_FILE_GENERATEXSLT 32360

XSLT 2.0 ID_FILE_GENERATEXSLT2 32361

XQuery ID_FILE_GENERATEXQUERY 32359

Java ID_FILE_GENERATEJAVACODE 32358

C# (Sharp) ID_FILE_GENERATECSCODE 32357

C++ ID_FILE_GENERATECPPCODE 32356

Compile to MapForce Server Execution File... ID_FILE_CREATE_SERVER_EXECUTION_FIL
E

32517

Deploy to FlowForce Server... ID_FILE_DEPLOY_MAPPING 32506

Generate Documentation... ID_FILE_GENERATE_DOCUMENTATION 32468

Recent File ID_FILE_MRU_FILE1 57616

Exit ID_APP_EXIT 57665

18.6.2 "Edit" Menu

The "Edit" menu has the following commands:

Menu item Command name ID

Undo ID_EDIT_UNDO 57643

Redo ID_EDIT_REDO 57644

Find... ID_EDIT_FIND 57636

Find Next ID_EDIT_FINDNEXT 32349

Find Previous ID_EDIT_FINDPREV 32350

Cut ID_EDIT_CUT 57635

Copy ID_EDIT_COPY 57634

Paste ID_EDIT_PASTE 57637

Delete ID_EDIT_CLEAR 57632

Select All ID_EDIT_SELECT_ALL 57642

1274 ActiveX Integration Command Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

18.6.3 "Insert" Menu

The "Insert" menu has the following commands:

Menu item Command name ID

XML Schema/File... ID_INSERT_XSD 32393

Database... ID_INSERT_DATABASE 32389

EDI... ID_INSERT_EDI 32390

Text File... ID_INSERT_TXT 32392

Web Service Function... ID_INSERT_WEBSERVICE_FUNCTION 32319

Excel 2007+ File... ID_INSERT_EXCEL 32376

XBRL Document... ID_INSERT_XBRL 32469

JSON Schema/File... ID_INSERT_JSON 32531

Insert Input... ID_FUNCTION_INSERT_INPUT 32383

Insert Output... ID_FUNCTION_INSERT_OUTPUT 32402

Constant... ID_INSERT_CONSTANT 32388

Variable... ID_INSERT_VARIABLE 32500

Join ID_INSERT_JOIN 32581

Sort: Nodes/Rows ID_INSERT_SORT 32444

Filter: Nodes/Rows ID_INSERT_FILTER 32391

SQL-WHERE/ORDER ID_INSERT_SQLWHERE_CONDITION 32351

Value-Map ID_INSERT_VALUEMAP 32354

IF-Else Condition ID_INSRT_CONDITION 32394

Exception ID_INSERT_EXCEPTION 32311

18.6.4 "Project" Menu

The "Project" menu has the following commands:

Menu item Command name ID

Reload Project ID_PROJECT_RELOAD 32476

© 2018-2024 Altova GmbH

Command Reference 1275ActiveX Integration

Altova MapForce 2024 Professional Edition

Menu item Command name ID

Close Project ID_FILE_CLOSEPROJECT 32355

Save Project ID_FILE_SAVEPROJECT 32378

Add Files to Project... ID_PROJECT_ADDFILESTOPROJECT 32420

Add Active File to Project ID_PROJECT_ADDACTIVEFILETOPROJECT 32419

Create Folder... ID_PROJECT_CREATE_FOLDER 32310

Open Mapping ID_PROJECT_OPEN_MAPPING 32307

Create Mapping for Operation... ID_PROJECT_CREATE_MAPPING_FOR_OPE
RATION

32399

Add Mapping File for Operation... ID_PROJECT_ADD_MAPPING 32309

Insert Web Service... ID_PROJECT_INSERT_WEBSERVICE 32306

Open File in XMLSpy ID_PROJECT_OPEN_IN_XMLSPY 32305

Generate Code for Entire Project ID_PROJECT_GENERATE_ALL 32303

XSLT 1.0 ID_PROJECT_GENERATEXSLTCODE_ENTIRE 32408

XSLT 2.0 ID_PROJECT_GENERATEXSLT2CODE_ENTIR
E

32409

XQuery ID_PROJECT_GENERATEXQUERYCODE_EN
TIRE

32410

Java ID_PROJECT_GENERATEJAVACODE_ENTIR
E

32411

C# (Sharp) ID_PROJECT_GENERATECSCODE_ENTIRE 32412

C++ ID_PROJECT_GENERATECPPCODE_ENTIRE 32413

Properties ID_PROJECT_PROPERTIES 32404

Recent Project ID_FILE_MRU_PROJECT1 32364

18.6.5 "Component" Menu

The "Component" menu has the following commands:

Menu item Command name ID

Change Root Element... ID_COMPONENT_CHANGEROOTELEMENT 32334

1276 ActiveX Integration Command Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Menu item Command name ID

Edit Schema Definition in XMLSpy ID_COMPONENT_EDIT_SCHEMA 32337

Edit FlexText Configuration ID_COMPONENT_EDIT_MFT 32301

Add/Remove/Edit Database Objects... ID_COMPONENT_SELECTTABLES 32346

Create Mapping to EDI X12 997 ID_COMPONENT_CREATE_MAPPING_TO_99
7

32483

Create Mapping to EDI X12 999 ID_COMPONENT_CREATE_MAPPING_TO_99
9

32484

Refresh IDC_COMMAND_REFRESH_COMPONENT 32373

Add Duplicate Input Before ID_COMPONENT_CREATE_DUPLICATE_ICO
N_BEFORE

32503

Add Duplicate Input After ID_COMPONENT_CREATE_DUPLICATE_ICO
N

32335

Remove Duplicate ID_COMPONENT_REMOVE_DUPLICATE_ICO
N

32339

Add Comment Before ID_COMPONENT_ADD_COMMENT_BEFORE 32518

Add Comment After ID_COMPONENT_ADD_COMMENT_AFTER 32519

Add Processing Instruction Before... ID_COMPONENT_ADD_PI_BEFORE 32520

Add Processing Instruction After... ID_COMPONENT_ADD_PI_AFTER 32521

Edit Processing Instruction Name... ID_COMPONENT_EDIT_PI 32524

Delete Comment/Processing Instruction ID_COMPONENT_REMOVE_COMMENT_PI 32522

Write Content as CDATA Section ID_COMPONENT_TOGGLE_CDATA 32525

Database Table Actions ID_POPUP_DATABASETABLEACTIONS 32400

Query Database... ID_QUERY_DATABASE 32341

Align Tree Left ID_COMPONENT_LEFTALIGNTREE 32338

Align Tree Right ID_COMPONENT_RIGHTALIGNTREE 32340

Properties ID_COMPONENT_PROPERTIES 32336

18.6.6 "Connection" Menu

The "Connection" menu has the following commands:

© 2018-2024 Altova GmbH

Command Reference 1277ActiveX Integration

Altova MapForce 2024 Professional Edition

Menu item Command name ID

Auto Connect Matching Children ID_CONNECTION_AUTOCONNECTCHILDREN 32342

Settings for Connect Matching Children ID_CONNECTION_SETTINGS 32344

Connect Matching Children... ID_CONNECTION_MAPCHILDELEMENTS 32343

Target Driven (Standard) ID_POPUP_NORMALCONNECTION 32401

Copy-All (Copy Child Items) ID_POPUP_NORMALWITHCHILDREN_CONNE
CTION

32460

Source Driven (Mixed Content) ID_POPUP_ORDERBYSOURCECONNECTION 32403

Properties ID_POPUP_CONNECTION_SETTINGS 32398

18.6.7 "Function" Menu

The "Function" menu has the following commands:

Menu item Command name ID

Create User-Defined Function... ID_FUNCTION_CREATE_EMPTY 32380

Create User-Defined Function from Selection... ID_FUNCTION_CREATE_FROM_SELECTION 32381

Function Settings ID_FUNCTION_SETTINGS 32387

Remove Function ID_FUNCTION_REMOVE 32385

Insert Input... ID_FUNCTION_INSERT_INPUT 32383

Insert Output... ID_FUNCTION_INSERT_OUTPUT 32402

18.6.8 "Output" Menu

The "Output" menu has the following commands:

Menu item Command name ID

XSLT 1.0 ID_SELECT_LANGUAGE_XSLT 32433

XSLT 2.0 ID_SELECT_LANGUAGE_XSLT2 32434

XQuery ID_SELECT_LANGUAGE_XQUERY 32432

Java ID_SELECT_LANGUAGE_JAVA 32431

1278 ActiveX Integration Command Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Menu item Command name ID

C# (Sharp) ID_SELECT_LANGUAGE_CSHARP 32430

C++ ID_SELECT_LANGUAGE_CPP 32429

Built-In Execution Engine ID_SELECT_LANGUAGE_BUILTIN 32490

Validate Output File ID_XML_VALIDATE 32458

Save Output File... IDC_FILE_SAVEGENERATEDOUTPUT 32321

Save All Output Files... IDC_FILE_SAVEALLGENERATEDOUTPUT 32374

Regenerate Output ID_REGENERATE_PREVIEW_OUTPUT 32480

Run SQL-Script ID_TRANSFORM_RUN_SQL 32442

Insert/Remove Bookmark ID_TOGGLE_BOOKMARK 32317

Next Bookmark ID_GOTONEXTBOOKMARK 32315

Previous Bookmark ID_GOTOPREVBOOKMARK 32314

Remove All Bookmarks ID_REMOVEALLBOOKMARKS 32313

Pretty-Print XML Text ID_PRETTY_PRINT_OUTPUT 32363

Text View Settings ID_TEXTVIEWSETTINGSDIALOG 32472

18.6.9 "Debug" Menu

The "Debug" menu has the following commands:

Menu item Command name ID

Start Debugging ID_DEBUG_START 32540

Stop Debugging ID_DEBUG_STOP 32541

Step Into ID_DEBUG_STEP_INTO 32545

Step Over ID_DEBUG_STEP_OVER 32551

Step Out ID_DEBUG_STEP_OUT 32552

Minimal Step ID_DEBUG_STEP_NEXT_TRACE 32554

© 2018-2024 Altova GmbH

Command Reference 1279ActiveX Integration

Altova MapForce 2024 Professional Edition

18.6.10 "View" Menu

The "View" menu has the following commands:

Menu item Command name ID

Show Annotations ID_SHOW_ANNOTATION 32435

Show Types ID_SHOW_TYPES 32437

Show Library in Function Header ID_VIEW_SHOWLIBRARYINFUNCTIONHEAD
ER

32448

Show Tips ID_SHOW_TIPS 32436

XBRL Display Options ID_VIEW_XBRL_DISPLAY_OPTIONS 32473

Show Selected Component Connectors ID_VIEW_AUTOHIGHLIGHTCOMPONENTCON
NECTIONS

32443

Show Connectors from Source to Target ID_VIEW_RECURSIVEAUTOHIGHLIGHT 32447

Zoom... ID_VIEW_ZOOM 32451

Back ID_CMD_BACK 32479

Forward ID_CMD_FORWARD 32478

Status Bar ID_VIEW_STATUS_BAR 59393

Library Window ID_VIEW_LIBRARY_WINDOW 32445

Messages ID_VIEW_VALIDATION_OUTPUT 32450

Overview ID_VIEW_OVERVIEW_WINDOW 32446

Project Window ID_VIEW_PROJECT_WINDOW 32302

Values ID_DEBUG_VIEW_VALUES_WINDOW 32544

Context ID_DEBUG_VIEW_CONTEXT_WINDOW 32546

Breakpoints ID_DEBUG_VIEW_DEBUGPOINTS_WINDOW 32547

18.6.11 "Tools" Menu

The "Tools" menu has the following commands:

Menu item Command name ID

Global Resources IDC_GLOBALRESOURCES 37401

1280 ActiveX Integration Command Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Menu item Command name ID

<plugin not loaded> IDC_GLOBALRESOURCES_SUBMENUENTR
Y1

37408

Create Reversed Mapping ID_CREATE_REVERSED_MAPPING 32489

Customize... IDC_APP_TOOLS_CUSTOMIZE 32959

Options... ID_TOOLS_OPTIONS 32441

18.6.12 "Window" Menu

The "Window" menu has the following commands:

Menu item Command name ID

Cascade ID_WINDOW_CASCADE 57650

Tile Horizontal ID_WINDOW_TILE_HORZ 57651

Tile Vertical ID_WINDOW_TILE_VERT 57652

18.6.13 "Help" Menu

The "Help" menu has the following commands:

Menu item Command name ID

Table of Contents... IDC_HELP_CONTENTS 32966

Index... IDC_HELP_INDEX 32967

Search... IDC_HELP_SEARCH 32969

Software Activation... IDC_ACTIVATION 32970

Order Form... IDC_OPEN_ORDER_PAGE 32971

Registration... IDC_REGISTRATION 32972

Check for Updates... IDC_CHECK_FOR_UPDATES 32973

MapForce Product Comparison... IDC_PRODUCT_COMPARISON 32955

Support Center... IDC_OPEN_SUPPORT_PAGE 32961

FAQ on the Web... IDC_OPEN_FAQ_PAGE 32962

© 2018-2024 Altova GmbH

Command Reference 1281ActiveX Integration

Altova MapForce 2024 Professional Edition

Menu item Command name ID

Download Components and Free Tools... IDC_OPEN_COMPONENTS_PAGE 32963

MapForce on the Internet.. IDC_OPEN_HOME_PAGE 32964

MapForce Training... IDC_OPEN_TRAINING_PAGE 32965

About MapForce... ID_APP_ABOUT 57664

1282 ActiveX Integration Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

18.7 Object Reference

Objects:
MapForceCommand
MapForceCommands
MapForceControl
MapForceControlDocument
MapForceControlPlaceHolder

To give access to standard MapForce functionality, objects of the MapForce automation interface can be
accessed as well. See MapForceControl.Application , MapForceControlDocument.Document and
MapForceControlPlaceHolder.Project for more information.

18.7.1 MapForceCommand

Properties:
ID
Label
Name
IsSeparator
ToolTip
StatusText
Accelerator
SubCommands

Description:
A command object can be one of the following: an executable command, a command container (for example, a
menu, submenu, or toolbar), or a menu separator. To determine what kind of information is stored in the current
Command object, query its ID, IsSeparator, and SubCommands properties, as follows.

The Command object is... When...

An executable command · ID is greater than zero
· IsSeparator is false
· SubCommands is empty

A command container · ID is zero
· IsSeparator is false
· SubCommands contains a collection of

Command objects.

Separator · ID is zero
· IsSeparator is true

1282

1284

1285

1293

1299

1286 1294

1300

1283

1283

1283

1283

1284

1284

1283

1284

© 2018-2024 Altova GmbH

Object Reference 1283ActiveX Integration

Altova MapForce 2024 Professional Edition

18.7.1.1 Accelerator

Property: Accelerator as string

Description:
Returns the accelerator key defined for the command. If the command has no accelerator key assigned, this
property returns the empty string. The string representation of the accelerator key has the following format:

[ALT+][CTRL+][SHIFT+]key

Where key is converted using the Windows Platform SDK function GetKeyNameText.

18.7.1.2 ID

Property: ID as long

Description:
This property gets the unique identifier of the command. A command's ID is required to execute the command
(using Exec) or query its status (using QueryStatus). If the command is a container for other commands
(for example, a top-level menu), or a separator, the ID is 0.

18.7.1.3 IsSeparator

Property: IsSeparator as boolean

Description:
The property returns true if the command object is a menu separator; false otherwise. See also
Command .

18.7.1.4 Label

Property: Label as string

Description:
This property gets the text of the command as it is displayed in the graphical user interface of MapForce. If the
command is a separator, "Label" is an empty string. This property may also return an empty string for some
toolbar commands that do not have any GUI text associated with them.

18.7.1.5 Name

Property: Name as string

1289 1290

1282

1284 ActiveX Integration Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Description:
This property gets the unique name of the command. This value can be used to get the icon file of the
command, where it is available. The available icon files can be found in the folder
<ApplicationFolder>\Examples\ActiveX\Images of your MapForce installation.

18.7.1.6 StatusText

Property: Label as string

Description:
The status text is the text shown in the status bar of MapForce when the command is selected. It applies only
to command objects that are not separators or containers of other commands; otherwise, the property is an
empty string.

18.7.1.7 SubCommands

Property: SubCommands as Commands

Description:
The SubCommands property gets the collection of Command objects that are sub-commands of the current
command. The property is applicable only to commands that are containers for other commands (menus,
submenus, or toolbars). Such container commands have the ID set to 0, and the IsSeparator property set to
false.

18.7.1.8 ToolTip

Property: ToolTip as string

Description:
This property gets the text that is shown as a tool-tip for each command. If the command does not have a
tooltip text, the property returns an empty string.

18.7.2 MapForceCommands

Properties:
Count
Item

Description:
Collection of Command objects to get access to command labels and IDs of the MapForceControl. Those
commands can be executed with the Exec method and their status can be queried with QueryStatus .

1284

1282

1285

1285

1282

1289 1290

© 2018-2024 Altova GmbH

Object Reference 1285ActiveX Integration

Altova MapForce 2024 Professional Edition

18.7.2.1 Count

Property: Count as long

Description:
Number of Command objects on this level of the collection.

18.7.2.2 Item

Property: Item (n as long) as Command

Description:
Gets the command with the index n in this collection. Index is 1-based.

18.7.3 MapForceControl

Properties:
IntegrationLevel
Appearance
Application
BorderStyle
CommandsList
EnableUserPrompts
MainMenu
Toolbars

Methods:
Open
Exec
QueryStatus

Events:
OnUpdateCmdUI
OnOpenedOrFocused
OnCloseEditingWindow
OnFileChangedAlert
OnDocumentOpened
OnValidationWindowUpdated

This object is a complete ActiveX control and should only be visible if the MapForce library is used in the
Application Level mode.

CLSID: A38637E9-5759-4456-A167-F01160CC22C1
ProgID: Altova.MapForceControl

1282

1282

1287

1286

1286

1286

1287

1287

1288

1288

1290

1289

1290

1292

1292

1291

1291

1291

1292

1286 ActiveX Integration Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

18.7.3.1 Properties

The following properties are defined:

IntegrationLevel
EnableUserPrompts
Appearance
BorderStyle

Command related properties:
CommandsList
MainMenu
Toolbars

Access to MapForceAPI:
Application

18.7.3.1.1 Appearance

Property: Appearance as short

Dispatch Id: -520

Description:
A value not equal to 0 displays a client edge around the control. Default value is 0.

18.7.3.1.2 Application

Property: Application as Application

Dispatch Id: 1

Description:
The Application property gives access to the Application object of the complete MapForce automation
server API. The property is read-only.

18.7.3.1.3 BorderStyle

Property: BorderStyle as short

Dispatch Id: -504

Description:
A value of 1 displays the control with a thin border. Default value is 0.

1287

1287

1286

1286

1287

1288

1288

1286

© 2018-2024 Altova GmbH

Object Reference 1287ActiveX Integration

Altova MapForce 2024 Professional Edition

18.7.3.1.4 CommandsList

Property: CommandList as Commands (read-only)

Dispatch Id: 1004

Description:
This property returns a flat list of all commands defined available with MapForceControl. To get commands
organized according to their menu structure, use MainMenu . To get toolbar commands, use Toolbars .

public void GetAllMapForceCommands()
{
 // Get all commands from the MapForce ActiveX control assigned to the current form
 MapForceControlLib.MapForceCommands commands = this.axMapForceControl1.CommandList;
 // Iterate through all commands
 for (int i = 0; i < commands.Count; i++)
 {
 // Get each command by index and output it to the console
 MapForceControlLib.MapForceCommand cmd = axMapForceControl1.CommandList[i];
 Console.WriteLine("{0} {1} {2}", cmd.ID, cmd.Name, cmd.Label.Replace("&", ""));
 }
}

C# example

18.7.3.1.5 EnableUserPrompts

Property: EnableUserPrompts as boolean

Dispatch Id: 1006

Description:
Setting this property to false, disables user prompts in the control. The default value is true.

18.7.3.1.6 IntegrationLevel

Property: IntegrationLevel as ICActiveXIntegrationLevel

Dispatch Id: 1000

Description:
The IntegrationLevel property determines the operation mode of the control. See also Integration at
Application Level and Integration at Document Level for more information.

Note: It is important to set this property immediately after the creation of the MapForceControl object.

1284

1288 1288

1302

1246 1249

1288 ActiveX Integration Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

18.7.3.1.7 MainMenu

Property: MainMenu as Command (read-only)

Dispatch Id: 1003

Description:
This property provides information about the structure and commands available in the MapForceControl main
menu, as a Command object. The Command object contains all available submenus of MapForce (for example
"File", "Edit", "View" etc.). To access the submenu objects, use the SubCommands property of the MainMenu
property. Each submenu is also a Command object. For each submenu, you can then further iterate through their
SubCommands property in order to get their corresponding child commands and separators (this technique may
be used, for example, to create the application menu programmatically). Note that some menu commands act
as containers ("parents") for other menu commands, in which case they also have a SubCommands property. To
get the structure of all menu commands programmatically, you will need a recursive function, as illustrated for
C# in Retrieving Command Information .

public void GetMapForceMenus()
{
 // Get the main menu from the MapForce ActiveX control assigned to the current form
 MapForceControlLib.MapForceCommand mainMenu = this.axMapForceControl1.MainMenu;

 // Loop through entries of the main menu (e.g. File, Edit, etc.)
 for (int i = 0; i < mainMenu.SubCommands.Count; i++)
 {
 MapForceControlLib.MapForceCommand menu = mainMenu.SubCommands[i];
 Console.WriteLine("{0} menu has {1} children items (including separators)",
menu.Label.Replace("&", ""), menu.SubCommands.Count);
 }
}

C# example

18.7.3.1.8 Toolbars

Property: Toolbars as Commands (read-only)

Dispatch Id: 1005

Description:
This property provides information about the structure of MapForceControl toolbars, as a Command object. The
Command object contains all available toolbars of MapForce. To access the toolbars, use the SubCommands
property of the Toolbars property. Each toolbar is also a Command object. For each toolbar, you can then
further iterate through their SubCommands property in order to get their commands (this technique may be used,
for example, to create the application's toolbars programmatically).

1282

1255

1284

© 2018-2024 Altova GmbH

Object Reference 1289ActiveX Integration

Altova MapForce 2024 Professional Edition

public void GetMapForceToolbars()
{
 // Get the application toolbars from the MapForce ActiveX control assigned to the
current form
 MapForceControlLib.MapForceCommands toolbars = this.axMapForceControl1.Toolbars;

 // Iterate through all toolbars
 for (int i = 0; i < toolbars.Count; i++)
 {
 MapForceControlLib.MapForceCommand toolbar = toolbars[i];
 Console.WriteLine();
 Console.WriteLine("The toolbar \"{0}\" has the following commands:",
toolbar.Label);

 // Iterate through all commands of this toolbar
 for (int j = 0; j < toolbar.SubCommands.Count; j++)
 {
 MapForceControlLib.MapForceCommand cmd = toolbar.SubCommands[j];
 // Output only command objects that are not separators
 if (!cmd.IsSeparator)
 {
 Console.WriteLine("{0}, {1}, {2}", cmd.ID, cmd.Name, cmd.Label.Replace("&",
""));
 }
 }
 }
}

C# example

18.7.3.2 Methods

The following methods are defined:

Open
Exec
QueryStatus

18.7.3.2.1 Exec

Method: Exec (nCmdID as long) as boolean

Dispatch Id: 6

Description:
This method calls the MapForce command with the ID nCmdID. If the command can be executed, the method
returns true. To get a list of all available commands, use CommandsList . To retrieve the status of any
command, use QueryStatus .

1290

1289

1290

1287

1290

1290 ActiveX Integration Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

18.7.3.2.2 Open

Method: Open (strFilePath as string) as boolean

Dispatch Id: 5

Description:
The result of the method depends on the extension passed in the argument strFilePath. If the file extension
is .sps, a new document is opened. If the file extension is .svp, the corresponding project is opened. If a
different file extension is passed into the method, the control tries to load the file as a new component into the
active document.

Do not use this method to load documents or projects when using the control in document-level integration
mode. Instead, use MapForceControlDocument.Open and
MapForceControlPlaceHolder.OpenProject .

18.7.3.2.3 QueryStatus

Method: QueryStatus (nCmdID as long) as long

Dispatch Id: 7

Description:
QueryStatus returns the enabled/disabled and checked/unchecked status of the command specified by
nCmdID. The status is returned as a bit mask.

Bit Value Name Meaning

0 1 Supported Set if the command is supported.
1 2 Enabled Set if the command is enabled (can be executed).
2 4 Checked Set if the command is checked.

This means that if QueryStatus returns 0 the command ID is not recognized as a valid MapForce command. If
QueryStatus returns a value of 1 or 5, the command is disabled.

18.7.3.3 Events

The MapForceControl ActiveX control provides the following connection point events:

OnUpdateCmdUI
OnOpenedOrFocused
OnCloseEditingWindow
OnFileChangedAlert
OnDocumentOpened
OnValidationWindowUpdated

1296

1301

1292

1292

1291

1291

1291

1292

© 2018-2024 Altova GmbH

Object Reference 1291ActiveX Integration

Altova MapForce 2024 Professional Edition

18.7.3.3.1 OnCloseEditingWindow

Event: OnCloseEditingWindow (i_strFilePath as String) as boolean

Dispatch Id: 1002

Description:
This event is triggered when MapForce needs to close an already open document. As an answer to this event,
clients should close the editor window associated with i_strFilePath. Returning true from this event indicates
that the client has closed the document. Clients can return false if no specific handling is required and
MapForceControl should try to close the editor and destroy the associated document control.

18.7.3.3.2 OnDocumentOpened

Event: OnDocumentOpened (objDocument as Document)

Dispatch Id: 1

Description:
This event is triggered whenever a document is opened. The argument objDocument is a Document object from
the MapForce automation interface and can be used to query for more details about the document, or perform
additional operations. When integrating on document-level, it is often better to use the event
MapForceControlDocument.OnDocumentOpened instead.

18.7.3.3.3 OnFileChangedAlert

Event: OnFileChangedAlert (i_strFilePath as String) as bool

Dispatch Id: 1001

Description:
This event is triggered when a file loaded with MapForceControl is changed on the hard disk by another
application. Clients should return true, if they handled the event, or false, if MapForce should handle it in its
customary way, i.e. prompting the user for reload.

18.7.3.3.4 OnLicenseProblem

Event: OnLicenseProblem (i_strLicenseProblemText as String)

Dispatch Id: 1005

Description:
This event is triggered when MapForceControl detects that no valid license is available for this control. In case
of restricted user licenses this can happen some time after the control has been initialized. Integrators should

1298

1292 ActiveX Integration Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

use this event to disable access to this control's functionality. After returning from this event, the control will
block access to its functionality (e.g. show empty windows in its controls and return errors on requests).

18.7.3.3.5 OnOpenedOrFocused

Event: OnOpenedOrFocused (i_strFilePath as String, i_bOpenWithThisControl as bool)

Dispatch Id: 1000

Description:
When integrating at application level, this event informs clients that a document has been opened, or made
active by MapForce.

When integrating at document level, this event instructs the client to open the file i_strFilePath in a
document window. If the file is already open, the corresponding document window should be made the active
window.

if i_bOpenWithThisControl is true, the document must be opened with MapForceControl, since internal
access is required. Otherwise, the file can be opened with different editors.

18.7.3.3.6 OnToolWindowUpdated

Event: OnToolWindowUpdated(pToolWnd as long)

Dispatch Id: 1006

Description:
This event is triggered when the tool window is updated.

18.7.3.3.7 OnUpdateCmdUI

Event: OnUpdateCmdUI()

Dispatch Id: 1003

Description:
Called frequently to give integrators a good opportunity to check status of MapForce commands using
MapForceControl.QueryStatus . Do not perform long operations in this callback.

18.7.3.3.8 OnValidationWindowUpdated

Event: OnValidationWindowUpdated()

Dispatch Id: 3

1290

© 2018-2024 Altova GmbH

Object Reference 1293ActiveX Integration

Altova MapForce 2024 Professional Edition

Description:
This event is triggered whenever the validation output window is updated with new information.

18.7.4 MapForceControlDocument

Properties:
Appearance
BorderStyle
Document
IsModified
Path
ReadOnly

Methods:
Exec
New
Open
QueryStatus
Reload
Save
SaveAs

Events:
OnDocumentOpened
OnDocumentClosed
OnModifiedFlagChanged
OnFileChangedAlert
OnActivate

If the MapForceControl is integrated in the Document Level mode each document is displayed in an own object
of type MapForceControlDocument. The MapForceControlDocument contains only one document at the time
but can be reused to display different files one after another.

This object is a complete ActiveX control.

CLSID: DFBB0871-DAFE-4502-BB66-08CEB7DF5255
ProgID: Altova.MapForceControlDocument

18.7.4.1 Properties

The following properties are defined:

ReadOnly
IsModified
Path
Appearance
BorderStyle

Access to MapForceAPI:

1294

1294

1294

1294

1295

1295

1295

1296

1296

1296

1296

1297

1297

1298

1298

1299

1298

1297

1295

1294

1295

1294

1294

1294 ActiveX Integration Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Document

18.7.4.1.1 Appearance

Property: Appearance as short

Dispatch Id: -520

Description:
A value not equal to 0 displays a client edge around the document control. Default value is 0.

18.7.4.1.2 BorderStyle

Property: BorderStyle as short

Dispatch Id: -504

Description:
A value of 1 displays the control with a thin border. Default value is 0.

18.7.4.1.3 Document

Property: Document as Document

Dispatch Id: 1

Description:
The Document property gives access to the Document object of the MapForce automation server API. This
interface provides additional functionality which can be used with the document loaded in the control. The
property is read-only.

18.7.4.1.4 IsModified

Property: IsModified as boolean (read-only)

Dispatch Id: 1006

Description:
IsModified is true if the document content has changed since the last open, reload or save operation. It is
false, otherwise.

1294

© 2018-2024 Altova GmbH

Object Reference 1295ActiveX Integration

Altova MapForce 2024 Professional Edition

18.7.4.1.5 Path

Property: Path as string

Dispatch Id: 1005

Description:
Sets or gets the full path name of the document loaded into the control.

18.7.4.1.6 ReadOnly

Property: ReadOnly as boolean

Dispatch Id: 1007

Description:
Using this property you can turn on and off the read-only mode of the document. If ReadOnly is true it is not
possible to do any modifications.

18.7.4.2 Methods

The following methods are defined:

Document handling:
New
Open
Reload
Save
SaveAs

Command Handling:
Exec
QueryStatus

18.7.4.2.1 Exec

Method: Exec (nCmdID as long) as boolean

Dispatch Id: 8

Description:
Exec calls the MapForce command with the ID nCmdID. If the command can be executed, the method returns
true. This method should be called only if there is currently an active document available in the application.

To get commands organized according to their menu structure, use the MainMenu property of
MapForceControl. To get toolbar commands, use the Toolbars property of the MapForceControl.

1296

1296

1296

1297

1297

1295

1296

1288

1288

1296 ActiveX Integration Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

18.7.4.2.2 New

Method: New () as boolean

Dispatch Id: 1000

Description:
This method initializes a new document inside the control.

18.7.4.2.3 Open

Method: Open (strFileName as string) as boolean

Dispatch Id: 1001

Description:
Open loads the file strFileName as the new document into the control.

18.7.4.2.4 QueryStatus

Method: QueryStatus (nCmdID as long) as long

Dispatch Id: 9

Description:
QueryStatus returns the enabled/disabled and checked/unchecked status of the command specified by
nCmdID. The status is returned as a bit mask.

Bit Value Name Meaning

0 1 Supported Set if the command is supported.
1 2 Enabled Set if the command is enabled (can be executed).
2 4 Checked Set if the command is checked.

This means that if QueryStatus returns 0 the command ID is not recognized as a valid MapForce command. If
QueryStatus returns a value of 1 or 5 the command is disabled. The client should call the QueryStatus
method of the document control if there is currently an active document available in the application.

18.7.4.2.5 Reload

Method: Reload() as boolean

Dispatch Id: 1002

© 2018-2024 Altova GmbH

Object Reference 1297ActiveX Integration

Altova MapForce 2024 Professional Edition

Description:
Reload updates the document content from the file system.

18.7.4.2.6 Save

Method: Save() as boolean

Dispatch Id: 1003

Description:
Save saves the current document at the location Path .

18.7.4.2.7 SaveAs

Method: SaveAs (strFileName as string) as boolean

Dispatch Id: 1004

Description:
SaveAs sets Path to strFileName and then saves the document to this location.

18.7.4.3 Events

The MapForceControlDocument ActiveX control provides following connection point events:

OnDocumentOpened
OnDocumentClosed
OnModifiedFlagChanged
OnFileChangedAlert
OnActivate
OnSetEditorTitle

18.7.4.3.1 OnActivate

Event: OnActivate ()

Dispatch Id: 1005

Description:
This event is triggered when the document control is activated, has the focus, and is ready for user input.

1295

1295

1298

1298

1299

1298

1297

1299

1298 ActiveX Integration Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

18.7.4.3.2 OnDocumentClosed

Event: OnDocumentClosed (objDocument as Document)

Dispatch Id: 1001

Description:
This event is triggered whenever the document loaded into this control is closed. The argument objDocument is
a Document object from the MapForce automation interface and should be used with care.

18.7.4.3.3 OnDocumentOpened

Event: OnDocumentOpened (objDocument as Document)

Dispatch Id: 1000

Description:
This event is triggered whenever a document is opened in this control. The argument objDocument is a
Document object from the MapForce automation interface, and can be used to query for more details about the
document, or perform additional operations.

18.7.4.3.4 OnDocumentSaveAs

Event: OnContextDocumentSaveAs (i_strFileName as String)

Dispatch Id: 1007

Description:
This event is triggered when this document gets internally saved under a new name.

18.7.4.3.5 OnFileChangedAlert

Event: OnFileChangedAlert () as bool

Dispatch Id: 1003

Description:
This event is triggered when the file loaded into this document control is changed on the hard disk by another
application. Clients should return true, if they handled the event, or false, if MapForce should handle it in its
customary way, i.e. prompting the user for reload.

© 2018-2024 Altova GmbH

Object Reference 1299ActiveX Integration

Altova MapForce 2024 Professional Edition

18.7.4.3.6 OnModifiedFlagChanged

Event: OnModifiedFlagChanged (i_bIsModified as boolean)

Dispatch Id: 1002

Description:
This event gets triggered whenever the document changes between modified and unmodified state. The
parameter i_bIsModifed is true if the document contents differs from the original content, and false, otherwise.

18.7.4.3.7 OnSetEditorTitle

Event: OnSetEditorTitle ()

Dispatch Id: 1006

Description:
This event is being raised when the contained document is being internally renamed.

18.7.5 MapForceControlPlaceHolder

Properties available for all kinds of placeholder windows:
PlaceholderWindowID

Properties for project placeholder window:
Project

Methods for project placeholder window:
OpenProject
CloseProject

The MapForceControlPlaceHolder control is used to show the additional MapForce windows like Overview,
Library or Project window. It is used like any other ActiveX control and can be placed anywhere in the client
application.

CLSID: FDEC3B04-05F2-427d-988C-F03A85DE53C2
ProgID: Altova.MapForceControlPlaceHolder

18.7.5.1 Properties

The following properties are defined:

PlaceholderWindowID

Access to MapForceAPI:
Project

1300

1300

1301

1301

1300

1300

1300 ActiveX Integration Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

18.7.5.1.1 Label

Property: Label as String (read-only)

Dispatch Id: 1001

Description:
This property gives access to the title of the placeholder. The property is read-only.

18.7.5.1.2 PlaceholderWindowID

Property: PlaceholderWindowID as MapForceControlPlaceholderWindow

Dispatch Id: 1

Description:
This property specifies which MapForce window should be displayed in the client area of the control. The
PlaceholderWindowID can be set at any time to any valid value of the
MapForceControlPlaceholderWindow enumeration. The control changes its state immediately and shows
the new MapForce window.

18.7.5.1.3 Project

Property: Project as Project (read-only)

Dispatch Id: 2

Description:
The Project property gives access to the Project object of the MapForce automation server API. This
interface provides additional functionality which can be used with the project loaded into the control. The
property will return a valid project interface only if the placeholder window has PlaceholderWindowID with a
value of MapForceXProjectWindow (=3). The property is read-only.

18.7.5.2 Methods

The following method is defined:

OpenProject
CloseProject

1302

1302

1300

1301

1301

© 2018-2024 Altova GmbH

Object Reference 1301ActiveX Integration

Altova MapForce 2024 Professional Edition

18.7.5.2.1 OpenProject

Method: OpenProject (strFileName as string) as boolean

Dispatch Id: 3

Description:
OpenProject loads the file strFileName as the new project into the control. The method will fail if the
placeholder window has a PlaceholderWindowID different to MapForceXProjectWindow (=3).

18.7.5.2.2 CloseProject

Method: CloseProject ()

Dispatch Id: 4

Description:
CloseProject closes the project loaded by the control. The method will fail if the placeholder window has a
PlaceholderWindowID different to MapForceXProjectWindow (=3).

18.7.5.3 Events

The MapForceControlPlaceholder ActiveX control provides following connection point events:

OnModifiedFlagChanged

18.7.5.3.1 OnModifiedFlagChanged

Event: OnModifiedFlagChanged (i_bIsModified as boolean)

Dispatch Id: 1

Description:
This event gets triggered only for placeholder controls with a PlaceholderWindowID of
MapForceXProjectWindow (=3). The event is fired whenever the project content changes between modified

and unmodified state. The parameter i_bIsModifed is true if the project contents differs from the original
content, and false, otherwise.

1300

1300

1301

1300

1302 ActiveX Integration Object Reference

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

18.7.5.3.2 OnSetLabel

Event: OnSetLabel(i_strNewLabel as string)

Dispatch Id: 1000

Description:
Raised when the title of the placeholder window is changed.

18.7.6 Enumerations

The following enumerations are defined:

ICActiveXIntegrationLevel
MapForceControlPlaceholderWindow

18.7.6.1 ICActiveXIntegrationLevel

Possible values for the IntegrationLevel property of the MapForceControl.

ICActiveXIntegrationOnApplicationLevel = 0
ICActiveXIntegrationOnDocumentLevel = 1

18.7.6.2 MapForceControlPlaceholderWindow

This enumeration contains the list of the supported additional MapForce windows.

MapForceXNoWindow = -1
MapForceXLibraryWindow = 0
MapForceXOverviewWindow = 1
MapForceXValidationWindow = 2
MapForceXProjectWindow = 3
MapForceXDebuggerValuesWindow = 4
MapForceXDebuggerContextWindow = 5
MapForceXDebuggerPointsWindow = 6

1302

1302

1287

© 2018-2024 Altova GmbH

 1303Appendices

Altova MapForce 2024 Professional Edition

19 Appendices

These appendices contain technical information about MapForce, its technical aspects and licensing. It also
provides the list of key terms specific to MapForce and MapForce-related products. The section is organized
into the following subsections:

· Support Notes
· Engine Information
· Technical Data
· License Information

1304

1308

1409

1411

1304 Appendices Support Notes

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

19.1 Support Notes

MapForce® is a 32/64-bit Windows application that runs on the following operating systems:

· Windows 10, Windows 11
· Windows Server 2016 or newer

64-bit support is available for the Enterprise and Professional editions.

MapForce is optionally available as a plug-in to the following integrated development environments:

· Visual Studio 2012/2013/2015/2017/2019/2022. See MapForce Plug-in for Visual Studio .
· Eclipse 2024-03 (4.31), 2023-12 (4.30), 2023-09 (4.29), 2023-06 (4.28). See MapForce Plug-in for

Eclipse .

MapForce can integrate with Microsoft Office products:

· It can map data to or from Access databases. For supported versions, see Databases and
MapForce .

· It can generate mapping documentation in Word 2000 or later versions. See Generating and
Customizing Mapping Documentation .

19.1.1 Supported Sources and Targets

When you change the transformation language of a MapForce mapping, certain features may not be supported
for that specific language. The following table summarizes the compatibility of mapping formats and
transformation languages in MapForce Professional Edition.

Remarks:

· Built-in means that you can execute the mapping by clicking the Output pane in MapForce or run it
with MapForce Server.

Mapping format XSLT
1.0

XSLT
2.0

XSLT
3.0

XQuery C++ C# Java BUILT-
IN

XML1

CSV and text

Binary files

Databa

ses2

ADO

ADO.NET

JDBC

870

873

149

787

© 2018-2024 Altova GmbH

Support Notes 1305Appendices

Altova MapForce 2024 Professional Edition

Mapping format XSLT
1.0

XSLT
2.0

XSLT
3.0

XQuery C++ C# Java BUILT-
IN

Native
SQLite

Native
PostgreS
QL

ODBC

Footnotes:

1. XML with digital signatures processing is supported only by MapForce Enterprise Edition using BUILT-
IN as a transformation language.

2. Limitations apply depending on the database type and the target environment. For more information,
see Database mappings in various execution environments .

19.1.2 Supported Features in Generated Code

The following table lists the features relevant to code generation and the extent of support in each language in
MapForce Professional Edition.

Feature XSLT
1.0

XSLT
2.0

XSLT
3.0

XQuery C++ C# Java BUILT-
IN

Supply parameters
to the mapping

Supply the input file
names dynamically
from the
mapping

Supply wildcard file
names as mapping

input 1

Generate the output
file names
dynamically from
the mapping

Return string values
from the
mapping

Variables

150

352

751

751

751

362

366

1306 Appendices Support Notes

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Feature XSLT
1.0

XSLT
2.0

XSLT
3.0

XQuery C++ C# Java BUILT-
IN

Sort
components

Grouping
functions

Filters

Join
components

Value-Map
components

Defaults and node
functions

Mapping
exceptions

String parsing and

serialization 2

Dynamic node
names

Database bulk
inserts

Database SQL
SELECT without
input
parameters

Database SQL
SELECT with input
parameters

Database stored
procedures

Database exception

handling 3

Database tracing
and error logging

Generate MapForce
Server execution
files

408

566

414

379

426

449

437

758

731

265

249

249

303

276

241

825

© 2018-2024 Altova GmbH

Support Notes 1307Appendices

Altova MapForce 2024 Professional Edition

Feature XSLT
1.0

XSLT
2.0

XSLT
3.0

XQuery C++ C# Java BUILT-
IN

Deploy mappings to
FlowForce
Server

Read data from
binary files

Write data to binary
files

Footnotes:

1. XSLT 2.0, XSLT 3.0, and XQuery use the fn:collection function. The implementation in the Altova

XSLT 2.0, XSLT 3.0, and XQuery engines resolves wildcards. Other engines may behave differently.
2. For JSON, parsing and serialization are additionally supported in Java and C#.
3. Database exception handling is possible when the mapping language is supported by the currently

connected database driver, as indicated in the previous table.

828

633

635

1308 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

19.2 Engine Information

This section contains information about implementation-specific features of the Altova XML Validator, Altova
XSLT 1.0 Engine, Altova XSLT 2.0 Engine, and Altova XQuery Engine.

19.2.1 XSLT and XQuery Engine Information

The XSLT and XQuery engines of MapForce follow the W3C specifications closely and are therefore stricter
than previous Altova engines—such as those in previous versions of XMLSpy. As a result, minor errors that
were ignored by previous engines are now flagged as errors by MapForce.

For example:

· It is a type error (err:XPTY0018) if the result of a path operator contains both nodes and non-nodes.
· It is a type error (err:XPTY0019) if E1 in a path expression E1/E2 does not evaluate to a sequence of

nodes.

If you encounter this kind of error, modify either the XSLT/XQuery document or the instance document as
appropriate.

This section describes implementation-specific features of the engines, organized by specification:

· XSLT 1.0
· XSLT 2.0
· XQuery 1.0

19.2.1.1 XSLT 1.0

The XSLT 1.0 Engine of MapForce conforms to the World Wide Web Consortium's (W3C's) XSLT 1.0
Recommendation of 16 November 1999 and XPath 1.0 Recommendation of 16 November 1999. Note the
following information about the implementation.

Notes about the implementation
When the method attribute of xsl:output is set to HTML, or if HTML output is selected by default, then special
characters in the XML or XSLT file are inserted in the HTML document as HTML character references in the
output. For instance, the character U+00A0 (the hexadecimal character reference for a non-breaking space) is
inserted in the HTML code either as a character reference (or) or as an entity reference,
 .

19.2.1.2 XSLT 2.0

This section:

· Engine conformance

1308

1308

1310

1309

https://www.w3.org/TR/1999/REC-xslt-19991116
https://www.w3.org/TR/1999/REC-xslt-19991116
https://www.w3.org/TR/1999/REC-xpath-19991116/

© 2018-2024 Altova GmbH

Engine Information 1309Appendices

Altova MapForce 2024 Professional Edition

· Backward compatibility
· Namespaces
· Schema awareness
· Implementation-specific behavior

Conformance
The XSLT 2.0 engine of MapForce conforms to the World Wide Web Consortium's (W3C's) XSLT 2.0
Recommendation of 23 January 2007 and XPath 2.0 Recommendation of 14 December 2010.

Backwards Compatibility
The XSLT 2.0 engine is backwards compatible. Typically, the backwards compatibility of the XSLT 2.0 engine
comes into play when using the XSLT 2.0 engine to process an XSLT 1.0 stylesheet or instruction. Note that
there could be differences in the outputs produced by the XSLT 1.0 Engine and the backwards-compatible XSLT
2.0 engine.

Namespaces
Your XSLT 2.0 stylesheet should declare the following namespaces in order for you to be able to use the type
constructors and functions available in XSLT 2.0. The prefixes given below are conventionally used; you could
use alternative prefixes if you wish.

Namespace Name Prefix Namespace URI

XML Schema types xs: http://www.w3.org/2001/XMLSchema

XPath 2.0 functions fn: http://www.w3.org/2005/xpath-functions

Typically, these namespaces will be declared on the xsl:stylesheet or xsl:transform element, as shown in
the following listing:

<xsl:stylesheet version="2.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:fn="http://www.w3.org/2005/xpath-functions"

 ...
</xsl:stylesheet>

The following points should be noted:

· The XSLT 2.0 engine uses the XPath 2.0 and XQuery 1.0 Functions namespace (listed in the table
above) as its default functions namespace. So you can use XPath 2.0 and XSLT 2.0 functions in
your stylesheet without any prefix. If you declare the XPath 2.0 Functions namespace in your
stylesheet with a prefix, then you can additionally use the prefix assigned in the declaration.

· When using type constructors and types from the XML Schema namespace, the prefix used in the
namespace declaration must be used when calling the type constructor (for example, xs:date).

· Some XPath 2.0 functions have the same name as XML Schema datatypes. For example, for the
XPath functions fn:string and fn:boolean there exist XML Schema datatypes with the same local
names: xs:string and xs:boolean. So if you were to use the XPath expression string('Hello'),
the expression evaluates as fn:string('Hello')—not as xs:string('Hello').

1309

1309

1310

1310

http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/xpath20/

1310 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Schema-awareness
The XSLT 2.0 engine is schema-aware. So you can use user-defined schema types and the xsl:validate
instruction.

Implementation-specific behavior
Given below is a description of how the XSLT 2.0 engine handles implementation-specific aspects of certain
XSLT 2.0 functions.

xsl:result-document

Additionally supported encodings are (the Altova-specific): x-base16tobinary and x-base64tobinary.

function-available

The function tests for the availability of in-scope functions (XSLT, XPath, and extension functions).

unparsed-text

The href argument accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or
without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobase16
and x-binarytobase64. Example: xs:base64Binary(unparsed-text('chart.png', 'x-
binarytobase64')).

unparsed-text-available

The href argument accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or
without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobase16
and x-binarytobase64.

Note: The following encoding values, which were implemented in earlier versions of RaptorXML's predecessor
product, AltovaXML, are now deprecated: base16tobinary, base64tobinary, binarytobase16 and
binarytobase64.

19.2.1.3 XQuery 1.0

This section:

· Engine conformance
· Schema awareness
· Encoding
· Namespaces
· XML source and validation
· Static and dynamic type checking
· Library modules
· External functions
· Collations
· Precision of numeric data
· XQuery instructions support
· Implementation-specific behavior

1311

1311

1311

1309

1312

1312

1312

1312

1312

1313

1313

1313

© 2018-2024 Altova GmbH

Engine Information 1311Appendices

Altova MapForce 2024 Professional Edition

Conformance
The XQuery 1.0 Engine of MapForce conforms to the World Wide Web Consortium's (W3C's) XQuery 1.0
Recommendation of 14 December 2010. The XQuery standard gives implementations discretion about how to
implement many features. Given below is a list explaining how the XQuery 1.0 Engine implements these
features.

Schema awareness
The XQuery 1.0 Engine is schema-aware.

Encoding
The UTF-8 and UTF-16 character encodings are supported.

Namespaces
The following namespace URIs and their associated bindings are pre-defined.

Namespace Name Prefix Namespace URI

XML Schema types xs: http://www.w3.org/2001/XMLSchema

Schema instance xsi: http://www.w3.org/2001/XMLSchema-instance

Built-in functions fn: http://www.w3.org/2005/xpath-functions

Local functions local: http://www.w3.org/2005/xquery-local-functions

The following points should be noted:

· The XQuery 1.0 Engine recognizes the prefixes listed above as being bound to the corresponding
namespaces.

· Since the built-in functions namespace listed above (see fn:) is the default functions namespace in
XQuery, the fn: prefix does not need to be used when built-in functions are invoked (for example,

string("Hello") will call the fn:string function). However, the prefix fn: can be used to call a built-
in function without having to declare the namespace in the query prolog (for example:
fn:string("Hello")).

· You can change the default functions namespace by declaring the default function namespace
expression in the query prolog.

· When using types from the XML Schema namespace, the prefix xs: may be used without having to
explicitly declare the namespaces and bind these prefixes to them in the query prolog. (Example:
xs:date and xs:yearMonthDuration.) If you wish to use some other prefix for the XML Schema
namespace, this must be explicitly declared in the query prolog. (Example: declare namespace alt
= "http://www.w3.org/2001/XMLSchema"; alt:date("2004-10-04").)

· Note that the untypedAtomic, dayTimeDuration, and yearMonthDuration datatypes have been
moved, with the CRs of 23 January 2007, from the XPath Datatypes namespace to the XML Schema
namespace, so: xs:yearMonthDuration.

If namespaces for functions, type constructors, node tests, etc are wrongly assigned, an error is reported.
Note, however, that some functions have the same name as schema datatypes, e.g. fn:string and
fn:boolean. (Both xs:string and xs:boolean are defined.) The namespace prefix determines whether the
function or type constructor is used.

https://www.w3.org/TR/2010/REC-xquery-20101214/
https://www.w3.org/TR/2010/REC-xquery-20101214/

1312 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

XML source document and validation
XML documents used in executing an XQuery document with the XQuery 1.0 Engine must be well-formed.
However, they do not need to be valid according to an XML Schema. If the file is not valid, the invalid file is
loaded without schema information. If the XML file is associated with an external schema and is valid according
to it, then post-schema validation information is generated for the XML data and will be used for query
evaluation.

Static and dynamic type checking
The static analysis phase checks aspects of the query such as syntax, whether external references (e.g. for
modules) exist, whether invoked functions and variables are defined, and so on. If an error is detected in the
static analysis phase, it is reported and the execution is stopped.

Dynamic type checking is carried out at run-time, when the query is actually executed. If a type is incompatible
with the requirement of an operation, an error is reported. For example, the expression xs:string("1") + 1
returns an error because the addition operation cannot be carried out on an operand of type xs:string.

Library Modules
Library modules store functions and variables so they can be reused. The XQuery 1.0 Engine supports modules
that are stored in a single external XQuery file. Such a module file must contain a module declaration in its
prolog, which associates a target namespace. Here is an example module:

module namespace libns="urn:module-library";
declare variable $libns:company := "Altova";
declare function libns:webaddress() { "http://www.altova.com" };

All functions and variables declared in the module belong to the namespace associated with the module. The
module is used by importing it into an XQuery file with the import module statement in the query prolog. The
import module statement only imports functions and variables declared directly in the library module file. As
follows:

import module namespace modlib = "urn:module-library" at "modulefilename.xq";
if ($modlib:company = "Altova")
then modlib:webaddress()
else error("No match found.")

External functions
External functions are not supported, i.e. in those expressions using the external keyword, as in:

declare function hoo($param as xs:integer) as xs:string external;

Collations
The default collation is the Unicode-codepoint collation, which compares strings on the basis of their Unicode
codepoint. Other supported collations are the ICU collations listed here . To use a specific collation, supply
its URI as given in the list of supported collations . Any string comparisons, including for the fn:max and
fn:min functions, will be made according to the specified collation. If the collation option is not specified, the
default Unicode-codepoint collation is used.

1313

1313

http://site.icu-project.org/

© 2018-2024 Altova GmbH

Engine Information 1313Appendices

Altova MapForce 2024 Professional Edition

Precision of numeric types

· The xs:integer datatype is arbitrary-precision, i.e. it can represent any number of digits.
· The xs:decimal datatype has a limit of 20 digits after the decimal point.
· The xs:float and xs:double datatypes have limited-precision of 15 digits.

XQuery Instructions Support
The Pragma instruction is not supported. If encountered, it is ignored and the fallback expression is evaluated.

Implementation-specific behavior
Given below is a description of how the XQuery and XQuery Update 1.0 engines handle implementation-specific
aspects of certain functions.

unparsed-text

The href argument accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or
without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobase16
and x-binarytobase64. Example: xs:base64Binary(unparsed-text('chart.png', 'x-
binarytobase64')).

unparsed-text-available

The href argument accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or
without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobase16
and x-binarytobase64.

Note: The following encoding values, which were implemented in earlier versions of RaptorXML's predecessor
product, AltovaXML, are now deprecated: base16tobinary, base64tobinary, binarytobase16 and
binarytobase64.

19.2.2 XSLT and XPath/XQuery Functions

This section lists Altova extension functions and other extension functions that can be used in XPath and/or
XQuery expressions. Altova extension functions can be used with Altova's XSLT and XQuery engines, and
provide functionality additional to that available in the function libraries defined in the W3C standards.

This section mainly describes XPath/XQuery extension functions that have been created by Altova to provide
additional operations. These functions can be computed by Altova's XSLT and XQuery engines according to
the rules described in this section. For information about the regular XPath/XQuery functions, see Altova's
XPath/XQuery Function Reference.

General points
The following general points should be noted:

· Functions from the core function libraries defined in the W3C specifications can be called without a
prefix. That's because the Altova XSLT and XQuery engines read non-prefixed functions as belonging to
the namespace http://www.w3.org/2005/xpath-functions, which is the default functions

1315

https://www.altova.com/xpath-xquery-reference
https://www.altova.com/xpath-xquery-reference

1314 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

namespace specified in the XPath/XQuery functions specifications. If this namespace is explicitly
declared in an XSLT or XQuery document, the prefix used in the namespace declaration can also
optionally be used on function names.

· In general, if a function expects a sequence of one item as an argument, and a sequence of more than
one item is submitted, then an error is returned.

· All string comparisons are done using the Unicode codepoint collation.
· Results that are QNames are serialized in the form [prefix:]localname.

Precision of xs:decimal
The precision refers to the number of digits in the number, and a minimum of 18 digits is required by the
specification. For division operations that produce a result of type xs:decimal, the precision is 19 digits after
the decimal point with no rounding.

Implicit timezone
When two date, time, or dateTime values need to be compared, the timezones of the values being compared
need to be known. When the timezone is not explicitly given in such a value, the implicit timezone is used. The
implicit timezone is taken from the system clock, and its value can be checked with the implicit-
timezone() function.

Collations
The default collation is the Unicode codepoint collation, which compares strings on the basis of their Unicode
codepoint. The engine uses the Unicode Collation Algorithm. Other supported collations are the ICU collations
listed below; to use one of these, supply its URI as given in the table below. Any string comparisons, including
for the max and min functions, will be made according to the specified collation. If the collation option is not
specified, the default Unicode-codepoint collation is used.

Language URIs

da: Danish da_DK

de: German de_AT, de_BE, de_CH, de_DE, de_LI, de_LU

en: English en_AS, en_AU, en_BB, en_BE, en_BM, en_BW, en_BZ, en_CA, en_GB,
en_GU, en_HK, en_IE, en_IN, en_JM, en_MH, en_MP, en_MT, en_MU,
en_NA, en_NZ, en_PH, en_PK, en_SG, en_TT, en_UM, en_US, en_VI,
en_ZA, en_ZW

es: Spanish es_419, es_AR, es_BO, es_CL, es_CO, es_CR, es_DO, es_EC,
es_ES, es_GQ, es_GT, es_HN, es_MX, es_NI, es_PA, es_PE, es_PR,
es_PY, es_SV, es_US, es_UY, es_VE

fr: French fr_BE, fr_BF, fr_BI, fr_BJ, fr_BL, fr_CA, fr_CD, fr_CF, fr_CG,
fr_CH, fr_CI, fr_CM, fr_DJ, fr_FR, fr_GA, fr_GN, fr_GP, fr_GQ,
fr_KM, fr_LU, fr_MC, fr_MF, fr_MG, fr_ML, fr_MQ, fr_NE, fr_RE,
fr_RW, fr_SN, fr_TD, fr_TG

it: Italian it_CH, it_IT

ja: Japanese ja_JP

nb: Norwegian Bokmal nb_NO

http://site.icu-project.org/

© 2018-2024 Altova GmbH

Engine Information 1315Appendices

Altova MapForce 2024 Professional Edition

nl: Dutch nl_AW, nl_BE, nl_NL

nn: Nynorsk nn_NO

pt: Portuguese pt_AO, pt_BR, pt_GW, pt_MZ, pt_PT, pt_ST

ru: Russian ru_MD, ru_RU, ru_UA

sv: Swedish sv_FI, sv_SE

Namespace axis
The namespace axis is deprecated in XPath 2.0. Use of the namespace axis is, however, supported. To
access namespace information with XPath 2.0 mechanisms, use the in-scope-prefixes(), namespace-
uri() and namespace-uri-for-prefix() functions.

19.2.2.1 Altova Extension Functions

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova extension
functions are in the Altova extension functions namespace, http://www.altova.com/xslt-extensions,

and are indicated in this section with the prefix altova:, which is assumed to be bound to this namespace.

Note that, in future versions of your product, support for a function might be discontinued or the behavior of
individual functions might change. Consult the documentation of future releases for information about support for
Altova extension functions in that release.

Functions defined in the W3C's XPath/XQuery Functions specifications can be used in: (i) XPath expressions in
an XSLT context, and (ii) in XQuery expressions in an XQuery document. In this documentation we indicate the
functions that can be used in the former context (XPath in XSLT) with an XP symbol and call them XPath
functions; those functions that can be used in the latter (XQuery) context are indicated with an XQ symbol; they
work as XQuery functions. The W3C's XSLT specifications—not XPath/XQuery Functions specifications—also
define functions that can be used in XPath expressions in XSLT documents. These functions are marked with
an XSLT symbol and are called XSLT functions. The XPath/XQuery and XSLT versions in which a function can be
used are indicated in the description of the function (see symbols below). Functions from the XPath/XQuery and
XSLT function libraries are listed without a prefix. Extension functions from other libraries, such as Altova
extension functions, are listed with a prefix.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Usage of Altova extension functions
In order to use Altova extension functions, you must declare the Altova extension functions namespace (first
highlight in code listing below) and then use the extension functions so that they are resolved as belonging to
this namespace (see second highlight). The example below uses the Altova extension function named age.

1316 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fn="http://www.w3.org/2005/xpath-functions"
xmlns:altova="http://www.altova.com/xslt-extensions">

<xsl:output method="text" encoding="ISO-8859-1"/>

<xsl:template match="Persons">

<xsl:for-each select="Person">

 <xsl:value-of select="concat(Name, ': ')"/>

 <xsl:value-of select="altova:age(xs:date(BirthDate))"/>

 <xsl:value-of select="' years
'"/>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

 XSLT functions
XSLT functions can only be used in XPath expressions in an XSLT context (similarly to XSLT 2.0's current-
group() or key() functions). These functions are not intended for, and will not work in, a non-XSLT context (for
instance, in an XQuery context). Note that XSLT functions for XBRL can be used only with editions of Altova
products that have XBRL support.

XPath/XQuery functions
XPath/XQuery functions can be used both in XPath expressions in XSLT contexts as well as in XQuery
expressions:

· Date/Time
· Geolocation
· Image-related
· Numeric
· Sequence
· String
· Miscellaneous

19.2.2.1.1 XSLT Functions

XSLT extension functions can be used in XPath expressions in an XSLT context. They will not work in a non-
XSLT context (for instance, in an XQuery context).

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

1316

1319

1336

1348

1352

1374

1382

1388

© 2018-2024 Altova GmbH

Engine Information 1317Appendices

Altova MapForce 2024 Professional Edition

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

General functions
distinct-nodes [altova:]

altova:distinct-nodes(node()*) as node()* XSLT1 XSLT2 XSLT3

Takes a set of one or more nodes as its input and returns the same set minus nodes with duplicate
values. The comparison is done using the XPath/XQuery function fn:deep-equal.

Examples

· altova:distinct-nodes(country) returns all child country nodes less those having duplicate

values.

evaluate [altova:]

altova:evaluate(XPathExpression as xs:string[, ValueOf$p1, ... ValueOf$pN]) XSLT1 XSLT2
XSLT3

Takes an XPath expression, passed as a string, as its mandatory argument. It returns the output of the
evaluated expression. For example: altova:evaluate('//Name[1]') returns the contents of the first

Name element in the document. Note that the expression //Name[1] is passed as a string by enclosing it
in single quotes.

The altova:evaluate function can optionally take additional arguments. These arguments are the values
of in-scope variables that have the names p1, p2, p3... pN. Note the following points about usage: (i) The
variables must be defined with names of the form pX, where X is an integer; (ii) the altova:evaluate
function's arguments (see signature above), from the second argument onwards, provide the values of the
variables, with the sequence of the arguments corresponding to the numerically ordered sequence of
variables: p1 to pN: The second argument will be the value of the variable p1, the third argument that of the
variable p2, and so on; (iii) The variable values must be of type item*.

Example

<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />

<xsl:value-of select="altova:evaluate($xpath, 10, 20, 'hi')" />
outputs "hi 20 10"

In the listing above, notice the following:

· The second argument of the altova:evaluate expression is the value assigned to the
variable $p1, the third argument that assigned to the variable $p2, and so on.

· Notice that the fourth argument of the function is a string value, indicated by its being
enclosed in quotes.

· The select attribute of the xs:variable element supplies the XPath expression. Since this
expression must be of type xs:string, it is enclosed in single quotes.

Examples to further illustrate the use of variables

1318 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· <xsl:variable name="xpath" select="'$p1'" />
<xsl:value-of select="altova:evaluate($xpath, //Name[1])" />
Outputs value of the first Name element.

· <xsl:variable name="xpath" select="'$p1'" />
<xsl:value-of select="altova:evaluate($xpath, '//Name[1]')" />

Outputs "//Name[1]"

The altova:evaluate() extension function is useful in situations where an XPath expression in the XSLT
stylesheet contains one or more parts that must be evaluated dynamically. For example, consider a
situation in which a user enters his request for the sorting criterion and this criterion is stored in the
attribute UserReq/@sortkey. In the stylesheet, you could then have the expression: <xsl:sort
select="altova:evaluate(../UserReq/@sortkey)" order="ascending"/>. The altova:evaluate()

function reads the sortkey attribute of the UserReq child element of the parent of the context node. Say
the value of the sortkey attribute is Price, then Price is returned by the altova:evaluate() function
and becomes the value of the select attribute: <xsl:sort select="Price" order="ascending"/>. If

this sort instruction occurs within the context of an element called Order, then the Order elements will
be sorted according to the values of their Price children. Alternatively, if the value of @sortkey were, say,
Date, then the Order elements would be sorted according to the values of their Date children. So the sort
criterion for Order is selected from the sortkey attribute at runtime. This could not have been achieved
with an expression like: <xsl:sort select="../UserReq/@sortkey" order="ascending"/>. In the

case shown above, the sort criterion would be the sortkey attribute itself, not Price or Date (or any other
current content of sortkey).

Note: The static context includes namespaces, types, and functions—but not variables—from the
calling environment. The base URI and default namespace are inherited.

More examples

· Static variables: <xsl:value-of select="$i3, $i2, $i1" />
Outputs the values of three variables.

· Dynamic XPath expression with dynamic variables:
<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />
<xsl:value-of select="altova:evaluate($xpath, 10, 20, 30)" />
Outputs "30 20 10"

· Dynamic XPath expression with no dynamic variable:
<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />
<xsl:value-of select="altova:evaluate($xpath)" />
Outputs error: No variable defined for $p3.

encode-for-rtf [altova:]

altova:encode-for-rtf(input as xs:string, preserveallwhitespace as xs:boolean,

preservenewlines as xs:boolean) as xs:string XSLT2 XSLT3

Converts the input string into code for RTF. Whitespace and new lines will be preserved according to the
boolean value specified for their respective arguments.

[Top]
1316

mailto:.

© 2018-2024 Altova GmbH

Engine Information 1319Appendices

Altova MapForce 2024 Professional Edition

XBRL functions
Altova XBRL functions can be used only with editions of Altova products that have XBRL support.

xbrl-footnotes [altova:]

altova:xbrl-footnotes(node()) as node()* XSLT2 XSLT3

Takes a node as its input argument and returns the set of XBRL footnote nodes referenced by the input
node.

xbrl-labels [altova:]

altova:xbrl-labels(xs:QName, xs:string) as node()* XSLT2 XSLT3

Takes two input arguments: a node name and the taxonomy file location containing the node. The function
returns the XBRL label nodes associated with the input node.

[Top]

19.2.2.1.2 XPath/XQuery Functions: Date and Time

Altova's date/time extension functions can be used in XPath and XQuery expressions and provide additional
functionality for the processing of data held as XML Schema's various date and time datatypes. The functions in
this section can be used with Altova's XPath 3.0 and XQuery 3.0 engines. They are available in XPath/XQuery
contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Grouped by functionality

· Add a duration to xs:dateTime and return xs:dateTime
· Add a duration to xs:date and return xs:date
· Add a duration to xs:time and return xs:time
· Format and retrieve durations
· Remove timezone from functions that generate current date/time

1316

1321

1322

1324

1323

1325

1320 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· Return days, hours, minutes, and seconds from durations
· Return weekday as integer from date
· Return week number as integer from date
· Build date, time, or duration type from lexical components of each type
· Construct date, dateTime, or time type from string input
· Age-related functions
· Epoch time (Unix time) functions

Listed alphabetically

altova:add-days-to-date
altova:add-days-to-dateTime
altova:add-hours-to-dateTime
altova:add-hours-to-time
altova:add-minutes-to-dateTime
altova:add-minutes-to-time
altova:add-months-to-date
altova:add-months-to-dateTime
altova:add-seconds-to-dateTime
altova:add-seconds-to-time
altova:add-years-to-date
altova:add-years-to-dateTime
altova:age
altova:age-details
altova:build-date
altova:build-duration
altova:build-time
altova:current-dateTime-no-TZ
altova:current-date-no-TZ
altova:current-time-no-TZ
altova:date-no-TZ
altova:dateTime-from-epoch
altova:dateTime-from-epoch-no-TZ
altova:dateTime-no-TZ
altova:days-in-month
altova:epoch-from-dateTime
altova:hours-from-dateTimeDuration-accumulated
altova:minutes-from-dateTimeDuration-accumulated
altova:seconds-from-dateTimeDuration-accumulated
altova:format-duration
altova:parse-date
altova:parse-dateTime
altova:parse-duration
altova:parse-time
altova:time-no-TZ
altova:weekday-from-date
altova:weekday-from-dateTime
altova:weeknumber-from-date
altova:weeknumber-from-dateTime

[Top]

1326

1328

1328

1330

1331

1333

1334

1322

1321

1321

1324

1321

1324

1322

1321

1321

1324

1322

1321

1333

1333

1330

1330

1330

1325

1325

1325

1325

1334

1334

1325

1326

1334

1326

1326

1326

1323

1331

1331

1323

1331

1325

1328

1328

1329

1329

1319

© 2018-2024 Altova GmbH

Engine Information 1321Appendices

Altova MapForce 2024 Professional Edition

Add a duration to xs:dateTime XP3.1 XQ3.1

These functions add a duration to xs:dateTime and return xs:dateTime. The xs:dateTime type has a format

of CCYY-MM-DDThh:mm:ss.sss. This is a concatenation of the xs:date and xs:time formats separated by the
letter T. A timezone suffix (+01:00, for example) is optional.

add-years-to-dateTime [altova:]

altova:add-years-to-dateTime(DateTime as xs:dateTime, Years as xs:integer) as

xs:dateTime XP3.1 XQ3.1

Adds a duration in years to an xs:dateTime (see examples below). The second argument is the number of
years to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.

Examples

· altova:add-years-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10) returns 2024-

01-15T14:00:00
· altova:add-years-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -4) returns 2010-
01-15T14:00:00

add-months-to-dateTime [altova:]

altova:add-months-to-dateTime(DateTime as xs:dateTime, Months as xs:integer) as

xs:dateTime XP3.1 XQ3.1

Adds a duration in months to an xs:dateTime (see examples below). The second argument is the number
of months to be added to the xs:dateTime supplied as the first argument. The result is of type
xs:dateTime.

Examples

· altova:add-months-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10) returns 2014-

11-15T14:00:00
· altova:add-months-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -2) returns 2013-

11-15T14:00:00

add-days-to-dateTime [altova:]

altova:add-days-to-dateTime(DateTime as xs:dateTime, Days as xs:integer) as xs:dateTime

XP3.1 XQ3.1

Adds a duration in days to an xs:dateTime (see examples below). The second argument is the number of
days to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.

Examples

· altova:add-days-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10) returns 2014-

01-25T14:00:00
· altova:add-days-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -8) returns 2014-

01-07T14:00:00

add-hours-to-dateTime [altova:]

altova:add-hours-to-dateTime(DateTime as xs:dateTime, Hours as xs:integer) as

xs:dateTime XP3.1 XQ3.1

Adds a duration in hours to an xs:dateTime (see examples below). The second argument is the number of

1322 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

hours to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.
Examples

· altova:add-hours-to-dateTime(xs:dateTime("2014-01-15T13:00:00"), 10) returns 2014-

01-15T23:00:00
· altova:add-hours-to-dateTime(xs:dateTime("2014-01-15T13:00:00"), -8) returns 2014-

01-15T05:00:00

add-minutes-to-dateTime [altova:]

altova:add-minutes-to-dateTime(DateTime as xs:dateTime, Minutes as xs:integer) as

xs:dateTime XP3.1 XQ3.1

Adds a duration in minutes to an xs:dateTime (see examples below). The second argument is the number
of minutes to be added to the xs:dateTime supplied as the first argument. The result is of type
xs:dateTime.

Examples

· altova:add-minutes-to-dateTime(xs:dateTime("2014-01-15T14:10:00"), 45) returns

2014-01-15T14:55:00
· altova:add-minutes-to-dateTime(xs:dateTime("2014-01-15T14:10:00"), -5) returns

2014-01-15T14:05:00

add-seconds-to-dateTime [altova:]

altova:add-seconds-to-dateTime(DateTime as xs:dateTime, Seconds as xs:integer) as

xs:dateTime XP3.1 XQ3.1

Adds a duration in seconds to an xs:dateTime (see examples below). The second argument is the
number of seconds to be added to the xs:dateTime supplied as the first argument. The result is of type
xs:dateTime.

Examples

· altova:add-seconds-to-dateTime(xs:dateTime("2014-01-15T14:00:10"), 20) returns

2014-01-15T14:00:30
· altova:add-seconds-to-dateTime(xs:dateTime("2014-01-15T14:00:10"), -5) returns

2014-01-15T14:00:05

[Top]

Add a duration to xs:date XP3.1 XQ3.1

These functions add a duration to xs:date and return xs:date. The xs:date type has a format of CCYY-MM-DD.

add-years-to-date [altova:]

altova:add-years-to-date(Date as xs:date, Years as xs:integer) as xs:date XP3.1 XQ3.1

 Adds a duration in years to a date. The second argument is the number of years to be added to the
xs:date supplied as the first argument. The result is of type xs:date.

Examples

· altova:add-years-to-date(xs:date("2014-01-15"), 10) returns 2024-01-15

1319

© 2018-2024 Altova GmbH

Engine Information 1323Appendices

Altova MapForce 2024 Professional Edition

· altova:add-years-to-date(xs:date("2014-01-15"), -4) returns 2010-01-15

add-months-to-date [altova:]

altova:add-months-to-date(Date as xs:date, Months as xs:integer) as xs:date XP3.1 XQ3.1

Adds a duration in months to a date. The second argument is the number of months to be added to the
xs:date supplied as the first argument. The result is of type xs:date.

Examples

· altova:add-months-to-date(xs:date("2014-01-15"), 10) returns 2014-11-15

· altova:add-months-to-date(xs:date("2014-01-15"), -2) returns 2013-11-15

add-days-to-date [altova:]

altova:add-days-to-date(Date as xs:date, Days as xs:integer) as xs:date XP3.1 XQ3.1

Adds a duration in days to a date. The second argument is the number of days to be added to the
xs:date supplied as the first argument. The result is of type xs:date.

Examples

· altova:add-days-to-date(xs:date("2014-01-15"), 10) returns 2014-01-25

· altova:add-days-to-date(xs:date("2014-01-15"), -8) returns 2014-01-07

[Top]

Format and retrieve durations XP3.1 XQ3.1

These functions parse an input xs:duration or xs:string and return, respectively, an xs:string or

xs:duration.

format-duration [altova:]

altova:format-duration(Duration as xs:duration, Picture as xs:string) as xs:string XP3.1

 XQ3.1

Formats a duration, which is submitted as the first argument, according to a picture string submitted as
the second argument. The output is a text string formatted according to the picture string.

Examples

· altova:format-duration(xs:duration("P2DT2H53M11.7S"), "Days:[D01] Hours:[H01]

Minutes:[m01] Seconds:[s01] Fractions:[f0]") returns "Days:02 Hours:02 Minutes:53
Seconds:11 Fractions:7"

· altova:format-duration(xs:duration("P3M2DT2H53M11.7S"), "Months:[M01] Days:[D01]

Hours:[H01] Minutes:[m01]") returns "Months:03 Days:02 Hours:02 Minutes:53"

parse-duration [altova:]

altova:parse-duration(InputString as xs:string, Picture as xs:string) as xs:duration

XP3.1 XQ3.1

Takes a patterned string as the first argument, and a picture string as the second argument. The input

1319

1324 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

string is parsed on the basis of the picture string, and an xs:duration is returned.
Examples

· altova:parse-duration("Days:02 Hours:02 Minutes:53 Seconds:11 Fractions:7"),

"Days:[D01] Hours:[H01] Minutes:[m01] Seconds:[s01] Fractions:[f0]") returns
"P2DT2H53M11.7S"

· altova:parse-duration("Months:03 Days:02 Hours:02 Minutes:53 Seconds:11

Fractions:7", "Months:[M01] Days:[D01] Hours:[H01] Minutes:[m01]") returns
"P3M2DT2H53M"

[Top]

Add a duration to xs:time XP3.1 XQ3.1

These functions add a duration to xs:time and return xs:time. The xs:time type has a lexical form of

hh:mm:ss.sss. An optional time zone may be suffixed. The letter Z indicates Coordinated Universal Time
(UTC). All other time zones are represented by their difference from UTC in the format +hh:mm, or -hh:mm. If no
time zone value is present, it is considered unknown; it is not assumed to be UTC.

add-hours-to-time [altova:]

altova:add-hours-to-time(Time as xs:time, Hours as xs:integer) as xs:time XP3.1 XQ3.1

Adds a duration in hours to a time. The second argument is the number of hours to be added to the
xs:time supplied as the first argument. The result is of type xs:time.

Examples

· altova:add-hours-to-time(xs:time("11:00:00"), 10) returns 21:00:00

· altova:add-hours-to-time(xs:time("11:00:00"), -7) returns 04:00:00

add-minutes-to-time [altova:]

altova:add-minutes-to-time(Time as xs:time, Minutes as xs:integer) as xs:time XP3.1 XQ3.1

Adds a duration in minutes to a time. The second argument is the number of minutes to be added to the
xs:time supplied as the first argument. The result is of type xs:time.

Examples

· altova:add-minutes-to-time(xs:time("14:10:00"), 45) returns 14:55:00

· altova:add-minutes-to-time(xs:time("14:10:00"), -5) returns 14:05:00

add-seconds-to-time [altova:]

altova:add-seconds-to-time(Time as xs:time, Minutes as xs:integer) as xs:time XP3.1 XQ3.1

Adds a duration in seconds to a time. The second argument is the number of seconds to be added to the
xs:time supplied as the first argument. The result is of type xs:time. The Seconds component can be in
the range of 0 to 59.999.

Examples

· altova:add-seconds-to-time(xs:time("14:00:00"), 20) returns 14:00:20

· altova:add-seconds-to-time(xs:time("14:00:00"), 20.895) returns 14:00:20.895

1319

© 2018-2024 Altova GmbH

Engine Information 1325Appendices

Altova MapForce 2024 Professional Edition

[Top]

Remove the timezone part from date/time datatypes XP3.1 XQ3.1

These functions remove the timezone from the current xs:dateTime, xs:date, or xs:time values, respectively.

Note that the difference between xs:dateTime and xs:dateTimeStamp is that in the case of the latter the
timezone part is required (while it is optional in the case of the former). So the format of an xs:dateTimeStamp
value is: CCYY-MM-DDThh:mm:ss.sss±hh:mm. or CCYY-MM-DDThh:mm:ss.sssZ. If the date and time is read from
the system clock as xs:dateTimeStamp, the current-dateTime-no-TZ() function can be used to remove the
timezone if so required.

current-date-no-TZ [altova:]

altova:current-date-no-TZ() as xs:date XP3.1 XQ3.1

This function takes no argument. It removes the timezone part of current-date() (which is the current
date according to the system clock) and returns an xs:date value.

Examples

If the current date is 2014-01-15+01:00:

· altova:current-date-no-TZ() returns 2014-01-15

current-dateTime-no-TZ [altova:]

altova:current-dateTime-no-TZ() as xs:dateTime XP3.1 XQ3.1

This function takes no argument. It removes the timezone part of current-dateTime() (which is the
current date-and-time according to the system clock) and returns an xs:dateTime value.

Examples

If the current dateTime is 2014-01-15T14:00:00+01:00:

· altova:current-dateTime-no-TZ() returns 2014-01-15T14:00:00

current-time-no-TZ [altova:]

altova:current-time-no-TZ() as xs:time XP3.1 XQ3.1

This function takes no argument. It removes the timezone part of current-time() (which is the current
time according to the system clock) and returns an xs:time value.

Examples

If the current time is 14:00:00+01:00:

· altova:current-time-no-TZ() returns 14:00:00

date-no-TZ [altova:]

altova:date-no-TZ(InputDate as xs:date) as xs:date XP3.1 XQ3.1

This function takes an xs:date argument, removes the timezone part from it, and returns an xs:date
value. Note that the date is not modified.

Examples

1319

1326 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· altova:date-no-TZ(xs:date("2014-01-15+01:00")) returns 2014-01-15

dateTime-no-TZ [altova:]

altova:dateTime-no-TZ(InputDateTime as xs:dateTime) as xs:dateTime XP3.1 XQ3.1

This function takes an xs:dateTime argument, removes the timezone part from it, and returns an
xs:dateTime value. Note that neither the date nor the time is modified.

Examples

· altova:dateTime-no-TZ(xs:date("2014-01-15T14:00:00+01:00")) returns 2014-01-

15T14:00:00

time-no-TZ [altova:]

altova:time-no-TZ(InputTime as xs:time) as xs:time XP3.1 XQ3.1

This function takes an xs:time argument, removes the timezone part from it, and returns an xs:time
value. Note that the time is not modified.

Examples

· altova:time-no-TZ(xs:time("14:00:00+01:00")) returns 14:00:00

[Top]

Return the number of days, hours, minutes, seconds from durations XP3.1 XQ3.1

These functions return the number of days in a month, and the number of hours, minutes, and seconds,
respectively, from durations.

days-in-month [altova:]

altova:days-in-month(Year as xs:integer, Month as xs:integer) as xs:integer XP3.1 XQ3.1

Returns the number of days in the specified month. The month is specified by means of the Year and
Month arguments.

Examples

· altova:days-in-month(2018, 10) returns 31

· altova:days-in-month(2018, 2) returns 28

· altova:days-in-month(2020, 2) returns 29

hours-from-dayTimeDuration-accumulated

altova:hours-from-dayTimeDuration-accumulated(DayAndTime as xs:duration) as xs:integer

XP3.1 XQ3.1

Returns the total number of hours in the duration submitted by the DayAndTime argument (which is of type
xs:duration). The hours in the Day and Time components are added together to give a result that is an
integer. A new hour is counted only for a full 60 minutes. Negative durations result in a negative hour value.

Examples

· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5D")) returns 120, which

1319

© 2018-2024 Altova GmbH

Engine Information 1327Appendices

Altova MapForce 2024 Professional Edition

is the total number of hours in 5 days.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5DT2H")) returns 122,

which is the total number of hours in 5 days plus 2 hours.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5DT2H60M")) returns 123,

which is the total number of hours in 5 days plus 2 hours and 60 mins.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5DT2H119M")) returns

123, which is the total number of hours in 5 days plus 2 hours and 119 mins.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5DT2H120M")) returns

124, which is the total number of hours in 5 days plus 2 hours and 120 mins.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("-P5DT2H")) returns -122

minutes-from-dayTimeDuration-accumulated

altova:minutes-from-dayTimeDuration-accumulated(DayAndTime as xs:duration) as

xs:integer XP3.1 XQ3.1

Returns the total number of minutes in the duration submitted by the DayAndTime argument (which is of
type xs:duration). The minutes in the Day and Time components are added together to give a result that
is an integer. Negative durations result in a negative minute value.

Examples

· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("PT60M")) returns 60

· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("PT1H")) returns 60,

which is the total number of minutes in 1 hour.
· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("PT1H40M")) returns 100

· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("P1D")) returns 1440,

which is the total number of minutes in 1 day.
· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("-P1DT60M")) returns -
1500

seconds-from-dayTimeDuration-accumulated

altova:seconds-from-dayTimeDuration-accumulated(DayAndTime as xs:duration) as

xs:integer XP3.1 XQ3.1

Returns the total number of seconds in the duration submitted by the DayAndTime argument (which is of
type xs:duration). The seconds in the Day and Time components are added together to give a result that
is an integer. Negative durations result in a negative seconds value.

Examples

· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("PT1M")) returns 60,

which is the total number of seconds in 1 minute.
· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("PT1H")) returns 3600,

which is the total number of seconds in 1 hour.
· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("PT1H2M")) returns 3720

· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("P1D")) returns 86400,

which is the total number of seconds in 1 day.
· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("-P1DT1M")) returns -
86460

1328 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Return the weekday from xs:dateTime or xs:date XP3.1 XQ3.1

These functions return the weekday (as an integer) from xs:dateTime or xs:date. The days of the week are
numbered (using the American format) from 1 to 7, with Sunday=1. In the European format, the week starts with
Monday (=1). The American format, where Sunday=1, can be set by using the integer 0 where an integer is
accepted to indicate the format.

weekday-from-dateTime [altova:]

altova:weekday-from-dateTime(DateTime as xs:dateTime) as xs:integer XP3.1 XQ3.1

Takes a date-with-time as its single argument and returns the day of the week of this date as an integer.
The weekdays are numbered starting with Sunday=1. If the European format is required (where Monday=1),
use the other signature of this function (see next signature below).

Examples

· altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00")) returns 2, which

would indicate a Monday.

altova:weekday-from-dateTime(DateTime as xs:dateTime, Format as xs:integer) as

xs:integer XP3.1 XQ3.1

Takes a date-with-time as its first argument and returns the day of the week of this date as an integer. If
the second (integer) argument is 0, then the weekdays are numbered 1 to 7 starting with Sunday=1. If the
second argument is an integer other than 0, then Monday=1. If there is no second argument, the function is
read as having the other signature of this function (see previous signature).

Examples

· altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 1) returns 1, which

would indicate a Monday
· altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 4) returns 1, which

would indicate a Monday
· altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 0) returns 2, which

would indicate a Monday.

weekday-from-date [altova:]

altova:weekday-from-date(Date as xs:date) as xs:integer XP3.1 XQ3.1

Takes a date as its single argument and returns the day of the week of this date as an integer. The
weekdays are numbered starting with Sunday=1. If the European format is required (where Monday=1), use
the other signature of this function (see next signature below).

Examples

· altova:weekday-from-date(xs:date("2014-02-03+01:00")) returns 2, which would indicate a

Monday.

altova:weekday-from-date(Date as xs:date, Format as xs:integer) as xs:integer XP3.1 XQ3.1

Takes a date as its first argument and returns the day of the week of this date as an integer. If the second
(Format) argument is 0, then the weekdays are numbered 1 to 7 starting with Sunday=1. If the second
argument is an integer other than 0, then Monday=1. If there is no second argument, the function is read as
having the other signature of this function (see previous signature).

Examples

· altova:weekday-from-date(xs:date("2014-02-03"), 1) returns 1, which would indicate a

© 2018-2024 Altova GmbH

Engine Information 1329Appendices

Altova MapForce 2024 Professional Edition

Monday
· altova:weekday-from-date(xs:date("2014-02-03"), 4) returns 1, which would indicate a

Monday
· altova:weekday-from-date(xs:date("2014-02-03"), 0) returns 2, which would indicate a

Monday.

[Top]

Return the week number from xs:dateTime or xs:date XP2 XQ1 XP3.1 XQ3.1

These functions return the week number (as an integer) from xs:dateTime or xs:date. Week-numbering is
available in the US, ISO/European, and Islamic calendar formats. Week-numbering is different in these calendar
formats because the week is considered to start on different days (on Sunday in the US format, Monday in the
ISO/European format, and Saturday in the Islamic format).

weeknumber-from-date [altova:]

altova:weeknumber-from-date(Date as xs:date, Calendar as xs:integer) as xs:integer XP2

XQ1 XP3.1 XQ3.1

Returns the week number of the submitted Date argument as an integer. The second argument

(Calendar) specifies the calendar system to follow.

Supported Calendar values are:

· 0 = US calendar (week starts Sunday)

· 1 = ISO standard, European calendar (week starts Monday)

· 2 = Islamic calendar (week starts Saturday)

Default is 0.

Examples

· altova:weeknumber-from-date(xs:date("2014-03-23"), 0) returns 13

· altova:weeknumber-from-date(xs:date("2014-03-23"), 1) returns 12

· altova:weeknumber-from-date(xs:date("2014-03-23"), 2) returns 13

· altova:weeknumber-from-date(xs:date("2014-03-23")) returns 13

The day of the date in the examples above (2014-03-23) is Sunday. So the US and Islamic
calendars are one week ahead of the European calendar on this day.

weeknumber-from-dateTime [altova:]

altova:weeknumber-from-dateTime(DateTime as xs:dateTime, Calendar as xs:integer) as

xs:integer XP2 XQ1 XP3.1 XQ3.1

Returns the week number of the submitted DateTime argument as an integer. The second argument

(Calendar) specifies the calendar system to follow.

Supported Calendar values are:

· 0 = US calendar (week starts Sunday)

1319

1330 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· 1 = ISO standard, European calendar (week starts Monday)

· 2 = Islamic calendar (week starts Saturday)

Default is 0.

Examples

· altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 0) returns 13

· altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 1) returns 12

· altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 2) returns 13

· altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00")) returns 13

The day of the dateTime in the examples above (2014-03-23T00:00:00) is Sunday. So the US and
Islamic calendars are one week ahead of the European calendar on this day.

[Top]

Build date, time, and duration datatypes from their lexical components XP3.1 XQ3.1

The functions take the lexical components of the xs:date, xs:time, or xs:duration datatype as input
arguments and combine them to build the respective datatype.

build-date [altova:]

altova:build-date(Year as xs:integer, Month as xs:integer, Date as xs:integer) as

xs:date XP3.1 XQ3.1

The first, second, and third arguments are, respectively, the year, month, and date. They are combined to
build a value of xs:date type. The values of the integers must be within the correct range of that particular
date part. For example, the second argument (for the month part) should not be greater than 12.

Examples

· altova:build-date(2014, 2, 03) returns 2014-02-03

build-time [altova:]

altova:build-time(Hours as xs:integer, Minutes as xs:integer, Seconds as xs:integer) as

xs:time XP3.1 XQ3.1

The first, second, and third arguments are, respectively, the hour (0 to 23), minutes (0 to 59), and seconds
(0 to 59) values. They are combined to build a value of xs:time type. The values of the integers must be
within the correct range of that particular time part. For example, the second (Minutes) argument should
not be greater than 59. To add a timezone part to the value, use the other signature of this function (see
next signature).

Examples

· altova:build-time(23, 4, 57) returns 23:04:57

altova:build-time(Hours as xs:integer, Minutes as xs:integer, Seconds as xs:integer,

TimeZone as xs:string) as xs:time XP3.1 XQ3.1

The first, second, and third arguments are, respectively, the hour (0 to 23), minutes (0 to 59), and seconds
(0 to 59) values. The fourth argument is a string that provides the timezone part of the value. The four
arguments are combined to build a value of xs:time type. The values of the integers must be within the

1319

© 2018-2024 Altova GmbH

Engine Information 1331Appendices

Altova MapForce 2024 Professional Edition

correct range of that particular time part. For example, the second (Minutes) argument should not be
greater than 59.

Examples

· altova:build-time(23, 4, 57, '+1') returns 23:04:57+01:00

build-duration [altova:]

altova:build-duration(Years as xs:integer, Months as xs:integer) as

xs:yearMonthDuration XP3.1 XQ3.1

Takes two arguments to build a value of type xs:yearMonthDuration. The first argument provides the
Years part of the duration value, while the second argument provides the Months part. If the second
(Months) argument is greater than or equal to 12, then the integer is divided by 12; the quotient is added to
the first argument to provide the Years part of the duration value while the remainder (of the division)
provides the Months part. To build a duration of type xs:dayTimeDuration., see the next signature.

Examples

· altova:build-duration(2, 10) returns P2Y10M

· altova:build-duration(14, 27) returns P16Y3M

· altova:build-duration(2, 24) returns P4Y

altova:build-duration(Days as xs:integer, Hours as xs:integer, Minutes as xs:integer,

Seconds as xs:integer) as xs:dayTimeDuration XP3.1 XQ3.1

Takes four arguments and combines them to build a value of type xs:dayTimeDuration. The first
argument provides the Days part of the duration value, the second, third, and fourth arguments provide,
respectively, the Hours, Minutes, and Seconds parts of the duration value. Each of the three Time
arguments is converted to an equivalent value in terms of the next higher unit and the result is used for
calculation of the total duration value. For example, 72 seconds is converted to 1M+12S (1 minute and 12
seconds), and this value is used for calculation of the total duration value. To build a duration of type
xs:yearMonthDuration., see the previous signature.

Examples

· altova:build-duration(2, 10, 3, 56) returns P2DT10H3M56S

· altova:build-duration(1, 0, 100, 0) returns P1DT1H40M

· altova:build-duration(1, 0, 0, 3600) returns P1DT1H

[Top]

Construct date, dateTime, and time datatypes from string input XP2 XQ1 XP3.1 XQ3.1

These functions take strings as arguments and construct xs:date, xs:dateTime, or xs:time datatypes. The
string is analyzed for components of the datatype based on a submitted pattern argument.

parse-date [altova:]

altova:parse-date(Date as xs:string, DatePattern as xs:string) as xs:date XP2 XQ1 XP3.1
XQ3.1

Returns the input string Date as an xs:date value. The second argument DatePattern specifies the

pattern (sequence of components) of the input string. DatePattern is described with the component

specifiers listed below and with component separators that can be any character. See the examples
below.

1319

1332 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

D Date

M Month

Y Year

The pattern in DatePattern must match the pattern in Date. Since the output is of type xs:date, the

output will always have the lexical format YYYY-MM-DD.

Examples

· altova:parse-date(xs:string("09-12-2014"), "[D]-[M]-[Y]") returns 2014-12-09

· altova:parse-date(xs:string("09-12-2014"), "[M]-[D]-[Y]") returns 2014-09-12

· altova:parse-date("06/03/2014", "[M]/[D]/[Y]") returns 2014-06-03

· altova:parse-date("06 03 2014", "[M] [D] [Y]") returns 2014-06-03

· altova:parse-date("6 3 2014", "[M] [D] [Y]") returns 2014-06-03

parse-dateTime [altova:]

altova:parse-dateTime(DateTime as xs:string, DateTimePattern as xs:string) as

xs:dateTime XP2 XQ1 XP3.1 XQ3.1

Returns the input string DateTime as an xs:dateTime value.The second argument DateTimePattern

specifies the pattern (sequence of components) of the input string. DateTimePattern is described with the

component specifiers listed below and with component separators that can be any character. See the
examples below.

D Date

M Month

Y Year

H Hour

m minutes

s seconds

The pattern in DateTimePattern must match the pattern in DateTime. Since the output is of type

xs:dateTime, the output will always have the lexical format YYYY-MM-DDTHH:mm:ss.

Examples

· altova:parse-dateTime(xs:string("09-12-2014 13:56:24"), "[M]-[D]-[Y] [H]:[m]:

[s]") returns 2014-09-12T13:56:24
· altova:parse-dateTime("time=13:56:24; date=09-12-2014", "time=[H]:[m]:[s];

date=[D]-[M]-[Y]") returns 2014-12-09T13:56:24

parse-time [altova:]

altova:parse-time(Time as xs:string, TimePattern as xs:string) as xs:time XP2 XQ1 XP3.1
XQ3.1

Returns the input string Time as an xs:time value.The second argument TimePattern specifies the

pattern (sequence of components) of the input string. TimePattern is described with the component

specifiers listed below and with component separators that can be any character. See the examples
below.

© 2018-2024 Altova GmbH

Engine Information 1333Appendices

Altova MapForce 2024 Professional Edition

H Hour

m minutes

s seconds

The pattern in TimePattern must match the pattern in Time. Since the output is of type xs:time, the

output will always have the lexical format HH:mm:ss.

Examples

· altova:parse-time(xs:string("13:56:24"), "[H]:[m]:[s]") returns 13:56:24

· altova:parse-time("13-56-24", "[H]-[m]") returns 13:56:00

· altova:parse-time("time=13h56m24s", "time=[H]h[m]m[s]s") returns 13:56:24

· altova:parse-time("time=24s56m13h", "time=[s]s[m]m[H]h") returns 13:56:24

[Top]

Age-related functions XP3.1 XQ3.1

These functions return the age as calculated (i) between one input argument date and the current date, or (ii)
between two input argument dates. The altova:age function returns the age in terms of years, the

altova:age-details function returns the age as a sequence of three integers giving the years, months, and

days of the age.

age [altova:]

altova:age(StartDate as xs:date) as xs:integer XP3.1 XQ3.1

Returns an integer that is the age in years of some object, counting from a start-date submitted as the
argument and ending with the current date (taken from the system clock). If the input argument is a date
anything greater than or equal to one year in the future, the return value will be negative.

Examples

If the current date is 2014-01-15:

· altova:age(xs:date("2013-01-15")) returns 1

· altova:age(xs:date("2013-01-16")) returns 0

· altova:age(xs:date("2015-01-15")) returns -1

· altova:age(xs:date("2015-01-14")) returns 0

altova:age(StartDate as xs:date, EndDate as xs:date) as xs:integer XP3.1 XQ3.1

Returns an integer that is the age in years of some object, counting from a start-date that is submitted as
the first argument up to an end-date that is the second argument. The return value will be negative if the
first argument is one year or more later than the second argument.

Examples

If the current date is 2014-01-15:

· altova:age(xs:date("2000-01-15"), xs:date("2010-01-15")) returns 10

· altova:age(xs:date("2000-01-15"), current-date()) returns 14 if the current date is 2014-

01-15
· altova:age(xs:date("2014-01-15"), xs:date("2010-01-15")) returns -4

1319

1334 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

age-details [altova:]

altova:age-details(InputDate as xs:date) as (xs:integer)* XP3.1 XQ3.1

Returns three integers that are, respectively, the years, months, and days between the date that is
submitted as the argument and the current date (taken from the system clock). The sum of the returned
years+months+days together gives the total time difference between the two dates (the input date and the
current date). The input date may have a value earlier or later than the current date, but whether the input
date is earlier or later is not indicated by the sign of the return values; the return values are always
positive.

Examples

If the current date is 2014-01-15:

· altova:age-details(xs:date("2014-01-16")) returns (0 0 1)

· altova:age-details(xs:date("2014-01-14")) returns (0 0 1)

· altova:age-details(xs:date("2013-01-16")) returns (1 0 1)

· altova:age-details(current-date()) returns (0 0 0)

altova:age-details(Date-1 as xs:date, Date-2 as xs:date) as (xs:integer)* XP3.1 XQ3.1

Returns three integers that are, respectively, the years, months, and days between the two argument
dates. The sum of the returned years+months+days together gives the total time difference between the
two input dates; it does not matter whether the earlier or later of the two dates is submitted as the first
argument. The return values do not indicate whether the input date occurs earlier or later than the current
date. Return values are always positive.

Examples

· altova:age-details(xs:date("2014-01-16"), xs:date("2014-01-15")) returns (0 0 1)

· altova:age-details(xs:date("2014-01-15"), xs:date("2014-01-16")) returns (0 0 1)

[Top]

Epoch time (Unix time) functions XP3.1 XQ3.1

Epoch time is a time system used on Unix systems. It defines any given point in time as being the number of
seconds that have elapsed since 00:00:00 UTC on 1 January 1970. Altova's Epoch time extension functions
convert xs:dateTime values to Epoch time values and vice versa.

dateTime-from-epoch [altova:]

altova:dateTime-from-epoch(Epoch as xs:decimal as xs:dateTime XP3.1 XQ3.1

Epoch time is a time system used on Unix systems. It defines any given point in time as being the
number of seconds that have elapsed since 00:00:00 UTC on 1 January 1970. The dateTime-from-epoch

function returns the xs:dateTime equivalent of an Epoch time, adjusts it for the local timezone, and

includes the timezone information in the result.

The function takes an xs:decimal argument and returns an xs:dateTime value that includes a TZ

(timezone) part. The result is obtained by calculating the UTC dateTime equivalet of the Epoch time, and

adding to it the local timezone (taken from the system clock). For example, if the function is executed on
a machine that has been set to be in a timezone of +01:00 (relative to UTC), then after the UTC dateTime

1319

© 2018-2024 Altova GmbH

Engine Information 1335Appendices

Altova MapForce 2024 Professional Edition

equivalent has been calculated, one hour will be added to the result. The timezone information, which is an
optional lexical part of the xs:dateTime result, is also reported in the dateTime result. Compare this

result with that of dateTime-from-epoch-no-TZ, and also see the function epoch-from-dateTime.

Examples

The examples below assume a local timezone of UTC +01:00. Consequently, the UTC dateTime

equivalent of the submitted Epoch time will be incremented by one hour. The timezone is reported in
the result.

· altova:dateTime-from-epoch(34) returns 1970-01-01T01:00:34+01:00

· altova:dateTime-from-epoch(62) returns 1970-01-01T01:01:02+01:00

dateTime-from-epoch-no-TZ [altova:]

altova:dateTime-from-epoch-no-TZ(Epoch as xs:decimal as xs:dateTime XP3.1 XQ3.1

Epoch time is a time system used on Unix systems. It defines any given point in time as being the
number of seconds that have elapsed since 00:00:00 UTC on 1 January 1970. The dateTime-from-

epoch-no-TZ function returns the xs:dateTime equivalent of an Epoch time, adjusts it for the local

timezone, but does not include the timezone information in the result.

The function takes an xs:decimal argument and returns an xs:dateTime value that does not includes a
TZ (timezone) part. The result is obtained by calculating the UTC dateTime equivalet of the Epoch time,

and adding to it the local timezone (taken from the system clock). For example, if the function is executed
on a machine that has been set to be in a timezone of +01:00 (relative to UTC), then after the UTC
dateTime equivalent has been calculated, one hour will be added to the result. The timezone information,

which is an optional lexical part of the xs:dateTime result, is not reported in the dateTime result.

Compare this result with that of dateTime-from-epoch, and also see the function epoch-from-dateTime.

Examples

The examples below assume a local timezone of UTC +01:00. Consequently, the UTC dateTime

equivalent of the submitted Epoch time will be incremented by one hour. The timezone is not reported
in the result.

· altova:dateTime-from-epoch(34) returns 1970-01-01T01:00:34

· altova:dateTime-from-epoch(62) returns 1970-01-01T01:01:02

epoch-from-dateTime [altova:]

altova:epoch-from-dateTime(dateTimeValue as xs:dateTime) as xs:decimal XP3.1 XQ3.1

Epoch time is a time system used on Unix systems. It defines any given point in time as being the
number of seconds that have elapsed since 00:00:00 UTC on 1 January 1970. The epoch-from-dateTime

function returns the Epoch time equivalent of the xs:dateTime that is submitted as the argument of the

function. Note that you might have to explicitly construct the xs:dateTime value. The submitted

xs:dateTime value may or may not contain the optional TZ (timezone) part.

Whether the timezone part is submitted as part of the argument or not, the local timezone offset (taken
from the system clock) is subtracted from the submitted dateTimeValue argument. This produces the

equivalent UTC time, from which the equivalent Epoch time is calculated. For example, if the function is

1336 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

executed on a machine that has been set to be in a timezone of +01:00 (relative to UTC), then one hour is
subtracted from the submitted dateTimeValue before the Epoch value is calculated. Also see the function

dateTime-from-epoch.

Examples

The examples below assume a local timezone of UTC +01:00. Consequently, one hour will be
subtracted from the submitted dateTime before the Epoch time is calculated.

· altova:epoch-from-dateTime(xs:dateTime("1970-01-01T01:00:34+01:00")) returns 34

· altova:epoch-from-dateTime(xs:dateTime("1970-01-01T01:00:34")) returns 34

· altova:epoch-from-dateTime(xs:dateTime("2021-04-01T11:22:33")) returns 1617272553

[Top]

19.2.2.1.3 XPath/XQuery Functions: Geolocation

The following geolocation XPath/XQuery extension functions are supported in the current version of MapForce
and can be used in (i) XPath expressions in an XSLT context, or (ii) XQuery expressions in an XQuery
document.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

format-geolocation [altova:]

altova:format-geolocation(Latitude as xs:decimal, Longitude as xs:decimal,

GeolocationOutputStringFormat as xs:integer) as xs:string XP3.1 XQ3.1

Takes the latitude and longitude as the first two arguments, and outputs the geolocation as a string. The
third argument, GeolocationOutputStringFormat, is the format of the geolocation output string; it uses

integer values from 1 to 4 to identify the output string format (see 'Geolocation output string formats'
below). Latitude values range from +90 to -90 (N to S). Longitude values range from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's attributes can be used to supply the
input strings.

1319

1348

© 2018-2024 Altova GmbH

Engine Information 1337Appendices

Altova MapForce 2024 Professional Edition

Examples

· altova:format-geolocation(33.33, -22.22, 4) returns the xs:string "33.33 -22.22"

· altova:format-geolocation(33.33, -22.22, 2) returns the xs:string "33.33N 22.22W"

· altova:format-geolocation(-33.33, 22.22, 2) returns the xs:string "33.33S 22.22E"

· altova:format-geolocation(33.33, -22.22, 1) returns the xs:string "33°19'48.00"S 22°

13'12.00"E"

Geolocation output string formats:

The supplied latitude and longitude is formatted in one of the output formats given below. The desired
format is identified by its integer ID (1 to 4). Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

1

Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"E/W

Example: 33°55'11.11"N 22°44'66.66"W

2

Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDE/W

Example: 33.33N 22.22W

3

Degrees, minutes, decimal seconds, with prefixed sign (+/-); plus sign for (N/E) is optional

+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'66.66"

4

Decimal degrees, with prefixed sign (+/-); plus sign for (N/E) is optional

+/-D.DD +/-D.DD

Example: 33.33 -22.22

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif

metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°

13'11.73"E

1338 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

parse-geolocation [altova:]

altova:parse-geolocation(GeolocationInputString as xs:string) as xs:decimal+ XP3.1 XQ3.1

Parses the supplied GeolocationInputString argument and returns the geolocation's latitude and
longitude (in that order) as a sequence two xs:decimal items. The formats in which the geolocation input
string can be supplied are listed below.

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply the geolocation input string (see example below).

Examples

· altova:parse-geolocation("33.33 -22.22") returns the sequence of two xs:decimals

(33.33, 22.22)
· altova:parse-geolocation("48°51'29.6""N 24°17'40.2""") returns the sequence of two

xs:decimals (48.8582222222222, 24.2945)
· altova:parse-geolocation('48°51''29.6"N 24°17''40.2"') returns the sequence of two

xs:decimals (48.8582222222222, 24.2945)
· altova:parse-geolocation(image-exif-

data(//MyImages/Image20141130.01)/@Geolocation) returns a sequence of two xs:decimals

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional

1348 1348

© 2018-2024 Altova GmbH

Engine Information 1339Appendices

Altova MapForce 2024 Professional Edition

+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif

metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°

13'11.73"E

geolocation-distance-km [altova:]

altova:geolocation-distance-km(GeolocationInputString-1 as xs:string,

GeolocationInputString-2 as xs:string) as xs:decimal XP3.1 XQ3.1

Calculates the distance between two geolocations in kilometers. The formats in which the geolocation
input string can be supplied are listed below. Latitude values range from +90 to -90 (N to S). Longitude
values range from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply geolocation input strings.

Examples

· altova:geolocation-distance-km("33.33 -22.22", "48°51'29.6""N 24°17'40.2""")

returns the xs:decimal 4183.08132372392

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

1348 1348

1340 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif

metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°

13'11.73"E

© 2018-2024 Altova GmbH

Engine Information 1341Appendices

Altova MapForce 2024 Professional Edition

geolocation-distance-mi [altova:]

altova:geolocation-distance-mi(GeolocationInputString-1 as xs:string,

GeolocationInputString-2 as xs:string) as xs:decimal XP3.1 XQ3.1

Calculates the distance between two geolocations in miles. The formats in which a geolocation input string
can be supplied are listed below. Latitude values range from +90 to -90 (N to S). Longitude values range
from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply geolocation input strings.

Examples

· altova:geolocation-distance-mi("33.33 -22.22", "48°51'29.6""N 24°17'40.2""")

returns the xs:decimal 2599.40652340653

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

1348 1348

1342 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif

metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°

13'11.73"E

geolocations-bounding-rectangle [altova:]

altova:geolocations-bounding-rectangle(Geolocations as xs:sequence,

GeolocationOutputStringFormat as xs:integer) as xs:string XP3.1 XQ3.1

Takes a sequence of strings as its first argument; each string in the sequence is a geolocation. The
function returns a sequence of two strings which are, respectively, the top-left and bottom-right geolocation
coordinates of a bounding rectangle that is optimally sized to enclose all the geolocations submitted in the
first argument. The formats in which a geolocation input string can be supplied are listed below (see
'Geolocation input string formats'). Latitude values range from +90 to -90 (N to S). Longitude values range
from +180 to -180 (E to W).

The function's second argument specifies the format of the two geolocation strings in the output sequence.
The argument takes an integer value from 1 to 4, where each value identifies a different geolocation string
format (see 'Geolocation output string formats' below).

Note: The image-exif-data function and the Exif metadata's attributes can be used to supply the
input strings.

Examples

· altova:geolocations-bounding-rectangle(("48.2143531 16.3707266", "51.50939 -

0.11832"), 1) returns the sequence ("51°30'33.804"N 0°7'5.952"W", "48°12'51.67116"N
16°22'14.61576"E")

· altova:geolocations-bounding-rectangle(("48.2143531 16.3707266", "51.50939 -

0.11832", "42.5584577 -70.8893334"), 4) returns the sequence ("51.50939 -70.8893334",
"42.5584577 16.3707266")

Geolocation input string formats:

1348

© 2018-2024 Altova GmbH

Engine Information 1343Appendices

Altova MapForce 2024 Professional Edition

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Geolocation output string formats:

The supplied latitude and longitude is formatted in one of the output formats given below. The desired
format is identified by its integer ID (1 to 4). Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

1

Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"E/W

1344 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Example: 33°55'11.11"N 22°44'66.66"W

2

Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDE/W

Example: 33.33N 22.22W

3

Degrees, minutes, decimal seconds, with prefixed sign (+/-); plus sign for (N/E) is optional

+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'66.66"

4

Decimal degrees, with prefixed sign (+/-); plus sign for (N/E) is optional

+/-D.DD +/-D.DD

Example: 33.33 -22.22

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif

metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°

13'11.73"E

geolocation-within-polygon [altova:]

altova:geolocation-within-polygon(Geolocation as xs:string, ((PolygonPoint as

xs:string)+)) as xs:boolean XP3.1 XQ3.1

Determines whether Geolocation (the first argument) is within the polygonal area described by the

PolygonPoint arguments. If the PolygonPoint arguments do not form a closed figure (formed when the

first point and the last point are the same), then the first point is implicitly added as the last point in order
to close the figure. All the arguments (Geolocation and PolygonPoint+) are given by geolocation input
strings (formats listed below). If the Geolocation argument is within the polygonal area, then the function
returns true(); otherwise it returns false(). Latitude values range from +90 to -90 (N to S). Longitude
values range from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply geolocation input strings.

1348 1348

© 2018-2024 Altova GmbH

Engine Information 1345Appendices

Altova MapForce 2024 Professional Edition

Examples

· altova:geolocation-within-polygon("33 -22", ("58 -32", "-78 -55", "48 24", "58 -

32")) returns true()

· altova:geolocation-within-polygon("33 -22", ("58 -32", "-78 -55", "48 24")) returns

true()
· altova:geolocation-within-polygon("33 -22", ("58 -32", "-78 -55", "48°51'29.6""N

 24°17'40.2""")) returns true()

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

1346 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif

metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°

13'11.73"E

geolocation-within-rectangle [altova:]

altova:geolocation-within-rectangle(Geolocation as xs:string, RectCorner-1 as

xs:string, RectCorner-2 as xs:string) as xs:boolean XP3.1 XQ3.1

Determines whether Geolocation (the first argument) is within the rectangle defined by the second and

third arguments, RectCorner-1 and RectCorner-2, which specify opposite corners of the rectangle. All

the arguments (Geolocation, RectCorner-1 and RectCorner-2) are given by geolocation input strings

(formats listed below). If the Geolocation argument is within the rectangle, then the function returns
true(); otherwise it returns false(). Latitude values range from +90 to -90 (N to S). Longitude values
range from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply geolocation input strings.

Examples

· altova:geolocation-within-rectangle("33 -22", "58 -32", "-48 24") returns true()

· altova:geolocation-within-rectangle("33 -22", "58 -32", "48 24") returns false()

· altova:geolocation-within-rectangle("33 -22", "58 -32", "48°51'29.6""S 24°

17'40.2""") returns true()

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)

1348 1348

© 2018-2024 Altova GmbH

Engine Information 1347Appendices

Altova MapForce 2024 Professional Edition

D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif

metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°

13'11.73"E

[Top]
1336

1348 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

19.2.2.1.4 XPath/XQuery Functions: Image-Related

The following image-related XPath/XQuery extension functions are supported in the current version of MapForce
and can be used in (i) XPath expressions in an XSLT context, or (ii) XQuery expressions in an XQuery
document.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

suggested-image-file-extension [altova:]

altova:suggested-image-file-extension(Base64String as string) as string? XP3.1 XQ3.1

Takes the Base64 encoding of an image file as its argument and returns the file extension of the image as
recorded in the Base64-encoding of the image. The returned value is a suggestion based on the image
type information available in the encoding. If this information is not available, then an empty string is
returned. This function is useful if you wish to save a Base64 image as a file and wish to dynamically
retrieve an appropriate file extension.

Examples

· altova:suggested-image-file-extension(/MyImages/MobilePhone/Image20141130.01)

returns 'jpg'
· altova:suggested-image-file-extension($XML1/Staff/Person/@photo) returns ''

In the examples above, the nodes supplied as the argument of the function are assumed to contain a
Base64-encoded image. The first example retrieves jpg as the file's type and extension. In the second
example, the submitted Base64 encoding does not provide usable file extension information.

image-exif-data [altova:]

altova:image-exif-data(Base64BinaryString as string) as element? XP3.1 XQ3.1

Takes a Base64-encoded JPEG image as its argument and returns an element called Exif that contains

the Exif metadata of the image. The Exif metadata is created as attribute-value pairs of the Exif element.
The attribute names are the Exif data tags found in the Base64 encoding. The list of Exif-specification tags
is given below. If a vendor-specific tag is present in the Exif data, this tag and its value will also be returned
as an attribute-value pair. Additional to the standard Exif metadata tags (see list below), Altova-specific
attribute-value pairs are also generated. These Altova Exif attributes are listed below.

© 2018-2024 Altova GmbH

Engine Information 1349Appendices

Altova MapForce 2024 Professional Edition

Examples

· To access any one attribute, use the function like this:
image-exif-data(//MyImages/Image20141130.01)/@GPSLatitude

image-exif-data(//MyImages/Image20141130.01)/@Geolocation

· To access all the attributes, use the function like this:
image-exif-data(//MyImages/Image20141130.01)/@*

· To access the names of all the attributes, use the following expression:
for $i in image-exif-data(//MyImages/Image20141130.01)/@* return name($i)

This is useful to find out the names of the attributes returned by the function.

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif

metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°

13'11.73"E

Altova Exif Attribute: OrientationDegree

The Altova XPath/XQuery Engine generates the custom attribute OrientationDegree from the Exif

metadata tag Orientation.

OrientationDegree translates the standard Exif tag Orientation from an integer value (1, 8, 3, or

6) to the respective degree values of each (0, 90, 180, 270), as shown in the figure below. Note that
there are no translations of the Orientation values of 2, 4, 5, 7. (These orientations are obtained by
flipping image 1 across its vertical center axis to get the image with a value of 2, and then rotating
this image in 90-degree jumps clockwise to get the values of 7, 4, and 5, respectively).

1350 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Listing of standard Exif meta tags

· ImageWidth
· ImageLength
· BitsPerSample
· Compression
· PhotometricInterpretation
· Orientation
· SamplesPerPixel
· PlanarConfiguration
· YCbCrSubSampling
· YCbCrPositioning
· XResolution
· YResolution
· ResolutionUnit
· StripOffsets
· RowsPerStrip
· StripByteCounts
· JPEGInterchangeFormat
· JPEGInterchangeFormatLength
· TransferFunction
· WhitePoint
· PrimaryChromaticities
· YCbCrCoefficients
· ReferenceBlackWhite
· DateTime
· ImageDescription
· Make

© 2018-2024 Altova GmbH

Engine Information 1351Appendices

Altova MapForce 2024 Professional Edition

· Model
· Software
· Artist
· Copyright

· ExifVersion
· FlashpixVersion
· ColorSpace
· ComponentsConfiguration
· CompressedBitsPerPixel
· PixelXDimension
· PixelYDimension
· MakerNote
· UserComment
· RelatedSoundFile
· DateTimeOriginal
· DateTimeDigitized
· SubSecTime
· SubSecTimeOriginal
· SubSecTimeDigitized
· ExposureTime
· FNumber
· ExposureProgram
· SpectralSensitivity
· ISOSpeedRatings
· OECF
· ShutterSpeedValue
· ApertureValue
· BrightnessValue
· ExposureBiasValue
· MaxApertureValue
· SubjectDistance
· MeteringMode
· LightSource
· Flash
· FocalLength
· SubjectArea
· FlashEnergy
· SpatialFrequencyResponse
· FocalPlaneXResolution
· FocalPlaneYResolution
· FocalPlaneResolutionUnit
· SubjectLocation
· ExposureIndex
· SensingMethod
· FileSource
· SceneType
· CFAPattern
· CustomRendered
· ExposureMode
· WhiteBalance
· DigitalZoomRatio
· FocalLengthIn35mmFilm
· SceneCaptureType

1352 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· GainControl
· Contrast
· Saturation
· Sharpness
· DeviceSettingDescription
· SubjectDistanceRange
· ImageUniqueID

· GPSVersionID
· GPSLatitudeRef
· GPSLatitude
· GPSLongitudeRef
· GPSLongitude
· GPSAltitudeRef
· GPSAltitude
· GPSTimeStamp
· GPSSatellites
· GPSStatus
· GPSMeasureMode
· GPSDOP
· GPSSpeedRef
· GPSSpeed
· GPSTrackRef
· GPSTrack
· GPSImgDirectionRef
· GPSImgDirection
· GPSMapDatum
· GPSDestLatitudeRef
· GPSDestLatitude
· GPSDestLongitudeRef
· GPSDestLongitude
· GPSDestBearingRef
· GPSDestBearing
· GPSDestDistanceRef
· GPSDestDistance
· GPSProcessingMethod
· GPSAreaInformation
· GPSDateStamp
· GPSDifferential

[Top]

19.2.2.1.5 XPath/XQuery Functions: Numeric

Altova's numeric extension functions can be used in XPath and XQuery expressions and provide additional
functionality for the processing of data. The functions in this section can be used with Altova's XPath 3.0 and
XQuery 3.0 engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

1348

© 2018-2024 Altova GmbH

Engine Information 1353Appendices

Altova MapForce 2024 Professional Edition

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Auto-numbering functions
generate-auto-number [altova:]

altova:generate-auto-number(ID as xs:string, StartsWith as xs:double, Increment as

xs:double, ResetOnChange as xs:string) as xs:integer XP1 XP2 XQ1 XP3.1 XQ3.1

Generates a number each time the function is called. The first number, which is generated the first time
the function is called, is specified by the StartsWith argument. Each subsequent call to the function
generates a new number, this number being incremented over the previously generated number by the
value specified in the Increment argument. In effect, the altova:generate-auto-number function creates
a counter having a name specified by the ID argument, with this counter being incremented each time the
function is called. If the value of the ResetOnChange argument changes from that of the previous function
call, then the value of the number to be generated is reset to the StartsWith value. Auto-numbering can
also be reset by using the altova:reset-auto-number function.

Examples

· altova:generate-auto-number("ChapterNumber", 1, 1, "SomeString") will return one

number each time the function is called, starting with 1, and incrementing by 1 with each call to
the function. As long as the fourth argument remains "SomeString" in each subsequent call, the
incrementing will continue. When the value of the fourth argument changes, the counter (called
ChapterNumber) will reset to 1. The value of ChapterNumber can also be reset by a call to the
altova:reset-auto-number function, like this: altova:reset-auto-number("ChapterNumber").

reset-auto-number [altova:]

altova:reset-auto-number(ID as xs:string) XP1 XP2 XQ1 XP3.1 XQ3.1

This function resets the number of the auto-numbering counter named in the ID argument. The number is
reset to the number specified by the StartsWith argument of the altova:generate-auto-number
function that created the counter named in the ID argument.

Examples

· altova:reset-auto-number("ChapterNumber") resets the number of the auto-numbering

counter named ChapterNumber that was created by the altova:generate-auto-number function.
The number is reset to the value of the StartsWith argument of the altova:generate-auto-
number function that created ChapterNumber.

1354 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

[Top]

Numeric functions
hex-string-to-integer [altova:]

altova:hex-string-to-integer(HexString as xs:string) as xs:integer XP3.1 XQ3.1

Takes a string argument that is the Base-16 equivalent of an integer in the decimal system (Base-10), and
returns the decimal integer.

Examples

· altova:hex-string-to-integer('1') returns 1

· altova:hex-string-to-integer('9') returns 9

· altova:hex-string-to-integer('A') returns 10

· altova:hex-string-to-integer('B') returns 11

· altova:hex-string-to-integer('F') returns 15

· altova:hex-string-to-integer('G') returns an error

· altova:hex-string-to-integer('10') returns 16

· altova:hex-string-to-integer('01') returns 1

· altova:hex-string-to-integer('20') returns 32

· altova:hex-string-to-integer('21') returns 33

· altova:hex-string-to-integer('5A') returns 90

· altova:hex-string-to-integer('USA') returns an error

integer-to-hex-string [altova:]

altova:integer-to-hex-string(Integer as xs:integer) as xs:string XP3.1 XQ3.1

Takes an integer argument and returns its Base-16 equivalent as a string.
Examples

· altova:integer-to-hex-string(1) returns '1'

· altova:integer-to-hex-string(9) returns '9'

· altova:integer-to-hex-string(10) returns 'A'

· altova:integer-to-hex-string(11) returns 'B'

· altova:integer-to-hex-string(15) returns 'F'

· altova:integer-to-hex-string(16) returns '10'

· altova:integer-to-hex-string(32) returns '20'

· altova:integer-to-hex-string(33) returns '21'

· altova:integer-to-hex-string(90) returns '5A'

[Top]

Number-formatting functions

[Top]

1352

1352

1352

© 2018-2024 Altova GmbH

Engine Information 1355Appendices

Altova MapForce 2024 Professional Edition

19.2.2.1.6 XPath/XQuery Functions: Schema

The Altova extension functions listed below return schema information. Given below are descriptions of the
functions, together with (i) examples and (ii) a listing of schema components and their respective properties.
They can be used with Altova's XPath 3.0 and XQuery 3.0 engines and are available in XPath/XQuery
contexts.

Schema information from schema documents
The function altova:schema has two arguments: one with zero arguments and the other with two arguments.

The zero-argument function returns the whole schema. You can then, from this starting point, navigate into the
schema to locate the schema components you want. The two-argument function returns a specific component
kind that is identified by its QName. In both cases, the return value is a function. To navigate into the returned
component, you must select a property of that specific component. If the property is a non-atomic item (that is,
if it is a component), then you can navigate further by selecting a property of this component. If the selected
property is an atomic item, then the value of the item is returned and you cannot navigate any further.

Note: In XPath expressions, the schema must be imported into the processing environment (for example, into
XSLT) with the xslt:import-schema instruction. In XQuery expressions, the schema must be

explicitly imported using a schema import.

Schema information from XML nodes
The function altova:type submits the node of an XML document and returns the node's type information from

the PSVI.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Schema (zero arguments)

altova:schema() as (function(xs:string) as item()*)? XP3.1 XQ3.1

Returns the schema component as a whole. You can navigate further into the schema component by

selecting one of the schema component's properties.

· If this property is a component, you can navigate another step deeper by selecting one of this
component's properties. This step can be repeated to navigate further into the schema.

· If the component is an atomic value, the atomic value is returned and you cannot navigate any
deeper.

https://www.w3.org/TR/xslt-30/#element-import-schema
https://www.w3.org/TR/xquery-31/#prod-xquery31-SchemaImport

1356 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The properties of the schema component are:

"type definitions"
"attribute declarations"
"element declarations"
"attribute group definitions"
"model group definitions"
"notation declarations"
"identity-constraint definitions"

The properties of all other component kinds (besides schema) are listed below.

Note: In XQuery expressions, the schema must be explicitly imported. In XPath expressions, the schema
must have been imported into the processing environment, for example, into XSLT with the xslt:import

instruction.

Examples

· import schema "" at "C:\Test\ExpReport.xsd"; for $typedef in altova:schema()

("type definitions")

return $typedef ("name") returns the names of all simple types or complex types in the
schema

· import schema "" at "C:\Test\ExpReport.xsd";

altova:schema() ("type definitions")[1]("name") returns the name of the first of all simple

types or complex types in the schema

Components and their properties

Assertion

Property name Property type Property value

kind string "Assertion"

test XPath Property Record

Attribute Declaration

Property name Property type Property value

kind string "Attribute Declaration"

name string Local name of the attribute

target namespace string Namespace URI of the attribute

type definition Simple Type or Complex Type

scope A function with properties
("class":"Scope", "variety": "global" or
"local", "parent": the containing
Complex Type or Attribute Group)

© 2018-2024 Altova GmbH

Engine Information 1357Appendices

Altova MapForce 2024 Professional Edition

value constraint If present, a function with properties
("class": "Value Constraint", "variety":
"fixed" or "default", "value": atomic
value, "lexical form": string. Note that
the "value" property is not available for
namespace-sensitive types

inheritable boolean

Attribute Group Declaration

Property name Property type Property value

kind string "Attribute Group Definition"

name string Local name of the attribute group

target namespace string Namespace URI of the attribute
group

attribute uses Sequence of (Attribute Use)

attribute wildcard Optional Attribute Wildcard

Attribute Use

Property name Property type Property value

kind string "Attribute Use"

required boolean true if the attribute is required,
false if optional

value constraint See Attribute Declaration

inheritable boolean

Attribute Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Complex Type

Property name Property type Property value

kind string "Complex Type"

1358 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

base type definition Complex Type Definition

final Sequence of strings
("restriction"|"extension")

context Empty sequence (not implemented)

derivation method string ("restriction"|"extension")

abstract boolean

attribute uses Sequence of Attribute Use

attribute wildcard Optional Attribute Wildcard

content type function with properties:
("class":"Content Type", "variety":string
("element-
only"|"empty"|"mixed"|"simple"), particle:
optional Particle, "open content":
function with properties ("class":"Open
Content", "mode": string
("interleave"|"suffix"), "wildcard":
Wildcard), "simple type definition":
Simple Type)

prohibited
substitutions

Sequence of strings
("restriction"|"extension")

assertions Sequence of Assertion

Element Declaration

Property name Property type Property value

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

type definition Simple Type or Complex Type

type table function with properties ("class":"Type
Table", "alternatives": sequence of Type
Alternative, "default type definition":
Simple Type or Complex Type)

scope function with properties ("class":"Scope",
"variety": ("global"|"local"), "parent":
optional Complex Type)

value constraint see Attribute Declaration

© 2018-2024 Altova GmbH

Engine Information 1359Appendices

Altova MapForce 2024 Professional Edition

nillable boolean

identity-constraint
definitions

Sequence of Identity Constraint

substitution group
affiliations

Sequence of Element Declaration

substitution group
exclusions

Sequence of strings
("restriction"|"extension")

disallowed
substitutions

Sequence of strings
("restriction"|"extension"|"substitution")

abstract boolean

Element Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Facet

Property name Property type Property value

kind string The name of the facet, for
example "minLength" or
"enumeration"

value depends on facet The value of the facet

fixed boolean

typed-value For the enumeration facet only,
array(xs:anyAtomicType*)

An array containing the
enumeration values, each of which
may in general be a sequence of
atomic values. (Note: for the
enumeration facet, the "value"
property is a sequence of strings,
regardless of the actual type)

Identity Constraint

Property name Property type Property value

kind string "Identity-Constraint Definition"

1360 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

name string Local name of the constraint

target namespace string Namespace URI of the constraint

identity-constraint
category

string ("key"|"unique"|"keyRef")

selector XPath Property Record

fields Sequence of XPath Property Record

referenced key (For keyRef only): Identity Constraint The corresponding key constraint

Model Group

Property name Property type Property value

kind string "Model Group"

compositor string ("sequence"|"choice"|"all")

particles Sequence of Particle

Model Group Definition

Property name Property type Property value

kind string "Model Group Definition"

name string Local name of the model group

target namespace string
Namespace URI of the model
group

model group Model Group

Notation

Property name Property type Property value

kind string "Notation Declaration"

name string Local name of the notation

target namespace string Namespace URI of the notation

system identifier anyURI

public identifier string

Particle

Property name Property type Property value

kind string "Particle"

min occurs integer

max occurs integer, or string("unbounded")

term Element Declaration, Element Wildcard,
or ModelGroup

© 2018-2024 Altova GmbH

Engine Information 1361Appendices

Altova MapForce 2024 Professional Edition

Simple Type

Property name Property type Property value

kind string "Simple Type Definition"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

final Sequence of
string("restriction"|"extension"|"list"|"unio
n")

context containing component

base type definition Simple Type

facets Sequence of Facet

fundamental facets Empty sequence (not implemented)

variety string ("atomic"|"list"|"union")

primitive type
definition

Simple Type

item type definition (for list types only) Simple Type

member type
definitions

(for union types only) Sequence of
Simple Type

Type Alternative

Property name Property type Property value

kind string "Type Alternative"

test XPath Property Record

type definition Simple Type or Complex Type

XPath Property Record

Property name Property type Property value

namespace bindings Sequence of functions with properties
("prefix": string, "namespace": anyURI)

default namespace anyURI

base URI anyURI The static base URI of the XPath
expression

expression string The XPath expression as a string

Schema (two arguments)

1362 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

altova:schema(ComponentKind as xs:string, Name as xs:QName) as (function(xs:string) as

item()*)? XP3.1 XQ3.1

Returns the component kind that is specified in the first argument which has a name that is the same as
the name supplied in the second argument. You can navigate further by selecting one of the component's
properties.

· If this property is a component, you can navigate another step deeper by selecting one of this
component's properties. This step can be repeated to navigate further into the schema.

· If the component is an atomic value, the atomic value is returned and you cannot navigate any
deeper.

Note: In XQuery expressions, the schema must be explicitly imported. In XPath expressions, the schema
must have been imported into the processing environment, for example, into XSLT with the xslt:import

instruction.

Examples

· import schema "" at "C:\Test\ExpReport.xsd";

altova:schema("element declaration", xs:QName("OrgChart"))("type definition")

("content type")("particles")[3]!.("term")("kind")
returns the kind property of the term of the third particles component. This particles component
is a descendant of the element declaration having a QName of OrgChart

· import schema "" at "C:\Test\ExpReport.xsd";

let $typedef := altova:schema("type definition", xs:QName("emailType"))

for $facet in $typedef ("facets")

return [$facet ("kind"), $facet("value")]

returns, for each facet of each emailType component, an array containing that facet's kind and

value

Components and their properties

Assertion

Property name Property type Property value

kind string "Assertion"

test XPath Property Record

Attribute Declaration

Property name Property type Property value

kind string "Attribute Declaration"

name string Local name of the attribute

target namespace string Namespace URI of the attribute

type definition Simple Type or Complex Type

scope A function with properties
("class":"Scope", "variety": "global" or
"local", "parent": the containing

© 2018-2024 Altova GmbH

Engine Information 1363Appendices

Altova MapForce 2024 Professional Edition

Complex Type or Attribute Group)

value constraint If present, a function with properties
("class": "Value Constraint", "variety":
"fixed" or "default", "value": atomic
value, "lexical form": string. Note that
the "value" property is not available for
namespace-sensitive types

inheritable boolean

Attribute Group Declaration

Property name Property type Property value

kind string "Attribute Group Definition"

name string Local name of the attribute group

target namespace string Namespace URI of the attribute
group

attribute uses Sequence of (Attribute Use)

attribute wildcard Optional Attribute Wildcard

Attribute Use

Property name Property type Property value

kind string "Attribute Use"

required boolean true if the attribute is required,
false if optional

value constraint See Attribute Declaration

inheritable boolean

Attribute Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Complex Type

Property name Property type Property value

1364 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

base type definition Complex Type Definition

final Sequence of strings
("restriction"|"extension")

context Empty sequence (not implemented)

derivation method string ("restriction"|"extension")

abstract boolean

attribute uses Sequence of Attribute Use

attribute wildcard Optional Attribute Wildcard

content type function with properties:
("class":"Content Type", "variety":string
("element-
only"|"empty"|"mixed"|"simple"), particle:
optional Particle, "open content":
function with properties ("class":"Open
Content", "mode": string
("interleave"|"suffix"), "wildcard":
Wildcard), "simple type definition":
Simple Type)

prohibited
substitutions

Sequence of strings
("restriction"|"extension")

assertions Sequence of Assertion

Element Declaration

Property name Property type Property value

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

type definition Simple Type or Complex Type

type table function with properties ("class":"Type
Table", "alternatives": sequence of Type
Alternative, "default type definition":
Simple Type or Complex Type)

scope function with properties ("class":"Scope",
"variety": ("global"|"local"), "parent":
optional Complex Type)

© 2018-2024 Altova GmbH

Engine Information 1365Appendices

Altova MapForce 2024 Professional Edition

value constraint see Attribute Declaration

nillable boolean

identity-constraint
definitions

Sequence of Identity Constraint

substitution group
affiliations

Sequence of Element Declaration

substitution group
exclusions

Sequence of strings
("restriction"|"extension")

disallowed
substitutions

Sequence of strings
("restriction"|"extension"|"substitution")

abstract boolean

Element Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Facet

Property name Property type Property value

kind string The name of the facet, for
example "minLength" or
"enumeration"

value depends on facet The value of the facet

fixed boolean

typed-value For the enumeration facet only,
array(xs:anyAtomicType*)

An array containing the
enumeration values, each of which
may in general be a sequence of
atomic values. (Note: for the
enumeration facet, the "value"
property is a sequence of strings,
regardless of the actual type)

Identity Constraint

Property name Property type Property value

1366 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

kind string "Identity-Constraint Definition"

name string Local name of the constraint

target namespace string Namespace URI of the constraint

identity-constraint
category

string ("key"|"unique"|"keyRef")

selector XPath Property Record

fields Sequence of XPath Property Record

referenced key (For keyRef only): Identity Constraint The corresponding key constraint

Model Group

Property name Property type Property value

kind string "Model Group"

compositor string ("sequence"|"choice"|"all")

particles Sequence of Particle

Model Group Definition

Property name Property type Property value

kind string "Model Group Definition"

name string Local name of the model group

target namespace string
Namespace URI of the model
group

model group Model Group

Notation

Property name Property type Property value

kind string "Notation Declaration"

name string Local name of the notation

target namespace string Namespace URI of the notation

system identifier anyURI

public identifier string

Particle

Property name Property type Property value

kind string "Particle"

min occurs integer

max occurs integer, or string("unbounded")

© 2018-2024 Altova GmbH

Engine Information 1367Appendices

Altova MapForce 2024 Professional Edition

term Element Declaration, Element Wildcard,
or ModelGroup

Simple Type

Property name Property type Property value

kind string "Simple Type Definition"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

final Sequence of
string("restriction"|"extension"|"list"|"unio
n")

context containing component

base type definition Simple Type

facets Sequence of Facet

fundamental facets Empty sequence (not implemented)

variety string ("atomic"|"list"|"union")

primitive type
definition

Simple Type

item type definition (for list types only) Simple Type

member type
definitions

(for union types only) Sequence of
Simple Type

Type Alternative

Property name Property type Property value

kind string "Type Alternative"

test XPath Property Record

type definition Simple Type or Complex Type

XPath Property Record

Property name Property type Property value

namespace bindings Sequence of functions with properties
("prefix": string, "namespace": anyURI)

default namespace anyURI

base URI anyURI The static base URI of the XPath
expression

expression string The XPath expression as a string

1368 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Type

altova:type(Node as item?) as (function(xs:string) as item()*)? XP3.1 XQ3.1

The function altova:type submits an element or attribute node of an XML document and returns the

node's type information from the PSVI.

Note: The XML document must have a schema declaration so that the schema can be referenced.

Examples

· for $element in //Email

let $type := altova:type($element)

return $type

returns a function that contains the Email node's type information

· for $element in //Email

let $type := altova:type($element)

return $type ("kind")

takes the Email node's type component (Simple Type or Complex Type) and returns the value of
the component's kind property

The "_props" parameter returns the properties of the selected component. For example:
· for $element in //Email

let $type := altova:type($element)

return ($type ("kind"), $type ("_props"))

takes the Email node's type component (Simple Type or Complex Type) and returns (i) the value of
the component's kind property, and then (ii) the properties of that component.

Components and their properties

Assertion

Property name Property type Property value

kind string "Assertion"

test XPath Property Record

Attribute Declaration

Property name Property type Property value

kind string "Attribute Declaration"

name string Local name of the attribute

target namespace string Namespace URI of the attribute

type definition Simple Type or Complex Type

scope A function with properties
("class":"Scope", "variety": "global" or
"local", "parent": the containing

© 2018-2024 Altova GmbH

Engine Information 1369Appendices

Altova MapForce 2024 Professional Edition

Complex Type or Attribute Group)

value constraint If present, a function with properties
("class": "Value Constraint", "variety":
"fixed" or "default", "value": atomic
value, "lexical form": string. Note that
the "value" property is not available for
namespace-sensitive types

inheritable boolean

Attribute Group Declaration

Property name Property type Property value

kind string "Attribute Group Definition"

name string Local name of the attribute group

target namespace string Namespace URI of the attribute
group

attribute uses Sequence of (Attribute Use)

attribute wildcard Optional Attribute Wildcard

Attribute Use

Property name Property type Property value

kind string "Attribute Use"

required boolean true if the attribute is required,
false if optional

value constraint See Attribute Declaration

inheritable boolean

Attribute Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Complex Type

Property name Property type Property value

1370 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

base type definition Complex Type Definition

final Sequence of strings
("restriction"|"extension")

context Empty sequence (not implemented)

derivation method string ("restriction"|"extension")

abstract boolean

attribute uses Sequence of Attribute Use

attribute wildcard Optional Attribute Wildcard

content type function with properties:
("class":"Content Type", "variety":string
("element-
only"|"empty"|"mixed"|"simple"), particle:
optional Particle, "open content":
function with properties ("class":"Open
Content", "mode": string
("interleave"|"suffix"), "wildcard":
Wildcard), "simple type definition":
Simple Type)

prohibited
substitutions

Sequence of strings
("restriction"|"extension")

assertions Sequence of Assertion

Element Declaration

Property name Property type Property value

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

type definition Simple Type or Complex Type

type table function with properties ("class":"Type
Table", "alternatives": sequence of Type
Alternative, "default type definition":
Simple Type or Complex Type)

scope function with properties ("class":"Scope",
"variety": ("global"|"local"), "parent":
optional Complex Type)

© 2018-2024 Altova GmbH

Engine Information 1371Appendices

Altova MapForce 2024 Professional Edition

value constraint see Attribute Declaration

nillable boolean

identity-constraint
definitions

Sequence of Identity Constraint

substitution group
affiliations

Sequence of Element Declaration

substitution group
exclusions

Sequence of strings
("restriction"|"extension")

disallowed
substitutions

Sequence of strings
("restriction"|"extension"|"substitution")

abstract boolean

Element Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Facet

Property name Property type Property value

kind string The name of the facet, for
example "minLength" or
"enumeration"

value depends on facet The value of the facet

fixed boolean

typed-value For the enumeration facet only,
array(xs:anyAtomicType*)

An array containing the
enumeration values, each of which
may in general be a sequence of
atomic values. (Note: for the
enumeration facet, the "value"
property is a sequence of strings,
regardless of the actual type)

Identity Constraint

Property name Property type Property value

1372 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

kind string "Identity-Constraint Definition"

name string Local name of the constraint

target namespace string Namespace URI of the constraint

identity-constraint
category

string ("key"|"unique"|"keyRef")

selector XPath Property Record

fields Sequence of XPath Property Record

referenced key (For keyRef only): Identity Constraint The corresponding key constraint

Model Group

Property name Property type Property value

kind string "Model Group"

compositor string ("sequence"|"choice"|"all")

particles Sequence of Particle

Model Group Definition

Property name Property type Property value

kind string "Model Group Definition"

name string Local name of the model group

target namespace string
Namespace URI of the model
group

model group Model Group

Notation

Property name Property type Property value

kind string "Notation Declaration"

name string Local name of the notation

target namespace string Namespace URI of the notation

system identifier anyURI

public identifier string

Particle

Property name Property type Property value

kind string "Particle"

min occurs integer

max occurs integer, or string("unbounded")

© 2018-2024 Altova GmbH

Engine Information 1373Appendices

Altova MapForce 2024 Professional Edition

term Element Declaration, Element Wildcard,
or ModelGroup

Simple Type

Property name Property type Property value

kind string "Simple Type Definition"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

final Sequence of
string("restriction"|"extension"|"list"|"unio
n")

context containing component

base type definition Simple Type

facets Sequence of Facet

fundamental facets Empty sequence (not implemented)

variety string ("atomic"|"list"|"union")

primitive type
definition

Simple Type

item type definition (for list types only) Simple Type

member type
definitions

(for union types only) Sequence of
Simple Type

Type Alternative

Property name Property type Property value

kind string "Type Alternative"

test XPath Property Record

type definition Simple Type or Complex Type

XPath Property Record

Property name Property type Property value

namespace bindings Sequence of functions with properties
("prefix": string, "namespace": anyURI)

default namespace anyURI

base URI anyURI The static base URI of the XPath
expression

expression string The XPath expression as a string

1374 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

19.2.2.1.7 XPath/XQuery Functions: Sequence

Altova's sequence extension functions can be used in XPath and XQuery expressions and provide additional
functionality for the processing of data. The functions in this section can be used with Altova's XPath 3.0 and
XQuery 3.0 engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

attributes [altova:]

altova:attributes(AttributeName as xs:string) as attribute()* XP3.1 XQ3.1

Returns all attributes that have a local name which is the same as the name supplied in the input
argument, AttributeName. The search is case-sensitive and conducted along the attribute:: axis. This
means that the context node must be the parent element node.

Examples

· altova:attributes("MyAttribute") returns MyAttribute()*

altova:attributes(AttributeName as xs:string, SearchOptions as xs:string) as

attribute()* XP3.1 XQ3.1

Returns all attributes that have a local name which is the same as the name supplied in the input
argument, AttributeName. The search is case-sensitive and conducted along the attribute:: axis. The
context node must be the parent element node. The second argument is a string containing option flags.
Available flags are:
r = switches to a regular-expression search; AttributeName must then be a regular-expression search

string;
f = If this option is specified, then AttributeName provides a full match; otherwise AttributeName need

only partially match an attribute name to return that attribute. For example: if f is not specified, then

MyAtt will return MyAttribute;
i = switches to a case-insensitive search;

p = includes the namespace prefix in the search; AttributeName should then contain the namespace

prefix, for example: altova:MyAttribute.
The flags can be written in any order. Invalid flags will generate errors. One or more flags can be omitted.
The empty string is allowed, and will produce the same effect as the function having only one argument

© 2018-2024 Altova GmbH

Engine Information 1375Appendices

Altova MapForce 2024 Professional Edition

(previous signature). However, an empty sequence is not allowed as the second argument.
Examples

· altova:attributes("MyAttribute", "rfip") returns MyAttribute()*

· altova:attributes("MyAttribute", "pri") returns MyAttribute()*

· altova:attributes("MyAtt", "rip") returns MyAttribute()*

· altova:attributes("MyAttributes", "rfip") returns no match

· altova:attributes("MyAttribute", "") returns MyAttribute()*

· altova:attributes("MyAttribute", "Rip") returns an unrecognized-flag error.

· altova:attributes("MyAttribute",) returns a missing-second-argument error.

elements [altova:]

altova:elements(ElementName as xs:string) as element()* XP3.1 XQ3.1

Returns all elements that have a local name which is the same as the name supplied in the input
argument, ElementName. The search is case-sensitive and conducted along the child:: axis. The context
node must be the parent node of the element/s being searched for.

Examples

· altova:elements("MyElement") returns MyElement()*

altova:elements(ElementName as xs:string, SearchOptions as xs:string) as element()*

XP3.1 XQ3.1

Returns all elements that have a local name which is the same as the name supplied in the input
argument, ElementName. The search is case-sensitive and conducted along the child:: axis. The
context node must be the parent node of the element/s being searched for. The second argument is a
string containing option flags. Available flags are:
r = switches to a regular-expression search; ElementName must then be a regular-expression search

string;
f = If this option is specified, then ElementName provides a full match; otherwise ElementName need only

partially match an element name to return that element. For example: if f is not specified, then MyElem will

return MyElement;
i = switches to a case-insensitive search;

p = includes the namespace prefix in the search; ElementName should then contain the namespace prefix,

for example: altova:MyElement.
The flags can be written in any order. Invalid flags will generate errors. One or more flags can be omitted.
The empty string is allowed, and will produce the same effect as the function having only one argument
(previous signature). However, an empty sequence is not allowed.

Examples

· altova:elements("MyElement", "rip") returns MyElement()*

· altova:elements("MyElement", "pri") returns MyElement()*

· altova:elements("MyElement", "") returns MyElement()*

· altova:elements("MyElem", "rip") returns MyElement()*

· altova:elements("MyElements", "rfip") returns no match

· altova:elements("MyElement", "Rip") returns an unrecognized-flag error.

· altova:elements("MyElement",) returns a missing-second-argument error.

find-first [altova:]

1376 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

altova:find-first((Sequence as item()*), (Condition(Sequence-Item as xs:boolean)) as

item()? XP3.1 XQ3.1

This function takes two arguments. The first argument is a sequence of one or more items of any
datatype. The second argument, Condition, is a reference to an XPath function that takes one argument
(has an arity of 1) and returns a boolean. Each item of Sequence is submitted, in turn, to the function

referenced in Condition. (Remember: This function takes a single argument.) The first Sequence item that

causes the function in Condition to evaluate to true() is returned as the result of altova:find-first,

and the iteration stops.

Examples

· altova:find-first(5 to 10, function($a) {$a mod 2 = 0}) returns xs:integer 6

The Condition argument references the XPath 3.0 inline function, function(), which declares an

inline function named $a and then defines it. Each item in the Sequence argument of altova:find-

first is passed, in turn, to $a as its input value. The input value is tested on the condition in the

function definition ($a mod 2 = 0). The first input value to satisfy this condition is returned as the
result of altova:find-first (in this case 6).

· altova:find-first((1 to 10), (function($a) {$a+3=7})) returns xs:integer 4

Further examples
If the file C:\Temp\Customers.xml exists:

· altova:find-first(("C:\Temp\Customers.xml", "http://www.altova.com/index.html"),

(doc-available#1)) returns xs:string C:\Temp\Customers.xml

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/index.html

exists:

· altova:find-first(("C:\Temp\Customers.xml", "http://www.altova.com/index.html"),

(doc-available#1)) returns xs:string http://www.altova.com/index.html

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/index.html also

does not exist:

· altova:find-first(("C:\Temp\Customers.xml", "http://www.altova.com/index.html"),

(doc-available#1)) returns no result

Notes about the examples given above

· The XPath 3.0 function, doc-available, takes a single string argument, which is used as a URI,
and returns true if a document node is found at the submitted URI. (The document at the
submitted URI must therefore be an XML document.)

· The doc-available function can be used for Condition, the second argument of altova:find-

first, because it takes only one argument (arity=1), because it takes an item() as input (a
string which is used as a URI), and returns a boolean value.

· Notice that the doc-available function is only referenced, not called. The #1 suffix that is
attached to it indicates a function with an arity of 1. In its entirety doc-available#1 simply
means: Use the doc-availabe() function that has arity=1, passing to it as its single argument, in
turn, each of the items in the first sequence. As a result, each of the two strings will be passed

© 2018-2024 Altova GmbH

Engine Information 1377Appendices

Altova MapForce 2024 Professional Edition

to doc-available(), which uses the string as a URI and tests whether a document node exists

at the URI. If one does, the doc-available() evaluates to true() and that string is returned as

the result of the altova:find-first function. Note about the doc-available() function: Relative

paths are resolved relative to the the current base URI, which is by default the URI of the XML
document from which the function is loaded.

find-first-combination [altova:]

altova:find-first-combination((Seq-01 as item()*), (Seq-02 as item()*),

(Condition(Seq-01-Item, Seq-02-Item as xs:boolean)) as item()* XP3.1 XQ3.1

This function takes three arguments:

· The first two arguments, Seq-01 and Seq-02, are sequences of one or more items of any

datatype.
· The third argument, Condition, is a reference to an XPath function that takes two arguments (has

an arity of 2) and returns a boolean.

The items of Seq-01 and Seq-02 are passed in ordered pairs (one item from each sequence making up a

pair) as the arguments of the function in Condition. The pairs are ordered as follows.
If Seq-01 = X1, X2, X3 ... Xn

And Seq-02 = Y1, Y2, Y3 ... Yn

Then (X1 Y1), (X1 Y2), (X1 Y3) ... (X1 Yn), (X2 Y1), (X2 Y2) ... (Xn Yn)

The first ordered pair that causes the Condition function to evaluate to true() is returned as the result of

altova:find-first-combination. Note that: (i) If the Condition function iterates through the submitted

argument pairs and does not once evaluate to true(), then altova:find-first-combination returns No

results; (ii) The result of altova:find-first-combination will always be a pair of items (of any datatype)

or no item at all.

Examples

· altova:find-first-combination(11 to 20, 21 to 30, function($a, $b) {$a+$b = 32})

returns the sequence of xs:integers (11, 21)
· altova:find-first-combination(11 to 20, 21 to 30, function($a, $b) {$a+$b = 33})

returns the sequence of xs:integers (11, 22)
· altova:find-first-combination(11 to 20, 21 to 30, function($a, $b) {$a+$b = 34})

returns the sequence of xs:integers (11, 23)

find-first-pair [altova:]

altova:find-first-pair((Seq-01 as item()*), (Seq-02 as item()*), (Condition(Seq-01-

Item, Seq-02-Item as xs:boolean)) as item()* XP3.1 XQ3.1

This function takes three arguments:

· The first two arguments, Seq-01 and Seq-02, are sequences of one or more items of any

datatype.
· The third argument, Condition, is a reference to an XPath function that takes two arguments (has

an arity of 2) and returns a boolean.

1378 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The items of Seq-01 and Seq-02 are passed in ordered pairs as the arguments of the function in

Condition. The pairs are ordered as follows.
If Seq-01 = X1, X2, X3 ... Xn

And Seq-02 = Y1, Y2, Y3 ... Yn

Then (X1 Y1), (X2 Y2), (X3 Y3) ... (Xn Yn)

The first ordered pair that causes the Condition function to evaluate to true() is returned as the result of

altova:find-first-pair. Note that: (i) If the Condition function iterates through the submitted

argument pairs and does not once evaluate to true(), then altova:find-first-pair returns No results;

(ii) The result of altova:find-first-pair will always be a pair of items (of any datatype) or no item at

all.

Examples

· altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b = 32}) returns

the sequence of xs:integers (11, 21)
· altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b = 33}) returns

No results

Notice from the two examples above that the ordering of the pairs is: (11, 21) (12, 22) (13,
23)...(20, 30). This is why the second example returns No results (because no ordered pair gives
a sum of 33).

find-first-pair-pos [altova:]

altova:find-first-pair-pos((Seq-01 as item()*), (Seq-02 as item()*), (Condition(Seq-

01-Item, Seq-02-Item as xs:boolean)) as xs:integer XP3.1 XQ3.1

This function takes three arguments:

· The first two arguments, Seq-01 and Seq-02, are sequences of one or more items of any

datatype.
· The third argument, Condition, is a reference to an XPath function that takes two arguments (has

an arity of 2) and returns a boolean.

The items of Seq-01 and Seq-02 are passed in ordered pairs as the arguments of the function in

Condition. The pairs are ordered as follows.
If Seq-01 = X1, X2, X3 ... Xn

And Seq-02 = Y1, Y2, Y3 ... Yn

Then (X1 Y1), (X2 Y2), (X3 Y3) ... (Xn Yn)

The index position of the first ordered pair that causes the Condition function to evaluate to true() is

returned as the result of altova:find-first-pair-pos. Note that if the Condition function iterates

through the submitted argument pairs and does not once evaluate to true(), then altova:find-first-

pair-pos returns No results.

Examples

· altova:find-first-pair-pos(11 to 20, 21 to 30, function($a, $b) {$a+$b = 32})

returns 1
· altova:find-first-pair-pos(11 to 20, 21 to 30, function($a, $b) {$a+$b = 33})

© 2018-2024 Altova GmbH

Engine Information 1379Appendices

Altova MapForce 2024 Professional Edition

returns No results

Notice from the two examples above that the ordering of the pairs is: (11, 21) (12, 22) (13,
23)...(20, 30). In the first example, the first pair causes the Condition function to evaluate to

true(), and so its index position in the sequence, 1, is returned. The second example returns No

results because no pair gives a sum of 33.

find-first-pos [altova:]

altova:find-first-pos((Sequence as item()*), (Condition(Sequence-Item as xs:boolean))

as xs:integer XP3.1 XQ3.1

This function takes two arguments. The first argument is a sequence of one or more items of any
datatype. The second argument, Condition, is a reference to an XPath function that takes one argument
(has an arity of 1) and returns a boolean. Each item of Sequence is submitted, in turn, to the function

referenced in Condition. (Remember: This function takes a single argument.) The first Sequence item that

causes the function in Condition to evaluate to true() has its index position in Sequence returned as the

result of altova:find-first-pos, and the iteration stops.

Examples

· altova:find-first-pos(5 to 10, function($a) {$a mod 2 = 0}) returns xs:integer 2

The Condition argument references the XPath 3.0 inline function, function(), which declares an

inline function named $a and then defines it. Each item in the Sequence argument of altova:find-

first-pos is passed, in turn, to $a as its input value. The input value is tested on the condition in

the function definition ($a mod 2 = 0). The index position in the sequence of the first input value to
satisfy this condition is returned as the result of altova:find-first-pos (in this case 2, since 6,

the first value (in the sequence) to satisfy the condition, is at index position 2 in the sequence).

· altova:find-first-pos((2 to 10), (function($a) {$a+3=7})) returns xs:integer 3

Further examples
If the file C:\Temp\Customers.xml exists:

· altova:find-first-pos(("C:\Temp\Customers.xml",

"http://www.altova.com/index.html"), (doc-available#1)) returns 1

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/index.html

exists:

· altova:find-first-pos(("C:\Temp\Customers.xml",

"http://www.altova.com/index.html"), (doc-available#1)) returns 2

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/index.html also

does not exist:

· altova:find-first-pos(("C:\Temp\Customers.xml",

"http://www.altova.com/index.html"), (doc-available#1)) returns no result

Notes about the examples given above

1380 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· The XPath 3.0 function, doc-available, takes a single string argument, which is used as a URI,
and returns true if a document node is found at the submitted URI. (The document at the
submitted URI must therefore be an XML document.)

· The doc-available function can be used for Condition, the second argument of altova:find-

first-pos, because it takes only one argument (arity=1), because it takes an item() as input
(a string which is used as a URI), and returns a boolean value.

· Notice that the doc-available function is only referenced, not called. The #1 suffix that is
attached to it indicates a function with an arity of 1. In its entirety doc-available#1 simply
means: Use the doc-availabe() function that has arity=1, passing to it as its single argument, in
turn, each of the items in the first sequence. As a result, each of the two strings will be passed
to doc-available(), which uses the string as a URI and tests whether a document node exists

at the URI. If one does, the doc-available() function evaluates to true() and the index

position of that string in the sequence is returned as the result of the altova:find-first-pos

function. Note about the doc-available() function: Relative paths are resolved relative to the the
current base URI, which is by default the URI of the XML document from which the function is
loaded.

for-each-attribute-pair [altova:]

altova:for-each-attribute-pair(Seq1 as element()?, Seq2 as element()?, Function as

function()) as item()* XP3.1 XQ3.1

The first two arguments identify two elements, the attributes of which are used to build attribute pairs,
where one attribute of a pair is obtained from the first element and the other attribute is obtained from the
second element. Attribute pairs are selected on the basis of having the same name, and the pairs are
ordered alphabetically (on their names) into a set. If, for one attribute no corresponding attribute on the
other element exists, then the pair is "disjoint", meaning that it consists of one member only. The function
item (third argument Function) is applied separately to each pair in the sequence of pairs (joint and
disjoint), resulting in an output that is a sequence of items.

Examples

· altova:for-each-attribute-pair(/Example/Test-A, /Example/Test-B, function($a, $b)

{$a+b}) returns ...

 (2, 4, 6) if
 <Test-A att1="1" att2="2" att3="3" />
 <Test-B att1="1" att2="2" att3="3" />

 (2, 4, 6) if
 <Test-A att2="2" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

 (2, 6) if
 <Test-A att4="4" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

 Note: The result (2, 6) is obtained by way of the following action: (1+1, ()+2, 3+3, 4+()). If

one of the operands is the empty sequence, as in the case of items 2 and 4, then the result of the
addition is an empty sequence.

· altova:for-each-attribute-pair(/Example/Test-A, /Example/Test-B, concat#2) returns

© 2018-2024 Altova GmbH

Engine Information 1381Appendices

Altova MapForce 2024 Professional Edition

...

 (11, 22, 33) if
 <Test-A att1="1" att2="2" att3="3" />
 <Test-B att1="1" att2="2" att3="3" />

 (11, 2, 33, 4) if
 <Test-A att4="4" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

for-each-combination [altova:]

altova:for-each-combination(FirstSequence as item()*, SecondSequence as item()*,

Function($i,$j){$i || $j}) as item()* XP3.1 XQ3.1

The items of the two sequences in the first two arguments are combined so that each item of the first
sequence is combined, in order, once with each item of the second sequence. The function given as the
third argument is applied to each combination in the resulting sequence, resulting in an output that is a
sequence of items (see example).

Examples

· altova:for-each-combination(('a', 'b', 'c'), ('1', '2', '3'), function($i, $j)

{$i || $j}) returns ('a1', 'a2', 'a3', 'b1', 'b2', 'b3', 'c1', 'c2', 'c3')

for-each-matching-attribute-pair [altova:]

altova:for-each-matching-attribute-pair(Seq1 as element()?, Seq2 as element()?,

Function as function()) as item()* XP3.1 XQ3.1

The first two arguments identify two elements, the attributes of which are used to build attribute pairs,
where one attribute of a pair is obtained from the first element and the other attribute is obtained from the
second element. Attribute pairs are selected on the basis of having the same name, and the pairs are
ordered alphabetically (on their names) into a set. If, for one attribute no corresponding attribute on the
other element exists, then no pair is built. The function item (third argument Function) is applied
separately to each pair in the sequence of pairs, resulting in an output that is a sequence of items.

Examples

· altova:for-each-matching-attribute-pair(/Example/Test-A, /Example/Test-B,

function($a, $b){$a+b}) returns ...

 (2, 4, 6) if
 <Test-A att1="1" att2="2" att3="3" />
 <Test-B att1="1" att2="2" att3="3" />

 (2, 4, 6) if
 <Test-A att2="2" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

 (2, 6) if
 <Test-A att4="4" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att3="1" />

1382 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· altova:for-each-matching-attribute-pair(/Example/Test-A, /Example/Test-B,

concat#2) returns ...

 (11, 22, 33) if
 <Test-A att1="1" att2="2" att3="3" />
 <Test-B att1="1" att2="2" att3="3" />

 (11, 33) if
 <Test-A att4="4" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

substitute-empty [altova:]

altova:substitute-empty(FirstSequence as item()*, SecondSequence as item()) as item()*

XP3.1 XQ3.1

If FirstSequence is empty, returns SecondSequence. If FirstSequence is not empty, returns
FirstSequence.

Examples

· altova:substitute-empty((1,2,3), (4,5,6)) returns (1,2,3)

· altova:substitute-empty((), (4,5,6)) returns (4,5,6)

19.2.2.1.8 XPath/XQuery Functions: String

Altova's string extension functions can be used in XPath and XQuery expressions and provide additional
functionality for the processing of data. The functions in this section can be used with Altova's XPath 3.0 and
XQuery 3.0 engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

camel-case [altova:]

altova:camel-case(InputString as xs:string) as xs:string XP3.1 XQ3.1

© 2018-2024 Altova GmbH

Engine Information 1383Appendices

Altova MapForce 2024 Professional Edition

Returns the input string InputString in CamelCase. The string is analyzed using the regular expression

'\s' (which is a shortcut for the whitespace character). The first non-whitespace character after a

whitespace or sequence of consecutive whitespaces is capitalized. The first character in the output string
is capitalized.

Examples

· altova:camel-case("max") returns Max

· altova:camel-case("max max") returns Max Max

· altova:camel-case("file01.xml") returns File01.xml

· altova:camel-case("file01.xml file02.xml") returns File01.xml File02.xml

· altova:camel-case("file01.xml file02.xml") returns File01.xml File02.xml

· altova:camel-case("file01.xml -file02.xml") returns File01.xml -file02.xml

altova:camel-case(InputString as xs:string, SplitChars as xs:string, IsRegex as

xs:boolean) as xs:string XP3.1 XQ3.1

Converts the input string InputString to camel case by using SplitChars to determine the character/s

that trigger the next capitalization. SplitChars is used as a regular expression when IsRegex = true(),

or as plain characters when IsRegex = false(). The first character in the output string is capitalized.

Examples

· altova:camel-case("setname getname", "set|get", true()) returns setName getName

· altova:camel-case("altova\documents\testcases", "\", false()) returns
Altova\Documents\Testcases

char [altova:]

altova:char(Position as xs:integer) as xs:string XP3.1 XQ3.1

Returns a string containing the character at the position specified by the Position argument, in the string
obtained by converting the value of the context item to xs:string. The result string will be empty if no
character exists at the index submitted by the Position argument.

Examples

If the context item is 1234ABCD:

· altova:char(2) returns 2

· altova:char(5) returns A

· altova:char(9) returns the empty string.

· altova:char(-2) returns the empty string.

altova:char(InputString as xs:string, Position as xs:integer) as xs:string XP3.1 XQ3.1

Returns a string containing the character at the position specified by the Position argument, in the string
submitted as the InputString argument. The result string will be empty if no character exists at the index
submitted by the Position argument.

Examples

· altova:char("2014-01-15", 5) returns -

· altova:char("USA", 1) returns U

· altova:char("USA", 10) returns the empty string.

· altova:char("USA", -2) returns the empty string.

1384 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

create-hash-from-string[altova:]

altova:create-hash-from-string(InputString as xs:string) as xs:string XP2 XQ1 XP3.1
XQ3.1

altova:create-hash-from-string(InputString as xs:string, HashAlgo as xs:string) as

xs:string XP2 XQ1 XP3.1 XQ3.1

Generates a hash string from InputString by using the hashing algorithm specified by the HashAlgo
argument. The following hashing algorithms may be specified (in upper or lower case): MD5, SHA-1, SHA-

224, SHA-256, SHA-384, SHA-512. If the second argument is not specified (see the first signature above),

then the SHA-256 hashing algorithm is used.

Examples

· altova:create-hash-from-string('abc') returns a hash string generated by using the SHA-256

hashing algorithm.
· altova:create-hash-from-string('abc', 'md5') returns a hash string generated by using the

MD5 hashing algorithm.

· altova:create-hash-from-string('abc', 'MD5') returns a hash string generated by using the

MD5 hashing algorithm.

first-chars [altova:]

altova:first-chars(X-Number as xs:integer) as xs:string XP3.1 XQ3.1

Returns a string containing the first X-Number of characters of the string obtained by converting the value
of the context item to xs:string.

Examples

If the context item is 1234ABCD:

· altova:first-chars(2) returns 12

· altova:first-chars(5) returns 1234A

· altova:first-chars(9) returns 1234ABCD

altova:first-chars(InputString as xs:string, X-Number as xs:integer) as xs:string XP3.1
XQ3.1

Returns a string containing the first X-Number of characters of the string submitted as the InputString
argument.

Examples

· altova:first-chars("2014-01-15", 5) returns 2014-

· altova:first-chars("USA", 1) returns U

format-string [altova:]

altova:format-string(InputString as xs:string, FormatSequence as item()*) as xs:string

XP3.1 XQ3.1

The input string (first argument) contains positional parameters (%1, %2, etc). Each parameter is replaced
by the string item that is located at the corresponding position in the format sequence (submitted as the
second argument). So the first item in the format sequence replaces the positional parameter %1, the
second item replaces %2, and so on. The function returns this formatted string that contains the
replacements. If no string exists for a positional parameter, then the positional parameter itself is returned.
This happens when the index of a positional parameter is greater than the number of items in the format
sequence.

© 2018-2024 Altova GmbH

Engine Information 1385Appendices

Altova MapForce 2024 Professional Edition

Examples

· altova:format-string('Hello %1, %2, %3', ('Jane','John','Joe')) returns "Hello

Jane, John, Joe"
· altova:format-string('Hello %1, %2, %3', ('Jane','John','Joe', 'Tom')) returns
"Hello Jane, John, Joe"

· altova:format-string('Hello %1, %2, %4', ('Jane','John','Joe', 'Tom')) returns
"Hello Jane, John, Tom"

· altova:format-string('Hello %1, %2, %4', ('Jane','John','Joe')) returns "Hello
Jane, John, %4"

last-chars [altova:]

altova:last-chars(X-Number as xs:integer) as xs:string XP3.1 XQ3.1

Returns a string containing the last X-Number of characters of the string obtained by converting the value
of the context item to xs:string.

Examples

If the context item is 1234ABCD:

· altova:last-chars(2) returns CD

· altova:last-chars(5) returns 4ABCD

· altova:last-chars(9) returns 1234ABCD

altova:last-chars(InputString as xs:string, X-Number as xs:integer) as xs:string XP3.1
XQ3.1

Returns a string containing the last X-Number of characters of the string submitted as the InputString
argument.

Examples

· altova:last-chars("2014-01-15", 5) returns 01-15

· altova:last-chars("USA", 10) returns USA

pad-string-left [altova:]

altova:pad-string-left(StringToPad as xs:string, StringLength as xs:integer,

PadCharacter as xs:string) as xs:string XP3.1 XQ3.1

The PadCharacter argument is a single character. It is padded to the left of the string to increase the
number of characters in StringToPad so that this number equals the integer value of the StringLength
argument. The StringLength argument can have any integer value (positive or negative), but padding will
occur only if the value of StringLength is greater than the number of characters in StringToPad. If
StringToPad. has more characters than the value of StringLength, then StringToPad is left unchanged.

Examples

· altova:pad-string-left('AP', 1, 'Z') returns 'AP'

· altova:pad-string-left('AP', 2, 'Z') returns 'AP'

· altova:pad-string-left('AP', 3, 'Z') returns 'ZAP'

· altova:pad-string-left('AP', 4, 'Z') returns 'ZZAP'

· altova:pad-string-left('AP', -3, 'Z') returns 'AP'

· altova:pad-string-left('AP', 3, 'YZ') returns a pad-character-too-long error

1386 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

pad-string-right [altova:]

altova:pad-string-right(StringToPad as xs:string, StringLength as xs:integer,

PadCharacter as xs:string) as xs:string XP3.1 XQ3.1

The PadCharacter argument is a single character. It is padded to the right of the string to increase the
number of characters in StringToPad so that this number equals the integer value of the StringLength
argument. The StringLength argument can have any integer value (positive or negative), but padding will
occur only if the value of StringLength is greater than the number of characters in StringToPad. If
StringToPad has more characters than the value of StringLength, then StringToPad is left unchanged.

Examples

· altova:pad-string-right('AP', 1, 'Z') returns 'AP'

· altova:pad-string-right('AP', 2, 'Z') returns 'AP'

· altova:pad-string-right('AP', 3, 'Z') returns 'APZ'

· altova:pad-string-right('AP', 4, 'Z') returns 'APZZ'

· altova:pad-string-right('AP', -3, 'Z') returns 'AP'

· altova:pad-string-right('AP', 3, 'YZ') returns a pad-character-too-long error

repeat-string [altova:]

altova:repeat-string(InputString as xs:string, Repeats as xs:integer) as xs:string XP2

XQ1 XP3.1 XQ3.1

Generates a string that is composed of the first InputString argument repeated Repeats number of
times.

Examples

· altova:repeat-string("Altova #", 3) returns "Altova #Altova #Altova #"

substring-after-last [altova:]

altova:substring-after-last(MainString as xs:string, CheckString as xs:string) as

xs:string XP3.1 XQ3.1

If CheckString is found in MainString, then the substring that occurs after CheckString in MainString
is returned. If CheckString is not found in MainString, then the empty string is returned. If CheckString
is an empty string, then MainString is returned in its entirety. If there is more than one occurrence of
CheckString in MainString, then the substring after the last occurrence of CheckString is returned.

Examples

· altova:substring-after-last('ABCDEFGH', 'B') returns 'CDEFGH'

· altova:substring-after-last('ABCDEFGH', 'BC') returns 'DEFGH'

· altova:substring-after-last('ABCDEFGH', 'BD') returns ''

· altova:substring-after-last('ABCDEFGH', 'Z') returns ''

· altova:substring-after-last('ABCDEFGH', '') returns 'ABCDEFGH'

· altova:substring-after-last('ABCD-ABCD', 'B') returns 'CD'

· altova:substring-after-last('ABCD-ABCD-ABCD', 'BCD') returns ''

substring-before-last [altova:]

altova:substring-before-last(MainString as xs:string, CheckString as xs:string) as

© 2018-2024 Altova GmbH

Engine Information 1387Appendices

Altova MapForce 2024 Professional Edition

xs:string XP3.1 XQ3.1

If CheckString is found in MainString, then the substring that occurs before CheckString in MainString
is returned. If CheckString is not found in MainString, or if CheckString is an empty string, then the
empty string is returned. If there is more than one occurrence of CheckString in MainString, then the
substring before the last occurrence of CheckString is returned.

Examples

· altova:substring-before-last('ABCDEFGH', 'B') returns 'A'

· altova:substring-before-last('ABCDEFGH', 'BC') returns 'A'

· altova:substring-before-last('ABCDEFGH', 'BD') returns ''

· altova:substring-before-last('ABCDEFGH', 'Z') returns ''

· altova:substring-before-last('ABCDEFGH', '') returns ''

· altova:substring-before-last('ABCD-ABCD', 'B') returns 'ABCD-A'

· altova:substring-before-last('ABCD-ABCD-ABCD', 'ABCD') returns 'ABCD-ABCD-'

substring-pos [altova:]

altova:substring-pos(StringToCheck as xs:string, StringToFind as xs:string) as

xs:integer XP3.1 XQ3.1

Returns the character position of the first occurrence of StringToFind in the string StringToCheck. The
character position is returned as an integer. The first character of StringToCheck has the position 1. If
StringToFind does not occur within StringToCheck, the integer 0 is returned. To check for the second or
a later occurrence of StringToCheck, use the next signature of this function.

Examples

· altova:substring-pos('Altova', 'to') returns 3

· altova:substring-pos('Altova', 'tov') returns 3

· altova:substring-pos('Altova', 'tv') returns 0

· altova:substring-pos('AltovaAltova', 'to') returns 3

altova:substring-pos(StringToCheck as xs:string, StringToFind as xs:string, Integer as

xs:integer) as xs:integer XP3.1 XQ3.1

Returns the character position of StringToFind in the string, StringToCheck. The search for
StringToFind starts from the character position given by the Integer argument; the character substring
before this position is not searched. The returned integer, however, is the position of the found string within
the entire string, StringToCheck. This signature is useful for finding the second or a later position of a
string that occurs multiple times with the StringToCheck. If StringToFind does not occur within
StringToCheck, the integer 0 is returned.

Examples

· altova:substring-pos('Altova', 'to', 1) returns 3

· altova:substring-pos('Altova', 'to', 3) returns 3

· altova:substring-pos('Altova', 'to', 4) returns 0

· altova:substring-pos('Altova-Altova', 'to', 0) returns 3

· altova:substring-pos('Altova-Altova', 'to', 4) returns 10

trim-string [altova:]

altova:trim-string(InputString as xs:string) as xs:string XP3.1 XQ3.1

This function takes an xs:string argument, removes any leading and trailing whitespace, and returns a

1388 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

"trimmed" xs:string.
Examples

· altova:trim-string(" Hello World ") returns "Hello World"

· altova:trim-string("Hello World ") returns "Hello World"

· altova:trim-string(" Hello World") returns "Hello World"

· altova:trim-string("Hello World") returns "Hello World"

· altova:trim-string("Hello World") returns "Hello World"

trim-string-left [altova:]

altova:trim-string-left(InputString as xs:string) as xs:string XP3.1 XQ3.1

This function takes an xs:string argument, removes any leading whitespace, and returns a left-trimmed
xs:string.

Examples

· altova:trim-string-left(" Hello World ") returns "Hello World "

· altova:trim-string-left("Hello World ") returns "Hello World "

· altova:trim-string-left(" Hello World") returns "Hello World"

· altova:trim-string-left("Hello World") returns "Hello World"

· altova:trim-string-left("Hello World") returns "Hello World"

trim-string-right [altova:]

altova:trim-string-right(InputString as xs:string) as xs:string XP3.1 XQ3.1

This function takes an xs:string argument, removes any trailing whitespace, and returns a right-trimmed
xs:string.

Examples

· altova:trim-string-right(" Hello World ")) returns " Hello World"

· altova:trim-string-right("Hello World ")) returns "Hello World"

· altova:trim-string-right(" Hello World")) returns " Hello World"

· altova:trim-string-right("Hello World")) returns "Hello World"

· altova:trim-string-right("Hello World")) returns "Hello World"

19.2.2.1.9 XPath/XQuery Functions: Miscellaneous

The following general purpose XPath/XQuery extension functions are supported in the current version of
MapForce and can be used in (i) XPath expressions in an XSLT context, or (ii) XQuery expressions in an
XQuery document.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

© 2018-2024 Altova GmbH

Engine Information 1389Appendices

Altova MapForce 2024 Professional Edition

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

decode-string [altova:]

altova:decode-string(Input as xs:base64Binary) as xs:string XP3.1 XQ3.1

altova:decode-string(Input as xs:base64Binary, Encoding as xs:string) as xs:string XP3.1

 XQ3.1

Decodes the submitted base64Binary input to a string using the specified encoding. If no encoding is
specified, then the UTF-8 encoding is used. The following encodings are supported: US-ASCII, ISO-
8859-1, UTF-16, UTF-16LE, UTF-16BE, ISO-10646-UCS2, UTF-32, UTF-32LE, UTF-32BE, ISO-
10646-UCS4

Examples

· altova:decode-string($XML1/MailData/Meta/b64B) returns the base64Binary input as a UTF-8

encoded string
· altova:decode-string($XML1/MailData/Meta/b64B, "UTF-8") returns the base64Binary

input as a UTF-8-encoded string
· altova:decode-string($XML1/MailData/Meta/b64B, "ISO-8859-1") returns the

base64Binary input as an ISO-8859-1-encoded string

encode-string [altova:]

altova:encode-string(InputString as xs:string) as xs:base64Binaryinteger XP3.1 XQ3.1

altova:encode-string(InputString as xs:string, Encoding as xs:string) as

xs:base64Binaryinteger XP3.1 XQ3.1

Encodes the submitted string using, if one is given, the specified encoding. If no encoding is given, then
the UTF-8 encoding is used. The encoded string is converted to base64Binary characters, and the
converted base64Binary value is returned. Initially, UTF-8 encoding is supported, and support will be
extended to the following encodings: US-ASCII, ISO-8859-1, UTF-16, UTF-16LE, UTF-16BE, ISO-
10646-UCS2, UTF-32, UTF-32LE, UTF-32BE, ISO-10646-UCS4

Examples

· altova:encode-string("Altova") returns the base64Binary equivalent of the UTF-8 encoded

string "Altova"
· altova:encode-string("Altova", "UTF-8") returns the base64Binary equivalent of the UTF-8

encoded string "Altova"

get-temp-folder [altova:]

altova:get-temp-folder() as xs:string XP2 XQ1 XP3.1 XQ3.1

1390 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

This function takes no argument. It returns the path to the temporary folder of the current user.
Examples

· altova:get-temp-folder() would return, on a Windows machine, something like C:

\Users\<UserName>\AppData\Local\Temp\ as an xs:string.

generate-guid [altova:]

altova:generate-guid() as xs:string XP2 XQ1 XP3.1 XQ3.1

Generates a unique string GUID string.
Examples

· altova:generate-guid() returns (for example) 85F971DA-17F3-4E4E-994E-99137873ACCD

high-res-timer [altova:]

altova:high-res-timer() as xs:double XP3.1 XQ3.1

Returns a system high-resolution timer value in seconds. A high-resolution timer, when present on a
system, enables high precision time measurements when these are required (for example, in animations
and for determining precise code-execution time). This function provides the resolution of the system's
high-res timer.

Examples

· altova:high-res-timer() returns something like '1.16766146154566E6'

parse-html [altova:]

altova:parse-html(HTMLText as xs:string) as node() XP3.1 XQ3.1

The HTMLText argument is a string that contains the text of an HTML document. The function creates an
HTML tree from the string. The submitted string may or may not contain the HTML element. In either case,
the root element of the tree is an element named HTML. It is best to make sure that the HTML code in the

submitted string is valid HTML.
Examples

· altova:parse-html("<html><head/><body><h1>Header</h1></body></html>") creates an

HTML tree from the submitted string

sleep[altova:]

altova:sleep(Millisecs as xs:integer) as empty-sequence() XP2 XQ1 XP3.1 XQ3.1

Suspends execution of the current operation for the number of milliseconds given by the Millisecs
argument.

Examples

· altova:sleep(1000) suspends execution of the current operation for 1000 milliseconds.

[Top]
1388

© 2018-2024 Altova GmbH

Engine Information 1391Appendices

Altova MapForce 2024 Professional Edition

19.2.2.2 Miscellaneous Extension Functions

There are several ready-made functions in programming languages such as Java and C# that are not available
as XQuery/XPath functions or as XSLT functions. A good example would be the math functions available in
Java, such as sin() and cos(). If these functions were available to the designers of XSLT stylesheets and
XQuery queries, it would increase the application area of stylesheets and queries and greatly simplify the tasks
of stylesheet creators. The XSLT and XQuery engines used in a number of Altova products support the use of
extension functions in Java and .NET , as well as MSXSL scripts for XSLT . This section describes
how to use extension functions and MSXSL scripts in your XSLT stylesheets and XQuery documents. The
available extension functions are organized into the following sections:

· Java Extension Functions
· .NET Extension Functions
· MSXSL Scripts for XSLT

The two main issues considered in the descriptions are: (i) how functions in the respective libraries are called;
and (ii) what rules are followed for converting arguments in a function call to the required input format of the
function, and what rules are followed for the return conversion (function result to XSLT/XQuery data object).

Requirements
For extension functions support, a Java Runtime Environment (for access to Java functions) and .NET
Framework 2.0 (minimum, for access to .NET functions) must be installed on the machine running the XSLT
transformation or XQuery execution, or must be accessible for the transformations.

19.2.2.2.1 Java Extension Functions

A Java extension function can be used within an XPath or XQuery expression to invoke a Java constructor or
call a Java method (static or instance).

A field in a Java class is considered to be a method without any argument. A field can be static or instance.
How to access fields is described in the respective sub-sections, static and instance.

This section is organized into the following sub-sections:

· Java: Constructors
· Java: Static Methods and Static Fields
· Java: Instance Methods and Instance Fields
· Datatypes: XPath/XQuery to Java
· Datatypes: Java to XPath/XQuery

Note the following
· If you are using an Altova desktop product, the Altova application attempts to detect the path to the

Java virtual machine automatically, by reading (in this order): (i) the Windows registry, and (ii) the
JAVA_HOME environment variable. You can also add a custom path in the Options dialog of the

application; this entry will take priority over any other Java VM path detected automatically.
· If you are running an Altova server product on a Windows machine, the path to the Java virtual machine

will be read first from the Windows registry; if this is not successful the JAVA_HOME environment

variable will be used.

1391 1400 1406

1391

1400

1406

1396

1397

1398

1398

1399

1392 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

· If you are running an Altova server product on a Linux or macOS machine, then make sure that the
JAVA_HOME environment variable is properly set and that the Java Virtual Machines library (on Windows,

the jvm.dll file) can be located in either the \bin\server or \bin\client directory.

Form of the extension function
The extension function in the XPath/XQuery expression must have the form prefix:fname().

· The prefix: part identifies the extension function as a Java function. It does so by associating the
extension function with an in-scope namespace declaration, the URI of which must begin with java:
(see below for examples). The namespace declaration should identify a Java class, for example:
xmlns:myns="java:java.lang.Math". However, it could also simply be:
xmlns:myns="java" (without a colon), with the identification of the Java class being left to the fname()
part of the extension function.

· The fname() part identifies the Java method being called, and supplies the arguments for the method
(see below for examples). However, if the namespace URI identified by the prefix: part does not
identify a Java class (see preceding point), then the Java class should be identified in the fname() part,
before the class and separated from the class by a period (see the second XSLT example below).

Note: The class being called must be on the classpath of the machine.

XSLT example
Here are two examples of how a static method can be called. In the first example, the class name
(java.lang.Math) is included in the namespace URI and, therefore, must not be in the fname() part. In the
second example, the prefix: part supplies the prefix java: while the fname() part identifies the class as well
as the method.

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(3.14)" />

<xsl:value-of xmlns:jmath="java"
select="jmath:java.lang.Math.cos(3.14)" />

The method named in the extension function (cos() in the example above) must match the name of a public
static method in the named Java class (java.lang.Math in the example above).

XQuery example
Here is an XQuery example similar to the XSLT example above:

<cosine xmlns:jMath="java:java.lang.Math">

 {jMath:cos(3.14)}

</cosine>

User-defined Java classes
If you have created your own Java classes, methods in these classes are called differently according to: (i)
whether the classes are accessed via a JAR file or a class file, and (ii) whether these files (JAR or class) are
located in the current directory (the same directory as the XSLT or XQuery document) or not. How to locate
these files is described in the sections User-Defined Class Files and User-Defined Jar Files . Note that
paths to class files not in the current directory and to all JAR files must be specified.

1393 1395

© 2018-2024 Altova GmbH

Engine Information 1393Appendices

Altova MapForce 2024 Professional Edition

19.2.2.2.1.1 User-Defined Class Files

If access is via a class file, then there are four possibilities:

· The class file is in a package. The XSLT or XQuery file is in the same folder as the Java package. (See
example below .)

· The class file is not packaged. The XSLT or XQuery file is in the same folder as the class file. (See
example below .)

· The class file is in a package. The XSLT or XQuery file is at some random location. (See example
below .)

· The class file is not packaged. The XSLT or XQuery file is at some random location. (See example
below .)

Consider the case where the class file is not packaged and is in the same folder as the XSLT or XQuery
document. In this case, since all classes in the folder are found, the file location does not need to be specified.
The syntax to identify a class is:

java:classname

where

java: indicates that a user-defined Java function is being called; (Java classes in the current directory
will be loaded by default)

classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a method call.

Class file packaged, XSLT/XQuery file in same folder as Java package
The example below calls the getVehicleType()method of the Car class of the com.altova.extfunc package.
The com.altova.extfunc package is in the folder JavaProject. The XSLT file is also in the folder
JavaProject.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:com.altova.extfunc.Car" >

<xsl:output exclude-result-prefixes="fn car xsl fo xs"/>

<xsl:template match="/">
 <a>

 <xsl:value-of select="car:getVehicleType()"/>

</xsl:template>

</xsl:stylesheet>

1393

1394

1394

1395

1394 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Class file referenced, XSLT/XQuery file in same folder as class file
The example below calls the getVehicleType()method of the Car class. Let us say that: (i) the Car class file
is in the following folder: JavaProject/com/altova/extfunc, and (ii) that this folder is the current folder in the
example below. The XSLT file is also in the folder JavaProject/com/altova/extfunc.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:Car" >

<xsl:output exclude-result-prefixes="fn car xsl fo xs"/>

<xsl:template match="/">
 <a>

 <xsl:value-of select="car:getVehicleType()"/>

</xsl:template>

</xsl:stylesheet>

Class file packaged, XSLT/XQuery file at any location
The example below calls the getCarColor()method of the Car class of the com.altova.extfunc package.
The com.altova.extfunc package is in the folder JavaProject. The XSLT file is at any location. In this case,
the location of the package must be specified within the URI as a query string. The syntax is:

java:classname[?path=uri-of-package]

where

java: indicates that a user-defined Java function is being called
uri-of-package is the URI of the Java package
classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a method call. The
example below shows how to access a class file that is located in another directory than the current
directory.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:com.altova.extfunc.Car?path=file:///C:/JavaProject/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:new('red')" />

 <a><xsl:value-of select="car:getCarColor($myCar)"/>

</xsl:template>

© 2018-2024 Altova GmbH

Engine Information 1395Appendices

Altova MapForce 2024 Professional Edition

</xsl:stylesheet>

Class file referenced, XSLT/XQuery file at any location
The example below calls the getCarColor()method of the Car class. Let us say that the Car class file is in
the folder C:/JavaProject/com/altova/extfunc, and the XSLT file is at any location. The location of the
class file must then be specified within the namespace URI as a query string. The syntax is:

java:classname[?path=<uri-of-classfile>]

where

java: indicates that a user-defined Java function is being called
uri-of-classfile is the URI of the folder containing the class file
classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a method call. The
example below shows how to access a class file that is located in another directory than the current
directory.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:Car?path=file:///C:/JavaProject/com/altova/extfunc/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:new('red')" />

 <a><xsl:value-of select="car:getCarColor($myCar)"/>

</xsl:template>

</xsl:stylesheet>

Note: When a path is supplied via the extension function, the path is added to the ClassLoader.

19.2.2.2.1.2 User-Defined Jar Files

If access is via a JAR file, the URI of the JAR file must be specified using the following syntax:

xmlns:classNS="java:classname?path=jar:uri-of-jarfile!/"

The method is then called by using the prefix of the namespace URI that identifies the class:
classNS:method()

In the above:

java: indicates that a Java function is being called
classname is the name of the user-defined class

1396 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

? is the separator between the classname and the path
path=jar: indicates that a path to a JAR file is being given
uri-of-jarfile is the URI of the jar file
!/ is the end delimiter of the path
classNS:method() is the call to the method

Alternatively, the classname can be given with the method call. Here are two examples of the syntax:

xmlns:ns1="java:docx.layout.pages?path=jar:file:///c:/projects/docs/docx.jar!/"
ns1:main()

xmlns:ns2="java?path=jar:file:///c:/projects/docs/docx.jar!/"
ns2:docx.layout.pages.main()

Here is a complete XSLT example that uses a JAR file to call a Java extension function:

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java?path=jar:file:///C:/test/Car1.jar!/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:Car1.new('red')" />

 <a><xsl:value-of select="car:Car1.getCarColor($myCar)"/>

</xsl:template>

<xsl:template match="car"/>

</xsl:stylesheet>

Note: When a path is supplied via the extension function, the path is added to the ClassLoader.

19.2.2.2.1.3 Java: Constructors

An extension function can be used to call a Java constructor. All constructors are called with the pseudo-
function new().

If the result of a Java constructor call can be implicitly converted to XPath/XQuery datatypes , then the Java
extension function will return a sequence that is an XPath/XQuery datatype. If the result of a Java constructor
call cannot be converted to a suitable XPath/XQuery datatype, then the constructor creates a wrapped Java
object with a type that is the name of the class returning that Java object. For example, if a constructor for the
class java.util.Date is called (java.util.Date.new()), then an object having a type java.util.Date is
returned. The lexical format of the returned object may not match the lexical format of an XPath datatype and
the value would therefore need to be converted to the lexical format of the required XPath datatype and then to
the required XPath datatype.

There are two things that can be done with a Java object created by a constructor:

1399

© 2018-2024 Altova GmbH

Engine Information 1397Appendices

Altova MapForce 2024 Professional Edition

· It can be assigned to a variable:
<xsl:variable name="currentdate" select="date:new()"
xmlns:date="java:java.util.Date" />

· It can be passed to an extension function (see Instance Method and Instance Fields):
<xsl:value-of select="date:toString(date:new())" xmlns:date="java:java.util.Date" />

19.2.2.2.1.4 Java: Static Methods and Static Fields

A static method is called directly by its Java name and by supplying the arguments for the method. Static
fields (methods that take no arguments), such as the constant-value fields E and PI, are accessed without
specifying any argument.

XSLT examples
Here are some examples of how static methods and fields can be called:

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(3.14)" />

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(jMath:PI())" />

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:E() * jMath:cos(3.14)" />

Notice that the extension functions above have the form prefix:fname(). The prefix in all three cases is
jMath:, which is associated with the namespace URI java:java.lang.Math. (The namespace URI must
begin with java:. In the examples above it is extended to contain the class name (java.lang.Math).) The
fname() part of the extension functions must match the name of a public class (e.g. java.lang.Math) followed
by the name of a public static method with its argument/s (such as cos(3.14)) or a public static field (such as
PI()).

In the examples above, the class name has been included in the namespace URI. If it were not contained in the
namespace URI, then it would have to be included in the fname() part of the extension function. For example:

<xsl:value-of xmlns:java="java:"
select="java:java.lang.Math.cos(3.14)" />

XQuery example
A similar example in XQuery would be:

<cosine xmlns:jMath="java:java.lang.Math">

 {jMath:cos(3.14)}

</cosine>

1398

1398 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

19.2.2.2.1.5 Java: Instance Methods and Instance Fields

An instance method has a Java object passed to it as the first argument of the method call. Such a Java object
typically would be created by using an extension function (for example a constructor call) or a stylesheet
parameter/variable. An XSLT example of this kind would be:

<xsl:stylesheet version="1.0" exclude-result-prefixes="date"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:date="java:java.util.Date"
 xmlns:jlang="java:java.lang">
 <xsl:param name="CurrentDate" select="date:new()"/>

 <xsl:template match="/">
 <enrollment institution-id="Altova School"
 date="{date:toString($CurrentDate)}"

 type="{jlang:Object.toString(jlang:Object.getClass(date:new()))}">

 </enrollment>
 </xsl:template>
</xsl:stylesheet>

In the example above, the value of the node enrollment/@type is created as follows:

1. An object is created with a constructor for the class java.util.Date (with the date:new()
constructor).

2. This Java object is passed as the argument of the jlang.Object.getClass method.
3. The object obtained by the getClass method is passed as the argument to the

jlang.Object.toString method.

The result (the value of @type) will be a string having the value: java.util.Date.

An instance field is theoretically different from an instance method in that it is not a Java object per se that is
passed as an argument to the instance field. Instead, a parameter or variable is passed as the argument.
However, the parameter/variable may itself contain the value returned by a Java object. For example, the
parameter CurrentDate takes the value returned by a constructor for the class java.util.Date. This value is
then passed as an argument to the instance method date:toString in order to supply the value
of /enrollment/@date.

19.2.2.2.1.6 Datatypes: XPath/XQuery to Java

When a Java function is called from within an XPath/XQuery expression, the datatype of the function's
arguments is important in determining which of multiple Java classes having the same name is called.

In Java, the following rules are followed:

· If there is more than one Java method with the same name, but each has a different number of
arguments than the other/s, then the Java method that best matches the number of arguments in the
function call is selected.

· The XPath/XQuery string, number, and boolean datatypes (see list below) are implicitly converted to a
corresponding Java datatype. If the supplied XPath/XQuery type can be converted to more than one
Java type (for example, xs:integer), then that Java type is selected which is declared for the selected

© 2018-2024 Altova GmbH

Engine Information 1399Appendices

Altova MapForce 2024 Professional Edition

method. For example, if the Java method being called is fx(decimal) and the supplied XPath/XQuery
datatype is xs:integer, then xs:integer will be converted to Java's decimal datatype.

The table below lists the implicit conversions of XPath/XQuery string, number, and boolean types to Java
datatypes.

xs:string java.lang.String

xs:boolean boolean (primitive), java.lang.Boolean

xs:integer int, long, short, byte, float, double, and the
wrapper classes of these, such as
java.lang.Integer

xs:float float (primitive), java.lang.Float, double
(primitive)

xs:double double (primitive), java.lang.Double

xs:decimal float (primitive), java.lang.Float,
double(primitive), java.lang.Double

Subtypes of the XML Schema datatypes listed above (and which are used in XPath and XQuery) will also be
converted to the Java type/s corresponding to that subtype's ancestor type.

In some cases, it might not be possible to select the correct Java method based on the supplied information.
For example, consider the following case.

· The supplied argument is an xs:untypedAtomic value of 10 and it is intended for the method
mymethod(float).

· However, there is another method in the class which takes an argument of another datatype:
mymethod(double).

· Since the method names are the same and the supplied type (xs:untypedAtomic) could be converted
correctly to either float or double, it is possible that xs:untypedAtomic is converted to double
instead of float.

· Consequently the method selected will not be the required method and might not produce the expected
result. To work around this, you can create a user-defined method with a different name and use this
method.

Types that are not covered in the list above (for example xs:date) will not be converted and will generate an
error. However, note that in some cases, it might be possible to create the required Java type by using a Java
constructor.

19.2.2.2.1.7 Datatypes: Java to XPath/XQuery

When a Java method returns a value, the datatype of the value is a string, numeric or boolean type, then it is
converted to the corresponding XPath/XQuery type. For example, Java's java.lang.Boolean and boolean
datatypes are converted to xsd:boolean.

One-dimensional arrays returned by functions are expanded to a sequence. Multi-dimensional arrays will not be
converted, and should therefore be wrapped.

1400 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

When a wrapped Java object or a datatype other than string, numeric or boolean is returned, you can ensure
conversion to the required XPath/XQuery type by first using a Java method (e.g toString) to convert the Java
object to a string. In XPath/XQuery, the string can be modified to fit the lexical representation of the required
type and then converted to the required type (for example, by using the cast as expression).

19.2.2.2.2 .NET Extension Functions

If you are working on the .NET platform on a Windows machine, you can use extension functions written in any
of the .NET languages (for example, C#). A .NET extension function can be used within an XPath or XQuery
expression to invoke a constructor, property, or method (static or instance) within a .NET class.

A property of a .NET class is called using the syntax get_PropertyName().

This section is organized into the following sub-sections:

· .NET: Constructors
· .NET: Static Methods and Static Fields
· .NET: Instance Methods and Instance Fields
· Datatypes: XPath/XQuery to .NET
· Datatypes: .NET to XPath/XQuery

Form of the extension function
The extension function in the XPath/XQuery expression must have the form prefix:fname().

· The prefix: part is associated with a URI that identifies the .NET class being addressed.
· The fname() part identifies the constructor, property, or method (static or instance) within the .NET

class, and supplies any argument/s, if required.
· The URI must begin with clitype: (which identifies the function as being a .NET extension function).
· The prefix:fname() form of the extension function can be used with system classes and with

classes in a loaded assembly. However, if a class needs to be loaded, additional parameters
containing the required information will have to be supplied.

Parameters
To load an assembly, the following parameters are used:

asm The name of the assembly to be loaded.

ver The version number (maximum of four integers separated by periods).

sn The key token of the assembly's strong name (16 hex digits).

from A URI that gives the location of the assembly (DLL) to be loaded. If the
URI is relative, it is relative to the XSLT or XQuery document. If this
parameter is present, any other parameter is ignored.

partialname The partial name of the assembly. It is supplied to
Assembly.LoadWith.PartialName(), which will attempt to load the
assembly. If partialname is present, any other parameter is ignored.

1402

1403

1403

1404

1405

© 2018-2024 Altova GmbH

Engine Information 1401Appendices

Altova MapForce 2024 Professional Edition

loc The locale, for example, en-US. The default is neutral.

If the assembly is to be loaded from a DLL, use the from parameter and omit the sn parameter. If the
assembly is to be loaded from the Global Assembly Cache (GAC), use the sn parameter and omit the from
parameter.

A question mark must be inserted before the first parameter, and parameters must be separated by a semi-
colon. The parameter name gives its value with an equals sign (see example below).

Examples of namespace declarations
An example of a namespace declaration in XSLT that identifies the system class System.Environment:

xmlns:myns="clitype:System.Environment"

An example of a namespace declaration in XSLT that identifies the class to be loaded as
Trade.Forward.Scrip:

xmlns:myns="clitype:Trade.Forward.Scrip?asm=forward;version=10.6.2.1"

An example of a namespace declaration in XQuery that identifies the system class
MyManagedDLL.testClass:. Two cases are distinguished:

1. When the assembly is loaded from the GAC:
declare namespace cs="clitype:MyManagedDLL.testClass?asm=MyManagedDLL;

ver=1.2.3.4;loc=neutral;sn=b9f091b72dccfba8";

2. When the assembly is loaded from the DLL (complete and partial references below):
declare namespace cs="clitype:MyManagedDLL.testClass?from=file:///C:/Altova
Projects/extFunctions/MyManagedDLL.dll;

declare namespace cs="clitype:MyManagedDLL.testClass?from=MyManagedDLL.dll;

XSLT example
Here is a complete XSLT example that calls functions in system class System.Math:

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions">
 <xsl:output method="xml" omit-xml-declaration="yes" />
 <xsl:template match="/">
 <math xmlns:math="clitype:System.Math">

 <sqrt><xsl:value-of select="math:Sqrt(9)"/></sqrt>

 <pi><xsl:value-of select="math:PI()"/></pi>

 <e><xsl:value-of select="math:E()"/></e>

 <pow><xsl:value-of select="math:Pow(math:PI(), math:E())"/></pow>

 </math>
 </xsl:template>
</xsl:stylesheet>

1402 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

The namespace declaration on the element math associates the prefix math: with the URI
clitype:System.Math. The clitype: beginning of the URI indicates that what follows identifies either a
system class or a loaded class. The math: prefix in the XPath expressions associates the extension functions
with the URI (and, by extension, the class) System.Math. The extension functions identify methods in the class
System.Math and supply arguments where required.

XQuery example
Here is an XQuery example fragment similar to the XSLT example above:

<math xmlns:math="clitype:System.Math">

 {math:Sqrt(9)}

</math>

As with the XSLT example above, the namespace declaration identifies the .NET class, in this case a system
class. The XQuery expression identifies the method to be called and supplies the argument.

19.2.2.2.2.1 .NET: Constructors

An extension function can be used to call a .NET constructor. All constructors are called with the pseudo-
function new(). If there is more than one constructor for a class, then the constructor that most closely
matches the number of arguments supplied is selected. If no constructor is deemed to match the supplied
argument/s, then a 'No constructor found' error is returned.

Constructors that return XPath/XQuery datatypes
If the result of a .NET constructor call can be implicitly converted to XPath/XQuery datatypes , then the .NET
extension function will return a sequence that is an XPath/XQuery datatype.

Constructors that return .NET objects
If the result of a .NET constructor call cannot be converted to a suitable XPath/XQuery datatype, then the
constructor creates a wrapped .NET object with a type that is the name of the class returning that object. For
example, if a constructor for the class System.DateTime is called (with System.DateTime.new()), then an
object having a type System.DateTime is returned.

The lexical format of the returned object may not match the lexical format of a required XPath datatype. In such
cases, the returned value would need to be: (i) converted to the lexical format of the required XPath datatype;
and (ii) cast to the required XPath datatype.

There are three things that can be done with a .NET object created by a constructor:

· It can be used within a variable:
<xsl:variable name="currentdate" select="date:new(2008, 4, 29)"

xmlns:date="clitype:System.DateTime" />

· It can be passed to an extension function (see Instance Method and Instance Fields):
<xsl:value-of select="date:ToString(date:new(2008, 4, 29))"

xmlns:date="clitype:System.DateTime" />
· It can be converted to a string, number, or boolean:

1399

1398

© 2018-2024 Altova GmbH

Engine Information 1403Appendices

Altova MapForce 2024 Professional Edition

· <xsl:value-of select="xs:integer(date:get_Month(date:new(2008, 4, 29)))"

xmlns:date="clitype:System.DateTime" />

19.2.2.2.2.2 .NET: Static Methods and Static Fields

A static method is called directly by its name and by supplying the arguments for the method. The name used
in the call must exactly match a public static method in the class specified. If the method name and the
number of arguments that were given in the function call matches more than one method in a class, then the
types of the supplied arguments are evaluated for the best match. If a match cannot be found unambiguously,
an error is reported.

Note: A field in a .NET class is considered to be a method without any argument. A property is called using
the syntax get_PropertyName().

Examples
An XSLT example showing a call to a method with one argument (System.Math.Sin(arg)):
<xsl:value-of select="math:Sin(30)" xmlns:math="clitype:System.Math"/>

An XSLT example showing a call to a field (considered a method with no argument)
(System.Double.MaxValue()):
<xsl:value-of select="double:MaxValue()" xmlns:double="clitype:System.Double"/>

An XSLT example showing a call to a property (syntax is get_PropertyName()) (System.String()):
<xsl:value-of select="string:get_Length('my string')"
xmlns:string="clitype:System.String"/>

An XQuery example showing a call to a method with one argument (System.Math.Sin(arg)):
<sin xmlns:math="clitype:System.Math">
 { math:Sin(30) }
</sin>

19.2.2.2.2.3 .NET: Instance Methods and Instance Fields

An instance method has a .NET object passed to it as the first argument of the method call. This .NET object
typically would be created by using an extension function (for example a constructor call) or a stylesheet
parameter/variable. An XSLT example of this kind would be:

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions">
 <xsl:output method="xml" omit-xml-declaration="yes"/>
 <xsl:template match="/">
 <xsl:variable name="releasedate"

 select="date:new(2008, 4, 29)"

1404 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

 xmlns:date="clitype:System.DateTime"/>

 <doc>
 <date>
 <xsl:value-of select="date:ToString(date:new(2008, 4, 29))"

 xmlns:date="clitype:System.DateTime"/>

 </date>
 <date>
 <xsl:value-of select="date:ToString($releasedate)"

 xmlns:date="clitype:System.DateTime"/>

 </date>
 </doc>
 </xsl:template>
</xsl:stylesheet>

In the example above, a System.DateTime constructor (new(2008, 4, 29)) is used to create a .NET object of
type System.DateTime. This object is created twice, once as the value of the variable releasedate, a second
time as the first and only argument of the System.DateTime.ToString() method. The instance method
System.DateTime.ToString() is called twice, both times with the System.DateTime constructor (new(2008,
4, 29)) as its first and only argument. In one of these instances, the variable releasedate is used to get the
.NET object.

Instance methods and instance fields
The difference between an instance method and an instance field is theoretical. In an instance method, a .NET
object is directly passed as an argument; in an instance field, a parameter or variable is passed instead—
though the parameter or variable may itself contain a .NET object. For example, in the example above, the
variable releasedate contains a .NET object, and it is this variable that is passed as the argument of
ToString() in the second date element constructor. Therefore, the ToString() instance in the first date
element is an instance method while the second is considered to be an instance field. The result produced in
both instances, however, is the same.

19.2.2.2.2.4 Datatypes: XPath/XQuery to .NET

When a .NET extension function is used within an XPath/XQuery expression, the datatypes of the function's
arguments are important for determining which one of multiple .NET methods having the same name is called.

In .NET, the following rules are followed:

· If there is more than one method with the same name in a class, then the methods available for
selection are reduced to those that have the same number of arguments as the function call.

· The XPath/XQuery string, number, and boolean datatypes (see list below) are implicitly converted to a
corresponding .NET datatype. If the supplied XPath/XQuery type can be converted to more than one
.NET type (for example, xs:integer), then that .NET type is selected which is declared for the
selected method. For example, if the .NET method being called is fx(double) and the supplied
XPath/XQuery datatype is xs:integer, then xs:integer will be converted to .NET's double datatype.

The table below lists the implicit conversions of XPath/XQuery string, number, and boolean types to .NET
datatypes.

© 2018-2024 Altova GmbH

Engine Information 1405Appendices

Altova MapForce 2024 Professional Edition

xs:string StringValue, string

xs:boolean BooleanValue, bool

xs:integer IntegerValue, decimal, long, integer,
short, byte, double, float

xs:float FloatValue, float, double

xs:double DoubleValue, double

xs:decimal DecimalValue, decimal, double, float

Subtypes of the XML Schema datatypes listed above (and which are used in XPath and XQuery) will also be
converted to the .NET type/s corresponding to that subtype's ancestor type.

In some cases, it might not be possible to select the correct .NET method based on the supplied information.
For example, consider the following case.

· The supplied argument is an xs:untypedAtomic value of 10 and it is intended for the method
mymethod(float).

· However, there is another method in the class which takes an argument of another datatype:
mymethod(double).

· Since the method names are the same and the supplied type (xs:untypedAtomic) could be converted
correctly to either float or double, it is possible that xs:untypedAtomic is converted to double
instead of float.

· Consequently the method selected will not be the required method and might not produce the expected
result. To work around this, you can create a user-defined method with a different name and use this
method.

Types that are not covered in the list above (for example xs:date) will not be converted and will generate an
error.

19.2.2.2.2.5 Datatypes: .NET to XPath/XQuery

When a .NET method returns a value and the datatype of the value is a string, numeric or boolean type, then it
is converted to the corresponding XPath/XQuery type. For example, .NET's decimal datatype is converted to
xsd:decimal.

When a .NET object or a datatype other than string, numeric or boolean is returned, you can ensure conversion
to the required XPath/XQuery type by first using a .NET method (for example System.DateTime.ToString())
to convert the .NET object to a string. In XPath/XQuery, the string can be modified to fit the lexical
representation of the required type and then converted to the required type (for example, by using the cast as
expression).

1406 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

19.2.2.2.3 MSXSL Scripts for XSLT

The <msxsl:script> element contains user-defined functions and variables that can be called from within
XPath expressions in the XSLT stylesheet. The <msxsl:script> is a top-level element, that is, it must be a
child element of <xsl:stylesheet> or <xsl:transform>.

The <msxsl:script> element must be in the namespace urn:schemas-microsoft-com:xslt (see example
below).

Scripting language and namespace
The scripting language used within the block is specified in the <msxsl:script> element's language attribute
and the namespace to be used for function calls from XPath expressions is identified with the implements-
prefix attribute (see below).

<msxsl:script language="scripting-language" implements-prefix="user-namespace-prefix">

 function-1 or variable-1
 ...
 function-n or variable-n

</msxsl:script>

The <msxsl:script> element interacts with the Windows Scripting Runtime, so only languages that are
installed on your machine may be used within the <msxsl:script> element. The .NET Framework 2.0
platform or higher must be installed for MSXSL scripts to be used. Consequently, the .NET scripting
languages can be used within the <msxsl:script> element.

The language attribute accepts the same values as the language attribute on the HTML <script> element. If
the language attribute is not specified, then Microsoft JScript is assumed as the default.

The implements-prefix attribute takes a value that is a prefix of a declared in-scope namespace. This
namespace typically will be a user namespace that has been reserved for a function library. All functions and
variables defined within the <msxsl:script> element will be in the namespace identified by the prefix specified
in the implements-prefix attribute. When a function is called from within an XPath expression, the fully
qualified function name must be in the same namespace as the function definition.

Example
Here is an example of a complete XSLT stylesheet that uses a function defined within a <msxsl:script>
element.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt"
 xmlns:user="http://mycompany.com/mynamespace">

 <msxsl:script language="VBScript" implements-prefix="user">

 <![CDATA[

 ' Input: A currency value: the wholesale price

© 2018-2024 Altova GmbH

Engine Information 1407Appendices

Altova MapForce 2024 Professional Edition

 ' Returns: The retail price: the input value plus 20% margin,

 ' rounded to the nearest cent

 dim a as integer = 13

 Function AddMargin(WholesalePrice) as integer

 AddMargin = WholesalePrice * 1.2 + a

 End Function

]]>

 </msxsl:script>

 <xsl:template match="/">

 <html>

 <body>

 <p>

 Total Retail Price =

 $<xsl:value-of select="user:AddMargin(50)"/>

 Total Wholesale Price =

 $<xsl:value-of select="50"/>

 </p>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

Datatypes
The values of parameters passed into and out of the script block are limited to XPath datatypes. This restriction
does not apply to data passed among functions and variables within the script block.

Assemblies
An assembly can be imported into the script by using the msxsl:assembly element. The assembly is identified

via a name or a URI. The assembly is imported when the stylesheet is compiled. Here is a simple
representation of how the msxsl:assembly element is to be used.

<msxsl:script>
<msxsl:assembly name="myAssembly.assemblyName" />
<msxsl:assembly href="pathToAssembly" />

...

</msxsl:script>

The assembly name can be a full name, such as:

"system.Math, Version=3.1.4500.1 Culture=neutral PublicKeyToken=a46b3f648229c514"

or a short name, such as "myAssembly.Draw".

1408 Appendices Engine Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Namespaces
Namespaces can be declared with the msxsl:using element. This enables assembly classes to be written in

the script without their namespaces, thus saving you some tedious typing. Here is how the msxsl:using
element is used so as to declare namespaces.

<msxsl:script>
<msxsl:using namespace="myAssemblyNS.NamespaceName" />

...

</msxsl:script>

The value of the namespace attribute is the name of the namespace.

© 2018-2024 Altova GmbH

Technical Data 1409Appendices

Altova MapForce 2024 Professional Edition

19.3 Technical Data

This section contains information on some technical aspects of your software. This information is organized
into the following sections:

· OS and Memory Requirements
· Altova Engines
· Unicode Support
· Internet Usage

19.3.1 OS and Memory Requirements

Operating System
Altova software applications are available for the following platforms:

· Windows 10, Windows 11
· Windows Server 2016 or newer

Memory
Since the software is written in C++ it does not require the overhead of a Java Runtime Environment and
typically requires less memory than comparable Java-based applications. However, each document is loaded
fully into memory so as to parse it completely and to improve viewing and editing speed. As a result, the
memory requirement increases with the size of the document.

Memory requirements are also influenced by the unlimited Undo history. When repeatedly cutting and pasting
large selections in large documents, available memory can rapidly be depleted.

19.3.2 Altova Engines

XML Validator
When opening an XML document, the application uses its built-in XML validator to check for well-formedness,
to validate the document against a schema (if specified), and to build trees and infosets. The XML validator is
also used to provide intelligent editing help while you edit documents and to dynamically display any validation
error that may occur.

The built-in XML validator implements the Final Recommendation of the W3C's XML Schema 1.0 and 1.1
specifications. New developments recommended by the W3C's XML Schema Working Group are continuously
being incorporated in the XML validator, so that Altova products give you a state-of-the-art development
environment.

XSLT and XQuery Engines
Altova products use the Altova XSLT 1.0, 2.0, and 3.0 Engines and the Altova XQuery 1.0 and 3.1 Engines. If
one of these engines is included in the product, then documentation about implementation-specific behavior for
each engine is given in the appendices of the documentation.

1409

1409

1410

1410

1410 Appendices Technical Data

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

Note: Altova MapForce generates code using the XSLT 1.0, 2.0 and XQuery 1.0 engines.

19.3.3 Unicode Support

Altova's XML products provide full Unicode support. To edit an XML document, you will also need a font that
supports the Unicode characters being used by that document.

Please note that most fonts only contain a very specific subset of the entire Unicode range and are therefore
typically targeted at the corresponding writing system. If some text appears garbled, the reason could be that
the font you have selected does not contain the required glyphs. So it is useful to have a font that covers the
entire Unicode range, especially when editing XML documents in different languages or writing systems. A
typical Unicode font found on Windows PCs is Arial Unicode MS.

In the /Examples folder of your application folder you will find an XHTML file called UnicodeUTF-8.html that
contains the following sentence in a number of different languages and writing systems:

· When the world wants to talk , it speaks Unicode
· Wenn die Welt miteinander spricht, spricht sie Unicode

·)

Opening this XHTML file will give you a quick impression of Unicode's possibilities and also indicate what
writing systems are supported by the fonts available on your PC.

19.3.4 Internet Usage

Altova applications will initiate Internet connections on your behalf in the following situations:

· If you click the "Request evaluation key-code" in the Registration dialog (Help | Software Activation),
the three fields in the registration dialog box are transferred to our web server by means of a regular
http (port 80) connection and the free evaluation key-code is sent back to the customer via regular
SMTP e-mail.

· In some Altova products, you can open a file over the Internet (File | Open | Switch to URL). In this
case, the document is retrieved using one of the following protocol methods and connections: HTTP
(normally port 80), FTP (normally port 20/21), HTTPS (normally port 443). You could also run an HTTP
server on port 8080. (In the URL dialog, specify the port after the server name and a colon.)

· If you open an XML document that refers to an XML Schema or DTD and the document is specified
through a URL, the referenced schema document is also retrieved through a HTTP connection (port 80)
or another protocol specified in the URL (see Point 2 above). A schema document will also be retrieved
when an XML file is validated. Note that validation might happen automatically upon opening a
document if you have instructed the application to do this (in the File tab of the Options dialog (Tools |
Options)).

· In Altova applications using WSDL and SOAP, web service connections are defined by the WSDL
documents.

· If you are using the Send by Mail command (File | Send by Mail) in XMLSpy, the current selection
or file is sent by means of any MAPI-compliant mail program installed on the user's PC.

· As part of Software Activation and LiveUpdate as further described in the Altova Software License
Agreement.

© 2018-2024 Altova GmbH

License Information 1411Appendices

Altova MapForce 2024 Professional Edition

19.4 License Information

This section contains information about:

· the distribution of this software product
· software activation and license metering
· the license agreement governing the use of this product

Please read this information carefully. It is binding upon you since you agreed to these terms when you
installed this software product.

To view the terms of any Altova license, go to the Altova Legal Information page at the Altova website.

19.4.1 Electronic Software Distribution

This product is available through electronic software distribution, a distribution method that provides the
following unique benefits:

· You can evaluate the software free-of-charge for 30 days before making a purchasing decision. (Note:
Altova MobileTogether Designer is licensed free of charge.)

· Once you decide to buy the software, you can place your order online at the Altova website and get a
fully licensed product within minutes.

· When you place an online order, you always get the latest version of our software.
· The product package includes an onscreen help system that can be accessed from within the

application interface. The latest version of the user manual is available at www.altova.com in (i) HTML
format for online browsing, and (ii) PDF format for download (and to print if you prefer to have the
documentation on paper).

30-day evaluation period
After downloading this product, you can evaluate it for a period of up to 30 days free of charge. About 20 days
into the evaluation period, the software will start to remind you that it has not yet been licensed. The reminder
message will be displayed once each time you start the application. If you would like to continue using the
program after the 30-day evaluation period, you must purchase a product license, which is delivered in the form
of a license file containing a key code. Unlock the product by uploading the license file in the Software
Activation dialog of your product.

You can purchase product licenses at https://shop.altova.com/.

Helping Others within Your Organization to Evaluate the Software
If you wish to distribute the evaluation version within your company network, or if you plan to use it on a PC that
is not connected to the Internet, you may distribute only the installer file, provided that this file is not modified in
any way. Any person who accesses the software installer that you have provided must request their own 30-
day evaluation license key code and after expiration of their evaluation period, must also purchase a license in
order to be able to continue using the product.

https://www.altova.com/legal
https://www.altova.com/
https://shop.altova.com/
https://www.altova.com/documentation
https://shop.altova.com/

1412 Appendices License Information

© 2018-2024 Altova GmbHAltova MapForce 2024 Professional Edition

19.4.2 Software Activation and License Metering

As part of Altova’s Software Activation, the software may use your internal network and Internet connection for
the purpose of transmitting license-related data at the time of installation, registration, use, or update to an
Altova-operated license server and validating the authenticity of the license-related data in order to protect
Altova against unlicensed or illegal use of the software and to improve customer service. Activation is based on
the exchange of license related data such as operating system, IP address, date/time, software version, and
computer name, along with other information between your computer and an Altova license server.

Your Altova product has a built-in license metering module that further helps you avoid any unintentional
violation of the End User License Agreement. Your product is licensed either as a single-user or multi-user
installation, and the license-metering module makes sure that no more than the licensed number of users use
the application concurrently.

This license-metering technology uses your local area network (LAN) to communicate between instances of the
application running on different computers.

Single license
When the application starts up, as part of the license metering process, the software sends a short broadcast
datagram to find any other instance of the product running on another computer in the same network segment.
If it doesn't get any response, it will open a port for listening to other instances of the application.

Multi-user license
If more than one instance of the application is used within the same LAN, these instances will briefly
communicate with each other on startup. These instances exchange key-codes in order to help you to better
determine that the number of concurrent licenses purchased is not accidentally violated. This is the same kind
of license metering technology that is common in the Unix world and with a number of database development
tools. It allows Altova customers to purchase reasonably-priced concurrent-use multi-user licenses.

We have also designed the applications so that they send few and small network packets so as to not put a
burden on your network. The TCP/IP ports (2799) used by your Altova product are officially registered with the
IANA (see the IANA Service Name Registry for details) and our license-metering module is tested and proven
technology.

If you are using a firewall, you may notice communications on port 2799 between the computers that are
running Altova products. You are, of course, free to block such traffic between different groups in your
organization, as long as you can ensure by other means, that your license agreement is not violated.

Note about certificates
Your Altova application contacts the Altova licensing server (link.altova.com) via HTTPS. For this
communication, Altova uses a registered SSL certificate. If this certificate is replaced (for example, by your IT
department or an external agency), then your Altova application will warn you about the connection being
insecure. You could use the replacement certificate to start your Altova application, but you would be doing this
at your own risk. If you see a Non-secure connection warning message, check the origin of the certificate and
consult your IT team (who would be able to decide whether the interception and replacement of the Altova
certificate should continue or not).

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

© 2018-2024 Altova GmbH

License Information 1413Appendices

Altova MapForce 2024 Professional Edition

If your organization needs to use its own certificate (for example, to monitor communication to and from client
machines), then we recommend that you install Altova's free license management software, Altova
LicenseServer, on your network. Under this setup, client machines can continue to use your organization's
certificates, while Altova LicenseServer can be allowed to use the Altova certificate for communication with
Altova.

19.4.3 Altova End-User License Agreement

· The Altova End-User License Agreement is available here: https://www.altova.com/legal/eula
· Altova's Privacy Policy is available here: https://www.altova.com/privacy

https://www.altova.com/licenseserver
https://www.altova.com/licenseserver
https://www.altova.com/legal/eula
https://www.altova.com/privacy

Index

© 2018-2024 Altova GmbH

1414

Index

.

.NET extension functions,

constructors, 1402

datatype conversions (.NET to XPath/XQuery), 1405

datatype conversions (XPath/XQuery to .NET), 1404

for XSLT and XQuery, 1400

instance methods, instance fields, 1403

overview, 1400

static methods, static fields, 1403

A
A to Z,

sort component, 408

abs,

as MapForce function (in lang | math functions), 640

as MapForce function (in xpath2 | numeric functions), 696

Access database,

updating based on IF condition, 341

acos,

as MapForce function (in lang | math functions), 640

Actions,

connection-related, 50

ActiveX,

integration at application level, 1246

integration at document level, 1249

integration prerequisites, 1242

ActiveX controls,

adding to the Visual Studio Toolbox, 1244

add,

as MapForce function (in core | math functions), 553

ADO,

as data connection interface, 152

setting up a connection, 159

ADO.NET,

setting up a connection, 164

age,

as MapForce function (in lang | datetime functions), 614

Altova extensions,

chart functions (see chart functions), 1315

Altova XML Parser,

about, 1409

API,

documentation, 1059

Application object, 1063

asin,

as MapForce function (in lang | math functions), 641

atan,

as MapForce function (in lang | math functions), 641

ATTLIST,

DTD namespace URIs, 116

Automated,

processing, 819

Automatic,

loading of libraries, 498

auto-number,

as MapForce function (in core | generator functions), 545

avg,

as MapForce function (in core | aggregate functions), 519

Azure SQL, 203

B
Background Information, 1409

Bars,

Application status, 25

Menu, 25

Toolbars, 25

base-uri,

as MapForce function (in xpath2 | accessors library), 667

Batch,

processing automation, 819

boolean,

as MapForce function (in core | conversion functions), 526

Breakpoints,

about, 801

adding, 804

removing, 804

Breakpoints window,

about, 801, 810

© 2018-2024 Altova GmbH

Index 1415

C
C#,

error handling, 1064

integration of MapForce, 1252

reference to generated classes, 970

C++,

error handling, 1064

reference to generated classes, 955

capitalize,

as MapForce function (in lang | string functions), 650

Catalogs, 862

customize, 867

environment variables, 869

in DTD, 863

in XML Schema, 863

structure, 865

CDATA,

section, 127

ceiling,

as MapForce function (in core | math functions), 554

char-from-code,

as MapForce function (in core | string functions), 594

charset-decode,

as MapForce function (in lang | string functions), 650

charset-encode,

as MapForce function (in lang | string functions), 652

Code,

built in types, 1013

SPL, 999

Code generation,

build, 68, 894

build code, 68, 894, 896

C#, 68, 894, 896, 902, 905

C++, 68, 894, 896, 902

change data type, 905

compile, 68, 894

generate code, 68, 894, 896

integrate generated code, 902, 905

Java, 68, 894, 896, 902, 905

modify generated code, 902, 905

modify input/output, 902

run application, 68, 894

run code, 896

sample, 1078

XQuery, 68, 894

XSLT, 68, 894

Code generation settings,

defining globally for the entire project, 81

Code point,

collation, 408

code-from-char,

as MapForce function (in core | string functions), 596

Collation,

locale collation, 408

sort component, 408

unicode code point, 408

COM API,

documentation, 1059

Command reference, 1272

Comments,

add to target files, 127

Complex type,

sorting, 408

Component,

sort data, 408

Component Icon Reference, 36

Components,

Add Duplicate Input After, 1027

Add Duplicate Input Before, 1027

Add/Remove/Edit Database Objects, 1027

adding to the mapping, 40

Align Tree Left, 1027

Align Tree Right, 1027

aligning, 42

basics, 42

Change Root Element, 1027

changing settings, 42

comment, 36

Constant, 1022

Create Mapping to EDI X12 997, 1027

Create Mapping to EDI X12 999, 1027

Database, 1022

Database Table Actions, 1027

databases, 149, 235, 241, 249, 252, 259, 263, 264, 265

deleted items, 62

deleting, 64

EDI, 1022

Edit FlexText Configuration, 1027

Edit Schema Definition in XMLSpy, 1027

Excel 2007+ File, 1022

Exception, 1022

Filter: Nodes/Rows, 1022

Index

© 2018-2024 Altova GmbH

1416

Components,

icon reference, 36

IF-Else Condition, 1022

Insert Input, 1022

Insert Output, 1022

Join, 1022

JSON Schema/File, 1022

menu commands, 1027

overview, 36

Properties, 1027

Protocol Buffers File, 1022

Query Database, 1027

Refresh, 1027

Remove Duplicate, 1027

searching, 42

settings, 42

Simple Input, 1022

Simple Output, 1022

Sort: Nodes/Rows, 1022

SQL/NoSQL-WHERE/ORDER, 1022

structural, 36, 115, 116, 149, 235, 241, 249, 252, 259, 263,
264, 265

Text File, 1022

transformation, 36, 351

Value-Map, 1022

Variable, 1022

Web Service Function, 1022

Write Content as CDATA Section, 1027

XBRL Document, 1022

XML, 117

XML and XML Schema, 117, 121, 123, 127, 129, 131

XML Schema, 117

XML Schema/File, 1022

concat,

(as function) example of usage, 341

as MapForce function (in core | string functions), 597

Configure,

mff file, 498

Connection type,

copy-all, 58

matching-children, 56

mixed, 54

source-driven, 54

standard, 53

standard with mixed content, 54

target-driven, 53

target-driven vs. source-driven, 54

target-driven with mixed content, 54

Connections,

annotation, 60

Auto Connect Matching Children, 1029

change, 50

Connect Matching Children, 1029

context menu, 61

copy, 50

copy-all, 53, 58

Copy-all (Copy Child Items), 1029

create, 50

delete, 50

fix, 62

fixing after editing schema, 62

highlight selectively, 50

keeping after deleting components, 64

mandatory inputs, 50

matching-children, 53, 56

missing parent connections, 50

mixed, 53

move, 50

moving, 62

Properties, 1029

see connection tooltips, 50

settings, 60

Settings for Connect Matching Children, 1029

Source Driven (Mixed Content), 1029

source-driven, 53

standard, 53

Target Driven (Standard), 1029

target-driven, 53

types, 53, 60

Connector,

viewing the history of processed values, 806

Constants,

add, 442

contains,

as MapForce function (in core | string functions), 598

Context window,

about, 801, 808

Conventions, 19

convert-to-utc,

as MapForce function (in lang | datetime functions), 614

Copyright information, 1411

cos,

as MapForce function (in lang | math functions), 642

count,

as MapForce function (in core | aggregate functions), 520

count-substring,

© 2018-2024 Altova GmbH

Index 1417

count-substring,

as MapForce function (in lang | string functions), 654

create-guid,

as MapForce function (in lang | generator functions), 637

CSV,

as mapping source, 329

creating hierarchies - keys, 334

creating multiple rows, 331

CSV files,

adding or removing fields in,, 337

as source component, 337

as target component, 337

previewing data from,, 337

setting the encoding of,, 337

current,

as MapForce function (in xslt | xslt functions library), 726

current-date,

as MapForce function (in xpath2 | context functions), 672

current-dateTime,

as MapForce function (in xpath2 | context functions), 672

current-time,

as MapForce function (in xpath2 | context functions), 672

Custom libraries,

add, 497

C#, 497

C++, 497

Java, 497

reference, 497

Customize,

commands, 1037

context menus, 1037

Default Menu vs. MapForce Design, 1037

delete commands, 1037

Keyboard, 1038

menu shadows, 1037

menus, 1037

reset menu bars, 1037

shortcuts, 1038

D
Data overlays,

about, 801

Data streaming,

definition, 40

Database,

assign XML schema to field, 293

Encoding, 1046

generate multiple XML files from, 755

Result View, 1046

SQL editing settings, 1046

SQL Editor, 1046

SQL Generation, 1046

Text Fonts, 1046

writing XML files to, 296

Database Browser,

database tree layout, 285

filter database objects, 285

folder layout, 285

object locator, 285

search database objects, 285

sort tables into User and System tables, 285

Database connection,

reusing from Global Resources, 181

setting up, 152

setup examples, 182

starting the wizard, 154

Database drivers,

overview, 156

Database transactions,

enabling for stored procedures, 315

Databases, 285

add, 235

add database objects, 235, 249

ADO/OLEDB-specific settings, 241

and mapping context, 770

as data target, 264, 265

as global resources, 852

bulk insert, 265

bulk transfer, 265

child tables, 265

column icons, 235

component settings, 241, 249

connection name, 241

Custom SQL statement, 249, 271

data source, 241

DB-generated value, 265

Delete All, 271

delete child records, 265, 271

Delete If, 265, 271

delete SELECT statement, 249

edit, 235

edit database objects, 235, 249

edit SELECT statement, 249

Index

© 2018-2024 Altova GmbH

1418

Databases, 285

error logging, 241, 265

exception, 265

exceptions, 241, 276

filter, 235

foreign-key relationship, 252

functions, 263

generate sequential values, 263

generate unique values, 263

Ignore If, 265, 271

INSERT, 283

Insert All, 265, 271

insert database objects, 235

Insert Rest, 271

issues with JDBC driver, 149

JDBC, 241

JDBC-specific settings, 241

local relationships, 259

login settings, 241

mapped value, 265

mappings in different execution environments, 149

max() +1, 265

MERGE, 283

modify, 283

Null equal, 265

null fields, 263

null values, 263

objects, 235

parameters, 249

parent table, 265

query, 283

relations, 235

relationships, 252

remove, 235

rollback, 276

save all file paths relative to MFD file, 241

scenarios, 252

SELECT statement, 249

SELECT statement with parameters, 249

settings, 235

SQL auto-completion, 235

SQL statements in Output, 264

table actions, 264, 265, 271, 283

timeout for statement execution, 241

trace file, 241

trace level, 241

tracing, 241, 265

transaction handling, 241, 265

transaction rollback, 265, 276

transactions, 276

UPDATE, 283

Update If, 265

use shared database connection, 241

date-from-datetime,

as MapForce function (in lang | datetime functions), 615

datetime-add,

as MapForce function (in lang | datetime functions), 615

datetime-diff,

as MapForce function (in lang | datetime functions), 616

datetime-from-date-and-time,

as MapForce function (in lang | datetime functions), 617

datetime-from-parts,

as MapForce function (in lang | datetime functions), 618

day-from-datetime,

as MapForce function (in lang | datetime functions), 619

day-from-duration,

as MapForce function (in lang | datetime functions), 620

DB,

ORDER BY, 419

DB Queary Pane,

Database Browser, 283

Messages tab, 283

Results tab, 283

SQL Editor, 283

DB Query Pane,

Database Browser, 285

Messages tab, 291

Results tab, 290

SQL Editor, 287

Debugger position,

viewing the current value of, 806

Debugging,

about, 801

limitations, 797

minimal step, 1033

preparation for, 800

start, 1033

step into, 1033

step out, 1033

step over, 1033

step-by-step, 797

stop, 1033

with breakpoints, 797

Default values, 449

create, 451

default-collation,

© 2018-2024 Altova GmbH

Index 1419

default-collation,

as MapForce function (in xpath2 | context functions), 672

Defaults and Node Functions,

annotation, 460

apply conditionally, 454

block rules, 454

configure, 451

create, 451

defaults for unconnected nodes, 454

filter, 454

fractionDigits, 460

function icons, 449

input side, 449

length, 460

maxLength, 460

metadata, 460

minLength, 460

output side, 449

override inherited rules, 454

precision, 460

rule configuration, 451

scale, 460

scenarios, 454

totalDigits, 460

visual clues, 451

degrees,

as MapForce function (in lang | math functions), 642

Delete,

missing items, 62

Delimiter,

changing in CSV files, 337

changing in flat text files, 345

Derived types,

map to/from, 121

xsi:type, 121

distinct-values,

as MapForce function (in core | sequence functions), 566

Distribution,

of Altova's software products, 1411

divide,

as MapForce function (in core | math functions), 554

divide-integer,

as MapForce function (in lang | math functions), 642

document,

as MapForce function (in xslt | xslt functions library), 726

Document-level,

examples of integration of XMLSpy, 1252

DoTransform.bat,

execute with RaptorXML Server, 818

DTD,

source and target, 116

duration-add,

as MapForce function (in lang | datetime functions), 620

duration-from-parts,

as MapForce function (in lang | datetime functions), 621

duration-subtract,

as MapForce function (in lang | datetime functions), 622

E
Edit,

Cut/Copy/Paste/Delete, 1021

Find, 1021

Find Next, 1021

Find Previous, 1021

Redo, 1021

Select all, 1021

Undo, 1021

element-available,

as MapForce function (in xslt | xslt functions library), 727

empty,

as MapForce function (in lang | string functions), 654

Empty fields,

in CSV files, 337

in flat text files, 345

Encoding,

changing in CSV files, 337

changing in flat text files, 345

End User License Agreement, 1411, 1413

Enumerations,

in MapForceControl, 1302

equal,

as MapForce function (in core | logical functions), 547

equal-or-greater,

as MapForce function (in core | logical functions), 548

equal-or-less,

as MapForce function (in core | logical functions), 548

Error handling,

general description, 1064

Errors,

out-of-memory, 40

troubleshooting, 40

Evaluation period,

of Altova's software products, 1411

Index

© 2018-2024 Altova GmbH

1420

Exceptions,

adding, 437

example, 438

throwing when node is missing, 438

exists,

as MapForce function (in core | sequence functions), 568

exp,

as MapForce function (in lang | math functions), 643

Extension functions for XSLT and XQuery, 1391

Extension Functions in .NET for XSLT and XQuery,

see under .NET extension functions, 1400

Extension Functions in Java for XSLT and XQuery,

see under Java extension functions, 1391

Extension Functions in MSXSL scripts, 1406

F
false,

as MapForce function (in xpath2 | boolean functions), 670

Faulty connections,

after changing schema, 62

in databases, 62

in XML files, 62

Field,

keys in text files, 334

File,

as a button in a component, 42

as button on components, 751

Close, 1019

Close All, 1019

Compile to MapForce Server Execution File, 1019

Deploy to FlowForce Server, 1019

Exit, 1019

Generate Code, 1019

Generate Documentation, 1019

Mapping Settings, 1019

New, 1019

Open, 1019

Open Credentials Manager, 1019

Print, 1019

Print Preview, 1019

Print Setup, 1019

Recent files, 1019

Reload, 1019

Save, 1019

Save All, 1019

Save As, 1019

Validate Mapping, 1019

File DSN,

setting up, 171

File paths,

absolute, 45

broken, 45

fix broken references, 45

in execution environments, 48

in generated code, 48

of file-based databases, 45

relative, 45

relative versus absolute, 48

File/String,

as a button in a component, 42

as button on components, 751

File: (default),

as name of root node, 751

File: <dynamic>,

as name of root node, 751

Fill character,

in flat text files, 345

Filtering,

data from components, 414

database tables, 414

in databases, 423

Filters,

adding to the mapping, 414

find-substring,

as MapForce function (in lang | string functions), 655

Firebird,

Connecting through JDBC, 182

Connecting through ODBC, 183

first-items,

as MapForce function (in core | sequence functions), 570

Fixed,

lenght files - mapping, 329

Flat file,

mapping, 329

floor,

as MapForce function (in core | math functions), 555

FlowForce Server,

deploying Global Resources to, 828, 859

deploying mappings to, 828

Global Resources in, 859

Folders,

as global resources, 850

format-date,

© 2018-2024 Altova GmbH

Index 1421

format-date,

as MapForce function (in core | conversion functions), 526

format-dateTime,

as MapForce function (in core | conversion functions), 527

format-guid-string,

as MapForce function (in lang | string functions), 656

format-number,

as MapForce function (in core | conversion functions), 530

format-time,

as MapForce function (in core | conversion functions), 533

function-available,

as MapForce function (in xslt | xslt functions library), 727

Functions, 441

add, 442

add parameters, 442

argument data type, 442

basics, 442

constants, 442

Create User-Defined Function, 1030

Create User-Defined Function from Selection, 1030

delete parameters, 442

description, 442

find in the Libraries window, 442

find occurences in active mapping, 442

Function Settings, 1030

Insert Input, 1030

Insert Output, 1030

lang | string functions, 649, 664

node, 449, 451

parameters, 442

Remove Function, 1030

search, 442

G
General Procedures, 66

code generation, 77

generate code, 68

mapping settings, 77

output file settings, 77

paths in generated code, 77

text view, 70

text view search, 74

vaidation, 66

validate mapping, 66

validate output, 66

valide, 66

Generated code,

throwing exceptions from, 437

generate-id,

as MapForce function (in xslt | xslt functions library), 728

generate-sequence,

as MapForce function (in core | sequence functions), 571

get-fileext,

as MapForce function (in core | file path functions), 541

get-folder,

as MapForce function (in core | file path functions), 541

Global objects,

in SPL, 1004

Global Resources,

creating, 842

databases as, 852

Definitions file, 842

deploying to FlowForce Server, 828, 859

folders as, 850

in execution environments, 858

in FlowForce Server, 859

introduction to, 841

setup, 842

XML Files as, 848

greater,

as MapForce function (in core | logical functions), 549

group-adjacent,

as MapForce function (in core | sequence functions), 572

group-by,

as MapForce function (in core | sequence functions), 574

group-ending-with,

as MapForce function (in core | sequence functions), 578

group-into-blocks,

as MapForce function (in core | sequence functions), 580

group-starting-with,

as MapForce function (in core | sequence functions), 581

GUI, 24

bars, 25

DB Query pane, 283, 287, 290, 291

Messages window, 28

panes, 30

windows, 25

H
Help,

Index

© 2018-2024 Altova GmbH

1422

Help,

About MapForce, 1054

Check for Updates, 1054

Download Components and Free Tools, 1054

FAQ on the Web, 1054

Index, 1054

MapForce on the Internet, 1054

MapForce Training, 1054

Order Form, 1054

Registration, 1054

Search, 1054

Software Activation, 1054

Support Center, 1054

Table of Contents, 1054

Hierarchy,

from text files, 334

hour-from-datetime,

as MapForce function (in lang | datetime functions), 623

hour-from-duration,

as MapForce function (in lang | datetime functions), 623

HRESULT,

and error handling, 1064

HTML,

generate mapping documentation, 787

preview mapping output as, 833

I
IBM DB2,

connecting through JDBC, 186

connecting through ODBC, 188

reading from XML type fields, 293

writing to XML type fields, 293

IBM DB2 for i,

connecting through JDBC, 194

connecting through ODBC, 195

IBM Informix,

connecting through JDBC, 197

If-Else conditions,

adding to the mapping, 414

implicit-timezone,

as MapForce function (in xpath2 | context functions), 673

INNER JOIN,

in Join components, 392

Input,

duplicate, 42

Insert,

SQL WHERE component, 419

Integrating,

MapForce in applications, 1241

Integration,

with Altova products, 22

Internet usage,

in Altova products, 1410

is-not-null,

as MapForce function (in db functions), 611

is-null,

as MapForce function (in db functions), 611

is-xsi-nil,

as MapForce function (in core | node functions), 559

Item,

missing, 62

item-at,

as MapForce function (in core | sequence functions), 583

items-from-till,

as MapForce function (in core | sequence functions), 584

J
Java, 1259

reference to generated classes, 985

VM library location, 1045

Java extension functions,

constructors, 1396

datatype conversions, Java to Xpath/XQuery, 1399

datatype conversions, XPath/XQuery to Java, 1398

for XSLT and XQuery, 1391

instance methods, instance fields, 1398

overview, 1391

static methods, static fields, 1397

user-defined class files, 1393

user-defined JAR files, 1395

JavaScript,

error handling, 1064

JDBC,

as data connection interface, 152

connect to Teradata, 229

setting up a connection (Windows), 174

JScript,

code-generation sample, 1078

© 2018-2024 Altova GmbH

Index 1423

K
Key,

fields in text files, 334

sort key, 408

Key-value pairs,

using on the mapping, 426

L
lang | string functions,

sleep, 664

last,

as MapForce function (in xpath2 | context functions), 673

last-items,

as MapForce function (in core | sequence functions), 586

leapyear,

as MapForce function (in lang | datetime functions), 624

left,

as MapForce function (in lang | string functions), 656

LEFT OUTER JOIN,

in Join components, 392

left-trim,

as MapForce function (in lang | string functions), 657

Legal information, 1411

less,

as MapForce function (in core | logical functions), 549

Library, 1013

automatic loading of, 498

License, 1413

information about, 1411

License metering,

in Altova products, 1412

Licensing, 1054

Local relations,

and stored procedures, 318, 319, 323

Locale collation, 408

local-name-from-QName,

as MapForce function (in lang | QName functions), 564

log,

as MapForce function (in lang | math functions), 643

log10,

as MapForce function (in lang | math functions), 644

logical-and,

as MapForce function (in core | logical functions), 550

logical-not,

as MapForce function (in core | logical functions), 551

logical-or,

as MapForce function (in core | logical functions), 551

logical-xor,

as MapForce function (in lang | logical functions), 638

Look-up tables,

using on the mapping, 426

lowercase,

as MapForce function (in lang | string functions), 658

M
main-mfd-filepath,

as MapForce function (in core | file path functions), 542

MapForce,

API, 1059

integration, 1241

introduction, 19

model of data transformation, 19

overview, 19

MapForce API, 1059

MapForce plug-in for Eclipse,

about, 873, 876, 883

accessing common menus and functions, 879

configuring for automatic code generation, 890

creating a MapForce/Eclipse project, 883

creating new mappings, 885

extending functionality, 893

extension point, 893

importing mappings into an Eclipse project, 887

installing, 874

switching to the MapForce perspective, 876

working with mappings and projects, 883

MapForce plug-in for Visual Studio,

about, 870

enabling, 870

information about menus and functions, 870

working with mappings and projects, 870

MapForce Server,

automating mappings, 819

compiling mappings for, 825

Global Resources in, 859

throwing exceptions from, 437

Index

© 2018-2024 Altova GmbH

1424

MapForceCommand,

in MapForceControl, 1282

MapForceCommands,

in MapForceControl, 1284

MapForceControl, 1285

documentation of, 1241

examples of integration at document level, 1252

integration using C#, 1252

integration using Visual Basic, 1268

object reference, 1282

MapForceControlDocument, 1293

MapForceControlPlaceHolder, 1299

Mapping,

add a component, 87

add a function, 90

basics, 34

component types, 34

components, 34

connections, 34

connectors, 34

create, 86

creating, 34

debugging, 797

dynamic file names, 112

flat file format, 329

flat schema structure, 252

fundamentals, 34

generate code, 92

output file settings, 77

parts, 34

save, 86

save output, 92

scenarios, 20

select a transformation language, 86

settings, 77

source, 20

source-driven - mixed content, 54

SQL/XML Standard, 252

target, 20

terminology, 34

terms, 34

validate, 86

view structure, 87

XML schema version, 77

Mapping context, 768

Mapping documentation,

generating, 787

Mapping input,

Supplying multiple files as, 751

Mapping output,

Generating multiple files as, 751

Mappings,

automated processing, 819

MariaDB,

connect through ODBC, 199

connecting natively, 180

match-pattern,

as MapForce function (in lang | string functions), 658

max,

as MapForce function (in core | aggregate functions), 521

as MapForce function (in lang | math functions), 644

max-string,

as MapForce function (in core | aggregate functions), 521

Memory requirements, 1409

Menu commands, 1018

Component, 1027

Connection, 1029

Cutomize, 1037, 1038

Debug, 1033

Edit, 1021

File, 1019

Function, 1030

Help, 1054

Insert, 1022

Output, 1031

Project, 1025

Tools, 1036

Tools | Customize, 1037

Tools | Keyboard, 1038

Tools | Options, 1040, 1043

Tools | Options | Database, 1046

Tools | Options | Java, 1045

Tools | Options | Network Proxy, 1051

View, 1034

Windows, 1053

Menu reference, 1018

Messages tab,

clear, 291

copy message to clipboard, 291

copy messages, 291

errors, 291

filter, 291

find, 291

find next, 291

find previous, 291

summary, 291

© 2018-2024 Altova GmbH

Index 1425

Messages tab,

warnings, 291

mfd-filepath,

as MapForce function (in core | file path functions), 542

mff,

library file, 497

mff.xsd file, 497

mff file,

configuring, 498

Microsoft Access,

connecting through ADO, 159, 201

Microsoft Azure SQL, 203

Microsoft SharePoint Server,

adding files as components from, 40

Microsoft SQL Server,

connecting through ADO, 204

connecting through ODBC, 206

millisecond-from-datetime,

as MapForce function (in lang | datetime functions), 624

millisecond-from-duration,

as MapForce function (in lang | datetime functions), 625

min,

as MapForce function (in core | aggregate functions), 522

as MapForce function (in lang | math functions), 645

min-string,

as MapForce function (in core | aggregate functions), 523

minute-from-datetime,

as MapForce function (in lang | datetime functions), 625

minute-from-duration,

as MapForce function (in lang | datetime functions), 626

Missing items, 62

Mixed,

content mapping, 54

source-driven mapping, 54

Mixed content,

mapping, 54

with standard connections, 54

with target-driven connections, 54

modulus,

as MapForce function (in core | math functions), 555

month-from-datetime,

as MapForce function (in lang | datetime functions), 626

month-from-duration,

as MapForce function (in lang | datetime functions), 627

msxsl:script, 1406

multiply,

as MapForce function (in core | math functions), 556

MySQL,

connecting natively, 180

connecting through ODBC, 212

N
Namespace URI,

DTD, 116

Namespaces,

custom, 131

declare manually, 131

namespace-uri-form-QName,

as MapForce function (in lang | QName functions), 565

Native connections, 180

negative,

as MapForce function (in lang | logical functions), 638

Network proxy,

automatic, 1051

configuration, 1051

manual, 1051

settings, 1051

system, 1051

New Features, 15

Version 2020, 18

Version 2021, 17

Version 2022, 16

Version 2023, 16

Version 2024, 15

Node functions,

create, 451

Node names,

mapping data from/to, 731

node-name,

as MapForce function (in core | node functions), 561

as MapForce function (in xpath2 | accessors library), 668

node-name function,

alternatives to using, 731

normalize-space,

as MapForce function (in core | string functions), 599

not-equal,

as MapForce function (in core | logical functions), 552

not-exists,

as MapForce function (in core | sequence functions), 587

now,

as MapForce function (in lang | datetime functions), 627

NULL,

attribute, 123

Index

© 2018-2024 Altova GmbH

1426

NULL,

values, 123

values in databases, 123

number,

as MapForce function (in core | conversion functions), 534

numeric,

as MapForce function (in lang | logical functions), 639

O
Object model,

overview, 1063

ODBC,

as data connection interface, 152

connect to MariaDB, 199

connect to Teradata, 231

setting up a connection, 171

ODBC Drivers,

checking availability of, 171

OLE DB,

as data connection interface, 152

OpenAI,

example, 664

use-case scenario, 664

OpenJDK,

as Java Virtual Machine, 174

Oracle,

reading from XML type fields, 293

writing to XML type fields, 293

Oracle database,

connecting through JDBC, 214

connecting through ODBC, 216

Oracle package,

stored procedures and functions, 305

ORDER BY,

SQL where component, 419

Ordering data,

sort component, 408

OS,

for Altova products, 1409

Output,

Built-in Execution Engine, 1031

C#, 1031

C++, 1031

Insert/Remove Bookmark, 1031

Java, 1031

Next Bookmark, 1031

Pretty-Print XML Text, 1031

Previous Bookmark, 1031

Regenerate Output, 1031

Remove All Bookmarks, 1031

Run SQL/NoSQL-Script, 1031

Save All Output Files, 1031

Save Output File, 1031

Text View Settings, 1031

Validate Output File, 1031

XQuery, 1031

XSLT 1.0, 1031

XSLT 2.0, 1031

XSLT 3.0, 1031

P
pad-string-left,

as MapForce function (in lang | string functions), 659

pad-string-right,

as MapForce function (in lang | string functions), 660

Panes,

DB Query, 30

Mapping, 30

Output, 30

StyleVision output, 30

XQuery, 30

XSLT, 30

Parameters,

supplying to the mapping, 352, 356

Parent context,

example, 773

parse-date,

as MapForce function (in core | conversion functions), 535

parse-dateTime,

as MapForce function (in core | conversion functions), 536

parse-number,

as MapForce function (in core | conversion functions), 538

Parser,

built into Altova products, 1409

parse-time,

as MapForce function (in core | conversion functions), 540

PDF,

generate mapping documentation, 787

preview mapping output as, 833

pi,

© 2018-2024 Altova GmbH

Index 1427

pi,

as MapForce function (in lang | math functions), 645

Platforms,

for Altova products, 1409

position,

as MapForce function (in core | sequence functions), 587

positive,

as MapForce function (in lang | logical functions), 639

PostgreSQL,

connecting natively, 180

connecting through ODBC, 220

pow,

as MapForce function (in lang | math functions), 646

Priority context, 778

example, 780

Processing,

automating mappings, 819

Processing Instructions,

add to target files, 127

Processing Instructions and Comments,

mapping, 54

Progress OpenEdge database,

connecting through JDBC, 223

connecting through ODBC, 224

Project,

add mappings to, 79

add Web links, 79

basics, 79

closing, 79

code generation, 79

code generation settings, 81, 82

creating, 79

deleting, 79

folders, 82

generate code, 79

image preview, 79

new, 79

opening, 79

organization, 79

properties, 82

removing, 79

searching, 79

settings, 81

watch video tutorials, 79

Project files (.mfp), 79

Projects, 79

Add Active File to Project, 1025

Add Files to Project, 1025

Add Mapping File for Operation, 1025

Close, 1025

Create Folder, 1025

Create Mapping for Operation, 1025

Generate Code for Entire Project, 1025

Generate Code in, 1025

Insert Web Service, 1025

Open File in XMLSpy, 1025

Open Mapping, 1025

Properties, 1025

Reload, 1025

Save, 1025

Q
QName,

as MapForce function (in lang | QName functions), 564

QName-as-string,

as MapForce function (in lang | QName functions), 649

Question mark,

missing items, 62

Quote character,

in CSV files, 337

R
radians,

as MapForce function (in lang | math functions), 646

random,

as MapForce function (in lang | math functions), 646

RaptorXML Server,

executing a transformation, 818

read-binary-file,

as MapForce function (in lang | file functions), 633

Regular expressions,

using in mappings, 512

remove-fileext,

as MapForce function (in core | file path functions), 543

remove-folder,

as MapForce function (in core | file path functions), 543

remove-timezone,

as MapForce function (in lang | datetime functions), 628

repeat-string,

as MapForce function (in lang | string functions), 660

Index

© 2018-2024 Altova GmbH

1428

replace,

as MapForce function (in lang | string functions), 661

replace-fileext,

as MapForce function (in core | file path functions), 544

replicate-item,

as MapForce function (in core | sequence functions), 589

replicate-sequence,

as MapForce function (in core | sequence functions), 591

resolve-filepath,

as MapForce function (in core | file path functions), 544

resolve-uri,

as MapForce function (in xpath2 | anyURI functions), 669

Results tab,

copy, 290

find, 290

select, 290

sort, 290

reversefind-substring,

as MapForce function (in lang | string functions), 661

right,

as MapForce function (in lang | string functions), 662

right-trim,

as MapForce function (in lang | string functions), 663

round,

as MapForce function (in core | math functions), 556

round-half-to-even,

as MapForce function (in xpath2 | numeric functions), 696

round-precision,

as MapForce function (in core | math functions), 557

Rows,

mapping from - text files, 334

RTF,

generate mapping documentation, 787

preview mapping output as, 833

S
Schema,

generate, 116

industry standard, 116

pre-packaged, 116

Schema Manager,

CLI Help command, 142

CLI Info command, 143

CLI Initialize command, 143

CLI Install command, 144

CLI List command, 144

CLI overview, 142

CLI Reset command, 145

CLI Uninstall command, 146

CLI Update command, 147

CLI Upgrade command, 147

how to run, 136

installing a schema, 140

listing schemas by status in, 138

overview of, 133

patching a schema, 140

resetting, 141

status of schemas in, 138

uninstalling a achema, 141

upgrading a schema, 140

schemanativetype, 1001

Scripts in XSLT/XQuery,

see under Extension functions, 1391

Search,

files in the Project window, 79

items within mapping components, 42

projects, 79

second-from-datetime,

as MapForce function (in lang | datetime functions), 628

second-from-duration,

as MapForce function (in lang | datetime functions), 629

Sequence, 767

set-empty,

as MapForce function (in core | sequence functions), 592

set-null,

as MapForce function (in db functions), 612

set-xsi-nil,

as MapForce function (in core | node functions), 562

Simple type,

sorting, 408

sin,

as MapForce function (in lang | math functions), 647

skip-first-items,

as MapForce function (in core | sequence functions), 593

Smart component deletion, 64

Software product license, 1413

Sort,

sort component, 408

Sort key,

sort component, 408

Sort order,

changing, 408

Sorting,

© 2018-2024 Altova GmbH

Index 1429

Sorting,

in databases, 423

Source-driven,

mixed-content mapping, 54

SPL, 999

code blocks, 1000

conditions, 1008

foreach, 1009

global objects, 1004

subroutines, 1010

using files, 1005

variables, 1003

SQL,

joining data, 392

SQL Azure, 203

SQL Editor,

add bookmarks, 287

add SQL comments, 287

block comment, 287

create statements, 287

execute SQL statements, 287

export SQL scripts, 287

import SQL scripts, 287

insert SQL regions, 287

line comment, 287

load from scripts, 287

toolbar buttons, 287

SQL Server,

connecting through ADO, 159

connecting through ADO.NET, 164

connecting via JDBC, 174

reading from XML type fields, 293

writing to XML type fields, 293

SQL WHERE,

component - insert, 419

ORDER BY, 419

SQL WHERE/ORDER,

as MapForce component, 423

SQLite,

changing database path to absolute in generated code, 48

connecting natively, 180

mapping data to, 760

writing XML files to, 296

sqrt,

as MapForce function (in lang | math functions), 647

starts-with,

as MapForce function (in core | string functions), 600

static-node-annotation,

as MapForce function (in core | node functions), 562

static-node-name,

as MapForce function (in core | node functions), 563

Stored procedures,

adding to a mapping, 305

calling from a mapping, 303, 308, 311, 315, 319, 323

support notes, 303

String,

as MapForce function (in core | conversion functions), 540

as MapForce function (in xpath2 | accessors library), 668

parsing data from, 758

serializing data to, 758, 760

string-as-QName,

as MapForce function (in lang | QName functions), 649

string-compare,

as MapForce function (in lang | string functions), 665

string-compare-ignore-case,

as MapForce function (in lang | string functions), 666

string-join,

as MapForce function (in core | aggregate functions), 524

string-length,

as MapForce function (in core | string functions), 600

Structural components,

databases, 149, 235, 241, 249, 252, 259, 263, 264, 265

XML, 116

XML and XML Schema, 116

XML Schema, 116

Stylevision,

creating stylesheets with, 795

generating mapping documentation with, 790

substitute-missing,

as MapForce function (in core | sequence functions), 594

substitute-missing-with-xsi-nil,

as MapForce function (in core | node functions), 563

substitute-null,

as MapForce function (in db functions), 612

substring,

as MapForce function (in core | string functions), 601

substring-after,

as MapForce function (in core | string functions), 601

substring-before,

as MapForce function (in core | string functions), 602

subtract,

as MapForce function (in core | math functions), 557

sum,

as MapForce function (in core | aggregate functions), 525

Sybase,

connecting through JDBC, 227

Index

© 2018-2024 Altova GmbH

1430

System DSN,

setting up, 171

system-property,

as MapForce function (in xslt | xslt functions library), 728

T
Table data,

sorting, 408

tan,

as MapForce function (in lang | math functions), 648

Target component,

changing the processing order of, 783

Technical Information, 1409

Teradata,

connect through JDBC, 229

connect through ODBC, 231

Text,

files - defining key fields, 334

mapping text files, 329

Text files,

adding or removing fields in,, 345

as source component, 345

as target component, 345

mapping data from, 341

previewing data from,, 345

setting the encoding of,, 345

setting the fill character, 341

setting the fixed field size, 341

Text View,

bookmarks, 70

end-of-line markers, 70

folding margin, 70

indentation guides, 70

line numbers, 70

pretty-printing, 70

search, 74

source folding, 70

syntax coloring, 70

text highlighting, 70

whitespace markers, 70

word wrapping, 70

zooming, 70

Theme selection for MapForce in Eclipse, 879

time-from-datetime,

as MapForce function (in lang | datetime functions), 629

timezone,

as MapForce function (in lang | datetime functions), 630

tokenize,

as MapForce function (in core | string functions), 603

tokenize-by-length,

as MapForce function (in core | string functions), 605

tokenize-regexp,

as MapForce function (in core | string functions), 608

Tools,

Active Configuration, 1036

Create Reversed Mapping, 1036

Customize, 1036

Global Resources, 1036

menu command, 1036

Options, 1036

Restore Toolbars and Windows, 1036

XBRL Taxonomy Manager, 1036

Tools | Options,

code generation, 1043

Database, 1040

Debugger, 1040

Editing, 1040

General, 1040

Generation, 1040, 1043

generation settings, 1043

Java, 1040

Messages, 1040

Network Proxy, 1040

XBRL, 1040

Transformation languages,

BUILT-IN, 21

C#, 21

C++, 21

Java, 21

XQuery, 21

XSLT 1.0, 21

XSLT 2.0, 21

XSLT 3.0, 21

Transformations,

RaptorXML Server, 818

translate (in core | string functions),

as MapForce function, 609

true,

as MapForce function (in xpath2 | boolean functions), 670

Tutorials,

basic, 85

chained mapping, 99

duplicate input, 94

© 2018-2024 Altova GmbH

Index 1431

Tutorials,

dynamic file names, 107

example files, 84

multiple sources to multiple targets, 107

multiple sources to one target, 94

one source to one target, 85

pass-through component, 99

transformation, 85

Types,

built in, 1013

U
UDFs,

and mapping context, 771

unary-minus,

as MapForce function (in lang | math functions), 648

Unicode,

code point collation, 408

Unicode support,

in Altova products, 1410

unparsed-entity-uri,

as MapForce function (in xslt | xslt functions library), 729

uppercase,

as MapForce function (in lang | string functions), 667

URI,

in DTDs, 116

URL,

adding files as components from, 40

User DSN,

setting up, 171

User interface, 24

User-defined functions,

add parameters, 470

advantages, 464

call, 465

call recursively, 473

complex-type structures, 470

copy-paste, 465

create, 465

delete, 465

edit, 465

example, 464

examples, 473, 476

import, 465

inline, 465

input parameters, 465

lookup, 476

navigate, 465

of complex type, 470

of simple type, 470

output parameters, 465

overview, 464

parameter order, 470

parameters, 470

recursive, 473

recursive search, 473

regular, 465

V
Validator,

in Altova products, 1409

Value-Map,

as mapping component, 426

examples, 430, 433

Values window,

about, 801, 806

Context tab, 806

History tab, 806

Related tab, 806

Variables,

adding to the mapping, 368

changing the scope of, 372

complex, 366

DB-based, 366

examples of use, 374, 375, 377

in SPL, 1003

simple, 366

View,

Back, 1034

Debug Windows, 1034

Forward, 1034

Libraries, 1034

Manage Libraries, 1034

menu command, 1034

Messages, 1034

Overview, 1034

Project Window, 1034

Show Annotations, 1034

Show Connections from Source to Target, 1034

Show Library in Function Header, 1034

Index

© 2018-2024 Altova GmbH

1432

View,

Show Selected Components Connectors, 1034

Show Tips, 1034

Show Types, 1034

Status Bar, 1034

XBRL Display Options, 1034

Zoom, 1034

Visual Basic,

error handling, 1064

integration of MapForce, 1268

Visual Studio,

adding the MapForce ActiveX Controls to the toolbox,
1244

Visual Studio plug-in,

running MapForce as, 870

W
WebDAV Server,

adding files as components from, 40

weekday,

as MapForce function (in lang | datetime functions), 630

weeknumber,

as MapForce function (in lang | datetime functions), 631

WHERE,

SQL WHERE component, 419

Wildcards,

import schema, 129

selections, 129

wrapper schema, 129

xs:any/xs:anyAtrribute, 129

Windows,

Cascade, 1053

Classic theme, 1053

Dark theme, 1053

Libraries, 25

Light theme, 1053

Manage Libraries, 25

Mapping, 25

Messages, 28

Multiple Mapping Windows, 25

Overview, 25

Project, 25

support for Altova products, 1409

Theme, 1053

Tile Horisontal/Vertical, 1053

Windows dialog, 1053

Word,

generate mapping documentation, 787

Word 2007+,

preview mapping output as, 833

write-binary-file,

as MapForce function (in lang | file functions), 635

X
XML,

add DTD reference, 117

add schema, 117

as mapping target, 329

BOM, 117

byte order, 117

cast values to target types, 117

component name, 117

component settings, 117

declaration, 117

digital signature, 117

encoding settings, 117

input XML file, 117

mapping data from CSV to, 329

min/maxOccurs, 117

output XML file, 117

pretty print, 117

save file paths relative to MFD file, 117

Schema file, 117

standalone, 117

standalone="yes", 117

StyleVision Power Stylesheet File, 117

writing to database field, 296

XML declaration, 117

XML data,

reading from database fields, 293

writing to database fields, 293

XML Files,

as global resources, 848

generate from database records, 755

generate from single XML source, 753

XML Parser,

about, 1409

XML Schema Manager, 116

XQuery,

adding custom functions, 486, 487

© 2018-2024 Altova GmbH

Index 1433

XQuery,

Extension functions, 1391

importing modules, 487

xs: any, 129

xs:anyAttribute, 129

xsi:nil,

as attribute in XML instance, 123

XSLT,

adding custom functions, 480

Extension functions, 1391

removing custom functions, 480

template namespace, 480

Y
year-from-datetime,

as MapForce function (in lang | datetime functions), 631

year-from-duration,

as MapForce function (in lang | datetime functions), 632

Z
Z to A,

sort component, 408

	Altova MapForce 2024 Professional Edition User Manual
	Table of Contents
	Introduction
	New Features
	Version 2024
	Version 2023
	Version 2022
	Version 2021
	Version 2020

	What Is MapForce?
	Mapping: Sources and Targets
	Mapping Scenarios
	Transformation Languages
	Integration with Altova Products

	User Interface Overview
	Bars
	Windows
	Messages Window
	Panes

	Mapping Fundamentals
	Components
	Add Components
	Component Basics
	File Paths
	Relative and Absolute Paths
	Paths in Execution Environments

	Connections
	Connection Types
	Source-Driven Connections
	Matching-Children Connections
	Copy-All Connections

	Connection Settings
	Connection Context Menu
	Faulty Connections
	Keep Connections after Deleting Components

	General Procedures and Features
	Validation
	Code Generation
	Text View Features
	Text View Search
	Mapping Settings

	Projects
	Project Basics
	Project Settings
	Project Folders

	Tutorials
	One Source to One Target
	Create and Save Design
	Add Source Component
	Add Target Component
	Connect Source and Target
	Preview Mapping Result

	Multiple Sources to One Target
	Prepare Mapping Design
	Add Second Source
	Configure Output
	Connect Second Source and Target

	Chained Mapping
	Prepare Mapping Design
	Configure Second Target
	Connect Targets
	Filter Data
	Preview and Save Output

	Multiple Sources to Multiple Targets
	Configure Input
	Configure Output Part 1
	Configure Output Part 2

	Structural Components
	XML and XML Schema
	XML Component Settings
	Derived Types
	NULL Values
	Comments and Processing Instructions
	CDATA Sections
	Wildcards: xs:any/xs:anyAttribute
	Custom Namespaces
	Schema Manager
	Run Schema Manager
	Status Categories
	Patch or Install a Schema
	Uninstall a Schema, Reset
	Command Line Interface (CLI)
	help
	info
	initialize
	install
	list
	reset
	uninstall
	update
	upgrade

	Databases
	Connecting to a Data Source
	Start Database Connection Wizard
	Database Drivers Overview
	ADO Connection
	Connecting to an Existing Microsoft Access Database
	Setting up the SQL Server Data Link Properties
	Setting up the Microsoft Access Data Link Properties

	ADO.NET Connection
	Creating a Connection String in Visual Studio
	Sample ADO.NET Connection Strings
	ADO.NET Support Notes

	ODBC Connection
	Available ODBC Drivers

	JDBC Connection
	Configuring the CLASSPATH

	SQLite Connection
	Connect to an Existing SQLite Database

	Native Connection
	Global Resources
	Database Connection Examples
	Firebird (JDBC)
	Firebird (ODBC)
	IBM DB2 (JDBC)
	IBM DB2 (ODBC)
	IBM DB2 for i (JDBC)
	IBM DB2 for i (ODBC)
	IBM Informix (JDBC)
	MariaDB (ODBC)
	Microsoft Access (ADO)
	Microsoft Azure SQL (ODBC)
	Microsoft SQL Server (ADO)
	Microsoft SQL Server (ODBC)
	MySQL (ODBC)
	Oracle (JDBC)
	Oracle (ODBC)
	PostgreSQL (ODBC)
	Progress OpenEdge (JDBC)
	Progress OpenEdge (ODBC)
	Sybase (JDBC)
	Teradata (JDBC)
	Teradata (ODBC)

	General Procedures
	Database Component Settings
	Custom SELECT Statements
	Database Relationships
	Local Relationships
	Database-related Functions

	Database Table Actions
	DB Table Actions: Settings
	DB Table Actions: Scenarios
	Transaction Rollback: Scenarios
	MERGE Statements

	DB Query Pane
	Database Browser
	SQL Editor
	Results Tab
	Messages Tab

	Map XML Data to/from DB Fields
	Assigning an XML Schema to a Database Field
	Example: Writing XML Data to a SQLite Field
	Example: Extracting Data from IBM DB2 XML Type Columns

	Stored Procedures
	Adding Stored Procedures to the Mapping
	Stored Procedures as Data Source
	Stored Procedures with Input and Output
	Stored Procedures in Target Components
	Stored Procedures and Local Relations
	Local Relations in Source Components
	Using Stored Procedures to Generate Keys

	CSV and Text Files
	Example: Mapping CSV Files to XML
	Example: Iterating Through Items
	Example: Creating Hierarchies from CSV and Fixed-Length Text Files
	Setting the CSV Options
	FLF to Database
	Setting the FLF Options

	Transformation Components
	Simple Input
	Adding Simple Input Components
	Simple Input Component Settings
	Creating a Default Input Value
	Example: Using File Names as Mapping Parameters

	Simple Output
	Adding Simple Output Components
	Example: Previewing Function Output

	Variables
	Add a Variable
	Scope and Context of Variables
	Example: Counting Database Table Rows
	Example: Filtering and Numbering Nodes
	Example: Grouping and Subgrouping Records

	Join Components
	Adding Join Conditions
	Joining Three or More Structures
	Example: Join XML Structures
	Join Database Data
	Joins in SQL Mode
	Example: Join Tables in SQL Mode
	Example: Create CSV Report from Multiple Tables

	Sort Components
	Sorting by Multiple Keys
	Sorting with Variables

	Filters and Conditions
	Example: Filtering Nodes
	Example: Returning a Value Conditionally
	Filter and Sort Database Data
	Creating WHERE and ORDER BY Clauses

	Value-Maps
	Example: Replacing Weekdays
	Example: Replacing Job Titles

	Exceptions
	Example: Exception on "Greater Than" Condition
	Example: Exception When Node Does Not Exist

	Functions
	Functions Basics
	Manage Function Libraries
	Local and Global Libraries
	Relative Library Paths

	Defaults and Node Functions
	Rule Configuration
	Use-Case Scenarios
	Node Metadata in Node Functions

	User-Defined Functions
	UDF Basics
	UDF Parameters
	Recursive UDFs
	Look-up Implementation

	Custom Functions
	Import Custom XSLT Functions
	Example: Adding Custom XSLT Functions
	Example: Summing Node Values

	Import Custom XQuery 1.0 Functions
	Example: Import Custom XQuery Function

	Import Custom Java and .NET Libraries
	Example: Import Custom Java Class
	Example: Import Custom .NET DLL Assembly

	Reference C#, C++ and Java Libraries Manually
	Configure .mff File
	Import .mff Libraries
	Data Type Mapping
	Reference C# Library in .mff
	Reference C++ in .mff
	Reference Java in .mff

	Regular Expressions
	Function Library Reference
	core | aggregate functions
	avg
	count
	max
	max-string
	min
	min-string
	string-join
	sum

	core | conversion functions
	boolean
	format-date
	format-dateTime
	format-number
	format-time
	number
	parse-date
	parse-dateTime
	parse-number
	parse-time
	string

	core | file path functions
	get-fileext
	get-folder
	main-mfd-filepath
	mfd-filepath
	remove-fileext
	remove-folder
	replace-fileext
	resolve-filepath

	core | generator functions
	auto-number

	core | logical functions
	equal
	equal-or-greater
	equal-or-less
	greater
	less
	logical-and
	logical-not
	logical-or
	not-equal

	core | math functions
	add
	ceiling
	divide
	floor
	modulus
	multiply
	round
	round-precision
	subtract

	core | node functions
	is-xsi-nil
	local-name
	node-name
	set-xsi-nil
	static-node-annotation
	static-node-name
	substitute-missing-with-xsi-nil

	core | QName functions
	QName
	local-name-from-QName
	namespace-uri-from-QName

	core | sequence functions
	distinct-values
	exists
	first-items
	generate-sequence
	group-adjacent
	group-by
	group-ending-with
	group-into-blocks
	group-starting-with
	item-at
	items-from-till
	last-items
	not-exists
	position
	replicate-item
	replicate-sequence
	set-empty
	skip-first-items
	substitute-missing

	core | string functions
	char-from-code
	code-from-char
	concat
	contains
	normalize-space
	starts-with
	string-length
	substring
	substring-after
	substring-before
	tokenize
	tokenize-by-length
	tokenize-regexp
	translate

	db
	is-not-null
	is-null
	set-null
	substitute-null

	lang | datetime functions
	age
	convert-to-utc
	date-from-datetime
	datetime-add
	datetime-diff
	datetime-from-date-and-time
	datetime-from-parts
	day-from-datetime
	day-from-duration
	duration-add
	duration-from-parts
	duration-subtract
	hour-from-datetime
	hour-from-duration
	leapyear
	millisecond-from-datetime
	millisecond-from-duration
	minute-from-datetime
	minute-from-duration
	month-from-datetime
	month-from-duration
	now
	remove-timezone
	second-from-datetime
	second-from-duration
	time-from-datetime
	timezone
	weekday
	weeknumber
	year-from-datetime
	year-from-duration

	lang | file functions
	read-binary-file
	write-binary-file

	lang | generator functions
	create-guid

	lang | logical functions
	logical-xor
	negative
	numeric
	positive

	lang | math functions
	abs
	acos
	asin
	atan
	cos
	degrees
	divide-integer
	exp
	log
	log10
	max
	min
	pi
	pow
	radians
	random
	sin
	sqrt
	tan
	unary-minus

	lang | QName functions
	QName-as-string
	string-as-QName

	lang | string functions
	capitalize
	charset-decode
	charset-encode
	count-substring
	empty
	find-substring
	format-guid-string
	left
	left-trim
	lowercase
	match-pattern
	pad-string-left
	pad-string-right
	repeat-string
	replace
	reversefind-substring
	right
	right-trim
	sleep
	string-compare
	string-compare-ignore-case
	uppercase

	xpath2 | accessors
	base-uri
	node-name
	string

	xpath2 | anyURI functions
	resolve-uri

	xpath2 | boolean functions
	false
	true

	xpath2 | constructors
	xpath2 | context functions
	current-date
	current-dateTime
	current-time
	default-collation
	implicit-timezone
	last

	xpath2 | durations, date and time functions
	adjust-date-to-timezone
	adjust-date-to-timezone
	adjust-dateTime-to-timezone
	adjust-dateTime-to-timezone
	adjust-time-to-timezone
	adjust-time-to-timezone
	day-from-date
	day-from-dateTime
	days-from-duration
	hours-from-dateTime
	hours-from-duration
	hours-from-time
	minutes-from-dateTime
	minutes-from-duration
	minutes-from-time
	month-from-date
	month-from-dateTime
	months-from-duration
	seconds-from-dateTime
	seconds-from-duration
	seconds-from-time
	subtract-dateTimes
	subtract-dates
	subtract-times
	timezone-from-date
	timezone-from-dateTime
	timezone-from-time
	year-from-date
	year-from-dateTime
	years-from-duration

	xpath2 | node functions
	lang
	local-name
	local-name
	name
	name
	namespace-uri
	namespace-uri
	number
	number

	xpath2 | numeric functions
	abs
	round-half-to-even

	xpath2 | string functions
	codepoints-to-string
	compare
	compare
	ends-with
	ends-with
	lower-case
	matches
	normalize-unicode
	replace
	starts-with
	string-to-codepoints
	substring-after
	substring-before
	upper-case

	xpath3 | external information functions
	available-environment-variables
	environment-variable
	unparsed-text
	unparsed-text-available
	unparsed-text-lines

	xpath3 | formatting functions
	format-date
	format-dateTime
	format-integer
	format-time

	xpath3 | math functions
	acos
	asin
	atan
	atan2
	cos
	exp
	exp10
	log
	log10
	pi
	pow
	sin
	sqrt
	tan

	xpath3 | URI functions
	encode-for-uri
	escape-html-uri
	iri-to-uri

	xslt | xpath functions
	lang
	last
	local-name
	name
	namespace-uri
	position

	xslt | xslt functions
	current
	document
	element-available
	function-available
	generate-id
	system-property
	unparsed-entity-uri

	Advanced Mapping Procedures
	Map Node Names
	Get Access to Node Names
	Get Access to Nodes of Specific Type
	Example: Map Element Names to Attribute Values
	Example: Group and Filter Nodes by Name

	Batch-Process Files
	Example: Split One XML File into Many
	Example: Split Database Table into Many XML Files

	Parse and Serialize Strings
	About the Parse/Serialize Component
	Example: Serialize to String (XML to Database)

	Mapping Rules and Strategies
	Sequences
	The Mapping Context
	Databases
	User-Defined Functions
	Example: Changing the Parent Context

	Priority context
	Example: Filter with priority context

	Multiple target components

	Mapping Documentation
	Predefined StyleVision Power Stylesheets
	Custom Stylesheets

	Debugger
	Debugger Preparation
	About the Debug Mode
	Adding and Removing Breakpoints
	Using the Values Window
	Using the Context Window
	Using the Breakpoints Window
	Previewing Partially Generated Output
	Viewing the Current Value of a Connector
	Stepping back into Recent Past
	Viewing the History of Values Processed by a Connector
	Setting the Context to a Value

	Automation with Altova Products
	Automation with RaptorXML Server
	Automation with MapForce Server
	Preparing Mappings for Server Execution
	Compiling Mappings to MapForce Server Execution Files
	Deploying Mappings to FlowForce Server
	StyleVision Output Panes
	MapForce Command Line Interface

	Altova Global Resources
	Global Resource Setup Part 1
	Global Resource Setup Part 2
	XML Files as Global Resources
	Folders as Global Resources
	Databases as Global Resources
	Transformation Results as Global Resources
	Global Resources in Execution Environments
	Global Resources in Generated Code
	Global Resources in MapForce Server
	Global Resources in FlowForce Server

	Catalogs in MapForce
	How Catalogs Work
	Catalog Structure in MapForce
	Customizing Your Catalogs
	Environment Variables

	MapForce Plug-in for Visual Studio
	MapForce Plug-in for Eclipse
	Installing the MapForce Plug-in for Eclipse
	The MapForce Perspective
	Accessing Common Menus and Functions
	Working with Mappings and Projects
	Creating a MapForce/Eclipse Project
	Creating New Mappings
	Importing Existing Mappings into an Eclipse Project
	Configuring Automatic Build and Generation of MapForce Code

	Extending MapForce Plug-in for Eclipse

	Code Generator
	Generate, Build, and Run Code
	Integrate Generated Code
	Modify Input/Output, Define Error Handling
	Change Data Type of Input/Output
	Generate Code from XML Schemas or DTDs
	About Schema Wrapper Libraries (C++)
	About Schema Wrapper Libraries (C#)
	About Schema Wrapper Libraries (Java)
	Integrate Schema Wrapper Libraries
	Example: Book Library
	Reading and Writing XML Documents (C++)
	Reading and Writing XML Documents (C#)
	Reading and Writing XML Documents (Java)

	Example: Purchase Order
	XML Namespaces and Prefixes (C++)
	XML Namespaces and Prefixes (C#)
	XML Namespaces and Prefixes (Java)

	Generated Classes (C++)
	altova::DateTime
	altova::Duration
	altova::DayTimeDuration
	altova::YearMonthDuration
	altova::meta::Attribute
	altova::meta::ComplexType
	altova::meta::Element
	altova::meta::SimpleType
	[YourSchema]::[CDoc]
	[YourSchema]::[ElementType]
	[YourSchema]::MemberAttribute
	[YourSchema]::MemberElement

	Generated Classes (C#)
	Altova.Types.DateTime
	Altova.Types.DateTimeFormat
	Altova.Types.Duration
	Altova.Xml.Meta.Attribute
	Altova.Xml.Meta.ComplexType
	Altova.Xml.Meta.Element
	Altova.Xml.Meta.SimpleType
	[YourSchema].[Doc]
	[YourSchema].[ElementType]
	[YourSchemaType].MemberAttribute
	[YourSchemaType].MemberElement

	Generated Classes (Java)
	com.altova.types.DateTime
	com.altova.types.Duration
	com.altova.xml.meta.Attribute
	com.altova.xml.meta.ComplexType
	com.altova.xml.meta.Element
	com.altova.xml.meta.SimpleType
	com.[YourSchema].[Doc]
	com.[YourSchema].[ElementType]
	com.[YourSchema].[YourSchemaType].MemberAttribute
	com.[YourSchema].[YourSchemaType].MemberElement

	SPL Reference
	Basic SPL structure
	Declarations
	Variables
	Predefined variables
	Creating output files
	Operators
	Conditions
	Collections and foreach
	Subroutines
	Subroutine declaration
	Subroutine invocation
	Subroutine example

	Built in Types
	Library
	Namespace
	Type
	Member
	NativeBinding
	Facets

	Menu Commands
	File
	Edit
	Insert
	Project
	Component
	Connection
	Function
	Output
	Debug
	View
	Tools
	Customize Menus
	Customize Shortcuts
	Options
	Generation
	Java
	Database
	Network
	Network Proxy

	Window
	Help

	The MapForce API
	Accessing the API
	The Object Model
	Error Handling
	Example C# Project
	Example Java Project
	JScript Examples
	Start Application
	Simple Document Access
	Generate Code
	Generate Code (Alternative)
	Run a Mapping
	Project Tasks

	Object Reference
	Interfaces
	Application
	Properties
	ActiveDocument
	ActiveProject
	Application
	Documents
	Edition
	GlobalResourceConfig
	GlobalResourceFile
	IsAPISupported
	LibraryImports
	MajorVersion
	MinorVersion
	Name
	Options
	Parent
	ServicePackVersion
	Status
	Visible
	WindowHandle

	Methods
	HighlightSerializedMarker
	NewDocument
	NewProject
	NewWebServiceProject
	OpenDocument
	OpenProject
	OpenURL
	Quit

	Events
	OnDocumentOpened
	OnProjectOpened
	OnShutdown

	AppOutputLine
	Properties
	Application
	ChildLines
	Parent

	Methods
	GetCellCountInLine
	GetCellIcon (obsolete)
	GetCellSymbol
	GetCellText
	GetCellTextDecoration
	GetIsCellText
	GetLineCount
	GetLineSeverity
	GetLineSymbol
	GetLineText
	GetLineTextEx
	GetLineTextWithChildren
	GetLineTextWithChildrenEx

	AppOutputLines
	Properties
	Application
	Count
	Item
	Parent

	AppOutputLineSymbol
	Properties
	Application
	Parent

	Methods
	GetSymbolHREF
	GetSymbolID
	IsSymbolHREF

	Component
	Properties
	Application
	CanChangeInputInstanceFile
	CanChangeOutputInstanceFile
	ComponentName
	HasIncomingConnections
	HasOutgoingConnections
	ID
	InputInstanceFile
	IsParameterInputRequired
	IsParameterSequence
	Name
	OutputInstanceFile
	Parent
	Preview
	Schema
	SubType
	Type
	UsageKind

	Methods
	GenerateOutput
	GetRootDatapoint

	Components
	Properties
	Application
	Count
	Item
	Parent

	Connection
	Properties
	Application
	ConnectionType
	Parent

	Datapoint
	Properties
	Application
	Parent

	Methods
	GetChild

	Document
	Properties
	Application
	FullName
	JavaSettings_BasePackageName
	LibraryImports
	MainMapping
	MapForceView
	Mappings
	Name
	OutputSettings_ApplicationName
	OutputSettings_Encoding (obsolete)
	Parent
	Path
	Saved

	Methods
	Activate
	Close
	CreateUserDefinedFunction
	FindComponentByID
	GenerateCHashCode
	GenerateCodeEx
	GenerateCppCode
	GenerateJavaCode
	GenerateOutput
	GenerateOutputEx
	GenerateXQuery
	GenerateXSLT
	GenerateXSLT2
	GenerateXSLT3
	HighlightSerializedMarker
	Save
	SaveAs

	Events
	OnDocumentClosed
	OnModifiedFlagChanged

	Documents
	Properties
	ActiveDocument
	Application
	Count
	Item
	Parent

	Methods
	NewDocument
	OpenDocument

	ErrorMarker
	Properties
	Application
	DocumentFileName
	ErrorLevel
	Parent
	Serialization
	Text

	Methods
	Highlight

	ErrorMarkers
	Properties
	Application
	Count
	Item
	Parent

	LibraryImport
	Properties
	Application
	Parent
	Path
	SaveRelativePath

	LibraryImports
	Properties
	Application
	Count
	Item
	Parent

	Methods
	Add
	Find
	Remove

	MapForceView
	Properties
	Active
	ActiveMapping
	ActiveMappingName
	Application
	HighlightMyConnections
	HighlightMyConnectionsRecursively
	Parent
	ShowItemTypes
	ShowLibraryInFunctionHeader

	Methods
	InsertWSDLCall
	InsertXMLFile (obsolete)
	InsertXMLSchema (obsolete)
	InsertXMLSchemaWithSample (obsolete)

	Mapping
	Properties
	Application
	Components
	IsMainMapping
	Name
	Parent

	Methods
	CreateConnection
	InsertFunctionCall
	InsertXMLFile
	InsertXMLSchema
	InsertXMLSchemaInputParameter
	InsertXMLSchemaOutputParameter

	Mappings
	Properties
	Application
	Count
	Item
	Parent

	Options
	Properties
	Application
	CodeDefaultOutputDirectory
	CPPSettings_DOMType
	CPPSettings_GenerateVC6ProjectFile (obsolete)
	CppSettings_GenerateVSProjectFile
	CPPSettings_LibraryType
	CPPSettings_UseMFC
	CSharpSettings_ProjectType
	DefaultOutputByteOrder
	DefaultOutputByteOrderMark
	DefaultOutputEncoding
	GenerateWrapperClasses
	JavaSettings_ApacheAxisVersion (obsolete)
	Parent
	ShowLogoOnPrint
	ShowLogoOnStartup
	UseGradientBackground
	XSLTDefaultOutputDirectory

	Project
	Properties
	_NewEnum
	Application
	Count
	FullName
	Item
	Java_BasePackageName
	Name
	Output_Folder
	Output_Language
	Output_TextEncoding
	Parent
	Path
	Saved

	Methods
	AddActiveFile
	AddFile
	Close
	CreateFolder
	GenerateCode
	GenerateCodeEx
	GenerateCodeIn
	GenerateCodeInEx
	InsertWebService
	Save

	Events
	OnProjectClosed

	ProjectItem
	Properties
	_NewEnum
	Application
	CodeGenSettings_Language
	CodeGenSettings_OutputFolder
	CodeGenSettings_UseDefault
	Count
	Item
	Kind
	Name
	Parent
	QualifiedName
	WSDLFile

	Methods
	AddActiveFile
	AddFile
	CreateFolder
	CreateMappingForProject
	GenerateCode
	GenerateCodeEx
	GenerateCodeIn
	GenerateCodeInEx
	Open
	Remove

	Events
	OnModifiedFlagChanged
	OnProjectClosed

	Enumerations
	ENUMApacheAxisVersion (obsolete)
	ENUMApplicationStatus
	ENUMAppOutputLine_Severity
	ENUMAppOutputLine_TextDecoration
	ENUMCodeGenErrorLevel
	ENUMComponentDatapointSide
	ENUMComponentSubType
	ENUMComponentType
	ENUMComponentUsageKind
	ENUMConnectionType
	ENUMDOMType
	ENUMLibType
	ENUMProgrammingLanguage
	ENUMProjectItemType
	ENUMProjectType
	ENUMSearchDatapointFlags
	ENUMViewMode

	ActiveX Integration
	Prerequisites
	Adding the ActiveX Controls to the Toolbox
	Integration at Application Level
	Integration at Document Level
	ActiveX Integration Examples
	C#
	Running the Sample C# Solution
	Retrieving Command Information
	Handling Events

	Java
	Example Java Project
	Creating the ActiveX Controls
	Loading Data in the Controls
	Basic Event Handling
	Menus
	UI Update Event Handling
	Listing the Properties of a MapForce Mapping

	VB.NET

	Command Reference
	"File" Menu
	"Edit" Menu
	"Insert" Menu
	"Project" Menu
	"Component" Menu
	"Connection" Menu
	"Function" Menu
	"Output" Menu
	"Debug" Menu
	"View" Menu
	"Tools" Menu
	"Window" Menu
	"Help" Menu

	Object Reference
	MapForceCommand
	Accelerator
	ID
	IsSeparator
	Label
	Name
	StatusText
	SubCommands
	ToolTip

	MapForceCommands
	Count
	Item

	MapForceControl
	Properties
	Appearance
	Application
	BorderStyle
	CommandsList
	EnableUserPrompts
	IntegrationLevel
	MainMenu
	Toolbars

	Methods
	Exec
	Open
	QueryStatus

	Events
	OnCloseEditingWindow
	OnDocumentOpened
	OnFileChangedAlert
	OnLicenseProblem
	OnOpenedOrFocused
	OnToolWindowUpdated
	OnUpdateCmdUI
	OnValidationWindowUpdated

	MapForceControlDocument
	Properties
	Appearance
	BorderStyle
	Document
	IsModified
	Path
	ReadOnly

	Methods
	Exec
	New
	Open
	QueryStatus
	Reload
	Save
	SaveAs

	Events
	OnActivate
	OnDocumentClosed
	OnDocumentOpened
	OnDocumentSaveAs
	OnFileChangedAlert
	OnModifiedFlagChanged
	OnSetEditorTitle

	MapForceControlPlaceHolder
	Properties
	Label
	PlaceholderWindowID
	Project

	Methods
	OpenProject
	CloseProject

	Events
	OnModifiedFlagChanged
	OnSetLabel

	Enumerations
	ICActiveXIntegrationLevel
	MapForceControlPlaceholderWindow

	Appendices
	Support Notes
	Supported Sources and Targets
	Supported Features in Generated Code

	Engine Information
	XSLT and XQuery Engine Information
	XSLT 1.0
	XSLT 2.0
	XQuery 1.0

	XSLT and XPath/XQuery Functions
	Altova Extension Functions
	XSLT Functions
	XPath/XQuery Functions: Date and Time
	XPath/XQuery Functions: Geolocation
	XPath/XQuery Functions: Image-Related
	XPath/XQuery Functions: Numeric
	XPath/XQuery Functions: Schema
	XPath/XQuery Functions: Sequence
	XPath/XQuery Functions: String
	XPath/XQuery Functions: Miscellaneous

	Miscellaneous Extension Functions
	Java Extension Functions
	User-Defined Class Files
	User-Defined Jar Files
	Java: Constructors
	Java: Static Methods and Static Fields
	Java: Instance Methods and Instance Fields
	Datatypes: XPath/XQuery to Java
	Datatypes: Java to XPath/XQuery

	.NET Extension Functions
	.NET: Constructors
	.NET: Static Methods and Static Fields
	.NET: Instance Methods and Instance Fields
	Datatypes: XPath/XQuery to .NET
	Datatypes: .NET to XPath/XQuery

	MSXSL Scripts for XSLT

	Technical Data
	OS and Memory Requirements
	Altova Engines
	Unicode Support
	Internet Usage

	License Information
	Electronic Software Distribution
	Software Activation and License Metering
	Altova End-User License Agreement

	Index

